xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision e495b6e6735b803e422025a630352ef9bba788c5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  */
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
31 #include <sys/spa_boot.h>
32 #include <sys/zio.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zio_compress.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/zap.h>
38 #include <sys/zil.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/metaslab.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/txg.h>
43 #include <sys/avl.h>
44 #include <sys/unique.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_dir.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/metaslab_impl.h>
51 #include <sys/arc.h>
52 #include <sys/ddt.h>
53 #include "zfs_prop.h"
54 #include <sys/zfeature.h>
55 
56 /*
57  * SPA locking
58  *
59  * There are four basic locks for managing spa_t structures:
60  *
61  * spa_namespace_lock (global mutex)
62  *
63  *	This lock must be acquired to do any of the following:
64  *
65  *		- Lookup a spa_t by name
66  *		- Add or remove a spa_t from the namespace
67  *		- Increase spa_refcount from non-zero
68  *		- Check if spa_refcount is zero
69  *		- Rename a spa_t
70  *		- add/remove/attach/detach devices
71  *		- Held for the duration of create/destroy/import/export
72  *
73  *	It does not need to handle recursion.  A create or destroy may
74  *	reference objects (files or zvols) in other pools, but by
75  *	definition they must have an existing reference, and will never need
76  *	to lookup a spa_t by name.
77  *
78  * spa_refcount (per-spa refcount_t protected by mutex)
79  *
80  *	This reference count keep track of any active users of the spa_t.  The
81  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
82  *	the refcount is never really 'zero' - opening a pool implicitly keeps
83  *	some references in the DMU.  Internally we check against spa_minref, but
84  *	present the image of a zero/non-zero value to consumers.
85  *
86  * spa_config_lock[] (per-spa array of rwlocks)
87  *
88  *	This protects the spa_t from config changes, and must be held in
89  *	the following circumstances:
90  *
91  *		- RW_READER to perform I/O to the spa
92  *		- RW_WRITER to change the vdev config
93  *
94  * The locking order is fairly straightforward:
95  *
96  *		spa_namespace_lock	->	spa_refcount
97  *
98  *	The namespace lock must be acquired to increase the refcount from 0
99  *	or to check if it is zero.
100  *
101  *		spa_refcount		->	spa_config_lock[]
102  *
103  *	There must be at least one valid reference on the spa_t to acquire
104  *	the config lock.
105  *
106  *		spa_namespace_lock	->	spa_config_lock[]
107  *
108  *	The namespace lock must always be taken before the config lock.
109  *
110  *
111  * The spa_namespace_lock can be acquired directly and is globally visible.
112  *
113  * The namespace is manipulated using the following functions, all of which
114  * require the spa_namespace_lock to be held.
115  *
116  *	spa_lookup()		Lookup a spa_t by name.
117  *
118  *	spa_add()		Create a new spa_t in the namespace.
119  *
120  *	spa_remove()		Remove a spa_t from the namespace.  This also
121  *				frees up any memory associated with the spa_t.
122  *
123  *	spa_next()		Returns the next spa_t in the system, or the
124  *				first if NULL is passed.
125  *
126  *	spa_evict_all()		Shutdown and remove all spa_t structures in
127  *				the system.
128  *
129  *	spa_guid_exists()	Determine whether a pool/device guid exists.
130  *
131  * The spa_refcount is manipulated using the following functions:
132  *
133  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
134  *				called with spa_namespace_lock held if the
135  *				refcount is currently zero.
136  *
137  *	spa_close()		Remove a reference from the spa_t.  This will
138  *				not free the spa_t or remove it from the
139  *				namespace.  No locking is required.
140  *
141  *	spa_refcount_zero()	Returns true if the refcount is currently
142  *				zero.  Must be called with spa_namespace_lock
143  *				held.
144  *
145  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148  *
149  * To read the configuration, it suffices to hold one of these locks as reader.
150  * To modify the configuration, you must hold all locks as writer.  To modify
151  * vdev state without altering the vdev tree's topology (e.g. online/offline),
152  * you must hold SCL_STATE and SCL_ZIO as writer.
153  *
154  * We use these distinct config locks to avoid recursive lock entry.
155  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156  * block allocations (SCL_ALLOC), which may require reading space maps
157  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158  *
159  * The spa config locks cannot be normal rwlocks because we need the
160  * ability to hand off ownership.  For example, SCL_ZIO is acquired
161  * by the issuing thread and later released by an interrupt thread.
162  * They do, however, obey the usual write-wanted semantics to prevent
163  * writer (i.e. system administrator) starvation.
164  *
165  * The lock acquisition rules are as follows:
166  *
167  * SCL_CONFIG
168  *	Protects changes to the vdev tree topology, such as vdev
169  *	add/remove/attach/detach.  Protects the dirty config list
170  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
171  *
172  * SCL_STATE
173  *	Protects changes to pool state and vdev state, such as vdev
174  *	online/offline/fault/degrade/clear.  Protects the dirty state list
175  *	(spa_state_dirty_list) and global pool state (spa_state).
176  *
177  * SCL_ALLOC
178  *	Protects changes to metaslab groups and classes.
179  *	Held as reader by metaslab_alloc() and metaslab_claim().
180  *
181  * SCL_ZIO
182  *	Held by bp-level zios (those which have no io_vd upon entry)
183  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
184  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
185  *
186  * SCL_FREE
187  *	Protects changes to metaslab groups and classes.
188  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
189  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190  *	blocks in zio_done() while another i/o that holds either
191  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
192  *
193  * SCL_VDEV
194  *	Held as reader to prevent changes to the vdev tree during trivial
195  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
196  *	other locks, and lower than all of them, to ensure that it's safe
197  *	to acquire regardless of caller context.
198  *
199  * In addition, the following rules apply:
200  *
201  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
202  *	The lock ordering is SCL_CONFIG > spa_props_lock.
203  *
204  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
205  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206  *	or zio_write_phys() -- the caller must ensure that the config cannot
207  *	cannot change in the interim, and that the vdev cannot be reopened.
208  *	SCL_STATE as reader suffices for both.
209  *
210  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211  *
212  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
213  *				for writing.
214  *
215  *	spa_vdev_exit()		Release the config lock, wait for all I/O
216  *				to complete, sync the updated configs to the
217  *				cache, and release the namespace lock.
218  *
219  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222  *
223  * spa_rename() is also implemented within this file since it requires
224  * manipulation of the namespace.
225  */
226 
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
232 
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
237 
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
240 
241 #ifdef ZFS_DEBUG
242 /* Everything except dprintf and spa is on by default in debug builds */
243 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
244 #else
245 int zfs_flags = 0;
246 #endif
247 
248 /*
249  * zfs_recover can be set to nonzero to attempt to recover from
250  * otherwise-fatal errors, typically caused by on-disk corruption.  When
251  * set, calls to zfs_panic_recover() will turn into warning messages.
252  * This should only be used as a last resort, as it typically results
253  * in leaked space, or worse.
254  */
255 boolean_t zfs_recover = B_FALSE;
256 
257 /*
258  * If destroy encounters an EIO while reading metadata (e.g. indirect
259  * blocks), space referenced by the missing metadata can not be freed.
260  * Normally this causes the background destroy to become "stalled", as
261  * it is unable to make forward progress.  While in this stalled state,
262  * all remaining space to free from the error-encountering filesystem is
263  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
264  * permanently leak the space from indirect blocks that can not be read,
265  * and continue to free everything else that it can.
266  *
267  * The default, "stalling" behavior is useful if the storage partially
268  * fails (i.e. some but not all i/os fail), and then later recovers.  In
269  * this case, we will be able to continue pool operations while it is
270  * partially failed, and when it recovers, we can continue to free the
271  * space, with no leaks.  However, note that this case is actually
272  * fairly rare.
273  *
274  * Typically pools either (a) fail completely (but perhaps temporarily,
275  * e.g. a top-level vdev going offline), or (b) have localized,
276  * permanent errors (e.g. disk returns the wrong data due to bit flip or
277  * firmware bug).  In case (a), this setting does not matter because the
278  * pool will be suspended and the sync thread will not be able to make
279  * forward progress regardless.  In case (b), because the error is
280  * permanent, the best we can do is leak the minimum amount of space,
281  * which is what setting this flag will do.  Therefore, it is reasonable
282  * for this flag to normally be set, but we chose the more conservative
283  * approach of not setting it, so that there is no possibility of
284  * leaking space in the "partial temporary" failure case.
285  */
286 boolean_t zfs_free_leak_on_eio = B_FALSE;
287 
288 /*
289  * Expiration time in milliseconds. This value has two meanings. First it is
290  * used to determine when the spa_deadman() logic should fire. By default the
291  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
292  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
293  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
294  * in a system panic.
295  */
296 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
297 
298 /*
299  * Check time in milliseconds. This defines the frequency at which we check
300  * for hung I/O.
301  */
302 uint64_t zfs_deadman_checktime_ms = 5000ULL;
303 
304 /*
305  * Override the zfs deadman behavior via /etc/system. By default the
306  * deadman is enabled except on VMware and sparc deployments.
307  */
308 int zfs_deadman_enabled = -1;
309 
310 /*
311  * The worst case is single-sector max-parity RAID-Z blocks, in which
312  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
313  * times the size; so just assume that.  Add to this the fact that
314  * we can have up to 3 DVAs per bp, and one more factor of 2 because
315  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
316  * the worst case is:
317  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
318  */
319 int spa_asize_inflation = 24;
320 
321 /*
322  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
323  * the pool to be consumed.  This ensures that we don't run the pool
324  * completely out of space, due to unaccounted changes (e.g. to the MOS).
325  * It also limits the worst-case time to allocate space.  If we have
326  * less than this amount of free space, most ZPL operations (e.g. write,
327  * create) will return ENOSPC.
328  *
329  * Certain operations (e.g. file removal, most administrative actions) can
330  * use half the slop space.  They will only return ENOSPC if less than half
331  * the slop space is free.  Typically, once the pool has less than the slop
332  * space free, the user will use these operations to free up space in the pool.
333  * These are the operations that call dsl_pool_adjustedsize() with the netfree
334  * argument set to TRUE.
335  *
336  * A very restricted set of operations are always permitted, regardless of
337  * the amount of free space.  These are the operations that call
338  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
339  * operations result in a net increase in the amount of space used,
340  * it is possible to run the pool completely out of space, causing it to
341  * be permanently read-only.
342  *
343  * See also the comments in zfs_space_check_t.
344  */
345 int spa_slop_shift = 5;
346 
347 /*
348  * ==========================================================================
349  * SPA config locking
350  * ==========================================================================
351  */
352 static void
353 spa_config_lock_init(spa_t *spa)
354 {
355 	for (int i = 0; i < SCL_LOCKS; i++) {
356 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
357 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
358 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
359 		refcount_create_untracked(&scl->scl_count);
360 		scl->scl_writer = NULL;
361 		scl->scl_write_wanted = 0;
362 	}
363 }
364 
365 static void
366 spa_config_lock_destroy(spa_t *spa)
367 {
368 	for (int i = 0; i < SCL_LOCKS; i++) {
369 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
370 		mutex_destroy(&scl->scl_lock);
371 		cv_destroy(&scl->scl_cv);
372 		refcount_destroy(&scl->scl_count);
373 		ASSERT(scl->scl_writer == NULL);
374 		ASSERT(scl->scl_write_wanted == 0);
375 	}
376 }
377 
378 int
379 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
380 {
381 	for (int i = 0; i < SCL_LOCKS; i++) {
382 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
383 		if (!(locks & (1 << i)))
384 			continue;
385 		mutex_enter(&scl->scl_lock);
386 		if (rw == RW_READER) {
387 			if (scl->scl_writer || scl->scl_write_wanted) {
388 				mutex_exit(&scl->scl_lock);
389 				spa_config_exit(spa, locks & ((1 << i) - 1),
390 				    tag);
391 				return (0);
392 			}
393 		} else {
394 			ASSERT(scl->scl_writer != curthread);
395 			if (!refcount_is_zero(&scl->scl_count)) {
396 				mutex_exit(&scl->scl_lock);
397 				spa_config_exit(spa, locks & ((1 << i) - 1),
398 				    tag);
399 				return (0);
400 			}
401 			scl->scl_writer = curthread;
402 		}
403 		(void) refcount_add(&scl->scl_count, tag);
404 		mutex_exit(&scl->scl_lock);
405 	}
406 	return (1);
407 }
408 
409 void
410 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
411 {
412 	int wlocks_held = 0;
413 
414 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
415 
416 	for (int i = 0; i < SCL_LOCKS; i++) {
417 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
418 		if (scl->scl_writer == curthread)
419 			wlocks_held |= (1 << i);
420 		if (!(locks & (1 << i)))
421 			continue;
422 		mutex_enter(&scl->scl_lock);
423 		if (rw == RW_READER) {
424 			while (scl->scl_writer || scl->scl_write_wanted) {
425 				cv_wait(&scl->scl_cv, &scl->scl_lock);
426 			}
427 		} else {
428 			ASSERT(scl->scl_writer != curthread);
429 			while (!refcount_is_zero(&scl->scl_count)) {
430 				scl->scl_write_wanted++;
431 				cv_wait(&scl->scl_cv, &scl->scl_lock);
432 				scl->scl_write_wanted--;
433 			}
434 			scl->scl_writer = curthread;
435 		}
436 		(void) refcount_add(&scl->scl_count, tag);
437 		mutex_exit(&scl->scl_lock);
438 	}
439 	ASSERT(wlocks_held <= locks);
440 }
441 
442 void
443 spa_config_exit(spa_t *spa, int locks, void *tag)
444 {
445 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
446 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
447 		if (!(locks & (1 << i)))
448 			continue;
449 		mutex_enter(&scl->scl_lock);
450 		ASSERT(!refcount_is_zero(&scl->scl_count));
451 		if (refcount_remove(&scl->scl_count, tag) == 0) {
452 			ASSERT(scl->scl_writer == NULL ||
453 			    scl->scl_writer == curthread);
454 			scl->scl_writer = NULL;	/* OK in either case */
455 			cv_broadcast(&scl->scl_cv);
456 		}
457 		mutex_exit(&scl->scl_lock);
458 	}
459 }
460 
461 int
462 spa_config_held(spa_t *spa, int locks, krw_t rw)
463 {
464 	int locks_held = 0;
465 
466 	for (int i = 0; i < SCL_LOCKS; i++) {
467 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
468 		if (!(locks & (1 << i)))
469 			continue;
470 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
471 		    (rw == RW_WRITER && scl->scl_writer == curthread))
472 			locks_held |= 1 << i;
473 	}
474 
475 	return (locks_held);
476 }
477 
478 /*
479  * ==========================================================================
480  * SPA namespace functions
481  * ==========================================================================
482  */
483 
484 /*
485  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
486  * Returns NULL if no matching spa_t is found.
487  */
488 spa_t *
489 spa_lookup(const char *name)
490 {
491 	static spa_t search;	/* spa_t is large; don't allocate on stack */
492 	spa_t *spa;
493 	avl_index_t where;
494 	char *cp;
495 
496 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
497 
498 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
499 
500 	/*
501 	 * If it's a full dataset name, figure out the pool name and
502 	 * just use that.
503 	 */
504 	cp = strpbrk(search.spa_name, "/@#");
505 	if (cp != NULL)
506 		*cp = '\0';
507 
508 	spa = avl_find(&spa_namespace_avl, &search, &where);
509 
510 	return (spa);
511 }
512 
513 /*
514  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
515  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
516  * looking for potentially hung I/Os.
517  */
518 void
519 spa_deadman(void *arg)
520 {
521 	spa_t *spa = arg;
522 
523 	/*
524 	 * Disable the deadman timer if the pool is suspended.
525 	 */
526 	if (spa_suspended(spa)) {
527 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
528 		return;
529 	}
530 
531 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
532 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
533 	    ++spa->spa_deadman_calls);
534 	if (zfs_deadman_enabled)
535 		vdev_deadman(spa->spa_root_vdev);
536 }
537 
538 /*
539  * Create an uninitialized spa_t with the given name.  Requires
540  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
541  * exist by calling spa_lookup() first.
542  */
543 spa_t *
544 spa_add(const char *name, nvlist_t *config, const char *altroot)
545 {
546 	spa_t *spa;
547 	spa_config_dirent_t *dp;
548 	cyc_handler_t hdlr;
549 	cyc_time_t when;
550 
551 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
552 
553 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
554 
555 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
556 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
558 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
559 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
561 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
562 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
563 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
564 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
565 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
566 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
567 
568 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
569 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
570 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
571 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
572 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
573 
574 	for (int t = 0; t < TXG_SIZE; t++)
575 		bplist_create(&spa->spa_free_bplist[t]);
576 
577 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
578 	spa->spa_state = POOL_STATE_UNINITIALIZED;
579 	spa->spa_freeze_txg = UINT64_MAX;
580 	spa->spa_final_txg = UINT64_MAX;
581 	spa->spa_load_max_txg = UINT64_MAX;
582 	spa->spa_proc = &p0;
583 	spa->spa_proc_state = SPA_PROC_NONE;
584 
585 	hdlr.cyh_func = spa_deadman;
586 	hdlr.cyh_arg = spa;
587 	hdlr.cyh_level = CY_LOW_LEVEL;
588 
589 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
590 
591 	/*
592 	 * This determines how often we need to check for hung I/Os after
593 	 * the cyclic has already fired. Since checking for hung I/Os is
594 	 * an expensive operation we don't want to check too frequently.
595 	 * Instead wait for 5 seconds before checking again.
596 	 */
597 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
598 	when.cyt_when = CY_INFINITY;
599 	mutex_enter(&cpu_lock);
600 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
601 	mutex_exit(&cpu_lock);
602 
603 	refcount_create(&spa->spa_refcount);
604 	spa_config_lock_init(spa);
605 
606 	avl_add(&spa_namespace_avl, spa);
607 
608 	/*
609 	 * Set the alternate root, if there is one.
610 	 */
611 	if (altroot) {
612 		spa->spa_root = spa_strdup(altroot);
613 		spa_active_count++;
614 	}
615 
616 	/*
617 	 * Every pool starts with the default cachefile
618 	 */
619 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
620 	    offsetof(spa_config_dirent_t, scd_link));
621 
622 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
623 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
624 	list_insert_head(&spa->spa_config_list, dp);
625 
626 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
627 	    KM_SLEEP) == 0);
628 
629 	if (config != NULL) {
630 		nvlist_t *features;
631 
632 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
633 		    &features) == 0) {
634 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
635 			    0) == 0);
636 		}
637 
638 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
639 	}
640 
641 	if (spa->spa_label_features == NULL) {
642 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
643 		    KM_SLEEP) == 0);
644 	}
645 
646 	spa->spa_iokstat = kstat_create("zfs", 0, name,
647 	    "disk", KSTAT_TYPE_IO, 1, 0);
648 	if (spa->spa_iokstat) {
649 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
650 		kstat_install(spa->spa_iokstat);
651 	}
652 
653 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
654 
655 	spa->spa_min_ashift = INT_MAX;
656 	spa->spa_max_ashift = 0;
657 
658 	/*
659 	 * As a pool is being created, treat all features as disabled by
660 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
661 	 * refcount cache.
662 	 */
663 	for (int i = 0; i < SPA_FEATURES; i++) {
664 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
665 	}
666 
667 	return (spa);
668 }
669 
670 /*
671  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
672  * spa_namespace_lock.  This is called only after the spa_t has been closed and
673  * deactivated.
674  */
675 void
676 spa_remove(spa_t *spa)
677 {
678 	spa_config_dirent_t *dp;
679 
680 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
681 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
682 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
683 
684 	nvlist_free(spa->spa_config_splitting);
685 
686 	avl_remove(&spa_namespace_avl, spa);
687 	cv_broadcast(&spa_namespace_cv);
688 
689 	if (spa->spa_root) {
690 		spa_strfree(spa->spa_root);
691 		spa_active_count--;
692 	}
693 
694 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
695 		list_remove(&spa->spa_config_list, dp);
696 		if (dp->scd_path != NULL)
697 			spa_strfree(dp->scd_path);
698 		kmem_free(dp, sizeof (spa_config_dirent_t));
699 	}
700 
701 	list_destroy(&spa->spa_config_list);
702 
703 	nvlist_free(spa->spa_label_features);
704 	nvlist_free(spa->spa_load_info);
705 	spa_config_set(spa, NULL);
706 
707 	mutex_enter(&cpu_lock);
708 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
709 		cyclic_remove(spa->spa_deadman_cycid);
710 	mutex_exit(&cpu_lock);
711 	spa->spa_deadman_cycid = CYCLIC_NONE;
712 
713 	refcount_destroy(&spa->spa_refcount);
714 
715 	spa_config_lock_destroy(spa);
716 
717 	kstat_delete(spa->spa_iokstat);
718 	spa->spa_iokstat = NULL;
719 
720 	for (int t = 0; t < TXG_SIZE; t++)
721 		bplist_destroy(&spa->spa_free_bplist[t]);
722 
723 	zio_checksum_templates_free(spa);
724 
725 	cv_destroy(&spa->spa_async_cv);
726 	cv_destroy(&spa->spa_evicting_os_cv);
727 	cv_destroy(&spa->spa_proc_cv);
728 	cv_destroy(&spa->spa_scrub_io_cv);
729 	cv_destroy(&spa->spa_suspend_cv);
730 
731 	mutex_destroy(&spa->spa_async_lock);
732 	mutex_destroy(&spa->spa_errlist_lock);
733 	mutex_destroy(&spa->spa_errlog_lock);
734 	mutex_destroy(&spa->spa_evicting_os_lock);
735 	mutex_destroy(&spa->spa_history_lock);
736 	mutex_destroy(&spa->spa_proc_lock);
737 	mutex_destroy(&spa->spa_props_lock);
738 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
739 	mutex_destroy(&spa->spa_scrub_lock);
740 	mutex_destroy(&spa->spa_suspend_lock);
741 	mutex_destroy(&spa->spa_vdev_top_lock);
742 	mutex_destroy(&spa->spa_iokstat_lock);
743 
744 	kmem_free(spa, sizeof (spa_t));
745 }
746 
747 /*
748  * Given a pool, return the next pool in the namespace, or NULL if there is
749  * none.  If 'prev' is NULL, return the first pool.
750  */
751 spa_t *
752 spa_next(spa_t *prev)
753 {
754 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
755 
756 	if (prev)
757 		return (AVL_NEXT(&spa_namespace_avl, prev));
758 	else
759 		return (avl_first(&spa_namespace_avl));
760 }
761 
762 /*
763  * ==========================================================================
764  * SPA refcount functions
765  * ==========================================================================
766  */
767 
768 /*
769  * Add a reference to the given spa_t.  Must have at least one reference, or
770  * have the namespace lock held.
771  */
772 void
773 spa_open_ref(spa_t *spa, void *tag)
774 {
775 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
776 	    MUTEX_HELD(&spa_namespace_lock));
777 	(void) refcount_add(&spa->spa_refcount, tag);
778 }
779 
780 /*
781  * Remove a reference to the given spa_t.  Must have at least one reference, or
782  * have the namespace lock held.
783  */
784 void
785 spa_close(spa_t *spa, void *tag)
786 {
787 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
788 	    MUTEX_HELD(&spa_namespace_lock));
789 	(void) refcount_remove(&spa->spa_refcount, tag);
790 }
791 
792 /*
793  * Remove a reference to the given spa_t held by a dsl dir that is
794  * being asynchronously released.  Async releases occur from a taskq
795  * performing eviction of dsl datasets and dirs.  The namespace lock
796  * isn't held and the hold by the object being evicted may contribute to
797  * spa_minref (e.g. dataset or directory released during pool export),
798  * so the asserts in spa_close() do not apply.
799  */
800 void
801 spa_async_close(spa_t *spa, void *tag)
802 {
803 	(void) refcount_remove(&spa->spa_refcount, tag);
804 }
805 
806 /*
807  * Check to see if the spa refcount is zero.  Must be called with
808  * spa_namespace_lock held.  We really compare against spa_minref, which is the
809  * number of references acquired when opening a pool
810  */
811 boolean_t
812 spa_refcount_zero(spa_t *spa)
813 {
814 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
815 
816 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
817 }
818 
819 /*
820  * ==========================================================================
821  * SPA spare and l2cache tracking
822  * ==========================================================================
823  */
824 
825 /*
826  * Hot spares and cache devices are tracked using the same code below,
827  * for 'auxiliary' devices.
828  */
829 
830 typedef struct spa_aux {
831 	uint64_t	aux_guid;
832 	uint64_t	aux_pool;
833 	avl_node_t	aux_avl;
834 	int		aux_count;
835 } spa_aux_t;
836 
837 static int
838 spa_aux_compare(const void *a, const void *b)
839 {
840 	const spa_aux_t *sa = a;
841 	const spa_aux_t *sb = b;
842 
843 	if (sa->aux_guid < sb->aux_guid)
844 		return (-1);
845 	else if (sa->aux_guid > sb->aux_guid)
846 		return (1);
847 	else
848 		return (0);
849 }
850 
851 void
852 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
853 {
854 	avl_index_t where;
855 	spa_aux_t search;
856 	spa_aux_t *aux;
857 
858 	search.aux_guid = vd->vdev_guid;
859 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
860 		aux->aux_count++;
861 	} else {
862 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
863 		aux->aux_guid = vd->vdev_guid;
864 		aux->aux_count = 1;
865 		avl_insert(avl, aux, where);
866 	}
867 }
868 
869 void
870 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
871 {
872 	spa_aux_t search;
873 	spa_aux_t *aux;
874 	avl_index_t where;
875 
876 	search.aux_guid = vd->vdev_guid;
877 	aux = avl_find(avl, &search, &where);
878 
879 	ASSERT(aux != NULL);
880 
881 	if (--aux->aux_count == 0) {
882 		avl_remove(avl, aux);
883 		kmem_free(aux, sizeof (spa_aux_t));
884 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
885 		aux->aux_pool = 0ULL;
886 	}
887 }
888 
889 boolean_t
890 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
891 {
892 	spa_aux_t search, *found;
893 
894 	search.aux_guid = guid;
895 	found = avl_find(avl, &search, NULL);
896 
897 	if (pool) {
898 		if (found)
899 			*pool = found->aux_pool;
900 		else
901 			*pool = 0ULL;
902 	}
903 
904 	if (refcnt) {
905 		if (found)
906 			*refcnt = found->aux_count;
907 		else
908 			*refcnt = 0;
909 	}
910 
911 	return (found != NULL);
912 }
913 
914 void
915 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
916 {
917 	spa_aux_t search, *found;
918 	avl_index_t where;
919 
920 	search.aux_guid = vd->vdev_guid;
921 	found = avl_find(avl, &search, &where);
922 	ASSERT(found != NULL);
923 	ASSERT(found->aux_pool == 0ULL);
924 
925 	found->aux_pool = spa_guid(vd->vdev_spa);
926 }
927 
928 /*
929  * Spares are tracked globally due to the following constraints:
930  *
931  * 	- A spare may be part of multiple pools.
932  * 	- A spare may be added to a pool even if it's actively in use within
933  *	  another pool.
934  * 	- A spare in use in any pool can only be the source of a replacement if
935  *	  the target is a spare in the same pool.
936  *
937  * We keep track of all spares on the system through the use of a reference
938  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
939  * spare, then we bump the reference count in the AVL tree.  In addition, we set
940  * the 'vdev_isspare' member to indicate that the device is a spare (active or
941  * inactive).  When a spare is made active (used to replace a device in the
942  * pool), we also keep track of which pool its been made a part of.
943  *
944  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
945  * called under the spa_namespace lock as part of vdev reconfiguration.  The
946  * separate spare lock exists for the status query path, which does not need to
947  * be completely consistent with respect to other vdev configuration changes.
948  */
949 
950 static int
951 spa_spare_compare(const void *a, const void *b)
952 {
953 	return (spa_aux_compare(a, b));
954 }
955 
956 void
957 spa_spare_add(vdev_t *vd)
958 {
959 	mutex_enter(&spa_spare_lock);
960 	ASSERT(!vd->vdev_isspare);
961 	spa_aux_add(vd, &spa_spare_avl);
962 	vd->vdev_isspare = B_TRUE;
963 	mutex_exit(&spa_spare_lock);
964 }
965 
966 void
967 spa_spare_remove(vdev_t *vd)
968 {
969 	mutex_enter(&spa_spare_lock);
970 	ASSERT(vd->vdev_isspare);
971 	spa_aux_remove(vd, &spa_spare_avl);
972 	vd->vdev_isspare = B_FALSE;
973 	mutex_exit(&spa_spare_lock);
974 }
975 
976 boolean_t
977 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
978 {
979 	boolean_t found;
980 
981 	mutex_enter(&spa_spare_lock);
982 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
983 	mutex_exit(&spa_spare_lock);
984 
985 	return (found);
986 }
987 
988 void
989 spa_spare_activate(vdev_t *vd)
990 {
991 	mutex_enter(&spa_spare_lock);
992 	ASSERT(vd->vdev_isspare);
993 	spa_aux_activate(vd, &spa_spare_avl);
994 	mutex_exit(&spa_spare_lock);
995 }
996 
997 /*
998  * Level 2 ARC devices are tracked globally for the same reasons as spares.
999  * Cache devices currently only support one pool per cache device, and so
1000  * for these devices the aux reference count is currently unused beyond 1.
1001  */
1002 
1003 static int
1004 spa_l2cache_compare(const void *a, const void *b)
1005 {
1006 	return (spa_aux_compare(a, b));
1007 }
1008 
1009 void
1010 spa_l2cache_add(vdev_t *vd)
1011 {
1012 	mutex_enter(&spa_l2cache_lock);
1013 	ASSERT(!vd->vdev_isl2cache);
1014 	spa_aux_add(vd, &spa_l2cache_avl);
1015 	vd->vdev_isl2cache = B_TRUE;
1016 	mutex_exit(&spa_l2cache_lock);
1017 }
1018 
1019 void
1020 spa_l2cache_remove(vdev_t *vd)
1021 {
1022 	mutex_enter(&spa_l2cache_lock);
1023 	ASSERT(vd->vdev_isl2cache);
1024 	spa_aux_remove(vd, &spa_l2cache_avl);
1025 	vd->vdev_isl2cache = B_FALSE;
1026 	mutex_exit(&spa_l2cache_lock);
1027 }
1028 
1029 boolean_t
1030 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1031 {
1032 	boolean_t found;
1033 
1034 	mutex_enter(&spa_l2cache_lock);
1035 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1036 	mutex_exit(&spa_l2cache_lock);
1037 
1038 	return (found);
1039 }
1040 
1041 void
1042 spa_l2cache_activate(vdev_t *vd)
1043 {
1044 	mutex_enter(&spa_l2cache_lock);
1045 	ASSERT(vd->vdev_isl2cache);
1046 	spa_aux_activate(vd, &spa_l2cache_avl);
1047 	mutex_exit(&spa_l2cache_lock);
1048 }
1049 
1050 /*
1051  * ==========================================================================
1052  * SPA vdev locking
1053  * ==========================================================================
1054  */
1055 
1056 /*
1057  * Lock the given spa_t for the purpose of adding or removing a vdev.
1058  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1059  * It returns the next transaction group for the spa_t.
1060  */
1061 uint64_t
1062 spa_vdev_enter(spa_t *spa)
1063 {
1064 	mutex_enter(&spa->spa_vdev_top_lock);
1065 	mutex_enter(&spa_namespace_lock);
1066 	return (spa_vdev_config_enter(spa));
1067 }
1068 
1069 /*
1070  * Internal implementation for spa_vdev_enter().  Used when a vdev
1071  * operation requires multiple syncs (i.e. removing a device) while
1072  * keeping the spa_namespace_lock held.
1073  */
1074 uint64_t
1075 spa_vdev_config_enter(spa_t *spa)
1076 {
1077 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1078 
1079 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1080 
1081 	return (spa_last_synced_txg(spa) + 1);
1082 }
1083 
1084 /*
1085  * Used in combination with spa_vdev_config_enter() to allow the syncing
1086  * of multiple transactions without releasing the spa_namespace_lock.
1087  */
1088 void
1089 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1090 {
1091 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092 
1093 	int config_changed = B_FALSE;
1094 
1095 	ASSERT(txg > spa_last_synced_txg(spa));
1096 
1097 	spa->spa_pending_vdev = NULL;
1098 
1099 	/*
1100 	 * Reassess the DTLs.
1101 	 */
1102 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1103 
1104 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1105 		config_changed = B_TRUE;
1106 		spa->spa_config_generation++;
1107 	}
1108 
1109 	/*
1110 	 * Verify the metaslab classes.
1111 	 */
1112 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1113 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1114 
1115 	spa_config_exit(spa, SCL_ALL, spa);
1116 
1117 	/*
1118 	 * Panic the system if the specified tag requires it.  This
1119 	 * is useful for ensuring that configurations are updated
1120 	 * transactionally.
1121 	 */
1122 	if (zio_injection_enabled)
1123 		zio_handle_panic_injection(spa, tag, 0);
1124 
1125 	/*
1126 	 * Note: this txg_wait_synced() is important because it ensures
1127 	 * that there won't be more than one config change per txg.
1128 	 * This allows us to use the txg as the generation number.
1129 	 */
1130 	if (error == 0)
1131 		txg_wait_synced(spa->spa_dsl_pool, txg);
1132 
1133 	if (vd != NULL) {
1134 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1135 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1136 		vdev_free(vd);
1137 		spa_config_exit(spa, SCL_ALL, spa);
1138 	}
1139 
1140 	/*
1141 	 * If the config changed, update the config cache.
1142 	 */
1143 	if (config_changed)
1144 		spa_config_sync(spa, B_FALSE, B_TRUE);
1145 }
1146 
1147 /*
1148  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1149  * locking of spa_vdev_enter(), we also want make sure the transactions have
1150  * synced to disk, and then update the global configuration cache with the new
1151  * information.
1152  */
1153 int
1154 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1155 {
1156 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1157 	mutex_exit(&spa_namespace_lock);
1158 	mutex_exit(&spa->spa_vdev_top_lock);
1159 
1160 	return (error);
1161 }
1162 
1163 /*
1164  * Lock the given spa_t for the purpose of changing vdev state.
1165  */
1166 void
1167 spa_vdev_state_enter(spa_t *spa, int oplocks)
1168 {
1169 	int locks = SCL_STATE_ALL | oplocks;
1170 
1171 	/*
1172 	 * Root pools may need to read of the underlying devfs filesystem
1173 	 * when opening up a vdev.  Unfortunately if we're holding the
1174 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1175 	 * the read from the root filesystem.  Instead we "prefetch"
1176 	 * the associated vnodes that we need prior to opening the
1177 	 * underlying devices and cache them so that we can prevent
1178 	 * any I/O when we are doing the actual open.
1179 	 */
1180 	if (spa_is_root(spa)) {
1181 		int low = locks & ~(SCL_ZIO - 1);
1182 		int high = locks & ~low;
1183 
1184 		spa_config_enter(spa, high, spa, RW_WRITER);
1185 		vdev_hold(spa->spa_root_vdev);
1186 		spa_config_enter(spa, low, spa, RW_WRITER);
1187 	} else {
1188 		spa_config_enter(spa, locks, spa, RW_WRITER);
1189 	}
1190 	spa->spa_vdev_locks = locks;
1191 }
1192 
1193 int
1194 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1195 {
1196 	boolean_t config_changed = B_FALSE;
1197 
1198 	if (vd != NULL || error == 0)
1199 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1200 		    0, 0, B_FALSE);
1201 
1202 	if (vd != NULL) {
1203 		vdev_state_dirty(vd->vdev_top);
1204 		config_changed = B_TRUE;
1205 		spa->spa_config_generation++;
1206 	}
1207 
1208 	if (spa_is_root(spa))
1209 		vdev_rele(spa->spa_root_vdev);
1210 
1211 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1212 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1213 
1214 	/*
1215 	 * If anything changed, wait for it to sync.  This ensures that,
1216 	 * from the system administrator's perspective, zpool(1M) commands
1217 	 * are synchronous.  This is important for things like zpool offline:
1218 	 * when the command completes, you expect no further I/O from ZFS.
1219 	 */
1220 	if (vd != NULL)
1221 		txg_wait_synced(spa->spa_dsl_pool, 0);
1222 
1223 	/*
1224 	 * If the config changed, update the config cache.
1225 	 */
1226 	if (config_changed) {
1227 		mutex_enter(&spa_namespace_lock);
1228 		spa_config_sync(spa, B_FALSE, B_TRUE);
1229 		mutex_exit(&spa_namespace_lock);
1230 	}
1231 
1232 	return (error);
1233 }
1234 
1235 /*
1236  * ==========================================================================
1237  * Miscellaneous functions
1238  * ==========================================================================
1239  */
1240 
1241 void
1242 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1243 {
1244 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1245 		fnvlist_add_boolean(spa->spa_label_features, feature);
1246 		/*
1247 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1248 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1249 		 * Thankfully, in this case we don't need to dirty the config
1250 		 * because it will be written out anyway when we finish
1251 		 * creating the pool.
1252 		 */
1253 		if (tx->tx_txg != TXG_INITIAL)
1254 			vdev_config_dirty(spa->spa_root_vdev);
1255 	}
1256 }
1257 
1258 void
1259 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1260 {
1261 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1262 		vdev_config_dirty(spa->spa_root_vdev);
1263 }
1264 
1265 /*
1266  * Rename a spa_t.
1267  */
1268 int
1269 spa_rename(const char *name, const char *newname)
1270 {
1271 	spa_t *spa;
1272 	int err;
1273 
1274 	/*
1275 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1276 	 * actually open the pool so that we can sync out the necessary labels.
1277 	 * It's OK to call spa_open() with the namespace lock held because we
1278 	 * allow recursive calls for other reasons.
1279 	 */
1280 	mutex_enter(&spa_namespace_lock);
1281 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1282 		mutex_exit(&spa_namespace_lock);
1283 		return (err);
1284 	}
1285 
1286 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1287 
1288 	avl_remove(&spa_namespace_avl, spa);
1289 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1290 	avl_add(&spa_namespace_avl, spa);
1291 
1292 	/*
1293 	 * Sync all labels to disk with the new names by marking the root vdev
1294 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1295 	 * during the sync.
1296 	 */
1297 	vdev_config_dirty(spa->spa_root_vdev);
1298 
1299 	spa_config_exit(spa, SCL_ALL, FTAG);
1300 
1301 	txg_wait_synced(spa->spa_dsl_pool, 0);
1302 
1303 	/*
1304 	 * Sync the updated config cache.
1305 	 */
1306 	spa_config_sync(spa, B_FALSE, B_TRUE);
1307 
1308 	spa_close(spa, FTAG);
1309 
1310 	mutex_exit(&spa_namespace_lock);
1311 
1312 	return (0);
1313 }
1314 
1315 /*
1316  * Return the spa_t associated with given pool_guid, if it exists.  If
1317  * device_guid is non-zero, determine whether the pool exists *and* contains
1318  * a device with the specified device_guid.
1319  */
1320 spa_t *
1321 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1322 {
1323 	spa_t *spa;
1324 	avl_tree_t *t = &spa_namespace_avl;
1325 
1326 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1327 
1328 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1329 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1330 			continue;
1331 		if (spa->spa_root_vdev == NULL)
1332 			continue;
1333 		if (spa_guid(spa) == pool_guid) {
1334 			if (device_guid == 0)
1335 				break;
1336 
1337 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1338 			    device_guid) != NULL)
1339 				break;
1340 
1341 			/*
1342 			 * Check any devices we may be in the process of adding.
1343 			 */
1344 			if (spa->spa_pending_vdev) {
1345 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1346 				    device_guid) != NULL)
1347 					break;
1348 			}
1349 		}
1350 	}
1351 
1352 	return (spa);
1353 }
1354 
1355 /*
1356  * Determine whether a pool with the given pool_guid exists.
1357  */
1358 boolean_t
1359 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1360 {
1361 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1362 }
1363 
1364 char *
1365 spa_strdup(const char *s)
1366 {
1367 	size_t len;
1368 	char *new;
1369 
1370 	len = strlen(s);
1371 	new = kmem_alloc(len + 1, KM_SLEEP);
1372 	bcopy(s, new, len);
1373 	new[len] = '\0';
1374 
1375 	return (new);
1376 }
1377 
1378 void
1379 spa_strfree(char *s)
1380 {
1381 	kmem_free(s, strlen(s) + 1);
1382 }
1383 
1384 uint64_t
1385 spa_get_random(uint64_t range)
1386 {
1387 	uint64_t r;
1388 
1389 	ASSERT(range != 0);
1390 
1391 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1392 
1393 	return (r % range);
1394 }
1395 
1396 uint64_t
1397 spa_generate_guid(spa_t *spa)
1398 {
1399 	uint64_t guid = spa_get_random(-1ULL);
1400 
1401 	if (spa != NULL) {
1402 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1403 			guid = spa_get_random(-1ULL);
1404 	} else {
1405 		while (guid == 0 || spa_guid_exists(guid, 0))
1406 			guid = spa_get_random(-1ULL);
1407 	}
1408 
1409 	return (guid);
1410 }
1411 
1412 void
1413 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1414 {
1415 	char type[256];
1416 	char *checksum = NULL;
1417 	char *compress = NULL;
1418 
1419 	if (bp != NULL) {
1420 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1421 			dmu_object_byteswap_t bswap =
1422 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1423 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1424 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1425 			    "metadata" : "data",
1426 			    dmu_ot_byteswap[bswap].ob_name);
1427 		} else {
1428 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1429 			    sizeof (type));
1430 		}
1431 		if (!BP_IS_EMBEDDED(bp)) {
1432 			checksum =
1433 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1434 		}
1435 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1436 	}
1437 
1438 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1439 	    compress);
1440 }
1441 
1442 void
1443 spa_freeze(spa_t *spa)
1444 {
1445 	uint64_t freeze_txg = 0;
1446 
1447 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1448 	if (spa->spa_freeze_txg == UINT64_MAX) {
1449 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1450 		spa->spa_freeze_txg = freeze_txg;
1451 	}
1452 	spa_config_exit(spa, SCL_ALL, FTAG);
1453 	if (freeze_txg != 0)
1454 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1455 }
1456 
1457 void
1458 zfs_panic_recover(const char *fmt, ...)
1459 {
1460 	va_list adx;
1461 
1462 	va_start(adx, fmt);
1463 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1464 	va_end(adx);
1465 }
1466 
1467 /*
1468  * This is a stripped-down version of strtoull, suitable only for converting
1469  * lowercase hexadecimal numbers that don't overflow.
1470  */
1471 uint64_t
1472 strtonum(const char *str, char **nptr)
1473 {
1474 	uint64_t val = 0;
1475 	char c;
1476 	int digit;
1477 
1478 	while ((c = *str) != '\0') {
1479 		if (c >= '0' && c <= '9')
1480 			digit = c - '0';
1481 		else if (c >= 'a' && c <= 'f')
1482 			digit = 10 + c - 'a';
1483 		else
1484 			break;
1485 
1486 		val *= 16;
1487 		val += digit;
1488 
1489 		str++;
1490 	}
1491 
1492 	if (nptr)
1493 		*nptr = (char *)str;
1494 
1495 	return (val);
1496 }
1497 
1498 /*
1499  * ==========================================================================
1500  * Accessor functions
1501  * ==========================================================================
1502  */
1503 
1504 boolean_t
1505 spa_shutting_down(spa_t *spa)
1506 {
1507 	return (spa->spa_async_suspended);
1508 }
1509 
1510 dsl_pool_t *
1511 spa_get_dsl(spa_t *spa)
1512 {
1513 	return (spa->spa_dsl_pool);
1514 }
1515 
1516 boolean_t
1517 spa_is_initializing(spa_t *spa)
1518 {
1519 	return (spa->spa_is_initializing);
1520 }
1521 
1522 blkptr_t *
1523 spa_get_rootblkptr(spa_t *spa)
1524 {
1525 	return (&spa->spa_ubsync.ub_rootbp);
1526 }
1527 
1528 void
1529 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1530 {
1531 	spa->spa_uberblock.ub_rootbp = *bp;
1532 }
1533 
1534 void
1535 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1536 {
1537 	if (spa->spa_root == NULL)
1538 		buf[0] = '\0';
1539 	else
1540 		(void) strncpy(buf, spa->spa_root, buflen);
1541 }
1542 
1543 int
1544 spa_sync_pass(spa_t *spa)
1545 {
1546 	return (spa->spa_sync_pass);
1547 }
1548 
1549 char *
1550 spa_name(spa_t *spa)
1551 {
1552 	return (spa->spa_name);
1553 }
1554 
1555 uint64_t
1556 spa_guid(spa_t *spa)
1557 {
1558 	dsl_pool_t *dp = spa_get_dsl(spa);
1559 	uint64_t guid;
1560 
1561 	/*
1562 	 * If we fail to parse the config during spa_load(), we can go through
1563 	 * the error path (which posts an ereport) and end up here with no root
1564 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1565 	 * this case.
1566 	 */
1567 	if (spa->spa_root_vdev == NULL)
1568 		return (spa->spa_config_guid);
1569 
1570 	guid = spa->spa_last_synced_guid != 0 ?
1571 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1572 
1573 	/*
1574 	 * Return the most recently synced out guid unless we're
1575 	 * in syncing context.
1576 	 */
1577 	if (dp && dsl_pool_sync_context(dp))
1578 		return (spa->spa_root_vdev->vdev_guid);
1579 	else
1580 		return (guid);
1581 }
1582 
1583 uint64_t
1584 spa_load_guid(spa_t *spa)
1585 {
1586 	/*
1587 	 * This is a GUID that exists solely as a reference for the
1588 	 * purposes of the arc.  It is generated at load time, and
1589 	 * is never written to persistent storage.
1590 	 */
1591 	return (spa->spa_load_guid);
1592 }
1593 
1594 uint64_t
1595 spa_last_synced_txg(spa_t *spa)
1596 {
1597 	return (spa->spa_ubsync.ub_txg);
1598 }
1599 
1600 uint64_t
1601 spa_first_txg(spa_t *spa)
1602 {
1603 	return (spa->spa_first_txg);
1604 }
1605 
1606 uint64_t
1607 spa_syncing_txg(spa_t *spa)
1608 {
1609 	return (spa->spa_syncing_txg);
1610 }
1611 
1612 pool_state_t
1613 spa_state(spa_t *spa)
1614 {
1615 	return (spa->spa_state);
1616 }
1617 
1618 spa_load_state_t
1619 spa_load_state(spa_t *spa)
1620 {
1621 	return (spa->spa_load_state);
1622 }
1623 
1624 uint64_t
1625 spa_freeze_txg(spa_t *spa)
1626 {
1627 	return (spa->spa_freeze_txg);
1628 }
1629 
1630 /* ARGSUSED */
1631 uint64_t
1632 spa_get_asize(spa_t *spa, uint64_t lsize)
1633 {
1634 	return (lsize * spa_asize_inflation);
1635 }
1636 
1637 /*
1638  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1639  * or at least 32MB.
1640  *
1641  * See the comment above spa_slop_shift for details.
1642  */
1643 uint64_t
1644 spa_get_slop_space(spa_t *spa) {
1645 	uint64_t space = spa_get_dspace(spa);
1646 	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1647 }
1648 
1649 uint64_t
1650 spa_get_dspace(spa_t *spa)
1651 {
1652 	return (spa->spa_dspace);
1653 }
1654 
1655 void
1656 spa_update_dspace(spa_t *spa)
1657 {
1658 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1659 	    ddt_get_dedup_dspace(spa);
1660 }
1661 
1662 /*
1663  * Return the failure mode that has been set to this pool. The default
1664  * behavior will be to block all I/Os when a complete failure occurs.
1665  */
1666 uint8_t
1667 spa_get_failmode(spa_t *spa)
1668 {
1669 	return (spa->spa_failmode);
1670 }
1671 
1672 boolean_t
1673 spa_suspended(spa_t *spa)
1674 {
1675 	return (spa->spa_suspended);
1676 }
1677 
1678 uint64_t
1679 spa_version(spa_t *spa)
1680 {
1681 	return (spa->spa_ubsync.ub_version);
1682 }
1683 
1684 boolean_t
1685 spa_deflate(spa_t *spa)
1686 {
1687 	return (spa->spa_deflate);
1688 }
1689 
1690 metaslab_class_t *
1691 spa_normal_class(spa_t *spa)
1692 {
1693 	return (spa->spa_normal_class);
1694 }
1695 
1696 metaslab_class_t *
1697 spa_log_class(spa_t *spa)
1698 {
1699 	return (spa->spa_log_class);
1700 }
1701 
1702 void
1703 spa_evicting_os_register(spa_t *spa, objset_t *os)
1704 {
1705 	mutex_enter(&spa->spa_evicting_os_lock);
1706 	list_insert_head(&spa->spa_evicting_os_list, os);
1707 	mutex_exit(&spa->spa_evicting_os_lock);
1708 }
1709 
1710 void
1711 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1712 {
1713 	mutex_enter(&spa->spa_evicting_os_lock);
1714 	list_remove(&spa->spa_evicting_os_list, os);
1715 	cv_broadcast(&spa->spa_evicting_os_cv);
1716 	mutex_exit(&spa->spa_evicting_os_lock);
1717 }
1718 
1719 void
1720 spa_evicting_os_wait(spa_t *spa)
1721 {
1722 	mutex_enter(&spa->spa_evicting_os_lock);
1723 	while (!list_is_empty(&spa->spa_evicting_os_list))
1724 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1725 	mutex_exit(&spa->spa_evicting_os_lock);
1726 
1727 	dmu_buf_user_evict_wait();
1728 }
1729 
1730 int
1731 spa_max_replication(spa_t *spa)
1732 {
1733 	/*
1734 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1735 	 * handle BPs with more than one DVA allocated.  Set our max
1736 	 * replication level accordingly.
1737 	 */
1738 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1739 		return (1);
1740 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1741 }
1742 
1743 int
1744 spa_prev_software_version(spa_t *spa)
1745 {
1746 	return (spa->spa_prev_software_version);
1747 }
1748 
1749 uint64_t
1750 spa_deadman_synctime(spa_t *spa)
1751 {
1752 	return (spa->spa_deadman_synctime);
1753 }
1754 
1755 uint64_t
1756 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1757 {
1758 	uint64_t asize = DVA_GET_ASIZE(dva);
1759 	uint64_t dsize = asize;
1760 
1761 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1762 
1763 	if (asize != 0 && spa->spa_deflate) {
1764 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1765 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1766 	}
1767 
1768 	return (dsize);
1769 }
1770 
1771 uint64_t
1772 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1773 {
1774 	uint64_t dsize = 0;
1775 
1776 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1777 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1778 
1779 	return (dsize);
1780 }
1781 
1782 uint64_t
1783 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1784 {
1785 	uint64_t dsize = 0;
1786 
1787 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1788 
1789 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1790 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1791 
1792 	spa_config_exit(spa, SCL_VDEV, FTAG);
1793 
1794 	return (dsize);
1795 }
1796 
1797 /*
1798  * ==========================================================================
1799  * Initialization and Termination
1800  * ==========================================================================
1801  */
1802 
1803 static int
1804 spa_name_compare(const void *a1, const void *a2)
1805 {
1806 	const spa_t *s1 = a1;
1807 	const spa_t *s2 = a2;
1808 	int s;
1809 
1810 	s = strcmp(s1->spa_name, s2->spa_name);
1811 	if (s > 0)
1812 		return (1);
1813 	if (s < 0)
1814 		return (-1);
1815 	return (0);
1816 }
1817 
1818 int
1819 spa_busy(void)
1820 {
1821 	return (spa_active_count);
1822 }
1823 
1824 void
1825 spa_boot_init()
1826 {
1827 	spa_config_load();
1828 }
1829 
1830 void
1831 spa_init(int mode)
1832 {
1833 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1834 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1835 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1836 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1837 
1838 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1839 	    offsetof(spa_t, spa_avl));
1840 
1841 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1842 	    offsetof(spa_aux_t, aux_avl));
1843 
1844 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1845 	    offsetof(spa_aux_t, aux_avl));
1846 
1847 	spa_mode_global = mode;
1848 
1849 #ifdef _KERNEL
1850 	spa_arch_init();
1851 #else
1852 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1853 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1854 		if (arc_procfd == -1) {
1855 			perror("could not enable watchpoints: "
1856 			    "opening /proc/self/ctl failed: ");
1857 		} else {
1858 			arc_watch = B_TRUE;
1859 		}
1860 	}
1861 #endif
1862 
1863 	refcount_init();
1864 	unique_init();
1865 	range_tree_init();
1866 	zio_init();
1867 	dmu_init();
1868 	zil_init();
1869 	vdev_cache_stat_init();
1870 	zfs_prop_init();
1871 	zpool_prop_init();
1872 	zpool_feature_init();
1873 	spa_config_load();
1874 	l2arc_start();
1875 }
1876 
1877 void
1878 spa_fini(void)
1879 {
1880 	l2arc_stop();
1881 
1882 	spa_evict_all();
1883 
1884 	vdev_cache_stat_fini();
1885 	zil_fini();
1886 	dmu_fini();
1887 	zio_fini();
1888 	range_tree_fini();
1889 	unique_fini();
1890 	refcount_fini();
1891 
1892 	avl_destroy(&spa_namespace_avl);
1893 	avl_destroy(&spa_spare_avl);
1894 	avl_destroy(&spa_l2cache_avl);
1895 
1896 	cv_destroy(&spa_namespace_cv);
1897 	mutex_destroy(&spa_namespace_lock);
1898 	mutex_destroy(&spa_spare_lock);
1899 	mutex_destroy(&spa_l2cache_lock);
1900 }
1901 
1902 /*
1903  * Return whether this pool has slogs. No locking needed.
1904  * It's not a problem if the wrong answer is returned as it's only for
1905  * performance and not correctness
1906  */
1907 boolean_t
1908 spa_has_slogs(spa_t *spa)
1909 {
1910 	return (spa->spa_log_class->mc_rotor != NULL);
1911 }
1912 
1913 spa_log_state_t
1914 spa_get_log_state(spa_t *spa)
1915 {
1916 	return (spa->spa_log_state);
1917 }
1918 
1919 void
1920 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1921 {
1922 	spa->spa_log_state = state;
1923 }
1924 
1925 boolean_t
1926 spa_is_root(spa_t *spa)
1927 {
1928 	return (spa->spa_is_root);
1929 }
1930 
1931 boolean_t
1932 spa_writeable(spa_t *spa)
1933 {
1934 	return (!!(spa->spa_mode & FWRITE));
1935 }
1936 
1937 /*
1938  * Returns true if there is a pending sync task in any of the current
1939  * syncing txg, the current quiescing txg, or the current open txg.
1940  */
1941 boolean_t
1942 spa_has_pending_synctask(spa_t *spa)
1943 {
1944 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1945 }
1946 
1947 int
1948 spa_mode(spa_t *spa)
1949 {
1950 	return (spa->spa_mode);
1951 }
1952 
1953 uint64_t
1954 spa_bootfs(spa_t *spa)
1955 {
1956 	return (spa->spa_bootfs);
1957 }
1958 
1959 uint64_t
1960 spa_delegation(spa_t *spa)
1961 {
1962 	return (spa->spa_delegation);
1963 }
1964 
1965 objset_t *
1966 spa_meta_objset(spa_t *spa)
1967 {
1968 	return (spa->spa_meta_objset);
1969 }
1970 
1971 enum zio_checksum
1972 spa_dedup_checksum(spa_t *spa)
1973 {
1974 	return (spa->spa_dedup_checksum);
1975 }
1976 
1977 /*
1978  * Reset pool scan stat per scan pass (or reboot).
1979  */
1980 void
1981 spa_scan_stat_init(spa_t *spa)
1982 {
1983 	/* data not stored on disk */
1984 	spa->spa_scan_pass_start = gethrestime_sec();
1985 	spa->spa_scan_pass_exam = 0;
1986 	vdev_scan_stat_init(spa->spa_root_vdev);
1987 }
1988 
1989 /*
1990  * Get scan stats for zpool status reports
1991  */
1992 int
1993 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1994 {
1995 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1996 
1997 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1998 		return (SET_ERROR(ENOENT));
1999 	bzero(ps, sizeof (pool_scan_stat_t));
2000 
2001 	/* data stored on disk */
2002 	ps->pss_func = scn->scn_phys.scn_func;
2003 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2004 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2005 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2006 	ps->pss_examined = scn->scn_phys.scn_examined;
2007 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2008 	ps->pss_processed = scn->scn_phys.scn_processed;
2009 	ps->pss_errors = scn->scn_phys.scn_errors;
2010 	ps->pss_state = scn->scn_phys.scn_state;
2011 
2012 	/* data not stored on disk */
2013 	ps->pss_pass_start = spa->spa_scan_pass_start;
2014 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2015 
2016 	return (0);
2017 }
2018 
2019 boolean_t
2020 spa_debug_enabled(spa_t *spa)
2021 {
2022 	return (spa->spa_debug);
2023 }
2024 
2025 int
2026 spa_maxblocksize(spa_t *spa)
2027 {
2028 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2029 		return (SPA_MAXBLOCKSIZE);
2030 	else
2031 		return (SPA_OLD_MAXBLOCKSIZE);
2032 }
2033