xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision b24ab6762772a3f6a89393947930c7fa61306783)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	int wlocks_held = 0;
314 
315 	for (int i = 0; i < SCL_LOCKS; i++) {
316 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 		if (scl->scl_writer == curthread)
318 			wlocks_held |= (1 << i);
319 		if (!(locks & (1 << i)))
320 			continue;
321 		mutex_enter(&scl->scl_lock);
322 		if (rw == RW_READER) {
323 			while (scl->scl_writer || scl->scl_write_wanted) {
324 				cv_wait(&scl->scl_cv, &scl->scl_lock);
325 			}
326 		} else {
327 			ASSERT(scl->scl_writer != curthread);
328 			while (!refcount_is_zero(&scl->scl_count)) {
329 				scl->scl_write_wanted++;
330 				cv_wait(&scl->scl_cv, &scl->scl_lock);
331 				scl->scl_write_wanted--;
332 			}
333 			scl->scl_writer = curthread;
334 		}
335 		(void) refcount_add(&scl->scl_count, tag);
336 		mutex_exit(&scl->scl_lock);
337 	}
338 	ASSERT(wlocks_held <= locks);
339 }
340 
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 		if (!(locks & (1 << i)))
347 			continue;
348 		mutex_enter(&scl->scl_lock);
349 		ASSERT(!refcount_is_zero(&scl->scl_count));
350 		if (refcount_remove(&scl->scl_count, tag) == 0) {
351 			ASSERT(scl->scl_writer == NULL ||
352 			    scl->scl_writer == curthread);
353 			scl->scl_writer = NULL;	/* OK in either case */
354 			cv_broadcast(&scl->scl_cv);
355 		}
356 		mutex_exit(&scl->scl_lock);
357 	}
358 }
359 
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 	int locks_held = 0;
364 
365 	for (int i = 0; i < SCL_LOCKS; i++) {
366 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 		if (!(locks & (1 << i)))
368 			continue;
369 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 		    (rw == RW_WRITER && scl->scl_writer == curthread))
371 			locks_held |= 1 << i;
372 	}
373 
374 	return (locks_held);
375 }
376 
377 /*
378  * ==========================================================================
379  * SPA namespace functions
380  * ==========================================================================
381  */
382 
383 /*
384  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
385  * Returns NULL if no matching spa_t is found.
386  */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 	static spa_t search;	/* spa_t is large; don't allocate on stack */
391 	spa_t *spa;
392 	avl_index_t where;
393 	char c;
394 	char *cp;
395 
396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
397 
398 	/*
399 	 * If it's a full dataset name, figure out the pool name and
400 	 * just use that.
401 	 */
402 	cp = strpbrk(name, "/@");
403 	if (cp) {
404 		c = *cp;
405 		*cp = '\0';
406 	}
407 
408 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 	spa = avl_find(&spa_namespace_avl, &search, &where);
410 
411 	if (cp)
412 		*cp = c;
413 
414 	return (spa);
415 }
416 
417 /*
418  * Create an uninitialized spa_t with the given name.  Requires
419  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
420  * exist by calling spa_lookup() first.
421  */
422 spa_t *
423 spa_add(const char *name, nvlist_t *config, const char *altroot)
424 {
425 	spa_t *spa;
426 	spa_config_dirent_t *dp;
427 
428 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
429 
430 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431 
432 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
438 
439 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
440 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
441 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
442 
443 	for (int t = 0; t < TXG_SIZE; t++)
444 		bplist_init(&spa->spa_free_bplist[t]);
445 	bplist_init(&spa->spa_deferred_bplist);
446 
447 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
448 	spa->spa_state = POOL_STATE_UNINITIALIZED;
449 	spa->spa_freeze_txg = UINT64_MAX;
450 	spa->spa_final_txg = UINT64_MAX;
451 	spa->spa_load_max_txg = UINT64_MAX;
452 
453 	refcount_create(&spa->spa_refcount);
454 	spa_config_lock_init(spa);
455 
456 	avl_add(&spa_namespace_avl, spa);
457 
458 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
459 
460 	/*
461 	 * Set the alternate root, if there is one.
462 	 */
463 	if (altroot) {
464 		spa->spa_root = spa_strdup(altroot);
465 		spa_active_count++;
466 	}
467 
468 	/*
469 	 * Every pool starts with the default cachefile
470 	 */
471 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
472 	    offsetof(spa_config_dirent_t, scd_link));
473 
474 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
475 	dp->scd_path = spa_strdup(spa_config_path);
476 	list_insert_head(&spa->spa_config_list, dp);
477 
478 	if (config != NULL)
479 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
480 
481 	return (spa);
482 }
483 
484 /*
485  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
486  * spa_namespace_lock.  This is called only after the spa_t has been closed and
487  * deactivated.
488  */
489 void
490 spa_remove(spa_t *spa)
491 {
492 	spa_config_dirent_t *dp;
493 
494 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
495 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
496 
497 	avl_remove(&spa_namespace_avl, spa);
498 	cv_broadcast(&spa_namespace_cv);
499 
500 	if (spa->spa_root) {
501 		spa_strfree(spa->spa_root);
502 		spa_active_count--;
503 	}
504 
505 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
506 		list_remove(&spa->spa_config_list, dp);
507 		if (dp->scd_path != NULL)
508 			spa_strfree(dp->scd_path);
509 		kmem_free(dp, sizeof (spa_config_dirent_t));
510 	}
511 
512 	list_destroy(&spa->spa_config_list);
513 
514 	spa_config_set(spa, NULL);
515 
516 	refcount_destroy(&spa->spa_refcount);
517 
518 	spa_config_lock_destroy(spa);
519 
520 	for (int t = 0; t < TXG_SIZE; t++)
521 		bplist_fini(&spa->spa_free_bplist[t]);
522 	bplist_fini(&spa->spa_deferred_bplist);
523 
524 	cv_destroy(&spa->spa_async_cv);
525 	cv_destroy(&spa->spa_scrub_io_cv);
526 	cv_destroy(&spa->spa_suspend_cv);
527 
528 	mutex_destroy(&spa->spa_async_lock);
529 	mutex_destroy(&spa->spa_scrub_lock);
530 	mutex_destroy(&spa->spa_errlog_lock);
531 	mutex_destroy(&spa->spa_errlist_lock);
532 	mutex_destroy(&spa->spa_history_lock);
533 	mutex_destroy(&spa->spa_props_lock);
534 	mutex_destroy(&spa->spa_suspend_lock);
535 
536 	kmem_free(spa, sizeof (spa_t));
537 }
538 
539 /*
540  * Given a pool, return the next pool in the namespace, or NULL if there is
541  * none.  If 'prev' is NULL, return the first pool.
542  */
543 spa_t *
544 spa_next(spa_t *prev)
545 {
546 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
547 
548 	if (prev)
549 		return (AVL_NEXT(&spa_namespace_avl, prev));
550 	else
551 		return (avl_first(&spa_namespace_avl));
552 }
553 
554 /*
555  * ==========================================================================
556  * SPA refcount functions
557  * ==========================================================================
558  */
559 
560 /*
561  * Add a reference to the given spa_t.  Must have at least one reference, or
562  * have the namespace lock held.
563  */
564 void
565 spa_open_ref(spa_t *spa, void *tag)
566 {
567 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
568 	    MUTEX_HELD(&spa_namespace_lock));
569 	(void) refcount_add(&spa->spa_refcount, tag);
570 }
571 
572 /*
573  * Remove a reference to the given spa_t.  Must have at least one reference, or
574  * have the namespace lock held.
575  */
576 void
577 spa_close(spa_t *spa, void *tag)
578 {
579 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
580 	    MUTEX_HELD(&spa_namespace_lock));
581 	(void) refcount_remove(&spa->spa_refcount, tag);
582 }
583 
584 /*
585  * Check to see if the spa refcount is zero.  Must be called with
586  * spa_namespace_lock held.  We really compare against spa_minref, which is the
587  * number of references acquired when opening a pool
588  */
589 boolean_t
590 spa_refcount_zero(spa_t *spa)
591 {
592 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
593 
594 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
595 }
596 
597 /*
598  * ==========================================================================
599  * SPA spare and l2cache tracking
600  * ==========================================================================
601  */
602 
603 /*
604  * Hot spares and cache devices are tracked using the same code below,
605  * for 'auxiliary' devices.
606  */
607 
608 typedef struct spa_aux {
609 	uint64_t	aux_guid;
610 	uint64_t	aux_pool;
611 	avl_node_t	aux_avl;
612 	int		aux_count;
613 } spa_aux_t;
614 
615 static int
616 spa_aux_compare(const void *a, const void *b)
617 {
618 	const spa_aux_t *sa = a;
619 	const spa_aux_t *sb = b;
620 
621 	if (sa->aux_guid < sb->aux_guid)
622 		return (-1);
623 	else if (sa->aux_guid > sb->aux_guid)
624 		return (1);
625 	else
626 		return (0);
627 }
628 
629 void
630 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
631 {
632 	avl_index_t where;
633 	spa_aux_t search;
634 	spa_aux_t *aux;
635 
636 	search.aux_guid = vd->vdev_guid;
637 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
638 		aux->aux_count++;
639 	} else {
640 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
641 		aux->aux_guid = vd->vdev_guid;
642 		aux->aux_count = 1;
643 		avl_insert(avl, aux, where);
644 	}
645 }
646 
647 void
648 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
649 {
650 	spa_aux_t search;
651 	spa_aux_t *aux;
652 	avl_index_t where;
653 
654 	search.aux_guid = vd->vdev_guid;
655 	aux = avl_find(avl, &search, &where);
656 
657 	ASSERT(aux != NULL);
658 
659 	if (--aux->aux_count == 0) {
660 		avl_remove(avl, aux);
661 		kmem_free(aux, sizeof (spa_aux_t));
662 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
663 		aux->aux_pool = 0ULL;
664 	}
665 }
666 
667 boolean_t
668 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
669 {
670 	spa_aux_t search, *found;
671 
672 	search.aux_guid = guid;
673 	found = avl_find(avl, &search, NULL);
674 
675 	if (pool) {
676 		if (found)
677 			*pool = found->aux_pool;
678 		else
679 			*pool = 0ULL;
680 	}
681 
682 	if (refcnt) {
683 		if (found)
684 			*refcnt = found->aux_count;
685 		else
686 			*refcnt = 0;
687 	}
688 
689 	return (found != NULL);
690 }
691 
692 void
693 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
694 {
695 	spa_aux_t search, *found;
696 	avl_index_t where;
697 
698 	search.aux_guid = vd->vdev_guid;
699 	found = avl_find(avl, &search, &where);
700 	ASSERT(found != NULL);
701 	ASSERT(found->aux_pool == 0ULL);
702 
703 	found->aux_pool = spa_guid(vd->vdev_spa);
704 }
705 
706 /*
707  * Spares are tracked globally due to the following constraints:
708  *
709  * 	- A spare may be part of multiple pools.
710  * 	- A spare may be added to a pool even if it's actively in use within
711  *	  another pool.
712  * 	- A spare in use in any pool can only be the source of a replacement if
713  *	  the target is a spare in the same pool.
714  *
715  * We keep track of all spares on the system through the use of a reference
716  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
717  * spare, then we bump the reference count in the AVL tree.  In addition, we set
718  * the 'vdev_isspare' member to indicate that the device is a spare (active or
719  * inactive).  When a spare is made active (used to replace a device in the
720  * pool), we also keep track of which pool its been made a part of.
721  *
722  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
723  * called under the spa_namespace lock as part of vdev reconfiguration.  The
724  * separate spare lock exists for the status query path, which does not need to
725  * be completely consistent with respect to other vdev configuration changes.
726  */
727 
728 static int
729 spa_spare_compare(const void *a, const void *b)
730 {
731 	return (spa_aux_compare(a, b));
732 }
733 
734 void
735 spa_spare_add(vdev_t *vd)
736 {
737 	mutex_enter(&spa_spare_lock);
738 	ASSERT(!vd->vdev_isspare);
739 	spa_aux_add(vd, &spa_spare_avl);
740 	vd->vdev_isspare = B_TRUE;
741 	mutex_exit(&spa_spare_lock);
742 }
743 
744 void
745 spa_spare_remove(vdev_t *vd)
746 {
747 	mutex_enter(&spa_spare_lock);
748 	ASSERT(vd->vdev_isspare);
749 	spa_aux_remove(vd, &spa_spare_avl);
750 	vd->vdev_isspare = B_FALSE;
751 	mutex_exit(&spa_spare_lock);
752 }
753 
754 boolean_t
755 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
756 {
757 	boolean_t found;
758 
759 	mutex_enter(&spa_spare_lock);
760 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
761 	mutex_exit(&spa_spare_lock);
762 
763 	return (found);
764 }
765 
766 void
767 spa_spare_activate(vdev_t *vd)
768 {
769 	mutex_enter(&spa_spare_lock);
770 	ASSERT(vd->vdev_isspare);
771 	spa_aux_activate(vd, &spa_spare_avl);
772 	mutex_exit(&spa_spare_lock);
773 }
774 
775 /*
776  * Level 2 ARC devices are tracked globally for the same reasons as spares.
777  * Cache devices currently only support one pool per cache device, and so
778  * for these devices the aux reference count is currently unused beyond 1.
779  */
780 
781 static int
782 spa_l2cache_compare(const void *a, const void *b)
783 {
784 	return (spa_aux_compare(a, b));
785 }
786 
787 void
788 spa_l2cache_add(vdev_t *vd)
789 {
790 	mutex_enter(&spa_l2cache_lock);
791 	ASSERT(!vd->vdev_isl2cache);
792 	spa_aux_add(vd, &spa_l2cache_avl);
793 	vd->vdev_isl2cache = B_TRUE;
794 	mutex_exit(&spa_l2cache_lock);
795 }
796 
797 void
798 spa_l2cache_remove(vdev_t *vd)
799 {
800 	mutex_enter(&spa_l2cache_lock);
801 	ASSERT(vd->vdev_isl2cache);
802 	spa_aux_remove(vd, &spa_l2cache_avl);
803 	vd->vdev_isl2cache = B_FALSE;
804 	mutex_exit(&spa_l2cache_lock);
805 }
806 
807 boolean_t
808 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
809 {
810 	boolean_t found;
811 
812 	mutex_enter(&spa_l2cache_lock);
813 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
814 	mutex_exit(&spa_l2cache_lock);
815 
816 	return (found);
817 }
818 
819 void
820 spa_l2cache_activate(vdev_t *vd)
821 {
822 	mutex_enter(&spa_l2cache_lock);
823 	ASSERT(vd->vdev_isl2cache);
824 	spa_aux_activate(vd, &spa_l2cache_avl);
825 	mutex_exit(&spa_l2cache_lock);
826 }
827 
828 /*
829  * ==========================================================================
830  * SPA vdev locking
831  * ==========================================================================
832  */
833 
834 /*
835  * Lock the given spa_t for the purpose of adding or removing a vdev.
836  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
837  * It returns the next transaction group for the spa_t.
838  */
839 uint64_t
840 spa_vdev_enter(spa_t *spa)
841 {
842 	mutex_enter(&spa_namespace_lock);
843 	return (spa_vdev_config_enter(spa));
844 }
845 
846 /*
847  * Internal implementation for spa_vdev_enter().  Used when a vdev
848  * operation requires multiple syncs (i.e. removing a device) while
849  * keeping the spa_namespace_lock held.
850  */
851 uint64_t
852 spa_vdev_config_enter(spa_t *spa)
853 {
854 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
855 
856 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
857 
858 	return (spa_last_synced_txg(spa) + 1);
859 }
860 
861 /*
862  * Used in combination with spa_vdev_config_enter() to allow the syncing
863  * of multiple transactions without releasing the spa_namespace_lock.
864  */
865 void
866 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
867 {
868 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
869 
870 	int config_changed = B_FALSE;
871 
872 	ASSERT(txg > spa_last_synced_txg(spa));
873 
874 	spa->spa_pending_vdev = NULL;
875 
876 	/*
877 	 * Reassess the DTLs.
878 	 */
879 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
880 
881 	/*
882 	 * If the config changed, notify the scrub thread that it must restart.
883 	 */
884 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
885 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
886 		config_changed = B_TRUE;
887 		spa->spa_config_generation++;
888 	}
889 
890 	/*
891 	 * Verify the metaslab classes.
892 	 */
893 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
894 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
895 
896 	spa_config_exit(spa, SCL_ALL, spa);
897 
898 	/*
899 	 * Panic the system if the specified tag requires it.  This
900 	 * is useful for ensuring that configurations are updated
901 	 * transactionally.
902 	 */
903 	if (zio_injection_enabled)
904 		zio_handle_panic_injection(spa, tag);
905 
906 	/*
907 	 * Note: this txg_wait_synced() is important because it ensures
908 	 * that there won't be more than one config change per txg.
909 	 * This allows us to use the txg as the generation number.
910 	 */
911 	if (error == 0)
912 		txg_wait_synced(spa->spa_dsl_pool, txg);
913 
914 	if (vd != NULL) {
915 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
916 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
917 		vdev_free(vd);
918 		spa_config_exit(spa, SCL_ALL, spa);
919 	}
920 
921 	/*
922 	 * If the config changed, update the config cache.
923 	 */
924 	if (config_changed)
925 		spa_config_sync(spa, B_FALSE, B_TRUE);
926 }
927 
928 /*
929  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
930  * locking of spa_vdev_enter(), we also want make sure the transactions have
931  * synced to disk, and then update the global configuration cache with the new
932  * information.
933  */
934 int
935 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
936 {
937 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
938 	mutex_exit(&spa_namespace_lock);
939 
940 	return (error);
941 }
942 
943 /*
944  * Lock the given spa_t for the purpose of changing vdev state.
945  */
946 void
947 spa_vdev_state_enter(spa_t *spa, int oplocks)
948 {
949 	int locks = SCL_STATE_ALL | oplocks;
950 
951 	spa_config_enter(spa, locks, spa, RW_WRITER);
952 	spa->spa_vdev_locks = locks;
953 }
954 
955 int
956 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
957 {
958 	if (vd != NULL || error == 0)
959 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
960 		    0, 0, B_FALSE);
961 
962 	if (vd != NULL) {
963 		vdev_state_dirty(vd->vdev_top);
964 		spa->spa_config_generation++;
965 	}
966 
967 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
968 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
969 
970 	/*
971 	 * If anything changed, wait for it to sync.  This ensures that,
972 	 * from the system administrator's perspective, zpool(1M) commands
973 	 * are synchronous.  This is important for things like zpool offline:
974 	 * when the command completes, you expect no further I/O from ZFS.
975 	 */
976 	if (vd != NULL)
977 		txg_wait_synced(spa->spa_dsl_pool, 0);
978 
979 	return (error);
980 }
981 
982 /*
983  * ==========================================================================
984  * Miscellaneous functions
985  * ==========================================================================
986  */
987 
988 /*
989  * Rename a spa_t.
990  */
991 int
992 spa_rename(const char *name, const char *newname)
993 {
994 	spa_t *spa;
995 	int err;
996 
997 	/*
998 	 * Lookup the spa_t and grab the config lock for writing.  We need to
999 	 * actually open the pool so that we can sync out the necessary labels.
1000 	 * It's OK to call spa_open() with the namespace lock held because we
1001 	 * allow recursive calls for other reasons.
1002 	 */
1003 	mutex_enter(&spa_namespace_lock);
1004 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1005 		mutex_exit(&spa_namespace_lock);
1006 		return (err);
1007 	}
1008 
1009 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1010 
1011 	avl_remove(&spa_namespace_avl, spa);
1012 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1013 	avl_add(&spa_namespace_avl, spa);
1014 
1015 	/*
1016 	 * Sync all labels to disk with the new names by marking the root vdev
1017 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1018 	 * during the sync.
1019 	 */
1020 	vdev_config_dirty(spa->spa_root_vdev);
1021 
1022 	spa_config_exit(spa, SCL_ALL, FTAG);
1023 
1024 	txg_wait_synced(spa->spa_dsl_pool, 0);
1025 
1026 	/*
1027 	 * Sync the updated config cache.
1028 	 */
1029 	spa_config_sync(spa, B_FALSE, B_TRUE);
1030 
1031 	spa_close(spa, FTAG);
1032 
1033 	mutex_exit(&spa_namespace_lock);
1034 
1035 	return (0);
1036 }
1037 
1038 
1039 /*
1040  * Determine whether a pool with given pool_guid exists.  If device_guid is
1041  * non-zero, determine whether the pool exists *and* contains a device with the
1042  * specified device_guid.
1043  */
1044 boolean_t
1045 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1046 {
1047 	spa_t *spa;
1048 	avl_tree_t *t = &spa_namespace_avl;
1049 
1050 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1051 
1052 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1053 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1054 			continue;
1055 		if (spa->spa_root_vdev == NULL)
1056 			continue;
1057 		if (spa_guid(spa) == pool_guid) {
1058 			if (device_guid == 0)
1059 				break;
1060 
1061 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1062 			    device_guid) != NULL)
1063 				break;
1064 
1065 			/*
1066 			 * Check any devices we may be in the process of adding.
1067 			 */
1068 			if (spa->spa_pending_vdev) {
1069 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1070 				    device_guid) != NULL)
1071 					break;
1072 			}
1073 		}
1074 	}
1075 
1076 	return (spa != NULL);
1077 }
1078 
1079 char *
1080 spa_strdup(const char *s)
1081 {
1082 	size_t len;
1083 	char *new;
1084 
1085 	len = strlen(s);
1086 	new = kmem_alloc(len + 1, KM_SLEEP);
1087 	bcopy(s, new, len);
1088 	new[len] = '\0';
1089 
1090 	return (new);
1091 }
1092 
1093 void
1094 spa_strfree(char *s)
1095 {
1096 	kmem_free(s, strlen(s) + 1);
1097 }
1098 
1099 uint64_t
1100 spa_get_random(uint64_t range)
1101 {
1102 	uint64_t r;
1103 
1104 	ASSERT(range != 0);
1105 
1106 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1107 
1108 	return (r % range);
1109 }
1110 
1111 void
1112 sprintf_blkptr(char *buf, const blkptr_t *bp)
1113 {
1114 	char *type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1115 	char *checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1116 	char *compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1117 
1118 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1119 }
1120 
1121 void
1122 spa_freeze(spa_t *spa)
1123 {
1124 	uint64_t freeze_txg = 0;
1125 
1126 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1127 	if (spa->spa_freeze_txg == UINT64_MAX) {
1128 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1129 		spa->spa_freeze_txg = freeze_txg;
1130 	}
1131 	spa_config_exit(spa, SCL_ALL, FTAG);
1132 	if (freeze_txg != 0)
1133 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1134 }
1135 
1136 void
1137 zfs_panic_recover(const char *fmt, ...)
1138 {
1139 	va_list adx;
1140 
1141 	va_start(adx, fmt);
1142 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1143 	va_end(adx);
1144 }
1145 
1146 /*
1147  * ==========================================================================
1148  * Accessor functions
1149  * ==========================================================================
1150  */
1151 
1152 boolean_t
1153 spa_shutting_down(spa_t *spa)
1154 {
1155 	return (spa->spa_async_suspended);
1156 }
1157 
1158 dsl_pool_t *
1159 spa_get_dsl(spa_t *spa)
1160 {
1161 	return (spa->spa_dsl_pool);
1162 }
1163 
1164 blkptr_t *
1165 spa_get_rootblkptr(spa_t *spa)
1166 {
1167 	return (&spa->spa_ubsync.ub_rootbp);
1168 }
1169 
1170 void
1171 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1172 {
1173 	spa->spa_uberblock.ub_rootbp = *bp;
1174 }
1175 
1176 void
1177 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1178 {
1179 	if (spa->spa_root == NULL)
1180 		buf[0] = '\0';
1181 	else
1182 		(void) strncpy(buf, spa->spa_root, buflen);
1183 }
1184 
1185 int
1186 spa_sync_pass(spa_t *spa)
1187 {
1188 	return (spa->spa_sync_pass);
1189 }
1190 
1191 char *
1192 spa_name(spa_t *spa)
1193 {
1194 	return (spa->spa_name);
1195 }
1196 
1197 uint64_t
1198 spa_guid(spa_t *spa)
1199 {
1200 	/*
1201 	 * If we fail to parse the config during spa_load(), we can go through
1202 	 * the error path (which posts an ereport) and end up here with no root
1203 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1204 	 * this case.
1205 	 */
1206 	if (spa->spa_root_vdev != NULL)
1207 		return (spa->spa_root_vdev->vdev_guid);
1208 	else
1209 		return (spa->spa_load_guid);
1210 }
1211 
1212 uint64_t
1213 spa_last_synced_txg(spa_t *spa)
1214 {
1215 	return (spa->spa_ubsync.ub_txg);
1216 }
1217 
1218 uint64_t
1219 spa_first_txg(spa_t *spa)
1220 {
1221 	return (spa->spa_first_txg);
1222 }
1223 
1224 uint64_t
1225 spa_syncing_txg(spa_t *spa)
1226 {
1227 	return (spa->spa_syncing_txg);
1228 }
1229 
1230 pool_state_t
1231 spa_state(spa_t *spa)
1232 {
1233 	return (spa->spa_state);
1234 }
1235 
1236 uint64_t
1237 spa_freeze_txg(spa_t *spa)
1238 {
1239 	return (spa->spa_freeze_txg);
1240 }
1241 
1242 /* ARGSUSED */
1243 uint64_t
1244 spa_get_asize(spa_t *spa, uint64_t lsize)
1245 {
1246 	/*
1247 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1248 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1249 	 * times the size; so just assume that.  Add to this the fact that
1250 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1251 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1252 	 */
1253 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1254 }
1255 
1256 /*
1257  * Return the failure mode that has been set to this pool. The default
1258  * behavior will be to block all I/Os when a complete failure occurs.
1259  */
1260 uint8_t
1261 spa_get_failmode(spa_t *spa)
1262 {
1263 	return (spa->spa_failmode);
1264 }
1265 
1266 boolean_t
1267 spa_suspended(spa_t *spa)
1268 {
1269 	return (spa->spa_suspended);
1270 }
1271 
1272 uint64_t
1273 spa_version(spa_t *spa)
1274 {
1275 	return (spa->spa_ubsync.ub_version);
1276 }
1277 
1278 boolean_t
1279 spa_deflate(spa_t *spa)
1280 {
1281 	return (spa->spa_deflate);
1282 }
1283 
1284 metaslab_class_t *
1285 spa_normal_class(spa_t *spa)
1286 {
1287 	return (spa->spa_normal_class);
1288 }
1289 
1290 metaslab_class_t *
1291 spa_log_class(spa_t *spa)
1292 {
1293 	return (spa->spa_log_class);
1294 }
1295 
1296 int
1297 spa_max_replication(spa_t *spa)
1298 {
1299 	/*
1300 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1301 	 * handle BPs with more than one DVA allocated.  Set our max
1302 	 * replication level accordingly.
1303 	 */
1304 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1305 		return (1);
1306 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1307 }
1308 
1309 uint64_t
1310 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1311 {
1312 	uint64_t asize = DVA_GET_ASIZE(dva);
1313 	uint64_t dsize = asize;
1314 
1315 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1316 
1317 	if (asize != 0 && spa->spa_deflate) {
1318 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1319 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1320 	}
1321 
1322 	return (dsize);
1323 }
1324 
1325 uint64_t
1326 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1327 {
1328 	uint64_t dsize = 0;
1329 
1330 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1331 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1332 
1333 	return (dsize);
1334 }
1335 
1336 uint64_t
1337 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1338 {
1339 	uint64_t dsize = 0;
1340 
1341 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1342 
1343 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1344 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1345 
1346 	spa_config_exit(spa, SCL_VDEV, FTAG);
1347 
1348 	return (dsize);
1349 }
1350 
1351 /*
1352  * ==========================================================================
1353  * Initialization and Termination
1354  * ==========================================================================
1355  */
1356 
1357 static int
1358 spa_name_compare(const void *a1, const void *a2)
1359 {
1360 	const spa_t *s1 = a1;
1361 	const spa_t *s2 = a2;
1362 	int s;
1363 
1364 	s = strcmp(s1->spa_name, s2->spa_name);
1365 	if (s > 0)
1366 		return (1);
1367 	if (s < 0)
1368 		return (-1);
1369 	return (0);
1370 }
1371 
1372 int
1373 spa_busy(void)
1374 {
1375 	return (spa_active_count);
1376 }
1377 
1378 void
1379 spa_boot_init()
1380 {
1381 	spa_config_load();
1382 }
1383 
1384 void
1385 spa_init(int mode)
1386 {
1387 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1388 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1389 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1390 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1391 
1392 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1393 	    offsetof(spa_t, spa_avl));
1394 
1395 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1396 	    offsetof(spa_aux_t, aux_avl));
1397 
1398 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1399 	    offsetof(spa_aux_t, aux_avl));
1400 
1401 	spa_mode_global = mode;
1402 
1403 	refcount_init();
1404 	unique_init();
1405 	zio_init();
1406 	dmu_init();
1407 	zil_init();
1408 	vdev_cache_stat_init();
1409 	zfs_prop_init();
1410 	zpool_prop_init();
1411 	spa_config_load();
1412 	l2arc_start();
1413 }
1414 
1415 void
1416 spa_fini(void)
1417 {
1418 	l2arc_stop();
1419 
1420 	spa_evict_all();
1421 
1422 	vdev_cache_stat_fini();
1423 	zil_fini();
1424 	dmu_fini();
1425 	zio_fini();
1426 	unique_fini();
1427 	refcount_fini();
1428 
1429 	avl_destroy(&spa_namespace_avl);
1430 	avl_destroy(&spa_spare_avl);
1431 	avl_destroy(&spa_l2cache_avl);
1432 
1433 	cv_destroy(&spa_namespace_cv);
1434 	mutex_destroy(&spa_namespace_lock);
1435 	mutex_destroy(&spa_spare_lock);
1436 	mutex_destroy(&spa_l2cache_lock);
1437 }
1438 
1439 /*
1440  * Return whether this pool has slogs. No locking needed.
1441  * It's not a problem if the wrong answer is returned as it's only for
1442  * performance and not correctness
1443  */
1444 boolean_t
1445 spa_has_slogs(spa_t *spa)
1446 {
1447 	return (spa->spa_log_class->mc_rotor != NULL);
1448 }
1449 
1450 spa_log_state_t
1451 spa_get_log_state(spa_t *spa)
1452 {
1453 	return (spa->spa_log_state);
1454 }
1455 
1456 void
1457 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1458 {
1459 	spa->spa_log_state = state;
1460 }
1461 
1462 boolean_t
1463 spa_is_root(spa_t *spa)
1464 {
1465 	return (spa->spa_is_root);
1466 }
1467 
1468 boolean_t
1469 spa_writeable(spa_t *spa)
1470 {
1471 	return (!!(spa->spa_mode & FWRITE));
1472 }
1473 
1474 int
1475 spa_mode(spa_t *spa)
1476 {
1477 	return (spa->spa_mode);
1478 }
1479 
1480 uint64_t
1481 spa_bootfs(spa_t *spa)
1482 {
1483 	return (spa->spa_bootfs);
1484 }
1485 
1486 uint64_t
1487 spa_delegation(spa_t *spa)
1488 {
1489 	return (spa->spa_delegation);
1490 }
1491 
1492 objset_t *
1493 spa_meta_objset(spa_t *spa)
1494 {
1495 	return (spa->spa_meta_objset);
1496 }
1497 
1498 enum zio_checksum
1499 spa_dedup_checksum(spa_t *spa)
1500 {
1501 	return (spa->spa_dedup_checksum);
1502 }
1503