xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 555d674d5d4b8191dc83723188349d28278b2431)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 
55 /*
56  * Virtual device management.
57  */
58 
59 static vdev_ops_t *vdev_ops_table[] = {
60 	&vdev_root_ops,
61 	&vdev_raidz_ops,
62 	&vdev_mirror_ops,
63 	&vdev_replacing_ops,
64 	&vdev_spare_ops,
65 	&vdev_disk_ops,
66 	&vdev_file_ops,
67 	&vdev_missing_ops,
68 	&vdev_hole_ops,
69 	&vdev_indirect_ops,
70 	NULL
71 };
72 
73 /* maximum scrub/resilver I/O queue per leaf vdev */
74 int zfs_scrub_limit = 10;
75 
76 /* default target for number of metaslabs per top-level vdev */
77 int zfs_vdev_default_ms_count = 200;
78 
79 /* minimum number of metaslabs per top-level vdev */
80 int zfs_vdev_min_ms_count = 16;
81 
82 /* practical upper limit of total metaslabs per top-level vdev */
83 int zfs_vdev_ms_count_limit = 1ULL << 17;
84 
85 /* lower limit for metaslab size (512M) */
86 int zfs_vdev_default_ms_shift = 29;
87 
88 /* upper limit for metaslab size (16G) */
89 int zfs_vdev_max_ms_shift = 34;
90 
91 boolean_t vdev_validate_skip = B_FALSE;
92 
93 /*
94  * Since the DTL space map of a vdev is not expected to have a lot of
95  * entries, we default its block size to 4K.
96  */
97 int vdev_dtl_sm_blksz = (1 << 12);
98 
99 /*
100  * vdev-wide space maps that have lots of entries written to them at
101  * the end of each transaction can benefit from a higher I/O bandwidth
102  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
103  */
104 int vdev_standard_sm_blksz = (1 << 17);
105 
106 int zfs_ashift_min;
107 
108 /*PRINTFLIKE2*/
109 void
110 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
111 {
112 	va_list adx;
113 	char buf[256];
114 
115 	va_start(adx, fmt);
116 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
117 	va_end(adx);
118 
119 	if (vd->vdev_path != NULL) {
120 		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
121 		    vd->vdev_path, buf);
122 	} else {
123 		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
124 		    vd->vdev_ops->vdev_op_type,
125 		    (u_longlong_t)vd->vdev_id,
126 		    (u_longlong_t)vd->vdev_guid, buf);
127 	}
128 }
129 
130 void
131 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
132 {
133 	char state[20];
134 
135 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
136 		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
137 		    vd->vdev_ops->vdev_op_type);
138 		return;
139 	}
140 
141 	switch (vd->vdev_state) {
142 	case VDEV_STATE_UNKNOWN:
143 		(void) snprintf(state, sizeof (state), "unknown");
144 		break;
145 	case VDEV_STATE_CLOSED:
146 		(void) snprintf(state, sizeof (state), "closed");
147 		break;
148 	case VDEV_STATE_OFFLINE:
149 		(void) snprintf(state, sizeof (state), "offline");
150 		break;
151 	case VDEV_STATE_REMOVED:
152 		(void) snprintf(state, sizeof (state), "removed");
153 		break;
154 	case VDEV_STATE_CANT_OPEN:
155 		(void) snprintf(state, sizeof (state), "can't open");
156 		break;
157 	case VDEV_STATE_FAULTED:
158 		(void) snprintf(state, sizeof (state), "faulted");
159 		break;
160 	case VDEV_STATE_DEGRADED:
161 		(void) snprintf(state, sizeof (state), "degraded");
162 		break;
163 	case VDEV_STATE_HEALTHY:
164 		(void) snprintf(state, sizeof (state), "healthy");
165 		break;
166 	default:
167 		(void) snprintf(state, sizeof (state), "<state %u>",
168 		    (uint_t)vd->vdev_state);
169 	}
170 
171 	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
172 	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
173 	    vd->vdev_islog ? " (log)" : "",
174 	    (u_longlong_t)vd->vdev_guid,
175 	    vd->vdev_path ? vd->vdev_path : "N/A", state);
176 
177 	for (uint64_t i = 0; i < vd->vdev_children; i++)
178 		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
179 }
180 
181 /*
182  * Given a vdev type, return the appropriate ops vector.
183  */
184 static vdev_ops_t *
185 vdev_getops(const char *type)
186 {
187 	vdev_ops_t *ops, **opspp;
188 
189 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
190 		if (strcmp(ops->vdev_op_type, type) == 0)
191 			break;
192 
193 	return (ops);
194 }
195 
196 /*
197  * Derive the enumerated alloction bias from string input.
198  * String origin is either the per-vdev zap or zpool(1M).
199  */
200 static vdev_alloc_bias_t
201 vdev_derive_alloc_bias(const char *bias)
202 {
203 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
204 
205 	if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
206 		alloc_bias = VDEV_BIAS_LOG;
207 	else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
208 		alloc_bias = VDEV_BIAS_SPECIAL;
209 	else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
210 		alloc_bias = VDEV_BIAS_DEDUP;
211 
212 	return (alloc_bias);
213 }
214 
215 /* ARGSUSED */
216 void
217 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
218 {
219 	res->rs_start = in->rs_start;
220 	res->rs_end = in->rs_end;
221 }
222 
223 /*
224  * Default asize function: return the MAX of psize with the asize of
225  * all children.  This is what's used by anything other than RAID-Z.
226  */
227 uint64_t
228 vdev_default_asize(vdev_t *vd, uint64_t psize)
229 {
230 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
231 	uint64_t csize;
232 
233 	for (int c = 0; c < vd->vdev_children; c++) {
234 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
235 		asize = MAX(asize, csize);
236 	}
237 
238 	return (asize);
239 }
240 
241 /*
242  * Get the minimum allocatable size. We define the allocatable size as
243  * the vdev's asize rounded to the nearest metaslab. This allows us to
244  * replace or attach devices which don't have the same physical size but
245  * can still satisfy the same number of allocations.
246  */
247 uint64_t
248 vdev_get_min_asize(vdev_t *vd)
249 {
250 	vdev_t *pvd = vd->vdev_parent;
251 
252 	/*
253 	 * If our parent is NULL (inactive spare or cache) or is the root,
254 	 * just return our own asize.
255 	 */
256 	if (pvd == NULL)
257 		return (vd->vdev_asize);
258 
259 	/*
260 	 * The top-level vdev just returns the allocatable size rounded
261 	 * to the nearest metaslab.
262 	 */
263 	if (vd == vd->vdev_top)
264 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
265 
266 	/*
267 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
268 	 * so each child must provide at least 1/Nth of its asize.
269 	 */
270 	if (pvd->vdev_ops == &vdev_raidz_ops)
271 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
272 		    pvd->vdev_children);
273 
274 	return (pvd->vdev_min_asize);
275 }
276 
277 void
278 vdev_set_min_asize(vdev_t *vd)
279 {
280 	vd->vdev_min_asize = vdev_get_min_asize(vd);
281 
282 	for (int c = 0; c < vd->vdev_children; c++)
283 		vdev_set_min_asize(vd->vdev_child[c]);
284 }
285 
286 vdev_t *
287 vdev_lookup_top(spa_t *spa, uint64_t vdev)
288 {
289 	vdev_t *rvd = spa->spa_root_vdev;
290 
291 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
292 
293 	if (vdev < rvd->vdev_children) {
294 		ASSERT(rvd->vdev_child[vdev] != NULL);
295 		return (rvd->vdev_child[vdev]);
296 	}
297 
298 	return (NULL);
299 }
300 
301 vdev_t *
302 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
303 {
304 	vdev_t *mvd;
305 
306 	if (vd->vdev_guid == guid)
307 		return (vd);
308 
309 	for (int c = 0; c < vd->vdev_children; c++)
310 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
311 		    NULL)
312 			return (mvd);
313 
314 	return (NULL);
315 }
316 
317 static int
318 vdev_count_leaves_impl(vdev_t *vd)
319 {
320 	int n = 0;
321 
322 	if (vd->vdev_ops->vdev_op_leaf)
323 		return (1);
324 
325 	for (int c = 0; c < vd->vdev_children; c++)
326 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
327 
328 	return (n);
329 }
330 
331 int
332 vdev_count_leaves(spa_t *spa)
333 {
334 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
335 }
336 
337 void
338 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
339 {
340 	size_t oldsize, newsize;
341 	uint64_t id = cvd->vdev_id;
342 	vdev_t **newchild;
343 	spa_t *spa = cvd->vdev_spa;
344 
345 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
346 	ASSERT(cvd->vdev_parent == NULL);
347 
348 	cvd->vdev_parent = pvd;
349 
350 	if (pvd == NULL)
351 		return;
352 
353 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
354 
355 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
356 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
357 	newsize = pvd->vdev_children * sizeof (vdev_t *);
358 
359 	newchild = kmem_zalloc(newsize, KM_SLEEP);
360 	if (pvd->vdev_child != NULL) {
361 		bcopy(pvd->vdev_child, newchild, oldsize);
362 		kmem_free(pvd->vdev_child, oldsize);
363 	}
364 
365 	pvd->vdev_child = newchild;
366 	pvd->vdev_child[id] = cvd;
367 
368 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
369 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
370 
371 	/*
372 	 * Walk up all ancestors to update guid sum.
373 	 */
374 	for (; pvd != NULL; pvd = pvd->vdev_parent)
375 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
376 
377 	if (cvd->vdev_ops->vdev_op_leaf) {
378 		list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
379 		cvd->vdev_spa->spa_leaf_list_gen++;
380 	}
381 }
382 
383 void
384 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
385 {
386 	int c;
387 	uint_t id = cvd->vdev_id;
388 
389 	ASSERT(cvd->vdev_parent == pvd);
390 
391 	if (pvd == NULL)
392 		return;
393 
394 	ASSERT(id < pvd->vdev_children);
395 	ASSERT(pvd->vdev_child[id] == cvd);
396 
397 	pvd->vdev_child[id] = NULL;
398 	cvd->vdev_parent = NULL;
399 
400 	for (c = 0; c < pvd->vdev_children; c++)
401 		if (pvd->vdev_child[c])
402 			break;
403 
404 	if (c == pvd->vdev_children) {
405 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
406 		pvd->vdev_child = NULL;
407 		pvd->vdev_children = 0;
408 	}
409 
410 	if (cvd->vdev_ops->vdev_op_leaf) {
411 		spa_t *spa = cvd->vdev_spa;
412 		list_remove(&spa->spa_leaf_list, cvd);
413 		spa->spa_leaf_list_gen++;
414 	}
415 
416 	/*
417 	 * Walk up all ancestors to update guid sum.
418 	 */
419 	for (; pvd != NULL; pvd = pvd->vdev_parent)
420 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
421 }
422 
423 /*
424  * Remove any holes in the child array.
425  */
426 void
427 vdev_compact_children(vdev_t *pvd)
428 {
429 	vdev_t **newchild, *cvd;
430 	int oldc = pvd->vdev_children;
431 	int newc;
432 
433 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
434 
435 	for (int c = newc = 0; c < oldc; c++)
436 		if (pvd->vdev_child[c])
437 			newc++;
438 
439 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
440 
441 	for (int c = newc = 0; c < oldc; c++) {
442 		if ((cvd = pvd->vdev_child[c]) != NULL) {
443 			newchild[newc] = cvd;
444 			cvd->vdev_id = newc++;
445 		}
446 	}
447 
448 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
449 	pvd->vdev_child = newchild;
450 	pvd->vdev_children = newc;
451 }
452 
453 /*
454  * Allocate and minimally initialize a vdev_t.
455  */
456 vdev_t *
457 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
458 {
459 	vdev_t *vd;
460 	vdev_indirect_config_t *vic;
461 
462 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
463 	vic = &vd->vdev_indirect_config;
464 
465 	if (spa->spa_root_vdev == NULL) {
466 		ASSERT(ops == &vdev_root_ops);
467 		spa->spa_root_vdev = vd;
468 		spa->spa_load_guid = spa_generate_guid(NULL);
469 	}
470 
471 	if (guid == 0 && ops != &vdev_hole_ops) {
472 		if (spa->spa_root_vdev == vd) {
473 			/*
474 			 * The root vdev's guid will also be the pool guid,
475 			 * which must be unique among all pools.
476 			 */
477 			guid = spa_generate_guid(NULL);
478 		} else {
479 			/*
480 			 * Any other vdev's guid must be unique within the pool.
481 			 */
482 			guid = spa_generate_guid(spa);
483 		}
484 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
485 	}
486 
487 	vd->vdev_spa = spa;
488 	vd->vdev_id = id;
489 	vd->vdev_guid = guid;
490 	vd->vdev_guid_sum = guid;
491 	vd->vdev_ops = ops;
492 	vd->vdev_state = VDEV_STATE_CLOSED;
493 	vd->vdev_ishole = (ops == &vdev_hole_ops);
494 	vic->vic_prev_indirect_vdev = UINT64_MAX;
495 
496 	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
497 	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
498 	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
499 
500 	list_link_init(&vd->vdev_leaf_node);
501 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
502 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
503 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
504 	mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
505 	mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
506 	cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
507 	cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
508 
509 	for (int t = 0; t < DTL_TYPES; t++) {
510 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
511 	}
512 	txg_list_create(&vd->vdev_ms_list, spa,
513 	    offsetof(struct metaslab, ms_txg_node));
514 	txg_list_create(&vd->vdev_dtl_list, spa,
515 	    offsetof(struct vdev, vdev_dtl_node));
516 	vd->vdev_stat.vs_timestamp = gethrtime();
517 	vdev_queue_init(vd);
518 	vdev_cache_init(vd);
519 
520 	return (vd);
521 }
522 
523 /*
524  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
525  * creating a new vdev or loading an existing one - the behavior is slightly
526  * different for each case.
527  */
528 int
529 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
530     int alloctype)
531 {
532 	vdev_ops_t *ops;
533 	char *type;
534 	uint64_t guid = 0, islog, nparity;
535 	vdev_t *vd;
536 	vdev_indirect_config_t *vic;
537 	vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
538 	boolean_t top_level = (parent && !parent->vdev_parent);
539 
540 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
541 
542 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
543 		return (SET_ERROR(EINVAL));
544 
545 	if ((ops = vdev_getops(type)) == NULL)
546 		return (SET_ERROR(EINVAL));
547 
548 	/*
549 	 * If this is a load, get the vdev guid from the nvlist.
550 	 * Otherwise, vdev_alloc_common() will generate one for us.
551 	 */
552 	if (alloctype == VDEV_ALLOC_LOAD) {
553 		uint64_t label_id;
554 
555 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
556 		    label_id != id)
557 			return (SET_ERROR(EINVAL));
558 
559 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
560 			return (SET_ERROR(EINVAL));
561 	} else if (alloctype == VDEV_ALLOC_SPARE) {
562 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
563 			return (SET_ERROR(EINVAL));
564 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
565 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
566 			return (SET_ERROR(EINVAL));
567 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
568 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
569 			return (SET_ERROR(EINVAL));
570 	}
571 
572 	/*
573 	 * The first allocated vdev must be of type 'root'.
574 	 */
575 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
576 		return (SET_ERROR(EINVAL));
577 
578 	/*
579 	 * Determine whether we're a log vdev.
580 	 */
581 	islog = 0;
582 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
583 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
584 		return (SET_ERROR(ENOTSUP));
585 
586 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
587 		return (SET_ERROR(ENOTSUP));
588 
589 	/*
590 	 * Set the nparity property for RAID-Z vdevs.
591 	 */
592 	nparity = -1ULL;
593 	if (ops == &vdev_raidz_ops) {
594 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
595 		    &nparity) == 0) {
596 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
597 				return (SET_ERROR(EINVAL));
598 			/*
599 			 * Previous versions could only support 1 or 2 parity
600 			 * device.
601 			 */
602 			if (nparity > 1 &&
603 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
604 				return (SET_ERROR(ENOTSUP));
605 			if (nparity > 2 &&
606 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
607 				return (SET_ERROR(ENOTSUP));
608 		} else {
609 			/*
610 			 * We require the parity to be specified for SPAs that
611 			 * support multiple parity levels.
612 			 */
613 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
614 				return (SET_ERROR(EINVAL));
615 			/*
616 			 * Otherwise, we default to 1 parity device for RAID-Z.
617 			 */
618 			nparity = 1;
619 		}
620 	} else {
621 		nparity = 0;
622 	}
623 	ASSERT(nparity != -1ULL);
624 
625 	/*
626 	 * If creating a top-level vdev, check for allocation classes input
627 	 */
628 	if (top_level && alloctype == VDEV_ALLOC_ADD) {
629 		char *bias;
630 
631 		if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
632 		    &bias) == 0) {
633 			alloc_bias = vdev_derive_alloc_bias(bias);
634 
635 			/* spa_vdev_add() expects feature to be enabled */
636 			if (spa->spa_load_state != SPA_LOAD_CREATE &&
637 			    !spa_feature_is_enabled(spa,
638 			    SPA_FEATURE_ALLOCATION_CLASSES)) {
639 				return (SET_ERROR(ENOTSUP));
640 			}
641 		}
642 	}
643 
644 	vd = vdev_alloc_common(spa, id, guid, ops);
645 	vic = &vd->vdev_indirect_config;
646 
647 	vd->vdev_islog = islog;
648 	vd->vdev_nparity = nparity;
649 	if (top_level && alloc_bias != VDEV_BIAS_NONE)
650 		vd->vdev_alloc_bias = alloc_bias;
651 
652 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
653 		vd->vdev_path = spa_strdup(vd->vdev_path);
654 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
655 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
656 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
657 	    &vd->vdev_physpath) == 0)
658 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
659 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
660 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
661 
662 	/*
663 	 * Set the whole_disk property.  If it's not specified, leave the value
664 	 * as -1.
665 	 */
666 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
667 	    &vd->vdev_wholedisk) != 0)
668 		vd->vdev_wholedisk = -1ULL;
669 
670 	ASSERT0(vic->vic_mapping_object);
671 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
672 	    &vic->vic_mapping_object);
673 	ASSERT0(vic->vic_births_object);
674 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
675 	    &vic->vic_births_object);
676 	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
677 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
678 	    &vic->vic_prev_indirect_vdev);
679 
680 	/*
681 	 * Look for the 'not present' flag.  This will only be set if the device
682 	 * was not present at the time of import.
683 	 */
684 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
685 	    &vd->vdev_not_present);
686 
687 	/*
688 	 * Get the alignment requirement.
689 	 */
690 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
691 
692 	/*
693 	 * Retrieve the vdev creation time.
694 	 */
695 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
696 	    &vd->vdev_crtxg);
697 
698 	/*
699 	 * If we're a top-level vdev, try to load the allocation parameters.
700 	 */
701 	if (top_level &&
702 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
703 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
704 		    &vd->vdev_ms_array);
705 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
706 		    &vd->vdev_ms_shift);
707 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
708 		    &vd->vdev_asize);
709 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
710 		    &vd->vdev_removing);
711 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
712 		    &vd->vdev_top_zap);
713 	} else {
714 		ASSERT0(vd->vdev_top_zap);
715 	}
716 
717 	if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
718 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
719 		    alloctype == VDEV_ALLOC_ADD ||
720 		    alloctype == VDEV_ALLOC_SPLIT ||
721 		    alloctype == VDEV_ALLOC_ROOTPOOL);
722 		/* Note: metaslab_group_create() is now deferred */
723 	}
724 
725 	if (vd->vdev_ops->vdev_op_leaf &&
726 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
727 		(void) nvlist_lookup_uint64(nv,
728 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
729 	} else {
730 		ASSERT0(vd->vdev_leaf_zap);
731 	}
732 
733 	/*
734 	 * If we're a leaf vdev, try to load the DTL object and other state.
735 	 */
736 
737 	if (vd->vdev_ops->vdev_op_leaf &&
738 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
739 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
740 		if (alloctype == VDEV_ALLOC_LOAD) {
741 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
742 			    &vd->vdev_dtl_object);
743 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
744 			    &vd->vdev_unspare);
745 		}
746 
747 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
748 			uint64_t spare = 0;
749 
750 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
751 			    &spare) == 0 && spare)
752 				spa_spare_add(vd);
753 		}
754 
755 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
756 		    &vd->vdev_offline);
757 
758 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
759 		    &vd->vdev_resilver_txg);
760 
761 		/*
762 		 * When importing a pool, we want to ignore the persistent fault
763 		 * state, as the diagnosis made on another system may not be
764 		 * valid in the current context.  Local vdevs will
765 		 * remain in the faulted state.
766 		 */
767 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
768 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
769 			    &vd->vdev_faulted);
770 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
771 			    &vd->vdev_degraded);
772 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
773 			    &vd->vdev_removed);
774 
775 			if (vd->vdev_faulted || vd->vdev_degraded) {
776 				char *aux;
777 
778 				vd->vdev_label_aux =
779 				    VDEV_AUX_ERR_EXCEEDED;
780 				if (nvlist_lookup_string(nv,
781 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
782 				    strcmp(aux, "external") == 0)
783 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
784 			}
785 		}
786 	}
787 
788 	/*
789 	 * Add ourselves to the parent's list of children.
790 	 */
791 	vdev_add_child(parent, vd);
792 
793 	*vdp = vd;
794 
795 	return (0);
796 }
797 
798 void
799 vdev_free(vdev_t *vd)
800 {
801 	spa_t *spa = vd->vdev_spa;
802 	ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
803 
804 	/*
805 	 * vdev_free() implies closing the vdev first.  This is simpler than
806 	 * trying to ensure complicated semantics for all callers.
807 	 */
808 	vdev_close(vd);
809 
810 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
811 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
812 
813 	/*
814 	 * Free all children.
815 	 */
816 	for (int c = 0; c < vd->vdev_children; c++)
817 		vdev_free(vd->vdev_child[c]);
818 
819 	ASSERT(vd->vdev_child == NULL);
820 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
821 	ASSERT(vd->vdev_initialize_thread == NULL);
822 
823 	/*
824 	 * Discard allocation state.
825 	 */
826 	if (vd->vdev_mg != NULL) {
827 		vdev_metaslab_fini(vd);
828 		metaslab_group_destroy(vd->vdev_mg);
829 	}
830 
831 	ASSERT0(vd->vdev_stat.vs_space);
832 	ASSERT0(vd->vdev_stat.vs_dspace);
833 	ASSERT0(vd->vdev_stat.vs_alloc);
834 
835 	/*
836 	 * Remove this vdev from its parent's child list.
837 	 */
838 	vdev_remove_child(vd->vdev_parent, vd);
839 
840 	ASSERT(vd->vdev_parent == NULL);
841 	ASSERT(!list_link_active(&vd->vdev_leaf_node));
842 
843 	/*
844 	 * Clean up vdev structure.
845 	 */
846 	vdev_queue_fini(vd);
847 	vdev_cache_fini(vd);
848 
849 	if (vd->vdev_path)
850 		spa_strfree(vd->vdev_path);
851 	if (vd->vdev_devid)
852 		spa_strfree(vd->vdev_devid);
853 	if (vd->vdev_physpath)
854 		spa_strfree(vd->vdev_physpath);
855 	if (vd->vdev_fru)
856 		spa_strfree(vd->vdev_fru);
857 
858 	if (vd->vdev_isspare)
859 		spa_spare_remove(vd);
860 	if (vd->vdev_isl2cache)
861 		spa_l2cache_remove(vd);
862 
863 	txg_list_destroy(&vd->vdev_ms_list);
864 	txg_list_destroy(&vd->vdev_dtl_list);
865 
866 	mutex_enter(&vd->vdev_dtl_lock);
867 	space_map_close(vd->vdev_dtl_sm);
868 	for (int t = 0; t < DTL_TYPES; t++) {
869 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
870 		range_tree_destroy(vd->vdev_dtl[t]);
871 	}
872 	mutex_exit(&vd->vdev_dtl_lock);
873 
874 	EQUIV(vd->vdev_indirect_births != NULL,
875 	    vd->vdev_indirect_mapping != NULL);
876 	if (vd->vdev_indirect_births != NULL) {
877 		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
878 		vdev_indirect_births_close(vd->vdev_indirect_births);
879 	}
880 
881 	if (vd->vdev_obsolete_sm != NULL) {
882 		ASSERT(vd->vdev_removing ||
883 		    vd->vdev_ops == &vdev_indirect_ops);
884 		space_map_close(vd->vdev_obsolete_sm);
885 		vd->vdev_obsolete_sm = NULL;
886 	}
887 	range_tree_destroy(vd->vdev_obsolete_segments);
888 	rw_destroy(&vd->vdev_indirect_rwlock);
889 	mutex_destroy(&vd->vdev_obsolete_lock);
890 
891 	mutex_destroy(&vd->vdev_dtl_lock);
892 	mutex_destroy(&vd->vdev_stat_lock);
893 	mutex_destroy(&vd->vdev_probe_lock);
894 	mutex_destroy(&vd->vdev_initialize_lock);
895 	mutex_destroy(&vd->vdev_initialize_io_lock);
896 	cv_destroy(&vd->vdev_initialize_io_cv);
897 	cv_destroy(&vd->vdev_initialize_cv);
898 
899 	if (vd == spa->spa_root_vdev)
900 		spa->spa_root_vdev = NULL;
901 
902 	kmem_free(vd, sizeof (vdev_t));
903 }
904 
905 /*
906  * Transfer top-level vdev state from svd to tvd.
907  */
908 static void
909 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
910 {
911 	spa_t *spa = svd->vdev_spa;
912 	metaslab_t *msp;
913 	vdev_t *vd;
914 	int t;
915 
916 	ASSERT(tvd == tvd->vdev_top);
917 
918 	tvd->vdev_ms_array = svd->vdev_ms_array;
919 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
920 	tvd->vdev_ms_count = svd->vdev_ms_count;
921 	tvd->vdev_top_zap = svd->vdev_top_zap;
922 
923 	svd->vdev_ms_array = 0;
924 	svd->vdev_ms_shift = 0;
925 	svd->vdev_ms_count = 0;
926 	svd->vdev_top_zap = 0;
927 
928 	if (tvd->vdev_mg)
929 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
930 	tvd->vdev_mg = svd->vdev_mg;
931 	tvd->vdev_ms = svd->vdev_ms;
932 
933 	svd->vdev_mg = NULL;
934 	svd->vdev_ms = NULL;
935 
936 	if (tvd->vdev_mg != NULL)
937 		tvd->vdev_mg->mg_vd = tvd;
938 
939 	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
940 	svd->vdev_checkpoint_sm = NULL;
941 
942 	tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
943 	svd->vdev_alloc_bias = VDEV_BIAS_NONE;
944 
945 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
946 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
947 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
948 
949 	svd->vdev_stat.vs_alloc = 0;
950 	svd->vdev_stat.vs_space = 0;
951 	svd->vdev_stat.vs_dspace = 0;
952 
953 	/*
954 	 * State which may be set on a top-level vdev that's in the
955 	 * process of being removed.
956 	 */
957 	ASSERT0(tvd->vdev_indirect_config.vic_births_object);
958 	ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
959 	ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
960 	ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
961 	ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
962 	ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
963 	ASSERT0(tvd->vdev_removing);
964 	tvd->vdev_removing = svd->vdev_removing;
965 	tvd->vdev_indirect_config = svd->vdev_indirect_config;
966 	tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
967 	tvd->vdev_indirect_births = svd->vdev_indirect_births;
968 	range_tree_swap(&svd->vdev_obsolete_segments,
969 	    &tvd->vdev_obsolete_segments);
970 	tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
971 	svd->vdev_indirect_config.vic_mapping_object = 0;
972 	svd->vdev_indirect_config.vic_births_object = 0;
973 	svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
974 	svd->vdev_indirect_mapping = NULL;
975 	svd->vdev_indirect_births = NULL;
976 	svd->vdev_obsolete_sm = NULL;
977 	svd->vdev_removing = 0;
978 
979 	for (t = 0; t < TXG_SIZE; t++) {
980 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
981 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
982 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
983 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
984 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
985 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
986 	}
987 
988 	if (list_link_active(&svd->vdev_config_dirty_node)) {
989 		vdev_config_clean(svd);
990 		vdev_config_dirty(tvd);
991 	}
992 
993 	if (list_link_active(&svd->vdev_state_dirty_node)) {
994 		vdev_state_clean(svd);
995 		vdev_state_dirty(tvd);
996 	}
997 
998 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
999 	svd->vdev_deflate_ratio = 0;
1000 
1001 	tvd->vdev_islog = svd->vdev_islog;
1002 	svd->vdev_islog = 0;
1003 }
1004 
1005 static void
1006 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1007 {
1008 	if (vd == NULL)
1009 		return;
1010 
1011 	vd->vdev_top = tvd;
1012 
1013 	for (int c = 0; c < vd->vdev_children; c++)
1014 		vdev_top_update(tvd, vd->vdev_child[c]);
1015 }
1016 
1017 /*
1018  * Add a mirror/replacing vdev above an existing vdev.
1019  */
1020 vdev_t *
1021 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1022 {
1023 	spa_t *spa = cvd->vdev_spa;
1024 	vdev_t *pvd = cvd->vdev_parent;
1025 	vdev_t *mvd;
1026 
1027 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1028 
1029 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1030 
1031 	mvd->vdev_asize = cvd->vdev_asize;
1032 	mvd->vdev_min_asize = cvd->vdev_min_asize;
1033 	mvd->vdev_max_asize = cvd->vdev_max_asize;
1034 	mvd->vdev_psize = cvd->vdev_psize;
1035 	mvd->vdev_ashift = cvd->vdev_ashift;
1036 	mvd->vdev_state = cvd->vdev_state;
1037 	mvd->vdev_crtxg = cvd->vdev_crtxg;
1038 
1039 	vdev_remove_child(pvd, cvd);
1040 	vdev_add_child(pvd, mvd);
1041 	cvd->vdev_id = mvd->vdev_children;
1042 	vdev_add_child(mvd, cvd);
1043 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1044 
1045 	if (mvd == mvd->vdev_top)
1046 		vdev_top_transfer(cvd, mvd);
1047 
1048 	return (mvd);
1049 }
1050 
1051 /*
1052  * Remove a 1-way mirror/replacing vdev from the tree.
1053  */
1054 void
1055 vdev_remove_parent(vdev_t *cvd)
1056 {
1057 	vdev_t *mvd = cvd->vdev_parent;
1058 	vdev_t *pvd = mvd->vdev_parent;
1059 
1060 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1061 
1062 	ASSERT(mvd->vdev_children == 1);
1063 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1064 	    mvd->vdev_ops == &vdev_replacing_ops ||
1065 	    mvd->vdev_ops == &vdev_spare_ops);
1066 	cvd->vdev_ashift = mvd->vdev_ashift;
1067 
1068 	vdev_remove_child(mvd, cvd);
1069 	vdev_remove_child(pvd, mvd);
1070 
1071 	/*
1072 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1073 	 * Otherwise, we could have detached an offline device, and when we
1074 	 * go to import the pool we'll think we have two top-level vdevs,
1075 	 * instead of a different version of the same top-level vdev.
1076 	 */
1077 	if (mvd->vdev_top == mvd) {
1078 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1079 		cvd->vdev_orig_guid = cvd->vdev_guid;
1080 		cvd->vdev_guid += guid_delta;
1081 		cvd->vdev_guid_sum += guid_delta;
1082 	}
1083 	cvd->vdev_id = mvd->vdev_id;
1084 	vdev_add_child(pvd, cvd);
1085 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1086 
1087 	if (cvd == cvd->vdev_top)
1088 		vdev_top_transfer(mvd, cvd);
1089 
1090 	ASSERT(mvd->vdev_children == 0);
1091 	vdev_free(mvd);
1092 }
1093 
1094 static void
1095 vdev_metaslab_group_create(vdev_t *vd)
1096 {
1097 	spa_t *spa = vd->vdev_spa;
1098 
1099 	/*
1100 	 * metaslab_group_create was delayed until allocation bias was available
1101 	 */
1102 	if (vd->vdev_mg == NULL) {
1103 		metaslab_class_t *mc;
1104 
1105 		if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1106 			vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1107 
1108 		ASSERT3U(vd->vdev_islog, ==,
1109 		    (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1110 
1111 		switch (vd->vdev_alloc_bias) {
1112 		case VDEV_BIAS_LOG:
1113 			mc = spa_log_class(spa);
1114 			break;
1115 		case VDEV_BIAS_SPECIAL:
1116 			mc = spa_special_class(spa);
1117 			break;
1118 		case VDEV_BIAS_DEDUP:
1119 			mc = spa_dedup_class(spa);
1120 			break;
1121 		default:
1122 			mc = spa_normal_class(spa);
1123 		}
1124 
1125 		vd->vdev_mg = metaslab_group_create(mc, vd,
1126 		    spa->spa_alloc_count);
1127 
1128 		/*
1129 		 * The spa ashift values currently only reflect the
1130 		 * general vdev classes. Class destination is late
1131 		 * binding so ashift checking had to wait until now
1132 		 */
1133 		if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1134 		    mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1135 			if (vd->vdev_ashift > spa->spa_max_ashift)
1136 				spa->spa_max_ashift = vd->vdev_ashift;
1137 			if (vd->vdev_ashift < spa->spa_min_ashift)
1138 				spa->spa_min_ashift = vd->vdev_ashift;
1139 		}
1140 	}
1141 }
1142 
1143 int
1144 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1145 {
1146 	spa_t *spa = vd->vdev_spa;
1147 	objset_t *mos = spa->spa_meta_objset;
1148 	uint64_t m;
1149 	uint64_t oldc = vd->vdev_ms_count;
1150 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1151 	metaslab_t **mspp;
1152 	int error;
1153 	boolean_t expanding = (oldc != 0);
1154 
1155 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1156 
1157 	/*
1158 	 * This vdev is not being allocated from yet or is a hole.
1159 	 */
1160 	if (vd->vdev_ms_shift == 0)
1161 		return (0);
1162 
1163 	ASSERT(!vd->vdev_ishole);
1164 
1165 	ASSERT(oldc <= newc);
1166 
1167 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1168 
1169 	if (expanding) {
1170 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1171 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1172 	}
1173 
1174 	vd->vdev_ms = mspp;
1175 	vd->vdev_ms_count = newc;
1176 	for (m = oldc; m < newc; m++) {
1177 		uint64_t object = 0;
1178 
1179 		/*
1180 		 * vdev_ms_array may be 0 if we are creating the "fake"
1181 		 * metaslabs for an indirect vdev for zdb's leak detection.
1182 		 * See zdb_leak_init().
1183 		 */
1184 		if (txg == 0 && vd->vdev_ms_array != 0) {
1185 			error = dmu_read(mos, vd->vdev_ms_array,
1186 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1187 			    DMU_READ_PREFETCH);
1188 			if (error != 0) {
1189 				vdev_dbgmsg(vd, "unable to read the metaslab "
1190 				    "array [error=%d]", error);
1191 				return (error);
1192 			}
1193 		}
1194 
1195 #ifndef _KERNEL
1196 		/*
1197 		 * To accomodate zdb_leak_init() fake indirect
1198 		 * metaslabs, we allocate a metaslab group for
1199 		 * indirect vdevs which normally don't have one.
1200 		 */
1201 		if (vd->vdev_mg == NULL) {
1202 			ASSERT0(vdev_is_concrete(vd));
1203 			vdev_metaslab_group_create(vd);
1204 		}
1205 #endif
1206 		error = metaslab_init(vd->vdev_mg, m, object, txg,
1207 		    &(vd->vdev_ms[m]));
1208 		if (error != 0) {
1209 			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1210 			    error);
1211 			return (error);
1212 		}
1213 	}
1214 
1215 	if (txg == 0)
1216 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1217 
1218 	/*
1219 	 * If the vdev is being removed we don't activate
1220 	 * the metaslabs since we want to ensure that no new
1221 	 * allocations are performed on this device.
1222 	 */
1223 	if (!expanding && !vd->vdev_removing) {
1224 		metaslab_group_activate(vd->vdev_mg);
1225 	}
1226 
1227 	if (txg == 0)
1228 		spa_config_exit(spa, SCL_ALLOC, FTAG);
1229 
1230 	return (0);
1231 }
1232 
1233 void
1234 vdev_metaslab_fini(vdev_t *vd)
1235 {
1236 	if (vd->vdev_checkpoint_sm != NULL) {
1237 		ASSERT(spa_feature_is_active(vd->vdev_spa,
1238 		    SPA_FEATURE_POOL_CHECKPOINT));
1239 		space_map_close(vd->vdev_checkpoint_sm);
1240 		/*
1241 		 * Even though we close the space map, we need to set its
1242 		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1243 		 * may be called multiple times for certain operations
1244 		 * (i.e. when destroying a pool) so we need to ensure that
1245 		 * this clause never executes twice. This logic is similar
1246 		 * to the one used for the vdev_ms clause below.
1247 		 */
1248 		vd->vdev_checkpoint_sm = NULL;
1249 	}
1250 
1251 	if (vd->vdev_ms != NULL) {
1252 		metaslab_group_t *mg = vd->vdev_mg;
1253 		metaslab_group_passivate(mg);
1254 
1255 		uint64_t count = vd->vdev_ms_count;
1256 		for (uint64_t m = 0; m < count; m++) {
1257 			metaslab_t *msp = vd->vdev_ms[m];
1258 			if (msp != NULL)
1259 				metaslab_fini(msp);
1260 		}
1261 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1262 		vd->vdev_ms = NULL;
1263 
1264 		vd->vdev_ms_count = 0;
1265 
1266 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1267 			ASSERT0(mg->mg_histogram[i]);
1268 	}
1269 	ASSERT0(vd->vdev_ms_count);
1270 }
1271 
1272 typedef struct vdev_probe_stats {
1273 	boolean_t	vps_readable;
1274 	boolean_t	vps_writeable;
1275 	int		vps_flags;
1276 } vdev_probe_stats_t;
1277 
1278 static void
1279 vdev_probe_done(zio_t *zio)
1280 {
1281 	spa_t *spa = zio->io_spa;
1282 	vdev_t *vd = zio->io_vd;
1283 	vdev_probe_stats_t *vps = zio->io_private;
1284 
1285 	ASSERT(vd->vdev_probe_zio != NULL);
1286 
1287 	if (zio->io_type == ZIO_TYPE_READ) {
1288 		if (zio->io_error == 0)
1289 			vps->vps_readable = 1;
1290 		if (zio->io_error == 0 && spa_writeable(spa)) {
1291 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1292 			    zio->io_offset, zio->io_size, zio->io_abd,
1293 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1294 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1295 		} else {
1296 			abd_free(zio->io_abd);
1297 		}
1298 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1299 		if (zio->io_error == 0)
1300 			vps->vps_writeable = 1;
1301 		abd_free(zio->io_abd);
1302 	} else if (zio->io_type == ZIO_TYPE_NULL) {
1303 		zio_t *pio;
1304 
1305 		vd->vdev_cant_read |= !vps->vps_readable;
1306 		vd->vdev_cant_write |= !vps->vps_writeable;
1307 
1308 		if (vdev_readable(vd) &&
1309 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1310 			zio->io_error = 0;
1311 		} else {
1312 			ASSERT(zio->io_error != 0);
1313 			vdev_dbgmsg(vd, "failed probe");
1314 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1315 			    spa, vd, NULL, 0, 0);
1316 			zio->io_error = SET_ERROR(ENXIO);
1317 		}
1318 
1319 		mutex_enter(&vd->vdev_probe_lock);
1320 		ASSERT(vd->vdev_probe_zio == zio);
1321 		vd->vdev_probe_zio = NULL;
1322 		mutex_exit(&vd->vdev_probe_lock);
1323 
1324 		zio_link_t *zl = NULL;
1325 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1326 			if (!vdev_accessible(vd, pio))
1327 				pio->io_error = SET_ERROR(ENXIO);
1328 
1329 		kmem_free(vps, sizeof (*vps));
1330 	}
1331 }
1332 
1333 /*
1334  * Determine whether this device is accessible.
1335  *
1336  * Read and write to several known locations: the pad regions of each
1337  * vdev label but the first, which we leave alone in case it contains
1338  * a VTOC.
1339  */
1340 zio_t *
1341 vdev_probe(vdev_t *vd, zio_t *zio)
1342 {
1343 	spa_t *spa = vd->vdev_spa;
1344 	vdev_probe_stats_t *vps = NULL;
1345 	zio_t *pio;
1346 
1347 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1348 
1349 	/*
1350 	 * Don't probe the probe.
1351 	 */
1352 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1353 		return (NULL);
1354 
1355 	/*
1356 	 * To prevent 'probe storms' when a device fails, we create
1357 	 * just one probe i/o at a time.  All zios that want to probe
1358 	 * this vdev will become parents of the probe io.
1359 	 */
1360 	mutex_enter(&vd->vdev_probe_lock);
1361 
1362 	if ((pio = vd->vdev_probe_zio) == NULL) {
1363 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1364 
1365 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1366 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1367 		    ZIO_FLAG_TRYHARD;
1368 
1369 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1370 			/*
1371 			 * vdev_cant_read and vdev_cant_write can only
1372 			 * transition from TRUE to FALSE when we have the
1373 			 * SCL_ZIO lock as writer; otherwise they can only
1374 			 * transition from FALSE to TRUE.  This ensures that
1375 			 * any zio looking at these values can assume that
1376 			 * failures persist for the life of the I/O.  That's
1377 			 * important because when a device has intermittent
1378 			 * connectivity problems, we want to ensure that
1379 			 * they're ascribed to the device (ENXIO) and not
1380 			 * the zio (EIO).
1381 			 *
1382 			 * Since we hold SCL_ZIO as writer here, clear both
1383 			 * values so the probe can reevaluate from first
1384 			 * principles.
1385 			 */
1386 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1387 			vd->vdev_cant_read = B_FALSE;
1388 			vd->vdev_cant_write = B_FALSE;
1389 		}
1390 
1391 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1392 		    vdev_probe_done, vps,
1393 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1394 
1395 		/*
1396 		 * We can't change the vdev state in this context, so we
1397 		 * kick off an async task to do it on our behalf.
1398 		 */
1399 		if (zio != NULL) {
1400 			vd->vdev_probe_wanted = B_TRUE;
1401 			spa_async_request(spa, SPA_ASYNC_PROBE);
1402 		}
1403 	}
1404 
1405 	if (zio != NULL)
1406 		zio_add_child(zio, pio);
1407 
1408 	mutex_exit(&vd->vdev_probe_lock);
1409 
1410 	if (vps == NULL) {
1411 		ASSERT(zio != NULL);
1412 		return (NULL);
1413 	}
1414 
1415 	for (int l = 1; l < VDEV_LABELS; l++) {
1416 		zio_nowait(zio_read_phys(pio, vd,
1417 		    vdev_label_offset(vd->vdev_psize, l,
1418 		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1419 		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1420 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1421 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1422 	}
1423 
1424 	if (zio == NULL)
1425 		return (pio);
1426 
1427 	zio_nowait(pio);
1428 	return (NULL);
1429 }
1430 
1431 static void
1432 vdev_open_child(void *arg)
1433 {
1434 	vdev_t *vd = arg;
1435 
1436 	vd->vdev_open_thread = curthread;
1437 	vd->vdev_open_error = vdev_open(vd);
1438 	vd->vdev_open_thread = NULL;
1439 }
1440 
1441 boolean_t
1442 vdev_uses_zvols(vdev_t *vd)
1443 {
1444 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1445 	    strlen(ZVOL_DIR)) == 0)
1446 		return (B_TRUE);
1447 	for (int c = 0; c < vd->vdev_children; c++)
1448 		if (vdev_uses_zvols(vd->vdev_child[c]))
1449 			return (B_TRUE);
1450 	return (B_FALSE);
1451 }
1452 
1453 void
1454 vdev_open_children(vdev_t *vd)
1455 {
1456 	taskq_t *tq;
1457 	int children = vd->vdev_children;
1458 
1459 	/*
1460 	 * in order to handle pools on top of zvols, do the opens
1461 	 * in a single thread so that the same thread holds the
1462 	 * spa_namespace_lock
1463 	 */
1464 	if (vdev_uses_zvols(vd)) {
1465 		for (int c = 0; c < children; c++)
1466 			vd->vdev_child[c]->vdev_open_error =
1467 			    vdev_open(vd->vdev_child[c]);
1468 		return;
1469 	}
1470 	tq = taskq_create("vdev_open", children, minclsyspri,
1471 	    children, children, TASKQ_PREPOPULATE);
1472 
1473 	for (int c = 0; c < children; c++)
1474 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1475 		    TQ_SLEEP) != TASKQID_INVALID);
1476 
1477 	taskq_destroy(tq);
1478 }
1479 
1480 /*
1481  * Compute the raidz-deflation ratio.  Note, we hard-code
1482  * in 128k (1 << 17) because it is the "typical" blocksize.
1483  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1484  * otherwise it would inconsistently account for existing bp's.
1485  */
1486 static void
1487 vdev_set_deflate_ratio(vdev_t *vd)
1488 {
1489 	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1490 		vd->vdev_deflate_ratio = (1 << 17) /
1491 		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1492 	}
1493 }
1494 
1495 /*
1496  * Prepare a virtual device for access.
1497  */
1498 int
1499 vdev_open(vdev_t *vd)
1500 {
1501 	spa_t *spa = vd->vdev_spa;
1502 	int error;
1503 	uint64_t osize = 0;
1504 	uint64_t max_osize = 0;
1505 	uint64_t asize, max_asize, psize;
1506 	uint64_t ashift = 0;
1507 
1508 	ASSERT(vd->vdev_open_thread == curthread ||
1509 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1510 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1511 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1512 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1513 
1514 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1515 	vd->vdev_cant_read = B_FALSE;
1516 	vd->vdev_cant_write = B_FALSE;
1517 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1518 
1519 	/*
1520 	 * If this vdev is not removed, check its fault status.  If it's
1521 	 * faulted, bail out of the open.
1522 	 */
1523 	if (!vd->vdev_removed && vd->vdev_faulted) {
1524 		ASSERT(vd->vdev_children == 0);
1525 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1526 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1527 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1528 		    vd->vdev_label_aux);
1529 		return (SET_ERROR(ENXIO));
1530 	} else if (vd->vdev_offline) {
1531 		ASSERT(vd->vdev_children == 0);
1532 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1533 		return (SET_ERROR(ENXIO));
1534 	}
1535 
1536 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1537 
1538 	/*
1539 	 * Reset the vdev_reopening flag so that we actually close
1540 	 * the vdev on error.
1541 	 */
1542 	vd->vdev_reopening = B_FALSE;
1543 	if (zio_injection_enabled && error == 0)
1544 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1545 
1546 	if (error) {
1547 		if (vd->vdev_removed &&
1548 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1549 			vd->vdev_removed = B_FALSE;
1550 
1551 		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1552 			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1553 			    vd->vdev_stat.vs_aux);
1554 		} else {
1555 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1556 			    vd->vdev_stat.vs_aux);
1557 		}
1558 		return (error);
1559 	}
1560 
1561 	vd->vdev_removed = B_FALSE;
1562 
1563 	/*
1564 	 * Recheck the faulted flag now that we have confirmed that
1565 	 * the vdev is accessible.  If we're faulted, bail.
1566 	 */
1567 	if (vd->vdev_faulted) {
1568 		ASSERT(vd->vdev_children == 0);
1569 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1570 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1571 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1572 		    vd->vdev_label_aux);
1573 		return (SET_ERROR(ENXIO));
1574 	}
1575 
1576 	if (vd->vdev_degraded) {
1577 		ASSERT(vd->vdev_children == 0);
1578 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1579 		    VDEV_AUX_ERR_EXCEEDED);
1580 	} else {
1581 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1582 	}
1583 
1584 	/*
1585 	 * For hole or missing vdevs we just return success.
1586 	 */
1587 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1588 		return (0);
1589 
1590 	for (int c = 0; c < vd->vdev_children; c++) {
1591 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1592 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1593 			    VDEV_AUX_NONE);
1594 			break;
1595 		}
1596 	}
1597 
1598 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1599 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1600 
1601 	if (vd->vdev_children == 0) {
1602 		if (osize < SPA_MINDEVSIZE) {
1603 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1604 			    VDEV_AUX_TOO_SMALL);
1605 			return (SET_ERROR(EOVERFLOW));
1606 		}
1607 		psize = osize;
1608 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1609 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1610 		    VDEV_LABEL_END_SIZE);
1611 	} else {
1612 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1613 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1614 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1615 			    VDEV_AUX_TOO_SMALL);
1616 			return (SET_ERROR(EOVERFLOW));
1617 		}
1618 		psize = 0;
1619 		asize = osize;
1620 		max_asize = max_osize;
1621 	}
1622 
1623 	vd->vdev_psize = psize;
1624 
1625 	/*
1626 	 * Make sure the allocatable size hasn't shrunk too much.
1627 	 */
1628 	if (asize < vd->vdev_min_asize) {
1629 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1630 		    VDEV_AUX_BAD_LABEL);
1631 		return (SET_ERROR(EINVAL));
1632 	}
1633 
1634 	if (vd->vdev_asize == 0) {
1635 		/*
1636 		 * This is the first-ever open, so use the computed values.
1637 		 * For testing purposes, a higher ashift can be requested.
1638 		 */
1639 		vd->vdev_asize = asize;
1640 		vd->vdev_max_asize = max_asize;
1641 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1642 		vd->vdev_ashift = MAX(zfs_ashift_min, vd->vdev_ashift);
1643 	} else {
1644 		/*
1645 		 * Detect if the alignment requirement has increased.
1646 		 * We don't want to make the pool unavailable, just
1647 		 * issue a warning instead.
1648 		 */
1649 		if (ashift > vd->vdev_top->vdev_ashift &&
1650 		    vd->vdev_ops->vdev_op_leaf) {
1651 			cmn_err(CE_WARN,
1652 			    "Disk, '%s', has a block alignment that is "
1653 			    "larger than the pool's alignment\n",
1654 			    vd->vdev_path);
1655 		}
1656 		vd->vdev_max_asize = max_asize;
1657 	}
1658 
1659 	/*
1660 	 * If all children are healthy we update asize if either:
1661 	 * The asize has increased, due to a device expansion caused by dynamic
1662 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1663 	 * making the additional space available.
1664 	 *
1665 	 * The asize has decreased, due to a device shrink usually caused by a
1666 	 * vdev replace with a smaller device. This ensures that calculations
1667 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1668 	 * to do this as we've already validated that asize is greater than
1669 	 * vdev_min_asize.
1670 	 */
1671 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1672 	    ((asize > vd->vdev_asize &&
1673 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1674 	    (asize < vd->vdev_asize)))
1675 		vd->vdev_asize = asize;
1676 
1677 	vdev_set_min_asize(vd);
1678 
1679 	/*
1680 	 * Ensure we can issue some IO before declaring the
1681 	 * vdev open for business.
1682 	 */
1683 	if (vd->vdev_ops->vdev_op_leaf &&
1684 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1685 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1686 		    VDEV_AUX_ERR_EXCEEDED);
1687 		return (error);
1688 	}
1689 
1690 	/*
1691 	 * Track the min and max ashift values for normal data devices.
1692 	 *
1693 	 * DJB - TBD these should perhaps be tracked per allocation class
1694 	 * (e.g. spa_min_ashift is used to round up post compression buffers)
1695 	 */
1696 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1697 	    vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1698 	    vd->vdev_aux == NULL) {
1699 		if (vd->vdev_ashift > spa->spa_max_ashift)
1700 			spa->spa_max_ashift = vd->vdev_ashift;
1701 		if (vd->vdev_ashift < spa->spa_min_ashift)
1702 			spa->spa_min_ashift = vd->vdev_ashift;
1703 	}
1704 
1705 	/*
1706 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1707 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1708 	 * since this would just restart the scrub we are already doing.
1709 	 */
1710 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1711 	    vdev_resilver_needed(vd, NULL, NULL))
1712 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1713 
1714 	return (0);
1715 }
1716 
1717 /*
1718  * Called once the vdevs are all opened, this routine validates the label
1719  * contents. This needs to be done before vdev_load() so that we don't
1720  * inadvertently do repair I/Os to the wrong device.
1721  *
1722  * This function will only return failure if one of the vdevs indicates that it
1723  * has since been destroyed or exported.  This is only possible if
1724  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1725  * will be updated but the function will return 0.
1726  */
1727 int
1728 vdev_validate(vdev_t *vd)
1729 {
1730 	spa_t *spa = vd->vdev_spa;
1731 	nvlist_t *label;
1732 	uint64_t guid = 0, aux_guid = 0, top_guid;
1733 	uint64_t state;
1734 	nvlist_t *nvl;
1735 	uint64_t txg;
1736 
1737 	if (vdev_validate_skip)
1738 		return (0);
1739 
1740 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1741 		if (vdev_validate(vd->vdev_child[c]) != 0)
1742 			return (SET_ERROR(EBADF));
1743 
1744 	/*
1745 	 * If the device has already failed, or was marked offline, don't do
1746 	 * any further validation.  Otherwise, label I/O will fail and we will
1747 	 * overwrite the previous state.
1748 	 */
1749 	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1750 		return (0);
1751 
1752 	/*
1753 	 * If we are performing an extreme rewind, we allow for a label that
1754 	 * was modified at a point after the current txg.
1755 	 * If config lock is not held do not check for the txg. spa_sync could
1756 	 * be updating the vdev's label before updating spa_last_synced_txg.
1757 	 */
1758 	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1759 	    spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1760 		txg = UINT64_MAX;
1761 	else
1762 		txg = spa_last_synced_txg(spa);
1763 
1764 	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1765 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1766 		    VDEV_AUX_BAD_LABEL);
1767 		vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1768 		    "txg %llu", (u_longlong_t)txg);
1769 		return (0);
1770 	}
1771 
1772 	/*
1773 	 * Determine if this vdev has been split off into another
1774 	 * pool.  If so, then refuse to open it.
1775 	 */
1776 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1777 	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1778 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1779 		    VDEV_AUX_SPLIT_POOL);
1780 		nvlist_free(label);
1781 		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1782 		return (0);
1783 	}
1784 
1785 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1786 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1787 		    VDEV_AUX_CORRUPT_DATA);
1788 		nvlist_free(label);
1789 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1790 		    ZPOOL_CONFIG_POOL_GUID);
1791 		return (0);
1792 	}
1793 
1794 	/*
1795 	 * If config is not trusted then ignore the spa guid check. This is
1796 	 * necessary because if the machine crashed during a re-guid the new
1797 	 * guid might have been written to all of the vdev labels, but not the
1798 	 * cached config. The check will be performed again once we have the
1799 	 * trusted config from the MOS.
1800 	 */
1801 	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1802 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1803 		    VDEV_AUX_CORRUPT_DATA);
1804 		nvlist_free(label);
1805 		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1806 		    "match config (%llu != %llu)", (u_longlong_t)guid,
1807 		    (u_longlong_t)spa_guid(spa));
1808 		return (0);
1809 	}
1810 
1811 	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1812 	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1813 	    &aux_guid) != 0)
1814 		aux_guid = 0;
1815 
1816 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1817 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1818 		    VDEV_AUX_CORRUPT_DATA);
1819 		nvlist_free(label);
1820 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1821 		    ZPOOL_CONFIG_GUID);
1822 		return (0);
1823 	}
1824 
1825 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1826 	    != 0) {
1827 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1828 		    VDEV_AUX_CORRUPT_DATA);
1829 		nvlist_free(label);
1830 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1831 		    ZPOOL_CONFIG_TOP_GUID);
1832 		return (0);
1833 	}
1834 
1835 	/*
1836 	 * If this vdev just became a top-level vdev because its sibling was
1837 	 * detached, it will have adopted the parent's vdev guid -- but the
1838 	 * label may or may not be on disk yet. Fortunately, either version
1839 	 * of the label will have the same top guid, so if we're a top-level
1840 	 * vdev, we can safely compare to that instead.
1841 	 * However, if the config comes from a cachefile that failed to update
1842 	 * after the detach, a top-level vdev will appear as a non top-level
1843 	 * vdev in the config. Also relax the constraints if we perform an
1844 	 * extreme rewind.
1845 	 *
1846 	 * If we split this vdev off instead, then we also check the
1847 	 * original pool's guid. We don't want to consider the vdev
1848 	 * corrupt if it is partway through a split operation.
1849 	 */
1850 	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1851 		boolean_t mismatch = B_FALSE;
1852 		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1853 			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1854 				mismatch = B_TRUE;
1855 		} else {
1856 			if (vd->vdev_guid != top_guid &&
1857 			    vd->vdev_top->vdev_guid != guid)
1858 				mismatch = B_TRUE;
1859 		}
1860 
1861 		if (mismatch) {
1862 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1863 			    VDEV_AUX_CORRUPT_DATA);
1864 			nvlist_free(label);
1865 			vdev_dbgmsg(vd, "vdev_validate: config guid "
1866 			    "doesn't match label guid");
1867 			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1868 			    (u_longlong_t)vd->vdev_guid,
1869 			    (u_longlong_t)vd->vdev_top->vdev_guid);
1870 			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1871 			    "aux_guid %llu", (u_longlong_t)guid,
1872 			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1873 			return (0);
1874 		}
1875 	}
1876 
1877 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1878 	    &state) != 0) {
1879 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1880 		    VDEV_AUX_CORRUPT_DATA);
1881 		nvlist_free(label);
1882 		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1883 		    ZPOOL_CONFIG_POOL_STATE);
1884 		return (0);
1885 	}
1886 
1887 	nvlist_free(label);
1888 
1889 	/*
1890 	 * If this is a verbatim import, no need to check the
1891 	 * state of the pool.
1892 	 */
1893 	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1894 	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1895 	    state != POOL_STATE_ACTIVE) {
1896 		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1897 		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1898 		return (SET_ERROR(EBADF));
1899 	}
1900 
1901 	/*
1902 	 * If we were able to open and validate a vdev that was
1903 	 * previously marked permanently unavailable, clear that state
1904 	 * now.
1905 	 */
1906 	if (vd->vdev_not_present)
1907 		vd->vdev_not_present = 0;
1908 
1909 	return (0);
1910 }
1911 
1912 static void
1913 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1914 {
1915 	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1916 		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1917 			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1918 			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1919 			    dvd->vdev_path, svd->vdev_path);
1920 			spa_strfree(dvd->vdev_path);
1921 			dvd->vdev_path = spa_strdup(svd->vdev_path);
1922 		}
1923 	} else if (svd->vdev_path != NULL) {
1924 		dvd->vdev_path = spa_strdup(svd->vdev_path);
1925 		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1926 		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1927 	}
1928 }
1929 
1930 /*
1931  * Recursively copy vdev paths from one vdev to another. Source and destination
1932  * vdev trees must have same geometry otherwise return error. Intended to copy
1933  * paths from userland config into MOS config.
1934  */
1935 int
1936 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1937 {
1938 	if ((svd->vdev_ops == &vdev_missing_ops) ||
1939 	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1940 	    (dvd->vdev_ops == &vdev_indirect_ops))
1941 		return (0);
1942 
1943 	if (svd->vdev_ops != dvd->vdev_ops) {
1944 		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1945 		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1946 		return (SET_ERROR(EINVAL));
1947 	}
1948 
1949 	if (svd->vdev_guid != dvd->vdev_guid) {
1950 		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1951 		    "%llu)", (u_longlong_t)svd->vdev_guid,
1952 		    (u_longlong_t)dvd->vdev_guid);
1953 		return (SET_ERROR(EINVAL));
1954 	}
1955 
1956 	if (svd->vdev_children != dvd->vdev_children) {
1957 		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1958 		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1959 		    (u_longlong_t)dvd->vdev_children);
1960 		return (SET_ERROR(EINVAL));
1961 	}
1962 
1963 	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1964 		int error = vdev_copy_path_strict(svd->vdev_child[i],
1965 		    dvd->vdev_child[i]);
1966 		if (error != 0)
1967 			return (error);
1968 	}
1969 
1970 	if (svd->vdev_ops->vdev_op_leaf)
1971 		vdev_copy_path_impl(svd, dvd);
1972 
1973 	return (0);
1974 }
1975 
1976 static void
1977 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1978 {
1979 	ASSERT(stvd->vdev_top == stvd);
1980 	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1981 
1982 	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1983 		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1984 	}
1985 
1986 	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1987 		return;
1988 
1989 	/*
1990 	 * The idea here is that while a vdev can shift positions within
1991 	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1992 	 * step outside of it.
1993 	 */
1994 	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1995 
1996 	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1997 		return;
1998 
1999 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2000 
2001 	vdev_copy_path_impl(vd, dvd);
2002 }
2003 
2004 /*
2005  * Recursively copy vdev paths from one root vdev to another. Source and
2006  * destination vdev trees may differ in geometry. For each destination leaf
2007  * vdev, search a vdev with the same guid and top vdev id in the source.
2008  * Intended to copy paths from userland config into MOS config.
2009  */
2010 void
2011 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2012 {
2013 	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2014 	ASSERT(srvd->vdev_ops == &vdev_root_ops);
2015 	ASSERT(drvd->vdev_ops == &vdev_root_ops);
2016 
2017 	for (uint64_t i = 0; i < children; i++) {
2018 		vdev_copy_path_search(srvd->vdev_child[i],
2019 		    drvd->vdev_child[i]);
2020 	}
2021 }
2022 
2023 /*
2024  * Close a virtual device.
2025  */
2026 void
2027 vdev_close(vdev_t *vd)
2028 {
2029 	spa_t *spa = vd->vdev_spa;
2030 	vdev_t *pvd = vd->vdev_parent;
2031 
2032 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2033 
2034 	/*
2035 	 * If our parent is reopening, then we are as well, unless we are
2036 	 * going offline.
2037 	 */
2038 	if (pvd != NULL && pvd->vdev_reopening)
2039 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2040 
2041 	vd->vdev_ops->vdev_op_close(vd);
2042 
2043 	vdev_cache_purge(vd);
2044 
2045 	/*
2046 	 * We record the previous state before we close it, so that if we are
2047 	 * doing a reopen(), we don't generate FMA ereports if we notice that
2048 	 * it's still faulted.
2049 	 */
2050 	vd->vdev_prevstate = vd->vdev_state;
2051 
2052 	if (vd->vdev_offline)
2053 		vd->vdev_state = VDEV_STATE_OFFLINE;
2054 	else
2055 		vd->vdev_state = VDEV_STATE_CLOSED;
2056 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2057 }
2058 
2059 void
2060 vdev_hold(vdev_t *vd)
2061 {
2062 	spa_t *spa = vd->vdev_spa;
2063 
2064 	ASSERT(spa_is_root(spa));
2065 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2066 		return;
2067 
2068 	for (int c = 0; c < vd->vdev_children; c++)
2069 		vdev_hold(vd->vdev_child[c]);
2070 
2071 	if (vd->vdev_ops->vdev_op_leaf)
2072 		vd->vdev_ops->vdev_op_hold(vd);
2073 }
2074 
2075 void
2076 vdev_rele(vdev_t *vd)
2077 {
2078 	spa_t *spa = vd->vdev_spa;
2079 
2080 	ASSERT(spa_is_root(spa));
2081 	for (int c = 0; c < vd->vdev_children; c++)
2082 		vdev_rele(vd->vdev_child[c]);
2083 
2084 	if (vd->vdev_ops->vdev_op_leaf)
2085 		vd->vdev_ops->vdev_op_rele(vd);
2086 }
2087 
2088 /*
2089  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2090  * reopen leaf vdevs which had previously been opened as they might deadlock
2091  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2092  * If the leaf has never been opened then open it, as usual.
2093  */
2094 void
2095 vdev_reopen(vdev_t *vd)
2096 {
2097 	spa_t *spa = vd->vdev_spa;
2098 
2099 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2100 
2101 	/* set the reopening flag unless we're taking the vdev offline */
2102 	vd->vdev_reopening = !vd->vdev_offline;
2103 	vdev_close(vd);
2104 	(void) vdev_open(vd);
2105 
2106 	/*
2107 	 * Call vdev_validate() here to make sure we have the same device.
2108 	 * Otherwise, a device with an invalid label could be successfully
2109 	 * opened in response to vdev_reopen().
2110 	 */
2111 	if (vd->vdev_aux) {
2112 		(void) vdev_validate_aux(vd);
2113 		if (vdev_readable(vd) && vdev_writeable(vd) &&
2114 		    vd->vdev_aux == &spa->spa_l2cache &&
2115 		    !l2arc_vdev_present(vd))
2116 			l2arc_add_vdev(spa, vd);
2117 	} else {
2118 		(void) vdev_validate(vd);
2119 	}
2120 
2121 	/*
2122 	 * Reassess parent vdev's health.
2123 	 */
2124 	vdev_propagate_state(vd);
2125 }
2126 
2127 int
2128 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2129 {
2130 	int error;
2131 
2132 	/*
2133 	 * Normally, partial opens (e.g. of a mirror) are allowed.
2134 	 * For a create, however, we want to fail the request if
2135 	 * there are any components we can't open.
2136 	 */
2137 	error = vdev_open(vd);
2138 
2139 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2140 		vdev_close(vd);
2141 		return (error ? error : ENXIO);
2142 	}
2143 
2144 	/*
2145 	 * Recursively load DTLs and initialize all labels.
2146 	 */
2147 	if ((error = vdev_dtl_load(vd)) != 0 ||
2148 	    (error = vdev_label_init(vd, txg, isreplacing ?
2149 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2150 		vdev_close(vd);
2151 		return (error);
2152 	}
2153 
2154 	return (0);
2155 }
2156 
2157 void
2158 vdev_metaslab_set_size(vdev_t *vd)
2159 {
2160 	uint64_t asize = vd->vdev_asize;
2161 	uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2162 	uint64_t ms_shift;
2163 
2164 	/*
2165 	 * There are two dimensions to the metaslab sizing calculation:
2166 	 * the size of the metaslab and the count of metaslabs per vdev.
2167 	 *
2168 	 * The default values used below are a good balance between memory
2169 	 * usage (larger metaslab size means more memory needed for loaded
2170 	 * metaslabs; more metaslabs means more memory needed for the
2171 	 * metaslab_t structs), metaslab load time (larger metaslabs take
2172 	 * longer to load), and metaslab sync time (more metaslabs means
2173 	 * more time spent syncing all of them).
2174 	 *
2175 	 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2176 	 * The range of the dimensions are as follows:
2177 	 *
2178 	 *	2^29 <= ms_size  <= 2^34
2179 	 *	  16 <= ms_count <= 131,072
2180 	 *
2181 	 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2182 	 * at least 512MB (2^29) to minimize fragmentation effects when
2183 	 * testing with smaller devices.  However, the count constraint
2184 	 * of at least 16 metaslabs will override this minimum size goal.
2185 	 *
2186 	 * On the upper end of vdev sizes, we aim for a maximum metaslab
2187 	 * size of 16GB.  However, we will cap the total count to 2^17
2188 	 * metaslabs to keep our memory footprint in check and let the
2189 	 * metaslab size grow from there if that limit is hit.
2190 	 *
2191 	 * The net effect of applying above constrains is summarized below.
2192 	 *
2193 	 *   vdev size	    metaslab count
2194 	 *  --------------|-----------------
2195 	 *	< 8GB		~16
2196 	 *  8GB   - 100GB	one per 512MB
2197 	 *  100GB - 3TB		~200
2198 	 *  3TB   - 2PB		one per 16GB
2199 	 *	> 2PB		~131,072
2200 	 *  --------------------------------
2201 	 *
2202 	 *  Finally, note that all of the above calculate the initial
2203 	 *  number of metaslabs. Expanding a top-level vdev will result
2204 	 *  in additional metaslabs being allocated making it possible
2205 	 *  to exceed the zfs_vdev_ms_count_limit.
2206 	 */
2207 
2208 	if (ms_count < zfs_vdev_min_ms_count)
2209 		ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2210 	else if (ms_count > zfs_vdev_default_ms_count)
2211 		ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2212 	else
2213 		ms_shift = zfs_vdev_default_ms_shift;
2214 
2215 	if (ms_shift < SPA_MAXBLOCKSHIFT) {
2216 		ms_shift = SPA_MAXBLOCKSHIFT;
2217 	} else if (ms_shift > zfs_vdev_max_ms_shift) {
2218 		ms_shift = zfs_vdev_max_ms_shift;
2219 		/* cap the total count to constrain memory footprint */
2220 		if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2221 			ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2222 	}
2223 
2224 	vd->vdev_ms_shift = ms_shift;
2225 	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2226 }
2227 
2228 void
2229 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2230 {
2231 	ASSERT(vd == vd->vdev_top);
2232 	/* indirect vdevs don't have metaslabs or dtls */
2233 	ASSERT(vdev_is_concrete(vd) || flags == 0);
2234 	ASSERT(ISP2(flags));
2235 	ASSERT(spa_writeable(vd->vdev_spa));
2236 
2237 	if (flags & VDD_METASLAB)
2238 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2239 
2240 	if (flags & VDD_DTL)
2241 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2242 
2243 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2244 }
2245 
2246 void
2247 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2248 {
2249 	for (int c = 0; c < vd->vdev_children; c++)
2250 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2251 
2252 	if (vd->vdev_ops->vdev_op_leaf)
2253 		vdev_dirty(vd->vdev_top, flags, vd, txg);
2254 }
2255 
2256 /*
2257  * DTLs.
2258  *
2259  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2260  * the vdev has less than perfect replication.  There are four kinds of DTL:
2261  *
2262  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2263  *
2264  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2265  *
2266  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2267  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2268  *	txgs that was scrubbed.
2269  *
2270  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2271  *	persistent errors or just some device being offline.
2272  *	Unlike the other three, the DTL_OUTAGE map is not generally
2273  *	maintained; it's only computed when needed, typically to
2274  *	determine whether a device can be detached.
2275  *
2276  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2277  * either has the data or it doesn't.
2278  *
2279  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2280  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2281  * if any child is less than fully replicated, then so is its parent.
2282  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2283  * comprising only those txgs which appear in 'maxfaults' or more children;
2284  * those are the txgs we don't have enough replication to read.  For example,
2285  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2286  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2287  * two child DTL_MISSING maps.
2288  *
2289  * It should be clear from the above that to compute the DTLs and outage maps
2290  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2291  * Therefore, that is all we keep on disk.  When loading the pool, or after
2292  * a configuration change, we generate all other DTLs from first principles.
2293  */
2294 void
2295 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2296 {
2297 	range_tree_t *rt = vd->vdev_dtl[t];
2298 
2299 	ASSERT(t < DTL_TYPES);
2300 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2301 	ASSERT(spa_writeable(vd->vdev_spa));
2302 
2303 	mutex_enter(&vd->vdev_dtl_lock);
2304 	if (!range_tree_contains(rt, txg, size))
2305 		range_tree_add(rt, txg, size);
2306 	mutex_exit(&vd->vdev_dtl_lock);
2307 }
2308 
2309 boolean_t
2310 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2311 {
2312 	range_tree_t *rt = vd->vdev_dtl[t];
2313 	boolean_t dirty = B_FALSE;
2314 
2315 	ASSERT(t < DTL_TYPES);
2316 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2317 
2318 	/*
2319 	 * While we are loading the pool, the DTLs have not been loaded yet.
2320 	 * Ignore the DTLs and try all devices.  This avoids a recursive
2321 	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2322 	 * when loading the pool (relying on the checksum to ensure that
2323 	 * we get the right data -- note that we while loading, we are
2324 	 * only reading the MOS, which is always checksummed).
2325 	 */
2326 	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2327 		return (B_FALSE);
2328 
2329 	mutex_enter(&vd->vdev_dtl_lock);
2330 	if (!range_tree_is_empty(rt))
2331 		dirty = range_tree_contains(rt, txg, size);
2332 	mutex_exit(&vd->vdev_dtl_lock);
2333 
2334 	return (dirty);
2335 }
2336 
2337 boolean_t
2338 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2339 {
2340 	range_tree_t *rt = vd->vdev_dtl[t];
2341 	boolean_t empty;
2342 
2343 	mutex_enter(&vd->vdev_dtl_lock);
2344 	empty = range_tree_is_empty(rt);
2345 	mutex_exit(&vd->vdev_dtl_lock);
2346 
2347 	return (empty);
2348 }
2349 
2350 /*
2351  * Returns the lowest txg in the DTL range.
2352  */
2353 static uint64_t
2354 vdev_dtl_min(vdev_t *vd)
2355 {
2356 	range_seg_t *rs;
2357 
2358 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2359 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2360 	ASSERT0(vd->vdev_children);
2361 
2362 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2363 	return (rs->rs_start - 1);
2364 }
2365 
2366 /*
2367  * Returns the highest txg in the DTL.
2368  */
2369 static uint64_t
2370 vdev_dtl_max(vdev_t *vd)
2371 {
2372 	range_seg_t *rs;
2373 
2374 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2375 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2376 	ASSERT0(vd->vdev_children);
2377 
2378 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2379 	return (rs->rs_end);
2380 }
2381 
2382 /*
2383  * Determine if a resilvering vdev should remove any DTL entries from
2384  * its range. If the vdev was resilvering for the entire duration of the
2385  * scan then it should excise that range from its DTLs. Otherwise, this
2386  * vdev is considered partially resilvered and should leave its DTL
2387  * entries intact. The comment in vdev_dtl_reassess() describes how we
2388  * excise the DTLs.
2389  */
2390 static boolean_t
2391 vdev_dtl_should_excise(vdev_t *vd)
2392 {
2393 	spa_t *spa = vd->vdev_spa;
2394 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2395 
2396 	ASSERT0(scn->scn_phys.scn_errors);
2397 	ASSERT0(vd->vdev_children);
2398 
2399 	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2400 		return (B_FALSE);
2401 
2402 	if (vd->vdev_resilver_txg == 0 ||
2403 	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2404 		return (B_TRUE);
2405 
2406 	/*
2407 	 * When a resilver is initiated the scan will assign the scn_max_txg
2408 	 * value to the highest txg value that exists in all DTLs. If this
2409 	 * device's max DTL is not part of this scan (i.e. it is not in
2410 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2411 	 * for excision.
2412 	 */
2413 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2414 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2415 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2416 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2417 		return (B_TRUE);
2418 	}
2419 	return (B_FALSE);
2420 }
2421 
2422 /*
2423  * Reassess DTLs after a config change or scrub completion.
2424  */
2425 void
2426 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2427 {
2428 	spa_t *spa = vd->vdev_spa;
2429 	avl_tree_t reftree;
2430 	int minref;
2431 
2432 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2433 
2434 	for (int c = 0; c < vd->vdev_children; c++)
2435 		vdev_dtl_reassess(vd->vdev_child[c], txg,
2436 		    scrub_txg, scrub_done);
2437 
2438 	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2439 		return;
2440 
2441 	if (vd->vdev_ops->vdev_op_leaf) {
2442 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2443 
2444 		mutex_enter(&vd->vdev_dtl_lock);
2445 
2446 		/*
2447 		 * If we've completed a scan cleanly then determine
2448 		 * if this vdev should remove any DTLs. We only want to
2449 		 * excise regions on vdevs that were available during
2450 		 * the entire duration of this scan.
2451 		 */
2452 		if (scrub_txg != 0 &&
2453 		    (spa->spa_scrub_started ||
2454 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2455 		    vdev_dtl_should_excise(vd)) {
2456 			/*
2457 			 * We completed a scrub up to scrub_txg.  If we
2458 			 * did it without rebooting, then the scrub dtl
2459 			 * will be valid, so excise the old region and
2460 			 * fold in the scrub dtl.  Otherwise, leave the
2461 			 * dtl as-is if there was an error.
2462 			 *
2463 			 * There's little trick here: to excise the beginning
2464 			 * of the DTL_MISSING map, we put it into a reference
2465 			 * tree and then add a segment with refcnt -1 that
2466 			 * covers the range [0, scrub_txg).  This means
2467 			 * that each txg in that range has refcnt -1 or 0.
2468 			 * We then add DTL_SCRUB with a refcnt of 2, so that
2469 			 * entries in the range [0, scrub_txg) will have a
2470 			 * positive refcnt -- either 1 or 2.  We then convert
2471 			 * the reference tree into the new DTL_MISSING map.
2472 			 */
2473 			space_reftree_create(&reftree);
2474 			space_reftree_add_map(&reftree,
2475 			    vd->vdev_dtl[DTL_MISSING], 1);
2476 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2477 			space_reftree_add_map(&reftree,
2478 			    vd->vdev_dtl[DTL_SCRUB], 2);
2479 			space_reftree_generate_map(&reftree,
2480 			    vd->vdev_dtl[DTL_MISSING], 1);
2481 			space_reftree_destroy(&reftree);
2482 		}
2483 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2484 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2485 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2486 		if (scrub_done)
2487 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2488 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2489 		if (!vdev_readable(vd))
2490 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2491 		else
2492 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2493 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2494 
2495 		/*
2496 		 * If the vdev was resilvering and no longer has any
2497 		 * DTLs then reset its resilvering flag.
2498 		 */
2499 		if (vd->vdev_resilver_txg != 0 &&
2500 		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2501 		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE]))
2502 			vd->vdev_resilver_txg = 0;
2503 
2504 		mutex_exit(&vd->vdev_dtl_lock);
2505 
2506 		if (txg != 0)
2507 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2508 		return;
2509 	}
2510 
2511 	mutex_enter(&vd->vdev_dtl_lock);
2512 	for (int t = 0; t < DTL_TYPES; t++) {
2513 		/* account for child's outage in parent's missing map */
2514 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2515 		if (t == DTL_SCRUB)
2516 			continue;			/* leaf vdevs only */
2517 		if (t == DTL_PARTIAL)
2518 			minref = 1;			/* i.e. non-zero */
2519 		else if (vd->vdev_nparity != 0)
2520 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2521 		else
2522 			minref = vd->vdev_children;	/* any kind of mirror */
2523 		space_reftree_create(&reftree);
2524 		for (int c = 0; c < vd->vdev_children; c++) {
2525 			vdev_t *cvd = vd->vdev_child[c];
2526 			mutex_enter(&cvd->vdev_dtl_lock);
2527 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2528 			mutex_exit(&cvd->vdev_dtl_lock);
2529 		}
2530 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2531 		space_reftree_destroy(&reftree);
2532 	}
2533 	mutex_exit(&vd->vdev_dtl_lock);
2534 }
2535 
2536 int
2537 vdev_dtl_load(vdev_t *vd)
2538 {
2539 	spa_t *spa = vd->vdev_spa;
2540 	objset_t *mos = spa->spa_meta_objset;
2541 	int error = 0;
2542 
2543 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2544 		ASSERT(vdev_is_concrete(vd));
2545 
2546 		error = space_map_open(&vd->vdev_dtl_sm, mos,
2547 		    vd->vdev_dtl_object, 0, -1ULL, 0);
2548 		if (error)
2549 			return (error);
2550 		ASSERT(vd->vdev_dtl_sm != NULL);
2551 
2552 		mutex_enter(&vd->vdev_dtl_lock);
2553 		error = space_map_load(vd->vdev_dtl_sm,
2554 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2555 		mutex_exit(&vd->vdev_dtl_lock);
2556 
2557 		return (error);
2558 	}
2559 
2560 	for (int c = 0; c < vd->vdev_children; c++) {
2561 		error = vdev_dtl_load(vd->vdev_child[c]);
2562 		if (error != 0)
2563 			break;
2564 	}
2565 
2566 	return (error);
2567 }
2568 
2569 static void
2570 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2571 {
2572 	spa_t *spa = vd->vdev_spa;
2573 	objset_t *mos = spa->spa_meta_objset;
2574 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2575 	const char *string;
2576 
2577 	ASSERT(alloc_bias != VDEV_BIAS_NONE);
2578 
2579 	string =
2580 	    (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2581 	    (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2582 	    (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2583 
2584 	ASSERT(string != NULL);
2585 	VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2586 	    1, strlen(string) + 1, string, tx));
2587 
2588 	if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2589 		spa_activate_allocation_classes(spa, tx);
2590 	}
2591 }
2592 
2593 void
2594 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2595 {
2596 	spa_t *spa = vd->vdev_spa;
2597 
2598 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2599 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2600 	    zapobj, tx));
2601 }
2602 
2603 uint64_t
2604 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2605 {
2606 	spa_t *spa = vd->vdev_spa;
2607 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2608 	    DMU_OT_NONE, 0, tx);
2609 
2610 	ASSERT(zap != 0);
2611 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2612 	    zap, tx));
2613 
2614 	return (zap);
2615 }
2616 
2617 void
2618 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2619 {
2620 	if (vd->vdev_ops != &vdev_hole_ops &&
2621 	    vd->vdev_ops != &vdev_missing_ops &&
2622 	    vd->vdev_ops != &vdev_root_ops &&
2623 	    !vd->vdev_top->vdev_removing) {
2624 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2625 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2626 		}
2627 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2628 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2629 			if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2630 				vdev_zap_allocation_data(vd, tx);
2631 		}
2632 	}
2633 
2634 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2635 		vdev_construct_zaps(vd->vdev_child[i], tx);
2636 	}
2637 }
2638 
2639 void
2640 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2641 {
2642 	spa_t *spa = vd->vdev_spa;
2643 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2644 	objset_t *mos = spa->spa_meta_objset;
2645 	range_tree_t *rtsync;
2646 	dmu_tx_t *tx;
2647 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2648 
2649 	ASSERT(vdev_is_concrete(vd));
2650 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2651 
2652 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2653 
2654 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2655 		mutex_enter(&vd->vdev_dtl_lock);
2656 		space_map_free(vd->vdev_dtl_sm, tx);
2657 		space_map_close(vd->vdev_dtl_sm);
2658 		vd->vdev_dtl_sm = NULL;
2659 		mutex_exit(&vd->vdev_dtl_lock);
2660 
2661 		/*
2662 		 * We only destroy the leaf ZAP for detached leaves or for
2663 		 * removed log devices. Removed data devices handle leaf ZAP
2664 		 * cleanup later, once cancellation is no longer possible.
2665 		 */
2666 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2667 		    vd->vdev_top->vdev_islog)) {
2668 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2669 			vd->vdev_leaf_zap = 0;
2670 		}
2671 
2672 		dmu_tx_commit(tx);
2673 		return;
2674 	}
2675 
2676 	if (vd->vdev_dtl_sm == NULL) {
2677 		uint64_t new_object;
2678 
2679 		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2680 		VERIFY3U(new_object, !=, 0);
2681 
2682 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2683 		    0, -1ULL, 0));
2684 		ASSERT(vd->vdev_dtl_sm != NULL);
2685 	}
2686 
2687 	rtsync = range_tree_create(NULL, NULL);
2688 
2689 	mutex_enter(&vd->vdev_dtl_lock);
2690 	range_tree_walk(rt, range_tree_add, rtsync);
2691 	mutex_exit(&vd->vdev_dtl_lock);
2692 
2693 	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2694 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2695 	range_tree_vacate(rtsync, NULL, NULL);
2696 
2697 	range_tree_destroy(rtsync);
2698 
2699 	/*
2700 	 * If the object for the space map has changed then dirty
2701 	 * the top level so that we update the config.
2702 	 */
2703 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2704 		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2705 		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2706 		    (u_longlong_t)object,
2707 		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2708 		vdev_config_dirty(vd->vdev_top);
2709 	}
2710 
2711 	dmu_tx_commit(tx);
2712 }
2713 
2714 /*
2715  * Determine whether the specified vdev can be offlined/detached/removed
2716  * without losing data.
2717  */
2718 boolean_t
2719 vdev_dtl_required(vdev_t *vd)
2720 {
2721 	spa_t *spa = vd->vdev_spa;
2722 	vdev_t *tvd = vd->vdev_top;
2723 	uint8_t cant_read = vd->vdev_cant_read;
2724 	boolean_t required;
2725 
2726 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2727 
2728 	if (vd == spa->spa_root_vdev || vd == tvd)
2729 		return (B_TRUE);
2730 
2731 	/*
2732 	 * Temporarily mark the device as unreadable, and then determine
2733 	 * whether this results in any DTL outages in the top-level vdev.
2734 	 * If not, we can safely offline/detach/remove the device.
2735 	 */
2736 	vd->vdev_cant_read = B_TRUE;
2737 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2738 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2739 	vd->vdev_cant_read = cant_read;
2740 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2741 
2742 	if (!required && zio_injection_enabled)
2743 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2744 
2745 	return (required);
2746 }
2747 
2748 /*
2749  * Determine if resilver is needed, and if so the txg range.
2750  */
2751 boolean_t
2752 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2753 {
2754 	boolean_t needed = B_FALSE;
2755 	uint64_t thismin = UINT64_MAX;
2756 	uint64_t thismax = 0;
2757 
2758 	if (vd->vdev_children == 0) {
2759 		mutex_enter(&vd->vdev_dtl_lock);
2760 		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2761 		    vdev_writeable(vd)) {
2762 
2763 			thismin = vdev_dtl_min(vd);
2764 			thismax = vdev_dtl_max(vd);
2765 			needed = B_TRUE;
2766 		}
2767 		mutex_exit(&vd->vdev_dtl_lock);
2768 	} else {
2769 		for (int c = 0; c < vd->vdev_children; c++) {
2770 			vdev_t *cvd = vd->vdev_child[c];
2771 			uint64_t cmin, cmax;
2772 
2773 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2774 				thismin = MIN(thismin, cmin);
2775 				thismax = MAX(thismax, cmax);
2776 				needed = B_TRUE;
2777 			}
2778 		}
2779 	}
2780 
2781 	if (needed && minp) {
2782 		*minp = thismin;
2783 		*maxp = thismax;
2784 	}
2785 	return (needed);
2786 }
2787 
2788 /*
2789  * Gets the checkpoint space map object from the vdev's ZAP.
2790  * Returns the spacemap object, or 0 if it wasn't in the ZAP
2791  * or the ZAP doesn't exist yet.
2792  */
2793 int
2794 vdev_checkpoint_sm_object(vdev_t *vd)
2795 {
2796 	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2797 	if (vd->vdev_top_zap == 0) {
2798 		return (0);
2799 	}
2800 
2801 	uint64_t sm_obj = 0;
2802 	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2803 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2804 
2805 	ASSERT(err == 0 || err == ENOENT);
2806 
2807 	return (sm_obj);
2808 }
2809 
2810 int
2811 vdev_load(vdev_t *vd)
2812 {
2813 	int error = 0;
2814 	/*
2815 	 * Recursively load all children.
2816 	 */
2817 	for (int c = 0; c < vd->vdev_children; c++) {
2818 		error = vdev_load(vd->vdev_child[c]);
2819 		if (error != 0) {
2820 			return (error);
2821 		}
2822 	}
2823 
2824 	vdev_set_deflate_ratio(vd);
2825 
2826 	/*
2827 	 * On spa_load path, grab the allocation bias from our zap
2828 	 */
2829 	if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2830 		spa_t *spa = vd->vdev_spa;
2831 		char bias_str[64];
2832 
2833 		if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2834 		    VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2835 		    bias_str) == 0) {
2836 			ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2837 			vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2838 		}
2839 	}
2840 
2841 	/*
2842 	 * If this is a top-level vdev, initialize its metaslabs.
2843 	 */
2844 	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2845 		vdev_metaslab_group_create(vd);
2846 
2847 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2848 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2849 			    VDEV_AUX_CORRUPT_DATA);
2850 			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2851 			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2852 			    (u_longlong_t)vd->vdev_asize);
2853 			return (SET_ERROR(ENXIO));
2854 		}
2855 
2856 		error = vdev_metaslab_init(vd, 0);
2857 		if (error != 0) {
2858 			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2859 			    "[error=%d]", error);
2860 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2861 			    VDEV_AUX_CORRUPT_DATA);
2862 			return (error);
2863 		}
2864 
2865 		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2866 		if (checkpoint_sm_obj != 0) {
2867 			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2868 			ASSERT(vd->vdev_asize != 0);
2869 			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2870 
2871 			error = space_map_open(&vd->vdev_checkpoint_sm,
2872 			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2873 			    vd->vdev_ashift);
2874 			if (error != 0) {
2875 				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2876 				    "failed for checkpoint spacemap (obj %llu) "
2877 				    "[error=%d]",
2878 				    (u_longlong_t)checkpoint_sm_obj, error);
2879 				return (error);
2880 			}
2881 			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2882 
2883 			/*
2884 			 * Since the checkpoint_sm contains free entries
2885 			 * exclusively we can use space_map_allocated() to
2886 			 * indicate the cumulative checkpointed space that
2887 			 * has been freed.
2888 			 */
2889 			vd->vdev_stat.vs_checkpoint_space =
2890 			    -space_map_allocated(vd->vdev_checkpoint_sm);
2891 			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2892 			    vd->vdev_stat.vs_checkpoint_space;
2893 		}
2894 	}
2895 
2896 	/*
2897 	 * If this is a leaf vdev, load its DTL.
2898 	 */
2899 	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2900 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2901 		    VDEV_AUX_CORRUPT_DATA);
2902 		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2903 		    "[error=%d]", error);
2904 		return (error);
2905 	}
2906 
2907 	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2908 	if (obsolete_sm_object != 0) {
2909 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2910 		ASSERT(vd->vdev_asize != 0);
2911 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2912 
2913 		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2914 		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2915 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2916 			    VDEV_AUX_CORRUPT_DATA);
2917 			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2918 			    "obsolete spacemap (obj %llu) [error=%d]",
2919 			    (u_longlong_t)obsolete_sm_object, error);
2920 			return (error);
2921 		}
2922 	}
2923 
2924 	return (0);
2925 }
2926 
2927 /*
2928  * The special vdev case is used for hot spares and l2cache devices.  Its
2929  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2930  * we make sure that we can open the underlying device, then try to read the
2931  * label, and make sure that the label is sane and that it hasn't been
2932  * repurposed to another pool.
2933  */
2934 int
2935 vdev_validate_aux(vdev_t *vd)
2936 {
2937 	nvlist_t *label;
2938 	uint64_t guid, version;
2939 	uint64_t state;
2940 
2941 	if (!vdev_readable(vd))
2942 		return (0);
2943 
2944 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2945 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2946 		    VDEV_AUX_CORRUPT_DATA);
2947 		return (-1);
2948 	}
2949 
2950 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2951 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2952 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2953 	    guid != vd->vdev_guid ||
2954 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2955 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2956 		    VDEV_AUX_CORRUPT_DATA);
2957 		nvlist_free(label);
2958 		return (-1);
2959 	}
2960 
2961 	/*
2962 	 * We don't actually check the pool state here.  If it's in fact in
2963 	 * use by another pool, we update this fact on the fly when requested.
2964 	 */
2965 	nvlist_free(label);
2966 	return (0);
2967 }
2968 
2969 /*
2970  * Free the objects used to store this vdev's spacemaps, and the array
2971  * that points to them.
2972  */
2973 void
2974 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2975 {
2976 	if (vd->vdev_ms_array == 0)
2977 		return;
2978 
2979 	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2980 	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2981 	size_t array_bytes = array_count * sizeof (uint64_t);
2982 	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2983 	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2984 	    array_bytes, smobj_array, 0));
2985 
2986 	for (uint64_t i = 0; i < array_count; i++) {
2987 		uint64_t smobj = smobj_array[i];
2988 		if (smobj == 0)
2989 			continue;
2990 
2991 		space_map_free_obj(mos, smobj, tx);
2992 	}
2993 
2994 	kmem_free(smobj_array, array_bytes);
2995 	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2996 	vd->vdev_ms_array = 0;
2997 }
2998 
2999 static void
3000 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3001 {
3002 	spa_t *spa = vd->vdev_spa;
3003 
3004 	ASSERT(vd->vdev_islog);
3005 	ASSERT(vd == vd->vdev_top);
3006 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
3007 
3008 	dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3009 
3010 	vdev_destroy_spacemaps(vd, tx);
3011 	if (vd->vdev_top_zap != 0) {
3012 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3013 		vd->vdev_top_zap = 0;
3014 	}
3015 
3016 	dmu_tx_commit(tx);
3017 }
3018 
3019 void
3020 vdev_sync_done(vdev_t *vd, uint64_t txg)
3021 {
3022 	metaslab_t *msp;
3023 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3024 
3025 	ASSERT(vdev_is_concrete(vd));
3026 
3027 	while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3028 	    != NULL)
3029 		metaslab_sync_done(msp, txg);
3030 
3031 	if (reassess)
3032 		metaslab_sync_reassess(vd->vdev_mg);
3033 }
3034 
3035 void
3036 vdev_sync(vdev_t *vd, uint64_t txg)
3037 {
3038 	spa_t *spa = vd->vdev_spa;
3039 	vdev_t *lvd;
3040 	metaslab_t *msp;
3041 
3042 	ASSERT3U(txg, ==, spa->spa_syncing_txg);
3043 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3044 	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3045 		ASSERT(vd->vdev_removing ||
3046 		    vd->vdev_ops == &vdev_indirect_ops);
3047 
3048 		vdev_indirect_sync_obsolete(vd, tx);
3049 
3050 		/*
3051 		 * If the vdev is indirect, it can't have dirty
3052 		 * metaslabs or DTLs.
3053 		 */
3054 		if (vd->vdev_ops == &vdev_indirect_ops) {
3055 			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3056 			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3057 			dmu_tx_commit(tx);
3058 			return;
3059 		}
3060 	}
3061 
3062 	ASSERT(vdev_is_concrete(vd));
3063 
3064 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3065 	    !vd->vdev_removing) {
3066 		ASSERT(vd == vd->vdev_top);
3067 		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3068 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3069 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3070 		ASSERT(vd->vdev_ms_array != 0);
3071 		vdev_config_dirty(vd);
3072 	}
3073 
3074 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3075 		metaslab_sync(msp, txg);
3076 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3077 	}
3078 
3079 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3080 		vdev_dtl_sync(lvd, txg);
3081 
3082 	/*
3083 	 * If this is an empty log device being removed, destroy the
3084 	 * metadata associated with it.
3085 	 */
3086 	if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3087 		vdev_remove_empty_log(vd, txg);
3088 
3089 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3090 	dmu_tx_commit(tx);
3091 }
3092 
3093 uint64_t
3094 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3095 {
3096 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3097 }
3098 
3099 /*
3100  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3101  * not be opened, and no I/O is attempted.
3102  */
3103 int
3104 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3105 {
3106 	vdev_t *vd, *tvd;
3107 
3108 	spa_vdev_state_enter(spa, SCL_NONE);
3109 
3110 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3111 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3112 
3113 	if (!vd->vdev_ops->vdev_op_leaf)
3114 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3115 
3116 	tvd = vd->vdev_top;
3117 
3118 	/*
3119 	 * We don't directly use the aux state here, but if we do a
3120 	 * vdev_reopen(), we need this value to be present to remember why we
3121 	 * were faulted.
3122 	 */
3123 	vd->vdev_label_aux = aux;
3124 
3125 	/*
3126 	 * Faulted state takes precedence over degraded.
3127 	 */
3128 	vd->vdev_delayed_close = B_FALSE;
3129 	vd->vdev_faulted = 1ULL;
3130 	vd->vdev_degraded = 0ULL;
3131 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3132 
3133 	/*
3134 	 * If this device has the only valid copy of the data, then
3135 	 * back off and simply mark the vdev as degraded instead.
3136 	 */
3137 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3138 		vd->vdev_degraded = 1ULL;
3139 		vd->vdev_faulted = 0ULL;
3140 
3141 		/*
3142 		 * If we reopen the device and it's not dead, only then do we
3143 		 * mark it degraded.
3144 		 */
3145 		vdev_reopen(tvd);
3146 
3147 		if (vdev_readable(vd))
3148 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3149 	}
3150 
3151 	return (spa_vdev_state_exit(spa, vd, 0));
3152 }
3153 
3154 /*
3155  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3156  * user that something is wrong.  The vdev continues to operate as normal as far
3157  * as I/O is concerned.
3158  */
3159 int
3160 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3161 {
3162 	vdev_t *vd;
3163 
3164 	spa_vdev_state_enter(spa, SCL_NONE);
3165 
3166 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3167 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3168 
3169 	if (!vd->vdev_ops->vdev_op_leaf)
3170 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3171 
3172 	/*
3173 	 * If the vdev is already faulted, then don't do anything.
3174 	 */
3175 	if (vd->vdev_faulted || vd->vdev_degraded)
3176 		return (spa_vdev_state_exit(spa, NULL, 0));
3177 
3178 	vd->vdev_degraded = 1ULL;
3179 	if (!vdev_is_dead(vd))
3180 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3181 		    aux);
3182 
3183 	return (spa_vdev_state_exit(spa, vd, 0));
3184 }
3185 
3186 /*
3187  * Online the given vdev.
3188  *
3189  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3190  * spare device should be detached when the device finishes resilvering.
3191  * Second, the online should be treated like a 'test' online case, so no FMA
3192  * events are generated if the device fails to open.
3193  */
3194 int
3195 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3196 {
3197 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3198 	boolean_t wasoffline;
3199 	vdev_state_t oldstate;
3200 
3201 	spa_vdev_state_enter(spa, SCL_NONE);
3202 
3203 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3204 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3205 
3206 	if (!vd->vdev_ops->vdev_op_leaf)
3207 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3208 
3209 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3210 	oldstate = vd->vdev_state;
3211 
3212 	tvd = vd->vdev_top;
3213 	vd->vdev_offline = B_FALSE;
3214 	vd->vdev_tmpoffline = B_FALSE;
3215 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3216 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3217 
3218 	/* XXX - L2ARC 1.0 does not support expansion */
3219 	if (!vd->vdev_aux) {
3220 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3221 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3222 	}
3223 
3224 	vdev_reopen(tvd);
3225 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3226 
3227 	if (!vd->vdev_aux) {
3228 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3229 			pvd->vdev_expanding = B_FALSE;
3230 	}
3231 
3232 	if (newstate)
3233 		*newstate = vd->vdev_state;
3234 	if ((flags & ZFS_ONLINE_UNSPARE) &&
3235 	    !vdev_is_dead(vd) && vd->vdev_parent &&
3236 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3237 	    vd->vdev_parent->vdev_child[0] == vd)
3238 		vd->vdev_unspare = B_TRUE;
3239 
3240 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3241 
3242 		/* XXX - L2ARC 1.0 does not support expansion */
3243 		if (vd->vdev_aux)
3244 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3245 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3246 	}
3247 
3248 	/* Restart initializing if necessary */
3249 	mutex_enter(&vd->vdev_initialize_lock);
3250 	if (vdev_writeable(vd) &&
3251 	    vd->vdev_initialize_thread == NULL &&
3252 	    vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3253 		(void) vdev_initialize(vd);
3254 	}
3255 	mutex_exit(&vd->vdev_initialize_lock);
3256 
3257 	if (wasoffline ||
3258 	    (oldstate < VDEV_STATE_DEGRADED &&
3259 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3260 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3261 
3262 	return (spa_vdev_state_exit(spa, vd, 0));
3263 }
3264 
3265 static int
3266 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3267 {
3268 	vdev_t *vd, *tvd;
3269 	int error = 0;
3270 	uint64_t generation;
3271 	metaslab_group_t *mg;
3272 
3273 top:
3274 	spa_vdev_state_enter(spa, SCL_ALLOC);
3275 
3276 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3277 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3278 
3279 	if (!vd->vdev_ops->vdev_op_leaf)
3280 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3281 
3282 	tvd = vd->vdev_top;
3283 	mg = tvd->vdev_mg;
3284 	generation = spa->spa_config_generation + 1;
3285 
3286 	/*
3287 	 * If the device isn't already offline, try to offline it.
3288 	 */
3289 	if (!vd->vdev_offline) {
3290 		/*
3291 		 * If this device has the only valid copy of some data,
3292 		 * don't allow it to be offlined. Log devices are always
3293 		 * expendable.
3294 		 */
3295 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3296 		    vdev_dtl_required(vd))
3297 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3298 
3299 		/*
3300 		 * If the top-level is a slog and it has had allocations
3301 		 * then proceed.  We check that the vdev's metaslab group
3302 		 * is not NULL since it's possible that we may have just
3303 		 * added this vdev but not yet initialized its metaslabs.
3304 		 */
3305 		if (tvd->vdev_islog && mg != NULL) {
3306 			/*
3307 			 * Prevent any future allocations.
3308 			 */
3309 			metaslab_group_passivate(mg);
3310 			(void) spa_vdev_state_exit(spa, vd, 0);
3311 
3312 			error = spa_reset_logs(spa);
3313 
3314 			/*
3315 			 * If the log device was successfully reset but has
3316 			 * checkpointed data, do not offline it.
3317 			 */
3318 			if (error == 0 &&
3319 			    tvd->vdev_checkpoint_sm != NULL) {
3320 				error = ZFS_ERR_CHECKPOINT_EXISTS;
3321 			}
3322 
3323 			spa_vdev_state_enter(spa, SCL_ALLOC);
3324 
3325 			/*
3326 			 * Check to see if the config has changed.
3327 			 */
3328 			if (error || generation != spa->spa_config_generation) {
3329 				metaslab_group_activate(mg);
3330 				if (error)
3331 					return (spa_vdev_state_exit(spa,
3332 					    vd, error));
3333 				(void) spa_vdev_state_exit(spa, vd, 0);
3334 				goto top;
3335 			}
3336 			ASSERT0(tvd->vdev_stat.vs_alloc);
3337 		}
3338 
3339 		/*
3340 		 * Offline this device and reopen its top-level vdev.
3341 		 * If the top-level vdev is a log device then just offline
3342 		 * it. Otherwise, if this action results in the top-level
3343 		 * vdev becoming unusable, undo it and fail the request.
3344 		 */
3345 		vd->vdev_offline = B_TRUE;
3346 		vdev_reopen(tvd);
3347 
3348 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3349 		    vdev_is_dead(tvd)) {
3350 			vd->vdev_offline = B_FALSE;
3351 			vdev_reopen(tvd);
3352 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3353 		}
3354 
3355 		/*
3356 		 * Add the device back into the metaslab rotor so that
3357 		 * once we online the device it's open for business.
3358 		 */
3359 		if (tvd->vdev_islog && mg != NULL)
3360 			metaslab_group_activate(mg);
3361 	}
3362 
3363 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3364 
3365 	return (spa_vdev_state_exit(spa, vd, 0));
3366 }
3367 
3368 int
3369 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3370 {
3371 	int error;
3372 
3373 	mutex_enter(&spa->spa_vdev_top_lock);
3374 	error = vdev_offline_locked(spa, guid, flags);
3375 	mutex_exit(&spa->spa_vdev_top_lock);
3376 
3377 	return (error);
3378 }
3379 
3380 /*
3381  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3382  * vdev_offline(), we assume the spa config is locked.  We also clear all
3383  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3384  */
3385 void
3386 vdev_clear(spa_t *spa, vdev_t *vd)
3387 {
3388 	vdev_t *rvd = spa->spa_root_vdev;
3389 
3390 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3391 
3392 	if (vd == NULL)
3393 		vd = rvd;
3394 
3395 	vd->vdev_stat.vs_read_errors = 0;
3396 	vd->vdev_stat.vs_write_errors = 0;
3397 	vd->vdev_stat.vs_checksum_errors = 0;
3398 
3399 	for (int c = 0; c < vd->vdev_children; c++)
3400 		vdev_clear(spa, vd->vdev_child[c]);
3401 
3402 	/*
3403 	 * It makes no sense to "clear" an indirect vdev.
3404 	 */
3405 	if (!vdev_is_concrete(vd))
3406 		return;
3407 
3408 	/*
3409 	 * If we're in the FAULTED state or have experienced failed I/O, then
3410 	 * clear the persistent state and attempt to reopen the device.  We
3411 	 * also mark the vdev config dirty, so that the new faulted state is
3412 	 * written out to disk.
3413 	 */
3414 	if (vd->vdev_faulted || vd->vdev_degraded ||
3415 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3416 
3417 		/*
3418 		 * When reopening in reponse to a clear event, it may be due to
3419 		 * a fmadm repair request.  In this case, if the device is
3420 		 * still broken, we want to still post the ereport again.
3421 		 */
3422 		vd->vdev_forcefault = B_TRUE;
3423 
3424 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3425 		vd->vdev_cant_read = B_FALSE;
3426 		vd->vdev_cant_write = B_FALSE;
3427 
3428 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3429 
3430 		vd->vdev_forcefault = B_FALSE;
3431 
3432 		if (vd != rvd && vdev_writeable(vd->vdev_top))
3433 			vdev_state_dirty(vd->vdev_top);
3434 
3435 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3436 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3437 
3438 		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3439 	}
3440 
3441 	/*
3442 	 * When clearing a FMA-diagnosed fault, we always want to
3443 	 * unspare the device, as we assume that the original spare was
3444 	 * done in response to the FMA fault.
3445 	 */
3446 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3447 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3448 	    vd->vdev_parent->vdev_child[0] == vd)
3449 		vd->vdev_unspare = B_TRUE;
3450 }
3451 
3452 boolean_t
3453 vdev_is_dead(vdev_t *vd)
3454 {
3455 	/*
3456 	 * Holes and missing devices are always considered "dead".
3457 	 * This simplifies the code since we don't have to check for
3458 	 * these types of devices in the various code paths.
3459 	 * Instead we rely on the fact that we skip over dead devices
3460 	 * before issuing I/O to them.
3461 	 */
3462 	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3463 	    vd->vdev_ops == &vdev_hole_ops ||
3464 	    vd->vdev_ops == &vdev_missing_ops);
3465 }
3466 
3467 boolean_t
3468 vdev_readable(vdev_t *vd)
3469 {
3470 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3471 }
3472 
3473 boolean_t
3474 vdev_writeable(vdev_t *vd)
3475 {
3476 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3477 	    vdev_is_concrete(vd));
3478 }
3479 
3480 boolean_t
3481 vdev_allocatable(vdev_t *vd)
3482 {
3483 	uint64_t state = vd->vdev_state;
3484 
3485 	/*
3486 	 * We currently allow allocations from vdevs which may be in the
3487 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3488 	 * fails to reopen then we'll catch it later when we're holding
3489 	 * the proper locks.  Note that we have to get the vdev state
3490 	 * in a local variable because although it changes atomically,
3491 	 * we're asking two separate questions about it.
3492 	 */
3493 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3494 	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3495 	    vd->vdev_mg->mg_initialized);
3496 }
3497 
3498 boolean_t
3499 vdev_accessible(vdev_t *vd, zio_t *zio)
3500 {
3501 	ASSERT(zio->io_vd == vd);
3502 
3503 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3504 		return (B_FALSE);
3505 
3506 	if (zio->io_type == ZIO_TYPE_READ)
3507 		return (!vd->vdev_cant_read);
3508 
3509 	if (zio->io_type == ZIO_TYPE_WRITE)
3510 		return (!vd->vdev_cant_write);
3511 
3512 	return (B_TRUE);
3513 }
3514 
3515 boolean_t
3516 vdev_is_spacemap_addressable(vdev_t *vd)
3517 {
3518 	if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3519 		return (B_TRUE);
3520 
3521 	/*
3522 	 * If double-word space map entries are not enabled we assume
3523 	 * 47 bits of the space map entry are dedicated to the entry's
3524 	 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3525 	 * to calculate the maximum address that can be described by a
3526 	 * space map entry for the given device.
3527 	 */
3528 	uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3529 
3530 	if (shift >= 63) /* detect potential overflow */
3531 		return (B_TRUE);
3532 
3533 	return (vd->vdev_asize < (1ULL << shift));
3534 }
3535 
3536 /*
3537  * Get statistics for the given vdev.
3538  */
3539 void
3540 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3541 {
3542 	spa_t *spa = vd->vdev_spa;
3543 	vdev_t *rvd = spa->spa_root_vdev;
3544 	vdev_t *tvd = vd->vdev_top;
3545 
3546 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3547 
3548 	mutex_enter(&vd->vdev_stat_lock);
3549 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3550 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3551 	vs->vs_state = vd->vdev_state;
3552 	vs->vs_rsize = vdev_get_min_asize(vd);
3553 	if (vd->vdev_ops->vdev_op_leaf) {
3554 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3555 		/*
3556 		 * Report intializing progress. Since we don't have the
3557 		 * initializing locks held, this is only an estimate (although a
3558 		 * fairly accurate one).
3559 		 */
3560 		vs->vs_initialize_bytes_done = vd->vdev_initialize_bytes_done;
3561 		vs->vs_initialize_bytes_est = vd->vdev_initialize_bytes_est;
3562 		vs->vs_initialize_state = vd->vdev_initialize_state;
3563 		vs->vs_initialize_action_time = vd->vdev_initialize_action_time;
3564 	}
3565 	/*
3566 	 * Report expandable space on top-level, non-auxillary devices only.
3567 	 * The expandable space is reported in terms of metaslab sized units
3568 	 * since that determines how much space the pool can expand.
3569 	 */
3570 	if (vd->vdev_aux == NULL && tvd != NULL) {
3571 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3572 		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3573 	}
3574 	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3575 	    vdev_is_concrete(vd)) {
3576 		vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3577 		    vd->vdev_mg->mg_fragmentation : 0;
3578 	}
3579 
3580 	/*
3581 	 * If we're getting stats on the root vdev, aggregate the I/O counts
3582 	 * over all top-level vdevs (i.e. the direct children of the root).
3583 	 */
3584 	if (vd == rvd) {
3585 		for (int c = 0; c < rvd->vdev_children; c++) {
3586 			vdev_t *cvd = rvd->vdev_child[c];
3587 			vdev_stat_t *cvs = &cvd->vdev_stat;
3588 
3589 			for (int t = 0; t < ZIO_TYPES; t++) {
3590 				vs->vs_ops[t] += cvs->vs_ops[t];
3591 				vs->vs_bytes[t] += cvs->vs_bytes[t];
3592 			}
3593 			cvs->vs_scan_removing = cvd->vdev_removing;
3594 		}
3595 	}
3596 	mutex_exit(&vd->vdev_stat_lock);
3597 }
3598 
3599 void
3600 vdev_clear_stats(vdev_t *vd)
3601 {
3602 	mutex_enter(&vd->vdev_stat_lock);
3603 	vd->vdev_stat.vs_space = 0;
3604 	vd->vdev_stat.vs_dspace = 0;
3605 	vd->vdev_stat.vs_alloc = 0;
3606 	mutex_exit(&vd->vdev_stat_lock);
3607 }
3608 
3609 void
3610 vdev_scan_stat_init(vdev_t *vd)
3611 {
3612 	vdev_stat_t *vs = &vd->vdev_stat;
3613 
3614 	for (int c = 0; c < vd->vdev_children; c++)
3615 		vdev_scan_stat_init(vd->vdev_child[c]);
3616 
3617 	mutex_enter(&vd->vdev_stat_lock);
3618 	vs->vs_scan_processed = 0;
3619 	mutex_exit(&vd->vdev_stat_lock);
3620 }
3621 
3622 void
3623 vdev_stat_update(zio_t *zio, uint64_t psize)
3624 {
3625 	spa_t *spa = zio->io_spa;
3626 	vdev_t *rvd = spa->spa_root_vdev;
3627 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3628 	vdev_t *pvd;
3629 	uint64_t txg = zio->io_txg;
3630 	vdev_stat_t *vs = &vd->vdev_stat;
3631 	zio_type_t type = zio->io_type;
3632 	int flags = zio->io_flags;
3633 
3634 	/*
3635 	 * If this i/o is a gang leader, it didn't do any actual work.
3636 	 */
3637 	if (zio->io_gang_tree)
3638 		return;
3639 
3640 	if (zio->io_error == 0) {
3641 		/*
3642 		 * If this is a root i/o, don't count it -- we've already
3643 		 * counted the top-level vdevs, and vdev_get_stats() will
3644 		 * aggregate them when asked.  This reduces contention on
3645 		 * the root vdev_stat_lock and implicitly handles blocks
3646 		 * that compress away to holes, for which there is no i/o.
3647 		 * (Holes never create vdev children, so all the counters
3648 		 * remain zero, which is what we want.)
3649 		 *
3650 		 * Note: this only applies to successful i/o (io_error == 0)
3651 		 * because unlike i/o counts, errors are not additive.
3652 		 * When reading a ditto block, for example, failure of
3653 		 * one top-level vdev does not imply a root-level error.
3654 		 */
3655 		if (vd == rvd)
3656 			return;
3657 
3658 		ASSERT(vd == zio->io_vd);
3659 
3660 		if (flags & ZIO_FLAG_IO_BYPASS)
3661 			return;
3662 
3663 		mutex_enter(&vd->vdev_stat_lock);
3664 
3665 		if (flags & ZIO_FLAG_IO_REPAIR) {
3666 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3667 				dsl_scan_phys_t *scn_phys =
3668 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3669 				uint64_t *processed = &scn_phys->scn_processed;
3670 
3671 				/* XXX cleanup? */
3672 				if (vd->vdev_ops->vdev_op_leaf)
3673 					atomic_add_64(processed, psize);
3674 				vs->vs_scan_processed += psize;
3675 			}
3676 
3677 			if (flags & ZIO_FLAG_SELF_HEAL)
3678 				vs->vs_self_healed += psize;
3679 		}
3680 
3681 		vs->vs_ops[type]++;
3682 		vs->vs_bytes[type] += psize;
3683 
3684 		mutex_exit(&vd->vdev_stat_lock);
3685 		return;
3686 	}
3687 
3688 	if (flags & ZIO_FLAG_SPECULATIVE)
3689 		return;
3690 
3691 	/*
3692 	 * If this is an I/O error that is going to be retried, then ignore the
3693 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3694 	 * hard errors, when in reality they can happen for any number of
3695 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3696 	 */
3697 	if (zio->io_error == EIO &&
3698 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3699 		return;
3700 
3701 	/*
3702 	 * Intent logs writes won't propagate their error to the root
3703 	 * I/O so don't mark these types of failures as pool-level
3704 	 * errors.
3705 	 */
3706 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3707 		return;
3708 
3709 	mutex_enter(&vd->vdev_stat_lock);
3710 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3711 		if (zio->io_error == ECKSUM)
3712 			vs->vs_checksum_errors++;
3713 		else
3714 			vs->vs_read_errors++;
3715 	}
3716 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3717 		vs->vs_write_errors++;
3718 	mutex_exit(&vd->vdev_stat_lock);
3719 
3720 	if (spa->spa_load_state == SPA_LOAD_NONE &&
3721 	    type == ZIO_TYPE_WRITE && txg != 0 &&
3722 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3723 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3724 	    spa->spa_claiming)) {
3725 		/*
3726 		 * This is either a normal write (not a repair), or it's
3727 		 * a repair induced by the scrub thread, or it's a repair
3728 		 * made by zil_claim() during spa_load() in the first txg.
3729 		 * In the normal case, we commit the DTL change in the same
3730 		 * txg as the block was born.  In the scrub-induced repair
3731 		 * case, we know that scrubs run in first-pass syncing context,
3732 		 * so we commit the DTL change in spa_syncing_txg(spa).
3733 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3734 		 *
3735 		 * We currently do not make DTL entries for failed spontaneous
3736 		 * self-healing writes triggered by normal (non-scrubbing)
3737 		 * reads, because we have no transactional context in which to
3738 		 * do so -- and it's not clear that it'd be desirable anyway.
3739 		 */
3740 		if (vd->vdev_ops->vdev_op_leaf) {
3741 			uint64_t commit_txg = txg;
3742 			if (flags & ZIO_FLAG_SCAN_THREAD) {
3743 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3744 				ASSERT(spa_sync_pass(spa) == 1);
3745 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3746 				commit_txg = spa_syncing_txg(spa);
3747 			} else if (spa->spa_claiming) {
3748 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3749 				commit_txg = spa_first_txg(spa);
3750 			}
3751 			ASSERT(commit_txg >= spa_syncing_txg(spa));
3752 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3753 				return;
3754 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3755 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3756 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3757 		}
3758 		if (vd != rvd)
3759 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3760 	}
3761 }
3762 
3763 int64_t
3764 vdev_deflated_space(vdev_t *vd, int64_t space)
3765 {
3766 	ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
3767 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3768 
3769 	return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
3770 }
3771 
3772 /*
3773  * Update the in-core space usage stats for this vdev and the root vdev.
3774  */
3775 void
3776 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3777     int64_t space_delta)
3778 {
3779 	int64_t dspace_delta;
3780 	spa_t *spa = vd->vdev_spa;
3781 	vdev_t *rvd = spa->spa_root_vdev;
3782 
3783 	ASSERT(vd == vd->vdev_top);
3784 
3785 	/*
3786 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3787 	 * factor.  We must calculate this here and not at the root vdev
3788 	 * because the root vdev's psize-to-asize is simply the max of its
3789 	 * childrens', thus not accurate enough for us.
3790 	 */
3791 	dspace_delta = vdev_deflated_space(vd, space_delta);
3792 
3793 	mutex_enter(&vd->vdev_stat_lock);
3794 	vd->vdev_stat.vs_alloc += alloc_delta;
3795 	vd->vdev_stat.vs_space += space_delta;
3796 	vd->vdev_stat.vs_dspace += dspace_delta;
3797 	mutex_exit(&vd->vdev_stat_lock);
3798 
3799 	/* every class but log contributes to root space stats */
3800 	if (vd->vdev_mg != NULL && !vd->vdev_islog) {
3801 		mutex_enter(&rvd->vdev_stat_lock);
3802 		rvd->vdev_stat.vs_alloc += alloc_delta;
3803 		rvd->vdev_stat.vs_space += space_delta;
3804 		rvd->vdev_stat.vs_dspace += dspace_delta;
3805 		mutex_exit(&rvd->vdev_stat_lock);
3806 	}
3807 	/* Note: metaslab_class_space_update moved to metaslab_space_update */
3808 }
3809 
3810 /*
3811  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3812  * so that it will be written out next time the vdev configuration is synced.
3813  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3814  */
3815 void
3816 vdev_config_dirty(vdev_t *vd)
3817 {
3818 	spa_t *spa = vd->vdev_spa;
3819 	vdev_t *rvd = spa->spa_root_vdev;
3820 	int c;
3821 
3822 	ASSERT(spa_writeable(spa));
3823 
3824 	/*
3825 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3826 	 * update the vdev config manually and set the sync flag.
3827 	 */
3828 	if (vd->vdev_aux != NULL) {
3829 		spa_aux_vdev_t *sav = vd->vdev_aux;
3830 		nvlist_t **aux;
3831 		uint_t naux;
3832 
3833 		for (c = 0; c < sav->sav_count; c++) {
3834 			if (sav->sav_vdevs[c] == vd)
3835 				break;
3836 		}
3837 
3838 		if (c == sav->sav_count) {
3839 			/*
3840 			 * We're being removed.  There's nothing more to do.
3841 			 */
3842 			ASSERT(sav->sav_sync == B_TRUE);
3843 			return;
3844 		}
3845 
3846 		sav->sav_sync = B_TRUE;
3847 
3848 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3849 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3850 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3851 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3852 		}
3853 
3854 		ASSERT(c < naux);
3855 
3856 		/*
3857 		 * Setting the nvlist in the middle if the array is a little
3858 		 * sketchy, but it will work.
3859 		 */
3860 		nvlist_free(aux[c]);
3861 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3862 
3863 		return;
3864 	}
3865 
3866 	/*
3867 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3868 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3869 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3870 	 * so this is sufficient to ensure mutual exclusion.
3871 	 */
3872 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3873 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3874 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3875 
3876 	if (vd == rvd) {
3877 		for (c = 0; c < rvd->vdev_children; c++)
3878 			vdev_config_dirty(rvd->vdev_child[c]);
3879 	} else {
3880 		ASSERT(vd == vd->vdev_top);
3881 
3882 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3883 		    vdev_is_concrete(vd)) {
3884 			list_insert_head(&spa->spa_config_dirty_list, vd);
3885 		}
3886 	}
3887 }
3888 
3889 void
3890 vdev_config_clean(vdev_t *vd)
3891 {
3892 	spa_t *spa = vd->vdev_spa;
3893 
3894 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3895 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3896 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3897 
3898 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3899 	list_remove(&spa->spa_config_dirty_list, vd);
3900 }
3901 
3902 /*
3903  * Mark a top-level vdev's state as dirty, so that the next pass of
3904  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3905  * the state changes from larger config changes because they require
3906  * much less locking, and are often needed for administrative actions.
3907  */
3908 void
3909 vdev_state_dirty(vdev_t *vd)
3910 {
3911 	spa_t *spa = vd->vdev_spa;
3912 
3913 	ASSERT(spa_writeable(spa));
3914 	ASSERT(vd == vd->vdev_top);
3915 
3916 	/*
3917 	 * The state list is protected by the SCL_STATE lock.  The caller
3918 	 * must either hold SCL_STATE as writer, or must be the sync thread
3919 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3920 	 * so this is sufficient to ensure mutual exclusion.
3921 	 */
3922 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3923 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3924 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3925 
3926 	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3927 	    vdev_is_concrete(vd))
3928 		list_insert_head(&spa->spa_state_dirty_list, vd);
3929 }
3930 
3931 void
3932 vdev_state_clean(vdev_t *vd)
3933 {
3934 	spa_t *spa = vd->vdev_spa;
3935 
3936 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3937 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3938 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3939 
3940 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3941 	list_remove(&spa->spa_state_dirty_list, vd);
3942 }
3943 
3944 /*
3945  * Propagate vdev state up from children to parent.
3946  */
3947 void
3948 vdev_propagate_state(vdev_t *vd)
3949 {
3950 	spa_t *spa = vd->vdev_spa;
3951 	vdev_t *rvd = spa->spa_root_vdev;
3952 	int degraded = 0, faulted = 0;
3953 	int corrupted = 0;
3954 	vdev_t *child;
3955 
3956 	if (vd->vdev_children > 0) {
3957 		for (int c = 0; c < vd->vdev_children; c++) {
3958 			child = vd->vdev_child[c];
3959 
3960 			/*
3961 			 * Don't factor holes or indirect vdevs into the
3962 			 * decision.
3963 			 */
3964 			if (!vdev_is_concrete(child))
3965 				continue;
3966 
3967 			if (!vdev_readable(child) ||
3968 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3969 				/*
3970 				 * Root special: if there is a top-level log
3971 				 * device, treat the root vdev as if it were
3972 				 * degraded.
3973 				 */
3974 				if (child->vdev_islog && vd == rvd)
3975 					degraded++;
3976 				else
3977 					faulted++;
3978 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3979 				degraded++;
3980 			}
3981 
3982 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3983 				corrupted++;
3984 		}
3985 
3986 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3987 
3988 		/*
3989 		 * Root special: if there is a top-level vdev that cannot be
3990 		 * opened due to corrupted metadata, then propagate the root
3991 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3992 		 * replicas'.
3993 		 */
3994 		if (corrupted && vd == rvd &&
3995 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3996 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3997 			    VDEV_AUX_CORRUPT_DATA);
3998 	}
3999 
4000 	if (vd->vdev_parent)
4001 		vdev_propagate_state(vd->vdev_parent);
4002 }
4003 
4004 /*
4005  * Set a vdev's state.  If this is during an open, we don't update the parent
4006  * state, because we're in the process of opening children depth-first.
4007  * Otherwise, we propagate the change to the parent.
4008  *
4009  * If this routine places a device in a faulted state, an appropriate ereport is
4010  * generated.
4011  */
4012 void
4013 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4014 {
4015 	uint64_t save_state;
4016 	spa_t *spa = vd->vdev_spa;
4017 
4018 	if (state == vd->vdev_state) {
4019 		vd->vdev_stat.vs_aux = aux;
4020 		return;
4021 	}
4022 
4023 	save_state = vd->vdev_state;
4024 
4025 	vd->vdev_state = state;
4026 	vd->vdev_stat.vs_aux = aux;
4027 
4028 	/*
4029 	 * If we are setting the vdev state to anything but an open state, then
4030 	 * always close the underlying device unless the device has requested
4031 	 * a delayed close (i.e. we're about to remove or fault the device).
4032 	 * Otherwise, we keep accessible but invalid devices open forever.
4033 	 * We don't call vdev_close() itself, because that implies some extra
4034 	 * checks (offline, etc) that we don't want here.  This is limited to
4035 	 * leaf devices, because otherwise closing the device will affect other
4036 	 * children.
4037 	 */
4038 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4039 	    vd->vdev_ops->vdev_op_leaf)
4040 		vd->vdev_ops->vdev_op_close(vd);
4041 
4042 	/*
4043 	 * If we have brought this vdev back into service, we need
4044 	 * to notify fmd so that it can gracefully repair any outstanding
4045 	 * cases due to a missing device.  We do this in all cases, even those
4046 	 * that probably don't correlate to a repaired fault.  This is sure to
4047 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
4048 	 * this is a transient state it's OK, as the retire agent will
4049 	 * double-check the state of the vdev before repairing it.
4050 	 */
4051 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
4052 	    vd->vdev_prevstate != state)
4053 		zfs_post_state_change(spa, vd);
4054 
4055 	if (vd->vdev_removed &&
4056 	    state == VDEV_STATE_CANT_OPEN &&
4057 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4058 		/*
4059 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
4060 		 * device was previously marked removed and someone attempted to
4061 		 * reopen it.  If this failed due to a nonexistent device, then
4062 		 * keep the device in the REMOVED state.  We also let this be if
4063 		 * it is one of our special test online cases, which is only
4064 		 * attempting to online the device and shouldn't generate an FMA
4065 		 * fault.
4066 		 */
4067 		vd->vdev_state = VDEV_STATE_REMOVED;
4068 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4069 	} else if (state == VDEV_STATE_REMOVED) {
4070 		vd->vdev_removed = B_TRUE;
4071 	} else if (state == VDEV_STATE_CANT_OPEN) {
4072 		/*
4073 		 * If we fail to open a vdev during an import or recovery, we
4074 		 * mark it as "not available", which signifies that it was
4075 		 * never there to begin with.  Failure to open such a device
4076 		 * is not considered an error.
4077 		 */
4078 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4079 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4080 		    vd->vdev_ops->vdev_op_leaf)
4081 			vd->vdev_not_present = 1;
4082 
4083 		/*
4084 		 * Post the appropriate ereport.  If the 'prevstate' field is
4085 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4086 		 * that this is part of a vdev_reopen().  In this case, we don't
4087 		 * want to post the ereport if the device was already in the
4088 		 * CANT_OPEN state beforehand.
4089 		 *
4090 		 * If the 'checkremove' flag is set, then this is an attempt to
4091 		 * online the device in response to an insertion event.  If we
4092 		 * hit this case, then we have detected an insertion event for a
4093 		 * faulted or offline device that wasn't in the removed state.
4094 		 * In this scenario, we don't post an ereport because we are
4095 		 * about to replace the device, or attempt an online with
4096 		 * vdev_forcefault, which will generate the fault for us.
4097 		 */
4098 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4099 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4100 		    vd != spa->spa_root_vdev) {
4101 			const char *class;
4102 
4103 			switch (aux) {
4104 			case VDEV_AUX_OPEN_FAILED:
4105 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4106 				break;
4107 			case VDEV_AUX_CORRUPT_DATA:
4108 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4109 				break;
4110 			case VDEV_AUX_NO_REPLICAS:
4111 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4112 				break;
4113 			case VDEV_AUX_BAD_GUID_SUM:
4114 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4115 				break;
4116 			case VDEV_AUX_TOO_SMALL:
4117 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4118 				break;
4119 			case VDEV_AUX_BAD_LABEL:
4120 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4121 				break;
4122 			default:
4123 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4124 			}
4125 
4126 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4127 		}
4128 
4129 		/* Erase any notion of persistent removed state */
4130 		vd->vdev_removed = B_FALSE;
4131 	} else {
4132 		vd->vdev_removed = B_FALSE;
4133 	}
4134 
4135 	if (!isopen && vd->vdev_parent)
4136 		vdev_propagate_state(vd->vdev_parent);
4137 }
4138 
4139 boolean_t
4140 vdev_children_are_offline(vdev_t *vd)
4141 {
4142 	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4143 
4144 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4145 		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4146 			return (B_FALSE);
4147 	}
4148 
4149 	return (B_TRUE);
4150 }
4151 
4152 /*
4153  * Check the vdev configuration to ensure that it's capable of supporting
4154  * a root pool. We do not support partial configuration.
4155  * In addition, only a single top-level vdev is allowed.
4156  */
4157 boolean_t
4158 vdev_is_bootable(vdev_t *vd)
4159 {
4160 	if (!vd->vdev_ops->vdev_op_leaf) {
4161 		char *vdev_type = vd->vdev_ops->vdev_op_type;
4162 
4163 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4164 		    vd->vdev_children > 1) {
4165 			return (B_FALSE);
4166 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4167 		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4168 			return (B_FALSE);
4169 		}
4170 	}
4171 
4172 	for (int c = 0; c < vd->vdev_children; c++) {
4173 		if (!vdev_is_bootable(vd->vdev_child[c]))
4174 			return (B_FALSE);
4175 	}
4176 	return (B_TRUE);
4177 }
4178 
4179 boolean_t
4180 vdev_is_concrete(vdev_t *vd)
4181 {
4182 	vdev_ops_t *ops = vd->vdev_ops;
4183 	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4184 	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4185 		return (B_FALSE);
4186 	} else {
4187 		return (B_TRUE);
4188 	}
4189 }
4190 
4191 /*
4192  * Determine if a log device has valid content.  If the vdev was
4193  * removed or faulted in the MOS config then we know that
4194  * the content on the log device has already been written to the pool.
4195  */
4196 boolean_t
4197 vdev_log_state_valid(vdev_t *vd)
4198 {
4199 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4200 	    !vd->vdev_removed)
4201 		return (B_TRUE);
4202 
4203 	for (int c = 0; c < vd->vdev_children; c++)
4204 		if (vdev_log_state_valid(vd->vdev_child[c]))
4205 			return (B_TRUE);
4206 
4207 	return (B_FALSE);
4208 }
4209 
4210 /*
4211  * Expand a vdev if possible.
4212  */
4213 void
4214 vdev_expand(vdev_t *vd, uint64_t txg)
4215 {
4216 	ASSERT(vd->vdev_top == vd);
4217 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4218 	ASSERT(vdev_is_concrete(vd));
4219 
4220 	vdev_set_deflate_ratio(vd);
4221 
4222 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4223 	    vdev_is_concrete(vd)) {
4224 		vdev_metaslab_group_create(vd);
4225 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4226 		vdev_config_dirty(vd);
4227 	}
4228 }
4229 
4230 /*
4231  * Split a vdev.
4232  */
4233 void
4234 vdev_split(vdev_t *vd)
4235 {
4236 	vdev_t *cvd, *pvd = vd->vdev_parent;
4237 
4238 	vdev_remove_child(pvd, vd);
4239 	vdev_compact_children(pvd);
4240 
4241 	cvd = pvd->vdev_child[0];
4242 	if (pvd->vdev_children == 1) {
4243 		vdev_remove_parent(cvd);
4244 		cvd->vdev_splitting = B_TRUE;
4245 	}
4246 	vdev_propagate_state(cvd);
4247 }
4248 
4249 void
4250 vdev_deadman(vdev_t *vd)
4251 {
4252 	for (int c = 0; c < vd->vdev_children; c++) {
4253 		vdev_t *cvd = vd->vdev_child[c];
4254 
4255 		vdev_deadman(cvd);
4256 	}
4257 
4258 	if (vd->vdev_ops->vdev_op_leaf) {
4259 		vdev_queue_t *vq = &vd->vdev_queue;
4260 
4261 		mutex_enter(&vq->vq_lock);
4262 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4263 			spa_t *spa = vd->vdev_spa;
4264 			zio_t *fio;
4265 			uint64_t delta;
4266 
4267 			/*
4268 			 * Look at the head of all the pending queues,
4269 			 * if any I/O has been outstanding for longer than
4270 			 * the spa_deadman_synctime we panic the system.
4271 			 */
4272 			fio = avl_first(&vq->vq_active_tree);
4273 			delta = gethrtime() - fio->io_timestamp;
4274 			if (delta > spa_deadman_synctime(spa)) {
4275 				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4276 				    "%lluns, delta %lluns, last io %lluns",
4277 				    fio->io_timestamp, (u_longlong_t)delta,
4278 				    vq->vq_io_complete_ts);
4279 				fm_panic("I/O to pool '%s' appears to be "
4280 				    "hung.", spa_name(spa));
4281 			}
4282 		}
4283 		mutex_exit(&vq->vq_lock);
4284 	}
4285 }
4286