xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 91ebeef555ce7f899b6270a3c2df47b51f7ad59a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against SPA_MINREF, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock (per-spa read-priority rwlock)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * spa_config_cache_lock (per-spa mutex)
89  *
90  *	This mutex prevents the spa_config nvlist from being updated.  No
91  *      other locks are required to obtain this lock, although implicitly you
92  *      must have the namespace lock or non-zero refcount to have any kind
93  *      of spa_t pointer at all.
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
113  * are globally visible.
114  *
115  * The namespace is manipulated using the following functions, all which require
116  * the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock is manipulated using the following functions:
148  *
149  *	spa_config_enter()	Acquire the config lock as RW_READER or
150  *				RW_WRITER.  At least one reference on the spa_t
151  *				must exist.
152  *
153  *	spa_config_exit()	Release the config lock.
154  *
155  *	spa_config_held()	Returns true if the config lock is currently
156  *				held in the given state.
157  *
158  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
159  *
160  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
161  *				for writing.
162  *
163  *	spa_vdev_exit()		Release the config lock, wait for all I/O
164  *				to complete, sync the updated configs to the
165  *				cache, and release the namespace lock.
166  *
167  * The spa_name() function also requires either the spa_namespace_lock
168  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
169  * also implemented within this file since is requires manipulation of the
170  * namespace.
171  */
172 
173 static avl_tree_t spa_namespace_avl;
174 kmutex_t spa_namespace_lock;
175 static kcondvar_t spa_namespace_cv;
176 static int spa_active_count;
177 int spa_max_replication_override = SPA_DVAS_PER_BP;
178 
179 static kmutex_t spa_spare_lock;
180 static avl_tree_t spa_spare_avl;
181 
182 kmem_cache_t *spa_buffer_pool;
183 int spa_mode;
184 
185 #ifdef ZFS_DEBUG
186 /* Everything except dprintf is on by default in debug builds */
187 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
188 #else
189 int zfs_flags = 0;
190 #endif
191 
192 /*
193  * zfs_recover can be set to nonzero to attempt to recover from
194  * otherwise-fatal errors, typically caused by on-disk corruption.  When
195  * set, calls to zfs_panic_recover() will turn into warning messages.
196  */
197 int zfs_recover = 0;
198 
199 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
200 
201 /*
202  * ==========================================================================
203  * SPA namespace functions
204  * ==========================================================================
205  */
206 
207 /*
208  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
209  * Returns NULL if no matching spa_t is found.
210  */
211 spa_t *
212 spa_lookup(const char *name)
213 {
214 	spa_t search, *spa;
215 	avl_index_t where;
216 	char c;
217 	char *cp;
218 
219 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
220 
221 	/*
222 	 * If it's a full dataset name, figure out the pool name and
223 	 * just use that.
224 	 */
225 	cp = strpbrk(name, "/@");
226 	if (cp) {
227 		c = *cp;
228 		*cp = '\0';
229 	}
230 
231 	search.spa_name = (char *)name;
232 	spa = avl_find(&spa_namespace_avl, &search, &where);
233 
234 	if (cp)
235 		*cp = c;
236 
237 	return (spa);
238 }
239 
240 /*
241  * Create an uninitialized spa_t with the given name.  Requires
242  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
243  * exist by calling spa_lookup() first.
244  */
245 spa_t *
246 spa_add(const char *name, const char *altroot)
247 {
248 	spa_t *spa;
249 
250 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
251 
252 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
253 
254 	spa->spa_name = spa_strdup(name);
255 	spa->spa_state = POOL_STATE_UNINITIALIZED;
256 	spa->spa_freeze_txg = UINT64_MAX;
257 	spa->spa_final_txg = UINT64_MAX;
258 
259 	refcount_create(&spa->spa_refcount);
260 	rprw_init(&spa->spa_config_lock);
261 
262 	avl_add(&spa_namespace_avl, spa);
263 
264 	/*
265 	 * Set the alternate root, if there is one.
266 	 */
267 	if (altroot) {
268 		spa->spa_root = spa_strdup(altroot);
269 		spa_active_count++;
270 	}
271 
272 	return (spa);
273 }
274 
275 /*
276  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
277  * spa_namespace_lock.  This is called only after the spa_t has been closed and
278  * deactivated.
279  */
280 void
281 spa_remove(spa_t *spa)
282 {
283 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
284 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
285 	ASSERT(spa->spa_scrub_thread == NULL);
286 
287 	avl_remove(&spa_namespace_avl, spa);
288 	cv_broadcast(&spa_namespace_cv);
289 
290 	if (spa->spa_root) {
291 		spa_strfree(spa->spa_root);
292 		spa_active_count--;
293 	}
294 
295 	if (spa->spa_name)
296 		spa_strfree(spa->spa_name);
297 
298 	spa_config_set(spa, NULL);
299 
300 	refcount_destroy(&spa->spa_refcount);
301 
302 	rprw_destroy(&spa->spa_config_lock);
303 
304 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
305 	mutex_destroy(&spa->spa_errlist_lock);
306 	mutex_destroy(&spa->spa_errlog_lock);
307 	mutex_destroy(&spa->spa_scrub_lock);
308 	mutex_destroy(&spa->spa_config_cache_lock);
309 	mutex_destroy(&spa->spa_async_lock);
310 	mutex_destroy(&spa->spa_history_lock);
311 	mutex_destroy(&spa->spa_props_lock);
312 
313 	kmem_free(spa, sizeof (spa_t));
314 }
315 
316 /*
317  * Given a pool, return the next pool in the namespace, or NULL if there is
318  * none.  If 'prev' is NULL, return the first pool.
319  */
320 spa_t *
321 spa_next(spa_t *prev)
322 {
323 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
324 
325 	if (prev)
326 		return (AVL_NEXT(&spa_namespace_avl, prev));
327 	else
328 		return (avl_first(&spa_namespace_avl));
329 }
330 
331 /*
332  * ==========================================================================
333  * SPA refcount functions
334  * ==========================================================================
335  */
336 
337 /*
338  * Add a reference to the given spa_t.  Must have at least one reference, or
339  * have the namespace lock held.
340  */
341 void
342 spa_open_ref(spa_t *spa, void *tag)
343 {
344 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
345 	    MUTEX_HELD(&spa_namespace_lock));
346 
347 	(void) refcount_add(&spa->spa_refcount, tag);
348 }
349 
350 /*
351  * Remove a reference to the given spa_t.  Must have at least one reference, or
352  * have the namespace lock held.
353  */
354 void
355 spa_close(spa_t *spa, void *tag)
356 {
357 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
358 	    MUTEX_HELD(&spa_namespace_lock));
359 
360 	(void) refcount_remove(&spa->spa_refcount, tag);
361 }
362 
363 /*
364  * Check to see if the spa refcount is zero.  Must be called with
365  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
366  * number of references acquired when opening a pool
367  */
368 boolean_t
369 spa_refcount_zero(spa_t *spa)
370 {
371 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
372 
373 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
374 }
375 
376 /*
377  * ==========================================================================
378  * SPA spare tracking
379  * ==========================================================================
380  */
381 
382 /*
383  * Spares are tracked globally due to the following constraints:
384  *
385  * 	- A spare may be part of multiple pools.
386  * 	- A spare may be added to a pool even if it's actively in use within
387  *	  another pool.
388  * 	- A spare in use in any pool can only be the source of a replacement if
389  *	  the target is a spare in the same pool.
390  *
391  * We keep track of all spares on the system through the use of a reference
392  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
393  * spare, then we bump the reference count in the AVL tree.  In addition, we set
394  * the 'vdev_isspare' member to indicate that the device is a spare (active or
395  * inactive).  When a spare is made active (used to replace a device in the
396  * pool), we also keep track of which pool its been made a part of.
397  *
398  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
399  * called under the spa_namespace lock as part of vdev reconfiguration.  The
400  * separate spare lock exists for the status query path, which does not need to
401  * be completely consistent with respect to other vdev configuration changes.
402  */
403 
404 typedef struct spa_spare {
405 	uint64_t	spare_guid;
406 	uint64_t	spare_pool;
407 	avl_node_t	spare_avl;
408 	int		spare_count;
409 } spa_spare_t;
410 
411 static int
412 spa_spare_compare(const void *a, const void *b)
413 {
414 	const spa_spare_t *sa = a;
415 	const spa_spare_t *sb = b;
416 
417 	if (sa->spare_guid < sb->spare_guid)
418 		return (-1);
419 	else if (sa->spare_guid > sb->spare_guid)
420 		return (1);
421 	else
422 		return (0);
423 }
424 
425 void
426 spa_spare_add(vdev_t *vd)
427 {
428 	avl_index_t where;
429 	spa_spare_t search;
430 	spa_spare_t *spare;
431 
432 	mutex_enter(&spa_spare_lock);
433 	ASSERT(!vd->vdev_isspare);
434 
435 	search.spare_guid = vd->vdev_guid;
436 	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
437 		spare->spare_count++;
438 	} else {
439 		spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
440 		spare->spare_guid = vd->vdev_guid;
441 		spare->spare_count = 1;
442 		avl_insert(&spa_spare_avl, spare, where);
443 	}
444 	vd->vdev_isspare = B_TRUE;
445 
446 	mutex_exit(&spa_spare_lock);
447 }
448 
449 void
450 spa_spare_remove(vdev_t *vd)
451 {
452 	spa_spare_t search;
453 	spa_spare_t *spare;
454 	avl_index_t where;
455 
456 	mutex_enter(&spa_spare_lock);
457 
458 	search.spare_guid = vd->vdev_guid;
459 	spare = avl_find(&spa_spare_avl, &search, &where);
460 
461 	ASSERT(vd->vdev_isspare);
462 	ASSERT(spare != NULL);
463 
464 	if (--spare->spare_count == 0) {
465 		avl_remove(&spa_spare_avl, spare);
466 		kmem_free(spare, sizeof (spa_spare_t));
467 	} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
468 		spare->spare_pool = 0ULL;
469 	}
470 
471 	vd->vdev_isspare = B_FALSE;
472 	mutex_exit(&spa_spare_lock);
473 }
474 
475 boolean_t
476 spa_spare_exists(uint64_t guid, uint64_t *pool)
477 {
478 	spa_spare_t search, *found;
479 	avl_index_t where;
480 
481 	mutex_enter(&spa_spare_lock);
482 
483 	search.spare_guid = guid;
484 	found = avl_find(&spa_spare_avl, &search, &where);
485 
486 	if (pool) {
487 		if (found)
488 			*pool = found->spare_pool;
489 		else
490 			*pool = 0ULL;
491 	}
492 
493 	mutex_exit(&spa_spare_lock);
494 
495 	return (found != NULL);
496 }
497 
498 void
499 spa_spare_activate(vdev_t *vd)
500 {
501 	spa_spare_t search, *found;
502 	avl_index_t where;
503 
504 	mutex_enter(&spa_spare_lock);
505 	ASSERT(vd->vdev_isspare);
506 
507 	search.spare_guid = vd->vdev_guid;
508 	found = avl_find(&spa_spare_avl, &search, &where);
509 	ASSERT(found != NULL);
510 	ASSERT(found->spare_pool == 0ULL);
511 
512 	found->spare_pool = spa_guid(vd->vdev_spa);
513 	mutex_exit(&spa_spare_lock);
514 }
515 
516 /*
517  * ==========================================================================
518  * SPA config locking
519  * ==========================================================================
520  */
521 void
522 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
523 {
524 	rprw_enter(&spa->spa_config_lock, rw, tag);
525 }
526 
527 void
528 spa_config_exit(spa_t *spa, void *tag)
529 {
530 	rprw_exit(&spa->spa_config_lock, tag);
531 }
532 
533 boolean_t
534 spa_config_held(spa_t *spa, krw_t rw)
535 {
536 	return (rprw_held(&spa->spa_config_lock, rw));
537 }
538 
539 /*
540  * ==========================================================================
541  * SPA vdev locking
542  * ==========================================================================
543  */
544 
545 /*
546  * Lock the given spa_t for the purpose of adding or removing a vdev.
547  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
548  * It returns the next transaction group for the spa_t.
549  */
550 uint64_t
551 spa_vdev_enter(spa_t *spa)
552 {
553 	mutex_enter(&spa_namespace_lock);
554 
555 	/*
556 	 * Suspend scrub activity while we mess with the config.  We must do
557 	 * this after acquiring the namespace lock to avoid a 3-way deadlock
558 	 * with spa_scrub_stop() and the scrub thread.
559 	 */
560 	spa_scrub_suspend(spa);
561 
562 	spa_config_enter(spa, RW_WRITER, spa);
563 
564 	return (spa_last_synced_txg(spa) + 1);
565 }
566 
567 /*
568  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
569  * locking of spa_vdev_enter(), we also want make sure the transactions have
570  * synced to disk, and then update the global configuration cache with the new
571  * information.
572  */
573 int
574 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
575 {
576 	int config_changed = B_FALSE;
577 
578 	ASSERT(txg > spa_last_synced_txg(spa));
579 
580 	/*
581 	 * Reassess the DTLs.
582 	 */
583 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
584 
585 	/*
586 	 * If the config changed, notify the scrub thread that it must restart.
587 	 */
588 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
589 		config_changed = B_TRUE;
590 		spa_scrub_restart(spa, txg);
591 	}
592 
593 	spa_config_exit(spa, spa);
594 
595 	/*
596 	 * Allow scrubbing to resume.
597 	 */
598 	spa_scrub_resume(spa);
599 
600 	/*
601 	 * Note: this txg_wait_synced() is important because it ensures
602 	 * that there won't be more than one config change per txg.
603 	 * This allows us to use the txg as the generation number.
604 	 */
605 	if (error == 0)
606 		txg_wait_synced(spa->spa_dsl_pool, txg);
607 
608 	if (vd != NULL) {
609 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
610 		vdev_free(vd);
611 	}
612 
613 	/*
614 	 * If the config changed, update the config cache.
615 	 */
616 	if (config_changed)
617 		spa_config_sync();
618 
619 	mutex_exit(&spa_namespace_lock);
620 
621 	return (error);
622 }
623 
624 /*
625  * ==========================================================================
626  * Miscellaneous functions
627  * ==========================================================================
628  */
629 
630 /*
631  * Rename a spa_t.
632  */
633 int
634 spa_rename(const char *name, const char *newname)
635 {
636 	spa_t *spa;
637 	int err;
638 
639 	/*
640 	 * Lookup the spa_t and grab the config lock for writing.  We need to
641 	 * actually open the pool so that we can sync out the necessary labels.
642 	 * It's OK to call spa_open() with the namespace lock held because we
643 	 * allow recursive calls for other reasons.
644 	 */
645 	mutex_enter(&spa_namespace_lock);
646 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
647 		mutex_exit(&spa_namespace_lock);
648 		return (err);
649 	}
650 
651 	spa_config_enter(spa, RW_WRITER, FTAG);
652 
653 	avl_remove(&spa_namespace_avl, spa);
654 	spa_strfree(spa->spa_name);
655 	spa->spa_name = spa_strdup(newname);
656 	avl_add(&spa_namespace_avl, spa);
657 
658 	/*
659 	 * Sync all labels to disk with the new names by marking the root vdev
660 	 * dirty and waiting for it to sync.  It will pick up the new pool name
661 	 * during the sync.
662 	 */
663 	vdev_config_dirty(spa->spa_root_vdev);
664 
665 	spa_config_exit(spa, FTAG);
666 
667 	txg_wait_synced(spa->spa_dsl_pool, 0);
668 
669 	/*
670 	 * Sync the updated config cache.
671 	 */
672 	spa_config_sync();
673 
674 	spa_close(spa, FTAG);
675 
676 	mutex_exit(&spa_namespace_lock);
677 
678 	return (0);
679 }
680 
681 
682 /*
683  * Determine whether a pool with given pool_guid exists.  If device_guid is
684  * non-zero, determine whether the pool exists *and* contains a device with the
685  * specified device_guid.
686  */
687 boolean_t
688 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
689 {
690 	spa_t *spa;
691 	avl_tree_t *t = &spa_namespace_avl;
692 
693 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
694 
695 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
696 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
697 			continue;
698 		if (spa->spa_root_vdev == NULL)
699 			continue;
700 		if (spa_guid(spa) == pool_guid) {
701 			if (device_guid == 0)
702 				break;
703 
704 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
705 			    device_guid) != NULL)
706 				break;
707 
708 			/*
709 			 * Check any devices we may be in the process of adding.
710 			 */
711 			if (spa->spa_pending_vdev) {
712 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
713 				    device_guid) != NULL)
714 					break;
715 			}
716 		}
717 	}
718 
719 	return (spa != NULL);
720 }
721 
722 char *
723 spa_strdup(const char *s)
724 {
725 	size_t len;
726 	char *new;
727 
728 	len = strlen(s);
729 	new = kmem_alloc(len + 1, KM_SLEEP);
730 	bcopy(s, new, len);
731 	new[len] = '\0';
732 
733 	return (new);
734 }
735 
736 void
737 spa_strfree(char *s)
738 {
739 	kmem_free(s, strlen(s) + 1);
740 }
741 
742 uint64_t
743 spa_get_random(uint64_t range)
744 {
745 	uint64_t r;
746 
747 	ASSERT(range != 0);
748 
749 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
750 
751 	return (r % range);
752 }
753 
754 void
755 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
756 {
757 	int d;
758 
759 	if (bp == NULL) {
760 		(void) snprintf(buf, len, "<NULL>");
761 		return;
762 	}
763 
764 	if (BP_IS_HOLE(bp)) {
765 		(void) snprintf(buf, len, "<hole>");
766 		return;
767 	}
768 
769 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
770 	    (u_longlong_t)BP_GET_LEVEL(bp),
771 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
772 	    (u_longlong_t)BP_GET_LSIZE(bp),
773 	    (u_longlong_t)BP_GET_PSIZE(bp));
774 
775 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
776 		const dva_t *dva = &bp->blk_dva[d];
777 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
778 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
779 		    (u_longlong_t)DVA_GET_VDEV(dva),
780 		    (u_longlong_t)DVA_GET_OFFSET(dva),
781 		    (u_longlong_t)DVA_GET_ASIZE(dva));
782 	}
783 
784 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
785 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
786 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
787 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
788 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
789 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
790 	    (u_longlong_t)bp->blk_birth,
791 	    (u_longlong_t)bp->blk_fill,
792 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
793 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
794 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
795 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
796 }
797 
798 void
799 spa_freeze(spa_t *spa)
800 {
801 	uint64_t freeze_txg = 0;
802 
803 	spa_config_enter(spa, RW_WRITER, FTAG);
804 	if (spa->spa_freeze_txg == UINT64_MAX) {
805 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
806 		spa->spa_freeze_txg = freeze_txg;
807 	}
808 	spa_config_exit(spa, FTAG);
809 	if (freeze_txg != 0)
810 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
811 }
812 
813 void
814 zfs_panic_recover(const char *fmt, ...)
815 {
816 	va_list adx;
817 
818 	va_start(adx, fmt);
819 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
820 	va_end(adx);
821 }
822 
823 /*
824  * ==========================================================================
825  * Accessor functions
826  * ==========================================================================
827  */
828 
829 krwlock_t *
830 spa_traverse_rwlock(spa_t *spa)
831 {
832 	return (&spa->spa_traverse_lock);
833 }
834 
835 int
836 spa_traverse_wanted(spa_t *spa)
837 {
838 	return (spa->spa_traverse_wanted);
839 }
840 
841 dsl_pool_t *
842 spa_get_dsl(spa_t *spa)
843 {
844 	return (spa->spa_dsl_pool);
845 }
846 
847 blkptr_t *
848 spa_get_rootblkptr(spa_t *spa)
849 {
850 	return (&spa->spa_ubsync.ub_rootbp);
851 }
852 
853 void
854 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
855 {
856 	spa->spa_uberblock.ub_rootbp = *bp;
857 }
858 
859 void
860 spa_altroot(spa_t *spa, char *buf, size_t buflen)
861 {
862 	if (spa->spa_root == NULL)
863 		buf[0] = '\0';
864 	else
865 		(void) strncpy(buf, spa->spa_root, buflen);
866 }
867 
868 int
869 spa_sync_pass(spa_t *spa)
870 {
871 	return (spa->spa_sync_pass);
872 }
873 
874 char *
875 spa_name(spa_t *spa)
876 {
877 	/*
878 	 * Accessing the name requires holding either the namespace lock or the
879 	 * config lock, both of which are required to do a rename.
880 	 */
881 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
882 	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));
883 
884 	return (spa->spa_name);
885 }
886 
887 uint64_t
888 spa_guid(spa_t *spa)
889 {
890 	/*
891 	 * If we fail to parse the config during spa_load(), we can go through
892 	 * the error path (which posts an ereport) and end up here with no root
893 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
894 	 * this case.
895 	 */
896 	if (spa->spa_root_vdev != NULL)
897 		return (spa->spa_root_vdev->vdev_guid);
898 	else
899 		return (spa->spa_load_guid);
900 }
901 
902 uint64_t
903 spa_last_synced_txg(spa_t *spa)
904 {
905 	return (spa->spa_ubsync.ub_txg);
906 }
907 
908 uint64_t
909 spa_first_txg(spa_t *spa)
910 {
911 	return (spa->spa_first_txg);
912 }
913 
914 int
915 spa_state(spa_t *spa)
916 {
917 	return (spa->spa_state);
918 }
919 
920 uint64_t
921 spa_freeze_txg(spa_t *spa)
922 {
923 	return (spa->spa_freeze_txg);
924 }
925 
926 /*
927  * Return how much space is allocated in the pool (ie. sum of all asize)
928  */
929 uint64_t
930 spa_get_alloc(spa_t *spa)
931 {
932 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
933 }
934 
935 /*
936  * Return how much (raid-z inflated) space there is in the pool.
937  */
938 uint64_t
939 spa_get_space(spa_t *spa)
940 {
941 	return (spa->spa_root_vdev->vdev_stat.vs_space);
942 }
943 
944 /*
945  * Return the amount of raid-z-deflated space in the pool.
946  */
947 uint64_t
948 spa_get_dspace(spa_t *spa)
949 {
950 	if (spa->spa_deflate)
951 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
952 	else
953 		return (spa->spa_root_vdev->vdev_stat.vs_space);
954 }
955 
956 /* ARGSUSED */
957 uint64_t
958 spa_get_asize(spa_t *spa, uint64_t lsize)
959 {
960 	/*
961 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
962 	 * case the space requirement is exactly 2x; so just assume that.
963 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
964 	 * we have to multiply by a total of 6x.
965 	 */
966 	return (lsize * 6);
967 }
968 
969 uint64_t
970 spa_version(spa_t *spa)
971 {
972 	return (spa->spa_ubsync.ub_version);
973 }
974 
975 int
976 spa_max_replication(spa_t *spa)
977 {
978 	/*
979 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
980 	 * handle BPs with more than one DVA allocated.  Set our max
981 	 * replication level accordingly.
982 	 */
983 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
984 		return (1);
985 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
986 }
987 
988 uint64_t
989 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
990 {
991 	int sz = 0, i;
992 
993 	if (!spa->spa_deflate)
994 		return (BP_GET_ASIZE(bp));
995 
996 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
997 		vdev_t *vd =
998 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
999 		sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
1000 		    vd->vdev_deflate_ratio;
1001 	}
1002 	return (sz);
1003 }
1004 
1005 /*
1006  * ==========================================================================
1007  * Initialization and Termination
1008  * ==========================================================================
1009  */
1010 
1011 static int
1012 spa_name_compare(const void *a1, const void *a2)
1013 {
1014 	const spa_t *s1 = a1;
1015 	const spa_t *s2 = a2;
1016 	int s;
1017 
1018 	s = strcmp(s1->spa_name, s2->spa_name);
1019 	if (s > 0)
1020 		return (1);
1021 	if (s < 0)
1022 		return (-1);
1023 	return (0);
1024 }
1025 
1026 int
1027 spa_busy(void)
1028 {
1029 	return (spa_active_count);
1030 }
1031 
1032 void
1033 spa_init(int mode)
1034 {
1035 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1036 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1037 
1038 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1039 	    offsetof(spa_t, spa_avl));
1040 
1041 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
1042 	    offsetof(spa_spare_t, spare_avl));
1043 
1044 	spa_mode = mode;
1045 
1046 	refcount_init();
1047 	unique_init();
1048 	zio_init();
1049 	dmu_init();
1050 	zil_init();
1051 	zfs_prop_init();
1052 	spa_config_load();
1053 }
1054 
1055 void
1056 spa_fini(void)
1057 {
1058 	spa_evict_all();
1059 
1060 	zil_fini();
1061 	dmu_fini();
1062 	zio_fini();
1063 	unique_fini();
1064 	refcount_fini();
1065 
1066 	avl_destroy(&spa_namespace_avl);
1067 	avl_destroy(&spa_spare_avl);
1068 
1069 	cv_destroy(&spa_namespace_cv);
1070 	mutex_destroy(&spa_namespace_lock);
1071 }
1072 
1073 /*
1074  * Return whether this pool has slogs. No locking needed.
1075  * It's not a problem if the wrong answer is returned as it's only for
1076  * performance and not correctness
1077  */
1078 boolean_t
1079 spa_has_slogs(spa_t *spa)
1080 {
1081 	return (spa->spa_log_class->mc_rotor != NULL);
1082 }
1083