xref: /illumos-gate/usr/src/uts/common/fs/zfs/space_map.c (revision 17f11284b49b98353b5119463254074fd9bc0a28)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zio.h>
36 #include <sys/space_map.h>
37 #include <sys/refcount.h>
38 #include <sys/zfeature.h>
39 
40 /*
41  * Note on space map block size:
42  *
43  * The data for a given space map can be kept on blocks of any size.
44  * Larger blocks entail fewer I/O operations, but they also cause the
45  * DMU to keep more data in-core, and also to waste more I/O bandwidth
46  * when only a few blocks have changed since the last transaction group.
47  */
48 
49 /*
50  * Enabled whenever we want to stress test the use of double-word
51  * space map entries.
52  */
53 boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
54 
55 boolean_t
56 sm_entry_is_debug(uint64_t e)
57 {
58 	return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
59 }
60 
61 boolean_t
62 sm_entry_is_single_word(uint64_t e)
63 {
64 	uint8_t prefix = SM_PREFIX_DECODE(e);
65 	return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
66 }
67 
68 boolean_t
69 sm_entry_is_double_word(uint64_t e)
70 {
71 	return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
72 }
73 
74 /*
75  * Iterate through the space map, invoking the callback on each (non-debug)
76  * space map entry.
77  */
78 int
79 space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
80 {
81 	uint64_t sm_len = space_map_length(sm);
82 	ASSERT3U(sm->sm_blksz, !=, 0);
83 
84 	dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, sm_len,
85 	    ZIO_PRIORITY_SYNC_READ);
86 
87 	uint64_t blksz = sm->sm_blksz;
88 	int error = 0;
89 	for (uint64_t block_base = 0; block_base < sm_len && error == 0;
90 	    block_base += blksz) {
91 		dmu_buf_t *db;
92 		error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
93 		    block_base, FTAG, &db, DMU_READ_PREFETCH);
94 		if (error != 0)
95 			return (error);
96 
97 		uint64_t *block_start = db->db_data;
98 		uint64_t block_length = MIN(sm_len - block_base, blksz);
99 		uint64_t *block_end = block_start +
100 		    (block_length / sizeof (uint64_t));
101 
102 		VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
103 		VERIFY3U(block_length, !=, 0);
104 		ASSERT3U(blksz, ==, db->db_size);
105 
106 		for (uint64_t *block_cursor = block_start;
107 		    block_cursor < block_end && error == 0; block_cursor++) {
108 			uint64_t e = *block_cursor;
109 
110 			if (sm_entry_is_debug(e)) /* Skip debug entries */
111 				continue;
112 
113 			uint64_t raw_offset, raw_run, vdev_id;
114 			maptype_t type;
115 			if (sm_entry_is_single_word(e)) {
116 				type = SM_TYPE_DECODE(e);
117 				vdev_id = SM_NO_VDEVID;
118 				raw_offset = SM_OFFSET_DECODE(e);
119 				raw_run = SM_RUN_DECODE(e);
120 			} else {
121 				/* it is a two-word entry */
122 				ASSERT(sm_entry_is_double_word(e));
123 				raw_run = SM2_RUN_DECODE(e);
124 				vdev_id = SM2_VDEV_DECODE(e);
125 
126 				/* move on to the second word */
127 				block_cursor++;
128 				e = *block_cursor;
129 				VERIFY3P(block_cursor, <=, block_end);
130 
131 				type = SM2_TYPE_DECODE(e);
132 				raw_offset = SM2_OFFSET_DECODE(e);
133 			}
134 
135 			uint64_t entry_offset = (raw_offset << sm->sm_shift) +
136 			    sm->sm_start;
137 			uint64_t entry_run = raw_run << sm->sm_shift;
138 
139 			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
140 			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
141 			ASSERT3U(entry_offset, >=, sm->sm_start);
142 			ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
143 			ASSERT3U(entry_run, <=, sm->sm_size);
144 			ASSERT3U(entry_offset + entry_run, <=,
145 			    sm->sm_start + sm->sm_size);
146 
147 			space_map_entry_t sme = {
148 			    .sme_type = type,
149 			    .sme_vdev = vdev_id,
150 			    .sme_offset = entry_offset,
151 			    .sme_run = entry_run
152 			};
153 			error = callback(&sme, arg);
154 		}
155 		dmu_buf_rele(db, FTAG);
156 	}
157 	return (error);
158 }
159 
160 /*
161  * Reads the entries from the last block of the space map into
162  * buf in reverse order. Populates nwords with number of words
163  * in the last block.
164  *
165  * Refer to block comment within space_map_incremental_destroy()
166  * to understand why this function is needed.
167  */
168 static int
169 space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
170     uint64_t bufsz, uint64_t *nwords)
171 {
172 	int error = 0;
173 	dmu_buf_t *db;
174 
175 	/*
176 	 * Find the offset of the last word in the space map and use
177 	 * that to read the last block of the space map with
178 	 * dmu_buf_hold().
179 	 */
180 	uint64_t last_word_offset =
181 	    sm->sm_phys->smp_objsize - sizeof (uint64_t);
182 	error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
183 	    FTAG, &db, DMU_READ_NO_PREFETCH);
184 	if (error != 0)
185 		return (error);
186 
187 	ASSERT3U(sm->sm_object, ==, db->db_object);
188 	ASSERT3U(sm->sm_blksz, ==, db->db_size);
189 	ASSERT3U(bufsz, >=, db->db_size);
190 	ASSERT(nwords != NULL);
191 
192 	uint64_t *words = db->db_data;
193 	*nwords =
194 	    (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
195 
196 	ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
197 
198 	uint64_t n = *nwords;
199 	uint64_t j = n - 1;
200 	for (uint64_t i = 0; i < n; i++) {
201 		uint64_t entry = words[i];
202 		if (sm_entry_is_double_word(entry)) {
203 			/*
204 			 * Since we are populating the buffer backwards
205 			 * we have to be extra careful and add the two
206 			 * words of the double-word entry in the right
207 			 * order.
208 			 */
209 			ASSERT3U(j, >, 0);
210 			buf[j - 1] = entry;
211 
212 			i++;
213 			ASSERT3U(i, <, n);
214 			entry = words[i];
215 			buf[j] = entry;
216 			j -= 2;
217 		} else {
218 			ASSERT(sm_entry_is_debug(entry) ||
219 			    sm_entry_is_single_word(entry));
220 			buf[j] = entry;
221 			j--;
222 		}
223 	}
224 
225 	/*
226 	 * Assert that we wrote backwards all the
227 	 * way to the beginning of the buffer.
228 	 */
229 	ASSERT3S(j, ==, -1);
230 
231 	dmu_buf_rele(db, FTAG);
232 	return (error);
233 }
234 
235 /*
236  * Note: This function performs destructive actions - specifically
237  * it deletes entries from the end of the space map. Thus, callers
238  * should ensure that they are holding the appropriate locks for
239  * the space map that they provide.
240  */
241 int
242 space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
243     dmu_tx_t *tx)
244 {
245 	uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
246 	uint64_t *buf = zio_buf_alloc(bufsz);
247 
248 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
249 
250 	/*
251 	 * Ideally we would want to iterate from the beginning of the
252 	 * space map to the end in incremental steps. The issue with this
253 	 * approach is that we don't have any field on-disk that points
254 	 * us where to start between each step. We could try zeroing out
255 	 * entries that we've destroyed, but this doesn't work either as
256 	 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
257 	 *
258 	 * As a result, we destroy its entries incrementally starting from
259 	 * the end after applying the callback to each of them.
260 	 *
261 	 * The problem with this approach is that we cannot literally
262 	 * iterate through the words in the space map backwards as we
263 	 * can't distinguish two-word space map entries from their second
264 	 * word. Thus we do the following:
265 	 *
266 	 * 1] We get all the entries from the last block of the space map
267 	 *    and put them into a buffer in reverse order. This way the
268 	 *    last entry comes first in the buffer, the second to last is
269 	 *    second, etc.
270 	 * 2] We iterate through the entries in the buffer and we apply
271 	 *    the callback to each one. As we move from entry to entry we
272 	 *    we decrease the size of the space map, deleting effectively
273 	 *    each entry.
274 	 * 3] If there are no more entries in the space map or the callback
275 	 *    returns a value other than 0, we stop iterating over the
276 	 *    space map. If there are entries remaining and the callback
277 	 *    returned 0, we go back to step [1].
278 	 */
279 	int error = 0;
280 	while (space_map_length(sm) > 0 && error == 0) {
281 		uint64_t nwords = 0;
282 		error = space_map_reversed_last_block_entries(sm, buf, bufsz,
283 		    &nwords);
284 		if (error != 0)
285 			break;
286 
287 		ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
288 
289 		for (uint64_t i = 0; i < nwords; i++) {
290 			uint64_t e = buf[i];
291 
292 			if (sm_entry_is_debug(e)) {
293 				sm->sm_phys->smp_objsize -= sizeof (uint64_t);
294 				space_map_update(sm);
295 				continue;
296 			}
297 
298 			int words = 1;
299 			uint64_t raw_offset, raw_run, vdev_id;
300 			maptype_t type;
301 			if (sm_entry_is_single_word(e)) {
302 				type = SM_TYPE_DECODE(e);
303 				vdev_id = SM_NO_VDEVID;
304 				raw_offset = SM_OFFSET_DECODE(e);
305 				raw_run = SM_RUN_DECODE(e);
306 			} else {
307 				ASSERT(sm_entry_is_double_word(e));
308 				words = 2;
309 
310 				raw_run = SM2_RUN_DECODE(e);
311 				vdev_id = SM2_VDEV_DECODE(e);
312 
313 				/* move to the second word */
314 				i++;
315 				e = buf[i];
316 
317 				ASSERT3P(i, <=, nwords);
318 
319 				type = SM2_TYPE_DECODE(e);
320 				raw_offset = SM2_OFFSET_DECODE(e);
321 			}
322 
323 			uint64_t entry_offset =
324 			    (raw_offset << sm->sm_shift) + sm->sm_start;
325 			uint64_t entry_run = raw_run << sm->sm_shift;
326 
327 			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
328 			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
329 			VERIFY3U(entry_offset, >=, sm->sm_start);
330 			VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
331 			VERIFY3U(entry_run, <=, sm->sm_size);
332 			VERIFY3U(entry_offset + entry_run, <=,
333 			    sm->sm_start + sm->sm_size);
334 
335 			space_map_entry_t sme = {
336 			    .sme_type = type,
337 			    .sme_vdev = vdev_id,
338 			    .sme_offset = entry_offset,
339 			    .sme_run = entry_run
340 			};
341 			error = callback(&sme, arg);
342 			if (error != 0)
343 				break;
344 
345 			if (type == SM_ALLOC)
346 				sm->sm_phys->smp_alloc -= entry_run;
347 			else
348 				sm->sm_phys->smp_alloc += entry_run;
349 			sm->sm_phys->smp_objsize -= words * sizeof (uint64_t);
350 			space_map_update(sm);
351 		}
352 	}
353 
354 	if (space_map_length(sm) == 0) {
355 		ASSERT0(error);
356 		ASSERT0(sm->sm_phys->smp_objsize);
357 		ASSERT0(sm->sm_alloc);
358 	}
359 
360 	zio_buf_free(buf, bufsz);
361 	return (error);
362 }
363 
364 typedef struct space_map_load_arg {
365 	space_map_t	*smla_sm;
366 	range_tree_t	*smla_rt;
367 	maptype_t	smla_type;
368 } space_map_load_arg_t;
369 
370 static int
371 space_map_load_callback(space_map_entry_t *sme, void *arg)
372 {
373 	space_map_load_arg_t *smla = arg;
374 	if (sme->sme_type == smla->smla_type) {
375 		VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
376 		    smla->smla_sm->sm_size);
377 		range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
378 	} else {
379 		range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
380 	}
381 
382 	return (0);
383 }
384 
385 /*
386  * Load the space map disk into the specified range tree. Segments of maptype
387  * are added to the range tree, other segment types are removed.
388  */
389 int
390 space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
391 {
392 	uint64_t space;
393 	int err;
394 	space_map_load_arg_t smla;
395 
396 	VERIFY0(range_tree_space(rt));
397 	space = space_map_allocated(sm);
398 
399 	if (maptype == SM_FREE) {
400 		range_tree_add(rt, sm->sm_start, sm->sm_size);
401 		space = sm->sm_size - space;
402 	}
403 
404 	smla.smla_rt = rt;
405 	smla.smla_sm = sm;
406 	smla.smla_type = maptype;
407 	err = space_map_iterate(sm, space_map_load_callback, &smla);
408 
409 	if (err == 0) {
410 		VERIFY3U(range_tree_space(rt), ==, space);
411 	} else {
412 		range_tree_vacate(rt, NULL, NULL);
413 	}
414 
415 	return (err);
416 }
417 
418 void
419 space_map_histogram_clear(space_map_t *sm)
420 {
421 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
422 		return;
423 
424 	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
425 }
426 
427 boolean_t
428 space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
429 {
430 	/*
431 	 * Verify that the in-core range tree does not have any
432 	 * ranges smaller than our sm_shift size.
433 	 */
434 	for (int i = 0; i < sm->sm_shift; i++) {
435 		if (rt->rt_histogram[i] != 0)
436 			return (B_FALSE);
437 	}
438 	return (B_TRUE);
439 }
440 
441 void
442 space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
443 {
444 	int idx = 0;
445 
446 	ASSERT(dmu_tx_is_syncing(tx));
447 	VERIFY3U(space_map_object(sm), !=, 0);
448 
449 	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
450 		return;
451 
452 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
453 
454 	ASSERT(space_map_histogram_verify(sm, rt));
455 	/*
456 	 * Transfer the content of the range tree histogram to the space
457 	 * map histogram. The space map histogram contains 32 buckets ranging
458 	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
459 	 * however, can represent ranges from 2^0 to 2^63. Since the space
460 	 * map only cares about allocatable blocks (minimum of sm_shift) we
461 	 * can safely ignore all ranges in the range tree smaller than sm_shift.
462 	 */
463 	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
464 
465 		/*
466 		 * Since the largest histogram bucket in the space map is
467 		 * 2^(32+sm_shift-1), we need to normalize the values in
468 		 * the range tree for any bucket larger than that size. For
469 		 * example given an sm_shift of 9, ranges larger than 2^40
470 		 * would get normalized as if they were 1TB ranges. Assume
471 		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
472 		 * the calculation below would normalize this to 5 * 2^4 (16).
473 		 */
474 		ASSERT3U(i, >=, idx + sm->sm_shift);
475 		sm->sm_phys->smp_histogram[idx] +=
476 		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
477 
478 		/*
479 		 * Increment the space map's index as long as we haven't
480 		 * reached the maximum bucket size. Accumulate all ranges
481 		 * larger than the max bucket size into the last bucket.
482 		 */
483 		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
484 			ASSERT3U(idx + sm->sm_shift, ==, i);
485 			idx++;
486 			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
487 		}
488 	}
489 }
490 
491 static void
492 space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
493 {
494 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
495 
496 	uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
497 	    SM_DEBUG_ACTION_ENCODE(maptype) |
498 	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
499 	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
500 
501 	dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_objsize,
502 	    sizeof (dentry), &dentry, tx);
503 
504 	sm->sm_phys->smp_objsize += sizeof (dentry);
505 }
506 
507 /*
508  * Writes one or more entries given a segment.
509  *
510  * Note: The function may release the dbuf from the pointer initially
511  * passed to it, and return a different dbuf. Also, the space map's
512  * dbuf must be dirty for the changes in sm_phys to take effect.
513  */
514 static void
515 space_map_write_seg(space_map_t *sm, range_seg_t *rs, maptype_t maptype,
516     uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx)
517 {
518 	ASSERT3U(words, !=, 0);
519 	ASSERT3U(words, <=, 2);
520 
521 	/* ensure the vdev_id can be represented by the space map */
522 	ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
523 
524 	/*
525 	 * if this is a single word entry, ensure that no vdev was
526 	 * specified.
527 	 */
528 	IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
529 
530 	dmu_buf_t *db = *dbp;
531 	ASSERT3U(db->db_size, ==, sm->sm_blksz);
532 
533 	uint64_t *block_base = db->db_data;
534 	uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
535 	uint64_t *block_cursor = block_base +
536 	    (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
537 
538 	ASSERT3P(block_cursor, <=, block_end);
539 
540 	uint64_t size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
541 	uint64_t start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
542 	uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
543 
544 	ASSERT3U(rs->rs_start, >=, sm->sm_start);
545 	ASSERT3U(rs->rs_start, <, sm->sm_start + sm->sm_size);
546 	ASSERT3U(rs->rs_end - rs->rs_start, <=, sm->sm_size);
547 	ASSERT3U(rs->rs_end, <=, sm->sm_start + sm->sm_size);
548 
549 	while (size != 0) {
550 		ASSERT3P(block_cursor, <=, block_end);
551 
552 		/*
553 		 * If we are at the end of this block, flush it and start
554 		 * writing again from the beginning.
555 		 */
556 		if (block_cursor == block_end) {
557 			dmu_buf_rele(db, tag);
558 
559 			uint64_t next_word_offset = sm->sm_phys->smp_objsize;
560 			VERIFY0(dmu_buf_hold(sm->sm_os,
561 			    space_map_object(sm), next_word_offset,
562 			    tag, &db, DMU_READ_PREFETCH));
563 			dmu_buf_will_dirty(db, tx);
564 
565 			/* update caller's dbuf */
566 			*dbp = db;
567 
568 			ASSERT3U(db->db_size, ==, sm->sm_blksz);
569 
570 			block_base = db->db_data;
571 			block_cursor = block_base;
572 			block_end = block_base +
573 			    (db->db_size / sizeof (uint64_t));
574 		}
575 
576 		/*
577 		 * If we are writing a two-word entry and we only have one
578 		 * word left on this block, just pad it with an empty debug
579 		 * entry and write the two-word entry in the next block.
580 		 */
581 		uint64_t *next_entry = block_cursor + 1;
582 		if (next_entry == block_end && words > 1) {
583 			ASSERT3U(words, ==, 2);
584 			*block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
585 			    SM_DEBUG_ACTION_ENCODE(0) |
586 			    SM_DEBUG_SYNCPASS_ENCODE(0) |
587 			    SM_DEBUG_TXG_ENCODE(0);
588 			block_cursor++;
589 			sm->sm_phys->smp_objsize += sizeof (uint64_t);
590 			ASSERT3P(block_cursor, ==, block_end);
591 			continue;
592 		}
593 
594 		uint64_t run_len = MIN(size, run_max);
595 		switch (words) {
596 		case 1:
597 			*block_cursor = SM_OFFSET_ENCODE(start) |
598 			    SM_TYPE_ENCODE(maptype) |
599 			    SM_RUN_ENCODE(run_len);
600 			block_cursor++;
601 			break;
602 		case 2:
603 			/* write the first word of the entry */
604 			*block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
605 			    SM2_RUN_ENCODE(run_len) |
606 			    SM2_VDEV_ENCODE(vdev_id);
607 			block_cursor++;
608 
609 			/* move on to the second word of the entry */
610 			ASSERT3P(block_cursor, <, block_end);
611 			*block_cursor = SM2_TYPE_ENCODE(maptype) |
612 			    SM2_OFFSET_ENCODE(start);
613 			block_cursor++;
614 			break;
615 		default:
616 			panic("%d-word space map entries are not supported",
617 			    words);
618 			break;
619 		}
620 		sm->sm_phys->smp_objsize += words * sizeof (uint64_t);
621 
622 		start += run_len;
623 		size -= run_len;
624 	}
625 	ASSERT0(size);
626 
627 }
628 
629 /*
630  * Note: The space map's dbuf must be dirty for the changes in sm_phys to
631  * take effect.
632  */
633 static void
634 space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
635     uint64_t vdev_id, dmu_tx_t *tx)
636 {
637 	spa_t *spa = tx->tx_pool->dp_spa;
638 	dmu_buf_t *db;
639 
640 	space_map_write_intro_debug(sm, maptype, tx);
641 
642 #ifdef DEBUG
643 	/*
644 	 * We do this right after we write the intro debug entry
645 	 * because the estimate does not take it into account.
646 	 */
647 	uint64_t initial_objsize = sm->sm_phys->smp_objsize;
648 	uint64_t estimated_growth =
649 	    space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
650 	uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
651 #endif
652 
653 	/*
654 	 * Find the offset right after the last word in the space map
655 	 * and use that to get a hold of the last block, so we can
656 	 * start appending to it.
657 	 */
658 	uint64_t next_word_offset = sm->sm_phys->smp_objsize;
659 	VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
660 	    next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
661 	ASSERT3U(db->db_size, ==, sm->sm_blksz);
662 
663 	dmu_buf_will_dirty(db, tx);
664 
665 	avl_tree_t *t = &rt->rt_root;
666 	for (range_seg_t *rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
667 		uint64_t offset = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
668 		uint64_t length = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
669 		uint8_t words = 1;
670 
671 		/*
672 		 * We only write two-word entries when both of the following
673 		 * are true:
674 		 *
675 		 * [1] The feature is enabled.
676 		 * [2] The offset or run is too big for a single-word entry,
677 		 * 	or the vdev_id is set (meaning not equal to
678 		 * 	SM_NO_VDEVID).
679 		 *
680 		 * Note that for purposes of testing we've added the case that
681 		 * we write two-word entries occasionally when the feature is
682 		 * enabled and zfs_force_some_double_word_sm_entries has been
683 		 * set.
684 		 */
685 		if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
686 		    (offset >= (1ULL << SM_OFFSET_BITS) ||
687 		    length > SM_RUN_MAX ||
688 		    vdev_id != SM_NO_VDEVID ||
689 		    (zfs_force_some_double_word_sm_entries &&
690 		    spa_get_random(100) == 0)))
691 			words = 2;
692 
693 		space_map_write_seg(sm, rs, maptype, vdev_id, words,
694 		    &db, FTAG, tx);
695 	}
696 
697 	dmu_buf_rele(db, FTAG);
698 
699 #ifdef DEBUG
700 	/*
701 	 * We expect our estimation to be based on the worst case
702 	 * scenario [see comment in space_map_estimate_optimal_size()].
703 	 * Therefore we expect the actual objsize to be equal or less
704 	 * than whatever we estimated it to be.
705 	 */
706 	ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_objsize);
707 #endif
708 }
709 
710 /*
711  * Note: This function manipulates the state of the given space map but
712  * does not hold any locks implicitly. Thus the caller is responsible
713  * for synchronizing writes to the space map.
714  */
715 void
716 space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
717     uint64_t vdev_id, dmu_tx_t *tx)
718 {
719 	objset_t *os = sm->sm_os;
720 
721 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
722 	VERIFY3U(space_map_object(sm), !=, 0);
723 
724 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
725 
726 	/*
727 	 * This field is no longer necessary since the in-core space map
728 	 * now contains the object number but is maintained for backwards
729 	 * compatibility.
730 	 */
731 	sm->sm_phys->smp_object = sm->sm_object;
732 
733 	if (range_tree_is_empty(rt)) {
734 		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
735 		return;
736 	}
737 
738 	if (maptype == SM_ALLOC)
739 		sm->sm_phys->smp_alloc += range_tree_space(rt);
740 	else
741 		sm->sm_phys->smp_alloc -= range_tree_space(rt);
742 
743 	uint64_t nodes = avl_numnodes(&rt->rt_root);
744 	uint64_t rt_space = range_tree_space(rt);
745 
746 	space_map_write_impl(sm, rt, maptype, vdev_id, tx);
747 
748 	/*
749 	 * Ensure that the space_map's accounting wasn't changed
750 	 * while we were in the middle of writing it out.
751 	 */
752 	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
753 	VERIFY3U(range_tree_space(rt), ==, rt_space);
754 }
755 
756 static int
757 space_map_open_impl(space_map_t *sm)
758 {
759 	int error;
760 	u_longlong_t blocks;
761 
762 	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
763 	if (error)
764 		return (error);
765 
766 	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
767 	sm->sm_phys = sm->sm_dbuf->db_data;
768 	return (0);
769 }
770 
771 int
772 space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
773     uint64_t start, uint64_t size, uint8_t shift)
774 {
775 	space_map_t *sm;
776 	int error;
777 
778 	ASSERT(*smp == NULL);
779 	ASSERT(os != NULL);
780 	ASSERT(object != 0);
781 
782 	sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
783 
784 	sm->sm_start = start;
785 	sm->sm_size = size;
786 	sm->sm_shift = shift;
787 	sm->sm_os = os;
788 	sm->sm_object = object;
789 
790 	error = space_map_open_impl(sm);
791 	if (error != 0) {
792 		space_map_close(sm);
793 		return (error);
794 	}
795 	*smp = sm;
796 
797 	return (0);
798 }
799 
800 void
801 space_map_close(space_map_t *sm)
802 {
803 	if (sm == NULL)
804 		return;
805 
806 	if (sm->sm_dbuf != NULL)
807 		dmu_buf_rele(sm->sm_dbuf, sm);
808 	sm->sm_dbuf = NULL;
809 	sm->sm_phys = NULL;
810 
811 	kmem_free(sm, sizeof (*sm));
812 }
813 
814 void
815 space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
816 {
817 	objset_t *os = sm->sm_os;
818 	spa_t *spa = dmu_objset_spa(os);
819 	dmu_object_info_t doi;
820 
821 	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
822 	ASSERT(dmu_tx_is_syncing(tx));
823 	VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
824 
825 	dmu_object_info_from_db(sm->sm_dbuf, &doi);
826 
827 	/*
828 	 * If the space map has the wrong bonus size (because
829 	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
830 	 * the wrong block size (because space_map_blksz has changed),
831 	 * free and re-allocate its object with the updated sizes.
832 	 *
833 	 * Otherwise, just truncate the current object.
834 	 */
835 	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
836 	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
837 	    doi.doi_data_block_size != blocksize) {
838 		zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
839 		    "object[%llu]: old bonus %u, old blocksz %u",
840 		    dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
841 		    doi.doi_bonus_size, doi.doi_data_block_size);
842 
843 		space_map_free(sm, tx);
844 		dmu_buf_rele(sm->sm_dbuf, sm);
845 
846 		sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
847 		VERIFY0(space_map_open_impl(sm));
848 	} else {
849 		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
850 
851 		/*
852 		 * If the spacemap is reallocated, its histogram
853 		 * will be reset.  Do the same in the common case so that
854 		 * bugs related to the uncommon case do not go unnoticed.
855 		 */
856 		bzero(sm->sm_phys->smp_histogram,
857 		    sizeof (sm->sm_phys->smp_histogram));
858 	}
859 
860 	dmu_buf_will_dirty(sm->sm_dbuf, tx);
861 	sm->sm_phys->smp_objsize = 0;
862 	sm->sm_phys->smp_alloc = 0;
863 }
864 
865 /*
866  * Update the in-core space_map allocation and length values.
867  */
868 void
869 space_map_update(space_map_t *sm)
870 {
871 	if (sm == NULL)
872 		return;
873 
874 	sm->sm_alloc = sm->sm_phys->smp_alloc;
875 	sm->sm_length = sm->sm_phys->smp_objsize;
876 }
877 
878 uint64_t
879 space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
880 {
881 	spa_t *spa = dmu_objset_spa(os);
882 	uint64_t object;
883 	int bonuslen;
884 
885 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
886 		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
887 		bonuslen = sizeof (space_map_phys_t);
888 		ASSERT3U(bonuslen, <=, dmu_bonus_max());
889 	} else {
890 		bonuslen = SPACE_MAP_SIZE_V0;
891 	}
892 
893 	object = dmu_object_alloc(os, DMU_OT_SPACE_MAP, blocksize,
894 	    DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
895 
896 	return (object);
897 }
898 
899 void
900 space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
901 {
902 	spa_t *spa = dmu_objset_spa(os);
903 	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
904 		dmu_object_info_t doi;
905 
906 		VERIFY0(dmu_object_info(os, smobj, &doi));
907 		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
908 			spa_feature_decr(spa,
909 			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
910 		}
911 	}
912 
913 	VERIFY0(dmu_object_free(os, smobj, tx));
914 }
915 
916 void
917 space_map_free(space_map_t *sm, dmu_tx_t *tx)
918 {
919 	if (sm == NULL)
920 		return;
921 
922 	space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
923 	sm->sm_object = 0;
924 }
925 
926 /*
927  * Given a range tree, it makes a worst-case estimate of how much
928  * space would the tree's segments take if they were written to
929  * the given space map.
930  */
931 uint64_t
932 space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
933     uint64_t vdev_id)
934 {
935 	spa_t *spa = dmu_objset_spa(sm->sm_os);
936 	uint64_t shift = sm->sm_shift;
937 	uint64_t *histogram = rt->rt_histogram;
938 	uint64_t entries_for_seg = 0;
939 
940 	/*
941 	 * In order to get a quick estimate of the optimal size that this
942 	 * range tree would have on-disk as a space map, we iterate through
943 	 * its histogram buckets instead of iterating through its nodes.
944 	 *
945 	 * Note that this is a highest-bound/worst-case estimate for the
946 	 * following reasons:
947 	 *
948 	 * 1] We assume that we always add a debug padding for each block
949 	 *    we write and we also assume that we start at the last word
950 	 *    of a block attempting to write a two-word entry.
951 	 * 2] Rounding up errors due to the way segments are distributed
952 	 *    in the buckets of the range tree's histogram.
953 	 * 3] The activation of zfs_force_some_double_word_sm_entries
954 	 *    (tunable) when testing.
955 	 *
956 	 * = Math and Rounding Errors =
957 	 *
958 	 * rt_histogram[i] bucket of a range tree represents the number
959 	 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
960 	 * that, we want to divide the buckets into groups: Buckets that
961 	 * can be represented using a single-word entry, ones that can
962 	 * be represented with a double-word entry, and ones that can
963 	 * only be represented with multiple two-word entries.
964 	 *
965 	 * [Note that if the new encoding feature is not enabled there
966 	 * are only two groups: single-word entry buckets and multiple
967 	 * single-word entry buckets. The information below assumes
968 	 * two-word entries enabled, but it can easily applied when
969 	 * the feature is not enabled]
970 	 *
971 	 * To find the highest bucket that can be represented with a
972 	 * single-word entry we look at the maximum run that such entry
973 	 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
974 	 * the run of a space map entry is shifted by sm_shift, thus we
975 	 * add it to the exponent]. This way, excluding the value of the
976 	 * maximum run that can be represented by a single-word entry,
977 	 * all runs that are smaller exist in buckets 0 to
978 	 * SM_RUN_BITS + shift - 1.
979 	 *
980 	 * To find the highest bucket that can be represented with a
981 	 * double-word entry, we follow the same approach. Finally, any
982 	 * bucket higher than that are represented with multiple two-word
983 	 * entries. To be more specific, if the highest bucket whose
984 	 * segments can be represented with a single two-word entry is X,
985 	 * then bucket X+1 will need 2 two-word entries for each of its
986 	 * segments, X+2 will need 4, X+3 will need 8, ...etc.
987 	 *
988 	 * With all of the above we make our estimation based on bucket
989 	 * groups. There is a rounding error though. As we mentioned in
990 	 * the example with the one-word entry, the maximum run that can
991 	 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
992 	 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
993 	 * that length fall into the next bucket (and bucket group) where
994 	 * we start counting two-word entries and this is one more reason
995 	 * why the estimated size may end up being bigger than the actual
996 	 * size written.
997 	 */
998 	uint64_t size = 0;
999 	uint64_t idx = 0;
1000 
1001 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1002 	    (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1003 
1004 		/*
1005 		 * If we are trying to force some double word entries just
1006 		 * assume the worst-case of every single word entry being
1007 		 * written as a double word entry.
1008 		 */
1009 		uint64_t entry_size =
1010 		    (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1011 		    zfs_force_some_double_word_sm_entries) ?
1012 		    (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1013 
1014 		uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1015 		for (; idx <= single_entry_max_bucket; idx++)
1016 			size += histogram[idx] * entry_size;
1017 
1018 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1019 			for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1020 				ASSERT3U(idx, >=, single_entry_max_bucket);
1021 				entries_for_seg =
1022 				    1ULL << (idx - single_entry_max_bucket);
1023 				size += histogram[idx] *
1024 				    entries_for_seg * entry_size;
1025 			}
1026 			return (size);
1027 		}
1028 	}
1029 
1030 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1031 
1032 	uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1033 	for (; idx <= double_entry_max_bucket; idx++)
1034 		size += histogram[idx] * 2 * sizeof (uint64_t);
1035 
1036 	for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1037 		ASSERT3U(idx, >=, double_entry_max_bucket);
1038 		entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1039 		size += histogram[idx] *
1040 		    entries_for_seg * 2 * sizeof (uint64_t);
1041 	}
1042 
1043 	/*
1044 	 * Assume the worst case where we start with the padding at the end
1045 	 * of the current block and we add an extra padding entry at the end
1046 	 * of all subsequent blocks.
1047 	 */
1048 	size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1049 
1050 	return (size);
1051 }
1052 
1053 uint64_t
1054 space_map_object(space_map_t *sm)
1055 {
1056 	return (sm != NULL ? sm->sm_object : 0);
1057 }
1058 
1059 /*
1060  * Returns the already synced, on-disk allocated space.
1061  */
1062 uint64_t
1063 space_map_allocated(space_map_t *sm)
1064 {
1065 	return (sm != NULL ? sm->sm_alloc : 0);
1066 }
1067 
1068 /*
1069  * Returns the already synced, on-disk length;
1070  */
1071 uint64_t
1072 space_map_length(space_map_t *sm)
1073 {
1074 	return (sm != NULL ? sm->sm_length : 0);
1075 }
1076 
1077 /*
1078  * Returns the allocated space that is currently syncing.
1079  */
1080 int64_t
1081 space_map_alloc_delta(space_map_t *sm)
1082 {
1083 	if (sm == NULL)
1084 		return (0);
1085 	ASSERT(sm->sm_dbuf != NULL);
1086 	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
1087 }
1088