xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 0e34b6a7bff4918432f0aa6b1dfaf73ac9df45b1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 
43 /*
44  * Virtual device management.
45  */
46 
47 static vdev_ops_t *vdev_ops_table[] = {
48 	&vdev_root_ops,
49 	&vdev_raidz_ops,
50 	&vdev_mirror_ops,
51 	&vdev_replacing_ops,
52 	&vdev_disk_ops,
53 	&vdev_file_ops,
54 	&vdev_missing_ops,
55 	NULL
56 };
57 
58 /*
59  * Given a vdev type, return the appropriate ops vector.
60  */
61 static vdev_ops_t *
62 vdev_getops(const char *type)
63 {
64 	vdev_ops_t *ops, **opspp;
65 
66 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
67 		if (strcmp(ops->vdev_op_type, type) == 0)
68 			break;
69 
70 	return (ops);
71 }
72 
73 /*
74  * Default asize function: return the MAX of psize with the asize of
75  * all children.  This is what's used by anything other than RAID-Z.
76  */
77 uint64_t
78 vdev_default_asize(vdev_t *vd, uint64_t psize)
79 {
80 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_ashift);
81 	uint64_t csize;
82 	uint64_t c;
83 
84 	for (c = 0; c < vd->vdev_children; c++) {
85 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
86 		asize = MAX(asize, csize);
87 	}
88 
89 	return (asize);
90 }
91 
92 /*
93  * Get the replaceable or attachable device size.
94  * If the parent is a mirror or raidz, the replaceable size is the minimum
95  * psize of all its children. For the rest, just return our own psize.
96  *
97  * e.g.
98  *			psize	rsize
99  * root			-	-
100  *	mirror/raidz	-	-
101  *	    disk1	20g	20g
102  *	    disk2 	40g	20g
103  *	disk3 		80g	80g
104  */
105 uint64_t
106 vdev_get_rsize(vdev_t *vd)
107 {
108 	vdev_t *pvd, *cvd;
109 	uint64_t c, rsize;
110 
111 	pvd = vd->vdev_parent;
112 
113 	/*
114 	 * If our parent is NULL or the root, just return our own psize.
115 	 */
116 	if (pvd == NULL || pvd->vdev_parent == NULL)
117 		return (vd->vdev_psize);
118 
119 	rsize = 0;
120 
121 	for (c = 0; c < pvd->vdev_children; c++) {
122 		cvd = pvd->vdev_child[c];
123 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
124 	}
125 
126 	return (rsize);
127 }
128 
129 vdev_t *
130 vdev_lookup_top(spa_t *spa, uint64_t vdev)
131 {
132 	vdev_t *rvd = spa->spa_root_vdev;
133 
134 	if (vdev < rvd->vdev_children)
135 		return (rvd->vdev_child[vdev]);
136 
137 	return (NULL);
138 }
139 
140 vdev_t *
141 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
142 {
143 	int c;
144 	vdev_t *mvd;
145 
146 	if (vd->vdev_guid == guid)
147 		return (vd);
148 
149 	for (c = 0; c < vd->vdev_children; c++)
150 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
151 		    NULL)
152 			return (mvd);
153 
154 	return (NULL);
155 }
156 
157 void
158 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
159 {
160 	size_t oldsize, newsize;
161 	uint64_t id = cvd->vdev_id;
162 	vdev_t **newchild;
163 
164 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
165 	ASSERT(cvd->vdev_parent == NULL);
166 
167 	cvd->vdev_parent = pvd;
168 
169 	if (pvd == NULL)
170 		return;
171 
172 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
173 
174 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
175 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
176 	newsize = pvd->vdev_children * sizeof (vdev_t *);
177 
178 	newchild = kmem_zalloc(newsize, KM_SLEEP);
179 	if (pvd->vdev_child != NULL) {
180 		bcopy(pvd->vdev_child, newchild, oldsize);
181 		kmem_free(pvd->vdev_child, oldsize);
182 	}
183 
184 	pvd->vdev_child = newchild;
185 	pvd->vdev_child[id] = cvd;
186 
187 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
188 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
189 
190 	/*
191 	 * Walk up all ancestors to update guid sum.
192 	 */
193 	for (; pvd != NULL; pvd = pvd->vdev_parent)
194 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
195 }
196 
197 void
198 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
199 {
200 	int c;
201 	uint_t id = cvd->vdev_id;
202 
203 	ASSERT(cvd->vdev_parent == pvd);
204 
205 	if (pvd == NULL)
206 		return;
207 
208 	ASSERT(id < pvd->vdev_children);
209 	ASSERT(pvd->vdev_child[id] == cvd);
210 
211 	pvd->vdev_child[id] = NULL;
212 	cvd->vdev_parent = NULL;
213 
214 	for (c = 0; c < pvd->vdev_children; c++)
215 		if (pvd->vdev_child[c])
216 			break;
217 
218 	if (c == pvd->vdev_children) {
219 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
220 		pvd->vdev_child = NULL;
221 		pvd->vdev_children = 0;
222 	}
223 
224 	/*
225 	 * Walk up all ancestors to update guid sum.
226 	 */
227 	for (; pvd != NULL; pvd = pvd->vdev_parent)
228 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
229 }
230 
231 /*
232  * Remove any holes in the child array.
233  */
234 void
235 vdev_compact_children(vdev_t *pvd)
236 {
237 	vdev_t **newchild, *cvd;
238 	int oldc = pvd->vdev_children;
239 	int newc, c;
240 
241 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
242 
243 	for (c = newc = 0; c < oldc; c++)
244 		if (pvd->vdev_child[c])
245 			newc++;
246 
247 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
248 
249 	for (c = newc = 0; c < oldc; c++) {
250 		if ((cvd = pvd->vdev_child[c]) != NULL) {
251 			newchild[newc] = cvd;
252 			cvd->vdev_id = newc++;
253 		}
254 	}
255 
256 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
257 	pvd->vdev_child = newchild;
258 	pvd->vdev_children = newc;
259 }
260 
261 /*
262  * Allocate and minimally initialize a vdev_t.
263  */
264 static vdev_t *
265 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
266 {
267 	vdev_t *vd;
268 
269 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
270 
271 	if (spa->spa_root_vdev == NULL) {
272 		ASSERT(ops == &vdev_root_ops);
273 		spa->spa_root_vdev = vd;
274 	}
275 
276 	if (guid == 0) {
277 		if (spa->spa_root_vdev == vd) {
278 			/*
279 			 * The root vdev's guid will also be the pool guid,
280 			 * which must be unique among all pools.
281 			 */
282 			while (guid == 0 || spa_guid_exists(guid, 0))
283 				guid = spa_get_random(-1ULL);
284 		} else {
285 			/*
286 			 * Any other vdev's guid must be unique within the pool.
287 			 */
288 			while (guid == 0 ||
289 			    spa_guid_exists(spa_guid(spa), guid))
290 				guid = spa_get_random(-1ULL);
291 		}
292 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
293 	}
294 
295 	vd->vdev_spa = spa;
296 	vd->vdev_id = id;
297 	vd->vdev_guid = guid;
298 	vd->vdev_guid_sum = guid;
299 	vd->vdev_ops = ops;
300 	vd->vdev_state = VDEV_STATE_CLOSED;
301 
302 	mutex_init(&vd->vdev_dirty_lock, NULL, MUTEX_DEFAULT, NULL);
303 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
304 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
305 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
306 	txg_list_create(&vd->vdev_ms_list,
307 	    offsetof(struct metaslab, ms_txg_node));
308 	txg_list_create(&vd->vdev_dtl_list,
309 	    offsetof(struct vdev, vdev_dtl_node));
310 	vd->vdev_stat.vs_timestamp = gethrtime();
311 
312 	return (vd);
313 }
314 
315 /*
316  * Free a vdev_t that has been removed from service.
317  */
318 static void
319 vdev_free_common(vdev_t *vd)
320 {
321 	spa_t *spa = vd->vdev_spa;
322 
323 	if (vd->vdev_path)
324 		spa_strfree(vd->vdev_path);
325 	if (vd->vdev_devid)
326 		spa_strfree(vd->vdev_devid);
327 
328 	txg_list_destroy(&vd->vdev_ms_list);
329 	txg_list_destroy(&vd->vdev_dtl_list);
330 	mutex_enter(&vd->vdev_dtl_lock);
331 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
332 	space_map_destroy(&vd->vdev_dtl_map);
333 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
334 	space_map_destroy(&vd->vdev_dtl_scrub);
335 	mutex_exit(&vd->vdev_dtl_lock);
336 	mutex_destroy(&vd->vdev_dtl_lock);
337 	mutex_destroy(&vd->vdev_dirty_lock);
338 
339 	if (vd == spa->spa_root_vdev)
340 		spa->spa_root_vdev = NULL;
341 
342 	kmem_free(vd, sizeof (vdev_t));
343 }
344 
345 /*
346  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
347  * creating a new vdev or loading an existing one - the behavior is slightly
348  * different for each case.
349  */
350 vdev_t *
351 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype)
352 {
353 	vdev_ops_t *ops;
354 	char *type;
355 	uint64_t guid = 0, offline = 0;
356 	vdev_t *vd;
357 
358 	ASSERT(spa_config_held(spa, RW_WRITER));
359 
360 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
361 		return (NULL);
362 
363 	if ((ops = vdev_getops(type)) == NULL)
364 		return (NULL);
365 
366 	/*
367 	 * If this is a load, get the vdev guid from the nvlist.
368 	 * Otherwise, vdev_alloc_common() will generate one for us.
369 	 */
370 	if (alloctype == VDEV_ALLOC_LOAD) {
371 		uint64_t label_id;
372 
373 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
374 		    label_id != id)
375 			return (NULL);
376 
377 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378 			return (NULL);
379 	}
380 
381 	vd = vdev_alloc_common(spa, id, guid, ops);
382 
383 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
384 		vd->vdev_path = spa_strdup(vd->vdev_path);
385 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
386 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
387 
388 	/*
389 	 * Set the whole_disk property.  If it's not specified, leave the value
390 	 * as -1.
391 	 */
392 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
393 	    &vd->vdev_wholedisk) != 0)
394 		vd->vdev_wholedisk = -1ULL;
395 
396 	/*
397 	 * Look for the 'not present' flag.  This will only be set if the device
398 	 * was not present at the time of import.
399 	 */
400 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
401 	    &vd->vdev_not_present);
402 
403 	/*
404 	 * If we're a top-level vdev, try to load the allocation parameters.
405 	 */
406 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
407 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
408 		    &vd->vdev_ms_array);
409 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
410 		    &vd->vdev_ms_shift);
411 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
412 		    &vd->vdev_ashift);
413 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
414 		    &vd->vdev_asize);
415 	}
416 
417 	/*
418 	 * If we're a leaf vdev, try to load the DTL object
419 	 * and the offline state.
420 	 */
421 	vd->vdev_offline = B_FALSE;
422 	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
423 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
424 		    &vd->vdev_dtl.smo_object);
425 
426 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &offline)
427 		    == 0)
428 			vd->vdev_offline = offline;
429 	}
430 
431 	/*
432 	 * Add ourselves to the parent's list of children.
433 	 */
434 	vdev_add_child(parent, vd);
435 
436 	return (vd);
437 }
438 
439 void
440 vdev_free(vdev_t *vd)
441 {
442 	int c;
443 
444 	/*
445 	 * vdev_free() implies closing the vdev first.  This is simpler than
446 	 * trying to ensure complicated semantics for all callers.
447 	 */
448 	vdev_close(vd);
449 
450 	/*
451 	 * It's possible to free a vdev that's been added to the dirty
452 	 * list when in the middle of spa_vdev_add().  Handle that case
453 	 * correctly here.
454 	 */
455 	if (vd->vdev_is_dirty)
456 		vdev_config_clean(vd);
457 
458 	/*
459 	 * Free all children.
460 	 */
461 	for (c = 0; c < vd->vdev_children; c++)
462 		vdev_free(vd->vdev_child[c]);
463 
464 	ASSERT(vd->vdev_child == NULL);
465 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
466 
467 	/*
468 	 * Discard allocation state.
469 	 */
470 	if (vd == vd->vdev_top)
471 		vdev_metaslab_fini(vd);
472 
473 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
474 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
475 
476 	/*
477 	 * Remove this vdev from its parent's child list.
478 	 */
479 	vdev_remove_child(vd->vdev_parent, vd);
480 
481 	ASSERT(vd->vdev_parent == NULL);
482 
483 	vdev_free_common(vd);
484 }
485 
486 /*
487  * Transfer top-level vdev state from svd to tvd.
488  */
489 static void
490 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
491 {
492 	spa_t *spa = svd->vdev_spa;
493 	metaslab_t *msp;
494 	vdev_t *vd;
495 	int t;
496 
497 	ASSERT(tvd == tvd->vdev_top);
498 
499 	tvd->vdev_ms_array = svd->vdev_ms_array;
500 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
501 	tvd->vdev_ms_count = svd->vdev_ms_count;
502 
503 	svd->vdev_ms_array = 0;
504 	svd->vdev_ms_shift = 0;
505 	svd->vdev_ms_count = 0;
506 
507 	tvd->vdev_mg = svd->vdev_mg;
508 	tvd->vdev_mg->mg_vd = tvd;
509 	tvd->vdev_ms = svd->vdev_ms;
510 	tvd->vdev_smo = svd->vdev_smo;
511 
512 	svd->vdev_mg = NULL;
513 	svd->vdev_ms = NULL;
514 	svd->vdev_smo = NULL;
515 
516 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
517 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
518 
519 	svd->vdev_stat.vs_alloc = 0;
520 	svd->vdev_stat.vs_space = 0;
521 
522 	for (t = 0; t < TXG_SIZE; t++) {
523 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
524 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
525 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
526 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
527 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
528 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
529 		tvd->vdev_dirty[t] = svd->vdev_dirty[t];
530 		svd->vdev_dirty[t] = 0;
531 	}
532 
533 	if (svd->vdev_is_dirty) {
534 		vdev_config_clean(svd);
535 		vdev_config_dirty(tvd);
536 	}
537 
538 	tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
539 	svd->vdev_reopen_wanted = 0;
540 }
541 
542 static void
543 vdev_top_update(vdev_t *tvd, vdev_t *vd)
544 {
545 	int c;
546 
547 	if (vd == NULL)
548 		return;
549 
550 	vd->vdev_top = tvd;
551 
552 	for (c = 0; c < vd->vdev_children; c++)
553 		vdev_top_update(tvd, vd->vdev_child[c]);
554 }
555 
556 /*
557  * Add a mirror/replacing vdev above an existing vdev.
558  */
559 vdev_t *
560 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
561 {
562 	spa_t *spa = cvd->vdev_spa;
563 	vdev_t *pvd = cvd->vdev_parent;
564 	vdev_t *mvd;
565 
566 	ASSERT(spa_config_held(spa, RW_WRITER));
567 
568 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
569 	vdev_remove_child(pvd, cvd);
570 	vdev_add_child(pvd, mvd);
571 	cvd->vdev_id = mvd->vdev_children;
572 	vdev_add_child(mvd, cvd);
573 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
574 
575 	mvd->vdev_asize = cvd->vdev_asize;
576 	mvd->vdev_ashift = cvd->vdev_ashift;
577 	mvd->vdev_state = cvd->vdev_state;
578 
579 	if (mvd == mvd->vdev_top)
580 		vdev_top_transfer(cvd, mvd);
581 
582 	return (mvd);
583 }
584 
585 /*
586  * Remove a 1-way mirror/replacing vdev from the tree.
587  */
588 void
589 vdev_remove_parent(vdev_t *cvd)
590 {
591 	vdev_t *mvd = cvd->vdev_parent;
592 	vdev_t *pvd = mvd->vdev_parent;
593 
594 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
595 
596 	ASSERT(mvd->vdev_children == 1);
597 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
598 	    mvd->vdev_ops == &vdev_replacing_ops);
599 
600 	vdev_remove_child(mvd, cvd);
601 	vdev_remove_child(pvd, mvd);
602 	cvd->vdev_id = mvd->vdev_id;
603 	vdev_add_child(pvd, cvd);
604 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
605 
606 	if (cvd == cvd->vdev_top)
607 		vdev_top_transfer(mvd, cvd);
608 
609 	ASSERT(mvd->vdev_children == 0);
610 	vdev_free(mvd);
611 }
612 
613 int
614 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
615 {
616 	spa_t *spa = vd->vdev_spa;
617 	metaslab_class_t *mc = spa_metaslab_class_select(spa);
618 	uint64_t c;
619 	uint64_t oldc = vd->vdev_ms_count;
620 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
621 	space_map_obj_t *smo = vd->vdev_smo;
622 	metaslab_t **mspp = vd->vdev_ms;
623 	int ret;
624 
625 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
626 		return (0);
627 
628 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
629 
630 	ASSERT(oldc <= newc);
631 
632 	vd->vdev_smo = kmem_zalloc(newc * sizeof (*smo), KM_SLEEP);
633 	vd->vdev_ms = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
634 	vd->vdev_ms_count = newc;
635 
636 	if (vd->vdev_mg == NULL) {
637 		if (txg == 0) {
638 			dmu_buf_t *db;
639 			uint64_t *ms_array;
640 
641 			ms_array = kmem_zalloc(newc * sizeof (uint64_t),
642 			    KM_SLEEP);
643 
644 			if ((ret = dmu_read(spa->spa_meta_objset,
645 			    vd->vdev_ms_array, 0,
646 			    newc * sizeof (uint64_t), ms_array)) != 0) {
647 				kmem_free(ms_array, newc * sizeof (uint64_t));
648 				goto error;
649 			}
650 
651 			for (c = 0; c < newc; c++) {
652 				if (ms_array[c] == 0)
653 					continue;
654 				if ((ret = dmu_bonus_hold(
655 				    spa->spa_meta_objset, ms_array[c],
656 				    FTAG, &db)) != 0) {
657 					kmem_free(ms_array,
658 					    newc * sizeof (uint64_t));
659 					goto error;
660 				}
661 				ASSERT3U(db->db_size, ==, sizeof (*smo));
662 				bcopy(db->db_data, &vd->vdev_smo[c],
663 				    db->db_size);
664 				ASSERT3U(vd->vdev_smo[c].smo_object, ==,
665 				    ms_array[c]);
666 				dmu_buf_rele(db, FTAG);
667 			}
668 			kmem_free(ms_array, newc * sizeof (uint64_t));
669 		}
670 		vd->vdev_mg = metaslab_group_create(mc, vd);
671 	}
672 
673 	for (c = 0; c < oldc; c++) {
674 		vd->vdev_smo[c] = smo[c];
675 		vd->vdev_ms[c] = mspp[c];
676 		mspp[c]->ms_smo = &vd->vdev_smo[c];
677 	}
678 
679 	for (c = oldc; c < newc; c++)
680 		metaslab_init(vd->vdev_mg, &vd->vdev_smo[c], &vd->vdev_ms[c],
681 		    c << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
682 
683 	if (oldc != 0) {
684 		kmem_free(smo, oldc * sizeof (*smo));
685 		kmem_free(mspp, oldc * sizeof (*mspp));
686 	}
687 
688 	return (0);
689 
690 error:
691 	/*
692 	 * On error, undo any partial progress we may have made, and restore the
693 	 * old metaslab values.
694 	 */
695 	kmem_free(vd->vdev_smo, newc * sizeof (*smo));
696 	kmem_free(vd->vdev_ms, newc * sizeof (*mspp));
697 
698 	vd->vdev_smo = smo;
699 	vd->vdev_ms = mspp;
700 	vd->vdev_ms_count = oldc;
701 
702 	return (ret);
703 }
704 
705 void
706 vdev_metaslab_fini(vdev_t *vd)
707 {
708 	uint64_t m;
709 	uint64_t count = vd->vdev_ms_count;
710 
711 	if (vd->vdev_ms != NULL) {
712 		for (m = 0; m < count; m++)
713 			metaslab_fini(vd->vdev_ms[m]);
714 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
715 		vd->vdev_ms = NULL;
716 	}
717 
718 	if (vd->vdev_smo != NULL) {
719 		kmem_free(vd->vdev_smo, count * sizeof (space_map_obj_t));
720 		vd->vdev_smo = NULL;
721 	}
722 }
723 
724 /*
725  * Prepare a virtual device for access.
726  */
727 int
728 vdev_open(vdev_t *vd)
729 {
730 	int error;
731 	vdev_knob_t *vk;
732 	int c;
733 	uint64_t osize = 0;
734 	uint64_t asize, psize;
735 	uint64_t ashift = -1ULL;
736 
737 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
738 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
739 	    vd->vdev_state == VDEV_STATE_OFFLINE);
740 
741 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
742 		vd->vdev_fault_arg >>= 1;
743 	else
744 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
745 
746 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
747 
748 	for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) {
749 		uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset);
750 
751 		*valp = vk->vk_default;
752 		*valp = MAX(*valp, vk->vk_min);
753 		*valp = MIN(*valp, vk->vk_max);
754 	}
755 
756 	if (vd->vdev_ops->vdev_op_leaf) {
757 		vdev_cache_init(vd);
758 		vdev_queue_init(vd);
759 		vd->vdev_cache_active = B_TRUE;
760 	}
761 
762 	if (vd->vdev_offline) {
763 		ASSERT(vd->vdev_children == 0);
764 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
765 		return (ENXIO);
766 	}
767 
768 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
769 
770 	if (zio_injection_enabled && error == 0)
771 		error = zio_handle_device_injection(vd, ENXIO);
772 
773 	dprintf("%s = %d, osize %llu, state = %d\n",
774 	    vdev_description(vd), error, osize, vd->vdev_state);
775 
776 	if (error) {
777 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
778 		    vd->vdev_stat.vs_aux);
779 		return (error);
780 	}
781 
782 	vd->vdev_state = VDEV_STATE_HEALTHY;
783 
784 	for (c = 0; c < vd->vdev_children; c++)
785 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
786 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
787 			    VDEV_AUX_NONE);
788 			break;
789 		}
790 
791 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
792 
793 	if (vd->vdev_children == 0) {
794 		if (osize < SPA_MINDEVSIZE) {
795 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
796 			    VDEV_AUX_TOO_SMALL);
797 			return (EOVERFLOW);
798 		}
799 		psize = osize;
800 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
801 	} else {
802 		if (osize < SPA_MINDEVSIZE -
803 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
804 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
805 			    VDEV_AUX_TOO_SMALL);
806 			return (EOVERFLOW);
807 		}
808 		psize = 0;
809 		asize = osize;
810 	}
811 
812 	vd->vdev_psize = psize;
813 
814 	if (vd->vdev_asize == 0) {
815 		/*
816 		 * This is the first-ever open, so use the computed values.
817 		 */
818 		vd->vdev_asize = asize;
819 		vd->vdev_ashift = ashift;
820 	} else {
821 		/*
822 		 * Make sure the alignment requirement hasn't increased.
823 		 */
824 		if (ashift > vd->vdev_ashift) {
825 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
826 			    VDEV_AUX_BAD_LABEL);
827 			return (EINVAL);
828 		}
829 
830 		/*
831 		 * Make sure the device hasn't shrunk.
832 		 */
833 		if (asize < vd->vdev_asize) {
834 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
835 			    VDEV_AUX_BAD_LABEL);
836 			return (EINVAL);
837 		}
838 
839 		/*
840 		 * If all children are healthy and the asize has increased,
841 		 * then we've experienced dynamic LUN growth.
842 		 */
843 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
844 		    asize > vd->vdev_asize) {
845 			vd->vdev_asize = asize;
846 		}
847 	}
848 
849 	/*
850 	 * If we were able to open a vdev that was marked permanently
851 	 * unavailable, clear that state now.
852 	 */
853 	if (vd->vdev_not_present)
854 		vd->vdev_not_present = 0;
855 
856 	/*
857 	 * This allows the ZFS DE to close cases appropriately.  If a device
858 	 * goes away and later returns, we want to close the associated case.
859 	 * But it's not enough to simply post this only when a device goes from
860 	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
861 	 * back, we also need to close the case (otherwise we will try to replay
862 	 * it).  So we have to post this notifier every time.  Since this only
863 	 * occurs during pool open or error recovery, this should not be an
864 	 * issue.
865 	 */
866 	zfs_post_ok(vd->vdev_spa, vd);
867 
868 	return (0);
869 }
870 
871 /*
872  * Close a virtual device.
873  */
874 void
875 vdev_close(vdev_t *vd)
876 {
877 	vd->vdev_ops->vdev_op_close(vd);
878 
879 	if (vd->vdev_cache_active) {
880 		vdev_cache_fini(vd);
881 		vdev_queue_fini(vd);
882 		vd->vdev_cache_active = B_FALSE;
883 	}
884 
885 	if (vd->vdev_offline)
886 		vd->vdev_state = VDEV_STATE_OFFLINE;
887 	else
888 		vd->vdev_state = VDEV_STATE_CLOSED;
889 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
890 }
891 
892 void
893 vdev_reopen(vdev_t *vd)
894 {
895 	spa_t *spa = vd->vdev_spa;
896 	vdev_t *rvd = spa->spa_root_vdev;
897 	int c;
898 
899 	ASSERT(spa_config_held(spa, RW_WRITER));
900 
901 	if (vd == rvd) {
902 		for (c = 0; c < rvd->vdev_children; c++)
903 			vdev_reopen(rvd->vdev_child[c]);
904 		return;
905 	}
906 
907 	/* only valid for top-level vdevs */
908 	ASSERT3P(vd, ==, vd->vdev_top);
909 
910 	vdev_close(vd);
911 	(void) vdev_open(vd);
912 
913 	/*
914 	 * Reassess root vdev's health.
915 	 */
916 	rvd->vdev_state = VDEV_STATE_HEALTHY;
917 	for (c = 0; c < rvd->vdev_children; c++) {
918 		uint64_t state = rvd->vdev_child[c]->vdev_state;
919 		rvd->vdev_state = MIN(rvd->vdev_state, state);
920 	}
921 }
922 
923 int
924 vdev_create(vdev_t *vd, uint64_t txg)
925 {
926 	int error;
927 
928 	/*
929 	 * Normally, partial opens (e.g. of a mirror) are allowed.
930 	 * For a create, however, we want to fail the request if
931 	 * there are any components we can't open.
932 	 */
933 	error = vdev_open(vd);
934 
935 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
936 		vdev_close(vd);
937 		return (error ? error : ENXIO);
938 	}
939 
940 	/*
941 	 * Recursively initialize all labels.
942 	 */
943 	if ((error = vdev_label_init(vd, txg)) != 0) {
944 		vdev_close(vd);
945 		return (error);
946 	}
947 
948 	return (0);
949 }
950 
951 /*
952  * The is the latter half of vdev_create().  It is distinct because it
953  * involves initiating transactions in order to do metaslab creation.
954  * For creation, we want to try to create all vdevs at once and then undo it
955  * if anything fails; this is much harder if we have pending transactions.
956  */
957 void
958 vdev_init(vdev_t *vd, uint64_t txg)
959 {
960 	/*
961 	 * Aim for roughly 200 metaslabs per vdev.
962 	 */
963 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
964 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
965 
966 	/*
967 	 * Initialize the vdev's metaslabs.  This can't fail because
968 	 * there's nothing to read when creating all new metaslabs.
969 	 */
970 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
971 }
972 
973 void
974 vdev_dirty(vdev_t *vd, uint8_t flags, uint64_t txg)
975 {
976 	vdev_t *tvd = vd->vdev_top;
977 
978 	mutex_enter(&tvd->vdev_dirty_lock);
979 	if ((tvd->vdev_dirty[txg & TXG_MASK] & flags) != flags) {
980 		tvd->vdev_dirty[txg & TXG_MASK] |= flags;
981 		(void) txg_list_add(&tvd->vdev_spa->spa_vdev_txg_list,
982 		    tvd, txg);
983 	}
984 	mutex_exit(&tvd->vdev_dirty_lock);
985 }
986 
987 void
988 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
989 {
990 	mutex_enter(sm->sm_lock);
991 	if (!space_map_contains(sm, txg, size))
992 		space_map_add(sm, txg, size);
993 	mutex_exit(sm->sm_lock);
994 }
995 
996 int
997 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
998 {
999 	int dirty;
1000 
1001 	/*
1002 	 * Quick test without the lock -- covers the common case that
1003 	 * there are no dirty time segments.
1004 	 */
1005 	if (sm->sm_space == 0)
1006 		return (0);
1007 
1008 	mutex_enter(sm->sm_lock);
1009 	dirty = space_map_contains(sm, txg, size);
1010 	mutex_exit(sm->sm_lock);
1011 
1012 	return (dirty);
1013 }
1014 
1015 /*
1016  * Reassess DTLs after a config change or scrub completion.
1017  */
1018 void
1019 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1020 {
1021 	spa_t *spa = vd->vdev_spa;
1022 	int c;
1023 
1024 	ASSERT(spa_config_held(spa, RW_WRITER));
1025 
1026 	if (vd->vdev_children == 0) {
1027 		mutex_enter(&vd->vdev_dtl_lock);
1028 		/*
1029 		 * We're successfully scrubbed everything up to scrub_txg.
1030 		 * Therefore, excise all old DTLs up to that point, then
1031 		 * fold in the DTLs for everything we couldn't scrub.
1032 		 */
1033 		if (scrub_txg != 0) {
1034 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1035 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1036 		}
1037 		if (scrub_done)
1038 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1039 		mutex_exit(&vd->vdev_dtl_lock);
1040 		if (txg != 0) {
1041 			vdev_t *tvd = vd->vdev_top;
1042 			vdev_dirty(tvd, VDD_DTL, txg);
1043 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1044 		}
1045 		return;
1046 	}
1047 
1048 	/*
1049 	 * Make sure the DTLs are always correct under the scrub lock.
1050 	 */
1051 	if (vd == spa->spa_root_vdev)
1052 		mutex_enter(&spa->spa_scrub_lock);
1053 
1054 	mutex_enter(&vd->vdev_dtl_lock);
1055 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1056 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1057 	mutex_exit(&vd->vdev_dtl_lock);
1058 
1059 	for (c = 0; c < vd->vdev_children; c++) {
1060 		vdev_t *cvd = vd->vdev_child[c];
1061 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1062 		mutex_enter(&vd->vdev_dtl_lock);
1063 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1064 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1065 		mutex_exit(&vd->vdev_dtl_lock);
1066 	}
1067 
1068 	if (vd == spa->spa_root_vdev)
1069 		mutex_exit(&spa->spa_scrub_lock);
1070 }
1071 
1072 static int
1073 vdev_dtl_load(vdev_t *vd)
1074 {
1075 	spa_t *spa = vd->vdev_spa;
1076 	space_map_obj_t *smo = &vd->vdev_dtl;
1077 	dmu_buf_t *db;
1078 	int error;
1079 
1080 	ASSERT(vd->vdev_children == 0);
1081 
1082 	if (smo->smo_object == 0)
1083 		return (0);
1084 
1085 	if ((error = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object,
1086 	    FTAG, &db)) != 0)
1087 		return (error);
1088 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1089 	bcopy(db->db_data, smo, db->db_size);
1090 	dmu_buf_rele(db, FTAG);
1091 
1092 	mutex_enter(&vd->vdev_dtl_lock);
1093 	error = space_map_load(&vd->vdev_dtl_map, smo, SM_ALLOC,
1094 	    spa->spa_meta_objset, smo->smo_objsize, smo->smo_alloc);
1095 	mutex_exit(&vd->vdev_dtl_lock);
1096 
1097 	return (error);
1098 }
1099 
1100 void
1101 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1102 {
1103 	spa_t *spa = vd->vdev_spa;
1104 	space_map_obj_t *smo = &vd->vdev_dtl;
1105 	space_map_t *sm = &vd->vdev_dtl_map;
1106 	space_map_t smsync;
1107 	kmutex_t smlock;
1108 	avl_tree_t *t = &sm->sm_root;
1109 	space_seg_t *ss;
1110 	dmu_buf_t *db;
1111 	dmu_tx_t *tx;
1112 
1113 	dprintf("%s in txg %llu pass %d\n",
1114 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1115 
1116 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1117 
1118 	if (vd->vdev_detached) {
1119 		if (smo->smo_object != 0) {
1120 			int err = dmu_object_free(spa->spa_meta_objset,
1121 			    smo->smo_object, tx);
1122 			ASSERT3U(err, ==, 0);
1123 			smo->smo_object = 0;
1124 		}
1125 		dmu_tx_commit(tx);
1126 		return;
1127 	}
1128 
1129 	if (smo->smo_object == 0) {
1130 		ASSERT(smo->smo_objsize == 0);
1131 		ASSERT(smo->smo_alloc == 0);
1132 		smo->smo_object = dmu_object_alloc(spa->spa_meta_objset,
1133 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1134 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1135 		ASSERT(smo->smo_object != 0);
1136 		vdev_config_dirty(vd->vdev_top);
1137 	}
1138 
1139 	VERIFY(0 == dmu_free_range(spa->spa_meta_objset, smo->smo_object,
1140 	    0, smo->smo_objsize, tx));
1141 
1142 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1143 
1144 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1145 	    &smlock);
1146 
1147 	mutex_enter(&smlock);
1148 
1149 	mutex_enter(&vd->vdev_dtl_lock);
1150 	for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss))
1151 		space_map_add(&smsync, ss->ss_start, ss->ss_end - ss->ss_start);
1152 	mutex_exit(&vd->vdev_dtl_lock);
1153 
1154 	smo->smo_objsize = 0;
1155 	smo->smo_alloc = smsync.sm_space;
1156 
1157 	space_map_sync(&smsync, NULL, smo, SM_ALLOC, spa->spa_meta_objset, tx);
1158 	space_map_destroy(&smsync);
1159 
1160 	mutex_exit(&smlock);
1161 	mutex_destroy(&smlock);
1162 
1163 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object,
1164 	    FTAG, &db));
1165 	dmu_buf_will_dirty(db, tx);
1166 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1167 	bcopy(smo, db->db_data, db->db_size);
1168 	dmu_buf_rele(db, FTAG);
1169 
1170 	dmu_tx_commit(tx);
1171 }
1172 
1173 int
1174 vdev_load(vdev_t *vd)
1175 {
1176 	spa_t *spa = vd->vdev_spa;
1177 	int c, error;
1178 	nvlist_t *label;
1179 	uint64_t guid, state;
1180 
1181 	dprintf("loading %s\n", vdev_description(vd));
1182 
1183 	/*
1184 	 * Recursively load all children.
1185 	 */
1186 	for (c = 0; c < vd->vdev_children; c++)
1187 		if ((error = vdev_load(vd->vdev_child[c])) != 0)
1188 			return (error);
1189 
1190 	/*
1191 	 * If this is a leaf vdev, make sure its agrees with its disk labels.
1192 	 */
1193 	if (vd->vdev_ops->vdev_op_leaf) {
1194 
1195 		if (vdev_is_dead(vd))
1196 			return (0);
1197 
1198 		/*
1199 		 * XXX state transitions don't propagate to parent here.
1200 		 * Also, merely setting the state isn't sufficient because
1201 		 * it's not persistent; a vdev_reopen() would make us
1202 		 * forget all about it.
1203 		 */
1204 		if ((label = vdev_label_read_config(vd)) == NULL) {
1205 			dprintf("can't load label config\n");
1206 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1207 			    VDEV_AUX_CORRUPT_DATA);
1208 			return (0);
1209 		}
1210 
1211 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1212 		    &guid) != 0 || guid != spa_guid(spa)) {
1213 			dprintf("bad or missing pool GUID (%llu)\n", guid);
1214 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1215 			    VDEV_AUX_CORRUPT_DATA);
1216 			nvlist_free(label);
1217 			return (0);
1218 		}
1219 
1220 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) ||
1221 		    guid != vd->vdev_guid) {
1222 			dprintf("bad or missing vdev guid (%llu != %llu)\n",
1223 			    guid, vd->vdev_guid);
1224 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1225 			    VDEV_AUX_CORRUPT_DATA);
1226 			nvlist_free(label);
1227 			return (0);
1228 		}
1229 
1230 		/*
1231 		 * If we find a vdev with a matching pool guid and vdev guid,
1232 		 * but the pool state is not active, it indicates that the user
1233 		 * exported or destroyed the pool without affecting the config
1234 		 * cache (if / was mounted readonly, for example).  In this
1235 		 * case, immediately return EBADF so the caller can remove it
1236 		 * from the config.
1237 		 */
1238 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1239 		    &state)) {
1240 			dprintf("missing pool state\n");
1241 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1242 			    VDEV_AUX_CORRUPT_DATA);
1243 			nvlist_free(label);
1244 			return (0);
1245 		}
1246 
1247 		if (state != POOL_STATE_ACTIVE &&
1248 		    (spa->spa_load_state == SPA_LOAD_OPEN ||
1249 		    state != POOL_STATE_EXPORTED)) {
1250 			dprintf("pool state not active (%llu)\n", state);
1251 			nvlist_free(label);
1252 			return (EBADF);
1253 		}
1254 
1255 		nvlist_free(label);
1256 	}
1257 
1258 	/*
1259 	 * If this is a top-level vdev, initialize its metaslabs.
1260 	 */
1261 	if (vd == vd->vdev_top) {
1262 
1263 		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
1264 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1265 			    VDEV_AUX_CORRUPT_DATA);
1266 			return (0);
1267 		}
1268 
1269 		if ((error = vdev_metaslab_init(vd, 0)) != 0) {
1270 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1271 			    VDEV_AUX_CORRUPT_DATA);
1272 			return (0);
1273 		}
1274 	}
1275 
1276 	/*
1277 	 * If this is a leaf vdev, load its DTL.
1278 	 */
1279 	if (vd->vdev_ops->vdev_op_leaf) {
1280 		error = vdev_dtl_load(vd);
1281 		if (error) {
1282 			dprintf("can't load DTL for %s, error %d\n",
1283 			    vdev_description(vd), error);
1284 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1285 			    VDEV_AUX_CORRUPT_DATA);
1286 			return (0);
1287 		}
1288 	}
1289 
1290 	return (0);
1291 }
1292 
1293 void
1294 vdev_sync_done(vdev_t *vd, uint64_t txg)
1295 {
1296 	metaslab_t *msp;
1297 
1298 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1299 
1300 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1301 		metaslab_sync_done(msp, txg);
1302 }
1303 
1304 void
1305 vdev_add_sync(vdev_t *vd, uint64_t txg)
1306 {
1307 	spa_t *spa = vd->vdev_spa;
1308 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1309 
1310 	ASSERT(vd == vd->vdev_top);
1311 
1312 	if (vd->vdev_ms_array == 0)
1313 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1314 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1315 
1316 	ASSERT(vd->vdev_ms_array != 0);
1317 
1318 	vdev_config_dirty(vd);
1319 
1320 	dmu_tx_commit(tx);
1321 }
1322 
1323 void
1324 vdev_sync(vdev_t *vd, uint64_t txg)
1325 {
1326 	spa_t *spa = vd->vdev_spa;
1327 	vdev_t *lvd;
1328 	metaslab_t *msp;
1329 	uint8_t *dirtyp = &vd->vdev_dirty[txg & TXG_MASK];
1330 	uint8_t dirty = *dirtyp;
1331 
1332 	mutex_enter(&vd->vdev_dirty_lock);
1333 	*dirtyp &= ~(VDD_ALLOC | VDD_FREE | VDD_ADD | VDD_DTL);
1334 	mutex_exit(&vd->vdev_dirty_lock);
1335 
1336 	dprintf("%s txg %llu pass %d\n",
1337 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1338 
1339 	if (dirty & VDD_ADD)
1340 		vdev_add_sync(vd, txg);
1341 
1342 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL)
1343 		metaslab_sync(msp, txg);
1344 
1345 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1346 		vdev_dtl_sync(lvd, txg);
1347 
1348 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1349 }
1350 
1351 uint64_t
1352 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1353 {
1354 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1355 }
1356 
1357 void
1358 vdev_io_start(zio_t *zio)
1359 {
1360 	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1361 }
1362 
1363 void
1364 vdev_io_done(zio_t *zio)
1365 {
1366 	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1367 }
1368 
1369 const char *
1370 vdev_description(vdev_t *vd)
1371 {
1372 	if (vd == NULL || vd->vdev_ops == NULL)
1373 		return ("<unknown>");
1374 
1375 	if (vd->vdev_path != NULL)
1376 		return (vd->vdev_path);
1377 
1378 	if (vd->vdev_parent == NULL)
1379 		return (spa_name(vd->vdev_spa));
1380 
1381 	return (vd->vdev_ops->vdev_op_type);
1382 }
1383 
1384 int
1385 vdev_online(spa_t *spa, uint64_t guid)
1386 {
1387 	vdev_t *rvd, *vd;
1388 	uint64_t txg;
1389 
1390 	txg = spa_vdev_enter(spa);
1391 
1392 	rvd = spa->spa_root_vdev;
1393 
1394 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1395 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1396 
1397 	if (!vd->vdev_ops->vdev_op_leaf)
1398 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1399 
1400 	dprintf("ONLINE: %s\n", vdev_description(vd));
1401 
1402 	vd->vdev_offline = B_FALSE;
1403 	vd->vdev_tmpoffline = B_FALSE;
1404 	vdev_reopen(vd->vdev_top);
1405 
1406 	vdev_config_dirty(vd->vdev_top);
1407 
1408 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1409 
1410 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1411 
1412 	return (0);
1413 }
1414 
1415 int
1416 vdev_offline(spa_t *spa, uint64_t guid, int istmp)
1417 {
1418 	vdev_t *rvd, *vd;
1419 	uint64_t txg;
1420 
1421 	txg = spa_vdev_enter(spa);
1422 
1423 	rvd = spa->spa_root_vdev;
1424 
1425 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1426 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1427 
1428 	if (!vd->vdev_ops->vdev_op_leaf)
1429 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1430 
1431 	dprintf("OFFLINE: %s\n", vdev_description(vd));
1432 
1433 	/* vdev is already offlined, do nothing */
1434 	if (vd->vdev_offline)
1435 		return (spa_vdev_exit(spa, NULL, txg, 0));
1436 
1437 	/*
1438 	 * If this device's top-level vdev has a non-empty DTL,
1439 	 * don't allow the device to be offlined.
1440 	 *
1441 	 * XXX -- we should make this more precise by allowing the offline
1442 	 * as long as the remaining devices don't have any DTL holes.
1443 	 */
1444 	if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1445 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1446 
1447 	/*
1448 	 * Set this device to offline state and reopen its top-level vdev.
1449 	 * If this action results in the top-level vdev becoming unusable,
1450 	 * undo it and fail the request.
1451 	 */
1452 	vd->vdev_offline = B_TRUE;
1453 	vdev_reopen(vd->vdev_top);
1454 	if (vdev_is_dead(vd->vdev_top)) {
1455 		vd->vdev_offline = B_FALSE;
1456 		vdev_reopen(vd->vdev_top);
1457 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1458 	}
1459 
1460 	vd->vdev_tmpoffline = istmp;
1461 	if (!istmp)
1462 		vdev_config_dirty(vd->vdev_top);
1463 
1464 	return (spa_vdev_exit(spa, NULL, txg, 0));
1465 }
1466 
1467 /*
1468  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1469  * vdev_offline(), we assume the spa config is locked.  We also clear all
1470  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1471  */
1472 void
1473 vdev_clear(spa_t *spa, vdev_t *vd)
1474 {
1475 	int c;
1476 
1477 	if (vd == NULL)
1478 		vd = spa->spa_root_vdev;
1479 
1480 	vd->vdev_stat.vs_read_errors = 0;
1481 	vd->vdev_stat.vs_write_errors = 0;
1482 	vd->vdev_stat.vs_checksum_errors = 0;
1483 
1484 	for (c = 0; c < vd->vdev_children; c++)
1485 		vdev_clear(spa, vd->vdev_child[c]);
1486 }
1487 
1488 int
1489 vdev_is_dead(vdev_t *vd)
1490 {
1491 	return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
1492 }
1493 
1494 int
1495 vdev_error_inject(vdev_t *vd, zio_t *zio)
1496 {
1497 	int error = 0;
1498 
1499 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1500 		return (0);
1501 
1502 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1503 		return (0);
1504 
1505 	switch (vd->vdev_fault_mode) {
1506 	case VDEV_FAULT_RANDOM:
1507 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1508 			error = EIO;
1509 		break;
1510 
1511 	case VDEV_FAULT_COUNT:
1512 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1513 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1514 		error = EIO;
1515 		break;
1516 	}
1517 
1518 	if (error != 0) {
1519 		dprintf("returning %d for type %d on %s state %d offset %llx\n",
1520 		    error, zio->io_type, vdev_description(vd),
1521 		    vd->vdev_state, zio->io_offset);
1522 	}
1523 
1524 	return (error);
1525 }
1526 
1527 /*
1528  * Get statistics for the given vdev.
1529  */
1530 void
1531 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1532 {
1533 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1534 	int c, t;
1535 
1536 	mutex_enter(&vd->vdev_stat_lock);
1537 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1538 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1539 	vs->vs_state = vd->vdev_state;
1540 	vs->vs_rsize = vdev_get_rsize(vd);
1541 	mutex_exit(&vd->vdev_stat_lock);
1542 
1543 	/*
1544 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1545 	 * over all top-level vdevs (i.e. the direct children of the root).
1546 	 */
1547 	if (vd == rvd) {
1548 		for (c = 0; c < rvd->vdev_children; c++) {
1549 			vdev_t *cvd = rvd->vdev_child[c];
1550 			vdev_stat_t *cvs = &cvd->vdev_stat;
1551 
1552 			mutex_enter(&vd->vdev_stat_lock);
1553 			for (t = 0; t < ZIO_TYPES; t++) {
1554 				vs->vs_ops[t] += cvs->vs_ops[t];
1555 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1556 			}
1557 			vs->vs_read_errors += cvs->vs_read_errors;
1558 			vs->vs_write_errors += cvs->vs_write_errors;
1559 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1560 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1561 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1562 			mutex_exit(&vd->vdev_stat_lock);
1563 		}
1564 	}
1565 }
1566 
1567 void
1568 vdev_stat_update(zio_t *zio)
1569 {
1570 	vdev_t *vd = zio->io_vd;
1571 	vdev_t *pvd;
1572 	uint64_t txg = zio->io_txg;
1573 	vdev_stat_t *vs = &vd->vdev_stat;
1574 	zio_type_t type = zio->io_type;
1575 	int flags = zio->io_flags;
1576 
1577 	if (zio->io_error == 0) {
1578 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1579 			mutex_enter(&vd->vdev_stat_lock);
1580 			vs->vs_ops[type]++;
1581 			vs->vs_bytes[type] += zio->io_size;
1582 			mutex_exit(&vd->vdev_stat_lock);
1583 		}
1584 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1585 		    zio->io_delegate_list == NULL) {
1586 			mutex_enter(&vd->vdev_stat_lock);
1587 			if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))
1588 				vs->vs_scrub_repaired += zio->io_size;
1589 			else
1590 				vs->vs_self_healed += zio->io_size;
1591 			mutex_exit(&vd->vdev_stat_lock);
1592 		}
1593 		return;
1594 	}
1595 
1596 	if (flags & ZIO_FLAG_SPECULATIVE)
1597 		return;
1598 
1599 	if (!vdev_is_dead(vd)) {
1600 		mutex_enter(&vd->vdev_stat_lock);
1601 		if (type == ZIO_TYPE_READ) {
1602 			if (zio->io_error == ECKSUM)
1603 				vs->vs_checksum_errors++;
1604 			else
1605 				vs->vs_read_errors++;
1606 		}
1607 		if (type == ZIO_TYPE_WRITE)
1608 			vs->vs_write_errors++;
1609 		mutex_exit(&vd->vdev_stat_lock);
1610 	}
1611 
1612 	if (type == ZIO_TYPE_WRITE) {
1613 		if (txg == 0 || vd->vdev_children != 0)
1614 			return;
1615 		if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1616 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1617 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1618 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1619 		}
1620 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1621 			vdev_t *tvd = vd->vdev_top;
1622 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1623 				return;
1624 			vdev_dirty(tvd, VDD_DTL, txg);
1625 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1626 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1627 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1628 		}
1629 	}
1630 }
1631 
1632 void
1633 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1634 {
1635 	int c;
1636 	vdev_stat_t *vs = &vd->vdev_stat;
1637 
1638 	for (c = 0; c < vd->vdev_children; c++)
1639 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1640 
1641 	mutex_enter(&vd->vdev_stat_lock);
1642 
1643 	if (type == POOL_SCRUB_NONE) {
1644 		/*
1645 		 * Update completion and end time.  Leave everything else alone
1646 		 * so we can report what happened during the previous scrub.
1647 		 */
1648 		vs->vs_scrub_complete = complete;
1649 		vs->vs_scrub_end = gethrestime_sec();
1650 	} else {
1651 		vs->vs_scrub_type = type;
1652 		vs->vs_scrub_complete = 0;
1653 		vs->vs_scrub_examined = 0;
1654 		vs->vs_scrub_repaired = 0;
1655 		vs->vs_scrub_errors = 0;
1656 		vs->vs_scrub_start = gethrestime_sec();
1657 		vs->vs_scrub_end = 0;
1658 	}
1659 
1660 	mutex_exit(&vd->vdev_stat_lock);
1661 }
1662 
1663 /*
1664  * Update the in-core space usage stats for this vdev and the root vdev.
1665  */
1666 void
1667 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta)
1668 {
1669 	ASSERT(vd == vd->vdev_top);
1670 
1671 	do {
1672 		mutex_enter(&vd->vdev_stat_lock);
1673 		vd->vdev_stat.vs_space += space_delta;
1674 		vd->vdev_stat.vs_alloc += alloc_delta;
1675 		mutex_exit(&vd->vdev_stat_lock);
1676 	} while ((vd = vd->vdev_parent) != NULL);
1677 }
1678 
1679 /*
1680  * Various knobs to tune a vdev.
1681  */
1682 static vdev_knob_t vdev_knob[] = {
1683 	{
1684 		"cache_size",
1685 		"size of the read-ahead cache",
1686 		0,
1687 		1ULL << 30,
1688 		10ULL << 20,
1689 		offsetof(struct vdev, vdev_cache.vc_size)
1690 	},
1691 	{
1692 		"cache_bshift",
1693 		"log2 of cache blocksize",
1694 		SPA_MINBLOCKSHIFT,
1695 		SPA_MAXBLOCKSHIFT,
1696 		16,
1697 		offsetof(struct vdev, vdev_cache.vc_bshift)
1698 	},
1699 	{
1700 		"cache_max",
1701 		"largest block size to cache",
1702 		0,
1703 		SPA_MAXBLOCKSIZE,
1704 		1ULL << 14,
1705 		offsetof(struct vdev, vdev_cache.vc_max)
1706 	},
1707 	{
1708 		"min_pending",
1709 		"minimum pending I/Os to the disk",
1710 		1,
1711 		10000,
1712 		2,
1713 		offsetof(struct vdev, vdev_queue.vq_min_pending)
1714 	},
1715 	{
1716 		"max_pending",
1717 		"maximum pending I/Os to the disk",
1718 		1,
1719 		10000,
1720 		35,
1721 		offsetof(struct vdev, vdev_queue.vq_max_pending)
1722 	},
1723 	{
1724 		"scrub_limit",
1725 		"maximum scrub/resilver I/O queue",
1726 		0,
1727 		10000,
1728 		70,
1729 		offsetof(struct vdev, vdev_queue.vq_scrub_limit)
1730 	},
1731 	{
1732 		"agg_limit",
1733 		"maximum size of aggregated I/Os",
1734 		0,
1735 		SPA_MAXBLOCKSIZE,
1736 		SPA_MAXBLOCKSIZE,
1737 		offsetof(struct vdev, vdev_queue.vq_agg_limit)
1738 	},
1739 	{
1740 		"time_shift",
1741 		"deadline = pri + (lbolt >> time_shift)",
1742 		0,
1743 		63,
1744 		4,
1745 		offsetof(struct vdev, vdev_queue.vq_time_shift)
1746 	},
1747 	{
1748 		"ramp_rate",
1749 		"exponential I/O issue ramp-up rate",
1750 		1,
1751 		10000,
1752 		2,
1753 		offsetof(struct vdev, vdev_queue.vq_ramp_rate)
1754 	},
1755 };
1756 
1757 vdev_knob_t *
1758 vdev_knob_next(vdev_knob_t *vk)
1759 {
1760 	if (vk == NULL)
1761 		return (vdev_knob);
1762 
1763 	if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t))
1764 		return (NULL);
1765 
1766 	return (vk);
1767 }
1768 
1769 /*
1770  * Mark a top-level vdev's config as dirty, placing it on the dirty list
1771  * so that it will be written out next time the vdev configuration is synced.
1772  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1773  */
1774 void
1775 vdev_config_dirty(vdev_t *vd)
1776 {
1777 	spa_t *spa = vd->vdev_spa;
1778 	vdev_t *rvd = spa->spa_root_vdev;
1779 	int c;
1780 
1781 	if (vd == rvd) {
1782 		for (c = 0; c < rvd->vdev_children; c++)
1783 			vdev_config_dirty(rvd->vdev_child[c]);
1784 	} else {
1785 		ASSERT(vd == vd->vdev_top);
1786 
1787 		if (!vd->vdev_is_dirty) {
1788 			list_insert_head(&spa->spa_dirty_list, vd);
1789 			vd->vdev_is_dirty = B_TRUE;
1790 		}
1791 	}
1792 }
1793 
1794 void
1795 vdev_config_clean(vdev_t *vd)
1796 {
1797 	ASSERT(vd->vdev_is_dirty);
1798 
1799 	list_remove(&vd->vdev_spa->spa_dirty_list, vd);
1800 	vd->vdev_is_dirty = B_FALSE;
1801 }
1802 
1803 /*
1804  * Set a vdev's state.  If this is during an open, we don't update the parent
1805  * state, because we're in the process of opening children depth-first.
1806  * Otherwise, we propagate the change to the parent.
1807  *
1808  * If this routine places a device in a faulted state, an appropriate ereport is
1809  * generated.
1810  */
1811 void
1812 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
1813 {
1814 	uint64_t prev_state;
1815 
1816 	if (state == vd->vdev_state) {
1817 		vd->vdev_stat.vs_aux = aux;
1818 		return;
1819 	}
1820 
1821 	prev_state = vd->vdev_state;
1822 
1823 	vd->vdev_state = state;
1824 	vd->vdev_stat.vs_aux = aux;
1825 
1826 	if (state == VDEV_STATE_CANT_OPEN) {
1827 		/*
1828 		 * If we fail to open a vdev during an import, we mark it as
1829 		 * "not available", which signifies that it was never there to
1830 		 * begin with.  Failure to open such a device is not considered
1831 		 * an error.
1832 		 */
1833 		if (!vd->vdev_not_present &&
1834 		    vd != vd->vdev_spa->spa_root_vdev) {
1835 			const char *class;
1836 
1837 			switch (aux) {
1838 			case VDEV_AUX_OPEN_FAILED:
1839 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
1840 				break;
1841 			case VDEV_AUX_CORRUPT_DATA:
1842 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
1843 				break;
1844 			case VDEV_AUX_NO_REPLICAS:
1845 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
1846 				break;
1847 			case VDEV_AUX_BAD_GUID_SUM:
1848 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
1849 				break;
1850 			case VDEV_AUX_TOO_SMALL:
1851 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
1852 				break;
1853 			case VDEV_AUX_BAD_LABEL:
1854 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
1855 				break;
1856 			default:
1857 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
1858 			}
1859 
1860 			zfs_ereport_post(class, vd->vdev_spa,
1861 			    vd, NULL, prev_state, 0);
1862 		}
1863 
1864 		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
1865 		    vd->vdev_ops->vdev_op_leaf)
1866 			vd->vdev_not_present = 1;
1867 	}
1868 
1869 	if (isopen)
1870 		return;
1871 
1872 	if (vd->vdev_parent != NULL) {
1873 		int c;
1874 		int degraded = 0, faulted = 0;
1875 		int corrupted = 0;
1876 		vdev_t *parent, *child;
1877 
1878 		parent = vd->vdev_parent;
1879 		for (c = 0; c < parent->vdev_children; c++) {
1880 			child = parent->vdev_child[c];
1881 			if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
1882 				faulted++;
1883 			else if (child->vdev_state == VDEV_STATE_DEGRADED)
1884 				degraded++;
1885 
1886 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
1887 				corrupted++;
1888 		}
1889 
1890 		vd->vdev_parent->vdev_ops->vdev_op_state_change(
1891 		    vd->vdev_parent, faulted, degraded);
1892 
1893 		/*
1894 		 * Root special: if this is a toplevel vdev that cannot be
1895 		 * opened due to corrupted metadata, then propagate the root
1896 		 * vdev's aux state as 'corrupt' rather than 'insufficient
1897 		 * replicas'.
1898 		 */
1899 		if (corrupted && vd == vd->vdev_top)
1900 			vdev_set_state(vd->vdev_spa->spa_root_vdev,
1901 			    B_FALSE, VDEV_STATE_CANT_OPEN,
1902 			    VDEV_AUX_CORRUPT_DATA);
1903 	}
1904 }
1905