xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 4ee0199ec059ca9417a72125beae8d89fbc5a9df)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 
49 /*
50  * Virtual device management.
51  */
52 
53 static vdev_ops_t *vdev_ops_table[] = {
54 	&vdev_root_ops,
55 	&vdev_raidz_ops,
56 	&vdev_mirror_ops,
57 	&vdev_replacing_ops,
58 	&vdev_spare_ops,
59 	&vdev_disk_ops,
60 	&vdev_file_ops,
61 	&vdev_missing_ops,
62 	&vdev_hole_ops,
63 	NULL
64 };
65 
66 /* maximum scrub/resilver I/O queue per leaf vdev */
67 int zfs_scrub_limit = 10;
68 
69 /*
70  * When a vdev is added, it will be divided into approximately (but no
71  * more than) this number of metaslabs.
72  */
73 int metaslabs_per_vdev = 200;
74 
75 /*
76  * Given a vdev type, return the appropriate ops vector.
77  */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81 	vdev_ops_t *ops, **opspp;
82 
83 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84 		if (strcmp(ops->vdev_op_type, type) == 0)
85 			break;
86 
87 	return (ops);
88 }
89 
90 /*
91  * Default asize function: return the MAX of psize with the asize of
92  * all children.  This is what's used by anything other than RAID-Z.
93  */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98 	uint64_t csize;
99 
100 	for (int c = 0; c < vd->vdev_children; c++) {
101 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102 		asize = MAX(asize, csize);
103 	}
104 
105 	return (asize);
106 }
107 
108 /*
109  * Get the minimum allocatable size. We define the allocatable size as
110  * the vdev's asize rounded to the nearest metaslab. This allows us to
111  * replace or attach devices which don't have the same physical size but
112  * can still satisfy the same number of allocations.
113  */
114 uint64_t
115 vdev_get_min_asize(vdev_t *vd)
116 {
117 	vdev_t *pvd = vd->vdev_parent;
118 
119 	/*
120 	 * If our parent is NULL (inactive spare or cache) or is the root,
121 	 * just return our own asize.
122 	 */
123 	if (pvd == NULL)
124 		return (vd->vdev_asize);
125 
126 	/*
127 	 * The top-level vdev just returns the allocatable size rounded
128 	 * to the nearest metaslab.
129 	 */
130 	if (vd == vd->vdev_top)
131 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
132 
133 	/*
134 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
135 	 * so each child must provide at least 1/Nth of its asize.
136 	 */
137 	if (pvd->vdev_ops == &vdev_raidz_ops)
138 		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
139 		    pvd->vdev_children);
140 
141 	return (pvd->vdev_min_asize);
142 }
143 
144 void
145 vdev_set_min_asize(vdev_t *vd)
146 {
147 	vd->vdev_min_asize = vdev_get_min_asize(vd);
148 
149 	for (int c = 0; c < vd->vdev_children; c++)
150 		vdev_set_min_asize(vd->vdev_child[c]);
151 }
152 
153 vdev_t *
154 vdev_lookup_top(spa_t *spa, uint64_t vdev)
155 {
156 	vdev_t *rvd = spa->spa_root_vdev;
157 
158 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
159 
160 	if (vdev < rvd->vdev_children) {
161 		ASSERT(rvd->vdev_child[vdev] != NULL);
162 		return (rvd->vdev_child[vdev]);
163 	}
164 
165 	return (NULL);
166 }
167 
168 vdev_t *
169 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
170 {
171 	vdev_t *mvd;
172 
173 	if (vd->vdev_guid == guid)
174 		return (vd);
175 
176 	for (int c = 0; c < vd->vdev_children; c++)
177 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
178 		    NULL)
179 			return (mvd);
180 
181 	return (NULL);
182 }
183 
184 static int
185 vdev_count_leaves_impl(vdev_t *vd)
186 {
187 	int n = 0;
188 
189 	if (vd->vdev_ops->vdev_op_leaf)
190 		return (1);
191 
192 	for (int c = 0; c < vd->vdev_children; c++)
193 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
194 
195 	return (n);
196 }
197 
198 int
199 vdev_count_leaves(spa_t *spa)
200 {
201 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
202 }
203 
204 void
205 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
206 {
207 	size_t oldsize, newsize;
208 	uint64_t id = cvd->vdev_id;
209 	vdev_t **newchild;
210 	spa_t *spa = cvd->vdev_spa;
211 
212 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
213 	ASSERT(cvd->vdev_parent == NULL);
214 
215 	cvd->vdev_parent = pvd;
216 
217 	if (pvd == NULL)
218 		return;
219 
220 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
221 
222 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
223 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
224 	newsize = pvd->vdev_children * sizeof (vdev_t *);
225 
226 	newchild = kmem_zalloc(newsize, KM_SLEEP);
227 	if (pvd->vdev_child != NULL) {
228 		bcopy(pvd->vdev_child, newchild, oldsize);
229 		kmem_free(pvd->vdev_child, oldsize);
230 	}
231 
232 	pvd->vdev_child = newchild;
233 	pvd->vdev_child[id] = cvd;
234 
235 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
236 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
237 
238 	/*
239 	 * Walk up all ancestors to update guid sum.
240 	 */
241 	for (; pvd != NULL; pvd = pvd->vdev_parent)
242 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
243 }
244 
245 void
246 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
247 {
248 	int c;
249 	uint_t id = cvd->vdev_id;
250 
251 	ASSERT(cvd->vdev_parent == pvd);
252 
253 	if (pvd == NULL)
254 		return;
255 
256 	ASSERT(id < pvd->vdev_children);
257 	ASSERT(pvd->vdev_child[id] == cvd);
258 
259 	pvd->vdev_child[id] = NULL;
260 	cvd->vdev_parent = NULL;
261 
262 	for (c = 0; c < pvd->vdev_children; c++)
263 		if (pvd->vdev_child[c])
264 			break;
265 
266 	if (c == pvd->vdev_children) {
267 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
268 		pvd->vdev_child = NULL;
269 		pvd->vdev_children = 0;
270 	}
271 
272 	/*
273 	 * Walk up all ancestors to update guid sum.
274 	 */
275 	for (; pvd != NULL; pvd = pvd->vdev_parent)
276 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
277 }
278 
279 /*
280  * Remove any holes in the child array.
281  */
282 void
283 vdev_compact_children(vdev_t *pvd)
284 {
285 	vdev_t **newchild, *cvd;
286 	int oldc = pvd->vdev_children;
287 	int newc;
288 
289 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
290 
291 	for (int c = newc = 0; c < oldc; c++)
292 		if (pvd->vdev_child[c])
293 			newc++;
294 
295 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
296 
297 	for (int c = newc = 0; c < oldc; c++) {
298 		if ((cvd = pvd->vdev_child[c]) != NULL) {
299 			newchild[newc] = cvd;
300 			cvd->vdev_id = newc++;
301 		}
302 	}
303 
304 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
305 	pvd->vdev_child = newchild;
306 	pvd->vdev_children = newc;
307 }
308 
309 /*
310  * Allocate and minimally initialize a vdev_t.
311  */
312 vdev_t *
313 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
314 {
315 	vdev_t *vd;
316 
317 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
318 
319 	if (spa->spa_root_vdev == NULL) {
320 		ASSERT(ops == &vdev_root_ops);
321 		spa->spa_root_vdev = vd;
322 		spa->spa_load_guid = spa_generate_guid(NULL);
323 	}
324 
325 	if (guid == 0 && ops != &vdev_hole_ops) {
326 		if (spa->spa_root_vdev == vd) {
327 			/*
328 			 * The root vdev's guid will also be the pool guid,
329 			 * which must be unique among all pools.
330 			 */
331 			guid = spa_generate_guid(NULL);
332 		} else {
333 			/*
334 			 * Any other vdev's guid must be unique within the pool.
335 			 */
336 			guid = spa_generate_guid(spa);
337 		}
338 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
339 	}
340 
341 	vd->vdev_spa = spa;
342 	vd->vdev_id = id;
343 	vd->vdev_guid = guid;
344 	vd->vdev_guid_sum = guid;
345 	vd->vdev_ops = ops;
346 	vd->vdev_state = VDEV_STATE_CLOSED;
347 	vd->vdev_ishole = (ops == &vdev_hole_ops);
348 
349 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
350 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
351 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
352 	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
353 	for (int t = 0; t < DTL_TYPES; t++) {
354 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
355 		    &vd->vdev_dtl_lock);
356 	}
357 	txg_list_create(&vd->vdev_ms_list,
358 	    offsetof(struct metaslab, ms_txg_node));
359 	txg_list_create(&vd->vdev_dtl_list,
360 	    offsetof(struct vdev, vdev_dtl_node));
361 	vd->vdev_stat.vs_timestamp = gethrtime();
362 	vdev_queue_init(vd);
363 	vdev_cache_init(vd);
364 
365 	return (vd);
366 }
367 
368 /*
369  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
370  * creating a new vdev or loading an existing one - the behavior is slightly
371  * different for each case.
372  */
373 int
374 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
375     int alloctype)
376 {
377 	vdev_ops_t *ops;
378 	char *type;
379 	uint64_t guid = 0, islog, nparity;
380 	vdev_t *vd;
381 
382 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
383 
384 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
385 		return (SET_ERROR(EINVAL));
386 
387 	if ((ops = vdev_getops(type)) == NULL)
388 		return (SET_ERROR(EINVAL));
389 
390 	/*
391 	 * If this is a load, get the vdev guid from the nvlist.
392 	 * Otherwise, vdev_alloc_common() will generate one for us.
393 	 */
394 	if (alloctype == VDEV_ALLOC_LOAD) {
395 		uint64_t label_id;
396 
397 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
398 		    label_id != id)
399 			return (SET_ERROR(EINVAL));
400 
401 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
402 			return (SET_ERROR(EINVAL));
403 	} else if (alloctype == VDEV_ALLOC_SPARE) {
404 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
405 			return (SET_ERROR(EINVAL));
406 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
407 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
408 			return (SET_ERROR(EINVAL));
409 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
410 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
411 			return (SET_ERROR(EINVAL));
412 	}
413 
414 	/*
415 	 * The first allocated vdev must be of type 'root'.
416 	 */
417 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
418 		return (SET_ERROR(EINVAL));
419 
420 	/*
421 	 * Determine whether we're a log vdev.
422 	 */
423 	islog = 0;
424 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
425 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
426 		return (SET_ERROR(ENOTSUP));
427 
428 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
429 		return (SET_ERROR(ENOTSUP));
430 
431 	/*
432 	 * Set the nparity property for RAID-Z vdevs.
433 	 */
434 	nparity = -1ULL;
435 	if (ops == &vdev_raidz_ops) {
436 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
437 		    &nparity) == 0) {
438 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
439 				return (SET_ERROR(EINVAL));
440 			/*
441 			 * Previous versions could only support 1 or 2 parity
442 			 * device.
443 			 */
444 			if (nparity > 1 &&
445 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
446 				return (SET_ERROR(ENOTSUP));
447 			if (nparity > 2 &&
448 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
449 				return (SET_ERROR(ENOTSUP));
450 		} else {
451 			/*
452 			 * We require the parity to be specified for SPAs that
453 			 * support multiple parity levels.
454 			 */
455 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
456 				return (SET_ERROR(EINVAL));
457 			/*
458 			 * Otherwise, we default to 1 parity device for RAID-Z.
459 			 */
460 			nparity = 1;
461 		}
462 	} else {
463 		nparity = 0;
464 	}
465 	ASSERT(nparity != -1ULL);
466 
467 	vd = vdev_alloc_common(spa, id, guid, ops);
468 
469 	vd->vdev_islog = islog;
470 	vd->vdev_nparity = nparity;
471 
472 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
473 		vd->vdev_path = spa_strdup(vd->vdev_path);
474 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
475 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
476 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
477 	    &vd->vdev_physpath) == 0)
478 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
479 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
480 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
481 
482 	/*
483 	 * Set the whole_disk property.  If it's not specified, leave the value
484 	 * as -1.
485 	 */
486 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
487 	    &vd->vdev_wholedisk) != 0)
488 		vd->vdev_wholedisk = -1ULL;
489 
490 	/*
491 	 * Look for the 'not present' flag.  This will only be set if the device
492 	 * was not present at the time of import.
493 	 */
494 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
495 	    &vd->vdev_not_present);
496 
497 	/*
498 	 * Get the alignment requirement.
499 	 */
500 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
501 
502 	/*
503 	 * Retrieve the vdev creation time.
504 	 */
505 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
506 	    &vd->vdev_crtxg);
507 
508 	/*
509 	 * If we're a top-level vdev, try to load the allocation parameters.
510 	 */
511 	if (parent && !parent->vdev_parent &&
512 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
513 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
514 		    &vd->vdev_ms_array);
515 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
516 		    &vd->vdev_ms_shift);
517 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
518 		    &vd->vdev_asize);
519 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
520 		    &vd->vdev_removing);
521 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
522 		    &vd->vdev_top_zap);
523 	} else {
524 		ASSERT0(vd->vdev_top_zap);
525 	}
526 
527 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
528 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
529 		    alloctype == VDEV_ALLOC_ADD ||
530 		    alloctype == VDEV_ALLOC_SPLIT ||
531 		    alloctype == VDEV_ALLOC_ROOTPOOL);
532 		vd->vdev_mg = metaslab_group_create(islog ?
533 		    spa_log_class(spa) : spa_normal_class(spa), vd);
534 	}
535 
536 	if (vd->vdev_ops->vdev_op_leaf &&
537 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
538 		(void) nvlist_lookup_uint64(nv,
539 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
540 	} else {
541 		ASSERT0(vd->vdev_leaf_zap);
542 	}
543 
544 	/*
545 	 * If we're a leaf vdev, try to load the DTL object and other state.
546 	 */
547 
548 	if (vd->vdev_ops->vdev_op_leaf &&
549 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
550 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
551 		if (alloctype == VDEV_ALLOC_LOAD) {
552 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
553 			    &vd->vdev_dtl_object);
554 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
555 			    &vd->vdev_unspare);
556 		}
557 
558 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
559 			uint64_t spare = 0;
560 
561 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
562 			    &spare) == 0 && spare)
563 				spa_spare_add(vd);
564 		}
565 
566 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
567 		    &vd->vdev_offline);
568 
569 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
570 		    &vd->vdev_resilver_txg);
571 
572 		/*
573 		 * When importing a pool, we want to ignore the persistent fault
574 		 * state, as the diagnosis made on another system may not be
575 		 * valid in the current context.  Local vdevs will
576 		 * remain in the faulted state.
577 		 */
578 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
579 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
580 			    &vd->vdev_faulted);
581 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
582 			    &vd->vdev_degraded);
583 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
584 			    &vd->vdev_removed);
585 
586 			if (vd->vdev_faulted || vd->vdev_degraded) {
587 				char *aux;
588 
589 				vd->vdev_label_aux =
590 				    VDEV_AUX_ERR_EXCEEDED;
591 				if (nvlist_lookup_string(nv,
592 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
593 				    strcmp(aux, "external") == 0)
594 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
595 			}
596 		}
597 	}
598 
599 	/*
600 	 * Add ourselves to the parent's list of children.
601 	 */
602 	vdev_add_child(parent, vd);
603 
604 	*vdp = vd;
605 
606 	return (0);
607 }
608 
609 void
610 vdev_free(vdev_t *vd)
611 {
612 	spa_t *spa = vd->vdev_spa;
613 
614 	/*
615 	 * vdev_free() implies closing the vdev first.  This is simpler than
616 	 * trying to ensure complicated semantics for all callers.
617 	 */
618 	vdev_close(vd);
619 
620 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
621 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
622 
623 	/*
624 	 * Free all children.
625 	 */
626 	for (int c = 0; c < vd->vdev_children; c++)
627 		vdev_free(vd->vdev_child[c]);
628 
629 	ASSERT(vd->vdev_child == NULL);
630 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
631 
632 	/*
633 	 * Discard allocation state.
634 	 */
635 	if (vd->vdev_mg != NULL) {
636 		vdev_metaslab_fini(vd);
637 		metaslab_group_destroy(vd->vdev_mg);
638 	}
639 
640 	ASSERT0(vd->vdev_stat.vs_space);
641 	ASSERT0(vd->vdev_stat.vs_dspace);
642 	ASSERT0(vd->vdev_stat.vs_alloc);
643 
644 	/*
645 	 * Remove this vdev from its parent's child list.
646 	 */
647 	vdev_remove_child(vd->vdev_parent, vd);
648 
649 	ASSERT(vd->vdev_parent == NULL);
650 
651 	/*
652 	 * Clean up vdev structure.
653 	 */
654 	vdev_queue_fini(vd);
655 	vdev_cache_fini(vd);
656 
657 	if (vd->vdev_path)
658 		spa_strfree(vd->vdev_path);
659 	if (vd->vdev_devid)
660 		spa_strfree(vd->vdev_devid);
661 	if (vd->vdev_physpath)
662 		spa_strfree(vd->vdev_physpath);
663 	if (vd->vdev_fru)
664 		spa_strfree(vd->vdev_fru);
665 
666 	if (vd->vdev_isspare)
667 		spa_spare_remove(vd);
668 	if (vd->vdev_isl2cache)
669 		spa_l2cache_remove(vd);
670 
671 	txg_list_destroy(&vd->vdev_ms_list);
672 	txg_list_destroy(&vd->vdev_dtl_list);
673 
674 	mutex_enter(&vd->vdev_dtl_lock);
675 	space_map_close(vd->vdev_dtl_sm);
676 	for (int t = 0; t < DTL_TYPES; t++) {
677 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
678 		range_tree_destroy(vd->vdev_dtl[t]);
679 	}
680 	mutex_exit(&vd->vdev_dtl_lock);
681 
682 	mutex_destroy(&vd->vdev_queue_lock);
683 	mutex_destroy(&vd->vdev_dtl_lock);
684 	mutex_destroy(&vd->vdev_stat_lock);
685 	mutex_destroy(&vd->vdev_probe_lock);
686 
687 	if (vd == spa->spa_root_vdev)
688 		spa->spa_root_vdev = NULL;
689 
690 	kmem_free(vd, sizeof (vdev_t));
691 }
692 
693 /*
694  * Transfer top-level vdev state from svd to tvd.
695  */
696 static void
697 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
698 {
699 	spa_t *spa = svd->vdev_spa;
700 	metaslab_t *msp;
701 	vdev_t *vd;
702 	int t;
703 
704 	ASSERT(tvd == tvd->vdev_top);
705 
706 	tvd->vdev_ms_array = svd->vdev_ms_array;
707 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
708 	tvd->vdev_ms_count = svd->vdev_ms_count;
709 	tvd->vdev_top_zap = svd->vdev_top_zap;
710 
711 	svd->vdev_ms_array = 0;
712 	svd->vdev_ms_shift = 0;
713 	svd->vdev_ms_count = 0;
714 	svd->vdev_top_zap = 0;
715 
716 	if (tvd->vdev_mg)
717 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
718 	tvd->vdev_mg = svd->vdev_mg;
719 	tvd->vdev_ms = svd->vdev_ms;
720 
721 	svd->vdev_mg = NULL;
722 	svd->vdev_ms = NULL;
723 
724 	if (tvd->vdev_mg != NULL)
725 		tvd->vdev_mg->mg_vd = tvd;
726 
727 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
728 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
729 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
730 
731 	svd->vdev_stat.vs_alloc = 0;
732 	svd->vdev_stat.vs_space = 0;
733 	svd->vdev_stat.vs_dspace = 0;
734 
735 	for (t = 0; t < TXG_SIZE; t++) {
736 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
737 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
738 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
739 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
740 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
741 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
742 	}
743 
744 	if (list_link_active(&svd->vdev_config_dirty_node)) {
745 		vdev_config_clean(svd);
746 		vdev_config_dirty(tvd);
747 	}
748 
749 	if (list_link_active(&svd->vdev_state_dirty_node)) {
750 		vdev_state_clean(svd);
751 		vdev_state_dirty(tvd);
752 	}
753 
754 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
755 	svd->vdev_deflate_ratio = 0;
756 
757 	tvd->vdev_islog = svd->vdev_islog;
758 	svd->vdev_islog = 0;
759 }
760 
761 static void
762 vdev_top_update(vdev_t *tvd, vdev_t *vd)
763 {
764 	if (vd == NULL)
765 		return;
766 
767 	vd->vdev_top = tvd;
768 
769 	for (int c = 0; c < vd->vdev_children; c++)
770 		vdev_top_update(tvd, vd->vdev_child[c]);
771 }
772 
773 /*
774  * Add a mirror/replacing vdev above an existing vdev.
775  */
776 vdev_t *
777 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
778 {
779 	spa_t *spa = cvd->vdev_spa;
780 	vdev_t *pvd = cvd->vdev_parent;
781 	vdev_t *mvd;
782 
783 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
784 
785 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
786 
787 	mvd->vdev_asize = cvd->vdev_asize;
788 	mvd->vdev_min_asize = cvd->vdev_min_asize;
789 	mvd->vdev_max_asize = cvd->vdev_max_asize;
790 	mvd->vdev_ashift = cvd->vdev_ashift;
791 	mvd->vdev_state = cvd->vdev_state;
792 	mvd->vdev_crtxg = cvd->vdev_crtxg;
793 
794 	vdev_remove_child(pvd, cvd);
795 	vdev_add_child(pvd, mvd);
796 	cvd->vdev_id = mvd->vdev_children;
797 	vdev_add_child(mvd, cvd);
798 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
799 
800 	if (mvd == mvd->vdev_top)
801 		vdev_top_transfer(cvd, mvd);
802 
803 	return (mvd);
804 }
805 
806 /*
807  * Remove a 1-way mirror/replacing vdev from the tree.
808  */
809 void
810 vdev_remove_parent(vdev_t *cvd)
811 {
812 	vdev_t *mvd = cvd->vdev_parent;
813 	vdev_t *pvd = mvd->vdev_parent;
814 
815 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
816 
817 	ASSERT(mvd->vdev_children == 1);
818 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
819 	    mvd->vdev_ops == &vdev_replacing_ops ||
820 	    mvd->vdev_ops == &vdev_spare_ops);
821 	cvd->vdev_ashift = mvd->vdev_ashift;
822 
823 	vdev_remove_child(mvd, cvd);
824 	vdev_remove_child(pvd, mvd);
825 
826 	/*
827 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
828 	 * Otherwise, we could have detached an offline device, and when we
829 	 * go to import the pool we'll think we have two top-level vdevs,
830 	 * instead of a different version of the same top-level vdev.
831 	 */
832 	if (mvd->vdev_top == mvd) {
833 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
834 		cvd->vdev_orig_guid = cvd->vdev_guid;
835 		cvd->vdev_guid += guid_delta;
836 		cvd->vdev_guid_sum += guid_delta;
837 	}
838 	cvd->vdev_id = mvd->vdev_id;
839 	vdev_add_child(pvd, cvd);
840 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
841 
842 	if (cvd == cvd->vdev_top)
843 		vdev_top_transfer(mvd, cvd);
844 
845 	ASSERT(mvd->vdev_children == 0);
846 	vdev_free(mvd);
847 }
848 
849 int
850 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
851 {
852 	spa_t *spa = vd->vdev_spa;
853 	objset_t *mos = spa->spa_meta_objset;
854 	uint64_t m;
855 	uint64_t oldc = vd->vdev_ms_count;
856 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
857 	metaslab_t **mspp;
858 	int error;
859 
860 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
861 
862 	/*
863 	 * This vdev is not being allocated from yet or is a hole.
864 	 */
865 	if (vd->vdev_ms_shift == 0)
866 		return (0);
867 
868 	ASSERT(!vd->vdev_ishole);
869 
870 	/*
871 	 * Compute the raidz-deflation ratio.  Note, we hard-code
872 	 * in 128k (1 << 17) because it is the "typical" blocksize.
873 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
874 	 * otherwise it would inconsistently account for existing bp's.
875 	 */
876 	vd->vdev_deflate_ratio = (1 << 17) /
877 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
878 
879 	ASSERT(oldc <= newc);
880 
881 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
882 
883 	if (oldc != 0) {
884 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
885 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
886 	}
887 
888 	vd->vdev_ms = mspp;
889 	vd->vdev_ms_count = newc;
890 
891 	for (m = oldc; m < newc; m++) {
892 		uint64_t object = 0;
893 
894 		if (txg == 0) {
895 			error = dmu_read(mos, vd->vdev_ms_array,
896 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
897 			    DMU_READ_PREFETCH);
898 			if (error)
899 				return (error);
900 		}
901 
902 		error = metaslab_init(vd->vdev_mg, m, object, txg,
903 		    &(vd->vdev_ms[m]));
904 		if (error)
905 			return (error);
906 	}
907 
908 	if (txg == 0)
909 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
910 
911 	/*
912 	 * If the vdev is being removed we don't activate
913 	 * the metaslabs since we want to ensure that no new
914 	 * allocations are performed on this device.
915 	 */
916 	if (oldc == 0 && !vd->vdev_removing)
917 		metaslab_group_activate(vd->vdev_mg);
918 
919 	if (txg == 0)
920 		spa_config_exit(spa, SCL_ALLOC, FTAG);
921 
922 	return (0);
923 }
924 
925 void
926 vdev_metaslab_fini(vdev_t *vd)
927 {
928 	uint64_t m;
929 	uint64_t count = vd->vdev_ms_count;
930 
931 	if (vd->vdev_ms != NULL) {
932 		metaslab_group_passivate(vd->vdev_mg);
933 		for (m = 0; m < count; m++) {
934 			metaslab_t *msp = vd->vdev_ms[m];
935 
936 			if (msp != NULL)
937 				metaslab_fini(msp);
938 		}
939 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
940 		vd->vdev_ms = NULL;
941 	}
942 }
943 
944 typedef struct vdev_probe_stats {
945 	boolean_t	vps_readable;
946 	boolean_t	vps_writeable;
947 	int		vps_flags;
948 } vdev_probe_stats_t;
949 
950 static void
951 vdev_probe_done(zio_t *zio)
952 {
953 	spa_t *spa = zio->io_spa;
954 	vdev_t *vd = zio->io_vd;
955 	vdev_probe_stats_t *vps = zio->io_private;
956 
957 	ASSERT(vd->vdev_probe_zio != NULL);
958 
959 	if (zio->io_type == ZIO_TYPE_READ) {
960 		if (zio->io_error == 0)
961 			vps->vps_readable = 1;
962 		if (zio->io_error == 0 && spa_writeable(spa)) {
963 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
964 			    zio->io_offset, zio->io_size, zio->io_data,
965 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
966 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
967 		} else {
968 			zio_buf_free(zio->io_data, zio->io_size);
969 		}
970 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
971 		if (zio->io_error == 0)
972 			vps->vps_writeable = 1;
973 		zio_buf_free(zio->io_data, zio->io_size);
974 	} else if (zio->io_type == ZIO_TYPE_NULL) {
975 		zio_t *pio;
976 
977 		vd->vdev_cant_read |= !vps->vps_readable;
978 		vd->vdev_cant_write |= !vps->vps_writeable;
979 
980 		if (vdev_readable(vd) &&
981 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
982 			zio->io_error = 0;
983 		} else {
984 			ASSERT(zio->io_error != 0);
985 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
986 			    spa, vd, NULL, 0, 0);
987 			zio->io_error = SET_ERROR(ENXIO);
988 		}
989 
990 		mutex_enter(&vd->vdev_probe_lock);
991 		ASSERT(vd->vdev_probe_zio == zio);
992 		vd->vdev_probe_zio = NULL;
993 		mutex_exit(&vd->vdev_probe_lock);
994 
995 		zio_link_t *zl = NULL;
996 		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
997 			if (!vdev_accessible(vd, pio))
998 				pio->io_error = SET_ERROR(ENXIO);
999 
1000 		kmem_free(vps, sizeof (*vps));
1001 	}
1002 }
1003 
1004 /*
1005  * Determine whether this device is accessible.
1006  *
1007  * Read and write to several known locations: the pad regions of each
1008  * vdev label but the first, which we leave alone in case it contains
1009  * a VTOC.
1010  */
1011 zio_t *
1012 vdev_probe(vdev_t *vd, zio_t *zio)
1013 {
1014 	spa_t *spa = vd->vdev_spa;
1015 	vdev_probe_stats_t *vps = NULL;
1016 	zio_t *pio;
1017 
1018 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1019 
1020 	/*
1021 	 * Don't probe the probe.
1022 	 */
1023 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1024 		return (NULL);
1025 
1026 	/*
1027 	 * To prevent 'probe storms' when a device fails, we create
1028 	 * just one probe i/o at a time.  All zios that want to probe
1029 	 * this vdev will become parents of the probe io.
1030 	 */
1031 	mutex_enter(&vd->vdev_probe_lock);
1032 
1033 	if ((pio = vd->vdev_probe_zio) == NULL) {
1034 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1035 
1036 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1037 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1038 		    ZIO_FLAG_TRYHARD;
1039 
1040 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1041 			/*
1042 			 * vdev_cant_read and vdev_cant_write can only
1043 			 * transition from TRUE to FALSE when we have the
1044 			 * SCL_ZIO lock as writer; otherwise they can only
1045 			 * transition from FALSE to TRUE.  This ensures that
1046 			 * any zio looking at these values can assume that
1047 			 * failures persist for the life of the I/O.  That's
1048 			 * important because when a device has intermittent
1049 			 * connectivity problems, we want to ensure that
1050 			 * they're ascribed to the device (ENXIO) and not
1051 			 * the zio (EIO).
1052 			 *
1053 			 * Since we hold SCL_ZIO as writer here, clear both
1054 			 * values so the probe can reevaluate from first
1055 			 * principles.
1056 			 */
1057 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1058 			vd->vdev_cant_read = B_FALSE;
1059 			vd->vdev_cant_write = B_FALSE;
1060 		}
1061 
1062 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1063 		    vdev_probe_done, vps,
1064 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1065 
1066 		/*
1067 		 * We can't change the vdev state in this context, so we
1068 		 * kick off an async task to do it on our behalf.
1069 		 */
1070 		if (zio != NULL) {
1071 			vd->vdev_probe_wanted = B_TRUE;
1072 			spa_async_request(spa, SPA_ASYNC_PROBE);
1073 		}
1074 	}
1075 
1076 	if (zio != NULL)
1077 		zio_add_child(zio, pio);
1078 
1079 	mutex_exit(&vd->vdev_probe_lock);
1080 
1081 	if (vps == NULL) {
1082 		ASSERT(zio != NULL);
1083 		return (NULL);
1084 	}
1085 
1086 	for (int l = 1; l < VDEV_LABELS; l++) {
1087 		zio_nowait(zio_read_phys(pio, vd,
1088 		    vdev_label_offset(vd->vdev_psize, l,
1089 		    offsetof(vdev_label_t, vl_pad2)),
1090 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1091 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1092 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1093 	}
1094 
1095 	if (zio == NULL)
1096 		return (pio);
1097 
1098 	zio_nowait(pio);
1099 	return (NULL);
1100 }
1101 
1102 static void
1103 vdev_open_child(void *arg)
1104 {
1105 	vdev_t *vd = arg;
1106 
1107 	vd->vdev_open_thread = curthread;
1108 	vd->vdev_open_error = vdev_open(vd);
1109 	vd->vdev_open_thread = NULL;
1110 }
1111 
1112 boolean_t
1113 vdev_uses_zvols(vdev_t *vd)
1114 {
1115 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1116 	    strlen(ZVOL_DIR)) == 0)
1117 		return (B_TRUE);
1118 	for (int c = 0; c < vd->vdev_children; c++)
1119 		if (vdev_uses_zvols(vd->vdev_child[c]))
1120 			return (B_TRUE);
1121 	return (B_FALSE);
1122 }
1123 
1124 void
1125 vdev_open_children(vdev_t *vd)
1126 {
1127 	taskq_t *tq;
1128 	int children = vd->vdev_children;
1129 
1130 	/*
1131 	 * in order to handle pools on top of zvols, do the opens
1132 	 * in a single thread so that the same thread holds the
1133 	 * spa_namespace_lock
1134 	 */
1135 	if (vdev_uses_zvols(vd)) {
1136 		for (int c = 0; c < children; c++)
1137 			vd->vdev_child[c]->vdev_open_error =
1138 			    vdev_open(vd->vdev_child[c]);
1139 		return;
1140 	}
1141 	tq = taskq_create("vdev_open", children, minclsyspri,
1142 	    children, children, TASKQ_PREPOPULATE);
1143 
1144 	for (int c = 0; c < children; c++)
1145 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1146 		    TQ_SLEEP) != NULL);
1147 
1148 	taskq_destroy(tq);
1149 }
1150 
1151 /*
1152  * Prepare a virtual device for access.
1153  */
1154 int
1155 vdev_open(vdev_t *vd)
1156 {
1157 	spa_t *spa = vd->vdev_spa;
1158 	int error;
1159 	uint64_t osize = 0;
1160 	uint64_t max_osize = 0;
1161 	uint64_t asize, max_asize, psize;
1162 	uint64_t ashift = 0;
1163 
1164 	ASSERT(vd->vdev_open_thread == curthread ||
1165 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1166 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1167 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1168 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1169 
1170 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1171 	vd->vdev_cant_read = B_FALSE;
1172 	vd->vdev_cant_write = B_FALSE;
1173 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1174 
1175 	/*
1176 	 * If this vdev is not removed, check its fault status.  If it's
1177 	 * faulted, bail out of the open.
1178 	 */
1179 	if (!vd->vdev_removed && vd->vdev_faulted) {
1180 		ASSERT(vd->vdev_children == 0);
1181 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1182 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1183 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1184 		    vd->vdev_label_aux);
1185 		return (SET_ERROR(ENXIO));
1186 	} else if (vd->vdev_offline) {
1187 		ASSERT(vd->vdev_children == 0);
1188 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1189 		return (SET_ERROR(ENXIO));
1190 	}
1191 
1192 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1193 
1194 	/*
1195 	 * Reset the vdev_reopening flag so that we actually close
1196 	 * the vdev on error.
1197 	 */
1198 	vd->vdev_reopening = B_FALSE;
1199 	if (zio_injection_enabled && error == 0)
1200 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1201 
1202 	if (error) {
1203 		if (vd->vdev_removed &&
1204 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1205 			vd->vdev_removed = B_FALSE;
1206 
1207 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1208 		    vd->vdev_stat.vs_aux);
1209 		return (error);
1210 	}
1211 
1212 	vd->vdev_removed = B_FALSE;
1213 
1214 	/*
1215 	 * Recheck the faulted flag now that we have confirmed that
1216 	 * the vdev is accessible.  If we're faulted, bail.
1217 	 */
1218 	if (vd->vdev_faulted) {
1219 		ASSERT(vd->vdev_children == 0);
1220 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1221 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1222 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1223 		    vd->vdev_label_aux);
1224 		return (SET_ERROR(ENXIO));
1225 	}
1226 
1227 	if (vd->vdev_degraded) {
1228 		ASSERT(vd->vdev_children == 0);
1229 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1230 		    VDEV_AUX_ERR_EXCEEDED);
1231 	} else {
1232 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1233 	}
1234 
1235 	/*
1236 	 * For hole or missing vdevs we just return success.
1237 	 */
1238 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1239 		return (0);
1240 
1241 	for (int c = 0; c < vd->vdev_children; c++) {
1242 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1243 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1244 			    VDEV_AUX_NONE);
1245 			break;
1246 		}
1247 	}
1248 
1249 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1250 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1251 
1252 	if (vd->vdev_children == 0) {
1253 		if (osize < SPA_MINDEVSIZE) {
1254 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1255 			    VDEV_AUX_TOO_SMALL);
1256 			return (SET_ERROR(EOVERFLOW));
1257 		}
1258 		psize = osize;
1259 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1260 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1261 		    VDEV_LABEL_END_SIZE);
1262 	} else {
1263 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1264 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1265 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1266 			    VDEV_AUX_TOO_SMALL);
1267 			return (SET_ERROR(EOVERFLOW));
1268 		}
1269 		psize = 0;
1270 		asize = osize;
1271 		max_asize = max_osize;
1272 	}
1273 
1274 	vd->vdev_psize = psize;
1275 
1276 	/*
1277 	 * Make sure the allocatable size hasn't shrunk too much.
1278 	 */
1279 	if (asize < vd->vdev_min_asize) {
1280 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1281 		    VDEV_AUX_BAD_LABEL);
1282 		return (SET_ERROR(EINVAL));
1283 	}
1284 
1285 	if (vd->vdev_asize == 0) {
1286 		/*
1287 		 * This is the first-ever open, so use the computed values.
1288 		 * For testing purposes, a higher ashift can be requested.
1289 		 */
1290 		vd->vdev_asize = asize;
1291 		vd->vdev_max_asize = max_asize;
1292 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1293 	} else {
1294 		/*
1295 		 * Detect if the alignment requirement has increased.
1296 		 * We don't want to make the pool unavailable, just
1297 		 * issue a warning instead.
1298 		 */
1299 		if (ashift > vd->vdev_top->vdev_ashift &&
1300 		    vd->vdev_ops->vdev_op_leaf) {
1301 			cmn_err(CE_WARN,
1302 			    "Disk, '%s', has a block alignment that is "
1303 			    "larger than the pool's alignment\n",
1304 			    vd->vdev_path);
1305 		}
1306 		vd->vdev_max_asize = max_asize;
1307 	}
1308 
1309 	/*
1310 	 * If all children are healthy we update asize if either:
1311 	 * The asize has increased, due to a device expansion caused by dynamic
1312 	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1313 	 * making the additional space available.
1314 	 *
1315 	 * The asize has decreased, due to a device shrink usually caused by a
1316 	 * vdev replace with a smaller device. This ensures that calculations
1317 	 * based of max_asize and asize e.g. esize are always valid. It's safe
1318 	 * to do this as we've already validated that asize is greater than
1319 	 * vdev_min_asize.
1320 	 */
1321 	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1322 	    ((asize > vd->vdev_asize &&
1323 	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1324 	    (asize < vd->vdev_asize)))
1325 		vd->vdev_asize = asize;
1326 
1327 	vdev_set_min_asize(vd);
1328 
1329 	/*
1330 	 * Ensure we can issue some IO before declaring the
1331 	 * vdev open for business.
1332 	 */
1333 	if (vd->vdev_ops->vdev_op_leaf &&
1334 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1335 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1336 		    VDEV_AUX_ERR_EXCEEDED);
1337 		return (error);
1338 	}
1339 
1340 	/*
1341 	 * Track the min and max ashift values for normal data devices.
1342 	 */
1343 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1344 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1345 		if (vd->vdev_ashift > spa->spa_max_ashift)
1346 			spa->spa_max_ashift = vd->vdev_ashift;
1347 		if (vd->vdev_ashift < spa->spa_min_ashift)
1348 			spa->spa_min_ashift = vd->vdev_ashift;
1349 	}
1350 
1351 	/*
1352 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1353 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1354 	 * since this would just restart the scrub we are already doing.
1355 	 */
1356 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1357 	    vdev_resilver_needed(vd, NULL, NULL))
1358 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1359 
1360 	return (0);
1361 }
1362 
1363 /*
1364  * Called once the vdevs are all opened, this routine validates the label
1365  * contents.  This needs to be done before vdev_load() so that we don't
1366  * inadvertently do repair I/Os to the wrong device.
1367  *
1368  * If 'strict' is false ignore the spa guid check. This is necessary because
1369  * if the machine crashed during a re-guid the new guid might have been written
1370  * to all of the vdev labels, but not the cached config. The strict check
1371  * will be performed when the pool is opened again using the mos config.
1372  *
1373  * This function will only return failure if one of the vdevs indicates that it
1374  * has since been destroyed or exported.  This is only possible if
1375  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1376  * will be updated but the function will return 0.
1377  */
1378 int
1379 vdev_validate(vdev_t *vd, boolean_t strict)
1380 {
1381 	spa_t *spa = vd->vdev_spa;
1382 	nvlist_t *label;
1383 	uint64_t guid = 0, top_guid;
1384 	uint64_t state;
1385 
1386 	for (int c = 0; c < vd->vdev_children; c++)
1387 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1388 			return (SET_ERROR(EBADF));
1389 
1390 	/*
1391 	 * If the device has already failed, or was marked offline, don't do
1392 	 * any further validation.  Otherwise, label I/O will fail and we will
1393 	 * overwrite the previous state.
1394 	 */
1395 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1396 		uint64_t aux_guid = 0;
1397 		nvlist_t *nvl;
1398 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1399 		    spa_last_synced_txg(spa) : -1ULL;
1400 
1401 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1402 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1403 			    VDEV_AUX_BAD_LABEL);
1404 			return (0);
1405 		}
1406 
1407 		/*
1408 		 * Determine if this vdev has been split off into another
1409 		 * pool.  If so, then refuse to open it.
1410 		 */
1411 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1412 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1413 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1414 			    VDEV_AUX_SPLIT_POOL);
1415 			nvlist_free(label);
1416 			return (0);
1417 		}
1418 
1419 		if (strict && (nvlist_lookup_uint64(label,
1420 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1421 		    guid != spa_guid(spa))) {
1422 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1423 			    VDEV_AUX_CORRUPT_DATA);
1424 			nvlist_free(label);
1425 			return (0);
1426 		}
1427 
1428 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1429 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1430 		    &aux_guid) != 0)
1431 			aux_guid = 0;
1432 
1433 		/*
1434 		 * If this vdev just became a top-level vdev because its
1435 		 * sibling was detached, it will have adopted the parent's
1436 		 * vdev guid -- but the label may or may not be on disk yet.
1437 		 * Fortunately, either version of the label will have the
1438 		 * same top guid, so if we're a top-level vdev, we can
1439 		 * safely compare to that instead.
1440 		 *
1441 		 * If we split this vdev off instead, then we also check the
1442 		 * original pool's guid.  We don't want to consider the vdev
1443 		 * corrupt if it is partway through a split operation.
1444 		 */
1445 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1446 		    &guid) != 0 ||
1447 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1448 		    &top_guid) != 0 ||
1449 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1450 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1451 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1452 			    VDEV_AUX_CORRUPT_DATA);
1453 			nvlist_free(label);
1454 			return (0);
1455 		}
1456 
1457 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1458 		    &state) != 0) {
1459 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460 			    VDEV_AUX_CORRUPT_DATA);
1461 			nvlist_free(label);
1462 			return (0);
1463 		}
1464 
1465 		nvlist_free(label);
1466 
1467 		/*
1468 		 * If this is a verbatim import, no need to check the
1469 		 * state of the pool.
1470 		 */
1471 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1472 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1473 		    state != POOL_STATE_ACTIVE)
1474 			return (SET_ERROR(EBADF));
1475 
1476 		/*
1477 		 * If we were able to open and validate a vdev that was
1478 		 * previously marked permanently unavailable, clear that state
1479 		 * now.
1480 		 */
1481 		if (vd->vdev_not_present)
1482 			vd->vdev_not_present = 0;
1483 	}
1484 
1485 	return (0);
1486 }
1487 
1488 /*
1489  * Close a virtual device.
1490  */
1491 void
1492 vdev_close(vdev_t *vd)
1493 {
1494 	spa_t *spa = vd->vdev_spa;
1495 	vdev_t *pvd = vd->vdev_parent;
1496 
1497 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1498 
1499 	/*
1500 	 * If our parent is reopening, then we are as well, unless we are
1501 	 * going offline.
1502 	 */
1503 	if (pvd != NULL && pvd->vdev_reopening)
1504 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1505 
1506 	vd->vdev_ops->vdev_op_close(vd);
1507 
1508 	vdev_cache_purge(vd);
1509 
1510 	/*
1511 	 * We record the previous state before we close it, so that if we are
1512 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1513 	 * it's still faulted.
1514 	 */
1515 	vd->vdev_prevstate = vd->vdev_state;
1516 
1517 	if (vd->vdev_offline)
1518 		vd->vdev_state = VDEV_STATE_OFFLINE;
1519 	else
1520 		vd->vdev_state = VDEV_STATE_CLOSED;
1521 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1522 }
1523 
1524 void
1525 vdev_hold(vdev_t *vd)
1526 {
1527 	spa_t *spa = vd->vdev_spa;
1528 
1529 	ASSERT(spa_is_root(spa));
1530 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1531 		return;
1532 
1533 	for (int c = 0; c < vd->vdev_children; c++)
1534 		vdev_hold(vd->vdev_child[c]);
1535 
1536 	if (vd->vdev_ops->vdev_op_leaf)
1537 		vd->vdev_ops->vdev_op_hold(vd);
1538 }
1539 
1540 void
1541 vdev_rele(vdev_t *vd)
1542 {
1543 	spa_t *spa = vd->vdev_spa;
1544 
1545 	ASSERT(spa_is_root(spa));
1546 	for (int c = 0; c < vd->vdev_children; c++)
1547 		vdev_rele(vd->vdev_child[c]);
1548 
1549 	if (vd->vdev_ops->vdev_op_leaf)
1550 		vd->vdev_ops->vdev_op_rele(vd);
1551 }
1552 
1553 /*
1554  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1555  * reopen leaf vdevs which had previously been opened as they might deadlock
1556  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1557  * If the leaf has never been opened then open it, as usual.
1558  */
1559 void
1560 vdev_reopen(vdev_t *vd)
1561 {
1562 	spa_t *spa = vd->vdev_spa;
1563 
1564 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1565 
1566 	/* set the reopening flag unless we're taking the vdev offline */
1567 	vd->vdev_reopening = !vd->vdev_offline;
1568 	vdev_close(vd);
1569 	(void) vdev_open(vd);
1570 
1571 	/*
1572 	 * Call vdev_validate() here to make sure we have the same device.
1573 	 * Otherwise, a device with an invalid label could be successfully
1574 	 * opened in response to vdev_reopen().
1575 	 */
1576 	if (vd->vdev_aux) {
1577 		(void) vdev_validate_aux(vd);
1578 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1579 		    vd->vdev_aux == &spa->spa_l2cache &&
1580 		    !l2arc_vdev_present(vd))
1581 			l2arc_add_vdev(spa, vd);
1582 	} else {
1583 		(void) vdev_validate(vd, B_TRUE);
1584 	}
1585 
1586 	/*
1587 	 * Reassess parent vdev's health.
1588 	 */
1589 	vdev_propagate_state(vd);
1590 }
1591 
1592 int
1593 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1594 {
1595 	int error;
1596 
1597 	/*
1598 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1599 	 * For a create, however, we want to fail the request if
1600 	 * there are any components we can't open.
1601 	 */
1602 	error = vdev_open(vd);
1603 
1604 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1605 		vdev_close(vd);
1606 		return (error ? error : ENXIO);
1607 	}
1608 
1609 	/*
1610 	 * Recursively load DTLs and initialize all labels.
1611 	 */
1612 	if ((error = vdev_dtl_load(vd)) != 0 ||
1613 	    (error = vdev_label_init(vd, txg, isreplacing ?
1614 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1615 		vdev_close(vd);
1616 		return (error);
1617 	}
1618 
1619 	return (0);
1620 }
1621 
1622 void
1623 vdev_metaslab_set_size(vdev_t *vd)
1624 {
1625 	/*
1626 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1627 	 */
1628 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1629 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1630 }
1631 
1632 void
1633 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1634 {
1635 	ASSERT(vd == vd->vdev_top);
1636 	ASSERT(!vd->vdev_ishole);
1637 	ASSERT(ISP2(flags));
1638 	ASSERT(spa_writeable(vd->vdev_spa));
1639 
1640 	if (flags & VDD_METASLAB)
1641 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1642 
1643 	if (flags & VDD_DTL)
1644 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1645 
1646 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1647 }
1648 
1649 void
1650 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1651 {
1652 	for (int c = 0; c < vd->vdev_children; c++)
1653 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1654 
1655 	if (vd->vdev_ops->vdev_op_leaf)
1656 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1657 }
1658 
1659 /*
1660  * DTLs.
1661  *
1662  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1663  * the vdev has less than perfect replication.  There are four kinds of DTL:
1664  *
1665  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1666  *
1667  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1668  *
1669  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1670  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1671  *	txgs that was scrubbed.
1672  *
1673  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1674  *	persistent errors or just some device being offline.
1675  *	Unlike the other three, the DTL_OUTAGE map is not generally
1676  *	maintained; it's only computed when needed, typically to
1677  *	determine whether a device can be detached.
1678  *
1679  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1680  * either has the data or it doesn't.
1681  *
1682  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1683  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1684  * if any child is less than fully replicated, then so is its parent.
1685  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1686  * comprising only those txgs which appear in 'maxfaults' or more children;
1687  * those are the txgs we don't have enough replication to read.  For example,
1688  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1689  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1690  * two child DTL_MISSING maps.
1691  *
1692  * It should be clear from the above that to compute the DTLs and outage maps
1693  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1694  * Therefore, that is all we keep on disk.  When loading the pool, or after
1695  * a configuration change, we generate all other DTLs from first principles.
1696  */
1697 void
1698 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1699 {
1700 	range_tree_t *rt = vd->vdev_dtl[t];
1701 
1702 	ASSERT(t < DTL_TYPES);
1703 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1704 	ASSERT(spa_writeable(vd->vdev_spa));
1705 
1706 	mutex_enter(rt->rt_lock);
1707 	if (!range_tree_contains(rt, txg, size))
1708 		range_tree_add(rt, txg, size);
1709 	mutex_exit(rt->rt_lock);
1710 }
1711 
1712 boolean_t
1713 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1714 {
1715 	range_tree_t *rt = vd->vdev_dtl[t];
1716 	boolean_t dirty = B_FALSE;
1717 
1718 	ASSERT(t < DTL_TYPES);
1719 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1720 
1721 	mutex_enter(rt->rt_lock);
1722 	if (range_tree_space(rt) != 0)
1723 		dirty = range_tree_contains(rt, txg, size);
1724 	mutex_exit(rt->rt_lock);
1725 
1726 	return (dirty);
1727 }
1728 
1729 boolean_t
1730 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1731 {
1732 	range_tree_t *rt = vd->vdev_dtl[t];
1733 	boolean_t empty;
1734 
1735 	mutex_enter(rt->rt_lock);
1736 	empty = (range_tree_space(rt) == 0);
1737 	mutex_exit(rt->rt_lock);
1738 
1739 	return (empty);
1740 }
1741 
1742 /*
1743  * Returns the lowest txg in the DTL range.
1744  */
1745 static uint64_t
1746 vdev_dtl_min(vdev_t *vd)
1747 {
1748 	range_seg_t *rs;
1749 
1750 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1751 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1752 	ASSERT0(vd->vdev_children);
1753 
1754 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1755 	return (rs->rs_start - 1);
1756 }
1757 
1758 /*
1759  * Returns the highest txg in the DTL.
1760  */
1761 static uint64_t
1762 vdev_dtl_max(vdev_t *vd)
1763 {
1764 	range_seg_t *rs;
1765 
1766 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1767 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1768 	ASSERT0(vd->vdev_children);
1769 
1770 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1771 	return (rs->rs_end);
1772 }
1773 
1774 /*
1775  * Determine if a resilvering vdev should remove any DTL entries from
1776  * its range. If the vdev was resilvering for the entire duration of the
1777  * scan then it should excise that range from its DTLs. Otherwise, this
1778  * vdev is considered partially resilvered and should leave its DTL
1779  * entries intact. The comment in vdev_dtl_reassess() describes how we
1780  * excise the DTLs.
1781  */
1782 static boolean_t
1783 vdev_dtl_should_excise(vdev_t *vd)
1784 {
1785 	spa_t *spa = vd->vdev_spa;
1786 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1787 
1788 	ASSERT0(scn->scn_phys.scn_errors);
1789 	ASSERT0(vd->vdev_children);
1790 
1791 	if (vd->vdev_resilver_txg == 0 ||
1792 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1793 		return (B_TRUE);
1794 
1795 	/*
1796 	 * When a resilver is initiated the scan will assign the scn_max_txg
1797 	 * value to the highest txg value that exists in all DTLs. If this
1798 	 * device's max DTL is not part of this scan (i.e. it is not in
1799 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1800 	 * for excision.
1801 	 */
1802 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1803 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1804 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1805 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1806 		return (B_TRUE);
1807 	}
1808 	return (B_FALSE);
1809 }
1810 
1811 /*
1812  * Reassess DTLs after a config change or scrub completion.
1813  */
1814 void
1815 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1816 {
1817 	spa_t *spa = vd->vdev_spa;
1818 	avl_tree_t reftree;
1819 	int minref;
1820 
1821 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1822 
1823 	for (int c = 0; c < vd->vdev_children; c++)
1824 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1825 		    scrub_txg, scrub_done);
1826 
1827 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1828 		return;
1829 
1830 	if (vd->vdev_ops->vdev_op_leaf) {
1831 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1832 
1833 		mutex_enter(&vd->vdev_dtl_lock);
1834 
1835 		/*
1836 		 * If we've completed a scan cleanly then determine
1837 		 * if this vdev should remove any DTLs. We only want to
1838 		 * excise regions on vdevs that were available during
1839 		 * the entire duration of this scan.
1840 		 */
1841 		if (scrub_txg != 0 &&
1842 		    (spa->spa_scrub_started ||
1843 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1844 		    vdev_dtl_should_excise(vd)) {
1845 			/*
1846 			 * We completed a scrub up to scrub_txg.  If we
1847 			 * did it without rebooting, then the scrub dtl
1848 			 * will be valid, so excise the old region and
1849 			 * fold in the scrub dtl.  Otherwise, leave the
1850 			 * dtl as-is if there was an error.
1851 			 *
1852 			 * There's little trick here: to excise the beginning
1853 			 * of the DTL_MISSING map, we put it into a reference
1854 			 * tree and then add a segment with refcnt -1 that
1855 			 * covers the range [0, scrub_txg).  This means
1856 			 * that each txg in that range has refcnt -1 or 0.
1857 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1858 			 * entries in the range [0, scrub_txg) will have a
1859 			 * positive refcnt -- either 1 or 2.  We then convert
1860 			 * the reference tree into the new DTL_MISSING map.
1861 			 */
1862 			space_reftree_create(&reftree);
1863 			space_reftree_add_map(&reftree,
1864 			    vd->vdev_dtl[DTL_MISSING], 1);
1865 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1866 			space_reftree_add_map(&reftree,
1867 			    vd->vdev_dtl[DTL_SCRUB], 2);
1868 			space_reftree_generate_map(&reftree,
1869 			    vd->vdev_dtl[DTL_MISSING], 1);
1870 			space_reftree_destroy(&reftree);
1871 		}
1872 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1873 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1874 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1875 		if (scrub_done)
1876 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1877 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1878 		if (!vdev_readable(vd))
1879 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1880 		else
1881 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1882 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1883 
1884 		/*
1885 		 * If the vdev was resilvering and no longer has any
1886 		 * DTLs then reset its resilvering flag.
1887 		 */
1888 		if (vd->vdev_resilver_txg != 0 &&
1889 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1890 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1891 			vd->vdev_resilver_txg = 0;
1892 
1893 		mutex_exit(&vd->vdev_dtl_lock);
1894 
1895 		if (txg != 0)
1896 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1897 		return;
1898 	}
1899 
1900 	mutex_enter(&vd->vdev_dtl_lock);
1901 	for (int t = 0; t < DTL_TYPES; t++) {
1902 		/* account for child's outage in parent's missing map */
1903 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1904 		if (t == DTL_SCRUB)
1905 			continue;			/* leaf vdevs only */
1906 		if (t == DTL_PARTIAL)
1907 			minref = 1;			/* i.e. non-zero */
1908 		else if (vd->vdev_nparity != 0)
1909 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1910 		else
1911 			minref = vd->vdev_children;	/* any kind of mirror */
1912 		space_reftree_create(&reftree);
1913 		for (int c = 0; c < vd->vdev_children; c++) {
1914 			vdev_t *cvd = vd->vdev_child[c];
1915 			mutex_enter(&cvd->vdev_dtl_lock);
1916 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1917 			mutex_exit(&cvd->vdev_dtl_lock);
1918 		}
1919 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1920 		space_reftree_destroy(&reftree);
1921 	}
1922 	mutex_exit(&vd->vdev_dtl_lock);
1923 }
1924 
1925 int
1926 vdev_dtl_load(vdev_t *vd)
1927 {
1928 	spa_t *spa = vd->vdev_spa;
1929 	objset_t *mos = spa->spa_meta_objset;
1930 	int error = 0;
1931 
1932 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1933 		ASSERT(!vd->vdev_ishole);
1934 
1935 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1936 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1937 		if (error)
1938 			return (error);
1939 		ASSERT(vd->vdev_dtl_sm != NULL);
1940 
1941 		mutex_enter(&vd->vdev_dtl_lock);
1942 
1943 		/*
1944 		 * Now that we've opened the space_map we need to update
1945 		 * the in-core DTL.
1946 		 */
1947 		space_map_update(vd->vdev_dtl_sm);
1948 
1949 		error = space_map_load(vd->vdev_dtl_sm,
1950 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1951 		mutex_exit(&vd->vdev_dtl_lock);
1952 
1953 		return (error);
1954 	}
1955 
1956 	for (int c = 0; c < vd->vdev_children; c++) {
1957 		error = vdev_dtl_load(vd->vdev_child[c]);
1958 		if (error != 0)
1959 			break;
1960 	}
1961 
1962 	return (error);
1963 }
1964 
1965 void
1966 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
1967 {
1968 	spa_t *spa = vd->vdev_spa;
1969 
1970 	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
1971 	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1972 	    zapobj, tx));
1973 }
1974 
1975 uint64_t
1976 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
1977 {
1978 	spa_t *spa = vd->vdev_spa;
1979 	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
1980 	    DMU_OT_NONE, 0, tx);
1981 
1982 	ASSERT(zap != 0);
1983 	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
1984 	    zap, tx));
1985 
1986 	return (zap);
1987 }
1988 
1989 void
1990 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
1991 {
1992 	if (vd->vdev_ops != &vdev_hole_ops &&
1993 	    vd->vdev_ops != &vdev_missing_ops &&
1994 	    vd->vdev_ops != &vdev_root_ops &&
1995 	    !vd->vdev_top->vdev_removing) {
1996 		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
1997 			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
1998 		}
1999 		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2000 			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2001 		}
2002 	}
2003 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2004 		vdev_construct_zaps(vd->vdev_child[i], tx);
2005 	}
2006 }
2007 
2008 void
2009 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2010 {
2011 	spa_t *spa = vd->vdev_spa;
2012 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2013 	objset_t *mos = spa->spa_meta_objset;
2014 	range_tree_t *rtsync;
2015 	kmutex_t rtlock;
2016 	dmu_tx_t *tx;
2017 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2018 
2019 	ASSERT(!vd->vdev_ishole);
2020 	ASSERT(vd->vdev_ops->vdev_op_leaf);
2021 
2022 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2023 
2024 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2025 		mutex_enter(&vd->vdev_dtl_lock);
2026 		space_map_free(vd->vdev_dtl_sm, tx);
2027 		space_map_close(vd->vdev_dtl_sm);
2028 		vd->vdev_dtl_sm = NULL;
2029 		mutex_exit(&vd->vdev_dtl_lock);
2030 
2031 		/*
2032 		 * We only destroy the leaf ZAP for detached leaves or for
2033 		 * removed log devices. Removed data devices handle leaf ZAP
2034 		 * cleanup later, once cancellation is no longer possible.
2035 		 */
2036 		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2037 		    vd->vdev_top->vdev_islog)) {
2038 			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2039 			vd->vdev_leaf_zap = 0;
2040 		}
2041 
2042 		dmu_tx_commit(tx);
2043 		return;
2044 	}
2045 
2046 	if (vd->vdev_dtl_sm == NULL) {
2047 		uint64_t new_object;
2048 
2049 		new_object = space_map_alloc(mos, tx);
2050 		VERIFY3U(new_object, !=, 0);
2051 
2052 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2053 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
2054 		ASSERT(vd->vdev_dtl_sm != NULL);
2055 	}
2056 
2057 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2058 
2059 	rtsync = range_tree_create(NULL, NULL, &rtlock);
2060 
2061 	mutex_enter(&rtlock);
2062 
2063 	mutex_enter(&vd->vdev_dtl_lock);
2064 	range_tree_walk(rt, range_tree_add, rtsync);
2065 	mutex_exit(&vd->vdev_dtl_lock);
2066 
2067 	space_map_truncate(vd->vdev_dtl_sm, tx);
2068 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2069 	range_tree_vacate(rtsync, NULL, NULL);
2070 
2071 	range_tree_destroy(rtsync);
2072 
2073 	mutex_exit(&rtlock);
2074 	mutex_destroy(&rtlock);
2075 
2076 	/*
2077 	 * If the object for the space map has changed then dirty
2078 	 * the top level so that we update the config.
2079 	 */
2080 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2081 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2082 		    "new object %llu", txg, spa_name(spa), object,
2083 		    space_map_object(vd->vdev_dtl_sm));
2084 		vdev_config_dirty(vd->vdev_top);
2085 	}
2086 
2087 	dmu_tx_commit(tx);
2088 
2089 	mutex_enter(&vd->vdev_dtl_lock);
2090 	space_map_update(vd->vdev_dtl_sm);
2091 	mutex_exit(&vd->vdev_dtl_lock);
2092 }
2093 
2094 /*
2095  * Determine whether the specified vdev can be offlined/detached/removed
2096  * without losing data.
2097  */
2098 boolean_t
2099 vdev_dtl_required(vdev_t *vd)
2100 {
2101 	spa_t *spa = vd->vdev_spa;
2102 	vdev_t *tvd = vd->vdev_top;
2103 	uint8_t cant_read = vd->vdev_cant_read;
2104 	boolean_t required;
2105 
2106 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2107 
2108 	if (vd == spa->spa_root_vdev || vd == tvd)
2109 		return (B_TRUE);
2110 
2111 	/*
2112 	 * Temporarily mark the device as unreadable, and then determine
2113 	 * whether this results in any DTL outages in the top-level vdev.
2114 	 * If not, we can safely offline/detach/remove the device.
2115 	 */
2116 	vd->vdev_cant_read = B_TRUE;
2117 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2118 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2119 	vd->vdev_cant_read = cant_read;
2120 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2121 
2122 	if (!required && zio_injection_enabled)
2123 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2124 
2125 	return (required);
2126 }
2127 
2128 /*
2129  * Determine if resilver is needed, and if so the txg range.
2130  */
2131 boolean_t
2132 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2133 {
2134 	boolean_t needed = B_FALSE;
2135 	uint64_t thismin = UINT64_MAX;
2136 	uint64_t thismax = 0;
2137 
2138 	if (vd->vdev_children == 0) {
2139 		mutex_enter(&vd->vdev_dtl_lock);
2140 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2141 		    vdev_writeable(vd)) {
2142 
2143 			thismin = vdev_dtl_min(vd);
2144 			thismax = vdev_dtl_max(vd);
2145 			needed = B_TRUE;
2146 		}
2147 		mutex_exit(&vd->vdev_dtl_lock);
2148 	} else {
2149 		for (int c = 0; c < vd->vdev_children; c++) {
2150 			vdev_t *cvd = vd->vdev_child[c];
2151 			uint64_t cmin, cmax;
2152 
2153 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2154 				thismin = MIN(thismin, cmin);
2155 				thismax = MAX(thismax, cmax);
2156 				needed = B_TRUE;
2157 			}
2158 		}
2159 	}
2160 
2161 	if (needed && minp) {
2162 		*minp = thismin;
2163 		*maxp = thismax;
2164 	}
2165 	return (needed);
2166 }
2167 
2168 void
2169 vdev_load(vdev_t *vd)
2170 {
2171 	/*
2172 	 * Recursively load all children.
2173 	 */
2174 	for (int c = 0; c < vd->vdev_children; c++)
2175 		vdev_load(vd->vdev_child[c]);
2176 
2177 	/*
2178 	 * If this is a top-level vdev, initialize its metaslabs.
2179 	 */
2180 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2181 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2182 	    vdev_metaslab_init(vd, 0) != 0))
2183 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2184 		    VDEV_AUX_CORRUPT_DATA);
2185 
2186 	/*
2187 	 * If this is a leaf vdev, load its DTL.
2188 	 */
2189 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2190 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2191 		    VDEV_AUX_CORRUPT_DATA);
2192 }
2193 
2194 /*
2195  * The special vdev case is used for hot spares and l2cache devices.  Its
2196  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2197  * we make sure that we can open the underlying device, then try to read the
2198  * label, and make sure that the label is sane and that it hasn't been
2199  * repurposed to another pool.
2200  */
2201 int
2202 vdev_validate_aux(vdev_t *vd)
2203 {
2204 	nvlist_t *label;
2205 	uint64_t guid, version;
2206 	uint64_t state;
2207 
2208 	if (!vdev_readable(vd))
2209 		return (0);
2210 
2211 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2212 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2213 		    VDEV_AUX_CORRUPT_DATA);
2214 		return (-1);
2215 	}
2216 
2217 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2218 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2219 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2220 	    guid != vd->vdev_guid ||
2221 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2222 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2223 		    VDEV_AUX_CORRUPT_DATA);
2224 		nvlist_free(label);
2225 		return (-1);
2226 	}
2227 
2228 	/*
2229 	 * We don't actually check the pool state here.  If it's in fact in
2230 	 * use by another pool, we update this fact on the fly when requested.
2231 	 */
2232 	nvlist_free(label);
2233 	return (0);
2234 }
2235 
2236 void
2237 vdev_remove(vdev_t *vd, uint64_t txg)
2238 {
2239 	spa_t *spa = vd->vdev_spa;
2240 	objset_t *mos = spa->spa_meta_objset;
2241 	dmu_tx_t *tx;
2242 
2243 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2244 	ASSERT(vd == vd->vdev_top);
2245 	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2246 
2247 	if (vd->vdev_ms != NULL) {
2248 		metaslab_group_t *mg = vd->vdev_mg;
2249 
2250 		metaslab_group_histogram_verify(mg);
2251 		metaslab_class_histogram_verify(mg->mg_class);
2252 
2253 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2254 			metaslab_t *msp = vd->vdev_ms[m];
2255 
2256 			if (msp == NULL || msp->ms_sm == NULL)
2257 				continue;
2258 
2259 			mutex_enter(&msp->ms_lock);
2260 			/*
2261 			 * If the metaslab was not loaded when the vdev
2262 			 * was removed then the histogram accounting may
2263 			 * not be accurate. Update the histogram information
2264 			 * here so that we ensure that the metaslab group
2265 			 * and metaslab class are up-to-date.
2266 			 */
2267 			metaslab_group_histogram_remove(mg, msp);
2268 
2269 			VERIFY0(space_map_allocated(msp->ms_sm));
2270 			space_map_free(msp->ms_sm, tx);
2271 			space_map_close(msp->ms_sm);
2272 			msp->ms_sm = NULL;
2273 			mutex_exit(&msp->ms_lock);
2274 		}
2275 
2276 		metaslab_group_histogram_verify(mg);
2277 		metaslab_class_histogram_verify(mg->mg_class);
2278 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2279 			ASSERT0(mg->mg_histogram[i]);
2280 
2281 	}
2282 
2283 	if (vd->vdev_ms_array) {
2284 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2285 		vd->vdev_ms_array = 0;
2286 	}
2287 
2288 	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2289 		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2290 		vd->vdev_top_zap = 0;
2291 	}
2292 	dmu_tx_commit(tx);
2293 }
2294 
2295 void
2296 vdev_sync_done(vdev_t *vd, uint64_t txg)
2297 {
2298 	metaslab_t *msp;
2299 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2300 
2301 	ASSERT(!vd->vdev_ishole);
2302 
2303 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2304 		metaslab_sync_done(msp, txg);
2305 
2306 	if (reassess)
2307 		metaslab_sync_reassess(vd->vdev_mg);
2308 }
2309 
2310 void
2311 vdev_sync(vdev_t *vd, uint64_t txg)
2312 {
2313 	spa_t *spa = vd->vdev_spa;
2314 	vdev_t *lvd;
2315 	metaslab_t *msp;
2316 	dmu_tx_t *tx;
2317 
2318 	ASSERT(!vd->vdev_ishole);
2319 
2320 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2321 		ASSERT(vd == vd->vdev_top);
2322 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2323 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2324 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2325 		ASSERT(vd->vdev_ms_array != 0);
2326 		vdev_config_dirty(vd);
2327 		dmu_tx_commit(tx);
2328 	}
2329 
2330 	/*
2331 	 * Remove the metadata associated with this vdev once it's empty.
2332 	 */
2333 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2334 		vdev_remove(vd, txg);
2335 
2336 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2337 		metaslab_sync(msp, txg);
2338 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2339 	}
2340 
2341 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2342 		vdev_dtl_sync(lvd, txg);
2343 
2344 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2345 }
2346 
2347 uint64_t
2348 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2349 {
2350 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2351 }
2352 
2353 /*
2354  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2355  * not be opened, and no I/O is attempted.
2356  */
2357 int
2358 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2359 {
2360 	vdev_t *vd, *tvd;
2361 
2362 	spa_vdev_state_enter(spa, SCL_NONE);
2363 
2364 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2365 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2366 
2367 	if (!vd->vdev_ops->vdev_op_leaf)
2368 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2369 
2370 	tvd = vd->vdev_top;
2371 
2372 	/*
2373 	 * We don't directly use the aux state here, but if we do a
2374 	 * vdev_reopen(), we need this value to be present to remember why we
2375 	 * were faulted.
2376 	 */
2377 	vd->vdev_label_aux = aux;
2378 
2379 	/*
2380 	 * Faulted state takes precedence over degraded.
2381 	 */
2382 	vd->vdev_delayed_close = B_FALSE;
2383 	vd->vdev_faulted = 1ULL;
2384 	vd->vdev_degraded = 0ULL;
2385 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2386 
2387 	/*
2388 	 * If this device has the only valid copy of the data, then
2389 	 * back off and simply mark the vdev as degraded instead.
2390 	 */
2391 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2392 		vd->vdev_degraded = 1ULL;
2393 		vd->vdev_faulted = 0ULL;
2394 
2395 		/*
2396 		 * If we reopen the device and it's not dead, only then do we
2397 		 * mark it degraded.
2398 		 */
2399 		vdev_reopen(tvd);
2400 
2401 		if (vdev_readable(vd))
2402 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2403 	}
2404 
2405 	return (spa_vdev_state_exit(spa, vd, 0));
2406 }
2407 
2408 /*
2409  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2410  * user that something is wrong.  The vdev continues to operate as normal as far
2411  * as I/O is concerned.
2412  */
2413 int
2414 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2415 {
2416 	vdev_t *vd;
2417 
2418 	spa_vdev_state_enter(spa, SCL_NONE);
2419 
2420 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2421 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2422 
2423 	if (!vd->vdev_ops->vdev_op_leaf)
2424 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2425 
2426 	/*
2427 	 * If the vdev is already faulted, then don't do anything.
2428 	 */
2429 	if (vd->vdev_faulted || vd->vdev_degraded)
2430 		return (spa_vdev_state_exit(spa, NULL, 0));
2431 
2432 	vd->vdev_degraded = 1ULL;
2433 	if (!vdev_is_dead(vd))
2434 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2435 		    aux);
2436 
2437 	return (spa_vdev_state_exit(spa, vd, 0));
2438 }
2439 
2440 /*
2441  * Online the given vdev.
2442  *
2443  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2444  * spare device should be detached when the device finishes resilvering.
2445  * Second, the online should be treated like a 'test' online case, so no FMA
2446  * events are generated if the device fails to open.
2447  */
2448 int
2449 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2450 {
2451 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2452 	boolean_t wasoffline;
2453 	vdev_state_t oldstate;
2454 
2455 	spa_vdev_state_enter(spa, SCL_NONE);
2456 
2457 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2458 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2459 
2460 	if (!vd->vdev_ops->vdev_op_leaf)
2461 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2462 
2463 	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2464 	oldstate = vd->vdev_state;
2465 
2466 	tvd = vd->vdev_top;
2467 	vd->vdev_offline = B_FALSE;
2468 	vd->vdev_tmpoffline = B_FALSE;
2469 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2470 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2471 
2472 	/* XXX - L2ARC 1.0 does not support expansion */
2473 	if (!vd->vdev_aux) {
2474 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2475 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2476 	}
2477 
2478 	vdev_reopen(tvd);
2479 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2480 
2481 	if (!vd->vdev_aux) {
2482 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2483 			pvd->vdev_expanding = B_FALSE;
2484 	}
2485 
2486 	if (newstate)
2487 		*newstate = vd->vdev_state;
2488 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2489 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2490 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2491 	    vd->vdev_parent->vdev_child[0] == vd)
2492 		vd->vdev_unspare = B_TRUE;
2493 
2494 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2495 
2496 		/* XXX - L2ARC 1.0 does not support expansion */
2497 		if (vd->vdev_aux)
2498 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2499 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2500 	}
2501 
2502 	if (wasoffline ||
2503 	    (oldstate < VDEV_STATE_DEGRADED &&
2504 	    vd->vdev_state >= VDEV_STATE_DEGRADED))
2505 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2506 
2507 	return (spa_vdev_state_exit(spa, vd, 0));
2508 }
2509 
2510 static int
2511 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2512 {
2513 	vdev_t *vd, *tvd;
2514 	int error = 0;
2515 	uint64_t generation;
2516 	metaslab_group_t *mg;
2517 
2518 top:
2519 	spa_vdev_state_enter(spa, SCL_ALLOC);
2520 
2521 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2522 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2523 
2524 	if (!vd->vdev_ops->vdev_op_leaf)
2525 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2526 
2527 	tvd = vd->vdev_top;
2528 	mg = tvd->vdev_mg;
2529 	generation = spa->spa_config_generation + 1;
2530 
2531 	/*
2532 	 * If the device isn't already offline, try to offline it.
2533 	 */
2534 	if (!vd->vdev_offline) {
2535 		/*
2536 		 * If this device has the only valid copy of some data,
2537 		 * don't allow it to be offlined. Log devices are always
2538 		 * expendable.
2539 		 */
2540 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2541 		    vdev_dtl_required(vd))
2542 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2543 
2544 		/*
2545 		 * If the top-level is a slog and it has had allocations
2546 		 * then proceed.  We check that the vdev's metaslab group
2547 		 * is not NULL since it's possible that we may have just
2548 		 * added this vdev but not yet initialized its metaslabs.
2549 		 */
2550 		if (tvd->vdev_islog && mg != NULL) {
2551 			/*
2552 			 * Prevent any future allocations.
2553 			 */
2554 			metaslab_group_passivate(mg);
2555 			(void) spa_vdev_state_exit(spa, vd, 0);
2556 
2557 			error = spa_offline_log(spa);
2558 
2559 			spa_vdev_state_enter(spa, SCL_ALLOC);
2560 
2561 			/*
2562 			 * Check to see if the config has changed.
2563 			 */
2564 			if (error || generation != spa->spa_config_generation) {
2565 				metaslab_group_activate(mg);
2566 				if (error)
2567 					return (spa_vdev_state_exit(spa,
2568 					    vd, error));
2569 				(void) spa_vdev_state_exit(spa, vd, 0);
2570 				goto top;
2571 			}
2572 			ASSERT0(tvd->vdev_stat.vs_alloc);
2573 		}
2574 
2575 		/*
2576 		 * Offline this device and reopen its top-level vdev.
2577 		 * If the top-level vdev is a log device then just offline
2578 		 * it. Otherwise, if this action results in the top-level
2579 		 * vdev becoming unusable, undo it and fail the request.
2580 		 */
2581 		vd->vdev_offline = B_TRUE;
2582 		vdev_reopen(tvd);
2583 
2584 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2585 		    vdev_is_dead(tvd)) {
2586 			vd->vdev_offline = B_FALSE;
2587 			vdev_reopen(tvd);
2588 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2589 		}
2590 
2591 		/*
2592 		 * Add the device back into the metaslab rotor so that
2593 		 * once we online the device it's open for business.
2594 		 */
2595 		if (tvd->vdev_islog && mg != NULL)
2596 			metaslab_group_activate(mg);
2597 	}
2598 
2599 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2600 
2601 	return (spa_vdev_state_exit(spa, vd, 0));
2602 }
2603 
2604 int
2605 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2606 {
2607 	int error;
2608 
2609 	mutex_enter(&spa->spa_vdev_top_lock);
2610 	error = vdev_offline_locked(spa, guid, flags);
2611 	mutex_exit(&spa->spa_vdev_top_lock);
2612 
2613 	return (error);
2614 }
2615 
2616 /*
2617  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2618  * vdev_offline(), we assume the spa config is locked.  We also clear all
2619  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2620  */
2621 void
2622 vdev_clear(spa_t *spa, vdev_t *vd)
2623 {
2624 	vdev_t *rvd = spa->spa_root_vdev;
2625 
2626 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2627 
2628 	if (vd == NULL)
2629 		vd = rvd;
2630 
2631 	vd->vdev_stat.vs_read_errors = 0;
2632 	vd->vdev_stat.vs_write_errors = 0;
2633 	vd->vdev_stat.vs_checksum_errors = 0;
2634 
2635 	for (int c = 0; c < vd->vdev_children; c++)
2636 		vdev_clear(spa, vd->vdev_child[c]);
2637 
2638 	/*
2639 	 * If we're in the FAULTED state or have experienced failed I/O, then
2640 	 * clear the persistent state and attempt to reopen the device.  We
2641 	 * also mark the vdev config dirty, so that the new faulted state is
2642 	 * written out to disk.
2643 	 */
2644 	if (vd->vdev_faulted || vd->vdev_degraded ||
2645 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2646 
2647 		/*
2648 		 * When reopening in reponse to a clear event, it may be due to
2649 		 * a fmadm repair request.  In this case, if the device is
2650 		 * still broken, we want to still post the ereport again.
2651 		 */
2652 		vd->vdev_forcefault = B_TRUE;
2653 
2654 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2655 		vd->vdev_cant_read = B_FALSE;
2656 		vd->vdev_cant_write = B_FALSE;
2657 
2658 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2659 
2660 		vd->vdev_forcefault = B_FALSE;
2661 
2662 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2663 			vdev_state_dirty(vd->vdev_top);
2664 
2665 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2666 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2667 
2668 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2669 	}
2670 
2671 	/*
2672 	 * When clearing a FMA-diagnosed fault, we always want to
2673 	 * unspare the device, as we assume that the original spare was
2674 	 * done in response to the FMA fault.
2675 	 */
2676 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2677 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2678 	    vd->vdev_parent->vdev_child[0] == vd)
2679 		vd->vdev_unspare = B_TRUE;
2680 }
2681 
2682 boolean_t
2683 vdev_is_dead(vdev_t *vd)
2684 {
2685 	/*
2686 	 * Holes and missing devices are always considered "dead".
2687 	 * This simplifies the code since we don't have to check for
2688 	 * these types of devices in the various code paths.
2689 	 * Instead we rely on the fact that we skip over dead devices
2690 	 * before issuing I/O to them.
2691 	 */
2692 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2693 	    vd->vdev_ops == &vdev_missing_ops);
2694 }
2695 
2696 boolean_t
2697 vdev_readable(vdev_t *vd)
2698 {
2699 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2700 }
2701 
2702 boolean_t
2703 vdev_writeable(vdev_t *vd)
2704 {
2705 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2706 }
2707 
2708 boolean_t
2709 vdev_allocatable(vdev_t *vd)
2710 {
2711 	uint64_t state = vd->vdev_state;
2712 
2713 	/*
2714 	 * We currently allow allocations from vdevs which may be in the
2715 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2716 	 * fails to reopen then we'll catch it later when we're holding
2717 	 * the proper locks.  Note that we have to get the vdev state
2718 	 * in a local variable because although it changes atomically,
2719 	 * we're asking two separate questions about it.
2720 	 */
2721 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2722 	    !vd->vdev_cant_write && !vd->vdev_ishole &&
2723 	    vd->vdev_mg->mg_initialized);
2724 }
2725 
2726 boolean_t
2727 vdev_accessible(vdev_t *vd, zio_t *zio)
2728 {
2729 	ASSERT(zio->io_vd == vd);
2730 
2731 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2732 		return (B_FALSE);
2733 
2734 	if (zio->io_type == ZIO_TYPE_READ)
2735 		return (!vd->vdev_cant_read);
2736 
2737 	if (zio->io_type == ZIO_TYPE_WRITE)
2738 		return (!vd->vdev_cant_write);
2739 
2740 	return (B_TRUE);
2741 }
2742 
2743 /*
2744  * Get statistics for the given vdev.
2745  */
2746 void
2747 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2748 {
2749 	spa_t *spa = vd->vdev_spa;
2750 	vdev_t *rvd = spa->spa_root_vdev;
2751 	vdev_t *tvd = vd->vdev_top;
2752 
2753 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2754 
2755 	mutex_enter(&vd->vdev_stat_lock);
2756 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2757 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2758 	vs->vs_state = vd->vdev_state;
2759 	vs->vs_rsize = vdev_get_min_asize(vd);
2760 	if (vd->vdev_ops->vdev_op_leaf)
2761 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2762 	/*
2763 	 * Report expandable space on top-level, non-auxillary devices only.
2764 	 * The expandable space is reported in terms of metaslab sized units
2765 	 * since that determines how much space the pool can expand.
2766 	 */
2767 	if (vd->vdev_aux == NULL && tvd != NULL) {
2768 		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize,
2769 		    1ULL << tvd->vdev_ms_shift);
2770 	}
2771 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2772 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2773 	}
2774 
2775 	/*
2776 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2777 	 * over all top-level vdevs (i.e. the direct children of the root).
2778 	 */
2779 	if (vd == rvd) {
2780 		for (int c = 0; c < rvd->vdev_children; c++) {
2781 			vdev_t *cvd = rvd->vdev_child[c];
2782 			vdev_stat_t *cvs = &cvd->vdev_stat;
2783 
2784 			for (int t = 0; t < ZIO_TYPES; t++) {
2785 				vs->vs_ops[t] += cvs->vs_ops[t];
2786 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2787 			}
2788 			cvs->vs_scan_removing = cvd->vdev_removing;
2789 		}
2790 	}
2791 	mutex_exit(&vd->vdev_stat_lock);
2792 }
2793 
2794 void
2795 vdev_clear_stats(vdev_t *vd)
2796 {
2797 	mutex_enter(&vd->vdev_stat_lock);
2798 	vd->vdev_stat.vs_space = 0;
2799 	vd->vdev_stat.vs_dspace = 0;
2800 	vd->vdev_stat.vs_alloc = 0;
2801 	mutex_exit(&vd->vdev_stat_lock);
2802 }
2803 
2804 void
2805 vdev_scan_stat_init(vdev_t *vd)
2806 {
2807 	vdev_stat_t *vs = &vd->vdev_stat;
2808 
2809 	for (int c = 0; c < vd->vdev_children; c++)
2810 		vdev_scan_stat_init(vd->vdev_child[c]);
2811 
2812 	mutex_enter(&vd->vdev_stat_lock);
2813 	vs->vs_scan_processed = 0;
2814 	mutex_exit(&vd->vdev_stat_lock);
2815 }
2816 
2817 void
2818 vdev_stat_update(zio_t *zio, uint64_t psize)
2819 {
2820 	spa_t *spa = zio->io_spa;
2821 	vdev_t *rvd = spa->spa_root_vdev;
2822 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2823 	vdev_t *pvd;
2824 	uint64_t txg = zio->io_txg;
2825 	vdev_stat_t *vs = &vd->vdev_stat;
2826 	zio_type_t type = zio->io_type;
2827 	int flags = zio->io_flags;
2828 
2829 	/*
2830 	 * If this i/o is a gang leader, it didn't do any actual work.
2831 	 */
2832 	if (zio->io_gang_tree)
2833 		return;
2834 
2835 	if (zio->io_error == 0) {
2836 		/*
2837 		 * If this is a root i/o, don't count it -- we've already
2838 		 * counted the top-level vdevs, and vdev_get_stats() will
2839 		 * aggregate them when asked.  This reduces contention on
2840 		 * the root vdev_stat_lock and implicitly handles blocks
2841 		 * that compress away to holes, for which there is no i/o.
2842 		 * (Holes never create vdev children, so all the counters
2843 		 * remain zero, which is what we want.)
2844 		 *
2845 		 * Note: this only applies to successful i/o (io_error == 0)
2846 		 * because unlike i/o counts, errors are not additive.
2847 		 * When reading a ditto block, for example, failure of
2848 		 * one top-level vdev does not imply a root-level error.
2849 		 */
2850 		if (vd == rvd)
2851 			return;
2852 
2853 		ASSERT(vd == zio->io_vd);
2854 
2855 		if (flags & ZIO_FLAG_IO_BYPASS)
2856 			return;
2857 
2858 		mutex_enter(&vd->vdev_stat_lock);
2859 
2860 		if (flags & ZIO_FLAG_IO_REPAIR) {
2861 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2862 				dsl_scan_phys_t *scn_phys =
2863 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2864 				uint64_t *processed = &scn_phys->scn_processed;
2865 
2866 				/* XXX cleanup? */
2867 				if (vd->vdev_ops->vdev_op_leaf)
2868 					atomic_add_64(processed, psize);
2869 				vs->vs_scan_processed += psize;
2870 			}
2871 
2872 			if (flags & ZIO_FLAG_SELF_HEAL)
2873 				vs->vs_self_healed += psize;
2874 		}
2875 
2876 		vs->vs_ops[type]++;
2877 		vs->vs_bytes[type] += psize;
2878 
2879 		mutex_exit(&vd->vdev_stat_lock);
2880 		return;
2881 	}
2882 
2883 	if (flags & ZIO_FLAG_SPECULATIVE)
2884 		return;
2885 
2886 	/*
2887 	 * If this is an I/O error that is going to be retried, then ignore the
2888 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2889 	 * hard errors, when in reality they can happen for any number of
2890 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2891 	 */
2892 	if (zio->io_error == EIO &&
2893 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2894 		return;
2895 
2896 	/*
2897 	 * Intent logs writes won't propagate their error to the root
2898 	 * I/O so don't mark these types of failures as pool-level
2899 	 * errors.
2900 	 */
2901 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2902 		return;
2903 
2904 	mutex_enter(&vd->vdev_stat_lock);
2905 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2906 		if (zio->io_error == ECKSUM)
2907 			vs->vs_checksum_errors++;
2908 		else
2909 			vs->vs_read_errors++;
2910 	}
2911 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2912 		vs->vs_write_errors++;
2913 	mutex_exit(&vd->vdev_stat_lock);
2914 
2915 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2916 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2917 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2918 	    spa->spa_claiming)) {
2919 		/*
2920 		 * This is either a normal write (not a repair), or it's
2921 		 * a repair induced by the scrub thread, or it's a repair
2922 		 * made by zil_claim() during spa_load() in the first txg.
2923 		 * In the normal case, we commit the DTL change in the same
2924 		 * txg as the block was born.  In the scrub-induced repair
2925 		 * case, we know that scrubs run in first-pass syncing context,
2926 		 * so we commit the DTL change in spa_syncing_txg(spa).
2927 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2928 		 *
2929 		 * We currently do not make DTL entries for failed spontaneous
2930 		 * self-healing writes triggered by normal (non-scrubbing)
2931 		 * reads, because we have no transactional context in which to
2932 		 * do so -- and it's not clear that it'd be desirable anyway.
2933 		 */
2934 		if (vd->vdev_ops->vdev_op_leaf) {
2935 			uint64_t commit_txg = txg;
2936 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2937 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2938 				ASSERT(spa_sync_pass(spa) == 1);
2939 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2940 				commit_txg = spa_syncing_txg(spa);
2941 			} else if (spa->spa_claiming) {
2942 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2943 				commit_txg = spa_first_txg(spa);
2944 			}
2945 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2946 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2947 				return;
2948 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2949 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2950 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2951 		}
2952 		if (vd != rvd)
2953 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2954 	}
2955 }
2956 
2957 /*
2958  * Update the in-core space usage stats for this vdev, its metaslab class,
2959  * and the root vdev.
2960  */
2961 void
2962 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2963     int64_t space_delta)
2964 {
2965 	int64_t dspace_delta = space_delta;
2966 	spa_t *spa = vd->vdev_spa;
2967 	vdev_t *rvd = spa->spa_root_vdev;
2968 	metaslab_group_t *mg = vd->vdev_mg;
2969 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2970 
2971 	ASSERT(vd == vd->vdev_top);
2972 
2973 	/*
2974 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2975 	 * factor.  We must calculate this here and not at the root vdev
2976 	 * because the root vdev's psize-to-asize is simply the max of its
2977 	 * childrens', thus not accurate enough for us.
2978 	 */
2979 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2980 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2981 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2982 	    vd->vdev_deflate_ratio;
2983 
2984 	mutex_enter(&vd->vdev_stat_lock);
2985 	vd->vdev_stat.vs_alloc += alloc_delta;
2986 	vd->vdev_stat.vs_space += space_delta;
2987 	vd->vdev_stat.vs_dspace += dspace_delta;
2988 	mutex_exit(&vd->vdev_stat_lock);
2989 
2990 	if (mc == spa_normal_class(spa)) {
2991 		mutex_enter(&rvd->vdev_stat_lock);
2992 		rvd->vdev_stat.vs_alloc += alloc_delta;
2993 		rvd->vdev_stat.vs_space += space_delta;
2994 		rvd->vdev_stat.vs_dspace += dspace_delta;
2995 		mutex_exit(&rvd->vdev_stat_lock);
2996 	}
2997 
2998 	if (mc != NULL) {
2999 		ASSERT(rvd == vd->vdev_parent);
3000 		ASSERT(vd->vdev_ms_count != 0);
3001 
3002 		metaslab_class_space_update(mc,
3003 		    alloc_delta, defer_delta, space_delta, dspace_delta);
3004 	}
3005 }
3006 
3007 /*
3008  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3009  * so that it will be written out next time the vdev configuration is synced.
3010  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3011  */
3012 void
3013 vdev_config_dirty(vdev_t *vd)
3014 {
3015 	spa_t *spa = vd->vdev_spa;
3016 	vdev_t *rvd = spa->spa_root_vdev;
3017 	int c;
3018 
3019 	ASSERT(spa_writeable(spa));
3020 
3021 	/*
3022 	 * If this is an aux vdev (as with l2cache and spare devices), then we
3023 	 * update the vdev config manually and set the sync flag.
3024 	 */
3025 	if (vd->vdev_aux != NULL) {
3026 		spa_aux_vdev_t *sav = vd->vdev_aux;
3027 		nvlist_t **aux;
3028 		uint_t naux;
3029 
3030 		for (c = 0; c < sav->sav_count; c++) {
3031 			if (sav->sav_vdevs[c] == vd)
3032 				break;
3033 		}
3034 
3035 		if (c == sav->sav_count) {
3036 			/*
3037 			 * We're being removed.  There's nothing more to do.
3038 			 */
3039 			ASSERT(sav->sav_sync == B_TRUE);
3040 			return;
3041 		}
3042 
3043 		sav->sav_sync = B_TRUE;
3044 
3045 		if (nvlist_lookup_nvlist_array(sav->sav_config,
3046 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3047 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3048 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3049 		}
3050 
3051 		ASSERT(c < naux);
3052 
3053 		/*
3054 		 * Setting the nvlist in the middle if the array is a little
3055 		 * sketchy, but it will work.
3056 		 */
3057 		nvlist_free(aux[c]);
3058 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3059 
3060 		return;
3061 	}
3062 
3063 	/*
3064 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3065 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3066 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3067 	 * so this is sufficient to ensure mutual exclusion.
3068 	 */
3069 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3070 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3071 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3072 
3073 	if (vd == rvd) {
3074 		for (c = 0; c < rvd->vdev_children; c++)
3075 			vdev_config_dirty(rvd->vdev_child[c]);
3076 	} else {
3077 		ASSERT(vd == vd->vdev_top);
3078 
3079 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3080 		    !vd->vdev_ishole)
3081 			list_insert_head(&spa->spa_config_dirty_list, vd);
3082 	}
3083 }
3084 
3085 void
3086 vdev_config_clean(vdev_t *vd)
3087 {
3088 	spa_t *spa = vd->vdev_spa;
3089 
3090 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3091 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3092 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3093 
3094 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3095 	list_remove(&spa->spa_config_dirty_list, vd);
3096 }
3097 
3098 /*
3099  * Mark a top-level vdev's state as dirty, so that the next pass of
3100  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3101  * the state changes from larger config changes because they require
3102  * much less locking, and are often needed for administrative actions.
3103  */
3104 void
3105 vdev_state_dirty(vdev_t *vd)
3106 {
3107 	spa_t *spa = vd->vdev_spa;
3108 
3109 	ASSERT(spa_writeable(spa));
3110 	ASSERT(vd == vd->vdev_top);
3111 
3112 	/*
3113 	 * The state list is protected by the SCL_STATE lock.  The caller
3114 	 * must either hold SCL_STATE as writer, or must be the sync thread
3115 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3116 	 * so this is sufficient to ensure mutual exclusion.
3117 	 */
3118 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3119 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3120 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3121 
3122 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3123 		list_insert_head(&spa->spa_state_dirty_list, vd);
3124 }
3125 
3126 void
3127 vdev_state_clean(vdev_t *vd)
3128 {
3129 	spa_t *spa = vd->vdev_spa;
3130 
3131 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3132 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3133 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3134 
3135 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3136 	list_remove(&spa->spa_state_dirty_list, vd);
3137 }
3138 
3139 /*
3140  * Propagate vdev state up from children to parent.
3141  */
3142 void
3143 vdev_propagate_state(vdev_t *vd)
3144 {
3145 	spa_t *spa = vd->vdev_spa;
3146 	vdev_t *rvd = spa->spa_root_vdev;
3147 	int degraded = 0, faulted = 0;
3148 	int corrupted = 0;
3149 	vdev_t *child;
3150 
3151 	if (vd->vdev_children > 0) {
3152 		for (int c = 0; c < vd->vdev_children; c++) {
3153 			child = vd->vdev_child[c];
3154 
3155 			/*
3156 			 * Don't factor holes into the decision.
3157 			 */
3158 			if (child->vdev_ishole)
3159 				continue;
3160 
3161 			if (!vdev_readable(child) ||
3162 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3163 				/*
3164 				 * Root special: if there is a top-level log
3165 				 * device, treat the root vdev as if it were
3166 				 * degraded.
3167 				 */
3168 				if (child->vdev_islog && vd == rvd)
3169 					degraded++;
3170 				else
3171 					faulted++;
3172 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3173 				degraded++;
3174 			}
3175 
3176 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3177 				corrupted++;
3178 		}
3179 
3180 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3181 
3182 		/*
3183 		 * Root special: if there is a top-level vdev that cannot be
3184 		 * opened due to corrupted metadata, then propagate the root
3185 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3186 		 * replicas'.
3187 		 */
3188 		if (corrupted && vd == rvd &&
3189 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3190 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3191 			    VDEV_AUX_CORRUPT_DATA);
3192 	}
3193 
3194 	if (vd->vdev_parent)
3195 		vdev_propagate_state(vd->vdev_parent);
3196 }
3197 
3198 /*
3199  * Set a vdev's state.  If this is during an open, we don't update the parent
3200  * state, because we're in the process of opening children depth-first.
3201  * Otherwise, we propagate the change to the parent.
3202  *
3203  * If this routine places a device in a faulted state, an appropriate ereport is
3204  * generated.
3205  */
3206 void
3207 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3208 {
3209 	uint64_t save_state;
3210 	spa_t *spa = vd->vdev_spa;
3211 
3212 	if (state == vd->vdev_state) {
3213 		vd->vdev_stat.vs_aux = aux;
3214 		return;
3215 	}
3216 
3217 	save_state = vd->vdev_state;
3218 
3219 	vd->vdev_state = state;
3220 	vd->vdev_stat.vs_aux = aux;
3221 
3222 	/*
3223 	 * If we are setting the vdev state to anything but an open state, then
3224 	 * always close the underlying device unless the device has requested
3225 	 * a delayed close (i.e. we're about to remove or fault the device).
3226 	 * Otherwise, we keep accessible but invalid devices open forever.
3227 	 * We don't call vdev_close() itself, because that implies some extra
3228 	 * checks (offline, etc) that we don't want here.  This is limited to
3229 	 * leaf devices, because otherwise closing the device will affect other
3230 	 * children.
3231 	 */
3232 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3233 	    vd->vdev_ops->vdev_op_leaf)
3234 		vd->vdev_ops->vdev_op_close(vd);
3235 
3236 	/*
3237 	 * If we have brought this vdev back into service, we need
3238 	 * to notify fmd so that it can gracefully repair any outstanding
3239 	 * cases due to a missing device.  We do this in all cases, even those
3240 	 * that probably don't correlate to a repaired fault.  This is sure to
3241 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3242 	 * this is a transient state it's OK, as the retire agent will
3243 	 * double-check the state of the vdev before repairing it.
3244 	 */
3245 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3246 	    vd->vdev_prevstate != state)
3247 		zfs_post_state_change(spa, vd);
3248 
3249 	if (vd->vdev_removed &&
3250 	    state == VDEV_STATE_CANT_OPEN &&
3251 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3252 		/*
3253 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3254 		 * device was previously marked removed and someone attempted to
3255 		 * reopen it.  If this failed due to a nonexistent device, then
3256 		 * keep the device in the REMOVED state.  We also let this be if
3257 		 * it is one of our special test online cases, which is only
3258 		 * attempting to online the device and shouldn't generate an FMA
3259 		 * fault.
3260 		 */
3261 		vd->vdev_state = VDEV_STATE_REMOVED;
3262 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3263 	} else if (state == VDEV_STATE_REMOVED) {
3264 		vd->vdev_removed = B_TRUE;
3265 	} else if (state == VDEV_STATE_CANT_OPEN) {
3266 		/*
3267 		 * If we fail to open a vdev during an import or recovery, we
3268 		 * mark it as "not available", which signifies that it was
3269 		 * never there to begin with.  Failure to open such a device
3270 		 * is not considered an error.
3271 		 */
3272 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3273 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3274 		    vd->vdev_ops->vdev_op_leaf)
3275 			vd->vdev_not_present = 1;
3276 
3277 		/*
3278 		 * Post the appropriate ereport.  If the 'prevstate' field is
3279 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3280 		 * that this is part of a vdev_reopen().  In this case, we don't
3281 		 * want to post the ereport if the device was already in the
3282 		 * CANT_OPEN state beforehand.
3283 		 *
3284 		 * If the 'checkremove' flag is set, then this is an attempt to
3285 		 * online the device in response to an insertion event.  If we
3286 		 * hit this case, then we have detected an insertion event for a
3287 		 * faulted or offline device that wasn't in the removed state.
3288 		 * In this scenario, we don't post an ereport because we are
3289 		 * about to replace the device, or attempt an online with
3290 		 * vdev_forcefault, which will generate the fault for us.
3291 		 */
3292 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3293 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3294 		    vd != spa->spa_root_vdev) {
3295 			const char *class;
3296 
3297 			switch (aux) {
3298 			case VDEV_AUX_OPEN_FAILED:
3299 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3300 				break;
3301 			case VDEV_AUX_CORRUPT_DATA:
3302 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3303 				break;
3304 			case VDEV_AUX_NO_REPLICAS:
3305 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3306 				break;
3307 			case VDEV_AUX_BAD_GUID_SUM:
3308 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3309 				break;
3310 			case VDEV_AUX_TOO_SMALL:
3311 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3312 				break;
3313 			case VDEV_AUX_BAD_LABEL:
3314 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3315 				break;
3316 			default:
3317 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3318 			}
3319 
3320 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3321 		}
3322 
3323 		/* Erase any notion of persistent removed state */
3324 		vd->vdev_removed = B_FALSE;
3325 	} else {
3326 		vd->vdev_removed = B_FALSE;
3327 	}
3328 
3329 	if (!isopen && vd->vdev_parent)
3330 		vdev_propagate_state(vd->vdev_parent);
3331 }
3332 
3333 /*
3334  * Check the vdev configuration to ensure that it's capable of supporting
3335  * a root pool. We do not support partial configuration.
3336  * In addition, only a single top-level vdev is allowed.
3337  */
3338 boolean_t
3339 vdev_is_bootable(vdev_t *vd)
3340 {
3341 	if (!vd->vdev_ops->vdev_op_leaf) {
3342 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3343 
3344 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3345 		    vd->vdev_children > 1) {
3346 			return (B_FALSE);
3347 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3348 			return (B_FALSE);
3349 		}
3350 	}
3351 
3352 	for (int c = 0; c < vd->vdev_children; c++) {
3353 		if (!vdev_is_bootable(vd->vdev_child[c]))
3354 			return (B_FALSE);
3355 	}
3356 	return (B_TRUE);
3357 }
3358 
3359 /*
3360  * Load the state from the original vdev tree (ovd) which
3361  * we've retrieved from the MOS config object. If the original
3362  * vdev was offline or faulted then we transfer that state to the
3363  * device in the current vdev tree (nvd).
3364  */
3365 void
3366 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3367 {
3368 	spa_t *spa = nvd->vdev_spa;
3369 
3370 	ASSERT(nvd->vdev_top->vdev_islog);
3371 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3372 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3373 
3374 	for (int c = 0; c < nvd->vdev_children; c++)
3375 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3376 
3377 	if (nvd->vdev_ops->vdev_op_leaf) {
3378 		/*
3379 		 * Restore the persistent vdev state
3380 		 */
3381 		nvd->vdev_offline = ovd->vdev_offline;
3382 		nvd->vdev_faulted = ovd->vdev_faulted;
3383 		nvd->vdev_degraded = ovd->vdev_degraded;
3384 		nvd->vdev_removed = ovd->vdev_removed;
3385 	}
3386 }
3387 
3388 /*
3389  * Determine if a log device has valid content.  If the vdev was
3390  * removed or faulted in the MOS config then we know that
3391  * the content on the log device has already been written to the pool.
3392  */
3393 boolean_t
3394 vdev_log_state_valid(vdev_t *vd)
3395 {
3396 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3397 	    !vd->vdev_removed)
3398 		return (B_TRUE);
3399 
3400 	for (int c = 0; c < vd->vdev_children; c++)
3401 		if (vdev_log_state_valid(vd->vdev_child[c]))
3402 			return (B_TRUE);
3403 
3404 	return (B_FALSE);
3405 }
3406 
3407 /*
3408  * Expand a vdev if possible.
3409  */
3410 void
3411 vdev_expand(vdev_t *vd, uint64_t txg)
3412 {
3413 	ASSERT(vd->vdev_top == vd);
3414 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3415 
3416 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3417 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3418 		vdev_config_dirty(vd);
3419 	}
3420 }
3421 
3422 /*
3423  * Split a vdev.
3424  */
3425 void
3426 vdev_split(vdev_t *vd)
3427 {
3428 	vdev_t *cvd, *pvd = vd->vdev_parent;
3429 
3430 	vdev_remove_child(pvd, vd);
3431 	vdev_compact_children(pvd);
3432 
3433 	cvd = pvd->vdev_child[0];
3434 	if (pvd->vdev_children == 1) {
3435 		vdev_remove_parent(cvd);
3436 		cvd->vdev_splitting = B_TRUE;
3437 	}
3438 	vdev_propagate_state(cvd);
3439 }
3440 
3441 void
3442 vdev_deadman(vdev_t *vd)
3443 {
3444 	for (int c = 0; c < vd->vdev_children; c++) {
3445 		vdev_t *cvd = vd->vdev_child[c];
3446 
3447 		vdev_deadman(cvd);
3448 	}
3449 
3450 	if (vd->vdev_ops->vdev_op_leaf) {
3451 		vdev_queue_t *vq = &vd->vdev_queue;
3452 
3453 		mutex_enter(&vq->vq_lock);
3454 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3455 			spa_t *spa = vd->vdev_spa;
3456 			zio_t *fio;
3457 			uint64_t delta;
3458 
3459 			/*
3460 			 * Look at the head of all the pending queues,
3461 			 * if any I/O has been outstanding for longer than
3462 			 * the spa_deadman_synctime we panic the system.
3463 			 */
3464 			fio = avl_first(&vq->vq_active_tree);
3465 			delta = gethrtime() - fio->io_timestamp;
3466 			if (delta > spa_deadman_synctime(spa)) {
3467 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3468 				    "delta %lluns, last io %lluns",
3469 				    fio->io_timestamp, delta,
3470 				    vq->vq_io_complete_ts);
3471 				fm_panic("I/O to pool '%s' appears to be "
3472 				    "hung.", spa_name(spa));
3473 			}
3474 		}
3475 		mutex_exit(&vq->vq_lock);
3476 	}
3477 }
3478