xref: /illumos-gate/usr/src/uts/common/fs/zfs/vdev.c (revision 05b2b3b80d84f3c379ea0df61a0f73fd87db2748)
1fa9e4066Sahrens /*
2fa9e4066Sahrens  * CDDL HEADER START
3fa9e4066Sahrens  *
4fa9e4066Sahrens  * The contents of this file are subject to the terms of the
5441d80aaSlling  * Common Development and Distribution License (the "License").
6441d80aaSlling  * You may not use this file except in compliance with the License.
7fa9e4066Sahrens  *
8fa9e4066Sahrens  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9fa9e4066Sahrens  * or http://www.opensolaris.org/os/licensing.
10fa9e4066Sahrens  * See the License for the specific language governing permissions
11fa9e4066Sahrens  * and limitations under the License.
12fa9e4066Sahrens  *
13fa9e4066Sahrens  * When distributing Covered Code, include this CDDL HEADER in each
14fa9e4066Sahrens  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15fa9e4066Sahrens  * If applicable, add the following below this CDDL HEADER, with the
16fa9e4066Sahrens  * fields enclosed by brackets "[]" replaced with your own identifying
17fa9e4066Sahrens  * information: Portions Copyright [yyyy] [name of copyright owner]
18fa9e4066Sahrens  *
19fa9e4066Sahrens  * CDDL HEADER END
20fa9e4066Sahrens  */
2199653d4eSeschrock 
22fa9e4066Sahrens /*
2339c23413Seschrock  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24fa9e4066Sahrens  * Use is subject to license terms.
25fa9e4066Sahrens  */
26fa9e4066Sahrens 
27fa9e4066Sahrens #pragma ident	"%Z%%M%	%I%	%E% SMI"
28fa9e4066Sahrens 
29fa9e4066Sahrens #include <sys/zfs_context.h>
30ea8dc4b6Seschrock #include <sys/fm/fs/zfs.h>
31fa9e4066Sahrens #include <sys/spa.h>
32fa9e4066Sahrens #include <sys/spa_impl.h>
33fa9e4066Sahrens #include <sys/dmu.h>
34fa9e4066Sahrens #include <sys/dmu_tx.h>
35fa9e4066Sahrens #include <sys/vdev_impl.h>
36fa9e4066Sahrens #include <sys/uberblock_impl.h>
37fa9e4066Sahrens #include <sys/metaslab.h>
38fa9e4066Sahrens #include <sys/metaslab_impl.h>
39fa9e4066Sahrens #include <sys/space_map.h>
40fa9e4066Sahrens #include <sys/zio.h>
41fa9e4066Sahrens #include <sys/zap.h>
42fa9e4066Sahrens #include <sys/fs/zfs.h>
43fa9e4066Sahrens 
44fa9e4066Sahrens /*
45fa9e4066Sahrens  * Virtual device management.
46fa9e4066Sahrens  */
47fa9e4066Sahrens 
48fa9e4066Sahrens static vdev_ops_t *vdev_ops_table[] = {
49fa9e4066Sahrens 	&vdev_root_ops,
50fa9e4066Sahrens 	&vdev_raidz_ops,
51fa9e4066Sahrens 	&vdev_mirror_ops,
52fa9e4066Sahrens 	&vdev_replacing_ops,
5399653d4eSeschrock 	&vdev_spare_ops,
54fa9e4066Sahrens 	&vdev_disk_ops,
55fa9e4066Sahrens 	&vdev_file_ops,
56fa9e4066Sahrens 	&vdev_missing_ops,
57fa9e4066Sahrens 	NULL
58fa9e4066Sahrens };
59fa9e4066Sahrens 
60*05b2b3b8Smishra /* maximum scrub/resilver I/O queue */
61*05b2b3b8Smishra int zfs_scrub_limit = 70;
62*05b2b3b8Smishra 
63fa9e4066Sahrens /*
64fa9e4066Sahrens  * Given a vdev type, return the appropriate ops vector.
65fa9e4066Sahrens  */
66fa9e4066Sahrens static vdev_ops_t *
67fa9e4066Sahrens vdev_getops(const char *type)
68fa9e4066Sahrens {
69fa9e4066Sahrens 	vdev_ops_t *ops, **opspp;
70fa9e4066Sahrens 
71fa9e4066Sahrens 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72fa9e4066Sahrens 		if (strcmp(ops->vdev_op_type, type) == 0)
73fa9e4066Sahrens 			break;
74fa9e4066Sahrens 
75fa9e4066Sahrens 	return (ops);
76fa9e4066Sahrens }
77fa9e4066Sahrens 
78fa9e4066Sahrens /*
79fa9e4066Sahrens  * Default asize function: return the MAX of psize with the asize of
80fa9e4066Sahrens  * all children.  This is what's used by anything other than RAID-Z.
81fa9e4066Sahrens  */
82fa9e4066Sahrens uint64_t
83fa9e4066Sahrens vdev_default_asize(vdev_t *vd, uint64_t psize)
84fa9e4066Sahrens {
85ecc2d604Sbonwick 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86fa9e4066Sahrens 	uint64_t csize;
87fa9e4066Sahrens 	uint64_t c;
88fa9e4066Sahrens 
89fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++) {
90fa9e4066Sahrens 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91fa9e4066Sahrens 		asize = MAX(asize, csize);
92fa9e4066Sahrens 	}
93fa9e4066Sahrens 
94fa9e4066Sahrens 	return (asize);
95fa9e4066Sahrens }
96fa9e4066Sahrens 
972a79c5feSlling /*
982a79c5feSlling  * Get the replaceable or attachable device size.
992a79c5feSlling  * If the parent is a mirror or raidz, the replaceable size is the minimum
1002a79c5feSlling  * psize of all its children. For the rest, just return our own psize.
1012a79c5feSlling  *
1022a79c5feSlling  * e.g.
1032a79c5feSlling  *			psize	rsize
1042a79c5feSlling  * root			-	-
1052a79c5feSlling  *	mirror/raidz	-	-
1062a79c5feSlling  *	    disk1	20g	20g
1072a79c5feSlling  *	    disk2 	40g	20g
1082a79c5feSlling  *	disk3 		80g	80g
1092a79c5feSlling  */
1102a79c5feSlling uint64_t
1112a79c5feSlling vdev_get_rsize(vdev_t *vd)
1122a79c5feSlling {
1132a79c5feSlling 	vdev_t *pvd, *cvd;
1142a79c5feSlling 	uint64_t c, rsize;
1152a79c5feSlling 
1162a79c5feSlling 	pvd = vd->vdev_parent;
1172a79c5feSlling 
1182a79c5feSlling 	/*
1192a79c5feSlling 	 * If our parent is NULL or the root, just return our own psize.
1202a79c5feSlling 	 */
1212a79c5feSlling 	if (pvd == NULL || pvd->vdev_parent == NULL)
1222a79c5feSlling 		return (vd->vdev_psize);
1232a79c5feSlling 
1242a79c5feSlling 	rsize = 0;
1252a79c5feSlling 
1262a79c5feSlling 	for (c = 0; c < pvd->vdev_children; c++) {
1272a79c5feSlling 		cvd = pvd->vdev_child[c];
1282a79c5feSlling 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
1292a79c5feSlling 	}
1302a79c5feSlling 
1312a79c5feSlling 	return (rsize);
1322a79c5feSlling }
1332a79c5feSlling 
134fa9e4066Sahrens vdev_t *
135fa9e4066Sahrens vdev_lookup_top(spa_t *spa, uint64_t vdev)
136fa9e4066Sahrens {
137fa9e4066Sahrens 	vdev_t *rvd = spa->spa_root_vdev;
138fa9e4066Sahrens 
139fa9e4066Sahrens 	if (vdev < rvd->vdev_children)
140fa9e4066Sahrens 		return (rvd->vdev_child[vdev]);
141fa9e4066Sahrens 
142fa9e4066Sahrens 	return (NULL);
143fa9e4066Sahrens }
144fa9e4066Sahrens 
145fa9e4066Sahrens vdev_t *
146fa9e4066Sahrens vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
147fa9e4066Sahrens {
148fa9e4066Sahrens 	int c;
149fa9e4066Sahrens 	vdev_t *mvd;
150fa9e4066Sahrens 
1510e34b6a7Sbonwick 	if (vd->vdev_guid == guid)
152fa9e4066Sahrens 		return (vd);
153fa9e4066Sahrens 
154fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
155fa9e4066Sahrens 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
156fa9e4066Sahrens 		    NULL)
157fa9e4066Sahrens 			return (mvd);
158fa9e4066Sahrens 
159fa9e4066Sahrens 	return (NULL);
160fa9e4066Sahrens }
161fa9e4066Sahrens 
162fa9e4066Sahrens void
163fa9e4066Sahrens vdev_add_child(vdev_t *pvd, vdev_t *cvd)
164fa9e4066Sahrens {
165fa9e4066Sahrens 	size_t oldsize, newsize;
166fa9e4066Sahrens 	uint64_t id = cvd->vdev_id;
167fa9e4066Sahrens 	vdev_t **newchild;
168fa9e4066Sahrens 
169fa9e4066Sahrens 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
170fa9e4066Sahrens 	ASSERT(cvd->vdev_parent == NULL);
171fa9e4066Sahrens 
172fa9e4066Sahrens 	cvd->vdev_parent = pvd;
173fa9e4066Sahrens 
174fa9e4066Sahrens 	if (pvd == NULL)
175fa9e4066Sahrens 		return;
176fa9e4066Sahrens 
177fa9e4066Sahrens 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
178fa9e4066Sahrens 
179fa9e4066Sahrens 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
180fa9e4066Sahrens 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
181fa9e4066Sahrens 	newsize = pvd->vdev_children * sizeof (vdev_t *);
182fa9e4066Sahrens 
183fa9e4066Sahrens 	newchild = kmem_zalloc(newsize, KM_SLEEP);
184fa9e4066Sahrens 	if (pvd->vdev_child != NULL) {
185fa9e4066Sahrens 		bcopy(pvd->vdev_child, newchild, oldsize);
186fa9e4066Sahrens 		kmem_free(pvd->vdev_child, oldsize);
187fa9e4066Sahrens 	}
188fa9e4066Sahrens 
189fa9e4066Sahrens 	pvd->vdev_child = newchild;
190fa9e4066Sahrens 	pvd->vdev_child[id] = cvd;
191fa9e4066Sahrens 
192fa9e4066Sahrens 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
193fa9e4066Sahrens 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
194fa9e4066Sahrens 
195fa9e4066Sahrens 	/*
196fa9e4066Sahrens 	 * Walk up all ancestors to update guid sum.
197fa9e4066Sahrens 	 */
198fa9e4066Sahrens 	for (; pvd != NULL; pvd = pvd->vdev_parent)
199fa9e4066Sahrens 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
200*05b2b3b8Smishra 
201*05b2b3b8Smishra 	if (cvd->vdev_ops->vdev_op_leaf)
202*05b2b3b8Smishra 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
203fa9e4066Sahrens }
204fa9e4066Sahrens 
205fa9e4066Sahrens void
206fa9e4066Sahrens vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
207fa9e4066Sahrens {
208fa9e4066Sahrens 	int c;
209fa9e4066Sahrens 	uint_t id = cvd->vdev_id;
210fa9e4066Sahrens 
211fa9e4066Sahrens 	ASSERT(cvd->vdev_parent == pvd);
212fa9e4066Sahrens 
213fa9e4066Sahrens 	if (pvd == NULL)
214fa9e4066Sahrens 		return;
215fa9e4066Sahrens 
216fa9e4066Sahrens 	ASSERT(id < pvd->vdev_children);
217fa9e4066Sahrens 	ASSERT(pvd->vdev_child[id] == cvd);
218fa9e4066Sahrens 
219fa9e4066Sahrens 	pvd->vdev_child[id] = NULL;
220fa9e4066Sahrens 	cvd->vdev_parent = NULL;
221fa9e4066Sahrens 
222fa9e4066Sahrens 	for (c = 0; c < pvd->vdev_children; c++)
223fa9e4066Sahrens 		if (pvd->vdev_child[c])
224fa9e4066Sahrens 			break;
225fa9e4066Sahrens 
226fa9e4066Sahrens 	if (c == pvd->vdev_children) {
227fa9e4066Sahrens 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
228fa9e4066Sahrens 		pvd->vdev_child = NULL;
229fa9e4066Sahrens 		pvd->vdev_children = 0;
230fa9e4066Sahrens 	}
231fa9e4066Sahrens 
232fa9e4066Sahrens 	/*
233fa9e4066Sahrens 	 * Walk up all ancestors to update guid sum.
234fa9e4066Sahrens 	 */
235fa9e4066Sahrens 	for (; pvd != NULL; pvd = pvd->vdev_parent)
236fa9e4066Sahrens 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
237*05b2b3b8Smishra 
238*05b2b3b8Smishra 	if (cvd->vdev_ops->vdev_op_leaf)
239*05b2b3b8Smishra 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
240fa9e4066Sahrens }
241fa9e4066Sahrens 
242fa9e4066Sahrens /*
243fa9e4066Sahrens  * Remove any holes in the child array.
244fa9e4066Sahrens  */
245fa9e4066Sahrens void
246fa9e4066Sahrens vdev_compact_children(vdev_t *pvd)
247fa9e4066Sahrens {
248fa9e4066Sahrens 	vdev_t **newchild, *cvd;
249fa9e4066Sahrens 	int oldc = pvd->vdev_children;
250fa9e4066Sahrens 	int newc, c;
251fa9e4066Sahrens 
252fa9e4066Sahrens 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
253fa9e4066Sahrens 
254fa9e4066Sahrens 	for (c = newc = 0; c < oldc; c++)
255fa9e4066Sahrens 		if (pvd->vdev_child[c])
256fa9e4066Sahrens 			newc++;
257fa9e4066Sahrens 
258fa9e4066Sahrens 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
259fa9e4066Sahrens 
260fa9e4066Sahrens 	for (c = newc = 0; c < oldc; c++) {
261fa9e4066Sahrens 		if ((cvd = pvd->vdev_child[c]) != NULL) {
262fa9e4066Sahrens 			newchild[newc] = cvd;
263fa9e4066Sahrens 			cvd->vdev_id = newc++;
264fa9e4066Sahrens 		}
265fa9e4066Sahrens 	}
266fa9e4066Sahrens 
267fa9e4066Sahrens 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
268fa9e4066Sahrens 	pvd->vdev_child = newchild;
269fa9e4066Sahrens 	pvd->vdev_children = newc;
270fa9e4066Sahrens }
271fa9e4066Sahrens 
272fa9e4066Sahrens /*
273fa9e4066Sahrens  * Allocate and minimally initialize a vdev_t.
274fa9e4066Sahrens  */
275fa9e4066Sahrens static vdev_t *
276fa9e4066Sahrens vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
277fa9e4066Sahrens {
278fa9e4066Sahrens 	vdev_t *vd;
279fa9e4066Sahrens 
280fa9e4066Sahrens 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
281fa9e4066Sahrens 
2820e34b6a7Sbonwick 	if (spa->spa_root_vdev == NULL) {
2830e34b6a7Sbonwick 		ASSERT(ops == &vdev_root_ops);
2840e34b6a7Sbonwick 		spa->spa_root_vdev = vd;
2850e34b6a7Sbonwick 	}
2860e34b6a7Sbonwick 
2870e34b6a7Sbonwick 	if (guid == 0) {
2880e34b6a7Sbonwick 		if (spa->spa_root_vdev == vd) {
2890e34b6a7Sbonwick 			/*
2900e34b6a7Sbonwick 			 * The root vdev's guid will also be the pool guid,
2910e34b6a7Sbonwick 			 * which must be unique among all pools.
2920e34b6a7Sbonwick 			 */
2930e34b6a7Sbonwick 			while (guid == 0 || spa_guid_exists(guid, 0))
2940e34b6a7Sbonwick 				guid = spa_get_random(-1ULL);
2950e34b6a7Sbonwick 		} else {
2960e34b6a7Sbonwick 			/*
2970e34b6a7Sbonwick 			 * Any other vdev's guid must be unique within the pool.
2980e34b6a7Sbonwick 			 */
2990e34b6a7Sbonwick 			while (guid == 0 ||
3000e34b6a7Sbonwick 			    spa_guid_exists(spa_guid(spa), guid))
3010e34b6a7Sbonwick 				guid = spa_get_random(-1ULL);
3020e34b6a7Sbonwick 		}
3030e34b6a7Sbonwick 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
3040e34b6a7Sbonwick 	}
3050e34b6a7Sbonwick 
306fa9e4066Sahrens 	vd->vdev_spa = spa;
307fa9e4066Sahrens 	vd->vdev_id = id;
308fa9e4066Sahrens 	vd->vdev_guid = guid;
309fa9e4066Sahrens 	vd->vdev_guid_sum = guid;
310fa9e4066Sahrens 	vd->vdev_ops = ops;
311fa9e4066Sahrens 	vd->vdev_state = VDEV_STATE_CLOSED;
312fa9e4066Sahrens 
313fa9e4066Sahrens 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
3145ad82045Snd 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
315fa9e4066Sahrens 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
316fa9e4066Sahrens 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
317fa9e4066Sahrens 	txg_list_create(&vd->vdev_ms_list,
318fa9e4066Sahrens 	    offsetof(struct metaslab, ms_txg_node));
319fa9e4066Sahrens 	txg_list_create(&vd->vdev_dtl_list,
320fa9e4066Sahrens 	    offsetof(struct vdev, vdev_dtl_node));
321fa9e4066Sahrens 	vd->vdev_stat.vs_timestamp = gethrtime();
322fa9e4066Sahrens 
323fa9e4066Sahrens 	return (vd);
324fa9e4066Sahrens }
325fa9e4066Sahrens 
326fa9e4066Sahrens /*
327fa9e4066Sahrens  * Free a vdev_t that has been removed from service.
328fa9e4066Sahrens  */
329fa9e4066Sahrens static void
330fa9e4066Sahrens vdev_free_common(vdev_t *vd)
331fa9e4066Sahrens {
3320e34b6a7Sbonwick 	spa_t *spa = vd->vdev_spa;
3330e34b6a7Sbonwick 
334fa9e4066Sahrens 	if (vd->vdev_path)
335fa9e4066Sahrens 		spa_strfree(vd->vdev_path);
336fa9e4066Sahrens 	if (vd->vdev_devid)
337fa9e4066Sahrens 		spa_strfree(vd->vdev_devid);
338fa9e4066Sahrens 
33999653d4eSeschrock 	if (vd->vdev_isspare)
34039c23413Seschrock 		spa_spare_remove(vd);
34199653d4eSeschrock 
342fa9e4066Sahrens 	txg_list_destroy(&vd->vdev_ms_list);
343fa9e4066Sahrens 	txg_list_destroy(&vd->vdev_dtl_list);
344fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
345ecc2d604Sbonwick 	space_map_unload(&vd->vdev_dtl_map);
346fa9e4066Sahrens 	space_map_destroy(&vd->vdev_dtl_map);
347fa9e4066Sahrens 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
348fa9e4066Sahrens 	space_map_destroy(&vd->vdev_dtl_scrub);
349fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
350fa9e4066Sahrens 	mutex_destroy(&vd->vdev_dtl_lock);
3515ad82045Snd 	mutex_destroy(&vd->vdev_stat_lock);
352fa9e4066Sahrens 
3530e34b6a7Sbonwick 	if (vd == spa->spa_root_vdev)
3540e34b6a7Sbonwick 		spa->spa_root_vdev = NULL;
3550e34b6a7Sbonwick 
356fa9e4066Sahrens 	kmem_free(vd, sizeof (vdev_t));
357fa9e4066Sahrens }
358fa9e4066Sahrens 
359fa9e4066Sahrens /*
360fa9e4066Sahrens  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
361fa9e4066Sahrens  * creating a new vdev or loading an existing one - the behavior is slightly
362fa9e4066Sahrens  * different for each case.
363fa9e4066Sahrens  */
36499653d4eSeschrock int
36599653d4eSeschrock vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
36699653d4eSeschrock     int alloctype)
367fa9e4066Sahrens {
368fa9e4066Sahrens 	vdev_ops_t *ops;
369fa9e4066Sahrens 	char *type;
370ecc2d604Sbonwick 	uint64_t guid = 0;
371fa9e4066Sahrens 	vdev_t *vd;
372fa9e4066Sahrens 
373fa9e4066Sahrens 	ASSERT(spa_config_held(spa, RW_WRITER));
374fa9e4066Sahrens 
375fa9e4066Sahrens 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
37699653d4eSeschrock 		return (EINVAL);
377fa9e4066Sahrens 
378fa9e4066Sahrens 	if ((ops = vdev_getops(type)) == NULL)
37999653d4eSeschrock 		return (EINVAL);
380fa9e4066Sahrens 
381fa9e4066Sahrens 	/*
382fa9e4066Sahrens 	 * If this is a load, get the vdev guid from the nvlist.
383fa9e4066Sahrens 	 * Otherwise, vdev_alloc_common() will generate one for us.
384fa9e4066Sahrens 	 */
385fa9e4066Sahrens 	if (alloctype == VDEV_ALLOC_LOAD) {
386fa9e4066Sahrens 		uint64_t label_id;
387fa9e4066Sahrens 
388fa9e4066Sahrens 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
389fa9e4066Sahrens 		    label_id != id)
39099653d4eSeschrock 			return (EINVAL);
391fa9e4066Sahrens 
392fa9e4066Sahrens 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
39399653d4eSeschrock 			return (EINVAL);
39499653d4eSeschrock 	} else if (alloctype == VDEV_ALLOC_SPARE) {
39599653d4eSeschrock 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
39699653d4eSeschrock 			return (EINVAL);
397fa9e4066Sahrens 	}
398fa9e4066Sahrens 
39999653d4eSeschrock 	/*
40099653d4eSeschrock 	 * The first allocated vdev must be of type 'root'.
40199653d4eSeschrock 	 */
40299653d4eSeschrock 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
40399653d4eSeschrock 		return (EINVAL);
40499653d4eSeschrock 
405fa9e4066Sahrens 	vd = vdev_alloc_common(spa, id, guid, ops);
406fa9e4066Sahrens 
407fa9e4066Sahrens 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
408fa9e4066Sahrens 		vd->vdev_path = spa_strdup(vd->vdev_path);
409fa9e4066Sahrens 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
410fa9e4066Sahrens 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
411fa9e4066Sahrens 
41299653d4eSeschrock 	/*
41399653d4eSeschrock 	 * Set the nparity propery for RAID-Z vdevs.
41499653d4eSeschrock 	 */
41599653d4eSeschrock 	if (ops == &vdev_raidz_ops) {
41699653d4eSeschrock 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
41799653d4eSeschrock 		    &vd->vdev_nparity) == 0) {
41899653d4eSeschrock 			/*
41999653d4eSeschrock 			 * Currently, we can only support 2 parity devices.
42099653d4eSeschrock 			 */
42199653d4eSeschrock 			if (vd->vdev_nparity > 2)
42299653d4eSeschrock 				return (EINVAL);
42399653d4eSeschrock 			/*
42499653d4eSeschrock 			 * Older versions can only support 1 parity device.
42599653d4eSeschrock 			 */
42699653d4eSeschrock 			if (vd->vdev_nparity == 2 &&
42799653d4eSeschrock 			    spa_version(spa) < ZFS_VERSION_RAID6)
42899653d4eSeschrock 				return (ENOTSUP);
42999653d4eSeschrock 
43099653d4eSeschrock 		} else {
43199653d4eSeschrock 			/*
43299653d4eSeschrock 			 * We require the parity to be specified for SPAs that
43399653d4eSeschrock 			 * support multiple parity levels.
43499653d4eSeschrock 			 */
43599653d4eSeschrock 			if (spa_version(spa) >= ZFS_VERSION_RAID6)
43699653d4eSeschrock 				return (EINVAL);
43799653d4eSeschrock 
43899653d4eSeschrock 			/*
43999653d4eSeschrock 			 * Otherwise, we default to 1 parity device for RAID-Z.
44099653d4eSeschrock 			 */
44199653d4eSeschrock 			vd->vdev_nparity = 1;
44299653d4eSeschrock 		}
44399653d4eSeschrock 	} else {
44499653d4eSeschrock 		vd->vdev_nparity = 0;
44599653d4eSeschrock 	}
44699653d4eSeschrock 
447afefbcddSeschrock 	/*
448afefbcddSeschrock 	 * Set the whole_disk property.  If it's not specified, leave the value
449afefbcddSeschrock 	 * as -1.
450afefbcddSeschrock 	 */
451afefbcddSeschrock 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
452afefbcddSeschrock 	    &vd->vdev_wholedisk) != 0)
453afefbcddSeschrock 		vd->vdev_wholedisk = -1ULL;
454afefbcddSeschrock 
455ea8dc4b6Seschrock 	/*
456ea8dc4b6Seschrock 	 * Look for the 'not present' flag.  This will only be set if the device
457ea8dc4b6Seschrock 	 * was not present at the time of import.
458ea8dc4b6Seschrock 	 */
459ea8dc4b6Seschrock 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
460ea8dc4b6Seschrock 	    &vd->vdev_not_present);
461ea8dc4b6Seschrock 
462ecc2d604Sbonwick 	/*
463ecc2d604Sbonwick 	 * Get the alignment requirement.
464ecc2d604Sbonwick 	 */
465ecc2d604Sbonwick 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
466ecc2d604Sbonwick 
467fa9e4066Sahrens 	/*
468fa9e4066Sahrens 	 * If we're a top-level vdev, try to load the allocation parameters.
469fa9e4066Sahrens 	 */
470fa9e4066Sahrens 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
471fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
472fa9e4066Sahrens 		    &vd->vdev_ms_array);
473fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
474fa9e4066Sahrens 		    &vd->vdev_ms_shift);
475fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
476fa9e4066Sahrens 		    &vd->vdev_asize);
477fa9e4066Sahrens 	}
478fa9e4066Sahrens 
479fa9e4066Sahrens 	/*
480ecc2d604Sbonwick 	 * If we're a leaf vdev, try to load the DTL object and offline state.
481fa9e4066Sahrens 	 */
482fa9e4066Sahrens 	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
483fa9e4066Sahrens 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
484fa9e4066Sahrens 		    &vd->vdev_dtl.smo_object);
485ecc2d604Sbonwick 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
486ecc2d604Sbonwick 		    &vd->vdev_offline);
487fa9e4066Sahrens 	}
488fa9e4066Sahrens 
489fa9e4066Sahrens 	/*
490fa9e4066Sahrens 	 * Add ourselves to the parent's list of children.
491fa9e4066Sahrens 	 */
492fa9e4066Sahrens 	vdev_add_child(parent, vd);
493fa9e4066Sahrens 
49499653d4eSeschrock 	*vdp = vd;
49599653d4eSeschrock 
49699653d4eSeschrock 	return (0);
497fa9e4066Sahrens }
498fa9e4066Sahrens 
499fa9e4066Sahrens void
500fa9e4066Sahrens vdev_free(vdev_t *vd)
501fa9e4066Sahrens {
502fa9e4066Sahrens 	int c;
503fa9e4066Sahrens 
504fa9e4066Sahrens 	/*
505fa9e4066Sahrens 	 * vdev_free() implies closing the vdev first.  This is simpler than
506fa9e4066Sahrens 	 * trying to ensure complicated semantics for all callers.
507fa9e4066Sahrens 	 */
508fa9e4066Sahrens 	vdev_close(vd);
509fa9e4066Sahrens 
510ecc2d604Sbonwick 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
511fa9e4066Sahrens 
512fa9e4066Sahrens 	/*
513fa9e4066Sahrens 	 * Free all children.
514fa9e4066Sahrens 	 */
515fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
516fa9e4066Sahrens 		vdev_free(vd->vdev_child[c]);
517fa9e4066Sahrens 
518fa9e4066Sahrens 	ASSERT(vd->vdev_child == NULL);
519fa9e4066Sahrens 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
520fa9e4066Sahrens 
521fa9e4066Sahrens 	/*
522fa9e4066Sahrens 	 * Discard allocation state.
523fa9e4066Sahrens 	 */
524fa9e4066Sahrens 	if (vd == vd->vdev_top)
525fa9e4066Sahrens 		vdev_metaslab_fini(vd);
526fa9e4066Sahrens 
527fa9e4066Sahrens 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
52899653d4eSeschrock 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
529fa9e4066Sahrens 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
530fa9e4066Sahrens 
531fa9e4066Sahrens 	/*
532fa9e4066Sahrens 	 * Remove this vdev from its parent's child list.
533fa9e4066Sahrens 	 */
534fa9e4066Sahrens 	vdev_remove_child(vd->vdev_parent, vd);
535fa9e4066Sahrens 
536fa9e4066Sahrens 	ASSERT(vd->vdev_parent == NULL);
537fa9e4066Sahrens 
538fa9e4066Sahrens 	vdev_free_common(vd);
539fa9e4066Sahrens }
540fa9e4066Sahrens 
541fa9e4066Sahrens /*
542fa9e4066Sahrens  * Transfer top-level vdev state from svd to tvd.
543fa9e4066Sahrens  */
544fa9e4066Sahrens static void
545fa9e4066Sahrens vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
546fa9e4066Sahrens {
547fa9e4066Sahrens 	spa_t *spa = svd->vdev_spa;
548fa9e4066Sahrens 	metaslab_t *msp;
549fa9e4066Sahrens 	vdev_t *vd;
550fa9e4066Sahrens 	int t;
551fa9e4066Sahrens 
552fa9e4066Sahrens 	ASSERT(tvd == tvd->vdev_top);
553fa9e4066Sahrens 
554fa9e4066Sahrens 	tvd->vdev_ms_array = svd->vdev_ms_array;
555fa9e4066Sahrens 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
556fa9e4066Sahrens 	tvd->vdev_ms_count = svd->vdev_ms_count;
557fa9e4066Sahrens 
558fa9e4066Sahrens 	svd->vdev_ms_array = 0;
559fa9e4066Sahrens 	svd->vdev_ms_shift = 0;
560fa9e4066Sahrens 	svd->vdev_ms_count = 0;
561fa9e4066Sahrens 
562fa9e4066Sahrens 	tvd->vdev_mg = svd->vdev_mg;
563fa9e4066Sahrens 	tvd->vdev_ms = svd->vdev_ms;
564fa9e4066Sahrens 
565fa9e4066Sahrens 	svd->vdev_mg = NULL;
566fa9e4066Sahrens 	svd->vdev_ms = NULL;
567ecc2d604Sbonwick 
568ecc2d604Sbonwick 	if (tvd->vdev_mg != NULL)
569ecc2d604Sbonwick 		tvd->vdev_mg->mg_vd = tvd;
570fa9e4066Sahrens 
571fa9e4066Sahrens 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
572fa9e4066Sahrens 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
57399653d4eSeschrock 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
574fa9e4066Sahrens 
575fa9e4066Sahrens 	svd->vdev_stat.vs_alloc = 0;
576fa9e4066Sahrens 	svd->vdev_stat.vs_space = 0;
57799653d4eSeschrock 	svd->vdev_stat.vs_dspace = 0;
578fa9e4066Sahrens 
579fa9e4066Sahrens 	for (t = 0; t < TXG_SIZE; t++) {
580fa9e4066Sahrens 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
581fa9e4066Sahrens 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
582fa9e4066Sahrens 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
583fa9e4066Sahrens 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
584fa9e4066Sahrens 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
585fa9e4066Sahrens 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
586fa9e4066Sahrens 	}
587fa9e4066Sahrens 
588ecc2d604Sbonwick 	if (list_link_active(&svd->vdev_dirty_node)) {
589fa9e4066Sahrens 		vdev_config_clean(svd);
590fa9e4066Sahrens 		vdev_config_dirty(tvd);
591fa9e4066Sahrens 	}
592fa9e4066Sahrens 
593ea8dc4b6Seschrock 	tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted;
594ea8dc4b6Seschrock 	svd->vdev_reopen_wanted = 0;
59599653d4eSeschrock 
59699653d4eSeschrock 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
59799653d4eSeschrock 	svd->vdev_deflate_ratio = 0;
598fa9e4066Sahrens }
599fa9e4066Sahrens 
600fa9e4066Sahrens static void
601fa9e4066Sahrens vdev_top_update(vdev_t *tvd, vdev_t *vd)
602fa9e4066Sahrens {
603fa9e4066Sahrens 	int c;
604fa9e4066Sahrens 
605fa9e4066Sahrens 	if (vd == NULL)
606fa9e4066Sahrens 		return;
607fa9e4066Sahrens 
608fa9e4066Sahrens 	vd->vdev_top = tvd;
609fa9e4066Sahrens 
610fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
611fa9e4066Sahrens 		vdev_top_update(tvd, vd->vdev_child[c]);
612fa9e4066Sahrens }
613fa9e4066Sahrens 
614fa9e4066Sahrens /*
615fa9e4066Sahrens  * Add a mirror/replacing vdev above an existing vdev.
616fa9e4066Sahrens  */
617fa9e4066Sahrens vdev_t *
618fa9e4066Sahrens vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
619fa9e4066Sahrens {
620fa9e4066Sahrens 	spa_t *spa = cvd->vdev_spa;
621fa9e4066Sahrens 	vdev_t *pvd = cvd->vdev_parent;
622fa9e4066Sahrens 	vdev_t *mvd;
623fa9e4066Sahrens 
624fa9e4066Sahrens 	ASSERT(spa_config_held(spa, RW_WRITER));
625fa9e4066Sahrens 
626fa9e4066Sahrens 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
627ecc2d604Sbonwick 
628ecc2d604Sbonwick 	mvd->vdev_asize = cvd->vdev_asize;
629ecc2d604Sbonwick 	mvd->vdev_ashift = cvd->vdev_ashift;
630ecc2d604Sbonwick 	mvd->vdev_state = cvd->vdev_state;
631ecc2d604Sbonwick 
632fa9e4066Sahrens 	vdev_remove_child(pvd, cvd);
633fa9e4066Sahrens 	vdev_add_child(pvd, mvd);
634fa9e4066Sahrens 	cvd->vdev_id = mvd->vdev_children;
635fa9e4066Sahrens 	vdev_add_child(mvd, cvd);
636fa9e4066Sahrens 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
637fa9e4066Sahrens 
638fa9e4066Sahrens 	if (mvd == mvd->vdev_top)
639fa9e4066Sahrens 		vdev_top_transfer(cvd, mvd);
640fa9e4066Sahrens 
641fa9e4066Sahrens 	return (mvd);
642fa9e4066Sahrens }
643fa9e4066Sahrens 
644fa9e4066Sahrens /*
645fa9e4066Sahrens  * Remove a 1-way mirror/replacing vdev from the tree.
646fa9e4066Sahrens  */
647fa9e4066Sahrens void
648fa9e4066Sahrens vdev_remove_parent(vdev_t *cvd)
649fa9e4066Sahrens {
650fa9e4066Sahrens 	vdev_t *mvd = cvd->vdev_parent;
651fa9e4066Sahrens 	vdev_t *pvd = mvd->vdev_parent;
652fa9e4066Sahrens 
653fa9e4066Sahrens 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
654fa9e4066Sahrens 
655fa9e4066Sahrens 	ASSERT(mvd->vdev_children == 1);
656fa9e4066Sahrens 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
65799653d4eSeschrock 	    mvd->vdev_ops == &vdev_replacing_ops ||
65899653d4eSeschrock 	    mvd->vdev_ops == &vdev_spare_ops);
659ecc2d604Sbonwick 	cvd->vdev_ashift = mvd->vdev_ashift;
660fa9e4066Sahrens 
661fa9e4066Sahrens 	vdev_remove_child(mvd, cvd);
662fa9e4066Sahrens 	vdev_remove_child(pvd, mvd);
663fa9e4066Sahrens 	cvd->vdev_id = mvd->vdev_id;
664fa9e4066Sahrens 	vdev_add_child(pvd, cvd);
66599653d4eSeschrock 	/*
66699653d4eSeschrock 	 * If we created a new toplevel vdev, then we need to change the child's
66799653d4eSeschrock 	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
66899653d4eSeschrock 	 * detached an offline device, and when we go to import the pool we'll
66999653d4eSeschrock 	 * think we have two toplevel vdevs, instead of a different version of
67099653d4eSeschrock 	 * the same toplevel vdev.
67199653d4eSeschrock 	 */
67299653d4eSeschrock 	if (cvd->vdev_top == cvd) {
67399653d4eSeschrock 		pvd->vdev_guid_sum -= cvd->vdev_guid;
67499653d4eSeschrock 		cvd->vdev_guid_sum -= cvd->vdev_guid;
67599653d4eSeschrock 		cvd->vdev_guid = mvd->vdev_guid;
67699653d4eSeschrock 		cvd->vdev_guid_sum += mvd->vdev_guid;
67799653d4eSeschrock 		pvd->vdev_guid_sum += cvd->vdev_guid;
67899653d4eSeschrock 	}
679fa9e4066Sahrens 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
680fa9e4066Sahrens 
681fa9e4066Sahrens 	if (cvd == cvd->vdev_top)
682fa9e4066Sahrens 		vdev_top_transfer(mvd, cvd);
683fa9e4066Sahrens 
684fa9e4066Sahrens 	ASSERT(mvd->vdev_children == 0);
685fa9e4066Sahrens 	vdev_free(mvd);
686fa9e4066Sahrens }
687fa9e4066Sahrens 
688ea8dc4b6Seschrock int
689fa9e4066Sahrens vdev_metaslab_init(vdev_t *vd, uint64_t txg)
690fa9e4066Sahrens {
691fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
692ecc2d604Sbonwick 	objset_t *mos = spa->spa_meta_objset;
693fa9e4066Sahrens 	metaslab_class_t *mc = spa_metaslab_class_select(spa);
694ecc2d604Sbonwick 	uint64_t m;
695fa9e4066Sahrens 	uint64_t oldc = vd->vdev_ms_count;
696fa9e4066Sahrens 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
697ecc2d604Sbonwick 	metaslab_t **mspp;
698ecc2d604Sbonwick 	int error;
699fa9e4066Sahrens 
7000e34b6a7Sbonwick 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
7010e34b6a7Sbonwick 		return (0);
7020e34b6a7Sbonwick 
703fa9e4066Sahrens 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
704fa9e4066Sahrens 
705fa9e4066Sahrens 	ASSERT(oldc <= newc);
706fa9e4066Sahrens 
707ecc2d604Sbonwick 	if (vd->vdev_mg == NULL)
708ecc2d604Sbonwick 		vd->vdev_mg = metaslab_group_create(mc, vd);
709fa9e4066Sahrens 
710ecc2d604Sbonwick 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
711fa9e4066Sahrens 
712ecc2d604Sbonwick 	if (oldc != 0) {
713ecc2d604Sbonwick 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
714ecc2d604Sbonwick 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
715ecc2d604Sbonwick 	}
716fa9e4066Sahrens 
717ecc2d604Sbonwick 	vd->vdev_ms = mspp;
718ecc2d604Sbonwick 	vd->vdev_ms_count = newc;
719fa9e4066Sahrens 
720ecc2d604Sbonwick 	for (m = oldc; m < newc; m++) {
721ecc2d604Sbonwick 		space_map_obj_t smo = { 0, 0, 0 };
722ecc2d604Sbonwick 		if (txg == 0) {
723ecc2d604Sbonwick 			uint64_t object = 0;
724ecc2d604Sbonwick 			error = dmu_read(mos, vd->vdev_ms_array,
725ecc2d604Sbonwick 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
726ecc2d604Sbonwick 			if (error)
727ecc2d604Sbonwick 				return (error);
728ecc2d604Sbonwick 			if (object != 0) {
729ecc2d604Sbonwick 				dmu_buf_t *db;
730ecc2d604Sbonwick 				error = dmu_bonus_hold(mos, object, FTAG, &db);
731ecc2d604Sbonwick 				if (error)
732ecc2d604Sbonwick 					return (error);
733ecc2d604Sbonwick 				ASSERT3U(db->db_size, ==, sizeof (smo));
734ecc2d604Sbonwick 				bcopy(db->db_data, &smo, db->db_size);
735ecc2d604Sbonwick 				ASSERT3U(smo.smo_object, ==, object);
736ea8dc4b6Seschrock 				dmu_buf_rele(db, FTAG);
737fa9e4066Sahrens 			}
738fa9e4066Sahrens 		}
739ecc2d604Sbonwick 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
740ecc2d604Sbonwick 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
741fa9e4066Sahrens 	}
742fa9e4066Sahrens 
743ea8dc4b6Seschrock 	return (0);
744fa9e4066Sahrens }
745fa9e4066Sahrens 
746fa9e4066Sahrens void
747fa9e4066Sahrens vdev_metaslab_fini(vdev_t *vd)
748fa9e4066Sahrens {
749fa9e4066Sahrens 	uint64_t m;
750fa9e4066Sahrens 	uint64_t count = vd->vdev_ms_count;
751fa9e4066Sahrens 
752fa9e4066Sahrens 	if (vd->vdev_ms != NULL) {
753fa9e4066Sahrens 		for (m = 0; m < count; m++)
754ecc2d604Sbonwick 			if (vd->vdev_ms[m] != NULL)
755ecc2d604Sbonwick 				metaslab_fini(vd->vdev_ms[m]);
756fa9e4066Sahrens 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
757fa9e4066Sahrens 		vd->vdev_ms = NULL;
758fa9e4066Sahrens 	}
759fa9e4066Sahrens }
760fa9e4066Sahrens 
761fa9e4066Sahrens /*
762fa9e4066Sahrens  * Prepare a virtual device for access.
763fa9e4066Sahrens  */
764fa9e4066Sahrens int
765fa9e4066Sahrens vdev_open(vdev_t *vd)
766fa9e4066Sahrens {
767fa9e4066Sahrens 	int error;
768fa9e4066Sahrens 	int c;
769fa9e4066Sahrens 	uint64_t osize = 0;
770fa9e4066Sahrens 	uint64_t asize, psize;
771ecc2d604Sbonwick 	uint64_t ashift = 0;
772fa9e4066Sahrens 
773fa9e4066Sahrens 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
774fa9e4066Sahrens 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
775fa9e4066Sahrens 	    vd->vdev_state == VDEV_STATE_OFFLINE);
776fa9e4066Sahrens 
777fa9e4066Sahrens 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
778fa9e4066Sahrens 		vd->vdev_fault_arg >>= 1;
779fa9e4066Sahrens 	else
780fa9e4066Sahrens 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
781fa9e4066Sahrens 
782fa9e4066Sahrens 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
783fa9e4066Sahrens 
784fa9e4066Sahrens 	if (vd->vdev_ops->vdev_op_leaf) {
785fa9e4066Sahrens 		vdev_cache_init(vd);
786fa9e4066Sahrens 		vdev_queue_init(vd);
787fa9e4066Sahrens 		vd->vdev_cache_active = B_TRUE;
788fa9e4066Sahrens 	}
789fa9e4066Sahrens 
790fa9e4066Sahrens 	if (vd->vdev_offline) {
791fa9e4066Sahrens 		ASSERT(vd->vdev_children == 0);
792ea8dc4b6Seschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
793fa9e4066Sahrens 		return (ENXIO);
794fa9e4066Sahrens 	}
795fa9e4066Sahrens 
796fa9e4066Sahrens 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
797fa9e4066Sahrens 
798ea8dc4b6Seschrock 	if (zio_injection_enabled && error == 0)
799ea8dc4b6Seschrock 		error = zio_handle_device_injection(vd, ENXIO);
800ea8dc4b6Seschrock 
801fa9e4066Sahrens 	dprintf("%s = %d, osize %llu, state = %d\n",
802fa9e4066Sahrens 	    vdev_description(vd), error, osize, vd->vdev_state);
803fa9e4066Sahrens 
804fa9e4066Sahrens 	if (error) {
805ea8dc4b6Seschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
806fa9e4066Sahrens 		    vd->vdev_stat.vs_aux);
807fa9e4066Sahrens 		return (error);
808fa9e4066Sahrens 	}
809fa9e4066Sahrens 
810fa9e4066Sahrens 	vd->vdev_state = VDEV_STATE_HEALTHY;
811fa9e4066Sahrens 
812fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
813ea8dc4b6Seschrock 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
814ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
815ea8dc4b6Seschrock 			    VDEV_AUX_NONE);
816ea8dc4b6Seschrock 			break;
817ea8dc4b6Seschrock 		}
818fa9e4066Sahrens 
819fa9e4066Sahrens 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
820fa9e4066Sahrens 
821fa9e4066Sahrens 	if (vd->vdev_children == 0) {
822fa9e4066Sahrens 		if (osize < SPA_MINDEVSIZE) {
823ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
824ea8dc4b6Seschrock 			    VDEV_AUX_TOO_SMALL);
825fa9e4066Sahrens 			return (EOVERFLOW);
826fa9e4066Sahrens 		}
827fa9e4066Sahrens 		psize = osize;
828fa9e4066Sahrens 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
829fa9e4066Sahrens 	} else {
830ecc2d604Sbonwick 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
831fa9e4066Sahrens 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
832ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
833ea8dc4b6Seschrock 			    VDEV_AUX_TOO_SMALL);
834fa9e4066Sahrens 			return (EOVERFLOW);
835fa9e4066Sahrens 		}
836fa9e4066Sahrens 		psize = 0;
837fa9e4066Sahrens 		asize = osize;
838fa9e4066Sahrens 	}
839fa9e4066Sahrens 
840fa9e4066Sahrens 	vd->vdev_psize = psize;
841fa9e4066Sahrens 
842fa9e4066Sahrens 	if (vd->vdev_asize == 0) {
843fa9e4066Sahrens 		/*
844fa9e4066Sahrens 		 * This is the first-ever open, so use the computed values.
845ecc2d604Sbonwick 		 * For testing purposes, a higher ashift can be requested.
846fa9e4066Sahrens 		 */
847fa9e4066Sahrens 		vd->vdev_asize = asize;
848ecc2d604Sbonwick 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
849fa9e4066Sahrens 	} else {
850fa9e4066Sahrens 		/*
851fa9e4066Sahrens 		 * Make sure the alignment requirement hasn't increased.
852fa9e4066Sahrens 		 */
853ecc2d604Sbonwick 		if (ashift > vd->vdev_top->vdev_ashift) {
854ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
855ea8dc4b6Seschrock 			    VDEV_AUX_BAD_LABEL);
856fa9e4066Sahrens 			return (EINVAL);
857fa9e4066Sahrens 		}
858fa9e4066Sahrens 
859fa9e4066Sahrens 		/*
860fa9e4066Sahrens 		 * Make sure the device hasn't shrunk.
861fa9e4066Sahrens 		 */
862fa9e4066Sahrens 		if (asize < vd->vdev_asize) {
863ea8dc4b6Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
864ea8dc4b6Seschrock 			    VDEV_AUX_BAD_LABEL);
865fa9e4066Sahrens 			return (EINVAL);
866fa9e4066Sahrens 		}
867fa9e4066Sahrens 
868fa9e4066Sahrens 		/*
869fa9e4066Sahrens 		 * If all children are healthy and the asize has increased,
870fa9e4066Sahrens 		 * then we've experienced dynamic LUN growth.
871fa9e4066Sahrens 		 */
872fa9e4066Sahrens 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
873fa9e4066Sahrens 		    asize > vd->vdev_asize) {
874fa9e4066Sahrens 			vd->vdev_asize = asize;
875fa9e4066Sahrens 		}
876fa9e4066Sahrens 	}
877fa9e4066Sahrens 
87899653d4eSeschrock 	/*
87999653d4eSeschrock 	 * If this is a top-level vdev, compute the raidz-deflation
88099653d4eSeschrock 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
88199653d4eSeschrock 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
88299653d4eSeschrock 	 * changes, this algorithm must never change, or we will
88399653d4eSeschrock 	 * inconsistently account for existing bp's.
88499653d4eSeschrock 	 */
88599653d4eSeschrock 	if (vd->vdev_top == vd) {
88699653d4eSeschrock 		vd->vdev_deflate_ratio = (1<<17) /
88799653d4eSeschrock 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
88899653d4eSeschrock 	}
88999653d4eSeschrock 
890ea8dc4b6Seschrock 	/*
891ea8dc4b6Seschrock 	 * This allows the ZFS DE to close cases appropriately.  If a device
892ea8dc4b6Seschrock 	 * goes away and later returns, we want to close the associated case.
893ea8dc4b6Seschrock 	 * But it's not enough to simply post this only when a device goes from
894ea8dc4b6Seschrock 	 * CANT_OPEN -> HEALTHY.  If we reboot the system and the device is
895ea8dc4b6Seschrock 	 * back, we also need to close the case (otherwise we will try to replay
896ea8dc4b6Seschrock 	 * it).  So we have to post this notifier every time.  Since this only
897ea8dc4b6Seschrock 	 * occurs during pool open or error recovery, this should not be an
898ea8dc4b6Seschrock 	 * issue.
899ea8dc4b6Seschrock 	 */
900ea8dc4b6Seschrock 	zfs_post_ok(vd->vdev_spa, vd);
901ea8dc4b6Seschrock 
902fa9e4066Sahrens 	return (0);
903fa9e4066Sahrens }
904fa9e4066Sahrens 
905560e6e96Seschrock /*
906560e6e96Seschrock  * Called once the vdevs are all opened, this routine validates the label
907560e6e96Seschrock  * contents.  This needs to be done before vdev_load() so that we don't
908560e6e96Seschrock  * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen()
909560e6e96Seschrock  * won't succeed if the device has been changed underneath.
910560e6e96Seschrock  *
911560e6e96Seschrock  * This function will only return failure if one of the vdevs indicates that it
912560e6e96Seschrock  * has since been destroyed or exported.  This is only possible if
913560e6e96Seschrock  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
914560e6e96Seschrock  * will be updated but the function will return 0.
915560e6e96Seschrock  */
916560e6e96Seschrock int
917560e6e96Seschrock vdev_validate(vdev_t *vd)
918560e6e96Seschrock {
919560e6e96Seschrock 	spa_t *spa = vd->vdev_spa;
920560e6e96Seschrock 	int c;
921560e6e96Seschrock 	nvlist_t *label;
922560e6e96Seschrock 	uint64_t guid;
923560e6e96Seschrock 	uint64_t state;
924560e6e96Seschrock 
925560e6e96Seschrock 	for (c = 0; c < vd->vdev_children; c++)
926560e6e96Seschrock 		if (vdev_validate(vd->vdev_child[c]) != 0)
927560e6e96Seschrock 			return (-1);
928560e6e96Seschrock 
929b5989ec7Seschrock 	/*
930b5989ec7Seschrock 	 * If the device has already failed, or was marked offline, don't do
931b5989ec7Seschrock 	 * any further validation.  Otherwise, label I/O will fail and we will
932b5989ec7Seschrock 	 * overwrite the previous state.
933b5989ec7Seschrock 	 */
934b5989ec7Seschrock 	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
935560e6e96Seschrock 
936560e6e96Seschrock 		if ((label = vdev_label_read_config(vd)) == NULL) {
937560e6e96Seschrock 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
938560e6e96Seschrock 			    VDEV_AUX_BAD_LABEL);
939560e6e96Seschrock 			return (0);
940560e6e96Seschrock 		}
941560e6e96Seschrock 
942560e6e96Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
943560e6e96Seschrock 		    &guid) != 0 || guid != spa_guid(spa)) {
944560e6e96Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
945560e6e96Seschrock 			    VDEV_AUX_CORRUPT_DATA);
946560e6e96Seschrock 			nvlist_free(label);
947560e6e96Seschrock 			return (0);
948560e6e96Seschrock 		}
949560e6e96Seschrock 
950560e6e96Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
951560e6e96Seschrock 		    &guid) != 0 || guid != vd->vdev_guid) {
952560e6e96Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
953560e6e96Seschrock 			    VDEV_AUX_CORRUPT_DATA);
954560e6e96Seschrock 			nvlist_free(label);
955560e6e96Seschrock 			return (0);
956560e6e96Seschrock 		}
957560e6e96Seschrock 
958560e6e96Seschrock 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
959560e6e96Seschrock 		    &state) != 0) {
960560e6e96Seschrock 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
961560e6e96Seschrock 			    VDEV_AUX_CORRUPT_DATA);
962560e6e96Seschrock 			nvlist_free(label);
963560e6e96Seschrock 			return (0);
964560e6e96Seschrock 		}
965560e6e96Seschrock 
966560e6e96Seschrock 		nvlist_free(label);
967560e6e96Seschrock 
968560e6e96Seschrock 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
969560e6e96Seschrock 		    state != POOL_STATE_ACTIVE)
970560e6e96Seschrock 			return (-1);
971560e6e96Seschrock 	}
972560e6e96Seschrock 
973560e6e96Seschrock 	/*
974560e6e96Seschrock 	 * If we were able to open and validate a vdev that was previously
975560e6e96Seschrock 	 * marked permanently unavailable, clear that state now.
976560e6e96Seschrock 	 */
977560e6e96Seschrock 	if (vd->vdev_not_present)
978560e6e96Seschrock 		vd->vdev_not_present = 0;
979560e6e96Seschrock 
980560e6e96Seschrock 	return (0);
981560e6e96Seschrock }
982560e6e96Seschrock 
983fa9e4066Sahrens /*
984fa9e4066Sahrens  * Close a virtual device.
985fa9e4066Sahrens  */
986fa9e4066Sahrens void
987fa9e4066Sahrens vdev_close(vdev_t *vd)
988fa9e4066Sahrens {
989fa9e4066Sahrens 	vd->vdev_ops->vdev_op_close(vd);
990fa9e4066Sahrens 
991fa9e4066Sahrens 	if (vd->vdev_cache_active) {
992fa9e4066Sahrens 		vdev_cache_fini(vd);
993fa9e4066Sahrens 		vdev_queue_fini(vd);
994fa9e4066Sahrens 		vd->vdev_cache_active = B_FALSE;
995fa9e4066Sahrens 	}
996fa9e4066Sahrens 
997560e6e96Seschrock 	/*
998560e6e96Seschrock 	 * We record the previous state before we close it, so  that if we are
999560e6e96Seschrock 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1000560e6e96Seschrock 	 * it's still faulted.
1001560e6e96Seschrock 	 */
1002560e6e96Seschrock 	vd->vdev_prevstate = vd->vdev_state;
1003560e6e96Seschrock 
1004fa9e4066Sahrens 	if (vd->vdev_offline)
1005fa9e4066Sahrens 		vd->vdev_state = VDEV_STATE_OFFLINE;
1006fa9e4066Sahrens 	else
1007fa9e4066Sahrens 		vd->vdev_state = VDEV_STATE_CLOSED;
1008ea8dc4b6Seschrock 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1009fa9e4066Sahrens }
1010fa9e4066Sahrens 
1011fa9e4066Sahrens void
1012ea8dc4b6Seschrock vdev_reopen(vdev_t *vd)
1013fa9e4066Sahrens {
1014ea8dc4b6Seschrock 	spa_t *spa = vd->vdev_spa;
1015fa9e4066Sahrens 
1016ea8dc4b6Seschrock 	ASSERT(spa_config_held(spa, RW_WRITER));
1017ea8dc4b6Seschrock 
1018fa9e4066Sahrens 	vdev_close(vd);
1019fa9e4066Sahrens 	(void) vdev_open(vd);
1020fa9e4066Sahrens 
102139c23413Seschrock 	/*
102239c23413Seschrock 	 * Call vdev_validate() here to make sure we have the same device.
102339c23413Seschrock 	 * Otherwise, a device with an invalid label could be successfully
102439c23413Seschrock 	 * opened in response to vdev_reopen().
102539c23413Seschrock 	 *
102639c23413Seschrock 	 * The downside to this is that if the user is simply experimenting by
102739c23413Seschrock 	 * overwriting an entire disk, we'll fault the device rather than
102839c23413Seschrock 	 * demonstrate self-healing capabilities.  On the other hand, with
102939c23413Seschrock 	 * proper FMA integration, the series of errors we'd see from the device
103039c23413Seschrock 	 * would result in a faulted device anyway.  Given that this doesn't
103139c23413Seschrock 	 * model any real-world corruption, it's better to catch this here and
103239c23413Seschrock 	 * correctly identify that the device has either changed beneath us, or
103339c23413Seschrock 	 * is corrupted beyond recognition.
103439c23413Seschrock 	 */
103539c23413Seschrock 	(void) vdev_validate(vd);
103639c23413Seschrock 
1037fa9e4066Sahrens 	/*
1038fa9e4066Sahrens 	 * Reassess root vdev's health.
1039fa9e4066Sahrens 	 */
104044cd46caSbillm 	vdev_propagate_state(spa->spa_root_vdev);
1041fa9e4066Sahrens }
1042fa9e4066Sahrens 
1043fa9e4066Sahrens int
104499653d4eSeschrock vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1045fa9e4066Sahrens {
1046fa9e4066Sahrens 	int error;
1047fa9e4066Sahrens 
1048fa9e4066Sahrens 	/*
1049fa9e4066Sahrens 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1050fa9e4066Sahrens 	 * For a create, however, we want to fail the request if
1051fa9e4066Sahrens 	 * there are any components we can't open.
1052fa9e4066Sahrens 	 */
1053fa9e4066Sahrens 	error = vdev_open(vd);
1054fa9e4066Sahrens 
1055fa9e4066Sahrens 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1056fa9e4066Sahrens 		vdev_close(vd);
1057fa9e4066Sahrens 		return (error ? error : ENXIO);
1058fa9e4066Sahrens 	}
1059fa9e4066Sahrens 
1060fa9e4066Sahrens 	/*
1061fa9e4066Sahrens 	 * Recursively initialize all labels.
1062fa9e4066Sahrens 	 */
106339c23413Seschrock 	if ((error = vdev_label_init(vd, txg, isreplacing ?
106439c23413Seschrock 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1065fa9e4066Sahrens 		vdev_close(vd);
1066fa9e4066Sahrens 		return (error);
1067fa9e4066Sahrens 	}
1068fa9e4066Sahrens 
1069fa9e4066Sahrens 	return (0);
1070fa9e4066Sahrens }
1071fa9e4066Sahrens 
1072fa9e4066Sahrens /*
1073fa9e4066Sahrens  * The is the latter half of vdev_create().  It is distinct because it
1074fa9e4066Sahrens  * involves initiating transactions in order to do metaslab creation.
1075fa9e4066Sahrens  * For creation, we want to try to create all vdevs at once and then undo it
1076fa9e4066Sahrens  * if anything fails; this is much harder if we have pending transactions.
1077fa9e4066Sahrens  */
10780e34b6a7Sbonwick void
1079fa9e4066Sahrens vdev_init(vdev_t *vd, uint64_t txg)
1080fa9e4066Sahrens {
1081fa9e4066Sahrens 	/*
1082fa9e4066Sahrens 	 * Aim for roughly 200 metaslabs per vdev.
1083fa9e4066Sahrens 	 */
1084fa9e4066Sahrens 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1085fa9e4066Sahrens 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1086fa9e4066Sahrens 
1087fa9e4066Sahrens 	/*
10880e34b6a7Sbonwick 	 * Initialize the vdev's metaslabs.  This can't fail because
10890e34b6a7Sbonwick 	 * there's nothing to read when creating all new metaslabs.
1090fa9e4066Sahrens 	 */
10910e34b6a7Sbonwick 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1092fa9e4066Sahrens }
1093fa9e4066Sahrens 
1094fa9e4066Sahrens void
1095ecc2d604Sbonwick vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1096fa9e4066Sahrens {
1097ecc2d604Sbonwick 	ASSERT(vd == vd->vdev_top);
1098ecc2d604Sbonwick 	ASSERT(ISP2(flags));
1099fa9e4066Sahrens 
1100ecc2d604Sbonwick 	if (flags & VDD_METASLAB)
1101ecc2d604Sbonwick 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1102ecc2d604Sbonwick 
1103ecc2d604Sbonwick 	if (flags & VDD_DTL)
1104ecc2d604Sbonwick 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1105ecc2d604Sbonwick 
1106ecc2d604Sbonwick 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1107fa9e4066Sahrens }
1108fa9e4066Sahrens 
1109fa9e4066Sahrens void
1110fa9e4066Sahrens vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1111fa9e4066Sahrens {
1112fa9e4066Sahrens 	mutex_enter(sm->sm_lock);
1113fa9e4066Sahrens 	if (!space_map_contains(sm, txg, size))
1114fa9e4066Sahrens 		space_map_add(sm, txg, size);
1115fa9e4066Sahrens 	mutex_exit(sm->sm_lock);
1116fa9e4066Sahrens }
1117fa9e4066Sahrens 
1118fa9e4066Sahrens int
1119fa9e4066Sahrens vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1120fa9e4066Sahrens {
1121fa9e4066Sahrens 	int dirty;
1122fa9e4066Sahrens 
1123fa9e4066Sahrens 	/*
1124fa9e4066Sahrens 	 * Quick test without the lock -- covers the common case that
1125fa9e4066Sahrens 	 * there are no dirty time segments.
1126fa9e4066Sahrens 	 */
1127fa9e4066Sahrens 	if (sm->sm_space == 0)
1128fa9e4066Sahrens 		return (0);
1129fa9e4066Sahrens 
1130fa9e4066Sahrens 	mutex_enter(sm->sm_lock);
1131fa9e4066Sahrens 	dirty = space_map_contains(sm, txg, size);
1132fa9e4066Sahrens 	mutex_exit(sm->sm_lock);
1133fa9e4066Sahrens 
1134fa9e4066Sahrens 	return (dirty);
1135fa9e4066Sahrens }
1136fa9e4066Sahrens 
1137fa9e4066Sahrens /*
1138fa9e4066Sahrens  * Reassess DTLs after a config change or scrub completion.
1139fa9e4066Sahrens  */
1140fa9e4066Sahrens void
1141fa9e4066Sahrens vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1142fa9e4066Sahrens {
1143ea8dc4b6Seschrock 	spa_t *spa = vd->vdev_spa;
1144fa9e4066Sahrens 	int c;
1145fa9e4066Sahrens 
1146ea8dc4b6Seschrock 	ASSERT(spa_config_held(spa, RW_WRITER));
1147fa9e4066Sahrens 
1148fa9e4066Sahrens 	if (vd->vdev_children == 0) {
1149fa9e4066Sahrens 		mutex_enter(&vd->vdev_dtl_lock);
1150fa9e4066Sahrens 		/*
1151fa9e4066Sahrens 		 * We're successfully scrubbed everything up to scrub_txg.
1152fa9e4066Sahrens 		 * Therefore, excise all old DTLs up to that point, then
1153fa9e4066Sahrens 		 * fold in the DTLs for everything we couldn't scrub.
1154fa9e4066Sahrens 		 */
1155fa9e4066Sahrens 		if (scrub_txg != 0) {
1156fa9e4066Sahrens 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1157fa9e4066Sahrens 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1158fa9e4066Sahrens 		}
1159fa9e4066Sahrens 		if (scrub_done)
1160fa9e4066Sahrens 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1161fa9e4066Sahrens 		mutex_exit(&vd->vdev_dtl_lock);
1162ecc2d604Sbonwick 		if (txg != 0)
1163ecc2d604Sbonwick 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1164fa9e4066Sahrens 		return;
1165fa9e4066Sahrens 	}
1166fa9e4066Sahrens 
1167ea8dc4b6Seschrock 	/*
1168ea8dc4b6Seschrock 	 * Make sure the DTLs are always correct under the scrub lock.
1169ea8dc4b6Seschrock 	 */
1170ea8dc4b6Seschrock 	if (vd == spa->spa_root_vdev)
1171ea8dc4b6Seschrock 		mutex_enter(&spa->spa_scrub_lock);
1172ea8dc4b6Seschrock 
1173fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
1174fa9e4066Sahrens 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1175fa9e4066Sahrens 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1176fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
1177fa9e4066Sahrens 
1178fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++) {
1179fa9e4066Sahrens 		vdev_t *cvd = vd->vdev_child[c];
1180fa9e4066Sahrens 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1181fa9e4066Sahrens 		mutex_enter(&vd->vdev_dtl_lock);
1182fa9e4066Sahrens 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1183fa9e4066Sahrens 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1184fa9e4066Sahrens 		mutex_exit(&vd->vdev_dtl_lock);
1185fa9e4066Sahrens 	}
1186ea8dc4b6Seschrock 
1187ea8dc4b6Seschrock 	if (vd == spa->spa_root_vdev)
1188ea8dc4b6Seschrock 		mutex_exit(&spa->spa_scrub_lock);
1189fa9e4066Sahrens }
1190fa9e4066Sahrens 
1191fa9e4066Sahrens static int
1192fa9e4066Sahrens vdev_dtl_load(vdev_t *vd)
1193fa9e4066Sahrens {
1194fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1195fa9e4066Sahrens 	space_map_obj_t *smo = &vd->vdev_dtl;
1196ecc2d604Sbonwick 	objset_t *mos = spa->spa_meta_objset;
1197fa9e4066Sahrens 	dmu_buf_t *db;
1198fa9e4066Sahrens 	int error;
1199fa9e4066Sahrens 
1200fa9e4066Sahrens 	ASSERT(vd->vdev_children == 0);
1201fa9e4066Sahrens 
1202fa9e4066Sahrens 	if (smo->smo_object == 0)
1203fa9e4066Sahrens 		return (0);
1204fa9e4066Sahrens 
1205ecc2d604Sbonwick 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1206ea8dc4b6Seschrock 		return (error);
1207ecc2d604Sbonwick 
1208fa9e4066Sahrens 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1209fa9e4066Sahrens 	bcopy(db->db_data, smo, db->db_size);
1210ea8dc4b6Seschrock 	dmu_buf_rele(db, FTAG);
1211fa9e4066Sahrens 
1212fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
1213ecc2d604Sbonwick 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1214fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
1215fa9e4066Sahrens 
1216fa9e4066Sahrens 	return (error);
1217fa9e4066Sahrens }
1218fa9e4066Sahrens 
1219fa9e4066Sahrens void
1220fa9e4066Sahrens vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1221fa9e4066Sahrens {
1222fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1223fa9e4066Sahrens 	space_map_obj_t *smo = &vd->vdev_dtl;
1224fa9e4066Sahrens 	space_map_t *sm = &vd->vdev_dtl_map;
1225ecc2d604Sbonwick 	objset_t *mos = spa->spa_meta_objset;
1226fa9e4066Sahrens 	space_map_t smsync;
1227fa9e4066Sahrens 	kmutex_t smlock;
1228fa9e4066Sahrens 	dmu_buf_t *db;
1229fa9e4066Sahrens 	dmu_tx_t *tx;
1230fa9e4066Sahrens 
1231fa9e4066Sahrens 	dprintf("%s in txg %llu pass %d\n",
1232fa9e4066Sahrens 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1233fa9e4066Sahrens 
1234fa9e4066Sahrens 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1235fa9e4066Sahrens 
1236fa9e4066Sahrens 	if (vd->vdev_detached) {
1237fa9e4066Sahrens 		if (smo->smo_object != 0) {
1238ecc2d604Sbonwick 			int err = dmu_object_free(mos, smo->smo_object, tx);
1239fa9e4066Sahrens 			ASSERT3U(err, ==, 0);
1240fa9e4066Sahrens 			smo->smo_object = 0;
1241fa9e4066Sahrens 		}
1242fa9e4066Sahrens 		dmu_tx_commit(tx);
1243ecc2d604Sbonwick 		dprintf("detach %s committed in txg %llu\n",
1244ecc2d604Sbonwick 		    vdev_description(vd), txg);
1245fa9e4066Sahrens 		return;
1246fa9e4066Sahrens 	}
1247fa9e4066Sahrens 
1248fa9e4066Sahrens 	if (smo->smo_object == 0) {
1249fa9e4066Sahrens 		ASSERT(smo->smo_objsize == 0);
1250fa9e4066Sahrens 		ASSERT(smo->smo_alloc == 0);
1251ecc2d604Sbonwick 		smo->smo_object = dmu_object_alloc(mos,
1252fa9e4066Sahrens 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1253fa9e4066Sahrens 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1254fa9e4066Sahrens 		ASSERT(smo->smo_object != 0);
1255fa9e4066Sahrens 		vdev_config_dirty(vd->vdev_top);
1256fa9e4066Sahrens 	}
1257fa9e4066Sahrens 
1258fa9e4066Sahrens 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1259fa9e4066Sahrens 
1260fa9e4066Sahrens 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1261fa9e4066Sahrens 	    &smlock);
1262fa9e4066Sahrens 
1263fa9e4066Sahrens 	mutex_enter(&smlock);
1264fa9e4066Sahrens 
1265fa9e4066Sahrens 	mutex_enter(&vd->vdev_dtl_lock);
1266ecc2d604Sbonwick 	space_map_walk(sm, space_map_add, &smsync);
1267fa9e4066Sahrens 	mutex_exit(&vd->vdev_dtl_lock);
1268fa9e4066Sahrens 
1269ecc2d604Sbonwick 	space_map_truncate(smo, mos, tx);
1270ecc2d604Sbonwick 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1271fa9e4066Sahrens 
1272fa9e4066Sahrens 	space_map_destroy(&smsync);
1273fa9e4066Sahrens 
1274fa9e4066Sahrens 	mutex_exit(&smlock);
1275fa9e4066Sahrens 	mutex_destroy(&smlock);
1276fa9e4066Sahrens 
1277ecc2d604Sbonwick 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1278fa9e4066Sahrens 	dmu_buf_will_dirty(db, tx);
1279fa9e4066Sahrens 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1280fa9e4066Sahrens 	bcopy(smo, db->db_data, db->db_size);
1281ea8dc4b6Seschrock 	dmu_buf_rele(db, FTAG);
1282fa9e4066Sahrens 
1283fa9e4066Sahrens 	dmu_tx_commit(tx);
1284fa9e4066Sahrens }
1285fa9e4066Sahrens 
1286560e6e96Seschrock void
1287ea8dc4b6Seschrock vdev_load(vdev_t *vd)
1288fa9e4066Sahrens {
1289560e6e96Seschrock 	int c;
1290fa9e4066Sahrens 
1291fa9e4066Sahrens 	/*
1292fa9e4066Sahrens 	 * Recursively load all children.
1293fa9e4066Sahrens 	 */
1294fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
1295560e6e96Seschrock 		vdev_load(vd->vdev_child[c]);
1296fa9e4066Sahrens 
1297fa9e4066Sahrens 	/*
12980e34b6a7Sbonwick 	 * If this is a top-level vdev, initialize its metaslabs.
1299fa9e4066Sahrens 	 */
1300560e6e96Seschrock 	if (vd == vd->vdev_top &&
1301560e6e96Seschrock 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1302560e6e96Seschrock 	    vdev_metaslab_init(vd, 0) != 0))
1303560e6e96Seschrock 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1304560e6e96Seschrock 		    VDEV_AUX_CORRUPT_DATA);
1305fa9e4066Sahrens 
1306fa9e4066Sahrens 	/*
1307fa9e4066Sahrens 	 * If this is a leaf vdev, load its DTL.
1308fa9e4066Sahrens 	 */
1309560e6e96Seschrock 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1310560e6e96Seschrock 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1311560e6e96Seschrock 		    VDEV_AUX_CORRUPT_DATA);
1312fa9e4066Sahrens }
1313fa9e4066Sahrens 
131499653d4eSeschrock /*
131599653d4eSeschrock  * This special case of vdev_spare() is used for hot spares.  It's sole purpose
131699653d4eSeschrock  * it to set the vdev state for the associated vdev.  To do this, we make sure
131799653d4eSeschrock  * that we can open the underlying device, then try to read the label, and make
131899653d4eSeschrock  * sure that the label is sane and that it hasn't been repurposed to another
131999653d4eSeschrock  * pool.
132099653d4eSeschrock  */
132199653d4eSeschrock int
132299653d4eSeschrock vdev_validate_spare(vdev_t *vd)
132399653d4eSeschrock {
132499653d4eSeschrock 	nvlist_t *label;
132599653d4eSeschrock 	uint64_t guid, version;
132699653d4eSeschrock 	uint64_t state;
132799653d4eSeschrock 
132899653d4eSeschrock 	if ((label = vdev_label_read_config(vd)) == NULL) {
132999653d4eSeschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
133099653d4eSeschrock 		    VDEV_AUX_CORRUPT_DATA);
133199653d4eSeschrock 		return (-1);
133299653d4eSeschrock 	}
133399653d4eSeschrock 
133499653d4eSeschrock 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
133599653d4eSeschrock 	    version > ZFS_VERSION ||
133699653d4eSeschrock 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
133799653d4eSeschrock 	    guid != vd->vdev_guid ||
133899653d4eSeschrock 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
133999653d4eSeschrock 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
134099653d4eSeschrock 		    VDEV_AUX_CORRUPT_DATA);
134199653d4eSeschrock 		nvlist_free(label);
134299653d4eSeschrock 		return (-1);
134399653d4eSeschrock 	}
134499653d4eSeschrock 
134539c23413Seschrock 	spa_spare_add(vd);
134639c23413Seschrock 
134799653d4eSeschrock 	/*
134899653d4eSeschrock 	 * We don't actually check the pool state here.  If it's in fact in
134999653d4eSeschrock 	 * use by another pool, we update this fact on the fly when requested.
135099653d4eSeschrock 	 */
135199653d4eSeschrock 	nvlist_free(label);
135299653d4eSeschrock 	return (0);
135399653d4eSeschrock }
135499653d4eSeschrock 
1355fa9e4066Sahrens void
1356fa9e4066Sahrens vdev_sync_done(vdev_t *vd, uint64_t txg)
1357fa9e4066Sahrens {
1358fa9e4066Sahrens 	metaslab_t *msp;
1359fa9e4066Sahrens 
1360fa9e4066Sahrens 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1361fa9e4066Sahrens 
1362fa9e4066Sahrens 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1363fa9e4066Sahrens 		metaslab_sync_done(msp, txg);
1364fa9e4066Sahrens }
1365fa9e4066Sahrens 
1366fa9e4066Sahrens void
1367fa9e4066Sahrens vdev_sync(vdev_t *vd, uint64_t txg)
1368fa9e4066Sahrens {
1369fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1370fa9e4066Sahrens 	vdev_t *lvd;
1371fa9e4066Sahrens 	metaslab_t *msp;
1372ecc2d604Sbonwick 	dmu_tx_t *tx;
1373fa9e4066Sahrens 
1374fa9e4066Sahrens 	dprintf("%s txg %llu pass %d\n",
1375fa9e4066Sahrens 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1376fa9e4066Sahrens 
1377ecc2d604Sbonwick 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1378ecc2d604Sbonwick 		ASSERT(vd == vd->vdev_top);
1379ecc2d604Sbonwick 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1380ecc2d604Sbonwick 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1381ecc2d604Sbonwick 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1382ecc2d604Sbonwick 		ASSERT(vd->vdev_ms_array != 0);
1383ecc2d604Sbonwick 		vdev_config_dirty(vd);
1384ecc2d604Sbonwick 		dmu_tx_commit(tx);
1385ecc2d604Sbonwick 	}
1386fa9e4066Sahrens 
1387ecc2d604Sbonwick 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1388fa9e4066Sahrens 		metaslab_sync(msp, txg);
1389ecc2d604Sbonwick 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1390ecc2d604Sbonwick 	}
1391fa9e4066Sahrens 
1392fa9e4066Sahrens 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1393fa9e4066Sahrens 		vdev_dtl_sync(lvd, txg);
1394fa9e4066Sahrens 
1395fa9e4066Sahrens 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1396fa9e4066Sahrens }
1397fa9e4066Sahrens 
1398fa9e4066Sahrens uint64_t
1399fa9e4066Sahrens vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1400fa9e4066Sahrens {
1401fa9e4066Sahrens 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1402fa9e4066Sahrens }
1403fa9e4066Sahrens 
1404fa9e4066Sahrens void
1405fa9e4066Sahrens vdev_io_start(zio_t *zio)
1406fa9e4066Sahrens {
1407fa9e4066Sahrens 	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1408fa9e4066Sahrens }
1409fa9e4066Sahrens 
1410fa9e4066Sahrens void
1411fa9e4066Sahrens vdev_io_done(zio_t *zio)
1412fa9e4066Sahrens {
1413fa9e4066Sahrens 	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1414fa9e4066Sahrens }
1415fa9e4066Sahrens 
1416fa9e4066Sahrens const char *
1417fa9e4066Sahrens vdev_description(vdev_t *vd)
1418fa9e4066Sahrens {
1419fa9e4066Sahrens 	if (vd == NULL || vd->vdev_ops == NULL)
1420fa9e4066Sahrens 		return ("<unknown>");
1421fa9e4066Sahrens 
1422fa9e4066Sahrens 	if (vd->vdev_path != NULL)
1423fa9e4066Sahrens 		return (vd->vdev_path);
1424fa9e4066Sahrens 
1425fa9e4066Sahrens 	if (vd->vdev_parent == NULL)
1426fa9e4066Sahrens 		return (spa_name(vd->vdev_spa));
1427fa9e4066Sahrens 
1428fa9e4066Sahrens 	return (vd->vdev_ops->vdev_op_type);
1429fa9e4066Sahrens }
1430fa9e4066Sahrens 
1431fa9e4066Sahrens int
1432ea8dc4b6Seschrock vdev_online(spa_t *spa, uint64_t guid)
1433fa9e4066Sahrens {
1434441d80aaSlling 	vdev_t *rvd, *vd;
1435441d80aaSlling 	uint64_t txg;
1436fa9e4066Sahrens 
1437441d80aaSlling 	txg = spa_vdev_enter(spa);
1438fa9e4066Sahrens 
1439441d80aaSlling 	rvd = spa->spa_root_vdev;
14400e34b6a7Sbonwick 
1441ea8dc4b6Seschrock 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1442441d80aaSlling 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1443fa9e4066Sahrens 
14440e34b6a7Sbonwick 	if (!vd->vdev_ops->vdev_op_leaf)
14450e34b6a7Sbonwick 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
14460e34b6a7Sbonwick 
1447fa9e4066Sahrens 	dprintf("ONLINE: %s\n", vdev_description(vd));
1448fa9e4066Sahrens 
1449fa9e4066Sahrens 	vd->vdev_offline = B_FALSE;
1450441d80aaSlling 	vd->vdev_tmpoffline = B_FALSE;
1451ea8dc4b6Seschrock 	vdev_reopen(vd->vdev_top);
1452fa9e4066Sahrens 
1453441d80aaSlling 	vdev_config_dirty(vd->vdev_top);
1454441d80aaSlling 
1455441d80aaSlling 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1456fa9e4066Sahrens 
1457fa9e4066Sahrens 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1458fa9e4066Sahrens 
1459fa9e4066Sahrens 	return (0);
1460fa9e4066Sahrens }
1461fa9e4066Sahrens 
1462fa9e4066Sahrens int
1463ea8dc4b6Seschrock vdev_offline(spa_t *spa, uint64_t guid, int istmp)
1464fa9e4066Sahrens {
1465441d80aaSlling 	vdev_t *rvd, *vd;
1466441d80aaSlling 	uint64_t txg;
1467fa9e4066Sahrens 
1468441d80aaSlling 	txg = spa_vdev_enter(spa);
1469fa9e4066Sahrens 
1470441d80aaSlling 	rvd = spa->spa_root_vdev;
14710e34b6a7Sbonwick 
1472ea8dc4b6Seschrock 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL)
1473441d80aaSlling 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1474fa9e4066Sahrens 
14750e34b6a7Sbonwick 	if (!vd->vdev_ops->vdev_op_leaf)
14760e34b6a7Sbonwick 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
14770e34b6a7Sbonwick 
1478fa9e4066Sahrens 	dprintf("OFFLINE: %s\n", vdev_description(vd));
1479fa9e4066Sahrens 
1480fa9e4066Sahrens 	/*
1481ecc2d604Sbonwick 	 * If the device isn't already offline, try to offline it.
1482fa9e4066Sahrens 	 */
1483ecc2d604Sbonwick 	if (!vd->vdev_offline) {
1484ecc2d604Sbonwick 		/*
1485ecc2d604Sbonwick 		 * If this device's top-level vdev has a non-empty DTL,
1486ecc2d604Sbonwick 		 * don't allow the device to be offlined.
1487ecc2d604Sbonwick 		 *
1488ecc2d604Sbonwick 		 * XXX -- make this more precise by allowing the offline
1489ecc2d604Sbonwick 		 * as long as the remaining devices don't have any DTL holes.
1490ecc2d604Sbonwick 		 */
1491ecc2d604Sbonwick 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1492ecc2d604Sbonwick 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1493fa9e4066Sahrens 
1494ecc2d604Sbonwick 		/*
1495ecc2d604Sbonwick 		 * Offline this device and reopen its top-level vdev.
1496ecc2d604Sbonwick 		 * If this action results in the top-level vdev becoming
1497ecc2d604Sbonwick 		 * unusable, undo it and fail the request.
1498ecc2d604Sbonwick 		 */
1499ecc2d604Sbonwick 		vd->vdev_offline = B_TRUE;
1500ea8dc4b6Seschrock 		vdev_reopen(vd->vdev_top);
1501ecc2d604Sbonwick 		if (vdev_is_dead(vd->vdev_top)) {
1502ecc2d604Sbonwick 			vd->vdev_offline = B_FALSE;
1503ecc2d604Sbonwick 			vdev_reopen(vd->vdev_top);
1504ecc2d604Sbonwick 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1505ecc2d604Sbonwick 		}
1506fa9e4066Sahrens 	}
1507fa9e4066Sahrens 
1508441d80aaSlling 	vd->vdev_tmpoffline = istmp;
1509ecc2d604Sbonwick 
1510ecc2d604Sbonwick 	vdev_config_dirty(vd->vdev_top);
1511441d80aaSlling 
1512441d80aaSlling 	return (spa_vdev_exit(spa, NULL, txg, 0));
1513fa9e4066Sahrens }
1514fa9e4066Sahrens 
1515ea8dc4b6Seschrock /*
1516ea8dc4b6Seschrock  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1517ea8dc4b6Seschrock  * vdev_offline(), we assume the spa config is locked.  We also clear all
1518ea8dc4b6Seschrock  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1519ea8dc4b6Seschrock  */
1520ea8dc4b6Seschrock void
1521ea8dc4b6Seschrock vdev_clear(spa_t *spa, vdev_t *vd)
1522fa9e4066Sahrens {
1523ea8dc4b6Seschrock 	int c;
1524fa9e4066Sahrens 
1525ea8dc4b6Seschrock 	if (vd == NULL)
1526ea8dc4b6Seschrock 		vd = spa->spa_root_vdev;
1527fa9e4066Sahrens 
1528ea8dc4b6Seschrock 	vd->vdev_stat.vs_read_errors = 0;
1529ea8dc4b6Seschrock 	vd->vdev_stat.vs_write_errors = 0;
1530ea8dc4b6Seschrock 	vd->vdev_stat.vs_checksum_errors = 0;
1531fa9e4066Sahrens 
1532ea8dc4b6Seschrock 	for (c = 0; c < vd->vdev_children; c++)
1533ea8dc4b6Seschrock 		vdev_clear(spa, vd->vdev_child[c]);
1534fa9e4066Sahrens }
1535fa9e4066Sahrens 
1536fa9e4066Sahrens int
1537fa9e4066Sahrens vdev_is_dead(vdev_t *vd)
1538fa9e4066Sahrens {
1539fa9e4066Sahrens 	return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
1540fa9e4066Sahrens }
1541fa9e4066Sahrens 
1542fa9e4066Sahrens int
1543fa9e4066Sahrens vdev_error_inject(vdev_t *vd, zio_t *zio)
1544fa9e4066Sahrens {
1545fa9e4066Sahrens 	int error = 0;
1546fa9e4066Sahrens 
1547fa9e4066Sahrens 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1548fa9e4066Sahrens 		return (0);
1549fa9e4066Sahrens 
1550fa9e4066Sahrens 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1551fa9e4066Sahrens 		return (0);
1552fa9e4066Sahrens 
1553fa9e4066Sahrens 	switch (vd->vdev_fault_mode) {
1554fa9e4066Sahrens 	case VDEV_FAULT_RANDOM:
1555fa9e4066Sahrens 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1556fa9e4066Sahrens 			error = EIO;
1557fa9e4066Sahrens 		break;
1558fa9e4066Sahrens 
1559fa9e4066Sahrens 	case VDEV_FAULT_COUNT:
1560fa9e4066Sahrens 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1561fa9e4066Sahrens 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1562fa9e4066Sahrens 		error = EIO;
1563fa9e4066Sahrens 		break;
1564fa9e4066Sahrens 	}
1565fa9e4066Sahrens 
1566fa9e4066Sahrens 	if (error != 0) {
1567fa9e4066Sahrens 		dprintf("returning %d for type %d on %s state %d offset %llx\n",
1568fa9e4066Sahrens 		    error, zio->io_type, vdev_description(vd),
1569fa9e4066Sahrens 		    vd->vdev_state, zio->io_offset);
1570fa9e4066Sahrens 	}
1571fa9e4066Sahrens 
1572fa9e4066Sahrens 	return (error);
1573fa9e4066Sahrens }
1574fa9e4066Sahrens 
1575fa9e4066Sahrens /*
1576fa9e4066Sahrens  * Get statistics for the given vdev.
1577fa9e4066Sahrens  */
1578fa9e4066Sahrens void
1579fa9e4066Sahrens vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1580fa9e4066Sahrens {
1581fa9e4066Sahrens 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1582fa9e4066Sahrens 	int c, t;
1583fa9e4066Sahrens 
1584fa9e4066Sahrens 	mutex_enter(&vd->vdev_stat_lock);
1585fa9e4066Sahrens 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1586fa9e4066Sahrens 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1587fa9e4066Sahrens 	vs->vs_state = vd->vdev_state;
15882a79c5feSlling 	vs->vs_rsize = vdev_get_rsize(vd);
1589fa9e4066Sahrens 	mutex_exit(&vd->vdev_stat_lock);
1590fa9e4066Sahrens 
1591fa9e4066Sahrens 	/*
1592fa9e4066Sahrens 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1593fa9e4066Sahrens 	 * over all top-level vdevs (i.e. the direct children of the root).
1594fa9e4066Sahrens 	 */
1595fa9e4066Sahrens 	if (vd == rvd) {
1596fa9e4066Sahrens 		for (c = 0; c < rvd->vdev_children; c++) {
1597fa9e4066Sahrens 			vdev_t *cvd = rvd->vdev_child[c];
1598fa9e4066Sahrens 			vdev_stat_t *cvs = &cvd->vdev_stat;
1599fa9e4066Sahrens 
1600fa9e4066Sahrens 			mutex_enter(&vd->vdev_stat_lock);
1601fa9e4066Sahrens 			for (t = 0; t < ZIO_TYPES; t++) {
1602fa9e4066Sahrens 				vs->vs_ops[t] += cvs->vs_ops[t];
1603fa9e4066Sahrens 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1604fa9e4066Sahrens 			}
1605fa9e4066Sahrens 			vs->vs_read_errors += cvs->vs_read_errors;
1606fa9e4066Sahrens 			vs->vs_write_errors += cvs->vs_write_errors;
1607fa9e4066Sahrens 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1608fa9e4066Sahrens 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1609fa9e4066Sahrens 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1610fa9e4066Sahrens 			mutex_exit(&vd->vdev_stat_lock);
1611fa9e4066Sahrens 		}
1612fa9e4066Sahrens 	}
1613fa9e4066Sahrens }
1614fa9e4066Sahrens 
1615fa9e4066Sahrens void
1616fa9e4066Sahrens vdev_stat_update(zio_t *zio)
1617fa9e4066Sahrens {
1618fa9e4066Sahrens 	vdev_t *vd = zio->io_vd;
1619fa9e4066Sahrens 	vdev_t *pvd;
1620fa9e4066Sahrens 	uint64_t txg = zio->io_txg;
1621fa9e4066Sahrens 	vdev_stat_t *vs = &vd->vdev_stat;
1622fa9e4066Sahrens 	zio_type_t type = zio->io_type;
1623fa9e4066Sahrens 	int flags = zio->io_flags;
1624fa9e4066Sahrens 
1625fa9e4066Sahrens 	if (zio->io_error == 0) {
1626fa9e4066Sahrens 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1627fa9e4066Sahrens 			mutex_enter(&vd->vdev_stat_lock);
1628fa9e4066Sahrens 			vs->vs_ops[type]++;
1629fa9e4066Sahrens 			vs->vs_bytes[type] += zio->io_size;
1630fa9e4066Sahrens 			mutex_exit(&vd->vdev_stat_lock);
1631fa9e4066Sahrens 		}
1632fa9e4066Sahrens 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1633fa9e4066Sahrens 		    zio->io_delegate_list == NULL) {
1634fa9e4066Sahrens 			mutex_enter(&vd->vdev_stat_lock);
1635d80c45e0Sbonwick 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1636fa9e4066Sahrens 				vs->vs_scrub_repaired += zio->io_size;
1637fa9e4066Sahrens 			else
1638fa9e4066Sahrens 				vs->vs_self_healed += zio->io_size;
1639fa9e4066Sahrens 			mutex_exit(&vd->vdev_stat_lock);
1640fa9e4066Sahrens 		}
1641fa9e4066Sahrens 		return;
1642fa9e4066Sahrens 	}
1643fa9e4066Sahrens 
1644fa9e4066Sahrens 	if (flags & ZIO_FLAG_SPECULATIVE)
1645fa9e4066Sahrens 		return;
1646fa9e4066Sahrens 
1647fa9e4066Sahrens 	if (!vdev_is_dead(vd)) {
1648fa9e4066Sahrens 		mutex_enter(&vd->vdev_stat_lock);
1649fa9e4066Sahrens 		if (type == ZIO_TYPE_READ) {
1650fa9e4066Sahrens 			if (zio->io_error == ECKSUM)
1651fa9e4066Sahrens 				vs->vs_checksum_errors++;
1652fa9e4066Sahrens 			else
1653fa9e4066Sahrens 				vs->vs_read_errors++;
1654fa9e4066Sahrens 		}
1655fa9e4066Sahrens 		if (type == ZIO_TYPE_WRITE)
1656fa9e4066Sahrens 			vs->vs_write_errors++;
1657fa9e4066Sahrens 		mutex_exit(&vd->vdev_stat_lock);
1658fa9e4066Sahrens 	}
1659fa9e4066Sahrens 
1660fa9e4066Sahrens 	if (type == ZIO_TYPE_WRITE) {
1661fa9e4066Sahrens 		if (txg == 0 || vd->vdev_children != 0)
1662fa9e4066Sahrens 			return;
1663d80c45e0Sbonwick 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1664fa9e4066Sahrens 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1665fa9e4066Sahrens 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1666fa9e4066Sahrens 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1667fa9e4066Sahrens 		}
1668fa9e4066Sahrens 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1669fa9e4066Sahrens 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1670fa9e4066Sahrens 				return;
1671ecc2d604Sbonwick 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1672fa9e4066Sahrens 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1673fa9e4066Sahrens 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1674fa9e4066Sahrens 		}
1675fa9e4066Sahrens 	}
1676fa9e4066Sahrens }
1677fa9e4066Sahrens 
1678fa9e4066Sahrens void
1679fa9e4066Sahrens vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1680fa9e4066Sahrens {
1681fa9e4066Sahrens 	int c;
1682fa9e4066Sahrens 	vdev_stat_t *vs = &vd->vdev_stat;
1683fa9e4066Sahrens 
1684fa9e4066Sahrens 	for (c = 0; c < vd->vdev_children; c++)
1685fa9e4066Sahrens 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1686fa9e4066Sahrens 
1687fa9e4066Sahrens 	mutex_enter(&vd->vdev_stat_lock);
1688fa9e4066Sahrens 
1689fa9e4066Sahrens 	if (type == POOL_SCRUB_NONE) {
1690fa9e4066Sahrens 		/*
1691fa9e4066Sahrens 		 * Update completion and end time.  Leave everything else alone
1692fa9e4066Sahrens 		 * so we can report what happened during the previous scrub.
1693fa9e4066Sahrens 		 */
1694fa9e4066Sahrens 		vs->vs_scrub_complete = complete;
1695fa9e4066Sahrens 		vs->vs_scrub_end = gethrestime_sec();
1696fa9e4066Sahrens 	} else {
1697fa9e4066Sahrens 		vs->vs_scrub_type = type;
1698fa9e4066Sahrens 		vs->vs_scrub_complete = 0;
1699fa9e4066Sahrens 		vs->vs_scrub_examined = 0;
1700fa9e4066Sahrens 		vs->vs_scrub_repaired = 0;
1701fa9e4066Sahrens 		vs->vs_scrub_errors = 0;
1702fa9e4066Sahrens 		vs->vs_scrub_start = gethrestime_sec();
1703fa9e4066Sahrens 		vs->vs_scrub_end = 0;
1704fa9e4066Sahrens 	}
1705fa9e4066Sahrens 
1706fa9e4066Sahrens 	mutex_exit(&vd->vdev_stat_lock);
1707fa9e4066Sahrens }
1708fa9e4066Sahrens 
1709fa9e4066Sahrens /*
1710fa9e4066Sahrens  * Update the in-core space usage stats for this vdev and the root vdev.
1711fa9e4066Sahrens  */
1712fa9e4066Sahrens void
171399653d4eSeschrock vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta)
1714fa9e4066Sahrens {
1715fa9e4066Sahrens 	ASSERT(vd == vd->vdev_top);
171699653d4eSeschrock 	int64_t dspace_delta = space_delta;
1717fa9e4066Sahrens 
1718fa9e4066Sahrens 	do {
171999653d4eSeschrock 		if (vd->vdev_ms_count) {
172099653d4eSeschrock 			/*
172199653d4eSeschrock 			 * If this is a top-level vdev, apply the
172299653d4eSeschrock 			 * inverse of its psize-to-asize (ie. RAID-Z)
172399653d4eSeschrock 			 * space-expansion factor.  We must calculate
172499653d4eSeschrock 			 * this here and not at the root vdev because
172599653d4eSeschrock 			 * the root vdev's psize-to-asize is simply the
172699653d4eSeschrock 			 * max of its childrens', thus not accurate
172799653d4eSeschrock 			 * enough for us.
172899653d4eSeschrock 			 */
172999653d4eSeschrock 			ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
173099653d4eSeschrock 			dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
173199653d4eSeschrock 			    vd->vdev_deflate_ratio;
173299653d4eSeschrock 		}
173399653d4eSeschrock 
1734fa9e4066Sahrens 		mutex_enter(&vd->vdev_stat_lock);
1735fa9e4066Sahrens 		vd->vdev_stat.vs_space += space_delta;
1736fa9e4066Sahrens 		vd->vdev_stat.vs_alloc += alloc_delta;
173799653d4eSeschrock 		vd->vdev_stat.vs_dspace += dspace_delta;
1738fa9e4066Sahrens 		mutex_exit(&vd->vdev_stat_lock);
1739fa9e4066Sahrens 	} while ((vd = vd->vdev_parent) != NULL);
1740fa9e4066Sahrens }
1741fa9e4066Sahrens 
1742fa9e4066Sahrens /*
1743fa9e4066Sahrens  * Mark a top-level vdev's config as dirty, placing it on the dirty list
1744fa9e4066Sahrens  * so that it will be written out next time the vdev configuration is synced.
1745fa9e4066Sahrens  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1746fa9e4066Sahrens  */
1747fa9e4066Sahrens void
1748fa9e4066Sahrens vdev_config_dirty(vdev_t *vd)
1749fa9e4066Sahrens {
1750fa9e4066Sahrens 	spa_t *spa = vd->vdev_spa;
1751fa9e4066Sahrens 	vdev_t *rvd = spa->spa_root_vdev;
1752fa9e4066Sahrens 	int c;
1753fa9e4066Sahrens 
17545dabedeeSbonwick 	/*
17555dabedeeSbonwick 	 * The dirty list is protected by the config lock.  The caller must
17565dabedeeSbonwick 	 * either hold the config lock as writer, or must be the sync thread
17575dabedeeSbonwick 	 * (which holds the lock as reader).  There's only one sync thread,
17585dabedeeSbonwick 	 * so this is sufficient to ensure mutual exclusion.
17595dabedeeSbonwick 	 */
17605dabedeeSbonwick 	ASSERT(spa_config_held(spa, RW_WRITER) ||
17615dabedeeSbonwick 	    dsl_pool_sync_context(spa_get_dsl(spa)));
17625dabedeeSbonwick 
1763fa9e4066Sahrens 	if (vd == rvd) {
1764fa9e4066Sahrens 		for (c = 0; c < rvd->vdev_children; c++)
1765fa9e4066Sahrens 			vdev_config_dirty(rvd->vdev_child[c]);
1766fa9e4066Sahrens 	} else {
1767fa9e4066Sahrens 		ASSERT(vd == vd->vdev_top);
1768fa9e4066Sahrens 
1769ecc2d604Sbonwick 		if (!list_link_active(&vd->vdev_dirty_node))
1770fa9e4066Sahrens 			list_insert_head(&spa->spa_dirty_list, vd);
1771fa9e4066Sahrens 	}
1772fa9e4066Sahrens }
1773fa9e4066Sahrens 
1774fa9e4066Sahrens void
1775fa9e4066Sahrens vdev_config_clean(vdev_t *vd)
1776fa9e4066Sahrens {
17775dabedeeSbonwick 	spa_t *spa = vd->vdev_spa;
17785dabedeeSbonwick 
17795dabedeeSbonwick 	ASSERT(spa_config_held(spa, RW_WRITER) ||
17805dabedeeSbonwick 	    dsl_pool_sync_context(spa_get_dsl(spa)));
17815dabedeeSbonwick 
1782ecc2d604Sbonwick 	ASSERT(list_link_active(&vd->vdev_dirty_node));
17835dabedeeSbonwick 	list_remove(&spa->spa_dirty_list, vd);
1784fa9e4066Sahrens }
1785fa9e4066Sahrens 
178644cd46caSbillm void
178744cd46caSbillm vdev_propagate_state(vdev_t *vd)
178844cd46caSbillm {
178944cd46caSbillm 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
179044cd46caSbillm 	int degraded = 0, faulted = 0;
179144cd46caSbillm 	int corrupted = 0;
179244cd46caSbillm 	int c;
179344cd46caSbillm 	vdev_t *child;
179444cd46caSbillm 
179544cd46caSbillm 	for (c = 0; c < vd->vdev_children; c++) {
179644cd46caSbillm 		child = vd->vdev_child[c];
179744cd46caSbillm 		if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
179844cd46caSbillm 			faulted++;
179944cd46caSbillm 		else if (child->vdev_state == VDEV_STATE_DEGRADED)
180044cd46caSbillm 			degraded++;
180144cd46caSbillm 
180244cd46caSbillm 		if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
180344cd46caSbillm 			corrupted++;
180444cd46caSbillm 	}
180544cd46caSbillm 
180644cd46caSbillm 	vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
180744cd46caSbillm 
180844cd46caSbillm 	/*
180944cd46caSbillm 	 * Root special: if there is a toplevel vdev that cannot be
181044cd46caSbillm 	 * opened due to corrupted metadata, then propagate the root
181144cd46caSbillm 	 * vdev's aux state as 'corrupt' rather than 'insufficient
181244cd46caSbillm 	 * replicas'.
181344cd46caSbillm 	 */
181444cd46caSbillm 	if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN)
181544cd46caSbillm 		vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
181644cd46caSbillm 		    VDEV_AUX_CORRUPT_DATA);
181744cd46caSbillm }
181844cd46caSbillm 
1819fa9e4066Sahrens /*
1820ea8dc4b6Seschrock  * Set a vdev's state.  If this is during an open, we don't update the parent
1821ea8dc4b6Seschrock  * state, because we're in the process of opening children depth-first.
1822ea8dc4b6Seschrock  * Otherwise, we propagate the change to the parent.
1823ea8dc4b6Seschrock  *
1824ea8dc4b6Seschrock  * If this routine places a device in a faulted state, an appropriate ereport is
1825ea8dc4b6Seschrock  * generated.
1826fa9e4066Sahrens  */
1827fa9e4066Sahrens void
1828ea8dc4b6Seschrock vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
1829fa9e4066Sahrens {
1830560e6e96Seschrock 	uint64_t save_state;
1831ea8dc4b6Seschrock 
1832ea8dc4b6Seschrock 	if (state == vd->vdev_state) {
1833ea8dc4b6Seschrock 		vd->vdev_stat.vs_aux = aux;
1834fa9e4066Sahrens 		return;
1835ea8dc4b6Seschrock 	}
1836ea8dc4b6Seschrock 
1837560e6e96Seschrock 	save_state = vd->vdev_state;
1838fa9e4066Sahrens 
1839fa9e4066Sahrens 	vd->vdev_state = state;
1840fa9e4066Sahrens 	vd->vdev_stat.vs_aux = aux;
1841fa9e4066Sahrens 
1842ea8dc4b6Seschrock 	if (state == VDEV_STATE_CANT_OPEN) {
1843ea8dc4b6Seschrock 		/*
1844ea8dc4b6Seschrock 		 * If we fail to open a vdev during an import, we mark it as
1845ea8dc4b6Seschrock 		 * "not available", which signifies that it was never there to
1846ea8dc4b6Seschrock 		 * begin with.  Failure to open such a device is not considered
1847ea8dc4b6Seschrock 		 * an error.
1848ea8dc4b6Seschrock 		 */
1849560e6e96Seschrock 		if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT &&
1850560e6e96Seschrock 		    vd->vdev_ops->vdev_op_leaf)
1851560e6e96Seschrock 			vd->vdev_not_present = 1;
1852560e6e96Seschrock 
1853560e6e96Seschrock 		/*
1854560e6e96Seschrock 		 * Post the appropriate ereport.  If the 'prevstate' field is
1855560e6e96Seschrock 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
1856560e6e96Seschrock 		 * that this is part of a vdev_reopen().  In this case, we don't
1857560e6e96Seschrock 		 * want to post the ereport if the device was already in the
1858560e6e96Seschrock 		 * CANT_OPEN state beforehand.
1859560e6e96Seschrock 		 */
1860560e6e96Seschrock 		if (vd->vdev_prevstate != state && !vd->vdev_not_present &&
1861ea8dc4b6Seschrock 		    vd != vd->vdev_spa->spa_root_vdev) {
1862ea8dc4b6Seschrock 			const char *class;
1863ea8dc4b6Seschrock 
1864ea8dc4b6Seschrock 			switch (aux) {
1865ea8dc4b6Seschrock 			case VDEV_AUX_OPEN_FAILED:
1866ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
1867ea8dc4b6Seschrock 				break;
1868ea8dc4b6Seschrock 			case VDEV_AUX_CORRUPT_DATA:
1869ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
1870ea8dc4b6Seschrock 				break;
1871ea8dc4b6Seschrock 			case VDEV_AUX_NO_REPLICAS:
1872ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
1873ea8dc4b6Seschrock 				break;
1874ea8dc4b6Seschrock 			case VDEV_AUX_BAD_GUID_SUM:
1875ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
1876ea8dc4b6Seschrock 				break;
1877ea8dc4b6Seschrock 			case VDEV_AUX_TOO_SMALL:
1878ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
1879ea8dc4b6Seschrock 				break;
1880ea8dc4b6Seschrock 			case VDEV_AUX_BAD_LABEL:
1881ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
1882ea8dc4b6Seschrock 				break;
1883ea8dc4b6Seschrock 			default:
1884ea8dc4b6Seschrock 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
1885ea8dc4b6Seschrock 			}
1886ea8dc4b6Seschrock 
1887ea8dc4b6Seschrock 			zfs_ereport_post(class, vd->vdev_spa,
1888560e6e96Seschrock 			    vd, NULL, save_state, 0);
1889ea8dc4b6Seschrock 		}
1890ea8dc4b6Seschrock 	}
1891ea8dc4b6Seschrock 
1892ea8dc4b6Seschrock 	if (isopen)
1893ea8dc4b6Seschrock 		return;
1894ea8dc4b6Seschrock 
189544cd46caSbillm 	if (vd->vdev_parent != NULL)
189644cd46caSbillm 		vdev_propagate_state(vd->vdev_parent);
1897fa9e4066Sahrens }
1898