xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision e0f1c0af)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  */
30 
31 #include <sys/zfs_context.h>
32 #include <sys/spa_impl.h>
33 #include <sys/spa_boot.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/zio_compress.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_initialize.h>
43 #include <sys/metaslab.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/txg.h>
46 #include <sys/avl.h>
47 #include <sys/unique.h>
48 #include <sys/dsl_pool.h>
49 #include <sys/dsl_dir.h>
50 #include <sys/dsl_prop.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include "zfs_prop.h"
57 #include <sys/zfeature.h>
58 
59 /*
60  * SPA locking
61  *
62  * There are four basic locks for managing spa_t structures:
63  *
64  * spa_namespace_lock (global mutex)
65  *
66  *	This lock must be acquired to do any of the following:
67  *
68  *		- Lookup a spa_t by name
69  *		- Add or remove a spa_t from the namespace
70  *		- Increase spa_refcount from non-zero
71  *		- Check if spa_refcount is zero
72  *		- Rename a spa_t
73  *		- add/remove/attach/detach devices
74  *		- Held for the duration of create/destroy/import/export
75  *
76  *	It does not need to handle recursion.  A create or destroy may
77  *	reference objects (files or zvols) in other pools, but by
78  *	definition they must have an existing reference, and will never need
79  *	to lookup a spa_t by name.
80  *
81  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
82  *
83  *	This reference count keep track of any active users of the spa_t.  The
84  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
85  *	the refcount is never really 'zero' - opening a pool implicitly keeps
86  *	some references in the DMU.  Internally we check against spa_minref, but
87  *	present the image of a zero/non-zero value to consumers.
88  *
89  * spa_config_lock[] (per-spa array of rwlocks)
90  *
91  *	This protects the spa_t from config changes, and must be held in
92  *	the following circumstances:
93  *
94  *		- RW_READER to perform I/O to the spa
95  *		- RW_WRITER to change the vdev config
96  *
97  * The locking order is fairly straightforward:
98  *
99  *		spa_namespace_lock	->	spa_refcount
100  *
101  *	The namespace lock must be acquired to increase the refcount from 0
102  *	or to check if it is zero.
103  *
104  *		spa_refcount		->	spa_config_lock[]
105  *
106  *	There must be at least one valid reference on the spa_t to acquire
107  *	the config lock.
108  *
109  *		spa_namespace_lock	->	spa_config_lock[]
110  *
111  *	The namespace lock must always be taken before the config lock.
112  *
113  *
114  * The spa_namespace_lock can be acquired directly and is globally visible.
115  *
116  * The namespace is manipulated using the following functions, all of which
117  * require the spa_namespace_lock to be held.
118  *
119  *	spa_lookup()		Lookup a spa_t by name.
120  *
121  *	spa_add()		Create a new spa_t in the namespace.
122  *
123  *	spa_remove()		Remove a spa_t from the namespace.  This also
124  *				frees up any memory associated with the spa_t.
125  *
126  *	spa_next()		Returns the next spa_t in the system, or the
127  *				first if NULL is passed.
128  *
129  *	spa_evict_all()		Shutdown and remove all spa_t structures in
130  *				the system.
131  *
132  *	spa_guid_exists()	Determine whether a pool/device guid exists.
133  *
134  * The spa_refcount is manipulated using the following functions:
135  *
136  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
137  *				called with spa_namespace_lock held if the
138  *				refcount is currently zero.
139  *
140  *	spa_close()		Remove a reference from the spa_t.  This will
141  *				not free the spa_t or remove it from the
142  *				namespace.  No locking is required.
143  *
144  *	spa_refcount_zero()	Returns true if the refcount is currently
145  *				zero.  Must be called with spa_namespace_lock
146  *				held.
147  *
148  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151  *
152  * To read the configuration, it suffices to hold one of these locks as reader.
153  * To modify the configuration, you must hold all locks as writer.  To modify
154  * vdev state without altering the vdev tree's topology (e.g. online/offline),
155  * you must hold SCL_STATE and SCL_ZIO as writer.
156  *
157  * We use these distinct config locks to avoid recursive lock entry.
158  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159  * block allocations (SCL_ALLOC), which may require reading space maps
160  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161  *
162  * The spa config locks cannot be normal rwlocks because we need the
163  * ability to hand off ownership.  For example, SCL_ZIO is acquired
164  * by the issuing thread and later released by an interrupt thread.
165  * They do, however, obey the usual write-wanted semantics to prevent
166  * writer (i.e. system administrator) starvation.
167  *
168  * The lock acquisition rules are as follows:
169  *
170  * SCL_CONFIG
171  *	Protects changes to the vdev tree topology, such as vdev
172  *	add/remove/attach/detach.  Protects the dirty config list
173  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
174  *
175  * SCL_STATE
176  *	Protects changes to pool state and vdev state, such as vdev
177  *	online/offline/fault/degrade/clear.  Protects the dirty state list
178  *	(spa_state_dirty_list) and global pool state (spa_state).
179  *
180  * SCL_ALLOC
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_alloc() and metaslab_claim().
183  *
184  * SCL_ZIO
185  *	Held by bp-level zios (those which have no io_vd upon entry)
186  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
187  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
188  *
189  * SCL_FREE
190  *	Protects changes to metaslab groups and classes.
191  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
192  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193  *	blocks in zio_done() while another i/o that holds either
194  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195  *
196  * SCL_VDEV
197  *	Held as reader to prevent changes to the vdev tree during trivial
198  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
199  *	other locks, and lower than all of them, to ensure that it's safe
200  *	to acquire regardless of caller context.
201  *
202  * In addition, the following rules apply:
203  *
204  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
205  *	The lock ordering is SCL_CONFIG > spa_props_lock.
206  *
207  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
208  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209  *	or zio_write_phys() -- the caller must ensure that the config cannot
210  *	cannot change in the interim, and that the vdev cannot be reopened.
211  *	SCL_STATE as reader suffices for both.
212  *
213  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214  *
215  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
216  *				for writing.
217  *
218  *	spa_vdev_exit()		Release the config lock, wait for all I/O
219  *				to complete, sync the updated configs to the
220  *				cache, and release the namespace lock.
221  *
222  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225  */
226 
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
232 
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
237 
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
240 
241 #ifdef ZFS_DEBUG
242 /*
243  * Everything except dprintf, spa, and indirect_remap is on by default
244  * in debug builds.
245  */
246 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
247 #else
248 int zfs_flags = 0;
249 #endif
250 
251 /*
252  * zfs_recover can be set to nonzero to attempt to recover from
253  * otherwise-fatal errors, typically caused by on-disk corruption.  When
254  * set, calls to zfs_panic_recover() will turn into warning messages.
255  * This should only be used as a last resort, as it typically results
256  * in leaked space, or worse.
257  */
258 boolean_t zfs_recover = B_FALSE;
259 
260 /*
261  * If destroy encounters an EIO while reading metadata (e.g. indirect
262  * blocks), space referenced by the missing metadata can not be freed.
263  * Normally this causes the background destroy to become "stalled", as
264  * it is unable to make forward progress.  While in this stalled state,
265  * all remaining space to free from the error-encountering filesystem is
266  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
267  * permanently leak the space from indirect blocks that can not be read,
268  * and continue to free everything else that it can.
269  *
270  * The default, "stalling" behavior is useful if the storage partially
271  * fails (i.e. some but not all i/os fail), and then later recovers.  In
272  * this case, we will be able to continue pool operations while it is
273  * partially failed, and when it recovers, we can continue to free the
274  * space, with no leaks.  However, note that this case is actually
275  * fairly rare.
276  *
277  * Typically pools either (a) fail completely (but perhaps temporarily,
278  * e.g. a top-level vdev going offline), or (b) have localized,
279  * permanent errors (e.g. disk returns the wrong data due to bit flip or
280  * firmware bug).  In case (a), this setting does not matter because the
281  * pool will be suspended and the sync thread will not be able to make
282  * forward progress regardless.  In case (b), because the error is
283  * permanent, the best we can do is leak the minimum amount of space,
284  * which is what setting this flag will do.  Therefore, it is reasonable
285  * for this flag to normally be set, but we chose the more conservative
286  * approach of not setting it, so that there is no possibility of
287  * leaking space in the "partial temporary" failure case.
288  */
289 boolean_t zfs_free_leak_on_eio = B_FALSE;
290 
291 /*
292  * Expiration time in milliseconds. This value has two meanings. First it is
293  * used to determine when the spa_deadman() logic should fire. By default the
294  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
295  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
296  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
297  * in a system panic.
298  */
299 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
300 
301 /*
302  * Check time in milliseconds. This defines the frequency at which we check
303  * for hung I/O.
304  */
305 uint64_t zfs_deadman_checktime_ms = 5000ULL;
306 
307 /*
308  * Override the zfs deadman behavior via /etc/system. By default the
309  * deadman is enabled except on VMware and sparc deployments.
310  */
311 int zfs_deadman_enabled = -1;
312 
313 /*
314  * The worst case is single-sector max-parity RAID-Z blocks, in which
315  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316  * times the size; so just assume that.  Add to this the fact that
317  * we can have up to 3 DVAs per bp, and one more factor of 2 because
318  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
319  * the worst case is:
320  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
321  */
322 int spa_asize_inflation = 24;
323 
324 /*
325  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326  * the pool to be consumed.  This ensures that we don't run the pool
327  * completely out of space, due to unaccounted changes (e.g. to the MOS).
328  * It also limits the worst-case time to allocate space.  If we have
329  * less than this amount of free space, most ZPL operations (e.g. write,
330  * create) will return ENOSPC.
331  *
332  * Certain operations (e.g. file removal, most administrative actions) can
333  * use half the slop space.  They will only return ENOSPC if less than half
334  * the slop space is free.  Typically, once the pool has less than the slop
335  * space free, the user will use these operations to free up space in the pool.
336  * These are the operations that call dsl_pool_adjustedsize() with the netfree
337  * argument set to TRUE.
338  *
339  * Operations that are almost guaranteed to free up space in the absence of
340  * a pool checkpoint can use up to three quarters of the slop space
341  * (e.g zfs destroy).
342  *
343  * A very restricted set of operations are always permitted, regardless of
344  * the amount of free space.  These are the operations that call
345  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
346  * increase in the amount of space used, it is possible to run the pool
347  * completely out of space, causing it to be permanently read-only.
348  *
349  * Note that on very small pools, the slop space will be larger than
350  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
351  * but we never allow it to be more than half the pool size.
352  *
353  * See also the comments in zfs_space_check_t.
354  */
355 int spa_slop_shift = 5;
356 uint64_t spa_min_slop = 128 * 1024 * 1024;
357 
358 int spa_allocators = 4;
359 
360 /*PRINTFLIKE2*/
361 void
362 spa_load_failed(spa_t *spa, const char *fmt, ...)
363 {
364 	va_list adx;
365 	char buf[256];
366 
367 	va_start(adx, fmt);
368 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
369 	va_end(adx);
370 
371 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
372 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
373 }
374 
375 /*PRINTFLIKE2*/
376 void
377 spa_load_note(spa_t *spa, const char *fmt, ...)
378 {
379 	va_list adx;
380 	char buf[256];
381 
382 	va_start(adx, fmt);
383 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
384 	va_end(adx);
385 
386 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
387 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
388 }
389 
390 /*
391  * ==========================================================================
392  * SPA config locking
393  * ==========================================================================
394  */
395 static void
396 spa_config_lock_init(spa_t *spa)
397 {
398 	for (int i = 0; i < SCL_LOCKS; i++) {
399 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
400 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
401 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
402 		zfs_refcount_create_untracked(&scl->scl_count);
403 		scl->scl_writer = NULL;
404 		scl->scl_write_wanted = 0;
405 	}
406 }
407 
408 static void
409 spa_config_lock_destroy(spa_t *spa)
410 {
411 	for (int i = 0; i < SCL_LOCKS; i++) {
412 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
413 		mutex_destroy(&scl->scl_lock);
414 		cv_destroy(&scl->scl_cv);
415 		zfs_refcount_destroy(&scl->scl_count);
416 		ASSERT(scl->scl_writer == NULL);
417 		ASSERT(scl->scl_write_wanted == 0);
418 	}
419 }
420 
421 int
422 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
423 {
424 	for (int i = 0; i < SCL_LOCKS; i++) {
425 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
426 		if (!(locks & (1 << i)))
427 			continue;
428 		mutex_enter(&scl->scl_lock);
429 		if (rw == RW_READER) {
430 			if (scl->scl_writer || scl->scl_write_wanted) {
431 				mutex_exit(&scl->scl_lock);
432 				spa_config_exit(spa, locks & ((1 << i) - 1),
433 				    tag);
434 				return (0);
435 			}
436 		} else {
437 			ASSERT(scl->scl_writer != curthread);
438 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
439 				mutex_exit(&scl->scl_lock);
440 				spa_config_exit(spa, locks & ((1 << i) - 1),
441 				    tag);
442 				return (0);
443 			}
444 			scl->scl_writer = curthread;
445 		}
446 		(void) zfs_refcount_add(&scl->scl_count, tag);
447 		mutex_exit(&scl->scl_lock);
448 	}
449 	return (1);
450 }
451 
452 void
453 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
454 {
455 	int wlocks_held = 0;
456 
457 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
458 
459 	for (int i = 0; i < SCL_LOCKS; i++) {
460 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
461 		if (scl->scl_writer == curthread)
462 			wlocks_held |= (1 << i);
463 		if (!(locks & (1 << i)))
464 			continue;
465 		mutex_enter(&scl->scl_lock);
466 		if (rw == RW_READER) {
467 			while (scl->scl_writer || scl->scl_write_wanted) {
468 				cv_wait(&scl->scl_cv, &scl->scl_lock);
469 			}
470 		} else {
471 			ASSERT(scl->scl_writer != curthread);
472 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
473 				scl->scl_write_wanted++;
474 				cv_wait(&scl->scl_cv, &scl->scl_lock);
475 				scl->scl_write_wanted--;
476 			}
477 			scl->scl_writer = curthread;
478 		}
479 		(void) zfs_refcount_add(&scl->scl_count, tag);
480 		mutex_exit(&scl->scl_lock);
481 	}
482 	ASSERT3U(wlocks_held, <=, locks);
483 }
484 
485 void
486 spa_config_exit(spa_t *spa, int locks, void *tag)
487 {
488 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
489 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
490 		if (!(locks & (1 << i)))
491 			continue;
492 		mutex_enter(&scl->scl_lock);
493 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
494 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
495 			ASSERT(scl->scl_writer == NULL ||
496 			    scl->scl_writer == curthread);
497 			scl->scl_writer = NULL;	/* OK in either case */
498 			cv_broadcast(&scl->scl_cv);
499 		}
500 		mutex_exit(&scl->scl_lock);
501 	}
502 }
503 
504 int
505 spa_config_held(spa_t *spa, int locks, krw_t rw)
506 {
507 	int locks_held = 0;
508 
509 	for (int i = 0; i < SCL_LOCKS; i++) {
510 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
511 		if (!(locks & (1 << i)))
512 			continue;
513 		if ((rw == RW_READER &&
514 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
515 		    (rw == RW_WRITER && scl->scl_writer == curthread))
516 			locks_held |= 1 << i;
517 	}
518 
519 	return (locks_held);
520 }
521 
522 /*
523  * ==========================================================================
524  * SPA namespace functions
525  * ==========================================================================
526  */
527 
528 /*
529  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
530  * Returns NULL if no matching spa_t is found.
531  */
532 spa_t *
533 spa_lookup(const char *name)
534 {
535 	static spa_t search;	/* spa_t is large; don't allocate on stack */
536 	spa_t *spa;
537 	avl_index_t where;
538 	char *cp;
539 
540 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
541 
542 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
543 
544 	/*
545 	 * If it's a full dataset name, figure out the pool name and
546 	 * just use that.
547 	 */
548 	cp = strpbrk(search.spa_name, "/@#");
549 	if (cp != NULL)
550 		*cp = '\0';
551 
552 	spa = avl_find(&spa_namespace_avl, &search, &where);
553 
554 	return (spa);
555 }
556 
557 /*
558  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
559  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
560  * looking for potentially hung I/Os.
561  */
562 void
563 spa_deadman(void *arg)
564 {
565 	spa_t *spa = arg;
566 
567 	/*
568 	 * Disable the deadman timer if the pool is suspended.
569 	 */
570 	if (spa_suspended(spa)) {
571 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
572 		return;
573 	}
574 
575 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
576 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
577 	    ++spa->spa_deadman_calls);
578 	if (zfs_deadman_enabled)
579 		vdev_deadman(spa->spa_root_vdev);
580 }
581 
582 /*
583  * Create an uninitialized spa_t with the given name.  Requires
584  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
585  * exist by calling spa_lookup() first.
586  */
587 spa_t *
588 spa_add(const char *name, nvlist_t *config, const char *altroot)
589 {
590 	spa_t *spa;
591 	spa_config_dirent_t *dp;
592 	cyc_handler_t hdlr;
593 	cyc_time_t when;
594 
595 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
596 
597 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
598 
599 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
600 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
601 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
602 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
603 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
604 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
605 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
606 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
607 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
608 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
609 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
610 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
611 
612 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
613 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
614 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
615 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
616 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
617 
618 	for (int t = 0; t < TXG_SIZE; t++)
619 		bplist_create(&spa->spa_free_bplist[t]);
620 
621 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
622 	spa->spa_state = POOL_STATE_UNINITIALIZED;
623 	spa->spa_freeze_txg = UINT64_MAX;
624 	spa->spa_final_txg = UINT64_MAX;
625 	spa->spa_load_max_txg = UINT64_MAX;
626 	spa->spa_proc = &p0;
627 	spa->spa_proc_state = SPA_PROC_NONE;
628 	spa->spa_trust_config = B_TRUE;
629 
630 	hdlr.cyh_func = spa_deadman;
631 	hdlr.cyh_arg = spa;
632 	hdlr.cyh_level = CY_LOW_LEVEL;
633 
634 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
635 
636 	/*
637 	 * This determines how often we need to check for hung I/Os after
638 	 * the cyclic has already fired. Since checking for hung I/Os is
639 	 * an expensive operation we don't want to check too frequently.
640 	 * Instead wait for 5 seconds before checking again.
641 	 */
642 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
643 	when.cyt_when = CY_INFINITY;
644 	mutex_enter(&cpu_lock);
645 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
646 	mutex_exit(&cpu_lock);
647 
648 	zfs_refcount_create(&spa->spa_refcount);
649 	spa_config_lock_init(spa);
650 
651 	avl_add(&spa_namespace_avl, spa);
652 
653 	/*
654 	 * Set the alternate root, if there is one.
655 	 */
656 	if (altroot) {
657 		spa->spa_root = spa_strdup(altroot);
658 		spa_active_count++;
659 	}
660 
661 	spa->spa_alloc_count = spa_allocators;
662 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
663 	    sizeof (kmutex_t), KM_SLEEP);
664 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
665 	    sizeof (avl_tree_t), KM_SLEEP);
666 	for (int i = 0; i < spa->spa_alloc_count; i++) {
667 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
668 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
669 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
670 	}
671 
672 	/*
673 	 * Every pool starts with the default cachefile
674 	 */
675 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
676 	    offsetof(spa_config_dirent_t, scd_link));
677 
678 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
679 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
680 	list_insert_head(&spa->spa_config_list, dp);
681 
682 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
683 	    KM_SLEEP) == 0);
684 
685 	if (config != NULL) {
686 		nvlist_t *features;
687 
688 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
689 		    &features) == 0) {
690 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
691 			    0) == 0);
692 		}
693 
694 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
695 	}
696 
697 	if (spa->spa_label_features == NULL) {
698 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
699 		    KM_SLEEP) == 0);
700 	}
701 
702 	spa->spa_iokstat = kstat_create("zfs", 0, name,
703 	    "disk", KSTAT_TYPE_IO, 1, 0);
704 	if (spa->spa_iokstat) {
705 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
706 		kstat_install(spa->spa_iokstat);
707 	}
708 
709 	spa->spa_min_ashift = INT_MAX;
710 	spa->spa_max_ashift = 0;
711 
712 	/*
713 	 * As a pool is being created, treat all features as disabled by
714 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
715 	 * refcount cache.
716 	 */
717 	for (int i = 0; i < SPA_FEATURES; i++) {
718 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
719 	}
720 
721 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
722 	    offsetof(vdev_t, vdev_leaf_node));
723 
724 	return (spa);
725 }
726 
727 /*
728  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
729  * spa_namespace_lock.  This is called only after the spa_t has been closed and
730  * deactivated.
731  */
732 void
733 spa_remove(spa_t *spa)
734 {
735 	spa_config_dirent_t *dp;
736 
737 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
738 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
739 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
740 
741 	nvlist_free(spa->spa_config_splitting);
742 
743 	avl_remove(&spa_namespace_avl, spa);
744 	cv_broadcast(&spa_namespace_cv);
745 
746 	if (spa->spa_root) {
747 		spa_strfree(spa->spa_root);
748 		spa_active_count--;
749 	}
750 
751 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
752 		list_remove(&spa->spa_config_list, dp);
753 		if (dp->scd_path != NULL)
754 			spa_strfree(dp->scd_path);
755 		kmem_free(dp, sizeof (spa_config_dirent_t));
756 	}
757 
758 	for (int i = 0; i < spa->spa_alloc_count; i++) {
759 		avl_destroy(&spa->spa_alloc_trees[i]);
760 		mutex_destroy(&spa->spa_alloc_locks[i]);
761 	}
762 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
763 	    sizeof (kmutex_t));
764 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
765 	    sizeof (avl_tree_t));
766 
767 	list_destroy(&spa->spa_config_list);
768 	list_destroy(&spa->spa_leaf_list);
769 
770 	nvlist_free(spa->spa_label_features);
771 	nvlist_free(spa->spa_load_info);
772 	spa_config_set(spa, NULL);
773 
774 	mutex_enter(&cpu_lock);
775 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
776 		cyclic_remove(spa->spa_deadman_cycid);
777 	mutex_exit(&cpu_lock);
778 	spa->spa_deadman_cycid = CYCLIC_NONE;
779 
780 	zfs_refcount_destroy(&spa->spa_refcount);
781 
782 	spa_config_lock_destroy(spa);
783 
784 	kstat_delete(spa->spa_iokstat);
785 	spa->spa_iokstat = NULL;
786 
787 	for (int t = 0; t < TXG_SIZE; t++)
788 		bplist_destroy(&spa->spa_free_bplist[t]);
789 
790 	zio_checksum_templates_free(spa);
791 
792 	cv_destroy(&spa->spa_async_cv);
793 	cv_destroy(&spa->spa_evicting_os_cv);
794 	cv_destroy(&spa->spa_proc_cv);
795 	cv_destroy(&spa->spa_scrub_io_cv);
796 	cv_destroy(&spa->spa_suspend_cv);
797 
798 	mutex_destroy(&spa->spa_async_lock);
799 	mutex_destroy(&spa->spa_errlist_lock);
800 	mutex_destroy(&spa->spa_errlog_lock);
801 	mutex_destroy(&spa->spa_evicting_os_lock);
802 	mutex_destroy(&spa->spa_history_lock);
803 	mutex_destroy(&spa->spa_proc_lock);
804 	mutex_destroy(&spa->spa_props_lock);
805 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
806 	mutex_destroy(&spa->spa_scrub_lock);
807 	mutex_destroy(&spa->spa_suspend_lock);
808 	mutex_destroy(&spa->spa_vdev_top_lock);
809 	mutex_destroy(&spa->spa_iokstat_lock);
810 
811 	kmem_free(spa, sizeof (spa_t));
812 }
813 
814 /*
815  * Given a pool, return the next pool in the namespace, or NULL if there is
816  * none.  If 'prev' is NULL, return the first pool.
817  */
818 spa_t *
819 spa_next(spa_t *prev)
820 {
821 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
822 
823 	if (prev)
824 		return (AVL_NEXT(&spa_namespace_avl, prev));
825 	else
826 		return (avl_first(&spa_namespace_avl));
827 }
828 
829 /*
830  * ==========================================================================
831  * SPA refcount functions
832  * ==========================================================================
833  */
834 
835 /*
836  * Add a reference to the given spa_t.  Must have at least one reference, or
837  * have the namespace lock held.
838  */
839 void
840 spa_open_ref(spa_t *spa, void *tag)
841 {
842 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
843 	    MUTEX_HELD(&spa_namespace_lock));
844 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
845 }
846 
847 /*
848  * Remove a reference to the given spa_t.  Must have at least one reference, or
849  * have the namespace lock held.
850  */
851 void
852 spa_close(spa_t *spa, void *tag)
853 {
854 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
855 	    MUTEX_HELD(&spa_namespace_lock));
856 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
857 }
858 
859 /*
860  * Remove a reference to the given spa_t held by a dsl dir that is
861  * being asynchronously released.  Async releases occur from a taskq
862  * performing eviction of dsl datasets and dirs.  The namespace lock
863  * isn't held and the hold by the object being evicted may contribute to
864  * spa_minref (e.g. dataset or directory released during pool export),
865  * so the asserts in spa_close() do not apply.
866  */
867 void
868 spa_async_close(spa_t *spa, void *tag)
869 {
870 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
871 }
872 
873 /*
874  * Check to see if the spa refcount is zero.  Must be called with
875  * spa_namespace_lock held.  We really compare against spa_minref, which is the
876  * number of references acquired when opening a pool
877  */
878 boolean_t
879 spa_refcount_zero(spa_t *spa)
880 {
881 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
882 
883 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
884 }
885 
886 /*
887  * ==========================================================================
888  * SPA spare and l2cache tracking
889  * ==========================================================================
890  */
891 
892 /*
893  * Hot spares and cache devices are tracked using the same code below,
894  * for 'auxiliary' devices.
895  */
896 
897 typedef struct spa_aux {
898 	uint64_t	aux_guid;
899 	uint64_t	aux_pool;
900 	avl_node_t	aux_avl;
901 	int		aux_count;
902 } spa_aux_t;
903 
904 static int
905 spa_aux_compare(const void *a, const void *b)
906 {
907 	const spa_aux_t *sa = a;
908 	const spa_aux_t *sb = b;
909 
910 	if (sa->aux_guid < sb->aux_guid)
911 		return (-1);
912 	else if (sa->aux_guid > sb->aux_guid)
913 		return (1);
914 	else
915 		return (0);
916 }
917 
918 void
919 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
920 {
921 	avl_index_t where;
922 	spa_aux_t search;
923 	spa_aux_t *aux;
924 
925 	search.aux_guid = vd->vdev_guid;
926 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
927 		aux->aux_count++;
928 	} else {
929 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
930 		aux->aux_guid = vd->vdev_guid;
931 		aux->aux_count = 1;
932 		avl_insert(avl, aux, where);
933 	}
934 }
935 
936 void
937 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
938 {
939 	spa_aux_t search;
940 	spa_aux_t *aux;
941 	avl_index_t where;
942 
943 	search.aux_guid = vd->vdev_guid;
944 	aux = avl_find(avl, &search, &where);
945 
946 	ASSERT(aux != NULL);
947 
948 	if (--aux->aux_count == 0) {
949 		avl_remove(avl, aux);
950 		kmem_free(aux, sizeof (spa_aux_t));
951 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
952 		aux->aux_pool = 0ULL;
953 	}
954 }
955 
956 boolean_t
957 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
958 {
959 	spa_aux_t search, *found;
960 
961 	search.aux_guid = guid;
962 	found = avl_find(avl, &search, NULL);
963 
964 	if (pool) {
965 		if (found)
966 			*pool = found->aux_pool;
967 		else
968 			*pool = 0ULL;
969 	}
970 
971 	if (refcnt) {
972 		if (found)
973 			*refcnt = found->aux_count;
974 		else
975 			*refcnt = 0;
976 	}
977 
978 	return (found != NULL);
979 }
980 
981 void
982 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
983 {
984 	spa_aux_t search, *found;
985 	avl_index_t where;
986 
987 	search.aux_guid = vd->vdev_guid;
988 	found = avl_find(avl, &search, &where);
989 	ASSERT(found != NULL);
990 	ASSERT(found->aux_pool == 0ULL);
991 
992 	found->aux_pool = spa_guid(vd->vdev_spa);
993 }
994 
995 /*
996  * Spares are tracked globally due to the following constraints:
997  *
998  *	- A spare may be part of multiple pools.
999  *	- A spare may be added to a pool even if it's actively in use within
1000  *	  another pool.
1001  *	- A spare in use in any pool can only be the source of a replacement if
1002  *	  the target is a spare in the same pool.
1003  *
1004  * We keep track of all spares on the system through the use of a reference
1005  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1006  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1007  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1008  * inactive).  When a spare is made active (used to replace a device in the
1009  * pool), we also keep track of which pool its been made a part of.
1010  *
1011  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1012  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1013  * separate spare lock exists for the status query path, which does not need to
1014  * be completely consistent with respect to other vdev configuration changes.
1015  */
1016 
1017 static int
1018 spa_spare_compare(const void *a, const void *b)
1019 {
1020 	return (spa_aux_compare(a, b));
1021 }
1022 
1023 void
1024 spa_spare_add(vdev_t *vd)
1025 {
1026 	mutex_enter(&spa_spare_lock);
1027 	ASSERT(!vd->vdev_isspare);
1028 	spa_aux_add(vd, &spa_spare_avl);
1029 	vd->vdev_isspare = B_TRUE;
1030 	mutex_exit(&spa_spare_lock);
1031 }
1032 
1033 void
1034 spa_spare_remove(vdev_t *vd)
1035 {
1036 	mutex_enter(&spa_spare_lock);
1037 	ASSERT(vd->vdev_isspare);
1038 	spa_aux_remove(vd, &spa_spare_avl);
1039 	vd->vdev_isspare = B_FALSE;
1040 	mutex_exit(&spa_spare_lock);
1041 }
1042 
1043 boolean_t
1044 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1045 {
1046 	boolean_t found;
1047 
1048 	mutex_enter(&spa_spare_lock);
1049 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1050 	mutex_exit(&spa_spare_lock);
1051 
1052 	return (found);
1053 }
1054 
1055 void
1056 spa_spare_activate(vdev_t *vd)
1057 {
1058 	mutex_enter(&spa_spare_lock);
1059 	ASSERT(vd->vdev_isspare);
1060 	spa_aux_activate(vd, &spa_spare_avl);
1061 	mutex_exit(&spa_spare_lock);
1062 }
1063 
1064 /*
1065  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1066  * Cache devices currently only support one pool per cache device, and so
1067  * for these devices the aux reference count is currently unused beyond 1.
1068  */
1069 
1070 static int
1071 spa_l2cache_compare(const void *a, const void *b)
1072 {
1073 	return (spa_aux_compare(a, b));
1074 }
1075 
1076 void
1077 spa_l2cache_add(vdev_t *vd)
1078 {
1079 	mutex_enter(&spa_l2cache_lock);
1080 	ASSERT(!vd->vdev_isl2cache);
1081 	spa_aux_add(vd, &spa_l2cache_avl);
1082 	vd->vdev_isl2cache = B_TRUE;
1083 	mutex_exit(&spa_l2cache_lock);
1084 }
1085 
1086 void
1087 spa_l2cache_remove(vdev_t *vd)
1088 {
1089 	mutex_enter(&spa_l2cache_lock);
1090 	ASSERT(vd->vdev_isl2cache);
1091 	spa_aux_remove(vd, &spa_l2cache_avl);
1092 	vd->vdev_isl2cache = B_FALSE;
1093 	mutex_exit(&spa_l2cache_lock);
1094 }
1095 
1096 boolean_t
1097 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1098 {
1099 	boolean_t found;
1100 
1101 	mutex_enter(&spa_l2cache_lock);
1102 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1103 	mutex_exit(&spa_l2cache_lock);
1104 
1105 	return (found);
1106 }
1107 
1108 void
1109 spa_l2cache_activate(vdev_t *vd)
1110 {
1111 	mutex_enter(&spa_l2cache_lock);
1112 	ASSERT(vd->vdev_isl2cache);
1113 	spa_aux_activate(vd, &spa_l2cache_avl);
1114 	mutex_exit(&spa_l2cache_lock);
1115 }
1116 
1117 /*
1118  * ==========================================================================
1119  * SPA vdev locking
1120  * ==========================================================================
1121  */
1122 
1123 /*
1124  * Lock the given spa_t for the purpose of adding or removing a vdev.
1125  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1126  * It returns the next transaction group for the spa_t.
1127  */
1128 uint64_t
1129 spa_vdev_enter(spa_t *spa)
1130 {
1131 	mutex_enter(&spa->spa_vdev_top_lock);
1132 	mutex_enter(&spa_namespace_lock);
1133 	return (spa_vdev_config_enter(spa));
1134 }
1135 
1136 /*
1137  * Internal implementation for spa_vdev_enter().  Used when a vdev
1138  * operation requires multiple syncs (i.e. removing a device) while
1139  * keeping the spa_namespace_lock held.
1140  */
1141 uint64_t
1142 spa_vdev_config_enter(spa_t *spa)
1143 {
1144 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1145 
1146 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1147 
1148 	return (spa_last_synced_txg(spa) + 1);
1149 }
1150 
1151 /*
1152  * Used in combination with spa_vdev_config_enter() to allow the syncing
1153  * of multiple transactions without releasing the spa_namespace_lock.
1154  */
1155 void
1156 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1157 {
1158 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1159 
1160 	int config_changed = B_FALSE;
1161 
1162 	ASSERT(txg > spa_last_synced_txg(spa));
1163 
1164 	spa->spa_pending_vdev = NULL;
1165 
1166 	/*
1167 	 * Reassess the DTLs.
1168 	 */
1169 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1170 
1171 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1172 		config_changed = B_TRUE;
1173 		spa->spa_config_generation++;
1174 	}
1175 
1176 	/*
1177 	 * Verify the metaslab classes.
1178 	 */
1179 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1180 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1181 
1182 	spa_config_exit(spa, SCL_ALL, spa);
1183 
1184 	/*
1185 	 * Panic the system if the specified tag requires it.  This
1186 	 * is useful for ensuring that configurations are updated
1187 	 * transactionally.
1188 	 */
1189 	if (zio_injection_enabled)
1190 		zio_handle_panic_injection(spa, tag, 0);
1191 
1192 	/*
1193 	 * Note: this txg_wait_synced() is important because it ensures
1194 	 * that there won't be more than one config change per txg.
1195 	 * This allows us to use the txg as the generation number.
1196 	 */
1197 	if (error == 0)
1198 		txg_wait_synced(spa->spa_dsl_pool, txg);
1199 
1200 	if (vd != NULL) {
1201 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1202 		if (vd->vdev_ops->vdev_op_leaf) {
1203 			mutex_enter(&vd->vdev_initialize_lock);
1204 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
1205 			mutex_exit(&vd->vdev_initialize_lock);
1206 		}
1207 
1208 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1209 		vdev_free(vd);
1210 		spa_config_exit(spa, SCL_ALL, spa);
1211 	}
1212 
1213 	/*
1214 	 * If the config changed, update the config cache.
1215 	 */
1216 	if (config_changed)
1217 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1218 }
1219 
1220 /*
1221  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1222  * locking of spa_vdev_enter(), we also want make sure the transactions have
1223  * synced to disk, and then update the global configuration cache with the new
1224  * information.
1225  */
1226 int
1227 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1228 {
1229 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1230 	mutex_exit(&spa_namespace_lock);
1231 	mutex_exit(&spa->spa_vdev_top_lock);
1232 
1233 	return (error);
1234 }
1235 
1236 /*
1237  * Lock the given spa_t for the purpose of changing vdev state.
1238  */
1239 void
1240 spa_vdev_state_enter(spa_t *spa, int oplocks)
1241 {
1242 	int locks = SCL_STATE_ALL | oplocks;
1243 
1244 	/*
1245 	 * Root pools may need to read of the underlying devfs filesystem
1246 	 * when opening up a vdev.  Unfortunately if we're holding the
1247 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1248 	 * the read from the root filesystem.  Instead we "prefetch"
1249 	 * the associated vnodes that we need prior to opening the
1250 	 * underlying devices and cache them so that we can prevent
1251 	 * any I/O when we are doing the actual open.
1252 	 */
1253 	if (spa_is_root(spa)) {
1254 		int low = locks & ~(SCL_ZIO - 1);
1255 		int high = locks & ~low;
1256 
1257 		spa_config_enter(spa, high, spa, RW_WRITER);
1258 		vdev_hold(spa->spa_root_vdev);
1259 		spa_config_enter(spa, low, spa, RW_WRITER);
1260 	} else {
1261 		spa_config_enter(spa, locks, spa, RW_WRITER);
1262 	}
1263 	spa->spa_vdev_locks = locks;
1264 }
1265 
1266 int
1267 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1268 {
1269 	boolean_t config_changed = B_FALSE;
1270 
1271 	if (vd != NULL || error == 0)
1272 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1273 		    0, 0, B_FALSE);
1274 
1275 	if (vd != NULL) {
1276 		vdev_state_dirty(vd->vdev_top);
1277 		config_changed = B_TRUE;
1278 		spa->spa_config_generation++;
1279 	}
1280 
1281 	if (spa_is_root(spa))
1282 		vdev_rele(spa->spa_root_vdev);
1283 
1284 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1285 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1286 
1287 	/*
1288 	 * If anything changed, wait for it to sync.  This ensures that,
1289 	 * from the system administrator's perspective, zpool(1M) commands
1290 	 * are synchronous.  This is important for things like zpool offline:
1291 	 * when the command completes, you expect no further I/O from ZFS.
1292 	 */
1293 	if (vd != NULL)
1294 		txg_wait_synced(spa->spa_dsl_pool, 0);
1295 
1296 	/*
1297 	 * If the config changed, update the config cache.
1298 	 */
1299 	if (config_changed) {
1300 		mutex_enter(&spa_namespace_lock);
1301 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1302 		mutex_exit(&spa_namespace_lock);
1303 	}
1304 
1305 	return (error);
1306 }
1307 
1308 /*
1309  * ==========================================================================
1310  * Miscellaneous functions
1311  * ==========================================================================
1312  */
1313 
1314 void
1315 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1316 {
1317 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1318 		fnvlist_add_boolean(spa->spa_label_features, feature);
1319 		/*
1320 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1321 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1322 		 * Thankfully, in this case we don't need to dirty the config
1323 		 * because it will be written out anyway when we finish
1324 		 * creating the pool.
1325 		 */
1326 		if (tx->tx_txg != TXG_INITIAL)
1327 			vdev_config_dirty(spa->spa_root_vdev);
1328 	}
1329 }
1330 
1331 void
1332 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1333 {
1334 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1335 		vdev_config_dirty(spa->spa_root_vdev);
1336 }
1337 
1338 /*
1339  * Return the spa_t associated with given pool_guid, if it exists.  If
1340  * device_guid is non-zero, determine whether the pool exists *and* contains
1341  * a device with the specified device_guid.
1342  */
1343 spa_t *
1344 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1345 {
1346 	spa_t *spa;
1347 	avl_tree_t *t = &spa_namespace_avl;
1348 
1349 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1350 
1351 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1352 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1353 			continue;
1354 		if (spa->spa_root_vdev == NULL)
1355 			continue;
1356 		if (spa_guid(spa) == pool_guid) {
1357 			if (device_guid == 0)
1358 				break;
1359 
1360 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1361 			    device_guid) != NULL)
1362 				break;
1363 
1364 			/*
1365 			 * Check any devices we may be in the process of adding.
1366 			 */
1367 			if (spa->spa_pending_vdev) {
1368 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1369 				    device_guid) != NULL)
1370 					break;
1371 			}
1372 		}
1373 	}
1374 
1375 	return (spa);
1376 }
1377 
1378 /*
1379  * Determine whether a pool with the given pool_guid exists.
1380  */
1381 boolean_t
1382 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1383 {
1384 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1385 }
1386 
1387 char *
1388 spa_strdup(const char *s)
1389 {
1390 	size_t len;
1391 	char *new;
1392 
1393 	len = strlen(s);
1394 	new = kmem_alloc(len + 1, KM_SLEEP);
1395 	bcopy(s, new, len);
1396 	new[len] = '\0';
1397 
1398 	return (new);
1399 }
1400 
1401 void
1402 spa_strfree(char *s)
1403 {
1404 	kmem_free(s, strlen(s) + 1);
1405 }
1406 
1407 uint64_t
1408 spa_get_random(uint64_t range)
1409 {
1410 	uint64_t r;
1411 
1412 	ASSERT(range != 0);
1413 
1414 	if (range == 1)
1415 		return (0);
1416 
1417 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1418 
1419 	return (r % range);
1420 }
1421 
1422 uint64_t
1423 spa_generate_guid(spa_t *spa)
1424 {
1425 	uint64_t guid = spa_get_random(-1ULL);
1426 
1427 	if (spa != NULL) {
1428 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1429 			guid = spa_get_random(-1ULL);
1430 	} else {
1431 		while (guid == 0 || spa_guid_exists(guid, 0))
1432 			guid = spa_get_random(-1ULL);
1433 	}
1434 
1435 	return (guid);
1436 }
1437 
1438 void
1439 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1440 {
1441 	char type[256];
1442 	char *checksum = NULL;
1443 	char *compress = NULL;
1444 
1445 	if (bp != NULL) {
1446 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1447 			dmu_object_byteswap_t bswap =
1448 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1449 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1450 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1451 			    "metadata" : "data",
1452 			    dmu_ot_byteswap[bswap].ob_name);
1453 		} else {
1454 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1455 			    sizeof (type));
1456 		}
1457 		if (!BP_IS_EMBEDDED(bp)) {
1458 			checksum =
1459 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1460 		}
1461 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1462 	}
1463 
1464 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1465 	    compress);
1466 }
1467 
1468 void
1469 spa_freeze(spa_t *spa)
1470 {
1471 	uint64_t freeze_txg = 0;
1472 
1473 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1474 	if (spa->spa_freeze_txg == UINT64_MAX) {
1475 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1476 		spa->spa_freeze_txg = freeze_txg;
1477 	}
1478 	spa_config_exit(spa, SCL_ALL, FTAG);
1479 	if (freeze_txg != 0)
1480 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1481 }
1482 
1483 void
1484 zfs_panic_recover(const char *fmt, ...)
1485 {
1486 	va_list adx;
1487 
1488 	va_start(adx, fmt);
1489 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1490 	va_end(adx);
1491 }
1492 
1493 /*
1494  * This is a stripped-down version of strtoull, suitable only for converting
1495  * lowercase hexadecimal numbers that don't overflow.
1496  */
1497 uint64_t
1498 zfs_strtonum(const char *str, char **nptr)
1499 {
1500 	uint64_t val = 0;
1501 	char c;
1502 	int digit;
1503 
1504 	while ((c = *str) != '\0') {
1505 		if (c >= '0' && c <= '9')
1506 			digit = c - '0';
1507 		else if (c >= 'a' && c <= 'f')
1508 			digit = 10 + c - 'a';
1509 		else
1510 			break;
1511 
1512 		val *= 16;
1513 		val += digit;
1514 
1515 		str++;
1516 	}
1517 
1518 	if (nptr)
1519 		*nptr = (char *)str;
1520 
1521 	return (val);
1522 }
1523 
1524 /*
1525  * ==========================================================================
1526  * Accessor functions
1527  * ==========================================================================
1528  */
1529 
1530 boolean_t
1531 spa_shutting_down(spa_t *spa)
1532 {
1533 	return (spa->spa_async_suspended);
1534 }
1535 
1536 dsl_pool_t *
1537 spa_get_dsl(spa_t *spa)
1538 {
1539 	return (spa->spa_dsl_pool);
1540 }
1541 
1542 boolean_t
1543 spa_is_initializing(spa_t *spa)
1544 {
1545 	return (spa->spa_is_initializing);
1546 }
1547 
1548 boolean_t
1549 spa_indirect_vdevs_loaded(spa_t *spa)
1550 {
1551 	return (spa->spa_indirect_vdevs_loaded);
1552 }
1553 
1554 blkptr_t *
1555 spa_get_rootblkptr(spa_t *spa)
1556 {
1557 	return (&spa->spa_ubsync.ub_rootbp);
1558 }
1559 
1560 void
1561 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1562 {
1563 	spa->spa_uberblock.ub_rootbp = *bp;
1564 }
1565 
1566 void
1567 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1568 {
1569 	if (spa->spa_root == NULL)
1570 		buf[0] = '\0';
1571 	else
1572 		(void) strncpy(buf, spa->spa_root, buflen);
1573 }
1574 
1575 int
1576 spa_sync_pass(spa_t *spa)
1577 {
1578 	return (spa->spa_sync_pass);
1579 }
1580 
1581 char *
1582 spa_name(spa_t *spa)
1583 {
1584 	return (spa->spa_name);
1585 }
1586 
1587 uint64_t
1588 spa_guid(spa_t *spa)
1589 {
1590 	dsl_pool_t *dp = spa_get_dsl(spa);
1591 	uint64_t guid;
1592 
1593 	/*
1594 	 * If we fail to parse the config during spa_load(), we can go through
1595 	 * the error path (which posts an ereport) and end up here with no root
1596 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1597 	 * this case.
1598 	 */
1599 	if (spa->spa_root_vdev == NULL)
1600 		return (spa->spa_config_guid);
1601 
1602 	guid = spa->spa_last_synced_guid != 0 ?
1603 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1604 
1605 	/*
1606 	 * Return the most recently synced out guid unless we're
1607 	 * in syncing context.
1608 	 */
1609 	if (dp && dsl_pool_sync_context(dp))
1610 		return (spa->spa_root_vdev->vdev_guid);
1611 	else
1612 		return (guid);
1613 }
1614 
1615 uint64_t
1616 spa_load_guid(spa_t *spa)
1617 {
1618 	/*
1619 	 * This is a GUID that exists solely as a reference for the
1620 	 * purposes of the arc.  It is generated at load time, and
1621 	 * is never written to persistent storage.
1622 	 */
1623 	return (spa->spa_load_guid);
1624 }
1625 
1626 uint64_t
1627 spa_last_synced_txg(spa_t *spa)
1628 {
1629 	return (spa->spa_ubsync.ub_txg);
1630 }
1631 
1632 uint64_t
1633 spa_first_txg(spa_t *spa)
1634 {
1635 	return (spa->spa_first_txg);
1636 }
1637 
1638 uint64_t
1639 spa_syncing_txg(spa_t *spa)
1640 {
1641 	return (spa->spa_syncing_txg);
1642 }
1643 
1644 /*
1645  * Return the last txg where data can be dirtied. The final txgs
1646  * will be used to just clear out any deferred frees that remain.
1647  */
1648 uint64_t
1649 spa_final_dirty_txg(spa_t *spa)
1650 {
1651 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1652 }
1653 
1654 pool_state_t
1655 spa_state(spa_t *spa)
1656 {
1657 	return (spa->spa_state);
1658 }
1659 
1660 spa_load_state_t
1661 spa_load_state(spa_t *spa)
1662 {
1663 	return (spa->spa_load_state);
1664 }
1665 
1666 uint64_t
1667 spa_freeze_txg(spa_t *spa)
1668 {
1669 	return (spa->spa_freeze_txg);
1670 }
1671 
1672 /* ARGSUSED */
1673 uint64_t
1674 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1675 {
1676 	return (lsize * spa_asize_inflation);
1677 }
1678 
1679 /*
1680  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1681  * or at least 128MB, unless that would cause it to be more than half the
1682  * pool size.
1683  *
1684  * See the comment above spa_slop_shift for details.
1685  */
1686 uint64_t
1687 spa_get_slop_space(spa_t *spa)
1688 {
1689 	uint64_t space = spa_get_dspace(spa);
1690 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1691 }
1692 
1693 uint64_t
1694 spa_get_dspace(spa_t *spa)
1695 {
1696 	return (spa->spa_dspace);
1697 }
1698 
1699 uint64_t
1700 spa_get_checkpoint_space(spa_t *spa)
1701 {
1702 	return (spa->spa_checkpoint_info.sci_dspace);
1703 }
1704 
1705 void
1706 spa_update_dspace(spa_t *spa)
1707 {
1708 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1709 	    ddt_get_dedup_dspace(spa);
1710 	if (spa->spa_vdev_removal != NULL) {
1711 		/*
1712 		 * We can't allocate from the removing device, so
1713 		 * subtract its size.  This prevents the DMU/DSL from
1714 		 * filling up the (now smaller) pool while we are in the
1715 		 * middle of removing the device.
1716 		 *
1717 		 * Note that the DMU/DSL doesn't actually know or care
1718 		 * how much space is allocated (it does its own tracking
1719 		 * of how much space has been logically used).  So it
1720 		 * doesn't matter that the data we are moving may be
1721 		 * allocated twice (on the old device and the new
1722 		 * device).
1723 		 */
1724 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1725 		vdev_t *vd =
1726 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1727 		spa->spa_dspace -= spa_deflate(spa) ?
1728 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1729 		spa_config_exit(spa, SCL_VDEV, FTAG);
1730 	}
1731 }
1732 
1733 /*
1734  * Return the failure mode that has been set to this pool. The default
1735  * behavior will be to block all I/Os when a complete failure occurs.
1736  */
1737 uint8_t
1738 spa_get_failmode(spa_t *spa)
1739 {
1740 	return (spa->spa_failmode);
1741 }
1742 
1743 boolean_t
1744 spa_suspended(spa_t *spa)
1745 {
1746 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1747 }
1748 
1749 uint64_t
1750 spa_version(spa_t *spa)
1751 {
1752 	return (spa->spa_ubsync.ub_version);
1753 }
1754 
1755 boolean_t
1756 spa_deflate(spa_t *spa)
1757 {
1758 	return (spa->spa_deflate);
1759 }
1760 
1761 metaslab_class_t *
1762 spa_normal_class(spa_t *spa)
1763 {
1764 	return (spa->spa_normal_class);
1765 }
1766 
1767 metaslab_class_t *
1768 spa_log_class(spa_t *spa)
1769 {
1770 	return (spa->spa_log_class);
1771 }
1772 
1773 void
1774 spa_evicting_os_register(spa_t *spa, objset_t *os)
1775 {
1776 	mutex_enter(&spa->spa_evicting_os_lock);
1777 	list_insert_head(&spa->spa_evicting_os_list, os);
1778 	mutex_exit(&spa->spa_evicting_os_lock);
1779 }
1780 
1781 void
1782 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1783 {
1784 	mutex_enter(&spa->spa_evicting_os_lock);
1785 	list_remove(&spa->spa_evicting_os_list, os);
1786 	cv_broadcast(&spa->spa_evicting_os_cv);
1787 	mutex_exit(&spa->spa_evicting_os_lock);
1788 }
1789 
1790 void
1791 spa_evicting_os_wait(spa_t *spa)
1792 {
1793 	mutex_enter(&spa->spa_evicting_os_lock);
1794 	while (!list_is_empty(&spa->spa_evicting_os_list))
1795 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1796 	mutex_exit(&spa->spa_evicting_os_lock);
1797 
1798 	dmu_buf_user_evict_wait();
1799 }
1800 
1801 int
1802 spa_max_replication(spa_t *spa)
1803 {
1804 	/*
1805 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1806 	 * handle BPs with more than one DVA allocated.  Set our max
1807 	 * replication level accordingly.
1808 	 */
1809 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1810 		return (1);
1811 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1812 }
1813 
1814 int
1815 spa_prev_software_version(spa_t *spa)
1816 {
1817 	return (spa->spa_prev_software_version);
1818 }
1819 
1820 uint64_t
1821 spa_deadman_synctime(spa_t *spa)
1822 {
1823 	return (spa->spa_deadman_synctime);
1824 }
1825 
1826 uint64_t
1827 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1828 {
1829 	uint64_t asize = DVA_GET_ASIZE(dva);
1830 	uint64_t dsize = asize;
1831 
1832 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1833 
1834 	if (asize != 0 && spa->spa_deflate) {
1835 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1836 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1837 	}
1838 
1839 	return (dsize);
1840 }
1841 
1842 uint64_t
1843 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1844 {
1845 	uint64_t dsize = 0;
1846 
1847 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1848 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1849 
1850 	return (dsize);
1851 }
1852 
1853 uint64_t
1854 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1855 {
1856 	uint64_t dsize = 0;
1857 
1858 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1859 
1860 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1861 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1862 
1863 	spa_config_exit(spa, SCL_VDEV, FTAG);
1864 
1865 	return (dsize);
1866 }
1867 
1868 uint64_t
1869 spa_dirty_data(spa_t *spa)
1870 {
1871 	return (spa->spa_dsl_pool->dp_dirty_total);
1872 }
1873 
1874 /*
1875  * ==========================================================================
1876  * Initialization and Termination
1877  * ==========================================================================
1878  */
1879 
1880 static int
1881 spa_name_compare(const void *a1, const void *a2)
1882 {
1883 	const spa_t *s1 = a1;
1884 	const spa_t *s2 = a2;
1885 	int s;
1886 
1887 	s = strcmp(s1->spa_name, s2->spa_name);
1888 	if (s > 0)
1889 		return (1);
1890 	if (s < 0)
1891 		return (-1);
1892 	return (0);
1893 }
1894 
1895 int
1896 spa_busy(void)
1897 {
1898 	return (spa_active_count);
1899 }
1900 
1901 void
1902 spa_boot_init()
1903 {
1904 	spa_config_load();
1905 }
1906 
1907 void
1908 spa_init(int mode)
1909 {
1910 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1911 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1912 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1913 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1914 
1915 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1916 	    offsetof(spa_t, spa_avl));
1917 
1918 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1919 	    offsetof(spa_aux_t, aux_avl));
1920 
1921 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1922 	    offsetof(spa_aux_t, aux_avl));
1923 
1924 	spa_mode_global = mode;
1925 
1926 #ifdef _KERNEL
1927 	spa_arch_init();
1928 #else
1929 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1930 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1931 		if (arc_procfd == -1) {
1932 			perror("could not enable watchpoints: "
1933 			    "opening /proc/self/ctl failed: ");
1934 		} else {
1935 			arc_watch = B_TRUE;
1936 		}
1937 	}
1938 #endif
1939 
1940 	zfs_refcount_init();
1941 	unique_init();
1942 	range_tree_init();
1943 	metaslab_alloc_trace_init();
1944 	zio_init();
1945 	dmu_init();
1946 	zil_init();
1947 	vdev_cache_stat_init();
1948 	zfs_prop_init();
1949 	zpool_prop_init();
1950 	zpool_feature_init();
1951 	spa_config_load();
1952 	l2arc_start();
1953 }
1954 
1955 void
1956 spa_fini(void)
1957 {
1958 	l2arc_stop();
1959 
1960 	spa_evict_all();
1961 
1962 	vdev_cache_stat_fini();
1963 	zil_fini();
1964 	dmu_fini();
1965 	zio_fini();
1966 	metaslab_alloc_trace_fini();
1967 	range_tree_fini();
1968 	unique_fini();
1969 	zfs_refcount_fini();
1970 
1971 	avl_destroy(&spa_namespace_avl);
1972 	avl_destroy(&spa_spare_avl);
1973 	avl_destroy(&spa_l2cache_avl);
1974 
1975 	cv_destroy(&spa_namespace_cv);
1976 	mutex_destroy(&spa_namespace_lock);
1977 	mutex_destroy(&spa_spare_lock);
1978 	mutex_destroy(&spa_l2cache_lock);
1979 }
1980 
1981 /*
1982  * Return whether this pool has slogs. No locking needed.
1983  * It's not a problem if the wrong answer is returned as it's only for
1984  * performance and not correctness
1985  */
1986 boolean_t
1987 spa_has_slogs(spa_t *spa)
1988 {
1989 	return (spa->spa_log_class->mc_rotor != NULL);
1990 }
1991 
1992 spa_log_state_t
1993 spa_get_log_state(spa_t *spa)
1994 {
1995 	return (spa->spa_log_state);
1996 }
1997 
1998 void
1999 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2000 {
2001 	spa->spa_log_state = state;
2002 }
2003 
2004 boolean_t
2005 spa_is_root(spa_t *spa)
2006 {
2007 	return (spa->spa_is_root);
2008 }
2009 
2010 boolean_t
2011 spa_writeable(spa_t *spa)
2012 {
2013 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2014 }
2015 
2016 /*
2017  * Returns true if there is a pending sync task in any of the current
2018  * syncing txg, the current quiescing txg, or the current open txg.
2019  */
2020 boolean_t
2021 spa_has_pending_synctask(spa_t *spa)
2022 {
2023 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2024 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2025 }
2026 
2027 int
2028 spa_mode(spa_t *spa)
2029 {
2030 	return (spa->spa_mode);
2031 }
2032 
2033 uint64_t
2034 spa_bootfs(spa_t *spa)
2035 {
2036 	return (spa->spa_bootfs);
2037 }
2038 
2039 uint64_t
2040 spa_delegation(spa_t *spa)
2041 {
2042 	return (spa->spa_delegation);
2043 }
2044 
2045 objset_t *
2046 spa_meta_objset(spa_t *spa)
2047 {
2048 	return (spa->spa_meta_objset);
2049 }
2050 
2051 enum zio_checksum
2052 spa_dedup_checksum(spa_t *spa)
2053 {
2054 	return (spa->spa_dedup_checksum);
2055 }
2056 
2057 /*
2058  * Reset pool scan stat per scan pass (or reboot).
2059  */
2060 void
2061 spa_scan_stat_init(spa_t *spa)
2062 {
2063 	/* data not stored on disk */
2064 	spa->spa_scan_pass_start = gethrestime_sec();
2065 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2066 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2067 	else
2068 		spa->spa_scan_pass_scrub_pause = 0;
2069 	spa->spa_scan_pass_scrub_spent_paused = 0;
2070 	spa->spa_scan_pass_exam = 0;
2071 	vdev_scan_stat_init(spa->spa_root_vdev);
2072 }
2073 
2074 /*
2075  * Get scan stats for zpool status reports
2076  */
2077 int
2078 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2079 {
2080 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2081 
2082 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2083 		return (SET_ERROR(ENOENT));
2084 	bzero(ps, sizeof (pool_scan_stat_t));
2085 
2086 	/* data stored on disk */
2087 	ps->pss_func = scn->scn_phys.scn_func;
2088 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2089 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2090 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2091 	ps->pss_examined = scn->scn_phys.scn_examined;
2092 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2093 	ps->pss_processed = scn->scn_phys.scn_processed;
2094 	ps->pss_errors = scn->scn_phys.scn_errors;
2095 	ps->pss_state = scn->scn_phys.scn_state;
2096 
2097 	/* data not stored on disk */
2098 	ps->pss_pass_start = spa->spa_scan_pass_start;
2099 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2100 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2101 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2102 
2103 	return (0);
2104 }
2105 
2106 int
2107 spa_maxblocksize(spa_t *spa)
2108 {
2109 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2110 		return (SPA_MAXBLOCKSIZE);
2111 	else
2112 		return (SPA_OLD_MAXBLOCKSIZE);
2113 }
2114 
2115 int
2116 spa_maxdnodesize(spa_t *spa)
2117 {
2118 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2119 		return (DNODE_MAX_SIZE);
2120 	else
2121 		return (DNODE_MIN_SIZE);
2122 }
2123 
2124 boolean_t
2125 spa_multihost(spa_t *spa)
2126 {
2127 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2128 }
2129 
2130 unsigned long
2131 spa_get_hostid(void)
2132 {
2133 	unsigned long myhostid;
2134 
2135 #ifdef	_KERNEL
2136 	myhostid = zone_get_hostid(NULL);
2137 #else	/* _KERNEL */
2138 	/*
2139 	 * We're emulating the system's hostid in userland, so
2140 	 * we can't use zone_get_hostid().
2141 	 */
2142 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2143 #endif	/* _KERNEL */
2144 
2145 	return (myhostid);
2146 }
2147 
2148 /*
2149  * Returns the txg that the last device removal completed. No indirect mappings
2150  * have been added since this txg.
2151  */
2152 uint64_t
2153 spa_get_last_removal_txg(spa_t *spa)
2154 {
2155 	uint64_t vdevid;
2156 	uint64_t ret = -1ULL;
2157 
2158 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2159 	/*
2160 	 * sr_prev_indirect_vdev is only modified while holding all the
2161 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2162 	 * examining it.
2163 	 */
2164 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2165 
2166 	while (vdevid != -1ULL) {
2167 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2168 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2169 
2170 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2171 
2172 		/*
2173 		 * If the removal did not remap any data, we don't care.
2174 		 */
2175 		if (vdev_indirect_births_count(vib) != 0) {
2176 			ret = vdev_indirect_births_last_entry_txg(vib);
2177 			break;
2178 		}
2179 
2180 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2181 	}
2182 	spa_config_exit(spa, SCL_VDEV, FTAG);
2183 
2184 	IMPLY(ret != -1ULL,
2185 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2186 
2187 	return (ret);
2188 }
2189 
2190 boolean_t
2191 spa_trust_config(spa_t *spa)
2192 {
2193 	return (spa->spa_trust_config);
2194 }
2195 
2196 uint64_t
2197 spa_missing_tvds_allowed(spa_t *spa)
2198 {
2199 	return (spa->spa_missing_tvds_allowed);
2200 }
2201 
2202 void
2203 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2204 {
2205 	spa->spa_missing_tvds = missing;
2206 }
2207 
2208 boolean_t
2209 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2210 {
2211 	vdev_t *rvd = spa->spa_root_vdev;
2212 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2213 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2214 			return (B_FALSE);
2215 	}
2216 	return (B_TRUE);
2217 }
2218 
2219 boolean_t
2220 spa_has_checkpoint(spa_t *spa)
2221 {
2222 	return (spa->spa_checkpoint_txg != 0);
2223 }
2224 
2225 boolean_t
2226 spa_importing_readonly_checkpoint(spa_t *spa)
2227 {
2228 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2229 	    spa->spa_mode == FREAD);
2230 }
2231 
2232 uint64_t
2233 spa_min_claim_txg(spa_t *spa)
2234 {
2235 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2236 
2237 	if (checkpoint_txg != 0)
2238 		return (checkpoint_txg + 1);
2239 
2240 	return (spa->spa_first_txg);
2241 }
2242 
2243 /*
2244  * If there is a checkpoint, async destroys may consume more space from
2245  * the pool instead of freeing it. In an attempt to save the pool from
2246  * getting suspended when it is about to run out of space, we stop
2247  * processing async destroys.
2248  */
2249 boolean_t
2250 spa_suspend_async_destroy(spa_t *spa)
2251 {
2252 	dsl_pool_t *dp = spa_get_dsl(spa);
2253 
2254 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2255 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2256 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2257 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2258 
2259 	if (spa_has_checkpoint(spa) && avail == 0)
2260 		return (B_TRUE);
2261 
2262 	return (B_FALSE);
2263 }
2264