1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2013 DEY Storage Systems, Inc.
28 * Copyright 2014 HybridCluster. All rights reserved.
29 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
30 * Copyright 2013 Saso Kiselkov. All rights reserved.
31 * Copyright (c) 2017, Intel Corporation.
32 * Copyright (c) 2014 Integros [integros.com]
33 */
34
35/* Portions Copyright 2010 Robert Milkowski */
36
37#ifndef	_SYS_DMU_H
38#define	_SYS_DMU_H
39
40/*
41 * This file describes the interface that the DMU provides for its
42 * consumers.
43 *
44 * The DMU also interacts with the SPA.  That interface is described in
45 * dmu_spa.h.
46 */
47
48#include <sys/zfs_context.h>
49#include <sys/inttypes.h>
50#include <sys/cred.h>
51#include <sys/fs/zfs.h>
52#include <sys/zio_compress.h>
53#include <sys/zio_priority.h>
54
55#ifdef	__cplusplus
56extern "C" {
57#endif
58
59struct uio;
60struct xuio;
61struct page;
62struct vnode;
63struct spa;
64struct zilog;
65struct zio;
66struct blkptr;
67struct zap_cursor;
68struct dsl_dataset;
69struct dsl_pool;
70struct dnode;
71struct drr_begin;
72struct drr_end;
73struct zbookmark_phys;
74struct spa;
75struct nvlist;
76struct arc_buf;
77struct zio_prop;
78struct sa_handle;
79struct locked_range;
80struct dsl_crypto_params;
81
82typedef struct objset objset_t;
83typedef struct dmu_tx dmu_tx_t;
84typedef struct dsl_dir dsl_dir_t;
85typedef struct dnode dnode_t;
86
87typedef enum dmu_object_byteswap {
88	DMU_BSWAP_UINT8,
89	DMU_BSWAP_UINT16,
90	DMU_BSWAP_UINT32,
91	DMU_BSWAP_UINT64,
92	DMU_BSWAP_ZAP,
93	DMU_BSWAP_DNODE,
94	DMU_BSWAP_OBJSET,
95	DMU_BSWAP_ZNODE,
96	DMU_BSWAP_OLDACL,
97	DMU_BSWAP_ACL,
98	/*
99	 * Allocating a new byteswap type number makes the on-disk format
100	 * incompatible with any other format that uses the same number.
101	 *
102	 * Data can usually be structured to work with one of the
103	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
104	 */
105	DMU_BSWAP_NUMFUNCS
106} dmu_object_byteswap_t;
107
108#define	DMU_OT_NEWTYPE 0x80
109#define	DMU_OT_METADATA 0x40
110#define	DMU_OT_ENCRYPTED 0x20
111#define	DMU_OT_BYTESWAP_MASK 0x1f
112
113/*
114 * Defines a uint8_t object type. Object types specify if the data
115 * in the object is metadata (boolean) and how to byteswap the data
116 * (dmu_object_byteswap_t). All of the types created by this method
117 * are cached in the dbuf metadata cache.
118 */
119#define	DMU_OT(byteswap, metadata, encrypted) \
120	(DMU_OT_NEWTYPE | \
121	((metadata) ? DMU_OT_METADATA : 0) | \
122	((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
123	((byteswap) & DMU_OT_BYTESWAP_MASK))
124
125#define	DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
126	((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
127	(ot) < DMU_OT_NUMTYPES)
128
129/*
130 * MDB doesn't have dmu_ot; it defines these macros itself.
131 */
132#ifndef ZFS_MDB
133#define	DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
134#define	DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
135#define	DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
136#endif
137
138#define	DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
139	((ot) & DMU_OT_METADATA) : \
140	DMU_OT_IS_METADATA_IMPL(ot))
141
142#define	DMU_OT_IS_DDT(ot) \
143	((ot) == DMU_OT_DDT_ZAP)
144
145#define	DMU_OT_IS_ZIL(ot) \
146	((ot) == DMU_OT_INTENT_LOG)
147
148/* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
149#define	DMU_OT_IS_FILE(ot) \
150	((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
151
152#define	DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
153	B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
154
155#define	DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
156	((ot) & DMU_OT_ENCRYPTED) : \
157	DMU_OT_IS_ENCRYPTED_IMPL(ot))
158
159/*
160 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
161 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
162 * is repurposed for embedded BPs.
163 */
164#define	DMU_OT_HAS_FILL(ot) \
165	((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
166
167#define	DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
168	((ot) & DMU_OT_BYTESWAP_MASK) : \
169	DMU_OT_BYTESWAP_IMPL(ot))
170
171typedef enum dmu_object_type {
172	DMU_OT_NONE,
173	/* general: */
174	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
175	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
176	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
177	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
178	DMU_OT_BPOBJ,			/* UINT64 */
179	DMU_OT_BPOBJ_HDR,		/* UINT64 */
180	/* spa: */
181	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
182	DMU_OT_SPACE_MAP,		/* UINT64 */
183	/* zil: */
184	DMU_OT_INTENT_LOG,		/* UINT64 */
185	/* dmu: */
186	DMU_OT_DNODE,			/* DNODE */
187	DMU_OT_OBJSET,			/* OBJSET */
188	/* dsl: */
189	DMU_OT_DSL_DIR,			/* UINT64 */
190	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
191	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
192	DMU_OT_DSL_PROPS,		/* ZAP */
193	DMU_OT_DSL_DATASET,		/* UINT64 */
194	/* zpl: */
195	DMU_OT_ZNODE,			/* ZNODE */
196	DMU_OT_OLDACL,			/* Old ACL */
197	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
198	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
199	DMU_OT_MASTER_NODE,		/* ZAP */
200	DMU_OT_UNLINKED_SET,		/* ZAP */
201	/* zvol: */
202	DMU_OT_ZVOL,			/* UINT8 */
203	DMU_OT_ZVOL_PROP,		/* ZAP */
204	/* other; for testing only! */
205	DMU_OT_PLAIN_OTHER,		/* UINT8 */
206	DMU_OT_UINT64_OTHER,		/* UINT64 */
207	DMU_OT_ZAP_OTHER,		/* ZAP */
208	/* new object types: */
209	DMU_OT_ERROR_LOG,		/* ZAP */
210	DMU_OT_SPA_HISTORY,		/* UINT8 */
211	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
212	DMU_OT_POOL_PROPS,		/* ZAP */
213	DMU_OT_DSL_PERMS,		/* ZAP */
214	DMU_OT_ACL,			/* ACL */
215	DMU_OT_SYSACL,			/* SYSACL */
216	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
217	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
218	DMU_OT_NEXT_CLONES,		/* ZAP */
219	DMU_OT_SCAN_QUEUE,		/* ZAP */
220	DMU_OT_USERGROUP_USED,		/* ZAP */
221	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
222	DMU_OT_USERREFS,		/* ZAP */
223	DMU_OT_DDT_ZAP,			/* ZAP */
224	DMU_OT_DDT_STATS,		/* ZAP */
225	DMU_OT_SA,			/* System attr */
226	DMU_OT_SA_MASTER_NODE,		/* ZAP */
227	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
228	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
229	DMU_OT_SCAN_XLATE,		/* ZAP */
230	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
231	DMU_OT_DEADLIST,		/* ZAP */
232	DMU_OT_DEADLIST_HDR,		/* UINT64 */
233	DMU_OT_DSL_CLONES,		/* ZAP */
234	DMU_OT_BPOBJ_SUBOBJ,		/* UINT64 */
235	/*
236	 * Do not allocate new object types here. Doing so makes the on-disk
237	 * format incompatible with any other format that uses the same object
238	 * type number.
239	 *
240	 * When creating an object which does not have one of the above types
241	 * use the DMU_OTN_* type with the correct byteswap and metadata
242	 * values.
243	 *
244	 * The DMU_OTN_* types do not have entries in the dmu_ot table,
245	 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
246	 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
247	 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
248	 * and DMU_OTN_* types).
249	 */
250	DMU_OT_NUMTYPES,
251
252	/*
253	 * Names for valid types declared with DMU_OT().
254	 */
255	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
256	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
257	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
258	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
259	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
260	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
261	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
262	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
263	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
264	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
265
266	DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
267	DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
268	DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
269	DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
270	DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
271	DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
272	DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
273	DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
274	DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
275	DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
276} dmu_object_type_t;
277
278/*
279 * These flags are intended to be used to specify the "txg_how"
280 * parameter when calling the dmu_tx_assign() function. See the comment
281 * above dmu_tx_assign() for more details on the meaning of these flags.
282 */
283#define	TXG_NOWAIT	(0ULL)
284#define	TXG_WAIT	(1ULL<<0)
285#define	TXG_NOTHROTTLE	(1ULL<<1)
286
287void byteswap_uint64_array(void *buf, size_t size);
288void byteswap_uint32_array(void *buf, size_t size);
289void byteswap_uint16_array(void *buf, size_t size);
290void byteswap_uint8_array(void *buf, size_t size);
291void zap_byteswap(void *buf, size_t size);
292void zfs_oldacl_byteswap(void *buf, size_t size);
293void zfs_acl_byteswap(void *buf, size_t size);
294void zfs_znode_byteswap(void *buf, size_t size);
295
296#define	DS_FIND_SNAPSHOTS	(1<<0)
297#define	DS_FIND_CHILDREN	(1<<1)
298#define	DS_FIND_SERIALIZE	(1<<2)
299
300/*
301 * The maximum number of bytes that can be accessed as part of one
302 * operation, including metadata.
303 */
304#define	DMU_MAX_ACCESS (32 * 1024 * 1024) /* 32MB */
305#define	DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
306
307#define	DMU_USERUSED_OBJECT	(-1ULL)
308#define	DMU_GROUPUSED_OBJECT	(-2ULL)
309#define	DMU_PROJECTUSED_OBJECT	(-3ULL)
310
311/*
312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
313 */
314#define	DMU_OBJACCT_PREFIX	"obj-"
315#define	DMU_OBJACCT_PREFIX_LEN	4
316
317/*
318 * artificial blkids for bonus buffer and spill blocks
319 */
320#define	DMU_BONUS_BLKID		(-1ULL)
321#define	DMU_SPILL_BLKID		(-2ULL)
322
323/*
324 * Public routines to create, destroy, open, and close objsets.
325 */
326typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
327    cred_t *cr, dmu_tx_t *tx);
328
329int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
330int dmu_objset_own(const char *name, dmu_objset_type_t type,
331    boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp);
332void dmu_objset_rele(objset_t *os, void *tag);
333void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag);
334int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
335
336void dmu_objset_evict_dbufs(objset_t *os);
337int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
338    struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
339    void *arg);
340int dmu_objset_clone(const char *name, const char *origin);
341int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
342    struct nvlist *errlist);
343int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
344int dmu_objset_snapshot_tmp(const char *, const char *, int);
345int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
346    int flags);
347void dmu_objset_byteswap(void *buf, size_t size);
348int dsl_dataset_rename_snapshot(const char *fsname,
349    const char *oldsnapname, const char *newsnapname, boolean_t recursive);
350int dmu_objset_remap_indirects(const char *fsname);
351
352typedef struct dmu_buf {
353	uint64_t db_object;		/* object that this buffer is part of */
354	uint64_t db_offset;		/* byte offset in this object */
355	uint64_t db_size;		/* size of buffer in bytes */
356	void *db_data;			/* data in buffer */
357} dmu_buf_t;
358
359/*
360 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
361 */
362#define	DMU_POOL_DIRECTORY_OBJECT	1
363#define	DMU_POOL_CONFIG			"config"
364#define	DMU_POOL_FEATURES_FOR_WRITE	"features_for_write"
365#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
366#define	DMU_POOL_FEATURE_DESCRIPTIONS	"feature_descriptions"
367#define	DMU_POOL_FEATURE_ENABLED_TXG	"feature_enabled_txg"
368#define	DMU_POOL_ROOT_DATASET		"root_dataset"
369#define	DMU_POOL_SYNC_BPOBJ		"sync_bplist"
370#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
371#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
372#define	DMU_POOL_SPARES			"spares"
373#define	DMU_POOL_DEFLATE		"deflate"
374#define	DMU_POOL_HISTORY		"history"
375#define	DMU_POOL_PROPS			"pool_props"
376#define	DMU_POOL_L2CACHE		"l2cache"
377#define	DMU_POOL_TMP_USERREFS		"tmp_userrefs"
378#define	DMU_POOL_DDT			"DDT-%s-%s-%s"
379#define	DMU_POOL_DDT_STATS		"DDT-statistics"
380#define	DMU_POOL_CREATION_VERSION	"creation_version"
381#define	DMU_POOL_SCAN			"scan"
382#define	DMU_POOL_FREE_BPOBJ		"free_bpobj"
383#define	DMU_POOL_BPTREE_OBJ		"bptree_obj"
384#define	DMU_POOL_EMPTY_BPOBJ		"empty_bpobj"
385#define	DMU_POOL_CHECKSUM_SALT		"org.illumos:checksum_salt"
386#define	DMU_POOL_VDEV_ZAP_MAP		"com.delphix:vdev_zap_map"
387#define	DMU_POOL_REMOVING		"com.delphix:removing"
388#define	DMU_POOL_OBSOLETE_BPOBJ		"com.delphix:obsolete_bpobj"
389#define	DMU_POOL_CONDENSING_INDIRECT	"com.delphix:condensing_indirect"
390#define	DMU_POOL_ZPOOL_CHECKPOINT	"com.delphix:zpool_checkpoint"
391#define	DMU_POOL_LOG_SPACEMAP_ZAP	"com.delphix:log_spacemap_zap"
392
393/*
394 * Allocate an object from this objset.  The range of object numbers
395 * available is (0, DN_MAX_OBJECT).  Object 0 is the meta-dnode.
396 *
397 * The transaction must be assigned to a txg.  The newly allocated
398 * object will be "held" in the transaction (ie. you can modify the
399 * newly allocated object in this transaction).
400 *
401 * dmu_object_alloc() chooses an object and returns it in *objectp.
402 *
403 * dmu_object_claim() allocates a specific object number.  If that
404 * number is already allocated, it fails and returns EEXIST.
405 *
406 * Return 0 on success, or ENOSPC or EEXIST as specified above.
407 */
408uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
409    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
410uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
411    int indirect_blockshift,
412    dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
413uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
414    int blocksize, dmu_object_type_t bonus_type, int bonus_len,
415    int dnodesize, dmu_tx_t *tx);
416int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
417    int blocksize, dmu_object_type_t bonus_type, int bonus_len,
418    int dnodesize, dmu_tx_t *tx);
419int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
420    dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
421    int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *txp);
422int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
423    int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
424int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
425    int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
426int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
427
428/*
429 * Free an object from this objset.
430 *
431 * The object's data will be freed as well (ie. you don't need to call
432 * dmu_free(object, 0, -1, tx)).
433 *
434 * The object need not be held in the transaction.
435 *
436 * If there are any holds on this object's buffers (via dmu_buf_hold()),
437 * or tx holds on the object (via dmu_tx_hold_object()), you can not
438 * free it; it fails and returns EBUSY.
439 *
440 * If the object is not allocated, it fails and returns ENOENT.
441 *
442 * Return 0 on success, or EBUSY or ENOENT as specified above.
443 */
444int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
445
446/*
447 * Find the next allocated or free object.
448 *
449 * The objectp parameter is in-out.  It will be updated to be the next
450 * object which is allocated.  Ignore objects which have not been
451 * modified since txg.
452 *
453 * XXX Can only be called on a objset with no dirty data.
454 *
455 * Returns 0 on success, or ENOENT if there are no more objects.
456 */
457int dmu_object_next(objset_t *os, uint64_t *objectp,
458    boolean_t hole, uint64_t txg);
459
460/*
461 * Set the number of levels on a dnode. nlevels must be greater than the
462 * current number of levels or an EINVAL will be returned.
463 */
464int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
465    dmu_tx_t *tx);
466
467/*
468 * Set the data blocksize for an object.
469 *
470 * The object cannot have any blocks allcated beyond the first.  If
471 * the first block is allocated already, the new size must be greater
472 * than the current block size.  If these conditions are not met,
473 * ENOTSUP will be returned.
474 *
475 * Returns 0 on success, or EBUSY if there are any holds on the object
476 * contents, or ENOTSUP as described above.
477 */
478int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
479    int ibs, dmu_tx_t *tx);
480
481/*
482 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
483 * to accommodate the change. When calling this function, the caller must
484 * ensure that the object's nlevels can sufficiently support the new maxblkid.
485 */
486int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
487    dmu_tx_t *tx);
488
489/*
490 * Set the checksum property on a dnode.  The new checksum algorithm will
491 * apply to all newly written blocks; existing blocks will not be affected.
492 */
493void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
494    dmu_tx_t *tx);
495
496/*
497 * Set the compress property on a dnode.  The new compression algorithm will
498 * apply to all newly written blocks; existing blocks will not be affected.
499 */
500void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
501    dmu_tx_t *tx);
502
503int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
504
505void
506dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
507    void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
508    int compressed_size, int byteorder, dmu_tx_t *tx);
509
510/*
511 * Decide how to write a block: checksum, compression, number of copies, etc.
512 */
513#define	WP_NOFILL	0x1
514#define	WP_DMU_SYNC	0x2
515#define	WP_SPILL	0x4
516
517void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
518    struct zio_prop *zp);
519void dmu_write_policy_override_compress(struct zio_prop *zp,
520    enum zio_compress compress);
521void dmu_write_policy_override_encrypt(struct zio_prop *zp,
522    dmu_object_type_t ot, boolean_t byteorder, enum zio_compress compress,
523    const uint8_t *salt, const uint8_t *iv, const uint8_t *mac);
524/*
525 * The bonus data is accessed more or less like a regular buffer.
526 * You must dmu_bonus_hold() to get the buffer, which will give you a
527 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
528 * data.  As with any normal buffer, you must call dmu_buf_will_dirty()
529 * before modifying it, and the
530 * object must be held in an assigned transaction before calling
531 * dmu_buf_will_dirty.  You may use dmu_buf_set_user() on the bonus
532 * buffer as well.  You must release your hold with dmu_buf_rele().
533 *
534 * Returns ENOENT, EIO, or 0.
535 */
536int dmu_bonus_hold_impl(objset_t *os, uint64_t object, void *tag,
537    uint32_t flags, dmu_buf_t **dbp);
538int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
539int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
540    uint32_t flags);
541int dmu_bonus_max(void);
542int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
543int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
544dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
545int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
546
547/*
548 * Special spill buffer support used by "SA" framework
549 */
550
551int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
552    dmu_buf_t **dbp);
553int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
554    void *tag, dmu_buf_t **dbp);
555int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
556
557/*
558 * Obtain the DMU buffer from the specified object which contains the
559 * specified offset.  dmu_buf_hold() puts a "hold" on the buffer, so
560 * that it will remain in memory.  You must release the hold with
561 * dmu_buf_rele().  You musn't access the dmu_buf_t after releasing your
562 * hold.  You must have a hold on any dmu_buf_t* you pass to the DMU.
563 *
564 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
565 * on the returned buffer before reading or writing the buffer's
566 * db_data.  The comments for those routines describe what particular
567 * operations are valid after calling them.
568 *
569 * The object number must be a valid, allocated object number.
570 */
571int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
572    void *tag, dmu_buf_t **, int flags);
573int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
574    void *tag, dmu_buf_t **dbp, int flags);
575
576/*
577 * Add a reference to a dmu buffer that has already been held via
578 * dmu_buf_hold() in the current context.
579 */
580void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
581
582/*
583 * Attempt to add a reference to a dmu buffer that is in an unknown state,
584 * using a pointer that may have been invalidated by eviction processing.
585 * The request will succeed if the passed in dbuf still represents the
586 * same os/object/blkid, is ineligible for eviction, and has at least
587 * one hold by a user other than the syncer.
588 */
589boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
590    uint64_t blkid, void *tag);
591
592void dmu_buf_rele(dmu_buf_t *db, void *tag);
593uint64_t dmu_buf_refcount(dmu_buf_t *db);
594uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
595
596/*
597 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
598 * range of an object.  A pointer to an array of dmu_buf_t*'s is
599 * returned (in *dbpp).
600 *
601 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
602 * frees the array.  The hold on the array of buffers MUST be released
603 * with dmu_buf_rele_array.  You can NOT release the hold on each buffer
604 * individually with dmu_buf_rele.
605 */
606int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
607    uint64_t length, boolean_t read, void *tag,
608    int *numbufsp, dmu_buf_t ***dbpp);
609int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
610    boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp,
611    uint32_t flags);
612void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
613
614typedef void dmu_buf_evict_func_t(void *user_ptr);
615
616/*
617 * A DMU buffer user object may be associated with a dbuf for the
618 * duration of its lifetime.  This allows the user of a dbuf (client)
619 * to attach private data to a dbuf (e.g. in-core only data such as a
620 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
621 * when that dbuf has been evicted.  Clients typically respond to the
622 * eviction notification by freeing their private data, thus ensuring
623 * the same lifetime for both dbuf and private data.
624 *
625 * The mapping from a dmu_buf_user_t to any client private data is the
626 * client's responsibility.  All current consumers of the API with private
627 * data embed a dmu_buf_user_t as the first member of the structure for
628 * their private data.  This allows conversions between the two types
629 * with a simple cast.  Since the DMU buf user API never needs access
630 * to the private data, other strategies can be employed if necessary
631 * or convenient for the client (e.g. using __containerof() to do the
632 * conversion for private data that cannot have the dmu_buf_user_t as
633 * its first member).
634 *
635 * Eviction callbacks are executed without the dbuf mutex held or any
636 * other type of mechanism to guarantee that the dbuf is still available.
637 * For this reason, users must assume the dbuf has already been freed
638 * and not reference the dbuf from the callback context.
639 *
640 * Users requesting "immediate eviction" are notified as soon as the dbuf
641 * is only referenced by dirty records (dirties == holds).  Otherwise the
642 * notification occurs after eviction processing for the dbuf begins.
643 */
644typedef struct dmu_buf_user {
645	/*
646	 * Asynchronous user eviction callback state.
647	 */
648	taskq_ent_t	dbu_tqent;
649
650	/*
651	 * This instance's eviction function pointers.
652	 *
653	 * dbu_evict_func_sync is called synchronously and then
654	 * dbu_evict_func_async is executed asynchronously on a taskq.
655	 */
656	dmu_buf_evict_func_t *dbu_evict_func_sync;
657	dmu_buf_evict_func_t *dbu_evict_func_async;
658#ifdef ZFS_DEBUG
659	/*
660	 * Pointer to user's dbuf pointer.  NULL for clients that do
661	 * not associate a dbuf with their user data.
662	 *
663	 * The dbuf pointer is cleared upon eviction so as to catch
664	 * use-after-evict bugs in clients.
665	 */
666	dmu_buf_t **dbu_clear_on_evict_dbufp;
667#endif
668} dmu_buf_user_t;
669
670/*
671 * Initialize the given dmu_buf_user_t instance with the eviction function
672 * evict_func, to be called when the user is evicted.
673 *
674 * NOTE: This function should only be called once on a given dmu_buf_user_t.
675 *       To allow enforcement of this, dbu must already be zeroed on entry.
676 */
677/*ARGSUSED*/
678inline void
679dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
680    dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
681{
682	ASSERT(dbu->dbu_evict_func_sync == NULL);
683	ASSERT(dbu->dbu_evict_func_async == NULL);
684
685	/* must have at least one evict func */
686	IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
687	dbu->dbu_evict_func_sync = evict_func_sync;
688	dbu->dbu_evict_func_async = evict_func_async;
689#ifdef ZFS_DEBUG
690	dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
691#endif
692}
693
694/*
695 * Attach user data to a dbuf and mark it for normal (when the dbuf's
696 * data is cleared or its reference count goes to zero) eviction processing.
697 *
698 * Returns NULL on success, or the existing user if another user currently
699 * owns the buffer.
700 */
701void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
702
703/*
704 * Attach user data to a dbuf and mark it for immediate (its dirty and
705 * reference counts are equal) eviction processing.
706 *
707 * Returns NULL on success, or the existing user if another user currently
708 * owns the buffer.
709 */
710void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
711
712/*
713 * Replace the current user of a dbuf.
714 *
715 * If given the current user of a dbuf, replaces the dbuf's user with
716 * "new_user" and returns the user data pointer that was replaced.
717 * Otherwise returns the current, and unmodified, dbuf user pointer.
718 */
719void *dmu_buf_replace_user(dmu_buf_t *db,
720    dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
721
722/*
723 * Remove the specified user data for a DMU buffer.
724 *
725 * Returns the user that was removed on success, or the current user if
726 * another user currently owns the buffer.
727 */
728void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
729
730/*
731 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
732 */
733void *dmu_buf_get_user(dmu_buf_t *db);
734
735objset_t *dmu_buf_get_objset(dmu_buf_t *db);
736dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
737void dmu_buf_dnode_exit(dmu_buf_t *db);
738
739/* Block until any in-progress dmu buf user evictions complete. */
740void dmu_buf_user_evict_wait(void);
741
742/*
743 * Returns the blkptr associated with this dbuf, or NULL if not set.
744 */
745struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
746
747/*
748 * Indicate that you are going to modify the buffer's data (db_data).
749 *
750 * The transaction (tx) must be assigned to a txg (ie. you've called
751 * dmu_tx_assign()).  The buffer's object must be held in the tx
752 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
753 */
754void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
755void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
756    const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
757
758/*
759 * You must create a transaction, then hold the objects which you will
760 * (or might) modify as part of this transaction.  Then you must assign
761 * the transaction to a transaction group.  Once the transaction has
762 * been assigned, you can modify buffers which belong to held objects as
763 * part of this transaction.  You can't modify buffers before the
764 * transaction has been assigned; you can't modify buffers which don't
765 * belong to objects which this transaction holds; you can't hold
766 * objects once the transaction has been assigned.  You may hold an
767 * object which you are going to free (with dmu_object_free()), but you
768 * don't have to.
769 *
770 * You can abort the transaction before it has been assigned.
771 *
772 * Note that you may hold buffers (with dmu_buf_hold) at any time,
773 * regardless of transaction state.
774 */
775
776#define	DMU_NEW_OBJECT	(-1ULL)
777#define	DMU_OBJECT_END	(-1ULL)
778
779dmu_tx_t *dmu_tx_create(objset_t *os);
780void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
781void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
782    int len);
783void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
784    uint64_t len);
785void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
786    uint64_t len);
787void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
788void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
789void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
790    const char *name);
791void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
792void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
793void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
794void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
795void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
796void dmu_tx_abort(dmu_tx_t *tx);
797int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
798void dmu_tx_wait(dmu_tx_t *tx);
799void dmu_tx_commit(dmu_tx_t *tx);
800void dmu_tx_mark_netfree(dmu_tx_t *tx);
801
802/*
803 * To register a commit callback, dmu_tx_callback_register() must be called.
804 *
805 * dcb_data is a pointer to caller private data that is passed on as a
806 * callback parameter. The caller is responsible for properly allocating and
807 * freeing it.
808 *
809 * When registering a callback, the transaction must be already created, but
810 * it cannot be committed or aborted. It can be assigned to a txg or not.
811 *
812 * The callback will be called after the transaction has been safely written
813 * to stable storage and will also be called if the dmu_tx is aborted.
814 * If there is any error which prevents the transaction from being committed to
815 * disk, the callback will be called with a value of error != 0.
816 */
817typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
818
819void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
820    void *dcb_data);
821
822/*
823 * Free up the data blocks for a defined range of a file.  If size is
824 * -1, the range from offset to end-of-file is freed.
825 */
826int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
827    uint64_t size, dmu_tx_t *tx);
828int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
829    uint64_t size);
830int dmu_free_long_object(objset_t *os, uint64_t object);
831
832/*
833 * Convenience functions.
834 *
835 * Canfail routines will return 0 on success, or an errno if there is a
836 * nonrecoverable I/O error.
837 */
838#define	DMU_READ_PREFETCH	0 /* prefetch */
839#define	DMU_READ_NO_PREFETCH	1 /* don't prefetch */
840#define	DMU_READ_NO_DECRYPT	2 /* don't decrypt */
841int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
842	void *buf, uint32_t flags);
843int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
844    uint32_t flags);
845void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
846	const void *buf, dmu_tx_t *tx);
847void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
848    const void *buf, dmu_tx_t *tx);
849void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
850	dmu_tx_t *tx);
851int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
852int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
853int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
854int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
855    dmu_tx_t *tx);
856int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
857    dmu_tx_t *tx);
858int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
859    dmu_tx_t *tx);
860int dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset,
861    uint64_t size, struct page *pp, dmu_tx_t *tx);
862struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
863void dmu_return_arcbuf(struct arc_buf *buf);
864int dmu_assign_arcbuf_by_dnode(dnode_t *handle, uint64_t offset,
865    struct arc_buf *buf, dmu_tx_t *tx);
866int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
867    struct arc_buf *buf, dmu_tx_t *tx);
868void dmu_convert_to_raw(dmu_buf_t *handle, boolean_t byteorder,
869    const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
870#define	dmu_assign_arcbuf	dmu_assign_arcbuf_by_dbuf
871void dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
872    dmu_buf_t *handle, dmu_tx_t *tx);
873int dmu_xuio_init(struct xuio *uio, int niov);
874void dmu_xuio_fini(struct xuio *uio);
875int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
876    size_t n);
877int dmu_xuio_cnt(struct xuio *uio);
878struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
879void dmu_xuio_clear(struct xuio *uio, int i);
880void xuio_stat_wbuf_copied(void);
881void xuio_stat_wbuf_nocopy(void);
882
883extern boolean_t zfs_prefetch_disable;
884extern int zfs_max_recordsize;
885
886/*
887 * Asynchronously try to read in the data.
888 */
889void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
890    uint64_t len, enum zio_priority pri);
891
892typedef struct dmu_object_info {
893	/* All sizes are in bytes unless otherwise indicated. */
894	uint32_t doi_data_block_size;
895	uint32_t doi_metadata_block_size;
896	dmu_object_type_t doi_type;
897	dmu_object_type_t doi_bonus_type;
898	uint64_t doi_bonus_size;
899	uint8_t doi_indirection;		/* 2 = dnode->indirect->data */
900	uint8_t doi_checksum;
901	uint8_t doi_compress;
902	uint8_t doi_nblkptr;
903	int8_t doi_pad[4];
904	uint64_t doi_dnodesize;
905	uint64_t doi_physical_blocks_512;	/* data + metadata, 512b blks */
906	uint64_t doi_max_offset;
907	uint64_t doi_fill_count;		/* number of non-empty blocks */
908} dmu_object_info_t;
909
910typedef void arc_byteswap_func_t(void *buf, size_t size);
911
912typedef struct dmu_object_type_info {
913	dmu_object_byteswap_t	ot_byteswap;
914	boolean_t		ot_metadata;
915	boolean_t		ot_dbuf_metadata_cache;
916	boolean_t		ot_encrypt;
917	char			*ot_name;
918} dmu_object_type_info_t;
919
920typedef struct dmu_object_byteswap_info {
921	arc_byteswap_func_t	*ob_func;
922	char			*ob_name;
923} dmu_object_byteswap_info_t;
924
925extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
926extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
927
928/*
929 * Get information on a DMU object.
930 *
931 * Return 0 on success or ENOENT if object is not allocated.
932 *
933 * If doi is NULL, just indicates whether the object exists.
934 */
935int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
936/* Like dmu_object_info, but faster if you have a held dnode in hand. */
937void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
938/* Like dmu_object_info, but faster if you have a held dbuf in hand. */
939void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
940/*
941 * Like dmu_object_info_from_db, but faster still when you only care about
942 * the size.  This is specifically optimized for zfs_getattr().
943 */
944void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
945    u_longlong_t *nblk512);
946
947void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
948
949typedef struct dmu_objset_stats {
950	uint64_t dds_num_clones; /* number of clones of this */
951	uint64_t dds_creation_txg;
952	uint64_t dds_guid;
953	dmu_objset_type_t dds_type;
954	uint8_t dds_is_snapshot;
955	uint8_t dds_inconsistent;
956	char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
957} dmu_objset_stats_t;
958
959/*
960 * Get stats on a dataset.
961 */
962void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
963
964/*
965 * Add entries to the nvlist for all the objset's properties.  See
966 * zfs_prop_table[] and zfs(1m) for details on the properties.
967 */
968void dmu_objset_stats(objset_t *os, struct nvlist *nv);
969
970/*
971 * Get the space usage statistics for statvfs().
972 *
973 * refdbytes is the amount of space "referenced" by this objset.
974 * availbytes is the amount of space available to this objset, taking
975 * into account quotas & reservations, assuming that no other objsets
976 * use the space first.  These values correspond to the 'referenced' and
977 * 'available' properties, described in the zfs(1m) manpage.
978 *
979 * usedobjs and availobjs are the number of objects currently allocated,
980 * and available.
981 */
982void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
983    uint64_t *usedobjsp, uint64_t *availobjsp);
984
985/*
986 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
987 * (Contrast with the ds_guid which is a 64-bit ID that will never
988 * change, so there is a small probability that it will collide.)
989 */
990uint64_t dmu_objset_fsid_guid(objset_t *os);
991
992/*
993 * Get the [cm]time for an objset's snapshot dir
994 */
995timestruc_t dmu_objset_snap_cmtime(objset_t *os);
996
997int dmu_objset_is_snapshot(objset_t *os);
998
999extern struct spa *dmu_objset_spa(objset_t *os);
1000extern struct zilog *dmu_objset_zil(objset_t *os);
1001extern struct dsl_pool *dmu_objset_pool(objset_t *os);
1002extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
1003extern void dmu_objset_name(objset_t *os, char *buf);
1004extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1005extern uint64_t dmu_objset_id(objset_t *os);
1006extern uint64_t dmu_objset_dnodesize(objset_t *os);
1007extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1008extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1009extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1010    uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1011extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
1012    int maxlen, boolean_t *conflict);
1013extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1014    uint64_t *idp, uint64_t *offp);
1015
1016typedef int objset_used_cb_t(dmu_object_type_t bonustype,
1017    void *bonus, uint64_t *userp, uint64_t *groupp, uint64_t *projectp);
1018extern void dmu_objset_register_type(dmu_objset_type_t ost,
1019    objset_used_cb_t *cb);
1020extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1021extern void *dmu_objset_get_user(objset_t *os);
1022
1023/*
1024 * Return the txg number for the given assigned transaction.
1025 */
1026uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1027
1028/*
1029 * Synchronous write.
1030 * If a parent zio is provided this function initiates a write on the
1031 * provided buffer as a child of the parent zio.
1032 * In the absence of a parent zio, the write is completed synchronously.
1033 * At write completion, blk is filled with the bp of the written block.
1034 * Note that while the data covered by this function will be on stable
1035 * storage when the write completes this new data does not become a
1036 * permanent part of the file until the associated transaction commits.
1037 */
1038
1039/*
1040 * {zfs,zvol,ztest}_get_done() args
1041 */
1042typedef struct zgd {
1043	struct lwb	*zgd_lwb;
1044	struct blkptr	*zgd_bp;
1045	dmu_buf_t	*zgd_db;
1046	struct locked_range *zgd_lr;
1047	void		*zgd_private;
1048} zgd_t;
1049
1050typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1051int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1052
1053/*
1054 * Find the next hole or data block in file starting at *off
1055 * Return found offset in *off. Return ESRCH for end of file.
1056 */
1057int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1058    uint64_t *off);
1059
1060/*
1061 * Check if a DMU object has any dirty blocks. If so, sync out
1062 * all pending transaction groups. Otherwise, this function
1063 * does not alter DMU state. This could be improved to only sync
1064 * out the necessary transaction groups for this particular
1065 * object.
1066 */
1067int dmu_object_wait_synced(objset_t *os, uint64_t object);
1068
1069/*
1070 * Initial setup and final teardown.
1071 */
1072extern void dmu_init(void);
1073extern void dmu_fini(void);
1074
1075typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1076    uint64_t object, uint64_t offset, int len);
1077void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1078    dmu_traverse_cb_t cb, void *arg);
1079
1080int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1081    struct vnode *vp, offset_t *offp);
1082
1083/* CRC64 table */
1084#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
1085extern uint64_t zfs_crc64_table[256];
1086
1087#ifdef	__cplusplus
1088}
1089#endif
1090
1091#endif	/* _SYS_DMU_H */
1092