spa_misc.c revision f9af39bacaaa0f9dda3b75ff6858b9f3988a39af
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25#include <sys/zfs_context.h>
26#include <sys/spa_impl.h>
27#include <sys/zio.h>
28#include <sys/zio_checksum.h>
29#include <sys/zio_compress.h>
30#include <sys/dmu.h>
31#include <sys/dmu_tx.h>
32#include <sys/zap.h>
33#include <sys/zil.h>
34#include <sys/vdev_impl.h>
35#include <sys/metaslab.h>
36#include <sys/uberblock_impl.h>
37#include <sys/txg.h>
38#include <sys/avl.h>
39#include <sys/unique.h>
40#include <sys/dsl_pool.h>
41#include <sys/dsl_dir.h>
42#include <sys/dsl_prop.h>
43#include <sys/dsl_scan.h>
44#include <sys/fs/zfs.h>
45#include <sys/metaslab_impl.h>
46#include <sys/arc.h>
47#include <sys/ddt.h>
48#include "zfs_prop.h"
49
50/*
51 * SPA locking
52 *
53 * There are four basic locks for managing spa_t structures:
54 *
55 * spa_namespace_lock (global mutex)
56 *
57 *	This lock must be acquired to do any of the following:
58 *
59 *		- Lookup a spa_t by name
60 *		- Add or remove a spa_t from the namespace
61 *		- Increase spa_refcount from non-zero
62 *		- Check if spa_refcount is zero
63 *		- Rename a spa_t
64 *		- add/remove/attach/detach devices
65 *		- Held for the duration of create/destroy/import/export
66 *
67 *	It does not need to handle recursion.  A create or destroy may
68 *	reference objects (files or zvols) in other pools, but by
69 *	definition they must have an existing reference, and will never need
70 *	to lookup a spa_t by name.
71 *
72 * spa_refcount (per-spa refcount_t protected by mutex)
73 *
74 *	This reference count keep track of any active users of the spa_t.  The
75 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76 *	the refcount is never really 'zero' - opening a pool implicitly keeps
77 *	some references in the DMU.  Internally we check against spa_minref, but
78 *	present the image of a zero/non-zero value to consumers.
79 *
80 * spa_config_lock[] (per-spa array of rwlocks)
81 *
82 *	This protects the spa_t from config changes, and must be held in
83 *	the following circumstances:
84 *
85 *		- RW_READER to perform I/O to the spa
86 *		- RW_WRITER to change the vdev config
87 *
88 * The locking order is fairly straightforward:
89 *
90 *		spa_namespace_lock	->	spa_refcount
91 *
92 *	The namespace lock must be acquired to increase the refcount from 0
93 *	or to check if it is zero.
94 *
95 *		spa_refcount		->	spa_config_lock[]
96 *
97 *	There must be at least one valid reference on the spa_t to acquire
98 *	the config lock.
99 *
100 *		spa_namespace_lock	->	spa_config_lock[]
101 *
102 *	The namespace lock must always be taken before the config lock.
103 *
104 *
105 * The spa_namespace_lock can be acquired directly and is globally visible.
106 *
107 * The namespace is manipulated using the following functions, all of which
108 * require the spa_namespace_lock to be held.
109 *
110 *	spa_lookup()		Lookup a spa_t by name.
111 *
112 *	spa_add()		Create a new spa_t in the namespace.
113 *
114 *	spa_remove()		Remove a spa_t from the namespace.  This also
115 *				frees up any memory associated with the spa_t.
116 *
117 *	spa_next()		Returns the next spa_t in the system, or the
118 *				first if NULL is passed.
119 *
120 *	spa_evict_all()		Shutdown and remove all spa_t structures in
121 *				the system.
122 *
123 *	spa_guid_exists()	Determine whether a pool/device guid exists.
124 *
125 * The spa_refcount is manipulated using the following functions:
126 *
127 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128 *				called with spa_namespace_lock held if the
129 *				refcount is currently zero.
130 *
131 *	spa_close()		Remove a reference from the spa_t.  This will
132 *				not free the spa_t or remove it from the
133 *				namespace.  No locking is required.
134 *
135 *	spa_refcount_zero()	Returns true if the refcount is currently
136 *				zero.  Must be called with spa_namespace_lock
137 *				held.
138 *
139 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142 *
143 * To read the configuration, it suffices to hold one of these locks as reader.
144 * To modify the configuration, you must hold all locks as writer.  To modify
145 * vdev state without altering the vdev tree's topology (e.g. online/offline),
146 * you must hold SCL_STATE and SCL_ZIO as writer.
147 *
148 * We use these distinct config locks to avoid recursive lock entry.
149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150 * block allocations (SCL_ALLOC), which may require reading space maps
151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152 *
153 * The spa config locks cannot be normal rwlocks because we need the
154 * ability to hand off ownership.  For example, SCL_ZIO is acquired
155 * by the issuing thread and later released by an interrupt thread.
156 * They do, however, obey the usual write-wanted semantics to prevent
157 * writer (i.e. system administrator) starvation.
158 *
159 * The lock acquisition rules are as follows:
160 *
161 * SCL_CONFIG
162 *	Protects changes to the vdev tree topology, such as vdev
163 *	add/remove/attach/detach.  Protects the dirty config list
164 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165 *
166 * SCL_STATE
167 *	Protects changes to pool state and vdev state, such as vdev
168 *	online/offline/fault/degrade/clear.  Protects the dirty state list
169 *	(spa_state_dirty_list) and global pool state (spa_state).
170 *
171 * SCL_ALLOC
172 *	Protects changes to metaslab groups and classes.
173 *	Held as reader by metaslab_alloc() and metaslab_claim().
174 *
175 * SCL_ZIO
176 *	Held by bp-level zios (those which have no io_vd upon entry)
177 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179 *
180 * SCL_FREE
181 *	Protects changes to metaslab groups and classes.
182 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184 *	blocks in zio_done() while another i/o that holds either
185 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186 *
187 * SCL_VDEV
188 *	Held as reader to prevent changes to the vdev tree during trivial
189 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
190 *	other locks, and lower than all of them, to ensure that it's safe
191 *	to acquire regardless of caller context.
192 *
193 * In addition, the following rules apply:
194 *
195 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196 *	The lock ordering is SCL_CONFIG > spa_props_lock.
197 *
198 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200 *	or zio_write_phys() -- the caller must ensure that the config cannot
201 *	cannot change in the interim, and that the vdev cannot be reopened.
202 *	SCL_STATE as reader suffices for both.
203 *
204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205 *
206 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207 *				for writing.
208 *
209 *	spa_vdev_exit()		Release the config lock, wait for all I/O
210 *				to complete, sync the updated configs to the
211 *				cache, and release the namespace lock.
212 *
213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216 *
217 * spa_rename() is also implemented within this file since is requires
218 * manipulation of the namespace.
219 */
220
221static avl_tree_t spa_namespace_avl;
222kmutex_t spa_namespace_lock;
223static kcondvar_t spa_namespace_cv;
224static int spa_active_count;
225int spa_max_replication_override = SPA_DVAS_PER_BP;
226
227static kmutex_t spa_spare_lock;
228static avl_tree_t spa_spare_avl;
229static kmutex_t spa_l2cache_lock;
230static avl_tree_t spa_l2cache_avl;
231
232kmem_cache_t *spa_buffer_pool;
233int spa_mode_global;
234
235#ifdef ZFS_DEBUG
236/* Everything except dprintf is on by default in debug builds */
237int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238#else
239int zfs_flags = 0;
240#endif
241
242/*
243 * zfs_recover can be set to nonzero to attempt to recover from
244 * otherwise-fatal errors, typically caused by on-disk corruption.  When
245 * set, calls to zfs_panic_recover() will turn into warning messages.
246 */
247int zfs_recover = 0;
248
249
250/*
251 * ==========================================================================
252 * SPA config locking
253 * ==========================================================================
254 */
255static void
256spa_config_lock_init(spa_t *spa)
257{
258	for (int i = 0; i < SCL_LOCKS; i++) {
259		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262		refcount_create(&scl->scl_count);
263		scl->scl_writer = NULL;
264		scl->scl_write_wanted = 0;
265	}
266}
267
268static void
269spa_config_lock_destroy(spa_t *spa)
270{
271	for (int i = 0; i < SCL_LOCKS; i++) {
272		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273		mutex_destroy(&scl->scl_lock);
274		cv_destroy(&scl->scl_cv);
275		refcount_destroy(&scl->scl_count);
276		ASSERT(scl->scl_writer == NULL);
277		ASSERT(scl->scl_write_wanted == 0);
278	}
279}
280
281int
282spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283{
284	for (int i = 0; i < SCL_LOCKS; i++) {
285		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286		if (!(locks & (1 << i)))
287			continue;
288		mutex_enter(&scl->scl_lock);
289		if (rw == RW_READER) {
290			if (scl->scl_writer || scl->scl_write_wanted) {
291				mutex_exit(&scl->scl_lock);
292				spa_config_exit(spa, locks ^ (1 << i), tag);
293				return (0);
294			}
295		} else {
296			ASSERT(scl->scl_writer != curthread);
297			if (!refcount_is_zero(&scl->scl_count)) {
298				mutex_exit(&scl->scl_lock);
299				spa_config_exit(spa, locks ^ (1 << i), tag);
300				return (0);
301			}
302			scl->scl_writer = curthread;
303		}
304		(void) refcount_add(&scl->scl_count, tag);
305		mutex_exit(&scl->scl_lock);
306	}
307	return (1);
308}
309
310void
311spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312{
313	int wlocks_held = 0;
314
315	for (int i = 0; i < SCL_LOCKS; i++) {
316		spa_config_lock_t *scl = &spa->spa_config_lock[i];
317		if (scl->scl_writer == curthread)
318			wlocks_held |= (1 << i);
319		if (!(locks & (1 << i)))
320			continue;
321		mutex_enter(&scl->scl_lock);
322		if (rw == RW_READER) {
323			while (scl->scl_writer || scl->scl_write_wanted) {
324				cv_wait(&scl->scl_cv, &scl->scl_lock);
325			}
326		} else {
327			ASSERT(scl->scl_writer != curthread);
328			while (!refcount_is_zero(&scl->scl_count)) {
329				scl->scl_write_wanted++;
330				cv_wait(&scl->scl_cv, &scl->scl_lock);
331				scl->scl_write_wanted--;
332			}
333			scl->scl_writer = curthread;
334		}
335		(void) refcount_add(&scl->scl_count, tag);
336		mutex_exit(&scl->scl_lock);
337	}
338	ASSERT(wlocks_held <= locks);
339}
340
341void
342spa_config_exit(spa_t *spa, int locks, void *tag)
343{
344	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345		spa_config_lock_t *scl = &spa->spa_config_lock[i];
346		if (!(locks & (1 << i)))
347			continue;
348		mutex_enter(&scl->scl_lock);
349		ASSERT(!refcount_is_zero(&scl->scl_count));
350		if (refcount_remove(&scl->scl_count, tag) == 0) {
351			ASSERT(scl->scl_writer == NULL ||
352			    scl->scl_writer == curthread);
353			scl->scl_writer = NULL;	/* OK in either case */
354			cv_broadcast(&scl->scl_cv);
355		}
356		mutex_exit(&scl->scl_lock);
357	}
358}
359
360int
361spa_config_held(spa_t *spa, int locks, krw_t rw)
362{
363	int locks_held = 0;
364
365	for (int i = 0; i < SCL_LOCKS; i++) {
366		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367		if (!(locks & (1 << i)))
368			continue;
369		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370		    (rw == RW_WRITER && scl->scl_writer == curthread))
371			locks_held |= 1 << i;
372	}
373
374	return (locks_held);
375}
376
377/*
378 * ==========================================================================
379 * SPA namespace functions
380 * ==========================================================================
381 */
382
383/*
384 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
385 * Returns NULL if no matching spa_t is found.
386 */
387spa_t *
388spa_lookup(const char *name)
389{
390	static spa_t search;	/* spa_t is large; don't allocate on stack */
391	spa_t *spa;
392	avl_index_t where;
393	char c;
394	char *cp;
395
396	ASSERT(MUTEX_HELD(&spa_namespace_lock));
397
398	/*
399	 * If it's a full dataset name, figure out the pool name and
400	 * just use that.
401	 */
402	cp = strpbrk(name, "/@");
403	if (cp) {
404		c = *cp;
405		*cp = '\0';
406	}
407
408	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409	spa = avl_find(&spa_namespace_avl, &search, &where);
410
411	if (cp)
412		*cp = c;
413
414	return (spa);
415}
416
417/*
418 * Create an uninitialized spa_t with the given name.  Requires
419 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
420 * exist by calling spa_lookup() first.
421 */
422spa_t *
423spa_add(const char *name, nvlist_t *config, const char *altroot)
424{
425	spa_t *spa;
426	spa_config_dirent_t *dp;
427
428	ASSERT(MUTEX_HELD(&spa_namespace_lock));
429
430	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431
432	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
434	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
436	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
437	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
438	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
439	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
440	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
441
442	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
443	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
444	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
445	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
446
447	for (int t = 0; t < TXG_SIZE; t++)
448		bplist_create(&spa->spa_free_bplist[t]);
449
450	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
451	spa->spa_state = POOL_STATE_UNINITIALIZED;
452	spa->spa_freeze_txg = UINT64_MAX;
453	spa->spa_final_txg = UINT64_MAX;
454	spa->spa_load_max_txg = UINT64_MAX;
455	spa->spa_proc = &p0;
456	spa->spa_proc_state = SPA_PROC_NONE;
457
458	refcount_create(&spa->spa_refcount);
459	spa_config_lock_init(spa);
460
461	avl_add(&spa_namespace_avl, spa);
462
463	/*
464	 * Set the alternate root, if there is one.
465	 */
466	if (altroot) {
467		spa->spa_root = spa_strdup(altroot);
468		spa_active_count++;
469	}
470
471	/*
472	 * Every pool starts with the default cachefile
473	 */
474	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
475	    offsetof(spa_config_dirent_t, scd_link));
476
477	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
478	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
479	list_insert_head(&spa->spa_config_list, dp);
480
481	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
482	    KM_SLEEP) == 0);
483
484	if (config != NULL)
485		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
486
487	return (spa);
488}
489
490/*
491 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
492 * spa_namespace_lock.  This is called only after the spa_t has been closed and
493 * deactivated.
494 */
495void
496spa_remove(spa_t *spa)
497{
498	spa_config_dirent_t *dp;
499
500	ASSERT(MUTEX_HELD(&spa_namespace_lock));
501	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
502
503	nvlist_free(spa->spa_config_splitting);
504
505	avl_remove(&spa_namespace_avl, spa);
506	cv_broadcast(&spa_namespace_cv);
507
508	if (spa->spa_root) {
509		spa_strfree(spa->spa_root);
510		spa_active_count--;
511	}
512
513	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
514		list_remove(&spa->spa_config_list, dp);
515		if (dp->scd_path != NULL)
516			spa_strfree(dp->scd_path);
517		kmem_free(dp, sizeof (spa_config_dirent_t));
518	}
519
520	list_destroy(&spa->spa_config_list);
521
522	nvlist_free(spa->spa_load_info);
523	spa_config_set(spa, NULL);
524
525	refcount_destroy(&spa->spa_refcount);
526
527	spa_config_lock_destroy(spa);
528
529	for (int t = 0; t < TXG_SIZE; t++)
530		bplist_destroy(&spa->spa_free_bplist[t]);
531
532	cv_destroy(&spa->spa_async_cv);
533	cv_destroy(&spa->spa_proc_cv);
534	cv_destroy(&spa->spa_scrub_io_cv);
535	cv_destroy(&spa->spa_suspend_cv);
536
537	mutex_destroy(&spa->spa_async_lock);
538	mutex_destroy(&spa->spa_errlist_lock);
539	mutex_destroy(&spa->spa_errlog_lock);
540	mutex_destroy(&spa->spa_history_lock);
541	mutex_destroy(&spa->spa_proc_lock);
542	mutex_destroy(&spa->spa_props_lock);
543	mutex_destroy(&spa->spa_scrub_lock);
544	mutex_destroy(&spa->spa_suspend_lock);
545	mutex_destroy(&spa->spa_vdev_top_lock);
546
547	kmem_free(spa, sizeof (spa_t));
548}
549
550/*
551 * Given a pool, return the next pool in the namespace, or NULL if there is
552 * none.  If 'prev' is NULL, return the first pool.
553 */
554spa_t *
555spa_next(spa_t *prev)
556{
557	ASSERT(MUTEX_HELD(&spa_namespace_lock));
558
559	if (prev)
560		return (AVL_NEXT(&spa_namespace_avl, prev));
561	else
562		return (avl_first(&spa_namespace_avl));
563}
564
565/*
566 * ==========================================================================
567 * SPA refcount functions
568 * ==========================================================================
569 */
570
571/*
572 * Add a reference to the given spa_t.  Must have at least one reference, or
573 * have the namespace lock held.
574 */
575void
576spa_open_ref(spa_t *spa, void *tag)
577{
578	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
579	    MUTEX_HELD(&spa_namespace_lock));
580	(void) refcount_add(&spa->spa_refcount, tag);
581}
582
583/*
584 * Remove a reference to the given spa_t.  Must have at least one reference, or
585 * have the namespace lock held.
586 */
587void
588spa_close(spa_t *spa, void *tag)
589{
590	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
591	    MUTEX_HELD(&spa_namespace_lock));
592	(void) refcount_remove(&spa->spa_refcount, tag);
593}
594
595/*
596 * Check to see if the spa refcount is zero.  Must be called with
597 * spa_namespace_lock held.  We really compare against spa_minref, which is the
598 * number of references acquired when opening a pool
599 */
600boolean_t
601spa_refcount_zero(spa_t *spa)
602{
603	ASSERT(MUTEX_HELD(&spa_namespace_lock));
604
605	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
606}
607
608/*
609 * ==========================================================================
610 * SPA spare and l2cache tracking
611 * ==========================================================================
612 */
613
614/*
615 * Hot spares and cache devices are tracked using the same code below,
616 * for 'auxiliary' devices.
617 */
618
619typedef struct spa_aux {
620	uint64_t	aux_guid;
621	uint64_t	aux_pool;
622	avl_node_t	aux_avl;
623	int		aux_count;
624} spa_aux_t;
625
626static int
627spa_aux_compare(const void *a, const void *b)
628{
629	const spa_aux_t *sa = a;
630	const spa_aux_t *sb = b;
631
632	if (sa->aux_guid < sb->aux_guid)
633		return (-1);
634	else if (sa->aux_guid > sb->aux_guid)
635		return (1);
636	else
637		return (0);
638}
639
640void
641spa_aux_add(vdev_t *vd, avl_tree_t *avl)
642{
643	avl_index_t where;
644	spa_aux_t search;
645	spa_aux_t *aux;
646
647	search.aux_guid = vd->vdev_guid;
648	if ((aux = avl_find(avl, &search, &where)) != NULL) {
649		aux->aux_count++;
650	} else {
651		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
652		aux->aux_guid = vd->vdev_guid;
653		aux->aux_count = 1;
654		avl_insert(avl, aux, where);
655	}
656}
657
658void
659spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
660{
661	spa_aux_t search;
662	spa_aux_t *aux;
663	avl_index_t where;
664
665	search.aux_guid = vd->vdev_guid;
666	aux = avl_find(avl, &search, &where);
667
668	ASSERT(aux != NULL);
669
670	if (--aux->aux_count == 0) {
671		avl_remove(avl, aux);
672		kmem_free(aux, sizeof (spa_aux_t));
673	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
674		aux->aux_pool = 0ULL;
675	}
676}
677
678boolean_t
679spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
680{
681	spa_aux_t search, *found;
682
683	search.aux_guid = guid;
684	found = avl_find(avl, &search, NULL);
685
686	if (pool) {
687		if (found)
688			*pool = found->aux_pool;
689		else
690			*pool = 0ULL;
691	}
692
693	if (refcnt) {
694		if (found)
695			*refcnt = found->aux_count;
696		else
697			*refcnt = 0;
698	}
699
700	return (found != NULL);
701}
702
703void
704spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
705{
706	spa_aux_t search, *found;
707	avl_index_t where;
708
709	search.aux_guid = vd->vdev_guid;
710	found = avl_find(avl, &search, &where);
711	ASSERT(found != NULL);
712	ASSERT(found->aux_pool == 0ULL);
713
714	found->aux_pool = spa_guid(vd->vdev_spa);
715}
716
717/*
718 * Spares are tracked globally due to the following constraints:
719 *
720 * 	- A spare may be part of multiple pools.
721 * 	- A spare may be added to a pool even if it's actively in use within
722 *	  another pool.
723 * 	- A spare in use in any pool can only be the source of a replacement if
724 *	  the target is a spare in the same pool.
725 *
726 * We keep track of all spares on the system through the use of a reference
727 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
728 * spare, then we bump the reference count in the AVL tree.  In addition, we set
729 * the 'vdev_isspare' member to indicate that the device is a spare (active or
730 * inactive).  When a spare is made active (used to replace a device in the
731 * pool), we also keep track of which pool its been made a part of.
732 *
733 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
734 * called under the spa_namespace lock as part of vdev reconfiguration.  The
735 * separate spare lock exists for the status query path, which does not need to
736 * be completely consistent with respect to other vdev configuration changes.
737 */
738
739static int
740spa_spare_compare(const void *a, const void *b)
741{
742	return (spa_aux_compare(a, b));
743}
744
745void
746spa_spare_add(vdev_t *vd)
747{
748	mutex_enter(&spa_spare_lock);
749	ASSERT(!vd->vdev_isspare);
750	spa_aux_add(vd, &spa_spare_avl);
751	vd->vdev_isspare = B_TRUE;
752	mutex_exit(&spa_spare_lock);
753}
754
755void
756spa_spare_remove(vdev_t *vd)
757{
758	mutex_enter(&spa_spare_lock);
759	ASSERT(vd->vdev_isspare);
760	spa_aux_remove(vd, &spa_spare_avl);
761	vd->vdev_isspare = B_FALSE;
762	mutex_exit(&spa_spare_lock);
763}
764
765boolean_t
766spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
767{
768	boolean_t found;
769
770	mutex_enter(&spa_spare_lock);
771	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
772	mutex_exit(&spa_spare_lock);
773
774	return (found);
775}
776
777void
778spa_spare_activate(vdev_t *vd)
779{
780	mutex_enter(&spa_spare_lock);
781	ASSERT(vd->vdev_isspare);
782	spa_aux_activate(vd, &spa_spare_avl);
783	mutex_exit(&spa_spare_lock);
784}
785
786/*
787 * Level 2 ARC devices are tracked globally for the same reasons as spares.
788 * Cache devices currently only support one pool per cache device, and so
789 * for these devices the aux reference count is currently unused beyond 1.
790 */
791
792static int
793spa_l2cache_compare(const void *a, const void *b)
794{
795	return (spa_aux_compare(a, b));
796}
797
798void
799spa_l2cache_add(vdev_t *vd)
800{
801	mutex_enter(&spa_l2cache_lock);
802	ASSERT(!vd->vdev_isl2cache);
803	spa_aux_add(vd, &spa_l2cache_avl);
804	vd->vdev_isl2cache = B_TRUE;
805	mutex_exit(&spa_l2cache_lock);
806}
807
808void
809spa_l2cache_remove(vdev_t *vd)
810{
811	mutex_enter(&spa_l2cache_lock);
812	ASSERT(vd->vdev_isl2cache);
813	spa_aux_remove(vd, &spa_l2cache_avl);
814	vd->vdev_isl2cache = B_FALSE;
815	mutex_exit(&spa_l2cache_lock);
816}
817
818boolean_t
819spa_l2cache_exists(uint64_t guid, uint64_t *pool)
820{
821	boolean_t found;
822
823	mutex_enter(&spa_l2cache_lock);
824	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
825	mutex_exit(&spa_l2cache_lock);
826
827	return (found);
828}
829
830void
831spa_l2cache_activate(vdev_t *vd)
832{
833	mutex_enter(&spa_l2cache_lock);
834	ASSERT(vd->vdev_isl2cache);
835	spa_aux_activate(vd, &spa_l2cache_avl);
836	mutex_exit(&spa_l2cache_lock);
837}
838
839/*
840 * ==========================================================================
841 * SPA vdev locking
842 * ==========================================================================
843 */
844
845/*
846 * Lock the given spa_t for the purpose of adding or removing a vdev.
847 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
848 * It returns the next transaction group for the spa_t.
849 */
850uint64_t
851spa_vdev_enter(spa_t *spa)
852{
853	mutex_enter(&spa->spa_vdev_top_lock);
854	mutex_enter(&spa_namespace_lock);
855	return (spa_vdev_config_enter(spa));
856}
857
858/*
859 * Internal implementation for spa_vdev_enter().  Used when a vdev
860 * operation requires multiple syncs (i.e. removing a device) while
861 * keeping the spa_namespace_lock held.
862 */
863uint64_t
864spa_vdev_config_enter(spa_t *spa)
865{
866	ASSERT(MUTEX_HELD(&spa_namespace_lock));
867
868	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
869
870	return (spa_last_synced_txg(spa) + 1);
871}
872
873/*
874 * Used in combination with spa_vdev_config_enter() to allow the syncing
875 * of multiple transactions without releasing the spa_namespace_lock.
876 */
877void
878spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
879{
880	ASSERT(MUTEX_HELD(&spa_namespace_lock));
881
882	int config_changed = B_FALSE;
883
884	ASSERT(txg > spa_last_synced_txg(spa));
885
886	spa->spa_pending_vdev = NULL;
887
888	/*
889	 * Reassess the DTLs.
890	 */
891	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
892
893	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
894		config_changed = B_TRUE;
895		spa->spa_config_generation++;
896	}
897
898	/*
899	 * Verify the metaslab classes.
900	 */
901	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
902	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
903
904	spa_config_exit(spa, SCL_ALL, spa);
905
906	/*
907	 * Panic the system if the specified tag requires it.  This
908	 * is useful for ensuring that configurations are updated
909	 * transactionally.
910	 */
911	if (zio_injection_enabled)
912		zio_handle_panic_injection(spa, tag, 0);
913
914	/*
915	 * Note: this txg_wait_synced() is important because it ensures
916	 * that there won't be more than one config change per txg.
917	 * This allows us to use the txg as the generation number.
918	 */
919	if (error == 0)
920		txg_wait_synced(spa->spa_dsl_pool, txg);
921
922	if (vd != NULL) {
923		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
924		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
925		vdev_free(vd);
926		spa_config_exit(spa, SCL_ALL, spa);
927	}
928
929	/*
930	 * If the config changed, update the config cache.
931	 */
932	if (config_changed)
933		spa_config_sync(spa, B_FALSE, B_TRUE);
934}
935
936/*
937 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
938 * locking of spa_vdev_enter(), we also want make sure the transactions have
939 * synced to disk, and then update the global configuration cache with the new
940 * information.
941 */
942int
943spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
944{
945	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
946	mutex_exit(&spa_namespace_lock);
947	mutex_exit(&spa->spa_vdev_top_lock);
948
949	return (error);
950}
951
952/*
953 * Lock the given spa_t for the purpose of changing vdev state.
954 */
955void
956spa_vdev_state_enter(spa_t *spa, int oplocks)
957{
958	int locks = SCL_STATE_ALL | oplocks;
959
960	/*
961	 * Root pools may need to read of the underlying devfs filesystem
962	 * when opening up a vdev.  Unfortunately if we're holding the
963	 * SCL_ZIO lock it will result in a deadlock when we try to issue
964	 * the read from the root filesystem.  Instead we "prefetch"
965	 * the associated vnodes that we need prior to opening the
966	 * underlying devices and cache them so that we can prevent
967	 * any I/O when we are doing the actual open.
968	 */
969	if (spa_is_root(spa)) {
970		int low = locks & ~(SCL_ZIO - 1);
971		int high = locks & ~low;
972
973		spa_config_enter(spa, high, spa, RW_WRITER);
974		vdev_hold(spa->spa_root_vdev);
975		spa_config_enter(spa, low, spa, RW_WRITER);
976	} else {
977		spa_config_enter(spa, locks, spa, RW_WRITER);
978	}
979	spa->spa_vdev_locks = locks;
980}
981
982int
983spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
984{
985	boolean_t config_changed = B_FALSE;
986
987	if (vd != NULL || error == 0)
988		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
989		    0, 0, B_FALSE);
990
991	if (vd != NULL) {
992		vdev_state_dirty(vd->vdev_top);
993		config_changed = B_TRUE;
994		spa->spa_config_generation++;
995	}
996
997	if (spa_is_root(spa))
998		vdev_rele(spa->spa_root_vdev);
999
1000	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1001	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1002
1003	/*
1004	 * If anything changed, wait for it to sync.  This ensures that,
1005	 * from the system administrator's perspective, zpool(1M) commands
1006	 * are synchronous.  This is important for things like zpool offline:
1007	 * when the command completes, you expect no further I/O from ZFS.
1008	 */
1009	if (vd != NULL)
1010		txg_wait_synced(spa->spa_dsl_pool, 0);
1011
1012	/*
1013	 * If the config changed, update the config cache.
1014	 */
1015	if (config_changed) {
1016		mutex_enter(&spa_namespace_lock);
1017		spa_config_sync(spa, B_FALSE, B_TRUE);
1018		mutex_exit(&spa_namespace_lock);
1019	}
1020
1021	return (error);
1022}
1023
1024/*
1025 * ==========================================================================
1026 * Miscellaneous functions
1027 * ==========================================================================
1028 */
1029
1030/*
1031 * Rename a spa_t.
1032 */
1033int
1034spa_rename(const char *name, const char *newname)
1035{
1036	spa_t *spa;
1037	int err;
1038
1039	/*
1040	 * Lookup the spa_t and grab the config lock for writing.  We need to
1041	 * actually open the pool so that we can sync out the necessary labels.
1042	 * It's OK to call spa_open() with the namespace lock held because we
1043	 * allow recursive calls for other reasons.
1044	 */
1045	mutex_enter(&spa_namespace_lock);
1046	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1047		mutex_exit(&spa_namespace_lock);
1048		return (err);
1049	}
1050
1051	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1052
1053	avl_remove(&spa_namespace_avl, spa);
1054	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1055	avl_add(&spa_namespace_avl, spa);
1056
1057	/*
1058	 * Sync all labels to disk with the new names by marking the root vdev
1059	 * dirty and waiting for it to sync.  It will pick up the new pool name
1060	 * during the sync.
1061	 */
1062	vdev_config_dirty(spa->spa_root_vdev);
1063
1064	spa_config_exit(spa, SCL_ALL, FTAG);
1065
1066	txg_wait_synced(spa->spa_dsl_pool, 0);
1067
1068	/*
1069	 * Sync the updated config cache.
1070	 */
1071	spa_config_sync(spa, B_FALSE, B_TRUE);
1072
1073	spa_close(spa, FTAG);
1074
1075	mutex_exit(&spa_namespace_lock);
1076
1077	return (0);
1078}
1079
1080/*
1081 * Return the spa_t associated with given pool_guid, if it exists.  If
1082 * device_guid is non-zero, determine whether the pool exists *and* contains
1083 * a device with the specified device_guid.
1084 */
1085spa_t *
1086spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1087{
1088	spa_t *spa;
1089	avl_tree_t *t = &spa_namespace_avl;
1090
1091	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092
1093	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1094		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1095			continue;
1096		if (spa->spa_root_vdev == NULL)
1097			continue;
1098		if (spa_guid(spa) == pool_guid) {
1099			if (device_guid == 0)
1100				break;
1101
1102			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1103			    device_guid) != NULL)
1104				break;
1105
1106			/*
1107			 * Check any devices we may be in the process of adding.
1108			 */
1109			if (spa->spa_pending_vdev) {
1110				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1111				    device_guid) != NULL)
1112					break;
1113			}
1114		}
1115	}
1116
1117	return (spa);
1118}
1119
1120/*
1121 * Determine whether a pool with the given pool_guid exists.
1122 */
1123boolean_t
1124spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1125{
1126	return (spa_by_guid(pool_guid, device_guid) != NULL);
1127}
1128
1129char *
1130spa_strdup(const char *s)
1131{
1132	size_t len;
1133	char *new;
1134
1135	len = strlen(s);
1136	new = kmem_alloc(len + 1, KM_SLEEP);
1137	bcopy(s, new, len);
1138	new[len] = '\0';
1139
1140	return (new);
1141}
1142
1143void
1144spa_strfree(char *s)
1145{
1146	kmem_free(s, strlen(s) + 1);
1147}
1148
1149uint64_t
1150spa_get_random(uint64_t range)
1151{
1152	uint64_t r;
1153
1154	ASSERT(range != 0);
1155
1156	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1157
1158	return (r % range);
1159}
1160
1161uint64_t
1162spa_generate_guid(spa_t *spa)
1163{
1164	uint64_t guid = spa_get_random(-1ULL);
1165
1166	if (spa != NULL) {
1167		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1168			guid = spa_get_random(-1ULL);
1169	} else {
1170		while (guid == 0 || spa_guid_exists(guid, 0))
1171			guid = spa_get_random(-1ULL);
1172	}
1173
1174	return (guid);
1175}
1176
1177void
1178sprintf_blkptr(char *buf, const blkptr_t *bp)
1179{
1180	char *type = NULL;
1181	char *checksum = NULL;
1182	char *compress = NULL;
1183
1184	if (bp != NULL) {
1185		type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1186		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1187		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1188	}
1189
1190	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1191}
1192
1193void
1194spa_freeze(spa_t *spa)
1195{
1196	uint64_t freeze_txg = 0;
1197
1198	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1199	if (spa->spa_freeze_txg == UINT64_MAX) {
1200		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1201		spa->spa_freeze_txg = freeze_txg;
1202	}
1203	spa_config_exit(spa, SCL_ALL, FTAG);
1204	if (freeze_txg != 0)
1205		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1206}
1207
1208void
1209zfs_panic_recover(const char *fmt, ...)
1210{
1211	va_list adx;
1212
1213	va_start(adx, fmt);
1214	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1215	va_end(adx);
1216}
1217
1218/*
1219 * This is a stripped-down version of strtoull, suitable only for converting
1220 * lowercase hexidecimal numbers that don't overflow.
1221 */
1222uint64_t
1223strtonum(const char *str, char **nptr)
1224{
1225	uint64_t val = 0;
1226	char c;
1227	int digit;
1228
1229	while ((c = *str) != '\0') {
1230		if (c >= '0' && c <= '9')
1231			digit = c - '0';
1232		else if (c >= 'a' && c <= 'f')
1233			digit = 10 + c - 'a';
1234		else
1235			break;
1236
1237		val *= 16;
1238		val += digit;
1239
1240		str++;
1241	}
1242
1243	if (nptr)
1244		*nptr = (char *)str;
1245
1246	return (val);
1247}
1248
1249/*
1250 * ==========================================================================
1251 * Accessor functions
1252 * ==========================================================================
1253 */
1254
1255boolean_t
1256spa_shutting_down(spa_t *spa)
1257{
1258	return (spa->spa_async_suspended);
1259}
1260
1261dsl_pool_t *
1262spa_get_dsl(spa_t *spa)
1263{
1264	return (spa->spa_dsl_pool);
1265}
1266
1267blkptr_t *
1268spa_get_rootblkptr(spa_t *spa)
1269{
1270	return (&spa->spa_ubsync.ub_rootbp);
1271}
1272
1273void
1274spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1275{
1276	spa->spa_uberblock.ub_rootbp = *bp;
1277}
1278
1279void
1280spa_altroot(spa_t *spa, char *buf, size_t buflen)
1281{
1282	if (spa->spa_root == NULL)
1283		buf[0] = '\0';
1284	else
1285		(void) strncpy(buf, spa->spa_root, buflen);
1286}
1287
1288int
1289spa_sync_pass(spa_t *spa)
1290{
1291	return (spa->spa_sync_pass);
1292}
1293
1294char *
1295spa_name(spa_t *spa)
1296{
1297	return (spa->spa_name);
1298}
1299
1300uint64_t
1301spa_guid(spa_t *spa)
1302{
1303	/*
1304	 * If we fail to parse the config during spa_load(), we can go through
1305	 * the error path (which posts an ereport) and end up here with no root
1306	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1307	 * this case.
1308	 */
1309	if (spa->spa_root_vdev != NULL)
1310		return (spa->spa_root_vdev->vdev_guid);
1311	else
1312		return (spa->spa_load_guid);
1313}
1314
1315uint64_t
1316spa_last_synced_txg(spa_t *spa)
1317{
1318	return (spa->spa_ubsync.ub_txg);
1319}
1320
1321uint64_t
1322spa_first_txg(spa_t *spa)
1323{
1324	return (spa->spa_first_txg);
1325}
1326
1327uint64_t
1328spa_syncing_txg(spa_t *spa)
1329{
1330	return (spa->spa_syncing_txg);
1331}
1332
1333pool_state_t
1334spa_state(spa_t *spa)
1335{
1336	return (spa->spa_state);
1337}
1338
1339spa_load_state_t
1340spa_load_state(spa_t *spa)
1341{
1342	return (spa->spa_load_state);
1343}
1344
1345uint64_t
1346spa_freeze_txg(spa_t *spa)
1347{
1348	return (spa->spa_freeze_txg);
1349}
1350
1351/* ARGSUSED */
1352uint64_t
1353spa_get_asize(spa_t *spa, uint64_t lsize)
1354{
1355	/*
1356	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1357	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1358	 * times the size; so just assume that.  Add to this the fact that
1359	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1360	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1361	 */
1362	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1363}
1364
1365uint64_t
1366spa_get_dspace(spa_t *spa)
1367{
1368	return (spa->spa_dspace);
1369}
1370
1371void
1372spa_update_dspace(spa_t *spa)
1373{
1374	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1375	    ddt_get_dedup_dspace(spa);
1376}
1377
1378/*
1379 * Return the failure mode that has been set to this pool. The default
1380 * behavior will be to block all I/Os when a complete failure occurs.
1381 */
1382uint8_t
1383spa_get_failmode(spa_t *spa)
1384{
1385	return (spa->spa_failmode);
1386}
1387
1388boolean_t
1389spa_suspended(spa_t *spa)
1390{
1391	return (spa->spa_suspended);
1392}
1393
1394uint64_t
1395spa_version(spa_t *spa)
1396{
1397	return (spa->spa_ubsync.ub_version);
1398}
1399
1400boolean_t
1401spa_deflate(spa_t *spa)
1402{
1403	return (spa->spa_deflate);
1404}
1405
1406metaslab_class_t *
1407spa_normal_class(spa_t *spa)
1408{
1409	return (spa->spa_normal_class);
1410}
1411
1412metaslab_class_t *
1413spa_log_class(spa_t *spa)
1414{
1415	return (spa->spa_log_class);
1416}
1417
1418int
1419spa_max_replication(spa_t *spa)
1420{
1421	/*
1422	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1423	 * handle BPs with more than one DVA allocated.  Set our max
1424	 * replication level accordingly.
1425	 */
1426	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1427		return (1);
1428	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1429}
1430
1431int
1432spa_prev_software_version(spa_t *spa)
1433{
1434	return (spa->spa_prev_software_version);
1435}
1436
1437uint64_t
1438dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1439{
1440	uint64_t asize = DVA_GET_ASIZE(dva);
1441	uint64_t dsize = asize;
1442
1443	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1444
1445	if (asize != 0 && spa->spa_deflate) {
1446		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1447		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1448	}
1449
1450	return (dsize);
1451}
1452
1453uint64_t
1454bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1455{
1456	uint64_t dsize = 0;
1457
1458	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1459		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1460
1461	return (dsize);
1462}
1463
1464uint64_t
1465bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1466{
1467	uint64_t dsize = 0;
1468
1469	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1470
1471	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1472		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1473
1474	spa_config_exit(spa, SCL_VDEV, FTAG);
1475
1476	return (dsize);
1477}
1478
1479/*
1480 * ==========================================================================
1481 * Initialization and Termination
1482 * ==========================================================================
1483 */
1484
1485static int
1486spa_name_compare(const void *a1, const void *a2)
1487{
1488	const spa_t *s1 = a1;
1489	const spa_t *s2 = a2;
1490	int s;
1491
1492	s = strcmp(s1->spa_name, s2->spa_name);
1493	if (s > 0)
1494		return (1);
1495	if (s < 0)
1496		return (-1);
1497	return (0);
1498}
1499
1500int
1501spa_busy(void)
1502{
1503	return (spa_active_count);
1504}
1505
1506void
1507spa_boot_init()
1508{
1509	spa_config_load();
1510}
1511
1512void
1513spa_init(int mode)
1514{
1515	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1516	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1517	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1518	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1519
1520	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1521	    offsetof(spa_t, spa_avl));
1522
1523	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1524	    offsetof(spa_aux_t, aux_avl));
1525
1526	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1527	    offsetof(spa_aux_t, aux_avl));
1528
1529	spa_mode_global = mode;
1530
1531	refcount_init();
1532	unique_init();
1533	zio_init();
1534	dmu_init();
1535	zil_init();
1536	vdev_cache_stat_init();
1537	zfs_prop_init();
1538	zpool_prop_init();
1539	spa_config_load();
1540	l2arc_start();
1541}
1542
1543void
1544spa_fini(void)
1545{
1546	l2arc_stop();
1547
1548	spa_evict_all();
1549
1550	vdev_cache_stat_fini();
1551	zil_fini();
1552	dmu_fini();
1553	zio_fini();
1554	unique_fini();
1555	refcount_fini();
1556
1557	avl_destroy(&spa_namespace_avl);
1558	avl_destroy(&spa_spare_avl);
1559	avl_destroy(&spa_l2cache_avl);
1560
1561	cv_destroy(&spa_namespace_cv);
1562	mutex_destroy(&spa_namespace_lock);
1563	mutex_destroy(&spa_spare_lock);
1564	mutex_destroy(&spa_l2cache_lock);
1565}
1566
1567/*
1568 * Return whether this pool has slogs. No locking needed.
1569 * It's not a problem if the wrong answer is returned as it's only for
1570 * performance and not correctness
1571 */
1572boolean_t
1573spa_has_slogs(spa_t *spa)
1574{
1575	return (spa->spa_log_class->mc_rotor != NULL);
1576}
1577
1578spa_log_state_t
1579spa_get_log_state(spa_t *spa)
1580{
1581	return (spa->spa_log_state);
1582}
1583
1584void
1585spa_set_log_state(spa_t *spa, spa_log_state_t state)
1586{
1587	spa->spa_log_state = state;
1588}
1589
1590boolean_t
1591spa_is_root(spa_t *spa)
1592{
1593	return (spa->spa_is_root);
1594}
1595
1596boolean_t
1597spa_writeable(spa_t *spa)
1598{
1599	return (!!(spa->spa_mode & FWRITE));
1600}
1601
1602int
1603spa_mode(spa_t *spa)
1604{
1605	return (spa->spa_mode);
1606}
1607
1608uint64_t
1609spa_bootfs(spa_t *spa)
1610{
1611	return (spa->spa_bootfs);
1612}
1613
1614uint64_t
1615spa_delegation(spa_t *spa)
1616{
1617	return (spa->spa_delegation);
1618}
1619
1620objset_t *
1621spa_meta_objset(spa_t *spa)
1622{
1623	return (spa->spa_meta_objset);
1624}
1625
1626enum zio_checksum
1627spa_dedup_checksum(spa_t *spa)
1628{
1629	return (spa->spa_dedup_checksum);
1630}
1631
1632/*
1633 * Reset pool scan stat per scan pass (or reboot).
1634 */
1635void
1636spa_scan_stat_init(spa_t *spa)
1637{
1638	/* data not stored on disk */
1639	spa->spa_scan_pass_start = gethrestime_sec();
1640	spa->spa_scan_pass_exam = 0;
1641	vdev_scan_stat_init(spa->spa_root_vdev);
1642}
1643
1644/*
1645 * Get scan stats for zpool status reports
1646 */
1647int
1648spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1649{
1650	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1651
1652	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1653		return (ENOENT);
1654	bzero(ps, sizeof (pool_scan_stat_t));
1655
1656	/* data stored on disk */
1657	ps->pss_func = scn->scn_phys.scn_func;
1658	ps->pss_start_time = scn->scn_phys.scn_start_time;
1659	ps->pss_end_time = scn->scn_phys.scn_end_time;
1660	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1661	ps->pss_examined = scn->scn_phys.scn_examined;
1662	ps->pss_to_process = scn->scn_phys.scn_to_process;
1663	ps->pss_processed = scn->scn_phys.scn_processed;
1664	ps->pss_errors = scn->scn_phys.scn_errors;
1665	ps->pss_state = scn->scn_phys.scn_state;
1666
1667	/* data not stored on disk */
1668	ps->pss_pass_start = spa->spa_scan_pass_start;
1669	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1670
1671	return (0);
1672}
1673