xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 86714001)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 
53 /*
54  * Virtual device management.
55  */
56 
57 static vdev_ops_t *vdev_ops_table[] = {
58 	&vdev_root_ops,
59 	&vdev_raidz_ops,
60 	&vdev_mirror_ops,
61 	&vdev_replacing_ops,
62 	&vdev_spare_ops,
63 	&vdev_disk_ops,
64 	&vdev_file_ops,
65 	&vdev_missing_ops,
66 	&vdev_hole_ops,
67 	&vdev_indirect_ops,
68 	NULL
69 };
70 
71 /* maximum scrub/resilver I/O queue per leaf vdev */
72 int zfs_scrub_limit = 10;
73 
74 /* maximum number of metaslabs per top-level vdev */
75 int vdev_max_ms_count = 200;
76 
77 /* minimum amount of metaslabs per top-level vdev */
78 int vdev_min_ms_count = 16;
79 
80 /* see comment in vdev_metaslab_set_size() */
81 int vdev_default_ms_shift = 29;
82 
83 boolean_t vdev_validate_skip = B_FALSE;
84 
85 /*
86  * Since the DTL space map of a vdev is not expected to have a lot of
87  * entries, we default its block size to 4K.
88  */
89 int vdev_dtl_sm_blksz = (1 << 12);
90 
91 /*
92  * vdev-wide space maps that have lots of entries written to them at
93  * the end of each transaction can benefit from a higher I/O bandwidth
94  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
95  */
96 int vdev_standard_sm_blksz = (1 << 17);
97 
98 /*PRINTFLIKE2*/
99 void
100 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
101 {
102 	va_list adx;
103 	char buf[256];
104 
105 	va_start(adx, fmt);
106 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
107 	va_end(adx);
108 
109 	if (vd->vdev_path != NULL) {
110 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
111 		    vd->vdev_path, buf);
112 	} else {
113 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
114 		    vd->vdev_ops->vdev_op_type,
115 		    (u_longlong_t)vd->vdev_id,
116 		    (u_longlong_t)vd->vdev_guid, buf);
117 	}
118 }
119 
120 void
121 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
122 {
123 	char state[20];
124 
125 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
126 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
127 		    vd->vdev_ops->vdev_op_type);
128 		return;
129 	}
130 
131 	switch (vd->vdev_state) {
132 	case VDEV_STATE_UNKNOWN:
133 		(void) snprintf(state, sizeof (state), "unknown");
134 		break;
135 	case VDEV_STATE_CLOSED:
136 		(void) snprintf(state, sizeof (state), "closed");
137 		break;
138 	case VDEV_STATE_OFFLINE:
139 		(void) snprintf(state, sizeof (state), "offline");
140 		break;
141 	case VDEV_STATE_REMOVED:
142 		(void) snprintf(state, sizeof (state), "removed");
143 		break;
144 	case VDEV_STATE_CANT_OPEN:
145 		(void) snprintf(state, sizeof (state), "can't open");
146 		break;
147 	case VDEV_STATE_FAULTED:
148 		(void) snprintf(state, sizeof (state), "faulted");
149 		break;
150 	case VDEV_STATE_DEGRADED:
151 		(void) snprintf(state, sizeof (state), "degraded");
152 		break;
153 	case VDEV_STATE_HEALTHY:
154 		(void) snprintf(state, sizeof (state), "healthy");
155 		break;
156 	default:
157 		(void) snprintf(state, sizeof (state), "<state %u>",
158 		    (uint_t)vd->vdev_state);
159 	}
160 
161 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
162 	    "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
163 	    vd->vdev_islog ? " (log)" : "",
164 	    (u_longlong_t)vd->vdev_guid,
165 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
166 
167 	for (uint64_t i = 0; i < vd->vdev_children; i++)
168 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
169 }
170 
171 /*
172  * Given a vdev type, return the appropriate ops vector.
173  */
174 static vdev_ops_t *
175 vdev_getops(const char *type)
176 {
177 	vdev_ops_t *ops, **opspp;
178 
179 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
180 		if (strcmp(ops->vdev_op_type, type) == 0)
181 			break;
182 
183 	return (ops);
184 }
185 
186 /*
187  * Default asize function: return the MAX of psize with the asize of
188  * all children.  This is what's used by anything other than RAID-Z.
189  */
190 uint64_t
191 vdev_default_asize(vdev_t *vd, uint64_t psize)
192 {
193 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
194 	uint64_t csize;
195 
196 	for (int c = 0; c < vd->vdev_children; c++) {
197 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
198 		asize = MAX(asize, csize);
199 	}
200 
201 	return (asize);
202 }
203 
204 /*
205  * Get the minimum allocatable size. We define the allocatable size as
206  * the vdev's asize rounded to the nearest metaslab. This allows us to
207  * replace or attach devices which don't have the same physical size but
208  * can still satisfy the same number of allocations.
209  */
210 uint64_t
211 vdev_get_min_asize(vdev_t *vd)
212 {
213 	vdev_t *pvd = vd->vdev_parent;
214 
215 	/*
216 	 * If our parent is NULL (inactive spare or cache) or is the root,
217 	 * just return our own asize.
218 	 */
219 	if (pvd == NULL)
220 		return (vd->vdev_asize);
221 
222 	/*
223 	 * The top-level vdev just returns the allocatable size rounded
224 	 * to the nearest metaslab.
225 	 */
226 	if (vd == vd->vdev_top)
227 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
228 
229 	/*
230 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
231 	 * so each child must provide at least 1/Nth of its asize.
232 	 */
233 	if (pvd->vdev_ops == &vdev_raidz_ops)
234 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
235 		    pvd->vdev_children);
236 
237 	return (pvd->vdev_min_asize);
238 }
239 
240 void
241 vdev_set_min_asize(vdev_t *vd)
242 {
243 	vd->vdev_min_asize = vdev_get_min_asize(vd);
244 
245 	for (int c = 0; c < vd->vdev_children; c++)
246 		vdev_set_min_asize(vd->vdev_child[c]);
247 }
248 
249 vdev_t *
250 vdev_lookup_top(spa_t *spa, uint64_t vdev)
251 {
252 	vdev_t *rvd = spa->spa_root_vdev;
253 
254 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
255 
256 	if (vdev < rvd->vdev_children) {
257 		ASSERT(rvd->vdev_child[vdev] != NULL);
258 		return (rvd->vdev_child[vdev]);
259 	}
260 
261 	return (NULL);
262 }
263 
264 vdev_t *
265 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
266 {
267 	vdev_t *mvd;
268 
269 	if (vd->vdev_guid == guid)
270 		return (vd);
271 
272 	for (int c = 0; c < vd->vdev_children; c++)
273 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
274 		    NULL)
275 			return (mvd);
276 
277 	return (NULL);
278 }
279 
280 static int
281 vdev_count_leaves_impl(vdev_t *vd)
282 {
283 	int n = 0;
284 
285 	if (vd->vdev_ops->vdev_op_leaf)
286 		return (1);
287 
288 	for (int c = 0; c < vd->vdev_children; c++)
289 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
290 
291 	return (n);
292 }
293 
294 int
295 vdev_count_leaves(spa_t *spa)
296 {
297 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
298 }
299 
300 void
301 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
302 {
303 	size_t oldsize, newsize;
304 	uint64_t id = cvd->vdev_id;
305 	vdev_t **newchild;
306 	spa_t *spa = cvd->vdev_spa;
307 
308 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
309 	ASSERT(cvd->vdev_parent == NULL);
310 
311 	cvd->vdev_parent = pvd;
312 
313 	if (pvd == NULL)
314 		return;
315 
316 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
317 
318 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
319 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
320 	newsize = pvd->vdev_children * sizeof (vdev_t *);
321 
322 	newchild = kmem_zalloc(newsize, KM_SLEEP);
323 	if (pvd->vdev_child != NULL) {
324 		bcopy(pvd->vdev_child, newchild, oldsize);
325 		kmem_free(pvd->vdev_child, oldsize);
326 	}
327 
328 	pvd->vdev_child = newchild;
329 	pvd->vdev_child[id] = cvd;
330 
331 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
332 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
333 
334 	/*
335 	 * Walk up all ancestors to update guid sum.
336 	 */
337 	for (; pvd != NULL; pvd = pvd->vdev_parent)
338 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
339 }
340 
341 void
342 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
343 {
344 	int c;
345 	uint_t id = cvd->vdev_id;
346 
347 	ASSERT(cvd->vdev_parent == pvd);
348 
349 	if (pvd == NULL)
350 		return;
351 
352 	ASSERT(id < pvd->vdev_children);
353 	ASSERT(pvd->vdev_child[id] == cvd);
354 
355 	pvd->vdev_child[id] = NULL;
356 	cvd->vdev_parent = NULL;
357 
358 	for (c = 0; c < pvd->vdev_children; c++)
359 		if (pvd->vdev_child[c])
360 			break;
361 
362 	if (c == pvd->vdev_children) {
363 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
364 		pvd->vdev_child = NULL;
365 		pvd->vdev_children = 0;
366 	}
367 
368 	/*
369 	 * Walk up all ancestors to update guid sum.
370 	 */
371 	for (; pvd != NULL; pvd = pvd->vdev_parent)
372 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
373 }
374 
375 /*
376  * Remove any holes in the child array.
377  */
378 void
379 vdev_compact_children(vdev_t *pvd)
380 {
381 	vdev_t **newchild, *cvd;
382 	int oldc = pvd->vdev_children;
383 	int newc;
384 
385 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
386 
387 	for (int c = newc = 0; c < oldc; c++)
388 		if (pvd->vdev_child[c])
389 			newc++;
390 
391 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
392 
393 	for (int c = newc = 0; c < oldc; c++) {
394 		if ((cvd = pvd->vdev_child[c]) != NULL) {
395 			newchild[newc] = cvd;
396 			cvd->vdev_id = newc++;
397 		}
398 	}
399 
400 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
401 	pvd->vdev_child = newchild;
402 	pvd->vdev_children = newc;
403 }
404 
405 /*
406  * Allocate and minimally initialize a vdev_t.
407  */
408 vdev_t *
409 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
410 {
411 	vdev_t *vd;
412 	vdev_indirect_config_t *vic;
413 
414 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
415 	vic = &vd->vdev_indirect_config;
416 
417 	if (spa->spa_root_vdev == NULL) {
418 		ASSERT(ops == &vdev_root_ops);
419 		spa->spa_root_vdev = vd;
420 		spa->spa_load_guid = spa_generate_guid(NULL);
421 	}
422 
423 	if (guid == 0 && ops != &vdev_hole_ops) {
424 		if (spa->spa_root_vdev == vd) {
425 			/*
426 			 * The root vdev's guid will also be the pool guid,
427 			 * which must be unique among all pools.
428 			 */
429 			guid = spa_generate_guid(NULL);
430 		} else {
431 			/*
432 			 * Any other vdev's guid must be unique within the pool.
433 			 */
434 			guid = spa_generate_guid(spa);
435 		}
436 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
437 	}
438 
439 	vd->vdev_spa = spa;
440 	vd->vdev_id = id;
441 	vd->vdev_guid = guid;
442 	vd->vdev_guid_sum = guid;
443 	vd->vdev_ops = ops;
444 	vd->vdev_state = VDEV_STATE_CLOSED;
445 	vd->vdev_ishole = (ops == &vdev_hole_ops);
446 	vic->vic_prev_indirect_vdev = UINT64_MAX;
447 
448 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
449 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
450 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
451 
452 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
453 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
454 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
455 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
456 	for (int t = 0; t < DTL_TYPES; t++) {
457 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
458 	}
459 	txg_list_create(&vd->vdev_ms_list, spa,
460 	    offsetof(struct metaslab, ms_txg_node));
461 	txg_list_create(&vd->vdev_dtl_list, spa,
462 	    offsetof(struct vdev, vdev_dtl_node));
463 	vd->vdev_stat.vs_timestamp = gethrtime();
464 	vdev_queue_init(vd);
465 	vdev_cache_init(vd);
466 
467 	return (vd);
468 }
469 
470 /*
471  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
472  * creating a new vdev or loading an existing one - the behavior is slightly
473  * different for each case.
474  */
475 int
476 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
477     int alloctype)
478 {
479 	vdev_ops_t *ops;
480 	char *type;
481 	uint64_t guid = 0, islog, nparity;
482 	vdev_t *vd;
483 	vdev_indirect_config_t *vic;
484 
485 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
486 
487 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
488 		return (SET_ERROR(EINVAL));
489 
490 	if ((ops = vdev_getops(type)) == NULL)
491 		return (SET_ERROR(EINVAL));
492 
493 	/*
494 	 * If this is a load, get the vdev guid from the nvlist.
495 	 * Otherwise, vdev_alloc_common() will generate one for us.
496 	 */
497 	if (alloctype == VDEV_ALLOC_LOAD) {
498 		uint64_t label_id;
499 
500 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
501 		    label_id != id)
502 			return (SET_ERROR(EINVAL));
503 
504 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
505 			return (SET_ERROR(EINVAL));
506 	} else if (alloctype == VDEV_ALLOC_SPARE) {
507 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
508 			return (SET_ERROR(EINVAL));
509 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
510 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
511 			return (SET_ERROR(EINVAL));
512 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
513 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
514 			return (SET_ERROR(EINVAL));
515 	}
516 
517 	/*
518 	 * The first allocated vdev must be of type 'root'.
519 	 */
520 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
521 		return (SET_ERROR(EINVAL));
522 
523 	/*
524 	 * Determine whether we're a log vdev.
525 	 */
526 	islog = 0;
527 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
528 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
529 		return (SET_ERROR(ENOTSUP));
530 
531 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
532 		return (SET_ERROR(ENOTSUP));
533 
534 	/*
535 	 * Set the nparity property for RAID-Z vdevs.
536 	 */
537 	nparity = -1ULL;
538 	if (ops == &vdev_raidz_ops) {
539 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
540 		    &nparity) == 0) {
541 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
542 				return (SET_ERROR(EINVAL));
543 			/*
544 			 * Previous versions could only support 1 or 2 parity
545 			 * device.
546 			 */
547 			if (nparity > 1 &&
548 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
549 				return (SET_ERROR(ENOTSUP));
550 			if (nparity > 2 &&
551 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
552 				return (SET_ERROR(ENOTSUP));
553 		} else {
554 			/*
555 			 * We require the parity to be specified for SPAs that
556 			 * support multiple parity levels.
557 			 */
558 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
559 				return (SET_ERROR(EINVAL));
560 			/*
561 			 * Otherwise, we default to 1 parity device for RAID-Z.
562 			 */
563 			nparity = 1;
564 		}
565 	} else {
566 		nparity = 0;
567 	}
568 	ASSERT(nparity != -1ULL);
569 
570 	vd = vdev_alloc_common(spa, id, guid, ops);
571 	vic = &vd->vdev_indirect_config;
572 
573 	vd->vdev_islog = islog;
574 	vd->vdev_nparity = nparity;
575 
576 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
577 		vd->vdev_path = spa_strdup(vd->vdev_path);
578 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
579 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
580 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
581 	    &vd->vdev_physpath) == 0)
582 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
583 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
584 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
585 
586 	/*
587 	 * Set the whole_disk property.  If it's not specified, leave the value
588 	 * as -1.
589 	 */
590 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
591 	    &vd->vdev_wholedisk) != 0)
592 		vd->vdev_wholedisk = -1ULL;
593 
594 	ASSERT0(vic->vic_mapping_object);
595 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
596 	    &vic->vic_mapping_object);
597 	ASSERT0(vic->vic_births_object);
598 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
599 	    &vic->vic_births_object);
600 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
601 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
602 	    &vic->vic_prev_indirect_vdev);
603 
604 	/*
605 	 * Look for the 'not present' flag.  This will only be set if the device
606 	 * was not present at the time of import.
607 	 */
608 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
609 	    &vd->vdev_not_present);
610 
611 	/*
612 	 * Get the alignment requirement.
613 	 */
614 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
615 
616 	/*
617 	 * Retrieve the vdev creation time.
618 	 */
619 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
620 	    &vd->vdev_crtxg);
621 
622 	/*
623 	 * If we're a top-level vdev, try to load the allocation parameters.
624 	 */
625 	if (parent && !parent->vdev_parent &&
626 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
627 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
628 		    &vd->vdev_ms_array);
629 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
630 		    &vd->vdev_ms_shift);
631 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
632 		    &vd->vdev_asize);
633 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
634 		    &vd->vdev_removing);
635 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
636 		    &vd->vdev_top_zap);
637 	} else {
638 		ASSERT0(vd->vdev_top_zap);
639 	}
640 
641 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
642 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
643 		    alloctype == VDEV_ALLOC_ADD ||
644 		    alloctype == VDEV_ALLOC_SPLIT ||
645 		    alloctype == VDEV_ALLOC_ROOTPOOL);
646 		vd->vdev_mg = metaslab_group_create(islog ?
647 		    spa_log_class(spa) : spa_normal_class(spa), vd);
648 	}
649 
650 	if (vd->vdev_ops->vdev_op_leaf &&
651 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
652 		(void) nvlist_lookup_uint64(nv,
653 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
654 	} else {
655 		ASSERT0(vd->vdev_leaf_zap);
656 	}
657 
658 	/*
659 	 * If we're a leaf vdev, try to load the DTL object and other state.
660 	 */
661 
662 	if (vd->vdev_ops->vdev_op_leaf &&
663 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
664 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
665 		if (alloctype == VDEV_ALLOC_LOAD) {
666 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
667 			    &vd->vdev_dtl_object);
668 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
669 			    &vd->vdev_unspare);
670 		}
671 
672 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
673 			uint64_t spare = 0;
674 
675 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
676 			    &spare) == 0 && spare)
677 				spa_spare_add(vd);
678 		}
679 
680 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
681 		    &vd->vdev_offline);
682 
683 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
684 		    &vd->vdev_resilver_txg);
685 
686 		/*
687 		 * When importing a pool, we want to ignore the persistent fault
688 		 * state, as the diagnosis made on another system may not be
689 		 * valid in the current context.  Local vdevs will
690 		 * remain in the faulted state.
691 		 */
692 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
693 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
694 			    &vd->vdev_faulted);
695 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
696 			    &vd->vdev_degraded);
697 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
698 			    &vd->vdev_removed);
699 
700 			if (vd->vdev_faulted || vd->vdev_degraded) {
701 				char *aux;
702 
703 				vd->vdev_label_aux =
704 				    VDEV_AUX_ERR_EXCEEDED;
705 				if (nvlist_lookup_string(nv,
706 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
707 				    strcmp(aux, "external") == 0)
708 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
709 			}
710 		}
711 	}
712 
713 	/*
714 	 * Add ourselves to the parent's list of children.
715 	 */
716 	vdev_add_child(parent, vd);
717 
718 	*vdp = vd;
719 
720 	return (0);
721 }
722 
723 void
724 vdev_free(vdev_t *vd)
725 {
726 	spa_t *spa = vd->vdev_spa;
727 
728 	/*
729 	 * vdev_free() implies closing the vdev first.  This is simpler than
730 	 * trying to ensure complicated semantics for all callers.
731 	 */
732 	vdev_close(vd);
733 
734 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
735 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
736 
737 	/*
738 	 * Free all children.
739 	 */
740 	for (int c = 0; c < vd->vdev_children; c++)
741 		vdev_free(vd->vdev_child[c]);
742 
743 	ASSERT(vd->vdev_child == NULL);
744 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
745 
746 	/*
747 	 * Discard allocation state.
748 	 */
749 	if (vd->vdev_mg != NULL) {
750 		vdev_metaslab_fini(vd);
751 		metaslab_group_destroy(vd->vdev_mg);
752 	}
753 
754 	ASSERT0(vd->vdev_stat.vs_space);
755 	ASSERT0(vd->vdev_stat.vs_dspace);
756 	ASSERT0(vd->vdev_stat.vs_alloc);
757 
758 	/*
759 	 * Remove this vdev from its parent's child list.
760 	 */
761 	vdev_remove_child(vd->vdev_parent, vd);
762 
763 	ASSERT(vd->vdev_parent == NULL);
764 
765 	/*
766 	 * Clean up vdev structure.
767 	 */
768 	vdev_queue_fini(vd);
769 	vdev_cache_fini(vd);
770 
771 	if (vd->vdev_path)
772 		spa_strfree(vd->vdev_path);
773 	if (vd->vdev_devid)
774 		spa_strfree(vd->vdev_devid);
775 	if (vd->vdev_physpath)
776 		spa_strfree(vd->vdev_physpath);
777 	if (vd->vdev_fru)
778 		spa_strfree(vd->vdev_fru);
779 
780 	if (vd->vdev_isspare)
781 		spa_spare_remove(vd);
782 	if (vd->vdev_isl2cache)
783 		spa_l2cache_remove(vd);
784 
785 	txg_list_destroy(&vd->vdev_ms_list);
786 	txg_list_destroy(&vd->vdev_dtl_list);
787 
788 	mutex_enter(&vd->vdev_dtl_lock);
789 	space_map_close(vd->vdev_dtl_sm);
790 	for (int t = 0; t < DTL_TYPES; t++) {
791 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
792 		range_tree_destroy(vd->vdev_dtl[t]);
793 	}
794 	mutex_exit(&vd->vdev_dtl_lock);
795 
796 	EQUIV(vd->vdev_indirect_births != NULL,
797 	    vd->vdev_indirect_mapping != NULL);
798 	if (vd->vdev_indirect_births != NULL) {
799 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
800 		vdev_indirect_births_close(vd->vdev_indirect_births);
801 	}
802 
803 	if (vd->vdev_obsolete_sm != NULL) {
804 		ASSERT(vd->vdev_removing ||
805 		    vd->vdev_ops == &vdev_indirect_ops);
806 		space_map_close(vd->vdev_obsolete_sm);
807 		vd->vdev_obsolete_sm = NULL;
808 	}
809 	range_tree_destroy(vd->vdev_obsolete_segments);
810 	rw_destroy(&vd->vdev_indirect_rwlock);
811 	mutex_destroy(&vd->vdev_obsolete_lock);
812 
813 	mutex_destroy(&vd->vdev_queue_lock);
814 	mutex_destroy(&vd->vdev_dtl_lock);
815 	mutex_destroy(&vd->vdev_stat_lock);
816 	mutex_destroy(&vd->vdev_probe_lock);
817 
818 	if (vd == spa->spa_root_vdev)
819 		spa->spa_root_vdev = NULL;
820 
821 	kmem_free(vd, sizeof (vdev_t));
822 }
823 
824 /*
825  * Transfer top-level vdev state from svd to tvd.
826  */
827 static void
828 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
829 {
830 	spa_t *spa = svd->vdev_spa;
831 	metaslab_t *msp;
832 	vdev_t *vd;
833 	int t;
834 
835 	ASSERT(tvd == tvd->vdev_top);
836 
837 	tvd->vdev_ms_array = svd->vdev_ms_array;
838 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
839 	tvd->vdev_ms_count = svd->vdev_ms_count;
840 	tvd->vdev_top_zap = svd->vdev_top_zap;
841 
842 	svd->vdev_ms_array = 0;
843 	svd->vdev_ms_shift = 0;
844 	svd->vdev_ms_count = 0;
845 	svd->vdev_top_zap = 0;
846 
847 	if (tvd->vdev_mg)
848 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
849 	tvd->vdev_mg = svd->vdev_mg;
850 	tvd->vdev_ms = svd->vdev_ms;
851 
852 	svd->vdev_mg = NULL;
853 	svd->vdev_ms = NULL;
854 
855 	if (tvd->vdev_mg != NULL)
856 		tvd->vdev_mg->mg_vd = tvd;
857 
858 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
859 	svd->vdev_checkpoint_sm = NULL;
860 
861 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
862 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
863 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
864 
865 	svd->vdev_stat.vs_alloc = 0;
866 	svd->vdev_stat.vs_space = 0;
867 	svd->vdev_stat.vs_dspace = 0;
868 
869 	for (t = 0; t < TXG_SIZE; t++) {
870 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
871 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
872 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
873 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
874 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
875 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
876 	}
877 
878 	if (list_link_active(&svd->vdev_config_dirty_node)) {
879 		vdev_config_clean(svd);
880 		vdev_config_dirty(tvd);
881 	}
882 
883 	if (list_link_active(&svd->vdev_state_dirty_node)) {
884 		vdev_state_clean(svd);
885 		vdev_state_dirty(tvd);
886 	}
887 
888 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
889 	svd->vdev_deflate_ratio = 0;
890 
891 	tvd->vdev_islog = svd->vdev_islog;
892 	svd->vdev_islog = 0;
893 }
894 
895 static void
896 vdev_top_update(vdev_t *tvd, vdev_t *vd)
897 {
898 	if (vd == NULL)
899 		return;
900 
901 	vd->vdev_top = tvd;
902 
903 	for (int c = 0; c < vd->vdev_children; c++)
904 		vdev_top_update(tvd, vd->vdev_child[c]);
905 }
906 
907 /*
908  * Add a mirror/replacing vdev above an existing vdev.
909  */
910 vdev_t *
911 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
912 {
913 	spa_t *spa = cvd->vdev_spa;
914 	vdev_t *pvd = cvd->vdev_parent;
915 	vdev_t *mvd;
916 
917 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
918 
919 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
920 
921 	mvd->vdev_asize = cvd->vdev_asize;
922 	mvd->vdev_min_asize = cvd->vdev_min_asize;
923 	mvd->vdev_max_asize = cvd->vdev_max_asize;
924 	mvd->vdev_psize = cvd->vdev_psize;
925 	mvd->vdev_ashift = cvd->vdev_ashift;
926 	mvd->vdev_state = cvd->vdev_state;
927 	mvd->vdev_crtxg = cvd->vdev_crtxg;
928 
929 	vdev_remove_child(pvd, cvd);
930 	vdev_add_child(pvd, mvd);
931 	cvd->vdev_id = mvd->vdev_children;
932 	vdev_add_child(mvd, cvd);
933 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
934 
935 	if (mvd == mvd->vdev_top)
936 		vdev_top_transfer(cvd, mvd);
937 
938 	return (mvd);
939 }
940 
941 /*
942  * Remove a 1-way mirror/replacing vdev from the tree.
943  */
944 void
945 vdev_remove_parent(vdev_t *cvd)
946 {
947 	vdev_t *mvd = cvd->vdev_parent;
948 	vdev_t *pvd = mvd->vdev_parent;
949 
950 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
951 
952 	ASSERT(mvd->vdev_children == 1);
953 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
954 	    mvd->vdev_ops == &vdev_replacing_ops ||
955 	    mvd->vdev_ops == &vdev_spare_ops);
956 	cvd->vdev_ashift = mvd->vdev_ashift;
957 
958 	vdev_remove_child(mvd, cvd);
959 	vdev_remove_child(pvd, mvd);
960 
961 	/*
962 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
963 	 * Otherwise, we could have detached an offline device, and when we
964 	 * go to import the pool we'll think we have two top-level vdevs,
965 	 * instead of a different version of the same top-level vdev.
966 	 */
967 	if (mvd->vdev_top == mvd) {
968 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
969 		cvd->vdev_orig_guid = cvd->vdev_guid;
970 		cvd->vdev_guid += guid_delta;
971 		cvd->vdev_guid_sum += guid_delta;
972 	}
973 	cvd->vdev_id = mvd->vdev_id;
974 	vdev_add_child(pvd, cvd);
975 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
976 
977 	if (cvd == cvd->vdev_top)
978 		vdev_top_transfer(mvd, cvd);
979 
980 	ASSERT(mvd->vdev_children == 0);
981 	vdev_free(mvd);
982 }
983 
984 int
985 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
986 {
987 	spa_t *spa = vd->vdev_spa;
988 	objset_t *mos = spa->spa_meta_objset;
989 	uint64_t m;
990 	uint64_t oldc = vd->vdev_ms_count;
991 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
992 	metaslab_t **mspp;
993 	int error;
994 
995 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
996 
997 	/*
998 	 * This vdev is not being allocated from yet or is a hole.
999 	 */
1000 	if (vd->vdev_ms_shift == 0)
1001 		return (0);
1002 
1003 	ASSERT(!vd->vdev_ishole);
1004 
1005 	ASSERT(oldc <= newc);
1006 
1007 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1008 
1009 	if (oldc != 0) {
1010 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1011 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1012 	}
1013 
1014 	vd->vdev_ms = mspp;
1015 	vd->vdev_ms_count = newc;
1016 
1017 	for (m = oldc; m < newc; m++) {
1018 		uint64_t object = 0;
1019 
1020 		/*
1021 		 * vdev_ms_array may be 0 if we are creating the "fake"
1022 		 * metaslabs for an indirect vdev for zdb's leak detection.
1023 		 * See zdb_leak_init().
1024 		 */
1025 		if (txg == 0 && vd->vdev_ms_array != 0) {
1026 			error = dmu_read(mos, vd->vdev_ms_array,
1027 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1028 			    DMU_READ_PREFETCH);
1029 			if (error != 0) {
1030 				vdev_dbgmsg(vd, "unable to read the metaslab "
1031 				    "array [error=%d]", error);
1032 				return (error);
1033 			}
1034 		}
1035 
1036 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1037 		    &(vd->vdev_ms[m]));
1038 		if (error != 0) {
1039 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1040 			    error);
1041 			return (error);
1042 		}
1043 	}
1044 
1045 	if (txg == 0)
1046 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1047 
1048 	/*
1049 	 * If the vdev is being removed we don't activate
1050 	 * the metaslabs since we want to ensure that no new
1051 	 * allocations are performed on this device.
1052 	 */
1053 	if (oldc == 0 && !vd->vdev_removing)
1054 		metaslab_group_activate(vd->vdev_mg);
1055 
1056 	if (txg == 0)
1057 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1058 
1059 	return (0);
1060 }
1061 
1062 void
1063 vdev_metaslab_fini(vdev_t *vd)
1064 {
1065 	if (vd->vdev_checkpoint_sm != NULL) {
1066 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1067 		    SPA_FEATURE_POOL_CHECKPOINT));
1068 		space_map_close(vd->vdev_checkpoint_sm);
1069 		/*
1070 		 * Even though we close the space map, we need to set its
1071 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1072 		 * may be called multiple times for certain operations
1073 		 * (i.e. when destroying a pool) so we need to ensure that
1074 		 * this clause never executes twice. This logic is similar
1075 		 * to the one used for the vdev_ms clause below.
1076 		 */
1077 		vd->vdev_checkpoint_sm = NULL;
1078 	}
1079 
1080 	if (vd->vdev_ms != NULL) {
1081 		uint64_t count = vd->vdev_ms_count;
1082 
1083 		metaslab_group_passivate(vd->vdev_mg);
1084 		for (uint64_t m = 0; m < count; m++) {
1085 			metaslab_t *msp = vd->vdev_ms[m];
1086 
1087 			if (msp != NULL)
1088 				metaslab_fini(msp);
1089 		}
1090 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1091 		vd->vdev_ms = NULL;
1092 
1093 		vd->vdev_ms_count = 0;
1094 	}
1095 	ASSERT0(vd->vdev_ms_count);
1096 }
1097 
1098 typedef struct vdev_probe_stats {
1099 	boolean_t	vps_readable;
1100 	boolean_t	vps_writeable;
1101 	int		vps_flags;
1102 } vdev_probe_stats_t;
1103 
1104 static void
1105 vdev_probe_done(zio_t *zio)
1106 {
1107 	spa_t *spa = zio->io_spa;
1108 	vdev_t *vd = zio->io_vd;
1109 	vdev_probe_stats_t *vps = zio->io_private;
1110 
1111 	ASSERT(vd->vdev_probe_zio != NULL);
1112 
1113 	if (zio->io_type == ZIO_TYPE_READ) {
1114 		if (zio->io_error == 0)
1115 			vps->vps_readable = 1;
1116 		if (zio->io_error == 0 && spa_writeable(spa)) {
1117 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1118 			    zio->io_offset, zio->io_size, zio->io_abd,
1119 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1120 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1121 		} else {
1122 			abd_free(zio->io_abd);
1123 		}
1124 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1125 		if (zio->io_error == 0)
1126 			vps->vps_writeable = 1;
1127 		abd_free(zio->io_abd);
1128 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1129 		zio_t *pio;
1130 
1131 		vd->vdev_cant_read |= !vps->vps_readable;
1132 		vd->vdev_cant_write |= !vps->vps_writeable;
1133 
1134 		if (vdev_readable(vd) &&
1135 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1136 			zio->io_error = 0;
1137 		} else {
1138 			ASSERT(zio->io_error != 0);
1139 			vdev_dbgmsg(vd, "failed probe");
1140 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1141 			    spa, vd, NULL, 0, 0);
1142 			zio->io_error = SET_ERROR(ENXIO);
1143 		}
1144 
1145 		mutex_enter(&vd->vdev_probe_lock);
1146 		ASSERT(vd->vdev_probe_zio == zio);
1147 		vd->vdev_probe_zio = NULL;
1148 		mutex_exit(&vd->vdev_probe_lock);
1149 
1150 		zio_link_t *zl = NULL;
1151 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1152 			if (!vdev_accessible(vd, pio))
1153 				pio->io_error = SET_ERROR(ENXIO);
1154 
1155 		kmem_free(vps, sizeof (*vps));
1156 	}
1157 }
1158 
1159 /*
1160  * Determine whether this device is accessible.
1161  *
1162  * Read and write to several known locations: the pad regions of each
1163  * vdev label but the first, which we leave alone in case it contains
1164  * a VTOC.
1165  */
1166 zio_t *
1167 vdev_probe(vdev_t *vd, zio_t *zio)
1168 {
1169 	spa_t *spa = vd->vdev_spa;
1170 	vdev_probe_stats_t *vps = NULL;
1171 	zio_t *pio;
1172 
1173 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1174 
1175 	/*
1176 	 * Don't probe the probe.
1177 	 */
1178 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1179 		return (NULL);
1180 
1181 	/*
1182 	 * To prevent 'probe storms' when a device fails, we create
1183 	 * just one probe i/o at a time.  All zios that want to probe
1184 	 * this vdev will become parents of the probe io.
1185 	 */
1186 	mutex_enter(&vd->vdev_probe_lock);
1187 
1188 	if ((pio = vd->vdev_probe_zio) == NULL) {
1189 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1190 
1191 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1192 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1193 		    ZIO_FLAG_TRYHARD;
1194 
1195 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1196 			/*
1197 			 * vdev_cant_read and vdev_cant_write can only
1198 			 * transition from TRUE to FALSE when we have the
1199 			 * SCL_ZIO lock as writer; otherwise they can only
1200 			 * transition from FALSE to TRUE.  This ensures that
1201 			 * any zio looking at these values can assume that
1202 			 * failures persist for the life of the I/O.  That's
1203 			 * important because when a device has intermittent
1204 			 * connectivity problems, we want to ensure that
1205 			 * they're ascribed to the device (ENXIO) and not
1206 			 * the zio (EIO).
1207 			 *
1208 			 * Since we hold SCL_ZIO as writer here, clear both
1209 			 * values so the probe can reevaluate from first
1210 			 * principles.
1211 			 */
1212 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1213 			vd->vdev_cant_read = B_FALSE;
1214 			vd->vdev_cant_write = B_FALSE;
1215 		}
1216 
1217 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1218 		    vdev_probe_done, vps,
1219 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1220 
1221 		/*
1222 		 * We can't change the vdev state in this context, so we
1223 		 * kick off an async task to do it on our behalf.
1224 		 */
1225 		if (zio != NULL) {
1226 			vd->vdev_probe_wanted = B_TRUE;
1227 			spa_async_request(spa, SPA_ASYNC_PROBE);
1228 		}
1229 	}
1230 
1231 	if (zio != NULL)
1232 		zio_add_child(zio, pio);
1233 
1234 	mutex_exit(&vd->vdev_probe_lock);
1235 
1236 	if (vps == NULL) {
1237 		ASSERT(zio != NULL);
1238 		return (NULL);
1239 	}
1240 
1241 	for (int l = 1; l < VDEV_LABELS; l++) {
1242 		zio_nowait(zio_read_phys(pio, vd,
1243 		    vdev_label_offset(vd->vdev_psize, l,
1244 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1245 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1246 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1247 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1248 	}
1249 
1250 	if (zio == NULL)
1251 		return (pio);
1252 
1253 	zio_nowait(pio);
1254 	return (NULL);
1255 }
1256 
1257 static void
1258 vdev_open_child(void *arg)
1259 {
1260 	vdev_t *vd = arg;
1261 
1262 	vd->vdev_open_thread = curthread;
1263 	vd->vdev_open_error = vdev_open(vd);
1264 	vd->vdev_open_thread = NULL;
1265 }
1266 
1267 boolean_t
1268 vdev_uses_zvols(vdev_t *vd)
1269 {
1270 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1271 	    strlen(ZVOL_DIR)) == 0)
1272 		return (B_TRUE);
1273 	for (int c = 0; c < vd->vdev_children; c++)
1274 		if (vdev_uses_zvols(vd->vdev_child[c]))
1275 			return (B_TRUE);
1276 	return (B_FALSE);
1277 }
1278 
1279 void
1280 vdev_open_children(vdev_t *vd)
1281 {
1282 	taskq_t *tq;
1283 	int children = vd->vdev_children;
1284 
1285 	/*
1286 	 * in order to handle pools on top of zvols, do the opens
1287 	 * in a single thread so that the same thread holds the
1288 	 * spa_namespace_lock
1289 	 */
1290 	if (vdev_uses_zvols(vd)) {
1291 		for (int c = 0; c < children; c++)
1292 			vd->vdev_child[c]->vdev_open_error =
1293 			    vdev_open(vd->vdev_child[c]);
1294 		return;
1295 	}
1296 	tq = taskq_create("vdev_open", children, minclsyspri,
1297 	    children, children, TASKQ_PREPOPULATE);
1298 
1299 	for (int c = 0; c < children; c++)
1300 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1301 		    TQ_SLEEP) != NULL);
1302 
1303 	taskq_destroy(tq);
1304 }
1305 
1306 /*
1307  * Compute the raidz-deflation ratio.  Note, we hard-code
1308  * in 128k (1 << 17) because it is the "typical" blocksize.
1309  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1310  * otherwise it would inconsistently account for existing bp's.
1311  */
1312 static void
1313 vdev_set_deflate_ratio(vdev_t *vd)
1314 {
1315 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1316 		vd->vdev_deflate_ratio = (1 << 17) /
1317 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1318 	}
1319 }
1320 
1321 /*
1322  * Prepare a virtual device for access.
1323  */
1324 int
1325 vdev_open(vdev_t *vd)
1326 {
1327 	spa_t *spa = vd->vdev_spa;
1328 	int error;
1329 	uint64_t osize = 0;
1330 	uint64_t max_osize = 0;
1331 	uint64_t asize, max_asize, psize;
1332 	uint64_t ashift = 0;
1333 
1334 	ASSERT(vd->vdev_open_thread == curthread ||
1335 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1336 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1337 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1338 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1339 
1340 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1341 	vd->vdev_cant_read = B_FALSE;
1342 	vd->vdev_cant_write = B_FALSE;
1343 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1344 
1345 	/*
1346 	 * If this vdev is not removed, check its fault status.  If it's
1347 	 * faulted, bail out of the open.
1348 	 */
1349 	if (!vd->vdev_removed && vd->vdev_faulted) {
1350 		ASSERT(vd->vdev_children == 0);
1351 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1352 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1353 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1354 		    vd->vdev_label_aux);
1355 		return (SET_ERROR(ENXIO));
1356 	} else if (vd->vdev_offline) {
1357 		ASSERT(vd->vdev_children == 0);
1358 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1359 		return (SET_ERROR(ENXIO));
1360 	}
1361 
1362 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1363 
1364 	/*
1365 	 * Reset the vdev_reopening flag so that we actually close
1366 	 * the vdev on error.
1367 	 */
1368 	vd->vdev_reopening = B_FALSE;
1369 	if (zio_injection_enabled && error == 0)
1370 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1371 
1372 	if (error) {
1373 		if (vd->vdev_removed &&
1374 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1375 			vd->vdev_removed = B_FALSE;
1376 
1377 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1378 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1379 			    vd->vdev_stat.vs_aux);
1380 		} else {
1381 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1382 			    vd->vdev_stat.vs_aux);
1383 		}
1384 		return (error);
1385 	}
1386 
1387 	vd->vdev_removed = B_FALSE;
1388 
1389 	/*
1390 	 * Recheck the faulted flag now that we have confirmed that
1391 	 * the vdev is accessible.  If we're faulted, bail.
1392 	 */
1393 	if (vd->vdev_faulted) {
1394 		ASSERT(vd->vdev_children == 0);
1395 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1396 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1397 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1398 		    vd->vdev_label_aux);
1399 		return (SET_ERROR(ENXIO));
1400 	}
1401 
1402 	if (vd->vdev_degraded) {
1403 		ASSERT(vd->vdev_children == 0);
1404 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1405 		    VDEV_AUX_ERR_EXCEEDED);
1406 	} else {
1407 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1408 	}
1409 
1410 	/*
1411 	 * For hole or missing vdevs we just return success.
1412 	 */
1413 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1414 		return (0);
1415 
1416 	for (int c = 0; c < vd->vdev_children; c++) {
1417 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1418 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1419 			    VDEV_AUX_NONE);
1420 			break;
1421 		}
1422 	}
1423 
1424 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1425 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1426 
1427 	if (vd->vdev_children == 0) {
1428 		if (osize < SPA_MINDEVSIZE) {
1429 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1430 			    VDEV_AUX_TOO_SMALL);
1431 			return (SET_ERROR(EOVERFLOW));
1432 		}
1433 		psize = osize;
1434 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1435 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1436 		    VDEV_LABEL_END_SIZE);
1437 	} else {
1438 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1439 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1440 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1441 			    VDEV_AUX_TOO_SMALL);
1442 			return (SET_ERROR(EOVERFLOW));
1443 		}
1444 		psize = 0;
1445 		asize = osize;
1446 		max_asize = max_osize;
1447 	}
1448 
1449 	vd->vdev_psize = psize;
1450 
1451 	/*
1452 	 * Make sure the allocatable size hasn't shrunk too much.
1453 	 */
1454 	if (asize < vd->vdev_min_asize) {
1455 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1456 		    VDEV_AUX_BAD_LABEL);
1457 		return (SET_ERROR(EINVAL));
1458 	}
1459 
1460 	if (vd->vdev_asize == 0) {
1461 		/*
1462 		 * This is the first-ever open, so use the computed values.
1463 		 * For testing purposes, a higher ashift can be requested.
1464 		 */
1465 		vd->vdev_asize = asize;
1466 		vd->vdev_max_asize = max_asize;
1467 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1468 	} else {
1469 		/*
1470 		 * Detect if the alignment requirement has increased.
1471 		 * We don't want to make the pool unavailable, just
1472 		 * issue a warning instead.
1473 		 */
1474 		if (ashift > vd->vdev_top->vdev_ashift &&
1475 		    vd->vdev_ops->vdev_op_leaf) {
1476 			cmn_err(CE_WARN,
1477 			    "Disk, '%s', has a block alignment that is "
1478 			    "larger than the pool's alignment\n",
1479 			    vd->vdev_path);
1480 		}
1481 		vd->vdev_max_asize = max_asize;
1482 	}
1483 
1484 	/*
1485 	 * If all children are healthy we update asize if either:
1486 	 * The asize has increased, due to a device expansion caused by dynamic
1487 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1488 	 * making the additional space available.
1489 	 *
1490 	 * The asize has decreased, due to a device shrink usually caused by a
1491 	 * vdev replace with a smaller device. This ensures that calculations
1492 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1493 	 * to do this as we've already validated that asize is greater than
1494 	 * vdev_min_asize.
1495 	 */
1496 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1497 	    ((asize > vd->vdev_asize &&
1498 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1499 	    (asize < vd->vdev_asize)))
1500 		vd->vdev_asize = asize;
1501 
1502 	vdev_set_min_asize(vd);
1503 
1504 	/*
1505 	 * Ensure we can issue some IO before declaring the
1506 	 * vdev open for business.
1507 	 */
1508 	if (vd->vdev_ops->vdev_op_leaf &&
1509 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1510 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1511 		    VDEV_AUX_ERR_EXCEEDED);
1512 		return (error);
1513 	}
1514 
1515 	/*
1516 	 * Track the min and max ashift values for normal data devices.
1517 	 */
1518 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1519 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1520 		if (vd->vdev_ashift > spa->spa_max_ashift)
1521 			spa->spa_max_ashift = vd->vdev_ashift;
1522 		if (vd->vdev_ashift < spa->spa_min_ashift)
1523 			spa->spa_min_ashift = vd->vdev_ashift;
1524 	}
1525 
1526 	/*
1527 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1528 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1529 	 * since this would just restart the scrub we are already doing.
1530 	 */
1531 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1532 	    vdev_resilver_needed(vd, NULL, NULL))
1533 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1534 
1535 	return (0);
1536 }
1537 
1538 /*
1539  * Called once the vdevs are all opened, this routine validates the label
1540  * contents. This needs to be done before vdev_load() so that we don't
1541  * inadvertently do repair I/Os to the wrong device.
1542  *
1543  * This function will only return failure if one of the vdevs indicates that it
1544  * has since been destroyed or exported.  This is only possible if
1545  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1546  * will be updated but the function will return 0.
1547  */
1548 int
1549 vdev_validate(vdev_t *vd)
1550 {
1551 	spa_t *spa = vd->vdev_spa;
1552 	nvlist_t *label;
1553 	uint64_t guid = 0, aux_guid = 0, top_guid;
1554 	uint64_t state;
1555 	nvlist_t *nvl;
1556 	uint64_t txg;
1557 
1558 	if (vdev_validate_skip)
1559 		return (0);
1560 
1561 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1562 		if (vdev_validate(vd->vdev_child[c]) != 0)
1563 			return (SET_ERROR(EBADF));
1564 
1565 	/*
1566 	 * If the device has already failed, or was marked offline, don't do
1567 	 * any further validation.  Otherwise, label I/O will fail and we will
1568 	 * overwrite the previous state.
1569 	 */
1570 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1571 		return (0);
1572 
1573 	/*
1574 	 * If we are performing an extreme rewind, we allow for a label that
1575 	 * was modified at a point after the current txg.
1576 	 */
1577 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0)
1578 		txg = UINT64_MAX;
1579 	else
1580 		txg = spa_last_synced_txg(spa);
1581 
1582 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1583 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1584 		    VDEV_AUX_BAD_LABEL);
1585 		vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1586 		return (0);
1587 	}
1588 
1589 	/*
1590 	 * Determine if this vdev has been split off into another
1591 	 * pool.  If so, then refuse to open it.
1592 	 */
1593 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1594 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1595 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1596 		    VDEV_AUX_SPLIT_POOL);
1597 		nvlist_free(label);
1598 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1599 		return (0);
1600 	}
1601 
1602 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1603 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1604 		    VDEV_AUX_CORRUPT_DATA);
1605 		nvlist_free(label);
1606 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1607 		    ZPOOL_CONFIG_POOL_GUID);
1608 		return (0);
1609 	}
1610 
1611 	/*
1612 	 * If config is not trusted then ignore the spa guid check. This is
1613 	 * necessary because if the machine crashed during a re-guid the new
1614 	 * guid might have been written to all of the vdev labels, but not the
1615 	 * cached config. The check will be performed again once we have the
1616 	 * trusted config from the MOS.
1617 	 */
1618 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1619 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1620 		    VDEV_AUX_CORRUPT_DATA);
1621 		nvlist_free(label);
1622 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1623 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1624 		    (u_longlong_t)spa_guid(spa));
1625 		return (0);
1626 	}
1627 
1628 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1629 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1630 	    &aux_guid) != 0)
1631 		aux_guid = 0;
1632 
1633 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1634 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1635 		    VDEV_AUX_CORRUPT_DATA);
1636 		nvlist_free(label);
1637 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1638 		    ZPOOL_CONFIG_GUID);
1639 		return (0);
1640 	}
1641 
1642 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1643 	    != 0) {
1644 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1645 		    VDEV_AUX_CORRUPT_DATA);
1646 		nvlist_free(label);
1647 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1648 		    ZPOOL_CONFIG_TOP_GUID);
1649 		return (0);
1650 	}
1651 
1652 	/*
1653 	 * If this vdev just became a top-level vdev because its sibling was
1654 	 * detached, it will have adopted the parent's vdev guid -- but the
1655 	 * label may or may not be on disk yet. Fortunately, either version
1656 	 * of the label will have the same top guid, so if we're a top-level
1657 	 * vdev, we can safely compare to that instead.
1658 	 * However, if the config comes from a cachefile that failed to update
1659 	 * after the detach, a top-level vdev will appear as a non top-level
1660 	 * vdev in the config. Also relax the constraints if we perform an
1661 	 * extreme rewind.
1662 	 *
1663 	 * If we split this vdev off instead, then we also check the
1664 	 * original pool's guid. We don't want to consider the vdev
1665 	 * corrupt if it is partway through a split operation.
1666 	 */
1667 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1668 		boolean_t mismatch = B_FALSE;
1669 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1670 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1671 				mismatch = B_TRUE;
1672 		} else {
1673 			if (vd->vdev_guid != top_guid &&
1674 			    vd->vdev_top->vdev_guid != guid)
1675 				mismatch = B_TRUE;
1676 		}
1677 
1678 		if (mismatch) {
1679 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1680 			    VDEV_AUX_CORRUPT_DATA);
1681 			nvlist_free(label);
1682 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1683 			    "doesn't match label guid");
1684 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1685 			    (u_longlong_t)vd->vdev_guid,
1686 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1687 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1688 			    "aux_guid %llu", (u_longlong_t)guid,
1689 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1690 			return (0);
1691 		}
1692 	}
1693 
1694 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1695 	    &state) != 0) {
1696 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1697 		    VDEV_AUX_CORRUPT_DATA);
1698 		nvlist_free(label);
1699 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1700 		    ZPOOL_CONFIG_POOL_STATE);
1701 		return (0);
1702 	}
1703 
1704 	nvlist_free(label);
1705 
1706 	/*
1707 	 * If this is a verbatim import, no need to check the
1708 	 * state of the pool.
1709 	 */
1710 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1711 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1712 	    state != POOL_STATE_ACTIVE) {
1713 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1714 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1715 		return (SET_ERROR(EBADF));
1716 	}
1717 
1718 	/*
1719 	 * If we were able to open and validate a vdev that was
1720 	 * previously marked permanently unavailable, clear that state
1721 	 * now.
1722 	 */
1723 	if (vd->vdev_not_present)
1724 		vd->vdev_not_present = 0;
1725 
1726 	return (0);
1727 }
1728 
1729 static void
1730 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1731 {
1732 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1733 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1734 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1735 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1736 			    dvd->vdev_path, svd->vdev_path);
1737 			spa_strfree(dvd->vdev_path);
1738 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1739 		}
1740 	} else if (svd->vdev_path != NULL) {
1741 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1742 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1743 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1744 	}
1745 }
1746 
1747 /*
1748  * Recursively copy vdev paths from one vdev to another. Source and destination
1749  * vdev trees must have same geometry otherwise return error. Intended to copy
1750  * paths from userland config into MOS config.
1751  */
1752 int
1753 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1754 {
1755 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1756 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1757 	    (dvd->vdev_ops == &vdev_indirect_ops))
1758 		return (0);
1759 
1760 	if (svd->vdev_ops != dvd->vdev_ops) {
1761 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1762 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1763 		return (SET_ERROR(EINVAL));
1764 	}
1765 
1766 	if (svd->vdev_guid != dvd->vdev_guid) {
1767 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1768 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1769 		    (u_longlong_t)dvd->vdev_guid);
1770 		return (SET_ERROR(EINVAL));
1771 	}
1772 
1773 	if (svd->vdev_children != dvd->vdev_children) {
1774 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1775 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1776 		    (u_longlong_t)dvd->vdev_children);
1777 		return (SET_ERROR(EINVAL));
1778 	}
1779 
1780 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1781 		int error = vdev_copy_path_strict(svd->vdev_child[i],
1782 		    dvd->vdev_child[i]);
1783 		if (error != 0)
1784 			return (error);
1785 	}
1786 
1787 	if (svd->vdev_ops->vdev_op_leaf)
1788 		vdev_copy_path_impl(svd, dvd);
1789 
1790 	return (0);
1791 }
1792 
1793 static void
1794 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1795 {
1796 	ASSERT(stvd->vdev_top == stvd);
1797 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1798 
1799 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1800 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1801 	}
1802 
1803 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1804 		return;
1805 
1806 	/*
1807 	 * The idea here is that while a vdev can shift positions within
1808 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1809 	 * step outside of it.
1810 	 */
1811 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1812 
1813 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1814 		return;
1815 
1816 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1817 
1818 	vdev_copy_path_impl(vd, dvd);
1819 }
1820 
1821 /*
1822  * Recursively copy vdev paths from one root vdev to another. Source and
1823  * destination vdev trees may differ in geometry. For each destination leaf
1824  * vdev, search a vdev with the same guid and top vdev id in the source.
1825  * Intended to copy paths from userland config into MOS config.
1826  */
1827 void
1828 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1829 {
1830 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1831 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
1832 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
1833 
1834 	for (uint64_t i = 0; i < children; i++) {
1835 		vdev_copy_path_search(srvd->vdev_child[i],
1836 		    drvd->vdev_child[i]);
1837 	}
1838 }
1839 
1840 /*
1841  * Close a virtual device.
1842  */
1843 void
1844 vdev_close(vdev_t *vd)
1845 {
1846 	spa_t *spa = vd->vdev_spa;
1847 	vdev_t *pvd = vd->vdev_parent;
1848 
1849 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1850 
1851 	/*
1852 	 * If our parent is reopening, then we are as well, unless we are
1853 	 * going offline.
1854 	 */
1855 	if (pvd != NULL && pvd->vdev_reopening)
1856 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1857 
1858 	vd->vdev_ops->vdev_op_close(vd);
1859 
1860 	vdev_cache_purge(vd);
1861 
1862 	/*
1863 	 * We record the previous state before we close it, so that if we are
1864 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1865 	 * it's still faulted.
1866 	 */
1867 	vd->vdev_prevstate = vd->vdev_state;
1868 
1869 	if (vd->vdev_offline)
1870 		vd->vdev_state = VDEV_STATE_OFFLINE;
1871 	else
1872 		vd->vdev_state = VDEV_STATE_CLOSED;
1873 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1874 }
1875 
1876 void
1877 vdev_hold(vdev_t *vd)
1878 {
1879 	spa_t *spa = vd->vdev_spa;
1880 
1881 	ASSERT(spa_is_root(spa));
1882 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1883 		return;
1884 
1885 	for (int c = 0; c < vd->vdev_children; c++)
1886 		vdev_hold(vd->vdev_child[c]);
1887 
1888 	if (vd->vdev_ops->vdev_op_leaf)
1889 		vd->vdev_ops->vdev_op_hold(vd);
1890 }
1891 
1892 void
1893 vdev_rele(vdev_t *vd)
1894 {
1895 	spa_t *spa = vd->vdev_spa;
1896 
1897 	ASSERT(spa_is_root(spa));
1898 	for (int c = 0; c < vd->vdev_children; c++)
1899 		vdev_rele(vd->vdev_child[c]);
1900 
1901 	if (vd->vdev_ops->vdev_op_leaf)
1902 		vd->vdev_ops->vdev_op_rele(vd);
1903 }
1904 
1905 /*
1906  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1907  * reopen leaf vdevs which had previously been opened as they might deadlock
1908  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1909  * If the leaf has never been opened then open it, as usual.
1910  */
1911 void
1912 vdev_reopen(vdev_t *vd)
1913 {
1914 	spa_t *spa = vd->vdev_spa;
1915 
1916 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1917 
1918 	/* set the reopening flag unless we're taking the vdev offline */
1919 	vd->vdev_reopening = !vd->vdev_offline;
1920 	vdev_close(vd);
1921 	(void) vdev_open(vd);
1922 
1923 	/*
1924 	 * Call vdev_validate() here to make sure we have the same device.
1925 	 * Otherwise, a device with an invalid label could be successfully
1926 	 * opened in response to vdev_reopen().
1927 	 */
1928 	if (vd->vdev_aux) {
1929 		(void) vdev_validate_aux(vd);
1930 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1931 		    vd->vdev_aux == &spa->spa_l2cache &&
1932 		    !l2arc_vdev_present(vd))
1933 			l2arc_add_vdev(spa, vd);
1934 	} else {
1935 		(void) vdev_validate(vd);
1936 	}
1937 
1938 	/*
1939 	 * Reassess parent vdev's health.
1940 	 */
1941 	vdev_propagate_state(vd);
1942 }
1943 
1944 int
1945 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1946 {
1947 	int error;
1948 
1949 	/*
1950 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1951 	 * For a create, however, we want to fail the request if
1952 	 * there are any components we can't open.
1953 	 */
1954 	error = vdev_open(vd);
1955 
1956 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1957 		vdev_close(vd);
1958 		return (error ? error : ENXIO);
1959 	}
1960 
1961 	/*
1962 	 * Recursively load DTLs and initialize all labels.
1963 	 */
1964 	if ((error = vdev_dtl_load(vd)) != 0 ||
1965 	    (error = vdev_label_init(vd, txg, isreplacing ?
1966 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1967 		vdev_close(vd);
1968 		return (error);
1969 	}
1970 
1971 	return (0);
1972 }
1973 
1974 void
1975 vdev_metaslab_set_size(vdev_t *vd)
1976 {
1977 	uint64_t asize = vd->vdev_asize;
1978 	uint64_t ms_shift = 0;
1979 
1980 	/*
1981 	 * For vdevs that are bigger than 8G the metaslab size varies in
1982 	 * a way that the number of metaslabs increases in powers of two,
1983 	 * linearly in terms of vdev_asize, starting from 16 metaslabs.
1984 	 * So for vdev_asize of 8G we get 16 metaslabs, for 16G, we get 32,
1985 	 * and so on, until we hit the maximum metaslab count limit
1986 	 * [vdev_max_ms_count] from which point the metaslab count stays
1987 	 * the same.
1988 	 */
1989 	ms_shift = vdev_default_ms_shift;
1990 
1991 	if ((asize >> ms_shift) < vdev_min_ms_count) {
1992 		/*
1993 		 * For devices that are less than 8G we want to have
1994 		 * exactly 16 metaslabs. We don't want less as integer
1995 		 * division rounds down, so less metaslabs mean more
1996 		 * wasted space. We don't want more as these vdevs are
1997 		 * small and in the likely event that we are running
1998 		 * out of space, the SPA will have a hard time finding
1999 		 * space due to fragmentation.
2000 		 */
2001 		ms_shift = highbit64(asize / vdev_min_ms_count);
2002 		ms_shift = MAX(ms_shift, SPA_MAXBLOCKSHIFT);
2003 
2004 	} else if ((asize >> ms_shift) > vdev_max_ms_count) {
2005 		ms_shift = highbit64(asize / vdev_max_ms_count);
2006 	}
2007 
2008 	vd->vdev_ms_shift = ms_shift;
2009 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2010 }
2011 
2012 void
2013 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2014 {
2015 	ASSERT(vd == vd->vdev_top);
2016 	/* indirect vdevs don't have metaslabs or dtls */
2017 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2018 	ASSERT(ISP2(flags));
2019 	ASSERT(spa_writeable(vd->vdev_spa));
2020 
2021 	if (flags & VDD_METASLAB)
2022 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2023 
2024 	if (flags & VDD_DTL)
2025 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2026 
2027 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2028 }
2029 
2030 void
2031 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2032 {
2033 	for (int c = 0; c < vd->vdev_children; c++)
2034 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2035 
2036 	if (vd->vdev_ops->vdev_op_leaf)
2037 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2038 }
2039 
2040 /*
2041  * DTLs.
2042  *
2043  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2044  * the vdev has less than perfect replication.  There are four kinds of DTL:
2045  *
2046  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2047  *
2048  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2049  *
2050  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2051  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2052  *	txgs that was scrubbed.
2053  *
2054  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2055  *	persistent errors or just some device being offline.
2056  *	Unlike the other three, the DTL_OUTAGE map is not generally
2057  *	maintained; it's only computed when needed, typically to
2058  *	determine whether a device can be detached.
2059  *
2060  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2061  * either has the data or it doesn't.
2062  *
2063  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2064  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2065  * if any child is less than fully replicated, then so is its parent.
2066  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2067  * comprising only those txgs which appear in 'maxfaults' or more children;
2068  * those are the txgs we don't have enough replication to read.  For example,
2069  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2070  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2071  * two child DTL_MISSING maps.
2072  *
2073  * It should be clear from the above that to compute the DTLs and outage maps
2074  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2075  * Therefore, that is all we keep on disk.  When loading the pool, or after
2076  * a configuration change, we generate all other DTLs from first principles.
2077  */
2078 void
2079 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2080 {
2081 	range_tree_t *rt = vd->vdev_dtl[t];
2082 
2083 	ASSERT(t < DTL_TYPES);
2084 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2085 	ASSERT(spa_writeable(vd->vdev_spa));
2086 
2087 	mutex_enter(&vd->vdev_dtl_lock);
2088 	if (!range_tree_contains(rt, txg, size))
2089 		range_tree_add(rt, txg, size);
2090 	mutex_exit(&vd->vdev_dtl_lock);
2091 }
2092 
2093 boolean_t
2094 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2095 {
2096 	range_tree_t *rt = vd->vdev_dtl[t];
2097 	boolean_t dirty = B_FALSE;
2098 
2099 	ASSERT(t < DTL_TYPES);
2100 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2101 
2102 	/*
2103 	 * While we are loading the pool, the DTLs have not been loaded yet.
2104 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2105 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2106 	 * when loading the pool (relying on the checksum to ensure that
2107 	 * we get the right data -- note that we while loading, we are
2108 	 * only reading the MOS, which is always checksummed).
2109 	 */
2110 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2111 		return (B_FALSE);
2112 
2113 	mutex_enter(&vd->vdev_dtl_lock);
2114 	if (!range_tree_is_empty(rt))
2115 		dirty = range_tree_contains(rt, txg, size);
2116 	mutex_exit(&vd->vdev_dtl_lock);
2117 
2118 	return (dirty);
2119 }
2120 
2121 boolean_t
2122 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2123 {
2124 	range_tree_t *rt = vd->vdev_dtl[t];
2125 	boolean_t empty;
2126 
2127 	mutex_enter(&vd->vdev_dtl_lock);
2128 	empty = range_tree_is_empty(rt);
2129 	mutex_exit(&vd->vdev_dtl_lock);
2130 
2131 	return (empty);
2132 }
2133 
2134 /*
2135  * Returns the lowest txg in the DTL range.
2136  */
2137 static uint64_t
2138 vdev_dtl_min(vdev_t *vd)
2139 {
2140 	range_seg_t *rs;
2141 
2142 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2143 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2144 	ASSERT0(vd->vdev_children);
2145 
2146 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2147 	return (rs->rs_start - 1);
2148 }
2149 
2150 /*
2151  * Returns the highest txg in the DTL.
2152  */
2153 static uint64_t
2154 vdev_dtl_max(vdev_t *vd)
2155 {
2156 	range_seg_t *rs;
2157 
2158 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2159 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2160 	ASSERT0(vd->vdev_children);
2161 
2162 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2163 	return (rs->rs_end);
2164 }
2165 
2166 /*
2167  * Determine if a resilvering vdev should remove any DTL entries from
2168  * its range. If the vdev was resilvering for the entire duration of the
2169  * scan then it should excise that range from its DTLs. Otherwise, this
2170  * vdev is considered partially resilvered and should leave its DTL
2171  * entries intact. The comment in vdev_dtl_reassess() describes how we
2172  * excise the DTLs.
2173  */
2174 static boolean_t
2175 vdev_dtl_should_excise(vdev_t *vd)
2176 {
2177 	spa_t *spa = vd->vdev_spa;
2178 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2179 
2180 	ASSERT0(scn->scn_phys.scn_errors);
2181 	ASSERT0(vd->vdev_children);
2182 
2183 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2184 		return (B_FALSE);
2185 
2186 	if (vd->vdev_resilver_txg == 0 ||
2187 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2188 		return (B_TRUE);
2189 
2190 	/*
2191 	 * When a resilver is initiated the scan will assign the scn_max_txg
2192 	 * value to the highest txg value that exists in all DTLs. If this
2193 	 * device's max DTL is not part of this scan (i.e. it is not in
2194 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2195 	 * for excision.
2196 	 */
2197 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2198 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2199 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2200 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2201 		return (B_TRUE);
2202 	}
2203 	return (B_FALSE);
2204 }
2205 
2206 /*
2207  * Reassess DTLs after a config change or scrub completion.
2208  */
2209 void
2210 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2211 {
2212 	spa_t *spa = vd->vdev_spa;
2213 	avl_tree_t reftree;
2214 	int minref;
2215 
2216 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2217 
2218 	for (int c = 0; c < vd->vdev_children; c++)
2219 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2220 		    scrub_txg, scrub_done);
2221 
2222 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2223 		return;
2224 
2225 	if (vd->vdev_ops->vdev_op_leaf) {
2226 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2227 
2228 		mutex_enter(&vd->vdev_dtl_lock);
2229 
2230 		/*
2231 		 * If we've completed a scan cleanly then determine
2232 		 * if this vdev should remove any DTLs. We only want to
2233 		 * excise regions on vdevs that were available during
2234 		 * the entire duration of this scan.
2235 		 */
2236 		if (scrub_txg != 0 &&
2237 		    (spa->spa_scrub_started ||
2238 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2239 		    vdev_dtl_should_excise(vd)) {
2240 			/*
2241 			 * We completed a scrub up to scrub_txg.  If we
2242 			 * did it without rebooting, then the scrub dtl
2243 			 * will be valid, so excise the old region and
2244 			 * fold in the scrub dtl.  Otherwise, leave the
2245 			 * dtl as-is if there was an error.
2246 			 *
2247 			 * There's little trick here: to excise the beginning
2248 			 * of the DTL_MISSING map, we put it into a reference
2249 			 * tree and then add a segment with refcnt -1 that
2250 			 * covers the range [0, scrub_txg).  This means
2251 			 * that each txg in that range has refcnt -1 or 0.
2252 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2253 			 * entries in the range [0, scrub_txg) will have a
2254 			 * positive refcnt -- either 1 or 2.  We then convert
2255 			 * the reference tree into the new DTL_MISSING map.
2256 			 */
2257 			space_reftree_create(&reftree);
2258 			space_reftree_add_map(&reftree,
2259 			    vd->vdev_dtl[DTL_MISSING], 1);
2260 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2261 			space_reftree_add_map(&reftree,
2262 			    vd->vdev_dtl[DTL_SCRUB], 2);
2263 			space_reftree_generate_map(&reftree,
2264 			    vd->vdev_dtl[DTL_MISSING], 1);
2265 			space_reftree_destroy(&reftree);
2266 		}
2267 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2268 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2269 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2270 		if (scrub_done)
2271 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2272 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2273 		if (!vdev_readable(vd))
2274 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2275 		else
2276 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2277 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2278 
2279 		/*
2280 		 * If the vdev was resilvering and no longer has any
2281 		 * DTLs then reset its resilvering flag.
2282 		 */
2283 		if (vd->vdev_resilver_txg != 0 &&
2284 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2285 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2286 			vd->vdev_resilver_txg = 0;
2287 
2288 		mutex_exit(&vd->vdev_dtl_lock);
2289 
2290 		if (txg != 0)
2291 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2292 		return;
2293 	}
2294 
2295 	mutex_enter(&vd->vdev_dtl_lock);
2296 	for (int t = 0; t < DTL_TYPES; t++) {
2297 		/* account for child's outage in parent's missing map */
2298 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2299 		if (t == DTL_SCRUB)
2300 			continue;			/* leaf vdevs only */
2301 		if (t == DTL_PARTIAL)
2302 			minref = 1;			/* i.e. non-zero */
2303 		else if (vd->vdev_nparity != 0)
2304 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2305 		else
2306 			minref = vd->vdev_children;	/* any kind of mirror */
2307 		space_reftree_create(&reftree);
2308 		for (int c = 0; c < vd->vdev_children; c++) {
2309 			vdev_t *cvd = vd->vdev_child[c];
2310 			mutex_enter(&cvd->vdev_dtl_lock);
2311 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2312 			mutex_exit(&cvd->vdev_dtl_lock);
2313 		}
2314 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2315 		space_reftree_destroy(&reftree);
2316 	}
2317 	mutex_exit(&vd->vdev_dtl_lock);
2318 }
2319 
2320 int
2321 vdev_dtl_load(vdev_t *vd)
2322 {
2323 	spa_t *spa = vd->vdev_spa;
2324 	objset_t *mos = spa->spa_meta_objset;
2325 	int error = 0;
2326 
2327 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2328 		ASSERT(vdev_is_concrete(vd));
2329 
2330 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2331 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2332 		if (error)
2333 			return (error);
2334 		ASSERT(vd->vdev_dtl_sm != NULL);
2335 
2336 		mutex_enter(&vd->vdev_dtl_lock);
2337 
2338 		/*
2339 		 * Now that we've opened the space_map we need to update
2340 		 * the in-core DTL.
2341 		 */
2342 		space_map_update(vd->vdev_dtl_sm);
2343 
2344 		error = space_map_load(vd->vdev_dtl_sm,
2345 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2346 		mutex_exit(&vd->vdev_dtl_lock);
2347 
2348 		return (error);
2349 	}
2350 
2351 	for (int c = 0; c < vd->vdev_children; c++) {
2352 		error = vdev_dtl_load(vd->vdev_child[c]);
2353 		if (error != 0)
2354 			break;
2355 	}
2356 
2357 	return (error);
2358 }
2359 
2360 void
2361 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2362 {
2363 	spa_t *spa = vd->vdev_spa;
2364 
2365 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2366 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2367 	    zapobj, tx));
2368 }
2369 
2370 uint64_t
2371 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2372 {
2373 	spa_t *spa = vd->vdev_spa;
2374 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2375 	    DMU_OT_NONE, 0, tx);
2376 
2377 	ASSERT(zap != 0);
2378 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2379 	    zap, tx));
2380 
2381 	return (zap);
2382 }
2383 
2384 void
2385 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2386 {
2387 	if (vd->vdev_ops != &vdev_hole_ops &&
2388 	    vd->vdev_ops != &vdev_missing_ops &&
2389 	    vd->vdev_ops != &vdev_root_ops &&
2390 	    !vd->vdev_top->vdev_removing) {
2391 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2392 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2393 		}
2394 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2395 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2396 		}
2397 	}
2398 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2399 		vdev_construct_zaps(vd->vdev_child[i], tx);
2400 	}
2401 }
2402 
2403 void
2404 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2405 {
2406 	spa_t *spa = vd->vdev_spa;
2407 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2408 	objset_t *mos = spa->spa_meta_objset;
2409 	range_tree_t *rtsync;
2410 	dmu_tx_t *tx;
2411 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2412 
2413 	ASSERT(vdev_is_concrete(vd));
2414 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2415 
2416 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2417 
2418 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2419 		mutex_enter(&vd->vdev_dtl_lock);
2420 		space_map_free(vd->vdev_dtl_sm, tx);
2421 		space_map_close(vd->vdev_dtl_sm);
2422 		vd->vdev_dtl_sm = NULL;
2423 		mutex_exit(&vd->vdev_dtl_lock);
2424 
2425 		/*
2426 		 * We only destroy the leaf ZAP for detached leaves or for
2427 		 * removed log devices. Removed data devices handle leaf ZAP
2428 		 * cleanup later, once cancellation is no longer possible.
2429 		 */
2430 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2431 		    vd->vdev_top->vdev_islog)) {
2432 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2433 			vd->vdev_leaf_zap = 0;
2434 		}
2435 
2436 		dmu_tx_commit(tx);
2437 		return;
2438 	}
2439 
2440 	if (vd->vdev_dtl_sm == NULL) {
2441 		uint64_t new_object;
2442 
2443 		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2444 		VERIFY3U(new_object, !=, 0);
2445 
2446 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2447 		    0, -1ULL, 0));
2448 		ASSERT(vd->vdev_dtl_sm != NULL);
2449 	}
2450 
2451 	rtsync = range_tree_create(NULL, NULL);
2452 
2453 	mutex_enter(&vd->vdev_dtl_lock);
2454 	range_tree_walk(rt, range_tree_add, rtsync);
2455 	mutex_exit(&vd->vdev_dtl_lock);
2456 
2457 	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2458 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2459 	range_tree_vacate(rtsync, NULL, NULL);
2460 
2461 	range_tree_destroy(rtsync);
2462 
2463 	/*
2464 	 * If the object for the space map has changed then dirty
2465 	 * the top level so that we update the config.
2466 	 */
2467 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2468 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2469 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2470 		    (u_longlong_t)object,
2471 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2472 		vdev_config_dirty(vd->vdev_top);
2473 	}
2474 
2475 	dmu_tx_commit(tx);
2476 
2477 	mutex_enter(&vd->vdev_dtl_lock);
2478 	space_map_update(vd->vdev_dtl_sm);
2479 	mutex_exit(&vd->vdev_dtl_lock);
2480 }
2481 
2482 /*
2483  * Determine whether the specified vdev can be offlined/detached/removed
2484  * without losing data.
2485  */
2486 boolean_t
2487 vdev_dtl_required(vdev_t *vd)
2488 {
2489 	spa_t *spa = vd->vdev_spa;
2490 	vdev_t *tvd = vd->vdev_top;
2491 	uint8_t cant_read = vd->vdev_cant_read;
2492 	boolean_t required;
2493 
2494 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2495 
2496 	if (vd == spa->spa_root_vdev || vd == tvd)
2497 		return (B_TRUE);
2498 
2499 	/*
2500 	 * Temporarily mark the device as unreadable, and then determine
2501 	 * whether this results in any DTL outages in the top-level vdev.
2502 	 * If not, we can safely offline/detach/remove the device.
2503 	 */
2504 	vd->vdev_cant_read = B_TRUE;
2505 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2506 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2507 	vd->vdev_cant_read = cant_read;
2508 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2509 
2510 	if (!required && zio_injection_enabled)
2511 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2512 
2513 	return (required);
2514 }
2515 
2516 /*
2517  * Determine if resilver is needed, and if so the txg range.
2518  */
2519 boolean_t
2520 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2521 {
2522 	boolean_t needed = B_FALSE;
2523 	uint64_t thismin = UINT64_MAX;
2524 	uint64_t thismax = 0;
2525 
2526 	if (vd->vdev_children == 0) {
2527 		mutex_enter(&vd->vdev_dtl_lock);
2528 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2529 		    vdev_writeable(vd)) {
2530 
2531 			thismin = vdev_dtl_min(vd);
2532 			thismax = vdev_dtl_max(vd);
2533 			needed = B_TRUE;
2534 		}
2535 		mutex_exit(&vd->vdev_dtl_lock);
2536 	} else {
2537 		for (int c = 0; c < vd->vdev_children; c++) {
2538 			vdev_t *cvd = vd->vdev_child[c];
2539 			uint64_t cmin, cmax;
2540 
2541 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2542 				thismin = MIN(thismin, cmin);
2543 				thismax = MAX(thismax, cmax);
2544 				needed = B_TRUE;
2545 			}
2546 		}
2547 	}
2548 
2549 	if (needed && minp) {
2550 		*minp = thismin;
2551 		*maxp = thismax;
2552 	}
2553 	return (needed);
2554 }
2555 
2556 /*
2557  * Gets the checkpoint space map object from the vdev's ZAP.
2558  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2559  * or the ZAP doesn't exist yet.
2560  */
2561 int
2562 vdev_checkpoint_sm_object(vdev_t *vd)
2563 {
2564 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2565 	if (vd->vdev_top_zap == 0) {
2566 		return (0);
2567 	}
2568 
2569 	uint64_t sm_obj = 0;
2570 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2571 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2572 
2573 	ASSERT(err == 0 || err == ENOENT);
2574 
2575 	return (sm_obj);
2576 }
2577 
2578 int
2579 vdev_load(vdev_t *vd)
2580 {
2581 	int error = 0;
2582 	/*
2583 	 * Recursively load all children.
2584 	 */
2585 	for (int c = 0; c < vd->vdev_children; c++) {
2586 		error = vdev_load(vd->vdev_child[c]);
2587 		if (error != 0) {
2588 			return (error);
2589 		}
2590 	}
2591 
2592 	vdev_set_deflate_ratio(vd);
2593 
2594 	/*
2595 	 * If this is a top-level vdev, initialize its metaslabs.
2596 	 */
2597 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2598 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2599 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2600 			    VDEV_AUX_CORRUPT_DATA);
2601 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2602 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2603 			    (u_longlong_t)vd->vdev_asize);
2604 			return (SET_ERROR(ENXIO));
2605 		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2606 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2607 			    "[error=%d]", error);
2608 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2609 			    VDEV_AUX_CORRUPT_DATA);
2610 			return (error);
2611 		}
2612 
2613 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2614 		if (checkpoint_sm_obj != 0) {
2615 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2616 			ASSERT(vd->vdev_asize != 0);
2617 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2618 
2619 			if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2620 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2621 			    vd->vdev_ashift))) {
2622 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2623 				    "failed for checkpoint spacemap (obj %llu) "
2624 				    "[error=%d]",
2625 				    (u_longlong_t)checkpoint_sm_obj, error);
2626 				return (error);
2627 			}
2628 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2629 			space_map_update(vd->vdev_checkpoint_sm);
2630 
2631 			/*
2632 			 * Since the checkpoint_sm contains free entries
2633 			 * exclusively we can use sm_alloc to indicate the
2634 			 * culmulative checkpointed space that has been freed.
2635 			 */
2636 			vd->vdev_stat.vs_checkpoint_space =
2637 			    -vd->vdev_checkpoint_sm->sm_alloc;
2638 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2639 			    vd->vdev_stat.vs_checkpoint_space;
2640 		}
2641 	}
2642 
2643 	/*
2644 	 * If this is a leaf vdev, load its DTL.
2645 	 */
2646 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2647 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2648 		    VDEV_AUX_CORRUPT_DATA);
2649 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2650 		    "[error=%d]", error);
2651 		return (error);
2652 	}
2653 
2654 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2655 	if (obsolete_sm_object != 0) {
2656 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2657 		ASSERT(vd->vdev_asize != 0);
2658 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2659 
2660 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2661 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2662 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2663 			    VDEV_AUX_CORRUPT_DATA);
2664 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2665 			    "obsolete spacemap (obj %llu) [error=%d]",
2666 			    (u_longlong_t)obsolete_sm_object, error);
2667 			return (error);
2668 		}
2669 		space_map_update(vd->vdev_obsolete_sm);
2670 	}
2671 
2672 	return (0);
2673 }
2674 
2675 /*
2676  * The special vdev case is used for hot spares and l2cache devices.  Its
2677  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2678  * we make sure that we can open the underlying device, then try to read the
2679  * label, and make sure that the label is sane and that it hasn't been
2680  * repurposed to another pool.
2681  */
2682 int
2683 vdev_validate_aux(vdev_t *vd)
2684 {
2685 	nvlist_t *label;
2686 	uint64_t guid, version;
2687 	uint64_t state;
2688 
2689 	if (!vdev_readable(vd))
2690 		return (0);
2691 
2692 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2693 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2694 		    VDEV_AUX_CORRUPT_DATA);
2695 		return (-1);
2696 	}
2697 
2698 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2699 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2700 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2701 	    guid != vd->vdev_guid ||
2702 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2703 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2704 		    VDEV_AUX_CORRUPT_DATA);
2705 		nvlist_free(label);
2706 		return (-1);
2707 	}
2708 
2709 	/*
2710 	 * We don't actually check the pool state here.  If it's in fact in
2711 	 * use by another pool, we update this fact on the fly when requested.
2712 	 */
2713 	nvlist_free(label);
2714 	return (0);
2715 }
2716 
2717 /*
2718  * Free the objects used to store this vdev's spacemaps, and the array
2719  * that points to them.
2720  */
2721 void
2722 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2723 {
2724 	if (vd->vdev_ms_array == 0)
2725 		return;
2726 
2727 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2728 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2729 	size_t array_bytes = array_count * sizeof (uint64_t);
2730 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2731 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2732 	    array_bytes, smobj_array, 0));
2733 
2734 	for (uint64_t i = 0; i < array_count; i++) {
2735 		uint64_t smobj = smobj_array[i];
2736 		if (smobj == 0)
2737 			continue;
2738 
2739 		space_map_free_obj(mos, smobj, tx);
2740 	}
2741 
2742 	kmem_free(smobj_array, array_bytes);
2743 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2744 	vd->vdev_ms_array = 0;
2745 }
2746 
2747 static void
2748 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2749 {
2750 	spa_t *spa = vd->vdev_spa;
2751 	dmu_tx_t *tx;
2752 
2753 	ASSERT(vd == vd->vdev_top);
2754 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2755 
2756 	if (vd->vdev_ms != NULL) {
2757 		metaslab_group_t *mg = vd->vdev_mg;
2758 
2759 		metaslab_group_histogram_verify(mg);
2760 		metaslab_class_histogram_verify(mg->mg_class);
2761 
2762 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2763 			metaslab_t *msp = vd->vdev_ms[m];
2764 
2765 			if (msp == NULL || msp->ms_sm == NULL)
2766 				continue;
2767 
2768 			mutex_enter(&msp->ms_lock);
2769 			/*
2770 			 * If the metaslab was not loaded when the vdev
2771 			 * was removed then the histogram accounting may
2772 			 * not be accurate. Update the histogram information
2773 			 * here so that we ensure that the metaslab group
2774 			 * and metaslab class are up-to-date.
2775 			 */
2776 			metaslab_group_histogram_remove(mg, msp);
2777 
2778 			VERIFY0(space_map_allocated(msp->ms_sm));
2779 			space_map_close(msp->ms_sm);
2780 			msp->ms_sm = NULL;
2781 			mutex_exit(&msp->ms_lock);
2782 		}
2783 
2784 		if (vd->vdev_checkpoint_sm != NULL) {
2785 			ASSERT(spa_has_checkpoint(spa));
2786 			space_map_close(vd->vdev_checkpoint_sm);
2787 			vd->vdev_checkpoint_sm = NULL;
2788 		}
2789 
2790 		metaslab_group_histogram_verify(mg);
2791 		metaslab_class_histogram_verify(mg->mg_class);
2792 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2793 			ASSERT0(mg->mg_histogram[i]);
2794 	}
2795 
2796 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2797 	vdev_destroy_spacemaps(vd, tx);
2798 
2799 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2800 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2801 		vd->vdev_top_zap = 0;
2802 	}
2803 	dmu_tx_commit(tx);
2804 }
2805 
2806 void
2807 vdev_sync_done(vdev_t *vd, uint64_t txg)
2808 {
2809 	metaslab_t *msp;
2810 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2811 
2812 	ASSERT(vdev_is_concrete(vd));
2813 
2814 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2815 		metaslab_sync_done(msp, txg);
2816 
2817 	if (reassess)
2818 		metaslab_sync_reassess(vd->vdev_mg);
2819 }
2820 
2821 void
2822 vdev_sync(vdev_t *vd, uint64_t txg)
2823 {
2824 	spa_t *spa = vd->vdev_spa;
2825 	vdev_t *lvd;
2826 	metaslab_t *msp;
2827 	dmu_tx_t *tx;
2828 
2829 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2830 		dmu_tx_t *tx;
2831 
2832 		ASSERT(vd->vdev_removing ||
2833 		    vd->vdev_ops == &vdev_indirect_ops);
2834 
2835 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2836 		vdev_indirect_sync_obsolete(vd, tx);
2837 		dmu_tx_commit(tx);
2838 
2839 		/*
2840 		 * If the vdev is indirect, it can't have dirty
2841 		 * metaslabs or DTLs.
2842 		 */
2843 		if (vd->vdev_ops == &vdev_indirect_ops) {
2844 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2845 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2846 			return;
2847 		}
2848 	}
2849 
2850 	ASSERT(vdev_is_concrete(vd));
2851 
2852 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2853 	    !vd->vdev_removing) {
2854 		ASSERT(vd == vd->vdev_top);
2855 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2856 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2857 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2858 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2859 		ASSERT(vd->vdev_ms_array != 0);
2860 		vdev_config_dirty(vd);
2861 		dmu_tx_commit(tx);
2862 	}
2863 
2864 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2865 		metaslab_sync(msp, txg);
2866 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2867 	}
2868 
2869 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2870 		vdev_dtl_sync(lvd, txg);
2871 
2872 	/*
2873 	 * Remove the metadata associated with this vdev once it's empty.
2874 	 * Note that this is typically used for log/cache device removal;
2875 	 * we don't empty toplevel vdevs when removing them.  But if
2876 	 * a toplevel happens to be emptied, this is not harmful.
2877 	 */
2878 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2879 		vdev_remove_empty(vd, txg);
2880 	}
2881 
2882 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2883 }
2884 
2885 uint64_t
2886 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2887 {
2888 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2889 }
2890 
2891 /*
2892  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2893  * not be opened, and no I/O is attempted.
2894  */
2895 int
2896 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2897 {
2898 	vdev_t *vd, *tvd;
2899 
2900 	spa_vdev_state_enter(spa, SCL_NONE);
2901 
2902 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2903 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2904 
2905 	if (!vd->vdev_ops->vdev_op_leaf)
2906 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2907 
2908 	tvd = vd->vdev_top;
2909 
2910 	/*
2911 	 * We don't directly use the aux state here, but if we do a
2912 	 * vdev_reopen(), we need this value to be present to remember why we
2913 	 * were faulted.
2914 	 */
2915 	vd->vdev_label_aux = aux;
2916 
2917 	/*
2918 	 * Faulted state takes precedence over degraded.
2919 	 */
2920 	vd->vdev_delayed_close = B_FALSE;
2921 	vd->vdev_faulted = 1ULL;
2922 	vd->vdev_degraded = 0ULL;
2923 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2924 
2925 	/*
2926 	 * If this device has the only valid copy of the data, then
2927 	 * back off and simply mark the vdev as degraded instead.
2928 	 */
2929 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2930 		vd->vdev_degraded = 1ULL;
2931 		vd->vdev_faulted = 0ULL;
2932 
2933 		/*
2934 		 * If we reopen the device and it's not dead, only then do we
2935 		 * mark it degraded.
2936 		 */
2937 		vdev_reopen(tvd);
2938 
2939 		if (vdev_readable(vd))
2940 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2941 	}
2942 
2943 	return (spa_vdev_state_exit(spa, vd, 0));
2944 }
2945 
2946 /*
2947  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2948  * user that something is wrong.  The vdev continues to operate as normal as far
2949  * as I/O is concerned.
2950  */
2951 int
2952 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2953 {
2954 	vdev_t *vd;
2955 
2956 	spa_vdev_state_enter(spa, SCL_NONE);
2957 
2958 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2959 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2960 
2961 	if (!vd->vdev_ops->vdev_op_leaf)
2962 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2963 
2964 	/*
2965 	 * If the vdev is already faulted, then don't do anything.
2966 	 */
2967 	if (vd->vdev_faulted || vd->vdev_degraded)
2968 		return (spa_vdev_state_exit(spa, NULL, 0));
2969 
2970 	vd->vdev_degraded = 1ULL;
2971 	if (!vdev_is_dead(vd))
2972 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2973 		    aux);
2974 
2975 	return (spa_vdev_state_exit(spa, vd, 0));
2976 }
2977 
2978 /*
2979  * Online the given vdev.
2980  *
2981  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2982  * spare device should be detached when the device finishes resilvering.
2983  * Second, the online should be treated like a 'test' online case, so no FMA
2984  * events are generated if the device fails to open.
2985  */
2986 int
2987 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2988 {
2989 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2990 	boolean_t wasoffline;
2991 	vdev_state_t oldstate;
2992 
2993 	spa_vdev_state_enter(spa, SCL_NONE);
2994 
2995 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2996 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2997 
2998 	if (!vd->vdev_ops->vdev_op_leaf)
2999 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3000 
3001 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3002 	oldstate = vd->vdev_state;
3003 
3004 	tvd = vd->vdev_top;
3005 	vd->vdev_offline = B_FALSE;
3006 	vd->vdev_tmpoffline = B_FALSE;
3007 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3008 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3009 
3010 	/* XXX - L2ARC 1.0 does not support expansion */
3011 	if (!vd->vdev_aux) {
3012 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3013 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3014 	}
3015 
3016 	vdev_reopen(tvd);
3017 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3018 
3019 	if (!vd->vdev_aux) {
3020 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3021 			pvd->vdev_expanding = B_FALSE;
3022 	}
3023 
3024 	if (newstate)
3025 		*newstate = vd->vdev_state;
3026 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3027 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3028 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3029 	    vd->vdev_parent->vdev_child[0] == vd)
3030 		vd->vdev_unspare = B_TRUE;
3031 
3032 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3033 
3034 		/* XXX - L2ARC 1.0 does not support expansion */
3035 		if (vd->vdev_aux)
3036 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3037 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3038 	}
3039 
3040 	if (wasoffline ||
3041 	    (oldstate < VDEV_STATE_DEGRADED &&
3042 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3043 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3044 
3045 	return (spa_vdev_state_exit(spa, vd, 0));
3046 }
3047 
3048 static int
3049 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3050 {
3051 	vdev_t *vd, *tvd;
3052 	int error = 0;
3053 	uint64_t generation;
3054 	metaslab_group_t *mg;
3055 
3056 top:
3057 	spa_vdev_state_enter(spa, SCL_ALLOC);
3058 
3059 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3060 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3061 
3062 	if (!vd->vdev_ops->vdev_op_leaf)
3063 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3064 
3065 	tvd = vd->vdev_top;
3066 	mg = tvd->vdev_mg;
3067 	generation = spa->spa_config_generation + 1;
3068 
3069 	/*
3070 	 * If the device isn't already offline, try to offline it.
3071 	 */
3072 	if (!vd->vdev_offline) {
3073 		/*
3074 		 * If this device has the only valid copy of some data,
3075 		 * don't allow it to be offlined. Log devices are always
3076 		 * expendable.
3077 		 */
3078 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3079 		    vdev_dtl_required(vd))
3080 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3081 
3082 		/*
3083 		 * If the top-level is a slog and it has had allocations
3084 		 * then proceed.  We check that the vdev's metaslab group
3085 		 * is not NULL since it's possible that we may have just
3086 		 * added this vdev but not yet initialized its metaslabs.
3087 		 */
3088 		if (tvd->vdev_islog && mg != NULL) {
3089 			/*
3090 			 * Prevent any future allocations.
3091 			 */
3092 			metaslab_group_passivate(mg);
3093 			(void) spa_vdev_state_exit(spa, vd, 0);
3094 
3095 			error = spa_reset_logs(spa);
3096 
3097 			/*
3098 			 * If the log device was successfully reset but has
3099 			 * checkpointed data, do not offline it.
3100 			 */
3101 			if (error == 0 &&
3102 			    tvd->vdev_checkpoint_sm != NULL) {
3103 				ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3104 				    !=, 0);
3105 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3106 			}
3107 
3108 			spa_vdev_state_enter(spa, SCL_ALLOC);
3109 
3110 			/*
3111 			 * Check to see if the config has changed.
3112 			 */
3113 			if (error || generation != spa->spa_config_generation) {
3114 				metaslab_group_activate(mg);
3115 				if (error)
3116 					return (spa_vdev_state_exit(spa,
3117 					    vd, error));
3118 				(void) spa_vdev_state_exit(spa, vd, 0);
3119 				goto top;
3120 			}
3121 			ASSERT0(tvd->vdev_stat.vs_alloc);
3122 		}
3123 
3124 		/*
3125 		 * Offline this device and reopen its top-level vdev.
3126 		 * If the top-level vdev is a log device then just offline
3127 		 * it. Otherwise, if this action results in the top-level
3128 		 * vdev becoming unusable, undo it and fail the request.
3129 		 */
3130 		vd->vdev_offline = B_TRUE;
3131 		vdev_reopen(tvd);
3132 
3133 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3134 		    vdev_is_dead(tvd)) {
3135 			vd->vdev_offline = B_FALSE;
3136 			vdev_reopen(tvd);
3137 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3138 		}
3139 
3140 		/*
3141 		 * Add the device back into the metaslab rotor so that
3142 		 * once we online the device it's open for business.
3143 		 */
3144 		if (tvd->vdev_islog && mg != NULL)
3145 			metaslab_group_activate(mg);
3146 	}
3147 
3148 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3149 
3150 	return (spa_vdev_state_exit(spa, vd, 0));
3151 }
3152 
3153 int
3154 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3155 {
3156 	int error;
3157 
3158 	mutex_enter(&spa->spa_vdev_top_lock);
3159 	error = vdev_offline_locked(spa, guid, flags);
3160 	mutex_exit(&spa->spa_vdev_top_lock);
3161 
3162 	return (error);
3163 }
3164 
3165 /*
3166  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3167  * vdev_offline(), we assume the spa config is locked.  We also clear all
3168  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3169  */
3170 void
3171 vdev_clear(spa_t *spa, vdev_t *vd)
3172 {
3173 	vdev_t *rvd = spa->spa_root_vdev;
3174 
3175 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3176 
3177 	if (vd == NULL)
3178 		vd = rvd;
3179 
3180 	vd->vdev_stat.vs_read_errors = 0;
3181 	vd->vdev_stat.vs_write_errors = 0;
3182 	vd->vdev_stat.vs_checksum_errors = 0;
3183 
3184 	for (int c = 0; c < vd->vdev_children; c++)
3185 		vdev_clear(spa, vd->vdev_child[c]);
3186 
3187 	/*
3188 	 * It makes no sense to "clear" an indirect vdev.
3189 	 */
3190 	if (!vdev_is_concrete(vd))
3191 		return;
3192 
3193 	/*
3194 	 * If we're in the FAULTED state or have experienced failed I/O, then
3195 	 * clear the persistent state and attempt to reopen the device.  We
3196 	 * also mark the vdev config dirty, so that the new faulted state is
3197 	 * written out to disk.
3198 	 */
3199 	if (vd->vdev_faulted || vd->vdev_degraded ||
3200 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3201 
3202 		/*
3203 		 * When reopening in reponse to a clear event, it may be due to
3204 		 * a fmadm repair request.  In this case, if the device is
3205 		 * still broken, we want to still post the ereport again.
3206 		 */
3207 		vd->vdev_forcefault = B_TRUE;
3208 
3209 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3210 		vd->vdev_cant_read = B_FALSE;
3211 		vd->vdev_cant_write = B_FALSE;
3212 
3213 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3214 
3215 		vd->vdev_forcefault = B_FALSE;
3216 
3217 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3218 			vdev_state_dirty(vd->vdev_top);
3219 
3220 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3221 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3222 
3223 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3224 	}
3225 
3226 	/*
3227 	 * When clearing a FMA-diagnosed fault, we always want to
3228 	 * unspare the device, as we assume that the original spare was
3229 	 * done in response to the FMA fault.
3230 	 */
3231 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3232 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3233 	    vd->vdev_parent->vdev_child[0] == vd)
3234 		vd->vdev_unspare = B_TRUE;
3235 }
3236 
3237 boolean_t
3238 vdev_is_dead(vdev_t *vd)
3239 {
3240 	/*
3241 	 * Holes and missing devices are always considered "dead".
3242 	 * This simplifies the code since we don't have to check for
3243 	 * these types of devices in the various code paths.
3244 	 * Instead we rely on the fact that we skip over dead devices
3245 	 * before issuing I/O to them.
3246 	 */
3247 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3248 	    vd->vdev_ops == &vdev_hole_ops ||
3249 	    vd->vdev_ops == &vdev_missing_ops);
3250 }
3251 
3252 boolean_t
3253 vdev_readable(vdev_t *vd)
3254 {
3255 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3256 }
3257 
3258 boolean_t
3259 vdev_writeable(vdev_t *vd)
3260 {
3261 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3262 	    vdev_is_concrete(vd));
3263 }
3264 
3265 boolean_t
3266 vdev_allocatable(vdev_t *vd)
3267 {
3268 	uint64_t state = vd->vdev_state;
3269 
3270 	/*
3271 	 * We currently allow allocations from vdevs which may be in the
3272 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3273 	 * fails to reopen then we'll catch it later when we're holding
3274 	 * the proper locks.  Note that we have to get the vdev state
3275 	 * in a local variable because although it changes atomically,
3276 	 * we're asking two separate questions about it.
3277 	 */
3278 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3279 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3280 	    vd->vdev_mg->mg_initialized);
3281 }
3282 
3283 boolean_t
3284 vdev_accessible(vdev_t *vd, zio_t *zio)
3285 {
3286 	ASSERT(zio->io_vd == vd);
3287 
3288 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3289 		return (B_FALSE);
3290 
3291 	if (zio->io_type == ZIO_TYPE_READ)
3292 		return (!vd->vdev_cant_read);
3293 
3294 	if (zio->io_type == ZIO_TYPE_WRITE)
3295 		return (!vd->vdev_cant_write);
3296 
3297 	return (B_TRUE);
3298 }
3299 
3300 boolean_t
3301 vdev_is_spacemap_addressable(vdev_t *vd)
3302 {
3303 	/*
3304 	 * Assuming 47 bits of the space map entry dedicated for the entry's
3305 	 * offset (see description in space_map.h), we calculate the maximum
3306 	 * address that can be described by a space map entry for the given
3307 	 * device.
3308 	 */
3309 	uint64_t shift = vd->vdev_ashift + 47;
3310 
3311 	if (shift >= 63) /* detect potential overflow */
3312 		return (B_TRUE);
3313 
3314 	return (vd->vdev_asize < (1ULL << shift));
3315 }
3316 
3317 /*
3318  * Get statistics for the given vdev.
3319  */
3320 void
3321 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3322 {
3323 	spa_t *spa = vd->vdev_spa;
3324 	vdev_t *rvd = spa->spa_root_vdev;
3325 	vdev_t *tvd = vd->vdev_top;
3326 
3327 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3328 
3329 	mutex_enter(&vd->vdev_stat_lock);
3330 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3331 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3332 	vs->vs_state = vd->vdev_state;
3333 	vs->vs_rsize = vdev_get_min_asize(vd);
3334 	if (vd->vdev_ops->vdev_op_leaf)
3335 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3336 	/*
3337 	 * Report expandable space on top-level, non-auxillary devices only.
3338 	 * The expandable space is reported in terms of metaslab sized units
3339 	 * since that determines how much space the pool can expand.
3340 	 */
3341 	if (vd->vdev_aux == NULL && tvd != NULL) {
3342 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3343 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3344 	}
3345 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3346 	    vdev_is_concrete(vd)) {
3347 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3348 	}
3349 
3350 	/*
3351 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3352 	 * over all top-level vdevs (i.e. the direct children of the root).
3353 	 */
3354 	if (vd == rvd) {
3355 		for (int c = 0; c < rvd->vdev_children; c++) {
3356 			vdev_t *cvd = rvd->vdev_child[c];
3357 			vdev_stat_t *cvs = &cvd->vdev_stat;
3358 
3359 			for (int t = 0; t < ZIO_TYPES; t++) {
3360 				vs->vs_ops[t] += cvs->vs_ops[t];
3361 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3362 			}
3363 			cvs->vs_scan_removing = cvd->vdev_removing;
3364 		}
3365 	}
3366 	mutex_exit(&vd->vdev_stat_lock);
3367 }
3368 
3369 void
3370 vdev_clear_stats(vdev_t *vd)
3371 {
3372 	mutex_enter(&vd->vdev_stat_lock);
3373 	vd->vdev_stat.vs_space = 0;
3374 	vd->vdev_stat.vs_dspace = 0;
3375 	vd->vdev_stat.vs_alloc = 0;
3376 	mutex_exit(&vd->vdev_stat_lock);
3377 }
3378 
3379 void
3380 vdev_scan_stat_init(vdev_t *vd)
3381 {
3382 	vdev_stat_t *vs = &vd->vdev_stat;
3383 
3384 	for (int c = 0; c < vd->vdev_children; c++)
3385 		vdev_scan_stat_init(vd->vdev_child[c]);
3386 
3387 	mutex_enter(&vd->vdev_stat_lock);
3388 	vs->vs_scan_processed = 0;
3389 	mutex_exit(&vd->vdev_stat_lock);
3390 }
3391 
3392 void
3393 vdev_stat_update(zio_t *zio, uint64_t psize)
3394 {
3395 	spa_t *spa = zio->io_spa;
3396 	vdev_t *rvd = spa->spa_root_vdev;
3397 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3398 	vdev_t *pvd;
3399 	uint64_t txg = zio->io_txg;
3400 	vdev_stat_t *vs = &vd->vdev_stat;
3401 	zio_type_t type = zio->io_type;
3402 	int flags = zio->io_flags;
3403 
3404 	/*
3405 	 * If this i/o is a gang leader, it didn't do any actual work.
3406 	 */
3407 	if (zio->io_gang_tree)
3408 		return;
3409 
3410 	if (zio->io_error == 0) {
3411 		/*
3412 		 * If this is a root i/o, don't count it -- we've already
3413 		 * counted the top-level vdevs, and vdev_get_stats() will
3414 		 * aggregate them when asked.  This reduces contention on
3415 		 * the root vdev_stat_lock and implicitly handles blocks
3416 		 * that compress away to holes, for which there is no i/o.
3417 		 * (Holes never create vdev children, so all the counters
3418 		 * remain zero, which is what we want.)
3419 		 *
3420 		 * Note: this only applies to successful i/o (io_error == 0)
3421 		 * because unlike i/o counts, errors are not additive.
3422 		 * When reading a ditto block, for example, failure of
3423 		 * one top-level vdev does not imply a root-level error.
3424 		 */
3425 		if (vd == rvd)
3426 			return;
3427 
3428 		ASSERT(vd == zio->io_vd);
3429 
3430 		if (flags & ZIO_FLAG_IO_BYPASS)
3431 			return;
3432 
3433 		mutex_enter(&vd->vdev_stat_lock);
3434 
3435 		if (flags & ZIO_FLAG_IO_REPAIR) {
3436 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3437 				dsl_scan_phys_t *scn_phys =
3438 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3439 				uint64_t *processed = &scn_phys->scn_processed;
3440 
3441 				/* XXX cleanup? */
3442 				if (vd->vdev_ops->vdev_op_leaf)
3443 					atomic_add_64(processed, psize);
3444 				vs->vs_scan_processed += psize;
3445 			}
3446 
3447 			if (flags & ZIO_FLAG_SELF_HEAL)
3448 				vs->vs_self_healed += psize;
3449 		}
3450 
3451 		vs->vs_ops[type]++;
3452 		vs->vs_bytes[type] += psize;
3453 
3454 		mutex_exit(&vd->vdev_stat_lock);
3455 		return;
3456 	}
3457 
3458 	if (flags & ZIO_FLAG_SPECULATIVE)
3459 		return;
3460 
3461 	/*
3462 	 * If this is an I/O error that is going to be retried, then ignore the
3463 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3464 	 * hard errors, when in reality they can happen for any number of
3465 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3466 	 */
3467 	if (zio->io_error == EIO &&
3468 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3469 		return;
3470 
3471 	/*
3472 	 * Intent logs writes won't propagate their error to the root
3473 	 * I/O so don't mark these types of failures as pool-level
3474 	 * errors.
3475 	 */
3476 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3477 		return;
3478 
3479 	mutex_enter(&vd->vdev_stat_lock);
3480 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3481 		if (zio->io_error == ECKSUM)
3482 			vs->vs_checksum_errors++;
3483 		else
3484 			vs->vs_read_errors++;
3485 	}
3486 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3487 		vs->vs_write_errors++;
3488 	mutex_exit(&vd->vdev_stat_lock);
3489 
3490 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3491 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3492 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3493 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3494 	    spa->spa_claiming)) {
3495 		/*
3496 		 * This is either a normal write (not a repair), or it's
3497 		 * a repair induced by the scrub thread, or it's a repair
3498 		 * made by zil_claim() during spa_load() in the first txg.
3499 		 * In the normal case, we commit the DTL change in the same
3500 		 * txg as the block was born.  In the scrub-induced repair
3501 		 * case, we know that scrubs run in first-pass syncing context,
3502 		 * so we commit the DTL change in spa_syncing_txg(spa).
3503 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3504 		 *
3505 		 * We currently do not make DTL entries for failed spontaneous
3506 		 * self-healing writes triggered by normal (non-scrubbing)
3507 		 * reads, because we have no transactional context in which to
3508 		 * do so -- and it's not clear that it'd be desirable anyway.
3509 		 */
3510 		if (vd->vdev_ops->vdev_op_leaf) {
3511 			uint64_t commit_txg = txg;
3512 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3513 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3514 				ASSERT(spa_sync_pass(spa) == 1);
3515 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3516 				commit_txg = spa_syncing_txg(spa);
3517 			} else if (spa->spa_claiming) {
3518 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3519 				commit_txg = spa_first_txg(spa);
3520 			}
3521 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3522 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3523 				return;
3524 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3525 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3526 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3527 		}
3528 		if (vd != rvd)
3529 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3530 	}
3531 }
3532 
3533 /*
3534  * Update the in-core space usage stats for this vdev, its metaslab class,
3535  * and the root vdev.
3536  */
3537 void
3538 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3539     int64_t space_delta)
3540 {
3541 	int64_t dspace_delta = space_delta;
3542 	spa_t *spa = vd->vdev_spa;
3543 	vdev_t *rvd = spa->spa_root_vdev;
3544 	metaslab_group_t *mg = vd->vdev_mg;
3545 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3546 
3547 	ASSERT(vd == vd->vdev_top);
3548 
3549 	/*
3550 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3551 	 * factor.  We must calculate this here and not at the root vdev
3552 	 * because the root vdev's psize-to-asize is simply the max of its
3553 	 * childrens', thus not accurate enough for us.
3554 	 */
3555 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3556 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3557 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3558 	    vd->vdev_deflate_ratio;
3559 
3560 	mutex_enter(&vd->vdev_stat_lock);
3561 	vd->vdev_stat.vs_alloc += alloc_delta;
3562 	vd->vdev_stat.vs_space += space_delta;
3563 	vd->vdev_stat.vs_dspace += dspace_delta;
3564 	mutex_exit(&vd->vdev_stat_lock);
3565 
3566 	if (mc == spa_normal_class(spa)) {
3567 		mutex_enter(&rvd->vdev_stat_lock);
3568 		rvd->vdev_stat.vs_alloc += alloc_delta;
3569 		rvd->vdev_stat.vs_space += space_delta;
3570 		rvd->vdev_stat.vs_dspace += dspace_delta;
3571 		mutex_exit(&rvd->vdev_stat_lock);
3572 	}
3573 
3574 	if (mc != NULL) {
3575 		ASSERT(rvd == vd->vdev_parent);
3576 		ASSERT(vd->vdev_ms_count != 0);
3577 
3578 		metaslab_class_space_update(mc,
3579 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3580 	}
3581 }
3582 
3583 /*
3584  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3585  * so that it will be written out next time the vdev configuration is synced.
3586  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3587  */
3588 void
3589 vdev_config_dirty(vdev_t *vd)
3590 {
3591 	spa_t *spa = vd->vdev_spa;
3592 	vdev_t *rvd = spa->spa_root_vdev;
3593 	int c;
3594 
3595 	ASSERT(spa_writeable(spa));
3596 
3597 	/*
3598 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3599 	 * update the vdev config manually and set the sync flag.
3600 	 */
3601 	if (vd->vdev_aux != NULL) {
3602 		spa_aux_vdev_t *sav = vd->vdev_aux;
3603 		nvlist_t **aux;
3604 		uint_t naux;
3605 
3606 		for (c = 0; c < sav->sav_count; c++) {
3607 			if (sav->sav_vdevs[c] == vd)
3608 				break;
3609 		}
3610 
3611 		if (c == sav->sav_count) {
3612 			/*
3613 			 * We're being removed.  There's nothing more to do.
3614 			 */
3615 			ASSERT(sav->sav_sync == B_TRUE);
3616 			return;
3617 		}
3618 
3619 		sav->sav_sync = B_TRUE;
3620 
3621 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3622 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3623 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3624 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3625 		}
3626 
3627 		ASSERT(c < naux);
3628 
3629 		/*
3630 		 * Setting the nvlist in the middle if the array is a little
3631 		 * sketchy, but it will work.
3632 		 */
3633 		nvlist_free(aux[c]);
3634 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3635 
3636 		return;
3637 	}
3638 
3639 	/*
3640 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3641 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3642 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3643 	 * so this is sufficient to ensure mutual exclusion.
3644 	 */
3645 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3646 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3647 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3648 
3649 	if (vd == rvd) {
3650 		for (c = 0; c < rvd->vdev_children; c++)
3651 			vdev_config_dirty(rvd->vdev_child[c]);
3652 	} else {
3653 		ASSERT(vd == vd->vdev_top);
3654 
3655 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3656 		    vdev_is_concrete(vd)) {
3657 			list_insert_head(&spa->spa_config_dirty_list, vd);
3658 		}
3659 	}
3660 }
3661 
3662 void
3663 vdev_config_clean(vdev_t *vd)
3664 {
3665 	spa_t *spa = vd->vdev_spa;
3666 
3667 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3668 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3669 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3670 
3671 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3672 	list_remove(&spa->spa_config_dirty_list, vd);
3673 }
3674 
3675 /*
3676  * Mark a top-level vdev's state as dirty, so that the next pass of
3677  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3678  * the state changes from larger config changes because they require
3679  * much less locking, and are often needed for administrative actions.
3680  */
3681 void
3682 vdev_state_dirty(vdev_t *vd)
3683 {
3684 	spa_t *spa = vd->vdev_spa;
3685 
3686 	ASSERT(spa_writeable(spa));
3687 	ASSERT(vd == vd->vdev_top);
3688 
3689 	/*
3690 	 * The state list is protected by the SCL_STATE lock.  The caller
3691 	 * must either hold SCL_STATE as writer, or must be the sync thread
3692 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3693 	 * so this is sufficient to ensure mutual exclusion.
3694 	 */
3695 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3696 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3697 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3698 
3699 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3700 	    vdev_is_concrete(vd))
3701 		list_insert_head(&spa->spa_state_dirty_list, vd);
3702 }
3703 
3704 void
3705 vdev_state_clean(vdev_t *vd)
3706 {
3707 	spa_t *spa = vd->vdev_spa;
3708 
3709 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3710 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3711 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3712 
3713 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3714 	list_remove(&spa->spa_state_dirty_list, vd);
3715 }
3716 
3717 /*
3718  * Propagate vdev state up from children to parent.
3719  */
3720 void
3721 vdev_propagate_state(vdev_t *vd)
3722 {
3723 	spa_t *spa = vd->vdev_spa;
3724 	vdev_t *rvd = spa->spa_root_vdev;
3725 	int degraded = 0, faulted = 0;
3726 	int corrupted = 0;
3727 	vdev_t *child;
3728 
3729 	if (vd->vdev_children > 0) {
3730 		for (int c = 0; c < vd->vdev_children; c++) {
3731 			child = vd->vdev_child[c];
3732 
3733 			/*
3734 			 * Don't factor holes or indirect vdevs into the
3735 			 * decision.
3736 			 */
3737 			if (!vdev_is_concrete(child))
3738 				continue;
3739 
3740 			if (!vdev_readable(child) ||
3741 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3742 				/*
3743 				 * Root special: if there is a top-level log
3744 				 * device, treat the root vdev as if it were
3745 				 * degraded.
3746 				 */
3747 				if (child->vdev_islog && vd == rvd)
3748 					degraded++;
3749 				else
3750 					faulted++;
3751 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3752 				degraded++;
3753 			}
3754 
3755 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3756 				corrupted++;
3757 		}
3758 
3759 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3760 
3761 		/*
3762 		 * Root special: if there is a top-level vdev that cannot be
3763 		 * opened due to corrupted metadata, then propagate the root
3764 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3765 		 * replicas'.
3766 		 */
3767 		if (corrupted && vd == rvd &&
3768 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3769 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3770 			    VDEV_AUX_CORRUPT_DATA);
3771 	}
3772 
3773 	if (vd->vdev_parent)
3774 		vdev_propagate_state(vd->vdev_parent);
3775 }
3776 
3777 /*
3778  * Set a vdev's state.  If this is during an open, we don't update the parent
3779  * state, because we're in the process of opening children depth-first.
3780  * Otherwise, we propagate the change to the parent.
3781  *
3782  * If this routine places a device in a faulted state, an appropriate ereport is
3783  * generated.
3784  */
3785 void
3786 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3787 {
3788 	uint64_t save_state;
3789 	spa_t *spa = vd->vdev_spa;
3790 
3791 	if (state == vd->vdev_state) {
3792 		vd->vdev_stat.vs_aux = aux;
3793 		return;
3794 	}
3795 
3796 	save_state = vd->vdev_state;
3797 
3798 	vd->vdev_state = state;
3799 	vd->vdev_stat.vs_aux = aux;
3800 
3801 	/*
3802 	 * If we are setting the vdev state to anything but an open state, then
3803 	 * always close the underlying device unless the device has requested
3804 	 * a delayed close (i.e. we're about to remove or fault the device).
3805 	 * Otherwise, we keep accessible but invalid devices open forever.
3806 	 * We don't call vdev_close() itself, because that implies some extra
3807 	 * checks (offline, etc) that we don't want here.  This is limited to
3808 	 * leaf devices, because otherwise closing the device will affect other
3809 	 * children.
3810 	 */
3811 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3812 	    vd->vdev_ops->vdev_op_leaf)
3813 		vd->vdev_ops->vdev_op_close(vd);
3814 
3815 	/*
3816 	 * If we have brought this vdev back into service, we need
3817 	 * to notify fmd so that it can gracefully repair any outstanding
3818 	 * cases due to a missing device.  We do this in all cases, even those
3819 	 * that probably don't correlate to a repaired fault.  This is sure to
3820 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3821 	 * this is a transient state it's OK, as the retire agent will
3822 	 * double-check the state of the vdev before repairing it.
3823 	 */
3824 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3825 	    vd->vdev_prevstate != state)
3826 		zfs_post_state_change(spa, vd);
3827 
3828 	if (vd->vdev_removed &&
3829 	    state == VDEV_STATE_CANT_OPEN &&
3830 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3831 		/*
3832 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3833 		 * device was previously marked removed and someone attempted to
3834 		 * reopen it.  If this failed due to a nonexistent device, then
3835 		 * keep the device in the REMOVED state.  We also let this be if
3836 		 * it is one of our special test online cases, which is only
3837 		 * attempting to online the device and shouldn't generate an FMA
3838 		 * fault.
3839 		 */
3840 		vd->vdev_state = VDEV_STATE_REMOVED;
3841 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3842 	} else if (state == VDEV_STATE_REMOVED) {
3843 		vd->vdev_removed = B_TRUE;
3844 	} else if (state == VDEV_STATE_CANT_OPEN) {
3845 		/*
3846 		 * If we fail to open a vdev during an import or recovery, we
3847 		 * mark it as "not available", which signifies that it was
3848 		 * never there to begin with.  Failure to open such a device
3849 		 * is not considered an error.
3850 		 */
3851 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3852 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3853 		    vd->vdev_ops->vdev_op_leaf)
3854 			vd->vdev_not_present = 1;
3855 
3856 		/*
3857 		 * Post the appropriate ereport.  If the 'prevstate' field is
3858 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3859 		 * that this is part of a vdev_reopen().  In this case, we don't
3860 		 * want to post the ereport if the device was already in the
3861 		 * CANT_OPEN state beforehand.
3862 		 *
3863 		 * If the 'checkremove' flag is set, then this is an attempt to
3864 		 * online the device in response to an insertion event.  If we
3865 		 * hit this case, then we have detected an insertion event for a
3866 		 * faulted or offline device that wasn't in the removed state.
3867 		 * In this scenario, we don't post an ereport because we are
3868 		 * about to replace the device, or attempt an online with
3869 		 * vdev_forcefault, which will generate the fault for us.
3870 		 */
3871 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3872 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3873 		    vd != spa->spa_root_vdev) {
3874 			const char *class;
3875 
3876 			switch (aux) {
3877 			case VDEV_AUX_OPEN_FAILED:
3878 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3879 				break;
3880 			case VDEV_AUX_CORRUPT_DATA:
3881 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3882 				break;
3883 			case VDEV_AUX_NO_REPLICAS:
3884 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3885 				break;
3886 			case VDEV_AUX_BAD_GUID_SUM:
3887 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3888 				break;
3889 			case VDEV_AUX_TOO_SMALL:
3890 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3891 				break;
3892 			case VDEV_AUX_BAD_LABEL:
3893 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3894 				break;
3895 			default:
3896 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3897 			}
3898 
3899 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3900 		}
3901 
3902 		/* Erase any notion of persistent removed state */
3903 		vd->vdev_removed = B_FALSE;
3904 	} else {
3905 		vd->vdev_removed = B_FALSE;
3906 	}
3907 
3908 	if (!isopen && vd->vdev_parent)
3909 		vdev_propagate_state(vd->vdev_parent);
3910 }
3911 
3912 boolean_t
3913 vdev_children_are_offline(vdev_t *vd)
3914 {
3915 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
3916 
3917 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
3918 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
3919 			return (B_FALSE);
3920 	}
3921 
3922 	return (B_TRUE);
3923 }
3924 
3925 /*
3926  * Check the vdev configuration to ensure that it's capable of supporting
3927  * a root pool. We do not support partial configuration.
3928  * In addition, only a single top-level vdev is allowed.
3929  */
3930 boolean_t
3931 vdev_is_bootable(vdev_t *vd)
3932 {
3933 	if (!vd->vdev_ops->vdev_op_leaf) {
3934 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3935 
3936 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3937 		    vd->vdev_children > 1) {
3938 			return (B_FALSE);
3939 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
3940 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
3941 			return (B_FALSE);
3942 		}
3943 	}
3944 
3945 	for (int c = 0; c < vd->vdev_children; c++) {
3946 		if (!vdev_is_bootable(vd->vdev_child[c]))
3947 			return (B_FALSE);
3948 	}
3949 	return (B_TRUE);
3950 }
3951 
3952 boolean_t
3953 vdev_is_concrete(vdev_t *vd)
3954 {
3955 	vdev_ops_t *ops = vd->vdev_ops;
3956 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
3957 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
3958 		return (B_FALSE);
3959 	} else {
3960 		return (B_TRUE);
3961 	}
3962 }
3963 
3964 /*
3965  * Determine if a log device has valid content.  If the vdev was
3966  * removed or faulted in the MOS config then we know that
3967  * the content on the log device has already been written to the pool.
3968  */
3969 boolean_t
3970 vdev_log_state_valid(vdev_t *vd)
3971 {
3972 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3973 	    !vd->vdev_removed)
3974 		return (B_TRUE);
3975 
3976 	for (int c = 0; c < vd->vdev_children; c++)
3977 		if (vdev_log_state_valid(vd->vdev_child[c]))
3978 			return (B_TRUE);
3979 
3980 	return (B_FALSE);
3981 }
3982 
3983 /*
3984  * Expand a vdev if possible.
3985  */
3986 void
3987 vdev_expand(vdev_t *vd, uint64_t txg)
3988 {
3989 	ASSERT(vd->vdev_top == vd);
3990 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3991 
3992 	vdev_set_deflate_ratio(vd);
3993 
3994 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
3995 	    vdev_is_concrete(vd)) {
3996 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3997 		vdev_config_dirty(vd);
3998 	}
3999 }
4000 
4001 /*
4002  * Split a vdev.
4003  */
4004 void
4005 vdev_split(vdev_t *vd)
4006 {
4007 	vdev_t *cvd, *pvd = vd->vdev_parent;
4008 
4009 	vdev_remove_child(pvd, vd);
4010 	vdev_compact_children(pvd);
4011 
4012 	cvd = pvd->vdev_child[0];
4013 	if (pvd->vdev_children == 1) {
4014 		vdev_remove_parent(cvd);
4015 		cvd->vdev_splitting = B_TRUE;
4016 	}
4017 	vdev_propagate_state(cvd);
4018 }
4019 
4020 void
4021 vdev_deadman(vdev_t *vd)
4022 {
4023 	for (int c = 0; c < vd->vdev_children; c++) {
4024 		vdev_t *cvd = vd->vdev_child[c];
4025 
4026 		vdev_deadman(cvd);
4027 	}
4028 
4029 	if (vd->vdev_ops->vdev_op_leaf) {
4030 		vdev_queue_t *vq = &vd->vdev_queue;
4031 
4032 		mutex_enter(&vq->vq_lock);
4033 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4034 			spa_t *spa = vd->vdev_spa;
4035 			zio_t *fio;
4036 			uint64_t delta;
4037 
4038 			/*
4039 			 * Look at the head of all the pending queues,
4040 			 * if any I/O has been outstanding for longer than
4041 			 * the spa_deadman_synctime we panic the system.
4042 			 */
4043 			fio = avl_first(&vq->vq_active_tree);
4044 			delta = gethrtime() - fio->io_timestamp;
4045 			if (delta > spa_deadman_synctime(spa)) {
4046 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4047 				    "%lluns, delta %lluns, last io %lluns",
4048 				    fio->io_timestamp, (u_longlong_t)delta,
4049 				    vq->vq_io_complete_ts);
4050 				fm_panic("I/O to pool '%s' appears to be "
4051 				    "hung.", spa_name(spa));
4052 			}
4053 		}
4054 		mutex_exit(&vq->vq_lock);
4055 	}
4056 }
4057