xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 7fd05ac4dec0c343d2f68f310d3718b715ecfbaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/spa_boot.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/arc.h>
50 #include <sys/ddt.h>
51 #include "zfs_prop.h"
52 #include "zfeature_common.h"
53 
54 /*
55  * SPA locking
56  *
57  * There are four basic locks for managing spa_t structures:
58  *
59  * spa_namespace_lock (global mutex)
60  *
61  *	This lock must be acquired to do any of the following:
62  *
63  *		- Lookup a spa_t by name
64  *		- Add or remove a spa_t from the namespace
65  *		- Increase spa_refcount from non-zero
66  *		- Check if spa_refcount is zero
67  *		- Rename a spa_t
68  *		- add/remove/attach/detach devices
69  *		- Held for the duration of create/destroy/import/export
70  *
71  *	It does not need to handle recursion.  A create or destroy may
72  *	reference objects (files or zvols) in other pools, but by
73  *	definition they must have an existing reference, and will never need
74  *	to lookup a spa_t by name.
75  *
76  * spa_refcount (per-spa refcount_t protected by mutex)
77  *
78  *	This reference count keep track of any active users of the spa_t.  The
79  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
80  *	the refcount is never really 'zero' - opening a pool implicitly keeps
81  *	some references in the DMU.  Internally we check against spa_minref, but
82  *	present the image of a zero/non-zero value to consumers.
83  *
84  * spa_config_lock[] (per-spa array of rwlocks)
85  *
86  *	This protects the spa_t from config changes, and must be held in
87  *	the following circumstances:
88  *
89  *		- RW_READER to perform I/O to the spa
90  *		- RW_WRITER to change the vdev config
91  *
92  * The locking order is fairly straightforward:
93  *
94  *		spa_namespace_lock	->	spa_refcount
95  *
96  *	The namespace lock must be acquired to increase the refcount from 0
97  *	or to check if it is zero.
98  *
99  *		spa_refcount		->	spa_config_lock[]
100  *
101  *	There must be at least one valid reference on the spa_t to acquire
102  *	the config lock.
103  *
104  *		spa_namespace_lock	->	spa_config_lock[]
105  *
106  *	The namespace lock must always be taken before the config lock.
107  *
108  *
109  * The spa_namespace_lock can be acquired directly and is globally visible.
110  *
111  * The namespace is manipulated using the following functions, all of which
112  * require the spa_namespace_lock to be held.
113  *
114  *	spa_lookup()		Lookup a spa_t by name.
115  *
116  *	spa_add()		Create a new spa_t in the namespace.
117  *
118  *	spa_remove()		Remove a spa_t from the namespace.  This also
119  *				frees up any memory associated with the spa_t.
120  *
121  *	spa_next()		Returns the next spa_t in the system, or the
122  *				first if NULL is passed.
123  *
124  *	spa_evict_all()		Shutdown and remove all spa_t structures in
125  *				the system.
126  *
127  *	spa_guid_exists()	Determine whether a pool/device guid exists.
128  *
129  * The spa_refcount is manipulated using the following functions:
130  *
131  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
132  *				called with spa_namespace_lock held if the
133  *				refcount is currently zero.
134  *
135  *	spa_close()		Remove a reference from the spa_t.  This will
136  *				not free the spa_t or remove it from the
137  *				namespace.  No locking is required.
138  *
139  *	spa_refcount_zero()	Returns true if the refcount is currently
140  *				zero.  Must be called with spa_namespace_lock
141  *				held.
142  *
143  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
144  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
145  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
146  *
147  * To read the configuration, it suffices to hold one of these locks as reader.
148  * To modify the configuration, you must hold all locks as writer.  To modify
149  * vdev state without altering the vdev tree's topology (e.g. online/offline),
150  * you must hold SCL_STATE and SCL_ZIO as writer.
151  *
152  * We use these distinct config locks to avoid recursive lock entry.
153  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
154  * block allocations (SCL_ALLOC), which may require reading space maps
155  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
156  *
157  * The spa config locks cannot be normal rwlocks because we need the
158  * ability to hand off ownership.  For example, SCL_ZIO is acquired
159  * by the issuing thread and later released by an interrupt thread.
160  * They do, however, obey the usual write-wanted semantics to prevent
161  * writer (i.e. system administrator) starvation.
162  *
163  * The lock acquisition rules are as follows:
164  *
165  * SCL_CONFIG
166  *	Protects changes to the vdev tree topology, such as vdev
167  *	add/remove/attach/detach.  Protects the dirty config list
168  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
169  *
170  * SCL_STATE
171  *	Protects changes to pool state and vdev state, such as vdev
172  *	online/offline/fault/degrade/clear.  Protects the dirty state list
173  *	(spa_state_dirty_list) and global pool state (spa_state).
174  *
175  * SCL_ALLOC
176  *	Protects changes to metaslab groups and classes.
177  *	Held as reader by metaslab_alloc() and metaslab_claim().
178  *
179  * SCL_ZIO
180  *	Held by bp-level zios (those which have no io_vd upon entry)
181  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
182  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
183  *
184  * SCL_FREE
185  *	Protects changes to metaslab groups and classes.
186  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
187  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
188  *	blocks in zio_done() while another i/o that holds either
189  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
190  *
191  * SCL_VDEV
192  *	Held as reader to prevent changes to the vdev tree during trivial
193  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
194  *	other locks, and lower than all of them, to ensure that it's safe
195  *	to acquire regardless of caller context.
196  *
197  * In addition, the following rules apply:
198  *
199  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
200  *	The lock ordering is SCL_CONFIG > spa_props_lock.
201  *
202  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
203  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
204  *	or zio_write_phys() -- the caller must ensure that the config cannot
205  *	cannot change in the interim, and that the vdev cannot be reopened.
206  *	SCL_STATE as reader suffices for both.
207  *
208  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
209  *
210  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
211  *				for writing.
212  *
213  *	spa_vdev_exit()		Release the config lock, wait for all I/O
214  *				to complete, sync the updated configs to the
215  *				cache, and release the namespace lock.
216  *
217  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
218  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
219  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
220  *
221  * spa_rename() is also implemented within this file since it requires
222  * manipulation of the namespace.
223  */
224 
225 static avl_tree_t spa_namespace_avl;
226 kmutex_t spa_namespace_lock;
227 static kcondvar_t spa_namespace_cv;
228 static int spa_active_count;
229 int spa_max_replication_override = SPA_DVAS_PER_BP;
230 
231 static kmutex_t spa_spare_lock;
232 static avl_tree_t spa_spare_avl;
233 static kmutex_t spa_l2cache_lock;
234 static avl_tree_t spa_l2cache_avl;
235 
236 kmem_cache_t *spa_buffer_pool;
237 int spa_mode_global;
238 
239 #ifdef ZFS_DEBUG
240 /* Everything except dprintf and spa is on by default in debug builds */
241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
242 #else
243 int zfs_flags = 0;
244 #endif
245 
246 /*
247  * zfs_recover can be set to nonzero to attempt to recover from
248  * otherwise-fatal errors, typically caused by on-disk corruption.  When
249  * set, calls to zfs_panic_recover() will turn into warning messages.
250  * This should only be used as a last resort, as it typically results
251  * in leaked space, or worse.
252  */
253 boolean_t zfs_recover = B_FALSE;
254 
255 /*
256  * If destroy encounters an EIO while reading metadata (e.g. indirect
257  * blocks), space referenced by the missing metadata can not be freed.
258  * Normally this causes the background destroy to become "stalled", as
259  * it is unable to make forward progress.  While in this stalled state,
260  * all remaining space to free from the error-encountering filesystem is
261  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
262  * permanently leak the space from indirect blocks that can not be read,
263  * and continue to free everything else that it can.
264  *
265  * The default, "stalling" behavior is useful if the storage partially
266  * fails (i.e. some but not all i/os fail), and then later recovers.  In
267  * this case, we will be able to continue pool operations while it is
268  * partially failed, and when it recovers, we can continue to free the
269  * space, with no leaks.  However, note that this case is actually
270  * fairly rare.
271  *
272  * Typically pools either (a) fail completely (but perhaps temporarily,
273  * e.g. a top-level vdev going offline), or (b) have localized,
274  * permanent errors (e.g. disk returns the wrong data due to bit flip or
275  * firmware bug).  In case (a), this setting does not matter because the
276  * pool will be suspended and the sync thread will not be able to make
277  * forward progress regardless.  In case (b), because the error is
278  * permanent, the best we can do is leak the minimum amount of space,
279  * which is what setting this flag will do.  Therefore, it is reasonable
280  * for this flag to normally be set, but we chose the more conservative
281  * approach of not setting it, so that there is no possibility of
282  * leaking space in the "partial temporary" failure case.
283  */
284 boolean_t zfs_free_leak_on_eio = B_FALSE;
285 
286 /*
287  * Expiration time in milliseconds. This value has two meanings. First it is
288  * used to determine when the spa_deadman() logic should fire. By default the
289  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
290  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
291  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
292  * in a system panic.
293  */
294 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
295 
296 /*
297  * Check time in milliseconds. This defines the frequency at which we check
298  * for hung I/O.
299  */
300 uint64_t zfs_deadman_checktime_ms = 5000ULL;
301 
302 /*
303  * Override the zfs deadman behavior via /etc/system. By default the
304  * deadman is enabled except on VMware and sparc deployments.
305  */
306 int zfs_deadman_enabled = -1;
307 
308 /*
309  * The worst case is single-sector max-parity RAID-Z blocks, in which
310  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
311  * times the size; so just assume that.  Add to this the fact that
312  * we can have up to 3 DVAs per bp, and one more factor of 2 because
313  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
314  * the worst case is:
315  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
316  */
317 int spa_asize_inflation = 24;
318 
319 /*
320  * ==========================================================================
321  * SPA config locking
322  * ==========================================================================
323  */
324 static void
325 spa_config_lock_init(spa_t *spa)
326 {
327 	for (int i = 0; i < SCL_LOCKS; i++) {
328 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
329 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
330 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
331 		refcount_create_untracked(&scl->scl_count);
332 		scl->scl_writer = NULL;
333 		scl->scl_write_wanted = 0;
334 	}
335 }
336 
337 static void
338 spa_config_lock_destroy(spa_t *spa)
339 {
340 	for (int i = 0; i < SCL_LOCKS; i++) {
341 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
342 		mutex_destroy(&scl->scl_lock);
343 		cv_destroy(&scl->scl_cv);
344 		refcount_destroy(&scl->scl_count);
345 		ASSERT(scl->scl_writer == NULL);
346 		ASSERT(scl->scl_write_wanted == 0);
347 	}
348 }
349 
350 int
351 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
352 {
353 	for (int i = 0; i < SCL_LOCKS; i++) {
354 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
355 		if (!(locks & (1 << i)))
356 			continue;
357 		mutex_enter(&scl->scl_lock);
358 		if (rw == RW_READER) {
359 			if (scl->scl_writer || scl->scl_write_wanted) {
360 				mutex_exit(&scl->scl_lock);
361 				spa_config_exit(spa, locks ^ (1 << i), tag);
362 				return (0);
363 			}
364 		} else {
365 			ASSERT(scl->scl_writer != curthread);
366 			if (!refcount_is_zero(&scl->scl_count)) {
367 				mutex_exit(&scl->scl_lock);
368 				spa_config_exit(spa, locks ^ (1 << i), tag);
369 				return (0);
370 			}
371 			scl->scl_writer = curthread;
372 		}
373 		(void) refcount_add(&scl->scl_count, tag);
374 		mutex_exit(&scl->scl_lock);
375 	}
376 	return (1);
377 }
378 
379 void
380 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
381 {
382 	int wlocks_held = 0;
383 
384 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
385 
386 	for (int i = 0; i < SCL_LOCKS; i++) {
387 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
388 		if (scl->scl_writer == curthread)
389 			wlocks_held |= (1 << i);
390 		if (!(locks & (1 << i)))
391 			continue;
392 		mutex_enter(&scl->scl_lock);
393 		if (rw == RW_READER) {
394 			while (scl->scl_writer || scl->scl_write_wanted) {
395 				cv_wait(&scl->scl_cv, &scl->scl_lock);
396 			}
397 		} else {
398 			ASSERT(scl->scl_writer != curthread);
399 			while (!refcount_is_zero(&scl->scl_count)) {
400 				scl->scl_write_wanted++;
401 				cv_wait(&scl->scl_cv, &scl->scl_lock);
402 				scl->scl_write_wanted--;
403 			}
404 			scl->scl_writer = curthread;
405 		}
406 		(void) refcount_add(&scl->scl_count, tag);
407 		mutex_exit(&scl->scl_lock);
408 	}
409 	ASSERT(wlocks_held <= locks);
410 }
411 
412 void
413 spa_config_exit(spa_t *spa, int locks, void *tag)
414 {
415 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
416 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
417 		if (!(locks & (1 << i)))
418 			continue;
419 		mutex_enter(&scl->scl_lock);
420 		ASSERT(!refcount_is_zero(&scl->scl_count));
421 		if (refcount_remove(&scl->scl_count, tag) == 0) {
422 			ASSERT(scl->scl_writer == NULL ||
423 			    scl->scl_writer == curthread);
424 			scl->scl_writer = NULL;	/* OK in either case */
425 			cv_broadcast(&scl->scl_cv);
426 		}
427 		mutex_exit(&scl->scl_lock);
428 	}
429 }
430 
431 int
432 spa_config_held(spa_t *spa, int locks, krw_t rw)
433 {
434 	int locks_held = 0;
435 
436 	for (int i = 0; i < SCL_LOCKS; i++) {
437 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
438 		if (!(locks & (1 << i)))
439 			continue;
440 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
441 		    (rw == RW_WRITER && scl->scl_writer == curthread))
442 			locks_held |= 1 << i;
443 	}
444 
445 	return (locks_held);
446 }
447 
448 /*
449  * ==========================================================================
450  * SPA namespace functions
451  * ==========================================================================
452  */
453 
454 /*
455  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
456  * Returns NULL if no matching spa_t is found.
457  */
458 spa_t *
459 spa_lookup(const char *name)
460 {
461 	static spa_t search;	/* spa_t is large; don't allocate on stack */
462 	spa_t *spa;
463 	avl_index_t where;
464 	char *cp;
465 
466 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
467 
468 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
469 
470 	/*
471 	 * If it's a full dataset name, figure out the pool name and
472 	 * just use that.
473 	 */
474 	cp = strpbrk(search.spa_name, "/@#");
475 	if (cp != NULL)
476 		*cp = '\0';
477 
478 	spa = avl_find(&spa_namespace_avl, &search, &where);
479 
480 	return (spa);
481 }
482 
483 /*
484  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
485  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
486  * looking for potentially hung I/Os.
487  */
488 void
489 spa_deadman(void *arg)
490 {
491 	spa_t *spa = arg;
492 
493 	/*
494 	 * Disable the deadman timer if the pool is suspended.
495 	 */
496 	if (spa_suspended(spa)) {
497 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
498 		return;
499 	}
500 
501 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
502 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
503 	    ++spa->spa_deadman_calls);
504 	if (zfs_deadman_enabled)
505 		vdev_deadman(spa->spa_root_vdev);
506 }
507 
508 /*
509  * Create an uninitialized spa_t with the given name.  Requires
510  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
511  * exist by calling spa_lookup() first.
512  */
513 spa_t *
514 spa_add(const char *name, nvlist_t *config, const char *altroot)
515 {
516 	spa_t *spa;
517 	spa_config_dirent_t *dp;
518 	cyc_handler_t hdlr;
519 	cyc_time_t when;
520 
521 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
522 
523 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
524 
525 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
526 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
527 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
528 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
529 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
530 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
531 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
532 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
533 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
534 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
535 
536 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
537 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
538 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
539 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
540 
541 	for (int t = 0; t < TXG_SIZE; t++)
542 		bplist_create(&spa->spa_free_bplist[t]);
543 
544 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
545 	spa->spa_state = POOL_STATE_UNINITIALIZED;
546 	spa->spa_freeze_txg = UINT64_MAX;
547 	spa->spa_final_txg = UINT64_MAX;
548 	spa->spa_load_max_txg = UINT64_MAX;
549 	spa->spa_proc = &p0;
550 	spa->spa_proc_state = SPA_PROC_NONE;
551 
552 	hdlr.cyh_func = spa_deadman;
553 	hdlr.cyh_arg = spa;
554 	hdlr.cyh_level = CY_LOW_LEVEL;
555 
556 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
557 
558 	/*
559 	 * This determines how often we need to check for hung I/Os after
560 	 * the cyclic has already fired. Since checking for hung I/Os is
561 	 * an expensive operation we don't want to check too frequently.
562 	 * Instead wait for 5 seconds before checking again.
563 	 */
564 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
565 	when.cyt_when = CY_INFINITY;
566 	mutex_enter(&cpu_lock);
567 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
568 	mutex_exit(&cpu_lock);
569 
570 	refcount_create(&spa->spa_refcount);
571 	spa_config_lock_init(spa);
572 
573 	avl_add(&spa_namespace_avl, spa);
574 
575 	/*
576 	 * Set the alternate root, if there is one.
577 	 */
578 	if (altroot) {
579 		spa->spa_root = spa_strdup(altroot);
580 		spa_active_count++;
581 	}
582 
583 	/*
584 	 * Every pool starts with the default cachefile
585 	 */
586 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
587 	    offsetof(spa_config_dirent_t, scd_link));
588 
589 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
590 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
591 	list_insert_head(&spa->spa_config_list, dp);
592 
593 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
594 	    KM_SLEEP) == 0);
595 
596 	if (config != NULL) {
597 		nvlist_t *features;
598 
599 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
600 		    &features) == 0) {
601 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
602 			    0) == 0);
603 		}
604 
605 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
606 	}
607 
608 	if (spa->spa_label_features == NULL) {
609 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
610 		    KM_SLEEP) == 0);
611 	}
612 
613 	spa->spa_iokstat = kstat_create("zfs", 0, name,
614 	    "disk", KSTAT_TYPE_IO, 1, 0);
615 	if (spa->spa_iokstat) {
616 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
617 		kstat_install(spa->spa_iokstat);
618 	}
619 
620 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
621 
622 	/*
623 	 * As a pool is being created, treat all features as disabled by
624 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
625 	 * refcount cache.
626 	 */
627 	for (int i = 0; i < SPA_FEATURES; i++) {
628 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
629 	}
630 
631 	return (spa);
632 }
633 
634 /*
635  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
636  * spa_namespace_lock.  This is called only after the spa_t has been closed and
637  * deactivated.
638  */
639 void
640 spa_remove(spa_t *spa)
641 {
642 	spa_config_dirent_t *dp;
643 
644 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
645 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
646 
647 	nvlist_free(spa->spa_config_splitting);
648 
649 	avl_remove(&spa_namespace_avl, spa);
650 	cv_broadcast(&spa_namespace_cv);
651 
652 	if (spa->spa_root) {
653 		spa_strfree(spa->spa_root);
654 		spa_active_count--;
655 	}
656 
657 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
658 		list_remove(&spa->spa_config_list, dp);
659 		if (dp->scd_path != NULL)
660 			spa_strfree(dp->scd_path);
661 		kmem_free(dp, sizeof (spa_config_dirent_t));
662 	}
663 
664 	list_destroy(&spa->spa_config_list);
665 
666 	nvlist_free(spa->spa_label_features);
667 	nvlist_free(spa->spa_load_info);
668 	spa_config_set(spa, NULL);
669 
670 	mutex_enter(&cpu_lock);
671 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
672 		cyclic_remove(spa->spa_deadman_cycid);
673 	mutex_exit(&cpu_lock);
674 	spa->spa_deadman_cycid = CYCLIC_NONE;
675 
676 	refcount_destroy(&spa->spa_refcount);
677 
678 	spa_config_lock_destroy(spa);
679 
680 	kstat_delete(spa->spa_iokstat);
681 	spa->spa_iokstat = NULL;
682 
683 	for (int t = 0; t < TXG_SIZE; t++)
684 		bplist_destroy(&spa->spa_free_bplist[t]);
685 
686 	cv_destroy(&spa->spa_async_cv);
687 	cv_destroy(&spa->spa_proc_cv);
688 	cv_destroy(&spa->spa_scrub_io_cv);
689 	cv_destroy(&spa->spa_suspend_cv);
690 
691 	mutex_destroy(&spa->spa_async_lock);
692 	mutex_destroy(&spa->spa_errlist_lock);
693 	mutex_destroy(&spa->spa_errlog_lock);
694 	mutex_destroy(&spa->spa_history_lock);
695 	mutex_destroy(&spa->spa_proc_lock);
696 	mutex_destroy(&spa->spa_props_lock);
697 	mutex_destroy(&spa->spa_scrub_lock);
698 	mutex_destroy(&spa->spa_suspend_lock);
699 	mutex_destroy(&spa->spa_vdev_top_lock);
700 	mutex_destroy(&spa->spa_iokstat_lock);
701 
702 	kmem_free(spa, sizeof (spa_t));
703 }
704 
705 /*
706  * Given a pool, return the next pool in the namespace, or NULL if there is
707  * none.  If 'prev' is NULL, return the first pool.
708  */
709 spa_t *
710 spa_next(spa_t *prev)
711 {
712 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
713 
714 	if (prev)
715 		return (AVL_NEXT(&spa_namespace_avl, prev));
716 	else
717 		return (avl_first(&spa_namespace_avl));
718 }
719 
720 /*
721  * ==========================================================================
722  * SPA refcount functions
723  * ==========================================================================
724  */
725 
726 /*
727  * Add a reference to the given spa_t.  Must have at least one reference, or
728  * have the namespace lock held.
729  */
730 void
731 spa_open_ref(spa_t *spa, void *tag)
732 {
733 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
734 	    MUTEX_HELD(&spa_namespace_lock));
735 	(void) refcount_add(&spa->spa_refcount, tag);
736 }
737 
738 /*
739  * Remove a reference to the given spa_t.  Must have at least one reference, or
740  * have the namespace lock held.
741  */
742 void
743 spa_close(spa_t *spa, void *tag)
744 {
745 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
746 	    MUTEX_HELD(&spa_namespace_lock));
747 	(void) refcount_remove(&spa->spa_refcount, tag);
748 }
749 
750 /*
751  * Check to see if the spa refcount is zero.  Must be called with
752  * spa_namespace_lock held.  We really compare against spa_minref, which is the
753  * number of references acquired when opening a pool
754  */
755 boolean_t
756 spa_refcount_zero(spa_t *spa)
757 {
758 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
759 
760 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
761 }
762 
763 /*
764  * ==========================================================================
765  * SPA spare and l2cache tracking
766  * ==========================================================================
767  */
768 
769 /*
770  * Hot spares and cache devices are tracked using the same code below,
771  * for 'auxiliary' devices.
772  */
773 
774 typedef struct spa_aux {
775 	uint64_t	aux_guid;
776 	uint64_t	aux_pool;
777 	avl_node_t	aux_avl;
778 	int		aux_count;
779 } spa_aux_t;
780 
781 static int
782 spa_aux_compare(const void *a, const void *b)
783 {
784 	const spa_aux_t *sa = a;
785 	const spa_aux_t *sb = b;
786 
787 	if (sa->aux_guid < sb->aux_guid)
788 		return (-1);
789 	else if (sa->aux_guid > sb->aux_guid)
790 		return (1);
791 	else
792 		return (0);
793 }
794 
795 void
796 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
797 {
798 	avl_index_t where;
799 	spa_aux_t search;
800 	spa_aux_t *aux;
801 
802 	search.aux_guid = vd->vdev_guid;
803 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
804 		aux->aux_count++;
805 	} else {
806 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
807 		aux->aux_guid = vd->vdev_guid;
808 		aux->aux_count = 1;
809 		avl_insert(avl, aux, where);
810 	}
811 }
812 
813 void
814 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
815 {
816 	spa_aux_t search;
817 	spa_aux_t *aux;
818 	avl_index_t where;
819 
820 	search.aux_guid = vd->vdev_guid;
821 	aux = avl_find(avl, &search, &where);
822 
823 	ASSERT(aux != NULL);
824 
825 	if (--aux->aux_count == 0) {
826 		avl_remove(avl, aux);
827 		kmem_free(aux, sizeof (spa_aux_t));
828 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
829 		aux->aux_pool = 0ULL;
830 	}
831 }
832 
833 boolean_t
834 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
835 {
836 	spa_aux_t search, *found;
837 
838 	search.aux_guid = guid;
839 	found = avl_find(avl, &search, NULL);
840 
841 	if (pool) {
842 		if (found)
843 			*pool = found->aux_pool;
844 		else
845 			*pool = 0ULL;
846 	}
847 
848 	if (refcnt) {
849 		if (found)
850 			*refcnt = found->aux_count;
851 		else
852 			*refcnt = 0;
853 	}
854 
855 	return (found != NULL);
856 }
857 
858 void
859 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
860 {
861 	spa_aux_t search, *found;
862 	avl_index_t where;
863 
864 	search.aux_guid = vd->vdev_guid;
865 	found = avl_find(avl, &search, &where);
866 	ASSERT(found != NULL);
867 	ASSERT(found->aux_pool == 0ULL);
868 
869 	found->aux_pool = spa_guid(vd->vdev_spa);
870 }
871 
872 /*
873  * Spares are tracked globally due to the following constraints:
874  *
875  * 	- A spare may be part of multiple pools.
876  * 	- A spare may be added to a pool even if it's actively in use within
877  *	  another pool.
878  * 	- A spare in use in any pool can only be the source of a replacement if
879  *	  the target is a spare in the same pool.
880  *
881  * We keep track of all spares on the system through the use of a reference
882  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
883  * spare, then we bump the reference count in the AVL tree.  In addition, we set
884  * the 'vdev_isspare' member to indicate that the device is a spare (active or
885  * inactive).  When a spare is made active (used to replace a device in the
886  * pool), we also keep track of which pool its been made a part of.
887  *
888  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
889  * called under the spa_namespace lock as part of vdev reconfiguration.  The
890  * separate spare lock exists for the status query path, which does not need to
891  * be completely consistent with respect to other vdev configuration changes.
892  */
893 
894 static int
895 spa_spare_compare(const void *a, const void *b)
896 {
897 	return (spa_aux_compare(a, b));
898 }
899 
900 void
901 spa_spare_add(vdev_t *vd)
902 {
903 	mutex_enter(&spa_spare_lock);
904 	ASSERT(!vd->vdev_isspare);
905 	spa_aux_add(vd, &spa_spare_avl);
906 	vd->vdev_isspare = B_TRUE;
907 	mutex_exit(&spa_spare_lock);
908 }
909 
910 void
911 spa_spare_remove(vdev_t *vd)
912 {
913 	mutex_enter(&spa_spare_lock);
914 	ASSERT(vd->vdev_isspare);
915 	spa_aux_remove(vd, &spa_spare_avl);
916 	vd->vdev_isspare = B_FALSE;
917 	mutex_exit(&spa_spare_lock);
918 }
919 
920 boolean_t
921 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
922 {
923 	boolean_t found;
924 
925 	mutex_enter(&spa_spare_lock);
926 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
927 	mutex_exit(&spa_spare_lock);
928 
929 	return (found);
930 }
931 
932 void
933 spa_spare_activate(vdev_t *vd)
934 {
935 	mutex_enter(&spa_spare_lock);
936 	ASSERT(vd->vdev_isspare);
937 	spa_aux_activate(vd, &spa_spare_avl);
938 	mutex_exit(&spa_spare_lock);
939 }
940 
941 /*
942  * Level 2 ARC devices are tracked globally for the same reasons as spares.
943  * Cache devices currently only support one pool per cache device, and so
944  * for these devices the aux reference count is currently unused beyond 1.
945  */
946 
947 static int
948 spa_l2cache_compare(const void *a, const void *b)
949 {
950 	return (spa_aux_compare(a, b));
951 }
952 
953 void
954 spa_l2cache_add(vdev_t *vd)
955 {
956 	mutex_enter(&spa_l2cache_lock);
957 	ASSERT(!vd->vdev_isl2cache);
958 	spa_aux_add(vd, &spa_l2cache_avl);
959 	vd->vdev_isl2cache = B_TRUE;
960 	mutex_exit(&spa_l2cache_lock);
961 }
962 
963 void
964 spa_l2cache_remove(vdev_t *vd)
965 {
966 	mutex_enter(&spa_l2cache_lock);
967 	ASSERT(vd->vdev_isl2cache);
968 	spa_aux_remove(vd, &spa_l2cache_avl);
969 	vd->vdev_isl2cache = B_FALSE;
970 	mutex_exit(&spa_l2cache_lock);
971 }
972 
973 boolean_t
974 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
975 {
976 	boolean_t found;
977 
978 	mutex_enter(&spa_l2cache_lock);
979 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
980 	mutex_exit(&spa_l2cache_lock);
981 
982 	return (found);
983 }
984 
985 void
986 spa_l2cache_activate(vdev_t *vd)
987 {
988 	mutex_enter(&spa_l2cache_lock);
989 	ASSERT(vd->vdev_isl2cache);
990 	spa_aux_activate(vd, &spa_l2cache_avl);
991 	mutex_exit(&spa_l2cache_lock);
992 }
993 
994 /*
995  * ==========================================================================
996  * SPA vdev locking
997  * ==========================================================================
998  */
999 
1000 /*
1001  * Lock the given spa_t for the purpose of adding or removing a vdev.
1002  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1003  * It returns the next transaction group for the spa_t.
1004  */
1005 uint64_t
1006 spa_vdev_enter(spa_t *spa)
1007 {
1008 	mutex_enter(&spa->spa_vdev_top_lock);
1009 	mutex_enter(&spa_namespace_lock);
1010 	return (spa_vdev_config_enter(spa));
1011 }
1012 
1013 /*
1014  * Internal implementation for spa_vdev_enter().  Used when a vdev
1015  * operation requires multiple syncs (i.e. removing a device) while
1016  * keeping the spa_namespace_lock held.
1017  */
1018 uint64_t
1019 spa_vdev_config_enter(spa_t *spa)
1020 {
1021 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1022 
1023 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1024 
1025 	return (spa_last_synced_txg(spa) + 1);
1026 }
1027 
1028 /*
1029  * Used in combination with spa_vdev_config_enter() to allow the syncing
1030  * of multiple transactions without releasing the spa_namespace_lock.
1031  */
1032 void
1033 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1034 {
1035 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1036 
1037 	int config_changed = B_FALSE;
1038 
1039 	ASSERT(txg > spa_last_synced_txg(spa));
1040 
1041 	spa->spa_pending_vdev = NULL;
1042 
1043 	/*
1044 	 * Reassess the DTLs.
1045 	 */
1046 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1047 
1048 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1049 		config_changed = B_TRUE;
1050 		spa->spa_config_generation++;
1051 	}
1052 
1053 	/*
1054 	 * Verify the metaslab classes.
1055 	 */
1056 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1057 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1058 
1059 	spa_config_exit(spa, SCL_ALL, spa);
1060 
1061 	/*
1062 	 * Panic the system if the specified tag requires it.  This
1063 	 * is useful for ensuring that configurations are updated
1064 	 * transactionally.
1065 	 */
1066 	if (zio_injection_enabled)
1067 		zio_handle_panic_injection(spa, tag, 0);
1068 
1069 	/*
1070 	 * Note: this txg_wait_synced() is important because it ensures
1071 	 * that there won't be more than one config change per txg.
1072 	 * This allows us to use the txg as the generation number.
1073 	 */
1074 	if (error == 0)
1075 		txg_wait_synced(spa->spa_dsl_pool, txg);
1076 
1077 	if (vd != NULL) {
1078 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1079 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1080 		vdev_free(vd);
1081 		spa_config_exit(spa, SCL_ALL, spa);
1082 	}
1083 
1084 	/*
1085 	 * If the config changed, update the config cache.
1086 	 */
1087 	if (config_changed)
1088 		spa_config_sync(spa, B_FALSE, B_TRUE);
1089 }
1090 
1091 /*
1092  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1093  * locking of spa_vdev_enter(), we also want make sure the transactions have
1094  * synced to disk, and then update the global configuration cache with the new
1095  * information.
1096  */
1097 int
1098 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1099 {
1100 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1101 	mutex_exit(&spa_namespace_lock);
1102 	mutex_exit(&spa->spa_vdev_top_lock);
1103 
1104 	return (error);
1105 }
1106 
1107 /*
1108  * Lock the given spa_t for the purpose of changing vdev state.
1109  */
1110 void
1111 spa_vdev_state_enter(spa_t *spa, int oplocks)
1112 {
1113 	int locks = SCL_STATE_ALL | oplocks;
1114 
1115 	/*
1116 	 * Root pools may need to read of the underlying devfs filesystem
1117 	 * when opening up a vdev.  Unfortunately if we're holding the
1118 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1119 	 * the read from the root filesystem.  Instead we "prefetch"
1120 	 * the associated vnodes that we need prior to opening the
1121 	 * underlying devices and cache them so that we can prevent
1122 	 * any I/O when we are doing the actual open.
1123 	 */
1124 	if (spa_is_root(spa)) {
1125 		int low = locks & ~(SCL_ZIO - 1);
1126 		int high = locks & ~low;
1127 
1128 		spa_config_enter(spa, high, spa, RW_WRITER);
1129 		vdev_hold(spa->spa_root_vdev);
1130 		spa_config_enter(spa, low, spa, RW_WRITER);
1131 	} else {
1132 		spa_config_enter(spa, locks, spa, RW_WRITER);
1133 	}
1134 	spa->spa_vdev_locks = locks;
1135 }
1136 
1137 int
1138 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1139 {
1140 	boolean_t config_changed = B_FALSE;
1141 
1142 	if (vd != NULL || error == 0)
1143 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1144 		    0, 0, B_FALSE);
1145 
1146 	if (vd != NULL) {
1147 		vdev_state_dirty(vd->vdev_top);
1148 		config_changed = B_TRUE;
1149 		spa->spa_config_generation++;
1150 	}
1151 
1152 	if (spa_is_root(spa))
1153 		vdev_rele(spa->spa_root_vdev);
1154 
1155 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1156 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1157 
1158 	/*
1159 	 * If anything changed, wait for it to sync.  This ensures that,
1160 	 * from the system administrator's perspective, zpool(1M) commands
1161 	 * are synchronous.  This is important for things like zpool offline:
1162 	 * when the command completes, you expect no further I/O from ZFS.
1163 	 */
1164 	if (vd != NULL)
1165 		txg_wait_synced(spa->spa_dsl_pool, 0);
1166 
1167 	/*
1168 	 * If the config changed, update the config cache.
1169 	 */
1170 	if (config_changed) {
1171 		mutex_enter(&spa_namespace_lock);
1172 		spa_config_sync(spa, B_FALSE, B_TRUE);
1173 		mutex_exit(&spa_namespace_lock);
1174 	}
1175 
1176 	return (error);
1177 }
1178 
1179 /*
1180  * ==========================================================================
1181  * Miscellaneous functions
1182  * ==========================================================================
1183  */
1184 
1185 void
1186 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1187 {
1188 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1189 		fnvlist_add_boolean(spa->spa_label_features, feature);
1190 		/*
1191 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1192 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1193 		 * Thankfully, in this case we don't need to dirty the config
1194 		 * because it will be written out anyway when we finish
1195 		 * creating the pool.
1196 		 */
1197 		if (tx->tx_txg != TXG_INITIAL)
1198 			vdev_config_dirty(spa->spa_root_vdev);
1199 	}
1200 }
1201 
1202 void
1203 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1204 {
1205 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1206 		vdev_config_dirty(spa->spa_root_vdev);
1207 }
1208 
1209 /*
1210  * Rename a spa_t.
1211  */
1212 int
1213 spa_rename(const char *name, const char *newname)
1214 {
1215 	spa_t *spa;
1216 	int err;
1217 
1218 	/*
1219 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1220 	 * actually open the pool so that we can sync out the necessary labels.
1221 	 * It's OK to call spa_open() with the namespace lock held because we
1222 	 * allow recursive calls for other reasons.
1223 	 */
1224 	mutex_enter(&spa_namespace_lock);
1225 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1226 		mutex_exit(&spa_namespace_lock);
1227 		return (err);
1228 	}
1229 
1230 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231 
1232 	avl_remove(&spa_namespace_avl, spa);
1233 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1234 	avl_add(&spa_namespace_avl, spa);
1235 
1236 	/*
1237 	 * Sync all labels to disk with the new names by marking the root vdev
1238 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1239 	 * during the sync.
1240 	 */
1241 	vdev_config_dirty(spa->spa_root_vdev);
1242 
1243 	spa_config_exit(spa, SCL_ALL, FTAG);
1244 
1245 	txg_wait_synced(spa->spa_dsl_pool, 0);
1246 
1247 	/*
1248 	 * Sync the updated config cache.
1249 	 */
1250 	spa_config_sync(spa, B_FALSE, B_TRUE);
1251 
1252 	spa_close(spa, FTAG);
1253 
1254 	mutex_exit(&spa_namespace_lock);
1255 
1256 	return (0);
1257 }
1258 
1259 /*
1260  * Return the spa_t associated with given pool_guid, if it exists.  If
1261  * device_guid is non-zero, determine whether the pool exists *and* contains
1262  * a device with the specified device_guid.
1263  */
1264 spa_t *
1265 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1266 {
1267 	spa_t *spa;
1268 	avl_tree_t *t = &spa_namespace_avl;
1269 
1270 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1271 
1272 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1273 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1274 			continue;
1275 		if (spa->spa_root_vdev == NULL)
1276 			continue;
1277 		if (spa_guid(spa) == pool_guid) {
1278 			if (device_guid == 0)
1279 				break;
1280 
1281 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1282 			    device_guid) != NULL)
1283 				break;
1284 
1285 			/*
1286 			 * Check any devices we may be in the process of adding.
1287 			 */
1288 			if (spa->spa_pending_vdev) {
1289 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1290 				    device_guid) != NULL)
1291 					break;
1292 			}
1293 		}
1294 	}
1295 
1296 	return (spa);
1297 }
1298 
1299 /*
1300  * Determine whether a pool with the given pool_guid exists.
1301  */
1302 boolean_t
1303 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1304 {
1305 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1306 }
1307 
1308 char *
1309 spa_strdup(const char *s)
1310 {
1311 	size_t len;
1312 	char *new;
1313 
1314 	len = strlen(s);
1315 	new = kmem_alloc(len + 1, KM_SLEEP);
1316 	bcopy(s, new, len);
1317 	new[len] = '\0';
1318 
1319 	return (new);
1320 }
1321 
1322 void
1323 spa_strfree(char *s)
1324 {
1325 	kmem_free(s, strlen(s) + 1);
1326 }
1327 
1328 uint64_t
1329 spa_get_random(uint64_t range)
1330 {
1331 	uint64_t r;
1332 
1333 	ASSERT(range != 0);
1334 
1335 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1336 
1337 	return (r % range);
1338 }
1339 
1340 uint64_t
1341 spa_generate_guid(spa_t *spa)
1342 {
1343 	uint64_t guid = spa_get_random(-1ULL);
1344 
1345 	if (spa != NULL) {
1346 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1347 			guid = spa_get_random(-1ULL);
1348 	} else {
1349 		while (guid == 0 || spa_guid_exists(guid, 0))
1350 			guid = spa_get_random(-1ULL);
1351 	}
1352 
1353 	return (guid);
1354 }
1355 
1356 void
1357 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1358 {
1359 	char type[256];
1360 	char *checksum = NULL;
1361 	char *compress = NULL;
1362 
1363 	if (bp != NULL) {
1364 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1365 			dmu_object_byteswap_t bswap =
1366 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1367 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1368 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1369 			    "metadata" : "data",
1370 			    dmu_ot_byteswap[bswap].ob_name);
1371 		} else {
1372 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1373 			    sizeof (type));
1374 		}
1375 		if (!BP_IS_EMBEDDED(bp)) {
1376 			checksum =
1377 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1378 		}
1379 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1380 	}
1381 
1382 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1383 	    compress);
1384 }
1385 
1386 void
1387 spa_freeze(spa_t *spa)
1388 {
1389 	uint64_t freeze_txg = 0;
1390 
1391 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1392 	if (spa->spa_freeze_txg == UINT64_MAX) {
1393 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1394 		spa->spa_freeze_txg = freeze_txg;
1395 	}
1396 	spa_config_exit(spa, SCL_ALL, FTAG);
1397 	if (freeze_txg != 0)
1398 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1399 }
1400 
1401 void
1402 zfs_panic_recover(const char *fmt, ...)
1403 {
1404 	va_list adx;
1405 
1406 	va_start(adx, fmt);
1407 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1408 	va_end(adx);
1409 }
1410 
1411 /*
1412  * This is a stripped-down version of strtoull, suitable only for converting
1413  * lowercase hexadecimal numbers that don't overflow.
1414  */
1415 uint64_t
1416 strtonum(const char *str, char **nptr)
1417 {
1418 	uint64_t val = 0;
1419 	char c;
1420 	int digit;
1421 
1422 	while ((c = *str) != '\0') {
1423 		if (c >= '0' && c <= '9')
1424 			digit = c - '0';
1425 		else if (c >= 'a' && c <= 'f')
1426 			digit = 10 + c - 'a';
1427 		else
1428 			break;
1429 
1430 		val *= 16;
1431 		val += digit;
1432 
1433 		str++;
1434 	}
1435 
1436 	if (nptr)
1437 		*nptr = (char *)str;
1438 
1439 	return (val);
1440 }
1441 
1442 /*
1443  * ==========================================================================
1444  * Accessor functions
1445  * ==========================================================================
1446  */
1447 
1448 boolean_t
1449 spa_shutting_down(spa_t *spa)
1450 {
1451 	return (spa->spa_async_suspended);
1452 }
1453 
1454 dsl_pool_t *
1455 spa_get_dsl(spa_t *spa)
1456 {
1457 	return (spa->spa_dsl_pool);
1458 }
1459 
1460 boolean_t
1461 spa_is_initializing(spa_t *spa)
1462 {
1463 	return (spa->spa_is_initializing);
1464 }
1465 
1466 blkptr_t *
1467 spa_get_rootblkptr(spa_t *spa)
1468 {
1469 	return (&spa->spa_ubsync.ub_rootbp);
1470 }
1471 
1472 void
1473 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1474 {
1475 	spa->spa_uberblock.ub_rootbp = *bp;
1476 }
1477 
1478 void
1479 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1480 {
1481 	if (spa->spa_root == NULL)
1482 		buf[0] = '\0';
1483 	else
1484 		(void) strncpy(buf, spa->spa_root, buflen);
1485 }
1486 
1487 int
1488 spa_sync_pass(spa_t *spa)
1489 {
1490 	return (spa->spa_sync_pass);
1491 }
1492 
1493 char *
1494 spa_name(spa_t *spa)
1495 {
1496 	return (spa->spa_name);
1497 }
1498 
1499 uint64_t
1500 spa_guid(spa_t *spa)
1501 {
1502 	dsl_pool_t *dp = spa_get_dsl(spa);
1503 	uint64_t guid;
1504 
1505 	/*
1506 	 * If we fail to parse the config during spa_load(), we can go through
1507 	 * the error path (which posts an ereport) and end up here with no root
1508 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1509 	 * this case.
1510 	 */
1511 	if (spa->spa_root_vdev == NULL)
1512 		return (spa->spa_config_guid);
1513 
1514 	guid = spa->spa_last_synced_guid != 0 ?
1515 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1516 
1517 	/*
1518 	 * Return the most recently synced out guid unless we're
1519 	 * in syncing context.
1520 	 */
1521 	if (dp && dsl_pool_sync_context(dp))
1522 		return (spa->spa_root_vdev->vdev_guid);
1523 	else
1524 		return (guid);
1525 }
1526 
1527 uint64_t
1528 spa_load_guid(spa_t *spa)
1529 {
1530 	/*
1531 	 * This is a GUID that exists solely as a reference for the
1532 	 * purposes of the arc.  It is generated at load time, and
1533 	 * is never written to persistent storage.
1534 	 */
1535 	return (spa->spa_load_guid);
1536 }
1537 
1538 uint64_t
1539 spa_last_synced_txg(spa_t *spa)
1540 {
1541 	return (spa->spa_ubsync.ub_txg);
1542 }
1543 
1544 uint64_t
1545 spa_first_txg(spa_t *spa)
1546 {
1547 	return (spa->spa_first_txg);
1548 }
1549 
1550 uint64_t
1551 spa_syncing_txg(spa_t *spa)
1552 {
1553 	return (spa->spa_syncing_txg);
1554 }
1555 
1556 pool_state_t
1557 spa_state(spa_t *spa)
1558 {
1559 	return (spa->spa_state);
1560 }
1561 
1562 spa_load_state_t
1563 spa_load_state(spa_t *spa)
1564 {
1565 	return (spa->spa_load_state);
1566 }
1567 
1568 uint64_t
1569 spa_freeze_txg(spa_t *spa)
1570 {
1571 	return (spa->spa_freeze_txg);
1572 }
1573 
1574 /* ARGSUSED */
1575 uint64_t
1576 spa_get_asize(spa_t *spa, uint64_t lsize)
1577 {
1578 	return (lsize * spa_asize_inflation);
1579 }
1580 
1581 uint64_t
1582 spa_get_dspace(spa_t *spa)
1583 {
1584 	return (spa->spa_dspace);
1585 }
1586 
1587 void
1588 spa_update_dspace(spa_t *spa)
1589 {
1590 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1591 	    ddt_get_dedup_dspace(spa);
1592 }
1593 
1594 /*
1595  * Return the failure mode that has been set to this pool. The default
1596  * behavior will be to block all I/Os when a complete failure occurs.
1597  */
1598 uint8_t
1599 spa_get_failmode(spa_t *spa)
1600 {
1601 	return (spa->spa_failmode);
1602 }
1603 
1604 boolean_t
1605 spa_suspended(spa_t *spa)
1606 {
1607 	return (spa->spa_suspended);
1608 }
1609 
1610 uint64_t
1611 spa_version(spa_t *spa)
1612 {
1613 	return (spa->spa_ubsync.ub_version);
1614 }
1615 
1616 boolean_t
1617 spa_deflate(spa_t *spa)
1618 {
1619 	return (spa->spa_deflate);
1620 }
1621 
1622 metaslab_class_t *
1623 spa_normal_class(spa_t *spa)
1624 {
1625 	return (spa->spa_normal_class);
1626 }
1627 
1628 metaslab_class_t *
1629 spa_log_class(spa_t *spa)
1630 {
1631 	return (spa->spa_log_class);
1632 }
1633 
1634 int
1635 spa_max_replication(spa_t *spa)
1636 {
1637 	/*
1638 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1639 	 * handle BPs with more than one DVA allocated.  Set our max
1640 	 * replication level accordingly.
1641 	 */
1642 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1643 		return (1);
1644 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1645 }
1646 
1647 int
1648 spa_prev_software_version(spa_t *spa)
1649 {
1650 	return (spa->spa_prev_software_version);
1651 }
1652 
1653 uint64_t
1654 spa_deadman_synctime(spa_t *spa)
1655 {
1656 	return (spa->spa_deadman_synctime);
1657 }
1658 
1659 uint64_t
1660 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1661 {
1662 	uint64_t asize = DVA_GET_ASIZE(dva);
1663 	uint64_t dsize = asize;
1664 
1665 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1666 
1667 	if (asize != 0 && spa->spa_deflate) {
1668 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1669 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1670 	}
1671 
1672 	return (dsize);
1673 }
1674 
1675 uint64_t
1676 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1677 {
1678 	uint64_t dsize = 0;
1679 
1680 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1681 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1682 
1683 	return (dsize);
1684 }
1685 
1686 uint64_t
1687 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1688 {
1689 	uint64_t dsize = 0;
1690 
1691 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1692 
1693 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1694 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1695 
1696 	spa_config_exit(spa, SCL_VDEV, FTAG);
1697 
1698 	return (dsize);
1699 }
1700 
1701 /*
1702  * ==========================================================================
1703  * Initialization and Termination
1704  * ==========================================================================
1705  */
1706 
1707 static int
1708 spa_name_compare(const void *a1, const void *a2)
1709 {
1710 	const spa_t *s1 = a1;
1711 	const spa_t *s2 = a2;
1712 	int s;
1713 
1714 	s = strcmp(s1->spa_name, s2->spa_name);
1715 	if (s > 0)
1716 		return (1);
1717 	if (s < 0)
1718 		return (-1);
1719 	return (0);
1720 }
1721 
1722 int
1723 spa_busy(void)
1724 {
1725 	return (spa_active_count);
1726 }
1727 
1728 void
1729 spa_boot_init()
1730 {
1731 	spa_config_load();
1732 }
1733 
1734 void
1735 spa_init(int mode)
1736 {
1737 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1738 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1739 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1740 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1741 
1742 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1743 	    offsetof(spa_t, spa_avl));
1744 
1745 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1746 	    offsetof(spa_aux_t, aux_avl));
1747 
1748 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1749 	    offsetof(spa_aux_t, aux_avl));
1750 
1751 	spa_mode_global = mode;
1752 
1753 #ifdef _KERNEL
1754 	spa_arch_init();
1755 #else
1756 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1757 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1758 		if (arc_procfd == -1) {
1759 			perror("could not enable watchpoints: "
1760 			    "opening /proc/self/ctl failed: ");
1761 		} else {
1762 			arc_watch = B_TRUE;
1763 		}
1764 	}
1765 #endif
1766 
1767 	refcount_init();
1768 	unique_init();
1769 	range_tree_init();
1770 	zio_init();
1771 	dmu_init();
1772 	zil_init();
1773 	vdev_cache_stat_init();
1774 	zfs_prop_init();
1775 	zpool_prop_init();
1776 	zpool_feature_init();
1777 	spa_config_load();
1778 	l2arc_start();
1779 }
1780 
1781 void
1782 spa_fini(void)
1783 {
1784 	l2arc_stop();
1785 
1786 	spa_evict_all();
1787 
1788 	vdev_cache_stat_fini();
1789 	zil_fini();
1790 	dmu_fini();
1791 	zio_fini();
1792 	range_tree_fini();
1793 	unique_fini();
1794 	refcount_fini();
1795 
1796 	avl_destroy(&spa_namespace_avl);
1797 	avl_destroy(&spa_spare_avl);
1798 	avl_destroy(&spa_l2cache_avl);
1799 
1800 	cv_destroy(&spa_namespace_cv);
1801 	mutex_destroy(&spa_namespace_lock);
1802 	mutex_destroy(&spa_spare_lock);
1803 	mutex_destroy(&spa_l2cache_lock);
1804 }
1805 
1806 /*
1807  * Return whether this pool has slogs. No locking needed.
1808  * It's not a problem if the wrong answer is returned as it's only for
1809  * performance and not correctness
1810  */
1811 boolean_t
1812 spa_has_slogs(spa_t *spa)
1813 {
1814 	return (spa->spa_log_class->mc_rotor != NULL);
1815 }
1816 
1817 spa_log_state_t
1818 spa_get_log_state(spa_t *spa)
1819 {
1820 	return (spa->spa_log_state);
1821 }
1822 
1823 void
1824 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1825 {
1826 	spa->spa_log_state = state;
1827 }
1828 
1829 boolean_t
1830 spa_is_root(spa_t *spa)
1831 {
1832 	return (spa->spa_is_root);
1833 }
1834 
1835 boolean_t
1836 spa_writeable(spa_t *spa)
1837 {
1838 	return (!!(spa->spa_mode & FWRITE));
1839 }
1840 
1841 int
1842 spa_mode(spa_t *spa)
1843 {
1844 	return (spa->spa_mode);
1845 }
1846 
1847 uint64_t
1848 spa_bootfs(spa_t *spa)
1849 {
1850 	return (spa->spa_bootfs);
1851 }
1852 
1853 uint64_t
1854 spa_delegation(spa_t *spa)
1855 {
1856 	return (spa->spa_delegation);
1857 }
1858 
1859 objset_t *
1860 spa_meta_objset(spa_t *spa)
1861 {
1862 	return (spa->spa_meta_objset);
1863 }
1864 
1865 enum zio_checksum
1866 spa_dedup_checksum(spa_t *spa)
1867 {
1868 	return (spa->spa_dedup_checksum);
1869 }
1870 
1871 /*
1872  * Reset pool scan stat per scan pass (or reboot).
1873  */
1874 void
1875 spa_scan_stat_init(spa_t *spa)
1876 {
1877 	/* data not stored on disk */
1878 	spa->spa_scan_pass_start = gethrestime_sec();
1879 	spa->spa_scan_pass_exam = 0;
1880 	vdev_scan_stat_init(spa->spa_root_vdev);
1881 }
1882 
1883 /*
1884  * Get scan stats for zpool status reports
1885  */
1886 int
1887 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1888 {
1889 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1890 
1891 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1892 		return (SET_ERROR(ENOENT));
1893 	bzero(ps, sizeof (pool_scan_stat_t));
1894 
1895 	/* data stored on disk */
1896 	ps->pss_func = scn->scn_phys.scn_func;
1897 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1898 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1899 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1900 	ps->pss_examined = scn->scn_phys.scn_examined;
1901 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1902 	ps->pss_processed = scn->scn_phys.scn_processed;
1903 	ps->pss_errors = scn->scn_phys.scn_errors;
1904 	ps->pss_state = scn->scn_phys.scn_state;
1905 
1906 	/* data not stored on disk */
1907 	ps->pss_pass_start = spa->spa_scan_pass_start;
1908 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1909 
1910 	return (0);
1911 }
1912 
1913 boolean_t
1914 spa_debug_enabled(spa_t *spa)
1915 {
1916 	return (spa->spa_debug);
1917 }
1918