xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision e14bb3258d05c1b1077e2db7cf77088924e56919)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dasize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	for (int i = 0; i < SCL_LOCKS; i++) {
314 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
315 		if (!(locks & (1 << i)))
316 			continue;
317 		mutex_enter(&scl->scl_lock);
318 		if (rw == RW_READER) {
319 			while (scl->scl_writer || scl->scl_write_wanted) {
320 				cv_wait(&scl->scl_cv, &scl->scl_lock);
321 			}
322 		} else {
323 			ASSERT(scl->scl_writer != curthread);
324 			while (!refcount_is_zero(&scl->scl_count)) {
325 				scl->scl_write_wanted++;
326 				cv_wait(&scl->scl_cv, &scl->scl_lock);
327 				scl->scl_write_wanted--;
328 			}
329 			scl->scl_writer = curthread;
330 		}
331 		(void) refcount_add(&scl->scl_count, tag);
332 		mutex_exit(&scl->scl_lock);
333 	}
334 }
335 
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
340 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 		if (!(locks & (1 << i)))
342 			continue;
343 		mutex_enter(&scl->scl_lock);
344 		ASSERT(!refcount_is_zero(&scl->scl_count));
345 		if (refcount_remove(&scl->scl_count, tag) == 0) {
346 			ASSERT(scl->scl_writer == NULL ||
347 			    scl->scl_writer == curthread);
348 			scl->scl_writer = NULL;	/* OK in either case */
349 			cv_broadcast(&scl->scl_cv);
350 		}
351 		mutex_exit(&scl->scl_lock);
352 	}
353 }
354 
355 int
356 spa_config_held(spa_t *spa, int locks, krw_t rw)
357 {
358 	int locks_held = 0;
359 
360 	for (int i = 0; i < SCL_LOCKS; i++) {
361 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
362 		if (!(locks & (1 << i)))
363 			continue;
364 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
365 		    (rw == RW_WRITER && scl->scl_writer == curthread))
366 			locks_held |= 1 << i;
367 	}
368 
369 	return (locks_held);
370 }
371 
372 /*
373  * ==========================================================================
374  * SPA namespace functions
375  * ==========================================================================
376  */
377 
378 /*
379  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
380  * Returns NULL if no matching spa_t is found.
381  */
382 spa_t *
383 spa_lookup(const char *name)
384 {
385 	static spa_t search;	/* spa_t is large; don't allocate on stack */
386 	spa_t *spa;
387 	avl_index_t where;
388 	char c;
389 	char *cp;
390 
391 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
392 
393 	/*
394 	 * If it's a full dataset name, figure out the pool name and
395 	 * just use that.
396 	 */
397 	cp = strpbrk(name, "/@");
398 	if (cp) {
399 		c = *cp;
400 		*cp = '\0';
401 	}
402 
403 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
404 	spa = avl_find(&spa_namespace_avl, &search, &where);
405 
406 	if (cp)
407 		*cp = c;
408 
409 	return (spa);
410 }
411 
412 /*
413  * Create an uninitialized spa_t with the given name.  Requires
414  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
415  * exist by calling spa_lookup() first.
416  */
417 spa_t *
418 spa_add(const char *name, const char *altroot)
419 {
420 	spa_t *spa;
421 	spa_config_dirent_t *dp;
422 
423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
424 
425 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
426 
427 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
428 
429 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
430 	mutex_init(&spa->spa_async_root_lock, NULL, MUTEX_DEFAULT, NULL);
431 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
432 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
437 
438 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
439 	cv_init(&spa->spa_async_root_cv, NULL, CV_DEFAULT, NULL);
440 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
441 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
442 
443 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
444 	spa->spa_state = POOL_STATE_UNINITIALIZED;
445 	spa->spa_freeze_txg = UINT64_MAX;
446 	spa->spa_final_txg = UINT64_MAX;
447 
448 	refcount_create(&spa->spa_refcount);
449 	spa_config_lock_init(spa);
450 
451 	avl_add(&spa_namespace_avl, spa);
452 
453 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
454 
455 	/*
456 	 * Set the alternate root, if there is one.
457 	 */
458 	if (altroot) {
459 		spa->spa_root = spa_strdup(altroot);
460 		spa_active_count++;
461 	}
462 
463 	/*
464 	 * Every pool starts with the default cachefile
465 	 */
466 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
467 	    offsetof(spa_config_dirent_t, scd_link));
468 
469 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
470 	dp->scd_path = spa_strdup(spa_config_path);
471 	list_insert_head(&spa->spa_config_list, dp);
472 
473 	return (spa);
474 }
475 
476 /*
477  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
478  * spa_namespace_lock.  This is called only after the spa_t has been closed and
479  * deactivated.
480  */
481 void
482 spa_remove(spa_t *spa)
483 {
484 	spa_config_dirent_t *dp;
485 
486 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
487 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
488 
489 	avl_remove(&spa_namespace_avl, spa);
490 	cv_broadcast(&spa_namespace_cv);
491 
492 	if (spa->spa_root) {
493 		spa_strfree(spa->spa_root);
494 		spa_active_count--;
495 	}
496 
497 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
498 		list_remove(&spa->spa_config_list, dp);
499 		if (dp->scd_path != NULL)
500 			spa_strfree(dp->scd_path);
501 		kmem_free(dp, sizeof (spa_config_dirent_t));
502 	}
503 
504 	list_destroy(&spa->spa_config_list);
505 
506 	spa_config_set(spa, NULL);
507 
508 	refcount_destroy(&spa->spa_refcount);
509 
510 	spa_config_lock_destroy(spa);
511 
512 	rw_destroy(&spa->spa_traverse_lock);
513 
514 	cv_destroy(&spa->spa_async_cv);
515 	cv_destroy(&spa->spa_async_root_cv);
516 	cv_destroy(&spa->spa_scrub_io_cv);
517 	cv_destroy(&spa->spa_suspend_cv);
518 
519 	mutex_destroy(&spa->spa_async_lock);
520 	mutex_destroy(&spa->spa_async_root_lock);
521 	mutex_destroy(&spa->spa_scrub_lock);
522 	mutex_destroy(&spa->spa_errlog_lock);
523 	mutex_destroy(&spa->spa_errlist_lock);
524 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
525 	mutex_destroy(&spa->spa_history_lock);
526 	mutex_destroy(&spa->spa_props_lock);
527 	mutex_destroy(&spa->spa_suspend_lock);
528 
529 	kmem_free(spa, sizeof (spa_t));
530 }
531 
532 /*
533  * Given a pool, return the next pool in the namespace, or NULL if there is
534  * none.  If 'prev' is NULL, return the first pool.
535  */
536 spa_t *
537 spa_next(spa_t *prev)
538 {
539 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
540 
541 	if (prev)
542 		return (AVL_NEXT(&spa_namespace_avl, prev));
543 	else
544 		return (avl_first(&spa_namespace_avl));
545 }
546 
547 /*
548  * ==========================================================================
549  * SPA refcount functions
550  * ==========================================================================
551  */
552 
553 /*
554  * Add a reference to the given spa_t.  Must have at least one reference, or
555  * have the namespace lock held.
556  */
557 void
558 spa_open_ref(spa_t *spa, void *tag)
559 {
560 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
561 	    MUTEX_HELD(&spa_namespace_lock));
562 	(void) refcount_add(&spa->spa_refcount, tag);
563 }
564 
565 /*
566  * Remove a reference to the given spa_t.  Must have at least one reference, or
567  * have the namespace lock held.
568  */
569 void
570 spa_close(spa_t *spa, void *tag)
571 {
572 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
573 	    MUTEX_HELD(&spa_namespace_lock));
574 	(void) refcount_remove(&spa->spa_refcount, tag);
575 }
576 
577 /*
578  * Check to see if the spa refcount is zero.  Must be called with
579  * spa_namespace_lock held.  We really compare against spa_minref, which is the
580  * number of references acquired when opening a pool
581  */
582 boolean_t
583 spa_refcount_zero(spa_t *spa)
584 {
585 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
586 
587 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
588 }
589 
590 /*
591  * ==========================================================================
592  * SPA spare and l2cache tracking
593  * ==========================================================================
594  */
595 
596 /*
597  * Hot spares and cache devices are tracked using the same code below,
598  * for 'auxiliary' devices.
599  */
600 
601 typedef struct spa_aux {
602 	uint64_t	aux_guid;
603 	uint64_t	aux_pool;
604 	avl_node_t	aux_avl;
605 	int		aux_count;
606 } spa_aux_t;
607 
608 static int
609 spa_aux_compare(const void *a, const void *b)
610 {
611 	const spa_aux_t *sa = a;
612 	const spa_aux_t *sb = b;
613 
614 	if (sa->aux_guid < sb->aux_guid)
615 		return (-1);
616 	else if (sa->aux_guid > sb->aux_guid)
617 		return (1);
618 	else
619 		return (0);
620 }
621 
622 void
623 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
624 {
625 	avl_index_t where;
626 	spa_aux_t search;
627 	spa_aux_t *aux;
628 
629 	search.aux_guid = vd->vdev_guid;
630 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
631 		aux->aux_count++;
632 	} else {
633 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
634 		aux->aux_guid = vd->vdev_guid;
635 		aux->aux_count = 1;
636 		avl_insert(avl, aux, where);
637 	}
638 }
639 
640 void
641 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
642 {
643 	spa_aux_t search;
644 	spa_aux_t *aux;
645 	avl_index_t where;
646 
647 	search.aux_guid = vd->vdev_guid;
648 	aux = avl_find(avl, &search, &where);
649 
650 	ASSERT(aux != NULL);
651 
652 	if (--aux->aux_count == 0) {
653 		avl_remove(avl, aux);
654 		kmem_free(aux, sizeof (spa_aux_t));
655 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
656 		aux->aux_pool = 0ULL;
657 	}
658 }
659 
660 boolean_t
661 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
662 {
663 	spa_aux_t search, *found;
664 
665 	search.aux_guid = guid;
666 	found = avl_find(avl, &search, NULL);
667 
668 	if (pool) {
669 		if (found)
670 			*pool = found->aux_pool;
671 		else
672 			*pool = 0ULL;
673 	}
674 
675 	if (refcnt) {
676 		if (found)
677 			*refcnt = found->aux_count;
678 		else
679 			*refcnt = 0;
680 	}
681 
682 	return (found != NULL);
683 }
684 
685 void
686 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
687 {
688 	spa_aux_t search, *found;
689 	avl_index_t where;
690 
691 	search.aux_guid = vd->vdev_guid;
692 	found = avl_find(avl, &search, &where);
693 	ASSERT(found != NULL);
694 	ASSERT(found->aux_pool == 0ULL);
695 
696 	found->aux_pool = spa_guid(vd->vdev_spa);
697 }
698 
699 /*
700  * Spares are tracked globally due to the following constraints:
701  *
702  * 	- A spare may be part of multiple pools.
703  * 	- A spare may be added to a pool even if it's actively in use within
704  *	  another pool.
705  * 	- A spare in use in any pool can only be the source of a replacement if
706  *	  the target is a spare in the same pool.
707  *
708  * We keep track of all spares on the system through the use of a reference
709  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
710  * spare, then we bump the reference count in the AVL tree.  In addition, we set
711  * the 'vdev_isspare' member to indicate that the device is a spare (active or
712  * inactive).  When a spare is made active (used to replace a device in the
713  * pool), we also keep track of which pool its been made a part of.
714  *
715  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
716  * called under the spa_namespace lock as part of vdev reconfiguration.  The
717  * separate spare lock exists for the status query path, which does not need to
718  * be completely consistent with respect to other vdev configuration changes.
719  */
720 
721 static int
722 spa_spare_compare(const void *a, const void *b)
723 {
724 	return (spa_aux_compare(a, b));
725 }
726 
727 void
728 spa_spare_add(vdev_t *vd)
729 {
730 	mutex_enter(&spa_spare_lock);
731 	ASSERT(!vd->vdev_isspare);
732 	spa_aux_add(vd, &spa_spare_avl);
733 	vd->vdev_isspare = B_TRUE;
734 	mutex_exit(&spa_spare_lock);
735 }
736 
737 void
738 spa_spare_remove(vdev_t *vd)
739 {
740 	mutex_enter(&spa_spare_lock);
741 	ASSERT(vd->vdev_isspare);
742 	spa_aux_remove(vd, &spa_spare_avl);
743 	vd->vdev_isspare = B_FALSE;
744 	mutex_exit(&spa_spare_lock);
745 }
746 
747 boolean_t
748 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
749 {
750 	boolean_t found;
751 
752 	mutex_enter(&spa_spare_lock);
753 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
754 	mutex_exit(&spa_spare_lock);
755 
756 	return (found);
757 }
758 
759 void
760 spa_spare_activate(vdev_t *vd)
761 {
762 	mutex_enter(&spa_spare_lock);
763 	ASSERT(vd->vdev_isspare);
764 	spa_aux_activate(vd, &spa_spare_avl);
765 	mutex_exit(&spa_spare_lock);
766 }
767 
768 /*
769  * Level 2 ARC devices are tracked globally for the same reasons as spares.
770  * Cache devices currently only support one pool per cache device, and so
771  * for these devices the aux reference count is currently unused beyond 1.
772  */
773 
774 static int
775 spa_l2cache_compare(const void *a, const void *b)
776 {
777 	return (spa_aux_compare(a, b));
778 }
779 
780 void
781 spa_l2cache_add(vdev_t *vd)
782 {
783 	mutex_enter(&spa_l2cache_lock);
784 	ASSERT(!vd->vdev_isl2cache);
785 	spa_aux_add(vd, &spa_l2cache_avl);
786 	vd->vdev_isl2cache = B_TRUE;
787 	mutex_exit(&spa_l2cache_lock);
788 }
789 
790 void
791 spa_l2cache_remove(vdev_t *vd)
792 {
793 	mutex_enter(&spa_l2cache_lock);
794 	ASSERT(vd->vdev_isl2cache);
795 	spa_aux_remove(vd, &spa_l2cache_avl);
796 	vd->vdev_isl2cache = B_FALSE;
797 	mutex_exit(&spa_l2cache_lock);
798 }
799 
800 boolean_t
801 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
802 {
803 	boolean_t found;
804 
805 	mutex_enter(&spa_l2cache_lock);
806 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
807 	mutex_exit(&spa_l2cache_lock);
808 
809 	return (found);
810 }
811 
812 void
813 spa_l2cache_activate(vdev_t *vd)
814 {
815 	mutex_enter(&spa_l2cache_lock);
816 	ASSERT(vd->vdev_isl2cache);
817 	spa_aux_activate(vd, &spa_l2cache_avl);
818 	mutex_exit(&spa_l2cache_lock);
819 }
820 
821 void
822 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
823 {
824 	vdev_space_update(vd, space, alloc, B_FALSE);
825 }
826 
827 /*
828  * ==========================================================================
829  * SPA vdev locking
830  * ==========================================================================
831  */
832 
833 /*
834  * Lock the given spa_t for the purpose of adding or removing a vdev.
835  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
836  * It returns the next transaction group for the spa_t.
837  */
838 uint64_t
839 spa_vdev_enter(spa_t *spa)
840 {
841 	mutex_enter(&spa_namespace_lock);
842 
843 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
844 
845 	return (spa_last_synced_txg(spa) + 1);
846 }
847 
848 /*
849  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
850  * locking of spa_vdev_enter(), we also want make sure the transactions have
851  * synced to disk, and then update the global configuration cache with the new
852  * information.
853  */
854 int
855 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
856 {
857 	int config_changed = B_FALSE;
858 
859 	ASSERT(txg > spa_last_synced_txg(spa));
860 
861 	spa->spa_pending_vdev = NULL;
862 
863 	/*
864 	 * Reassess the DTLs.
865 	 */
866 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
867 
868 	/*
869 	 * If the config changed, notify the scrub thread that it must restart.
870 	 */
871 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
872 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
873 		config_changed = B_TRUE;
874 	}
875 
876 	spa_config_exit(spa, SCL_ALL, spa);
877 
878 	/*
879 	 * Note: this txg_wait_synced() is important because it ensures
880 	 * that there won't be more than one config change per txg.
881 	 * This allows us to use the txg as the generation number.
882 	 */
883 	if (error == 0)
884 		txg_wait_synced(spa->spa_dsl_pool, txg);
885 
886 	if (vd != NULL) {
887 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
888 		vdev_free(vd);
889 	}
890 
891 	/*
892 	 * If the config changed, update the config cache.
893 	 */
894 	if (config_changed)
895 		spa_config_sync(spa, B_FALSE, B_TRUE);
896 
897 	mutex_exit(&spa_namespace_lock);
898 
899 	return (error);
900 }
901 
902 /*
903  * Lock the given spa_t for the purpose of changing vdev state.
904  */
905 void
906 spa_vdev_state_enter(spa_t *spa)
907 {
908 	spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
909 }
910 
911 int
912 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
913 {
914 	if (vd != NULL)
915 		vdev_state_dirty(vd->vdev_top);
916 
917 	spa_config_exit(spa, SCL_STATE_ALL, spa);
918 
919 	return (error);
920 }
921 
922 /*
923  * ==========================================================================
924  * Miscellaneous functions
925  * ==========================================================================
926  */
927 
928 /*
929  * Rename a spa_t.
930  */
931 int
932 spa_rename(const char *name, const char *newname)
933 {
934 	spa_t *spa;
935 	int err;
936 
937 	/*
938 	 * Lookup the spa_t and grab the config lock for writing.  We need to
939 	 * actually open the pool so that we can sync out the necessary labels.
940 	 * It's OK to call spa_open() with the namespace lock held because we
941 	 * allow recursive calls for other reasons.
942 	 */
943 	mutex_enter(&spa_namespace_lock);
944 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
945 		mutex_exit(&spa_namespace_lock);
946 		return (err);
947 	}
948 
949 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
950 
951 	avl_remove(&spa_namespace_avl, spa);
952 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
953 	avl_add(&spa_namespace_avl, spa);
954 
955 	/*
956 	 * Sync all labels to disk with the new names by marking the root vdev
957 	 * dirty and waiting for it to sync.  It will pick up the new pool name
958 	 * during the sync.
959 	 */
960 	vdev_config_dirty(spa->spa_root_vdev);
961 
962 	spa_config_exit(spa, SCL_ALL, FTAG);
963 
964 	txg_wait_synced(spa->spa_dsl_pool, 0);
965 
966 	/*
967 	 * Sync the updated config cache.
968 	 */
969 	spa_config_sync(spa, B_FALSE, B_TRUE);
970 
971 	spa_close(spa, FTAG);
972 
973 	mutex_exit(&spa_namespace_lock);
974 
975 	return (0);
976 }
977 
978 
979 /*
980  * Determine whether a pool with given pool_guid exists.  If device_guid is
981  * non-zero, determine whether the pool exists *and* contains a device with the
982  * specified device_guid.
983  */
984 boolean_t
985 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
986 {
987 	spa_t *spa;
988 	avl_tree_t *t = &spa_namespace_avl;
989 
990 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
991 
992 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
993 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
994 			continue;
995 		if (spa->spa_root_vdev == NULL)
996 			continue;
997 		if (spa_guid(spa) == pool_guid) {
998 			if (device_guid == 0)
999 				break;
1000 
1001 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1002 			    device_guid) != NULL)
1003 				break;
1004 
1005 			/*
1006 			 * Check any devices we may be in the process of adding.
1007 			 */
1008 			if (spa->spa_pending_vdev) {
1009 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1010 				    device_guid) != NULL)
1011 					break;
1012 			}
1013 		}
1014 	}
1015 
1016 	return (spa != NULL);
1017 }
1018 
1019 char *
1020 spa_strdup(const char *s)
1021 {
1022 	size_t len;
1023 	char *new;
1024 
1025 	len = strlen(s);
1026 	new = kmem_alloc(len + 1, KM_SLEEP);
1027 	bcopy(s, new, len);
1028 	new[len] = '\0';
1029 
1030 	return (new);
1031 }
1032 
1033 void
1034 spa_strfree(char *s)
1035 {
1036 	kmem_free(s, strlen(s) + 1);
1037 }
1038 
1039 uint64_t
1040 spa_get_random(uint64_t range)
1041 {
1042 	uint64_t r;
1043 
1044 	ASSERT(range != 0);
1045 
1046 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1047 
1048 	return (r % range);
1049 }
1050 
1051 void
1052 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1053 {
1054 	int d;
1055 
1056 	if (bp == NULL) {
1057 		(void) snprintf(buf, len, "<NULL>");
1058 		return;
1059 	}
1060 
1061 	if (BP_IS_HOLE(bp)) {
1062 		(void) snprintf(buf, len, "<hole>");
1063 		return;
1064 	}
1065 
1066 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1067 	    (u_longlong_t)BP_GET_LEVEL(bp),
1068 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
1069 	    (u_longlong_t)BP_GET_LSIZE(bp),
1070 	    (u_longlong_t)BP_GET_PSIZE(bp));
1071 
1072 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1073 		const dva_t *dva = &bp->blk_dva[d];
1074 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
1075 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
1076 		    (u_longlong_t)DVA_GET_VDEV(dva),
1077 		    (u_longlong_t)DVA_GET_OFFSET(dva),
1078 		    (u_longlong_t)DVA_GET_ASIZE(dva));
1079 	}
1080 
1081 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
1082 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1083 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1084 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1085 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1086 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
1087 	    (u_longlong_t)bp->blk_birth,
1088 	    (u_longlong_t)bp->blk_fill,
1089 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
1090 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
1091 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
1092 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
1093 }
1094 
1095 void
1096 spa_freeze(spa_t *spa)
1097 {
1098 	uint64_t freeze_txg = 0;
1099 
1100 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1101 	if (spa->spa_freeze_txg == UINT64_MAX) {
1102 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1103 		spa->spa_freeze_txg = freeze_txg;
1104 	}
1105 	spa_config_exit(spa, SCL_ALL, FTAG);
1106 	if (freeze_txg != 0)
1107 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1108 }
1109 
1110 void
1111 zfs_panic_recover(const char *fmt, ...)
1112 {
1113 	va_list adx;
1114 
1115 	va_start(adx, fmt);
1116 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1117 	va_end(adx);
1118 }
1119 
1120 /*
1121  * ==========================================================================
1122  * Accessor functions
1123  * ==========================================================================
1124  */
1125 
1126 krwlock_t *
1127 spa_traverse_rwlock(spa_t *spa)
1128 {
1129 	return (&spa->spa_traverse_lock);
1130 }
1131 
1132 boolean_t
1133 spa_traverse_wanted(spa_t *spa)
1134 {
1135 	return (spa->spa_traverse_wanted);
1136 }
1137 
1138 dsl_pool_t *
1139 spa_get_dsl(spa_t *spa)
1140 {
1141 	return (spa->spa_dsl_pool);
1142 }
1143 
1144 blkptr_t *
1145 spa_get_rootblkptr(spa_t *spa)
1146 {
1147 	return (&spa->spa_ubsync.ub_rootbp);
1148 }
1149 
1150 void
1151 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1152 {
1153 	spa->spa_uberblock.ub_rootbp = *bp;
1154 }
1155 
1156 void
1157 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1158 {
1159 	if (spa->spa_root == NULL)
1160 		buf[0] = '\0';
1161 	else
1162 		(void) strncpy(buf, spa->spa_root, buflen);
1163 }
1164 
1165 int
1166 spa_sync_pass(spa_t *spa)
1167 {
1168 	return (spa->spa_sync_pass);
1169 }
1170 
1171 char *
1172 spa_name(spa_t *spa)
1173 {
1174 	return (spa->spa_name);
1175 }
1176 
1177 uint64_t
1178 spa_guid(spa_t *spa)
1179 {
1180 	/*
1181 	 * If we fail to parse the config during spa_load(), we can go through
1182 	 * the error path (which posts an ereport) and end up here with no root
1183 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1184 	 * this case.
1185 	 */
1186 	if (spa->spa_root_vdev != NULL)
1187 		return (spa->spa_root_vdev->vdev_guid);
1188 	else
1189 		return (spa->spa_load_guid);
1190 }
1191 
1192 uint64_t
1193 spa_last_synced_txg(spa_t *spa)
1194 {
1195 	return (spa->spa_ubsync.ub_txg);
1196 }
1197 
1198 uint64_t
1199 spa_first_txg(spa_t *spa)
1200 {
1201 	return (spa->spa_first_txg);
1202 }
1203 
1204 int
1205 spa_state(spa_t *spa)
1206 {
1207 	return (spa->spa_state);
1208 }
1209 
1210 uint64_t
1211 spa_freeze_txg(spa_t *spa)
1212 {
1213 	return (spa->spa_freeze_txg);
1214 }
1215 
1216 /*
1217  * Return how much space is allocated in the pool (ie. sum of all asize)
1218  */
1219 uint64_t
1220 spa_get_alloc(spa_t *spa)
1221 {
1222 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1223 }
1224 
1225 /*
1226  * Return how much (raid-z inflated) space there is in the pool.
1227  */
1228 uint64_t
1229 spa_get_space(spa_t *spa)
1230 {
1231 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1232 }
1233 
1234 /*
1235  * Return the amount of raid-z-deflated space in the pool.
1236  */
1237 uint64_t
1238 spa_get_dspace(spa_t *spa)
1239 {
1240 	if (spa->spa_deflate)
1241 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1242 	else
1243 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1244 }
1245 
1246 /* ARGSUSED */
1247 uint64_t
1248 spa_get_asize(spa_t *spa, uint64_t lsize)
1249 {
1250 	/*
1251 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1252 	 * case the space requirement is exactly 2x; so just assume that.
1253 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1254 	 * we have to multiply by a total of 6x.
1255 	 */
1256 	return (lsize * 6);
1257 }
1258 
1259 /*
1260  * Return the failure mode that has been set to this pool. The default
1261  * behavior will be to block all I/Os when a complete failure occurs.
1262  */
1263 uint8_t
1264 spa_get_failmode(spa_t *spa)
1265 {
1266 	return (spa->spa_failmode);
1267 }
1268 
1269 boolean_t
1270 spa_suspended(spa_t *spa)
1271 {
1272 	return (spa->spa_suspended);
1273 }
1274 
1275 uint64_t
1276 spa_version(spa_t *spa)
1277 {
1278 	return (spa->spa_ubsync.ub_version);
1279 }
1280 
1281 int
1282 spa_max_replication(spa_t *spa)
1283 {
1284 	/*
1285 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1286 	 * handle BPs with more than one DVA allocated.  Set our max
1287 	 * replication level accordingly.
1288 	 */
1289 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1290 		return (1);
1291 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1292 }
1293 
1294 uint64_t
1295 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1296 {
1297 	int sz = 0, i;
1298 
1299 	if (!spa->spa_deflate)
1300 		return (BP_GET_ASIZE(bp));
1301 
1302 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1303 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1304 		vdev_t *vd =
1305 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1306 		if (vd)
1307 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1308 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1309 	}
1310 	spa_config_exit(spa, SCL_VDEV, FTAG);
1311 	return (sz);
1312 }
1313 
1314 /*
1315  * ==========================================================================
1316  * Initialization and Termination
1317  * ==========================================================================
1318  */
1319 
1320 static int
1321 spa_name_compare(const void *a1, const void *a2)
1322 {
1323 	const spa_t *s1 = a1;
1324 	const spa_t *s2 = a2;
1325 	int s;
1326 
1327 	s = strcmp(s1->spa_name, s2->spa_name);
1328 	if (s > 0)
1329 		return (1);
1330 	if (s < 0)
1331 		return (-1);
1332 	return (0);
1333 }
1334 
1335 int
1336 spa_busy(void)
1337 {
1338 	return (spa_active_count);
1339 }
1340 
1341 void
1342 spa_boot_init()
1343 {
1344 	spa_config_load();
1345 }
1346 
1347 void
1348 spa_init(int mode)
1349 {
1350 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1351 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1352 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1353 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1354 
1355 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1356 	    offsetof(spa_t, spa_avl));
1357 
1358 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1359 	    offsetof(spa_aux_t, aux_avl));
1360 
1361 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1362 	    offsetof(spa_aux_t, aux_avl));
1363 
1364 	spa_mode = mode;
1365 
1366 	refcount_init();
1367 	unique_init();
1368 	zio_init();
1369 	dmu_init();
1370 	zil_init();
1371 	vdev_cache_stat_init();
1372 	zfs_prop_init();
1373 	zpool_prop_init();
1374 	spa_config_load();
1375 	l2arc_start();
1376 }
1377 
1378 void
1379 spa_fini(void)
1380 {
1381 	l2arc_stop();
1382 
1383 	spa_evict_all();
1384 
1385 	vdev_cache_stat_fini();
1386 	zil_fini();
1387 	dmu_fini();
1388 	zio_fini();
1389 	unique_fini();
1390 	refcount_fini();
1391 
1392 	avl_destroy(&spa_namespace_avl);
1393 	avl_destroy(&spa_spare_avl);
1394 	avl_destroy(&spa_l2cache_avl);
1395 
1396 	cv_destroy(&spa_namespace_cv);
1397 	mutex_destroy(&spa_namespace_lock);
1398 	mutex_destroy(&spa_spare_lock);
1399 	mutex_destroy(&spa_l2cache_lock);
1400 }
1401 
1402 /*
1403  * Return whether this pool has slogs. No locking needed.
1404  * It's not a problem if the wrong answer is returned as it's only for
1405  * performance and not correctness
1406  */
1407 boolean_t
1408 spa_has_slogs(spa_t *spa)
1409 {
1410 	return (spa->spa_log_class->mc_rotor != NULL);
1411 }
1412 
1413 /*
1414  * Return whether this pool is the root pool.
1415  */
1416 boolean_t
1417 spa_is_root(spa_t *spa)
1418 {
1419 	return (spa->spa_is_root);
1420 }
1421