xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 4d7988d6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/spa_boot.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/unique.h>
50 #include <sys/dsl_pool.h>
51 #include <sys/dsl_dir.h>
52 #include <sys/dsl_prop.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/metaslab_impl.h>
56 #include <sys/arc.h>
57 #include <sys/ddt.h>
58 #include "zfs_prop.h"
59 #include <sys/btree.h>
60 #include <sys/zfeature.h>
61 
62 /*
63  * SPA locking
64  *
65  * There are three basic locks for managing spa_t structures:
66  *
67  * spa_namespace_lock (global mutex)
68  *
69  *	This lock must be acquired to do any of the following:
70  *
71  *		- Lookup a spa_t by name
72  *		- Add or remove a spa_t from the namespace
73  *		- Increase spa_refcount from non-zero
74  *		- Check if spa_refcount is zero
75  *		- Rename a spa_t
76  *		- add/remove/attach/detach devices
77  *		- Held for the duration of create/destroy/import/export
78  *
79  *	It does not need to handle recursion.  A create or destroy may
80  *	reference objects (files or zvols) in other pools, but by
81  *	definition they must have an existing reference, and will never need
82  *	to lookup a spa_t by name.
83  *
84  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
85  *
86  *	This reference count keep track of any active users of the spa_t.  The
87  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
88  *	the refcount is never really 'zero' - opening a pool implicitly keeps
89  *	some references in the DMU.  Internally we check against spa_minref, but
90  *	present the image of a zero/non-zero value to consumers.
91  *
92  * spa_config_lock[] (per-spa array of rwlocks)
93  *
94  *	This protects the spa_t from config changes, and must be held in
95  *	the following circumstances:
96  *
97  *		- RW_READER to perform I/O to the spa
98  *		- RW_WRITER to change the vdev config
99  *
100  * The locking order is fairly straightforward:
101  *
102  *		spa_namespace_lock	->	spa_refcount
103  *
104  *	The namespace lock must be acquired to increase the refcount from 0
105  *	or to check if it is zero.
106  *
107  *		spa_refcount		->	spa_config_lock[]
108  *
109  *	There must be at least one valid reference on the spa_t to acquire
110  *	the config lock.
111  *
112  *		spa_namespace_lock	->	spa_config_lock[]
113  *
114  *	The namespace lock must always be taken before the config lock.
115  *
116  *
117  * The spa_namespace_lock can be acquired directly and is globally visible.
118  *
119  * The namespace is manipulated using the following functions, all of which
120  * require the spa_namespace_lock to be held.
121  *
122  *	spa_lookup()		Lookup a spa_t by name.
123  *
124  *	spa_add()		Create a new spa_t in the namespace.
125  *
126  *	spa_remove()		Remove a spa_t from the namespace.  This also
127  *				frees up any memory associated with the spa_t.
128  *
129  *	spa_next()		Returns the next spa_t in the system, or the
130  *				first if NULL is passed.
131  *
132  *	spa_evict_all()		Shutdown and remove all spa_t structures in
133  *				the system.
134  *
135  *	spa_guid_exists()	Determine whether a pool/device guid exists.
136  *
137  * The spa_refcount is manipulated using the following functions:
138  *
139  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
140  *				called with spa_namespace_lock held if the
141  *				refcount is currently zero.
142  *
143  *	spa_close()		Remove a reference from the spa_t.  This will
144  *				not free the spa_t or remove it from the
145  *				namespace.  No locking is required.
146  *
147  *	spa_refcount_zero()	Returns true if the refcount is currently
148  *				zero.  Must be called with spa_namespace_lock
149  *				held.
150  *
151  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
152  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
153  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
154  *
155  * To read the configuration, it suffices to hold one of these locks as reader.
156  * To modify the configuration, you must hold all locks as writer.  To modify
157  * vdev state without altering the vdev tree's topology (e.g. online/offline),
158  * you must hold SCL_STATE and SCL_ZIO as writer.
159  *
160  * We use these distinct config locks to avoid recursive lock entry.
161  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
162  * block allocations (SCL_ALLOC), which may require reading space maps
163  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
164  *
165  * The spa config locks cannot be normal rwlocks because we need the
166  * ability to hand off ownership.  For example, SCL_ZIO is acquired
167  * by the issuing thread and later released by an interrupt thread.
168  * They do, however, obey the usual write-wanted semantics to prevent
169  * writer (i.e. system administrator) starvation.
170  *
171  * The lock acquisition rules are as follows:
172  *
173  * SCL_CONFIG
174  *	Protects changes to the vdev tree topology, such as vdev
175  *	add/remove/attach/detach.  Protects the dirty config list
176  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
177  *
178  * SCL_STATE
179  *	Protects changes to pool state and vdev state, such as vdev
180  *	online/offline/fault/degrade/clear.  Protects the dirty state list
181  *	(spa_state_dirty_list) and global pool state (spa_state).
182  *
183  * SCL_ALLOC
184  *	Protects changes to metaslab groups and classes.
185  *	Held as reader by metaslab_alloc() and metaslab_claim().
186  *
187  * SCL_ZIO
188  *	Held by bp-level zios (those which have no io_vd upon entry)
189  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
190  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
191  *
192  * SCL_FREE
193  *	Protects changes to metaslab groups and classes.
194  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
195  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
196  *	blocks in zio_done() while another i/o that holds either
197  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
198  *
199  * SCL_VDEV
200  *	Held as reader to prevent changes to the vdev tree during trivial
201  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
202  *	other locks, and lower than all of them, to ensure that it's safe
203  *	to acquire regardless of caller context.
204  *
205  * In addition, the following rules apply:
206  *
207  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
208  *	The lock ordering is SCL_CONFIG > spa_props_lock.
209  *
210  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
211  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
212  *	or zio_write_phys() -- the caller must ensure that the config cannot
213  *	cannot change in the interim, and that the vdev cannot be reopened.
214  *	SCL_STATE as reader suffices for both.
215  *
216  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
217  *
218  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
219  *				for writing.
220  *
221  *	spa_vdev_exit()		Release the config lock, wait for all I/O
222  *				to complete, sync the updated configs to the
223  *				cache, and release the namespace lock.
224  *
225  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
226  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
227  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
228  */
229 
230 static avl_tree_t spa_namespace_avl;
231 kmutex_t spa_namespace_lock;
232 static kcondvar_t spa_namespace_cv;
233 static int spa_active_count;
234 int spa_max_replication_override = SPA_DVAS_PER_BP;
235 
236 static kmutex_t spa_spare_lock;
237 static avl_tree_t spa_spare_avl;
238 static kmutex_t spa_l2cache_lock;
239 static avl_tree_t spa_l2cache_avl;
240 
241 kmem_cache_t *spa_buffer_pool;
242 int spa_mode_global;
243 
244 #ifdef ZFS_DEBUG
245 /*
246  * Everything except dprintf, spa, and indirect_remap is on by default
247  * in debug builds.
248  */
249 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
250 #else
251 int zfs_flags = 0;
252 #endif
253 
254 /*
255  * zfs_recover can be set to nonzero to attempt to recover from
256  * otherwise-fatal errors, typically caused by on-disk corruption.  When
257  * set, calls to zfs_panic_recover() will turn into warning messages.
258  * This should only be used as a last resort, as it typically results
259  * in leaked space, or worse.
260  */
261 boolean_t zfs_recover = B_FALSE;
262 
263 /*
264  * If destroy encounters an EIO while reading metadata (e.g. indirect
265  * blocks), space referenced by the missing metadata can not be freed.
266  * Normally this causes the background destroy to become "stalled", as
267  * it is unable to make forward progress.  While in this stalled state,
268  * all remaining space to free from the error-encountering filesystem is
269  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
270  * permanently leak the space from indirect blocks that can not be read,
271  * and continue to free everything else that it can.
272  *
273  * The default, "stalling" behavior is useful if the storage partially
274  * fails (i.e. some but not all i/os fail), and then later recovers.  In
275  * this case, we will be able to continue pool operations while it is
276  * partially failed, and when it recovers, we can continue to free the
277  * space, with no leaks.  However, note that this case is actually
278  * fairly rare.
279  *
280  * Typically pools either (a) fail completely (but perhaps temporarily,
281  * e.g. a top-level vdev going offline), or (b) have localized,
282  * permanent errors (e.g. disk returns the wrong data due to bit flip or
283  * firmware bug).  In case (a), this setting does not matter because the
284  * pool will be suspended and the sync thread will not be able to make
285  * forward progress regardless.  In case (b), because the error is
286  * permanent, the best we can do is leak the minimum amount of space,
287  * which is what setting this flag will do.  Therefore, it is reasonable
288  * for this flag to normally be set, but we chose the more conservative
289  * approach of not setting it, so that there is no possibility of
290  * leaking space in the "partial temporary" failure case.
291  */
292 boolean_t zfs_free_leak_on_eio = B_FALSE;
293 
294 /*
295  * Expiration time in milliseconds. This value has two meanings. First it is
296  * used to determine when the spa_deadman() logic should fire. By default the
297  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
298  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
299  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
300  * in a system panic.
301  */
302 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
303 
304 /*
305  * Check time in milliseconds. This defines the frequency at which we check
306  * for hung I/O.
307  */
308 uint64_t zfs_deadman_checktime_ms = 5000ULL;
309 
310 /*
311  * Override the zfs deadman behavior via /etc/system. By default the
312  * deadman is enabled except on VMware and sparc deployments.
313  */
314 int zfs_deadman_enabled = -1;
315 
316 /*
317  * The worst case is single-sector max-parity RAID-Z blocks, in which
318  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
319  * times the size; so just assume that.  Add to this the fact that
320  * we can have up to 3 DVAs per bp, and one more factor of 2 because
321  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
322  * the worst case is:
323  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
324  */
325 int spa_asize_inflation = 24;
326 
327 /*
328  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
329  * the pool to be consumed.  This ensures that we don't run the pool
330  * completely out of space, due to unaccounted changes (e.g. to the MOS).
331  * It also limits the worst-case time to allocate space.  If we have
332  * less than this amount of free space, most ZPL operations (e.g. write,
333  * create) will return ENOSPC.
334  *
335  * Certain operations (e.g. file removal, most administrative actions) can
336  * use half the slop space.  They will only return ENOSPC if less than half
337  * the slop space is free.  Typically, once the pool has less than the slop
338  * space free, the user will use these operations to free up space in the pool.
339  * These are the operations that call dsl_pool_adjustedsize() with the netfree
340  * argument set to TRUE.
341  *
342  * Operations that are almost guaranteed to free up space in the absence of
343  * a pool checkpoint can use up to three quarters of the slop space
344  * (e.g zfs destroy).
345  *
346  * A very restricted set of operations are always permitted, regardless of
347  * the amount of free space.  These are the operations that call
348  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
349  * increase in the amount of space used, it is possible to run the pool
350  * completely out of space, causing it to be permanently read-only.
351  *
352  * Note that on very small pools, the slop space will be larger than
353  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
354  * but we never allow it to be more than half the pool size.
355  *
356  * See also the comments in zfs_space_check_t.
357  */
358 int spa_slop_shift = 5;
359 uint64_t spa_min_slop = 128 * 1024 * 1024;
360 
361 int spa_allocators = 4;
362 
363 /*PRINTFLIKE2*/
364 void
365 spa_load_failed(spa_t *spa, const char *fmt, ...)
366 {
367 	va_list adx;
368 	char buf[256];
369 
370 	va_start(adx, fmt);
371 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
372 	va_end(adx);
373 
374 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
375 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
376 }
377 
378 /*PRINTFLIKE2*/
379 void
380 spa_load_note(spa_t *spa, const char *fmt, ...)
381 {
382 	va_list adx;
383 	char buf[256];
384 
385 	va_start(adx, fmt);
386 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
387 	va_end(adx);
388 
389 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
390 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
391 }
392 
393 /*
394  * By default dedup and user data indirects land in the special class
395  */
396 int zfs_ddt_data_is_special = B_TRUE;
397 int zfs_user_indirect_is_special = B_TRUE;
398 
399 /*
400  * The percentage of special class final space reserved for metadata only.
401  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
402  * let metadata into the class.
403  */
404 int zfs_special_class_metadata_reserve_pct = 25;
405 
406 /*
407  * ==========================================================================
408  * SPA config locking
409  * ==========================================================================
410  */
411 static void
412 spa_config_lock_init(spa_t *spa)
413 {
414 	for (int i = 0; i < SCL_LOCKS; i++) {
415 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
416 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
417 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
418 		zfs_refcount_create_untracked(&scl->scl_count);
419 		scl->scl_writer = NULL;
420 		scl->scl_write_wanted = 0;
421 	}
422 }
423 
424 static void
425 spa_config_lock_destroy(spa_t *spa)
426 {
427 	for (int i = 0; i < SCL_LOCKS; i++) {
428 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
429 		mutex_destroy(&scl->scl_lock);
430 		cv_destroy(&scl->scl_cv);
431 		zfs_refcount_destroy(&scl->scl_count);
432 		ASSERT(scl->scl_writer == NULL);
433 		ASSERT(scl->scl_write_wanted == 0);
434 	}
435 }
436 
437 int
438 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
439 {
440 	for (int i = 0; i < SCL_LOCKS; i++) {
441 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 		if (!(locks & (1 << i)))
443 			continue;
444 		mutex_enter(&scl->scl_lock);
445 		if (rw == RW_READER) {
446 			if (scl->scl_writer || scl->scl_write_wanted) {
447 				mutex_exit(&scl->scl_lock);
448 				spa_config_exit(spa, locks & ((1 << i) - 1),
449 				    tag);
450 				return (0);
451 			}
452 		} else {
453 			ASSERT(scl->scl_writer != curthread);
454 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
455 				mutex_exit(&scl->scl_lock);
456 				spa_config_exit(spa, locks & ((1 << i) - 1),
457 				    tag);
458 				return (0);
459 			}
460 			scl->scl_writer = curthread;
461 		}
462 		(void) zfs_refcount_add(&scl->scl_count, tag);
463 		mutex_exit(&scl->scl_lock);
464 	}
465 	return (1);
466 }
467 
468 void
469 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
470 {
471 	int wlocks_held = 0;
472 
473 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
474 
475 	for (int i = 0; i < SCL_LOCKS; i++) {
476 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
477 		if (scl->scl_writer == curthread)
478 			wlocks_held |= (1 << i);
479 		if (!(locks & (1 << i)))
480 			continue;
481 		mutex_enter(&scl->scl_lock);
482 		if (rw == RW_READER) {
483 			while (scl->scl_writer || scl->scl_write_wanted) {
484 				cv_wait(&scl->scl_cv, &scl->scl_lock);
485 			}
486 		} else {
487 			ASSERT(scl->scl_writer != curthread);
488 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
489 				scl->scl_write_wanted++;
490 				cv_wait(&scl->scl_cv, &scl->scl_lock);
491 				scl->scl_write_wanted--;
492 			}
493 			scl->scl_writer = curthread;
494 		}
495 		(void) zfs_refcount_add(&scl->scl_count, tag);
496 		mutex_exit(&scl->scl_lock);
497 	}
498 	ASSERT3U(wlocks_held, <=, locks);
499 }
500 
501 void
502 spa_config_exit(spa_t *spa, int locks, void *tag)
503 {
504 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
505 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
506 		if (!(locks & (1 << i)))
507 			continue;
508 		mutex_enter(&scl->scl_lock);
509 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
510 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
511 			ASSERT(scl->scl_writer == NULL ||
512 			    scl->scl_writer == curthread);
513 			scl->scl_writer = NULL;	/* OK in either case */
514 			cv_broadcast(&scl->scl_cv);
515 		}
516 		mutex_exit(&scl->scl_lock);
517 	}
518 }
519 
520 int
521 spa_config_held(spa_t *spa, int locks, krw_t rw)
522 {
523 	int locks_held = 0;
524 
525 	for (int i = 0; i < SCL_LOCKS; i++) {
526 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
527 		if (!(locks & (1 << i)))
528 			continue;
529 		if ((rw == RW_READER &&
530 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
531 		    (rw == RW_WRITER && scl->scl_writer == curthread))
532 			locks_held |= 1 << i;
533 	}
534 
535 	return (locks_held);
536 }
537 
538 /*
539  * ==========================================================================
540  * SPA namespace functions
541  * ==========================================================================
542  */
543 
544 /*
545  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
546  * Returns NULL if no matching spa_t is found.
547  */
548 spa_t *
549 spa_lookup(const char *name)
550 {
551 	static spa_t search;	/* spa_t is large; don't allocate on stack */
552 	spa_t *spa;
553 	avl_index_t where;
554 	char *cp;
555 
556 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
557 
558 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
559 
560 	/*
561 	 * If it's a full dataset name, figure out the pool name and
562 	 * just use that.
563 	 */
564 	cp = strpbrk(search.spa_name, "/@#");
565 	if (cp != NULL)
566 		*cp = '\0';
567 
568 	spa = avl_find(&spa_namespace_avl, &search, &where);
569 
570 	return (spa);
571 }
572 
573 /*
574  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
575  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
576  * looking for potentially hung I/Os.
577  */
578 void
579 spa_deadman(void *arg)
580 {
581 	spa_t *spa = arg;
582 
583 	/*
584 	 * Disable the deadman timer if the pool is suspended.
585 	 */
586 	if (spa_suspended(spa)) {
587 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
588 		return;
589 	}
590 
591 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
592 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
593 	    ++spa->spa_deadman_calls);
594 	if (zfs_deadman_enabled)
595 		vdev_deadman(spa->spa_root_vdev);
596 }
597 
598 int
599 spa_log_sm_sort_by_txg(const void *va, const void *vb)
600 {
601 	const spa_log_sm_t *a = va;
602 	const spa_log_sm_t *b = vb;
603 
604 	return (TREE_CMP(a->sls_txg, b->sls_txg));
605 }
606 
607 /*
608  * Create an uninitialized spa_t with the given name.  Requires
609  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
610  * exist by calling spa_lookup() first.
611  */
612 spa_t *
613 spa_add(const char *name, nvlist_t *config, const char *altroot)
614 {
615 	spa_t *spa;
616 	spa_config_dirent_t *dp;
617 	cyc_handler_t hdlr;
618 	cyc_time_t when;
619 
620 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
621 
622 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
623 
624 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
625 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
626 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
627 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
628 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
629 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
630 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
631 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
632 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
633 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
634 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
635 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
636 	mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
637 
638 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
639 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
640 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
641 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
642 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
643 
644 	for (int t = 0; t < TXG_SIZE; t++)
645 		bplist_create(&spa->spa_free_bplist[t]);
646 
647 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
648 	spa->spa_state = POOL_STATE_UNINITIALIZED;
649 	spa->spa_freeze_txg = UINT64_MAX;
650 	spa->spa_final_txg = UINT64_MAX;
651 	spa->spa_load_max_txg = UINT64_MAX;
652 	spa->spa_proc = &p0;
653 	spa->spa_proc_state = SPA_PROC_NONE;
654 	spa->spa_trust_config = B_TRUE;
655 
656 	hdlr.cyh_func = spa_deadman;
657 	hdlr.cyh_arg = spa;
658 	hdlr.cyh_level = CY_LOW_LEVEL;
659 
660 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
661 
662 	/*
663 	 * This determines how often we need to check for hung I/Os after
664 	 * the cyclic has already fired. Since checking for hung I/Os is
665 	 * an expensive operation we don't want to check too frequently.
666 	 * Instead wait for 5 seconds before checking again.
667 	 */
668 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
669 	when.cyt_when = CY_INFINITY;
670 	mutex_enter(&cpu_lock);
671 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
672 	mutex_exit(&cpu_lock);
673 
674 	zfs_refcount_create(&spa->spa_refcount);
675 	spa_config_lock_init(spa);
676 
677 	avl_add(&spa_namespace_avl, spa);
678 
679 	/*
680 	 * Set the alternate root, if there is one.
681 	 */
682 	if (altroot) {
683 		spa->spa_root = spa_strdup(altroot);
684 		spa_active_count++;
685 	}
686 
687 	spa->spa_alloc_count = spa_allocators;
688 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
689 	    sizeof (kmutex_t), KM_SLEEP);
690 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
691 	    sizeof (avl_tree_t), KM_SLEEP);
692 	for (int i = 0; i < spa->spa_alloc_count; i++) {
693 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
694 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
695 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
696 	}
697 	avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
698 	    sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
699 	avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
700 	    sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
701 	list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
702 	    offsetof(log_summary_entry_t, lse_node));
703 
704 	/*
705 	 * Every pool starts with the default cachefile
706 	 */
707 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
708 	    offsetof(spa_config_dirent_t, scd_link));
709 
710 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
711 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
712 	list_insert_head(&spa->spa_config_list, dp);
713 
714 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
715 	    KM_SLEEP) == 0);
716 
717 	if (config != NULL) {
718 		nvlist_t *features;
719 
720 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
721 		    &features) == 0) {
722 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
723 			    0) == 0);
724 		}
725 
726 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
727 	}
728 
729 	if (spa->spa_label_features == NULL) {
730 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
731 		    KM_SLEEP) == 0);
732 	}
733 
734 	spa->spa_iokstat = kstat_create("zfs", 0, name,
735 	    "disk", KSTAT_TYPE_IO, 1, 0);
736 	if (spa->spa_iokstat) {
737 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
738 		kstat_install(spa->spa_iokstat);
739 	}
740 
741 	spa->spa_min_ashift = INT_MAX;
742 	spa->spa_max_ashift = 0;
743 
744 	/*
745 	 * As a pool is being created, treat all features as disabled by
746 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
747 	 * refcount cache.
748 	 */
749 	for (int i = 0; i < SPA_FEATURES; i++) {
750 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
751 	}
752 
753 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
754 	    offsetof(vdev_t, vdev_leaf_node));
755 
756 	return (spa);
757 }
758 
759 /*
760  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
761  * spa_namespace_lock.  This is called only after the spa_t has been closed and
762  * deactivated.
763  */
764 void
765 spa_remove(spa_t *spa)
766 {
767 	spa_config_dirent_t *dp;
768 
769 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
770 	ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
771 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
772 
773 	nvlist_free(spa->spa_config_splitting);
774 
775 	avl_remove(&spa_namespace_avl, spa);
776 	cv_broadcast(&spa_namespace_cv);
777 
778 	if (spa->spa_root) {
779 		spa_strfree(spa->spa_root);
780 		spa_active_count--;
781 	}
782 
783 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
784 		list_remove(&spa->spa_config_list, dp);
785 		if (dp->scd_path != NULL)
786 			spa_strfree(dp->scd_path);
787 		kmem_free(dp, sizeof (spa_config_dirent_t));
788 	}
789 
790 	for (int i = 0; i < spa->spa_alloc_count; i++) {
791 		avl_destroy(&spa->spa_alloc_trees[i]);
792 		mutex_destroy(&spa->spa_alloc_locks[i]);
793 	}
794 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
795 	    sizeof (kmutex_t));
796 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
797 	    sizeof (avl_tree_t));
798 
799 	avl_destroy(&spa->spa_metaslabs_by_flushed);
800 	avl_destroy(&spa->spa_sm_logs_by_txg);
801 	list_destroy(&spa->spa_log_summary);
802 	list_destroy(&spa->spa_config_list);
803 	list_destroy(&spa->spa_leaf_list);
804 
805 	nvlist_free(spa->spa_label_features);
806 	nvlist_free(spa->spa_load_info);
807 	spa_config_set(spa, NULL);
808 
809 	mutex_enter(&cpu_lock);
810 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
811 		cyclic_remove(spa->spa_deadman_cycid);
812 	mutex_exit(&cpu_lock);
813 	spa->spa_deadman_cycid = CYCLIC_NONE;
814 
815 	zfs_refcount_destroy(&spa->spa_refcount);
816 
817 	spa_config_lock_destroy(spa);
818 
819 	kstat_delete(spa->spa_iokstat);
820 	spa->spa_iokstat = NULL;
821 
822 	for (int t = 0; t < TXG_SIZE; t++)
823 		bplist_destroy(&spa->spa_free_bplist[t]);
824 
825 	zio_checksum_templates_free(spa);
826 
827 	cv_destroy(&spa->spa_async_cv);
828 	cv_destroy(&spa->spa_evicting_os_cv);
829 	cv_destroy(&spa->spa_proc_cv);
830 	cv_destroy(&spa->spa_scrub_io_cv);
831 	cv_destroy(&spa->spa_suspend_cv);
832 
833 	mutex_destroy(&spa->spa_flushed_ms_lock);
834 	mutex_destroy(&spa->spa_async_lock);
835 	mutex_destroy(&spa->spa_errlist_lock);
836 	mutex_destroy(&spa->spa_errlog_lock);
837 	mutex_destroy(&spa->spa_evicting_os_lock);
838 	mutex_destroy(&spa->spa_history_lock);
839 	mutex_destroy(&spa->spa_proc_lock);
840 	mutex_destroy(&spa->spa_props_lock);
841 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
842 	mutex_destroy(&spa->spa_scrub_lock);
843 	mutex_destroy(&spa->spa_suspend_lock);
844 	mutex_destroy(&spa->spa_vdev_top_lock);
845 	mutex_destroy(&spa->spa_iokstat_lock);
846 
847 	kmem_free(spa, sizeof (spa_t));
848 }
849 
850 /*
851  * Given a pool, return the next pool in the namespace, or NULL if there is
852  * none.  If 'prev' is NULL, return the first pool.
853  */
854 spa_t *
855 spa_next(spa_t *prev)
856 {
857 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
858 
859 	if (prev)
860 		return (AVL_NEXT(&spa_namespace_avl, prev));
861 	else
862 		return (avl_first(&spa_namespace_avl));
863 }
864 
865 /*
866  * ==========================================================================
867  * SPA refcount functions
868  * ==========================================================================
869  */
870 
871 /*
872  * Add a reference to the given spa_t.  Must have at least one reference, or
873  * have the namespace lock held.
874  */
875 void
876 spa_open_ref(spa_t *spa, void *tag)
877 {
878 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
879 	    MUTEX_HELD(&spa_namespace_lock));
880 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
881 }
882 
883 /*
884  * Remove a reference to the given spa_t.  Must have at least one reference, or
885  * have the namespace lock held.
886  */
887 void
888 spa_close(spa_t *spa, void *tag)
889 {
890 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
891 	    MUTEX_HELD(&spa_namespace_lock));
892 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
893 }
894 
895 /*
896  * Remove a reference to the given spa_t held by a dsl dir that is
897  * being asynchronously released.  Async releases occur from a taskq
898  * performing eviction of dsl datasets and dirs.  The namespace lock
899  * isn't held and the hold by the object being evicted may contribute to
900  * spa_minref (e.g. dataset or directory released during pool export),
901  * so the asserts in spa_close() do not apply.
902  */
903 void
904 spa_async_close(spa_t *spa, void *tag)
905 {
906 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
907 }
908 
909 /*
910  * Check to see if the spa refcount is zero.  Must be called with
911  * spa_namespace_lock held.  We really compare against spa_minref, which is the
912  * number of references acquired when opening a pool
913  */
914 boolean_t
915 spa_refcount_zero(spa_t *spa)
916 {
917 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
918 
919 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
920 }
921 
922 /*
923  * ==========================================================================
924  * SPA spare and l2cache tracking
925  * ==========================================================================
926  */
927 
928 /*
929  * Hot spares and cache devices are tracked using the same code below,
930  * for 'auxiliary' devices.
931  */
932 
933 typedef struct spa_aux {
934 	uint64_t	aux_guid;
935 	uint64_t	aux_pool;
936 	avl_node_t	aux_avl;
937 	int		aux_count;
938 } spa_aux_t;
939 
940 static inline int
941 spa_aux_compare(const void *a, const void *b)
942 {
943 	const spa_aux_t *sa = (const spa_aux_t *)a;
944 	const spa_aux_t *sb = (const spa_aux_t *)b;
945 
946 	return (TREE_CMP(sa->aux_guid, sb->aux_guid));
947 }
948 
949 void
950 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
951 {
952 	avl_index_t where;
953 	spa_aux_t search;
954 	spa_aux_t *aux;
955 
956 	search.aux_guid = vd->vdev_guid;
957 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
958 		aux->aux_count++;
959 	} else {
960 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
961 		aux->aux_guid = vd->vdev_guid;
962 		aux->aux_count = 1;
963 		avl_insert(avl, aux, where);
964 	}
965 }
966 
967 void
968 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
969 {
970 	spa_aux_t search;
971 	spa_aux_t *aux;
972 	avl_index_t where;
973 
974 	search.aux_guid = vd->vdev_guid;
975 	aux = avl_find(avl, &search, &where);
976 
977 	ASSERT(aux != NULL);
978 
979 	if (--aux->aux_count == 0) {
980 		avl_remove(avl, aux);
981 		kmem_free(aux, sizeof (spa_aux_t));
982 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
983 		aux->aux_pool = 0ULL;
984 	}
985 }
986 
987 boolean_t
988 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
989 {
990 	spa_aux_t search, *found;
991 
992 	search.aux_guid = guid;
993 	found = avl_find(avl, &search, NULL);
994 
995 	if (pool) {
996 		if (found)
997 			*pool = found->aux_pool;
998 		else
999 			*pool = 0ULL;
1000 	}
1001 
1002 	if (refcnt) {
1003 		if (found)
1004 			*refcnt = found->aux_count;
1005 		else
1006 			*refcnt = 0;
1007 	}
1008 
1009 	return (found != NULL);
1010 }
1011 
1012 void
1013 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1014 {
1015 	spa_aux_t search, *found;
1016 	avl_index_t where;
1017 
1018 	search.aux_guid = vd->vdev_guid;
1019 	found = avl_find(avl, &search, &where);
1020 	ASSERT(found != NULL);
1021 	ASSERT(found->aux_pool == 0ULL);
1022 
1023 	found->aux_pool = spa_guid(vd->vdev_spa);
1024 }
1025 
1026 /*
1027  * Spares are tracked globally due to the following constraints:
1028  *
1029  *	- A spare may be part of multiple pools.
1030  *	- A spare may be added to a pool even if it's actively in use within
1031  *	  another pool.
1032  *	- A spare in use in any pool can only be the source of a replacement if
1033  *	  the target is a spare in the same pool.
1034  *
1035  * We keep track of all spares on the system through the use of a reference
1036  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1037  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1038  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1039  * inactive).  When a spare is made active (used to replace a device in the
1040  * pool), we also keep track of which pool its been made a part of.
1041  *
1042  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1043  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1044  * separate spare lock exists for the status query path, which does not need to
1045  * be completely consistent with respect to other vdev configuration changes.
1046  */
1047 
1048 static int
1049 spa_spare_compare(const void *a, const void *b)
1050 {
1051 	return (spa_aux_compare(a, b));
1052 }
1053 
1054 void
1055 spa_spare_add(vdev_t *vd)
1056 {
1057 	mutex_enter(&spa_spare_lock);
1058 	ASSERT(!vd->vdev_isspare);
1059 	spa_aux_add(vd, &spa_spare_avl);
1060 	vd->vdev_isspare = B_TRUE;
1061 	mutex_exit(&spa_spare_lock);
1062 }
1063 
1064 void
1065 spa_spare_remove(vdev_t *vd)
1066 {
1067 	mutex_enter(&spa_spare_lock);
1068 	ASSERT(vd->vdev_isspare);
1069 	spa_aux_remove(vd, &spa_spare_avl);
1070 	vd->vdev_isspare = B_FALSE;
1071 	mutex_exit(&spa_spare_lock);
1072 }
1073 
1074 boolean_t
1075 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1076 {
1077 	boolean_t found;
1078 
1079 	mutex_enter(&spa_spare_lock);
1080 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1081 	mutex_exit(&spa_spare_lock);
1082 
1083 	return (found);
1084 }
1085 
1086 void
1087 spa_spare_activate(vdev_t *vd)
1088 {
1089 	mutex_enter(&spa_spare_lock);
1090 	ASSERT(vd->vdev_isspare);
1091 	spa_aux_activate(vd, &spa_spare_avl);
1092 	mutex_exit(&spa_spare_lock);
1093 }
1094 
1095 /*
1096  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1097  * Cache devices currently only support one pool per cache device, and so
1098  * for these devices the aux reference count is currently unused beyond 1.
1099  */
1100 
1101 static int
1102 spa_l2cache_compare(const void *a, const void *b)
1103 {
1104 	return (spa_aux_compare(a, b));
1105 }
1106 
1107 void
1108 spa_l2cache_add(vdev_t *vd)
1109 {
1110 	mutex_enter(&spa_l2cache_lock);
1111 	ASSERT(!vd->vdev_isl2cache);
1112 	spa_aux_add(vd, &spa_l2cache_avl);
1113 	vd->vdev_isl2cache = B_TRUE;
1114 	mutex_exit(&spa_l2cache_lock);
1115 }
1116 
1117 void
1118 spa_l2cache_remove(vdev_t *vd)
1119 {
1120 	mutex_enter(&spa_l2cache_lock);
1121 	ASSERT(vd->vdev_isl2cache);
1122 	spa_aux_remove(vd, &spa_l2cache_avl);
1123 	vd->vdev_isl2cache = B_FALSE;
1124 	mutex_exit(&spa_l2cache_lock);
1125 }
1126 
1127 boolean_t
1128 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1129 {
1130 	boolean_t found;
1131 
1132 	mutex_enter(&spa_l2cache_lock);
1133 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1134 	mutex_exit(&spa_l2cache_lock);
1135 
1136 	return (found);
1137 }
1138 
1139 void
1140 spa_l2cache_activate(vdev_t *vd)
1141 {
1142 	mutex_enter(&spa_l2cache_lock);
1143 	ASSERT(vd->vdev_isl2cache);
1144 	spa_aux_activate(vd, &spa_l2cache_avl);
1145 	mutex_exit(&spa_l2cache_lock);
1146 }
1147 
1148 /*
1149  * ==========================================================================
1150  * SPA vdev locking
1151  * ==========================================================================
1152  */
1153 
1154 /*
1155  * Lock the given spa_t for the purpose of adding or removing a vdev.
1156  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1157  * It returns the next transaction group for the spa_t.
1158  */
1159 uint64_t
1160 spa_vdev_enter(spa_t *spa)
1161 {
1162 	mutex_enter(&spa->spa_vdev_top_lock);
1163 	mutex_enter(&spa_namespace_lock);
1164 
1165 	vdev_autotrim_stop_all(spa);
1166 
1167 	return (spa_vdev_config_enter(spa));
1168 }
1169 
1170 /*
1171  * Internal implementation for spa_vdev_enter().  Used when a vdev
1172  * operation requires multiple syncs (i.e. removing a device) while
1173  * keeping the spa_namespace_lock held.
1174  */
1175 uint64_t
1176 spa_vdev_config_enter(spa_t *spa)
1177 {
1178 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1179 
1180 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1181 
1182 	return (spa_last_synced_txg(spa) + 1);
1183 }
1184 
1185 /*
1186  * Used in combination with spa_vdev_config_enter() to allow the syncing
1187  * of multiple transactions without releasing the spa_namespace_lock.
1188  */
1189 void
1190 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1191 {
1192 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1193 
1194 	int config_changed = B_FALSE;
1195 
1196 	ASSERT(txg > spa_last_synced_txg(spa));
1197 
1198 	spa->spa_pending_vdev = NULL;
1199 
1200 	/*
1201 	 * Reassess the DTLs.
1202 	 */
1203 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1204 
1205 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1206 		config_changed = B_TRUE;
1207 		spa->spa_config_generation++;
1208 	}
1209 
1210 	/*
1211 	 * Verify the metaslab classes.
1212 	 */
1213 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1214 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1215 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1216 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1217 
1218 	spa_config_exit(spa, SCL_ALL, spa);
1219 
1220 	/*
1221 	 * Panic the system if the specified tag requires it.  This
1222 	 * is useful for ensuring that configurations are updated
1223 	 * transactionally.
1224 	 */
1225 	if (zio_injection_enabled)
1226 		zio_handle_panic_injection(spa, tag, 0);
1227 
1228 	/*
1229 	 * Note: this txg_wait_synced() is important because it ensures
1230 	 * that there won't be more than one config change per txg.
1231 	 * This allows us to use the txg as the generation number.
1232 	 */
1233 	if (error == 0)
1234 		txg_wait_synced(spa->spa_dsl_pool, txg);
1235 
1236 	if (vd != NULL) {
1237 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1238 		if (vd->vdev_ops->vdev_op_leaf) {
1239 			mutex_enter(&vd->vdev_initialize_lock);
1240 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1241 			    NULL);
1242 			mutex_exit(&vd->vdev_initialize_lock);
1243 
1244 			mutex_enter(&vd->vdev_trim_lock);
1245 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1246 			mutex_exit(&vd->vdev_trim_lock);
1247 		}
1248 
1249 		/*
1250 		 * The vdev may be both a leaf and top-level device.
1251 		 */
1252 		vdev_autotrim_stop_wait(vd);
1253 
1254 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1255 		vdev_free(vd);
1256 		spa_config_exit(spa, SCL_ALL, spa);
1257 	}
1258 
1259 	/*
1260 	 * If the config changed, update the config cache.
1261 	 */
1262 	if (config_changed)
1263 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1264 }
1265 
1266 /*
1267  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1268  * locking of spa_vdev_enter(), we also want make sure the transactions have
1269  * synced to disk, and then update the global configuration cache with the new
1270  * information.
1271  */
1272 int
1273 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1274 {
1275 	vdev_autotrim_restart(spa);
1276 
1277 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1278 	mutex_exit(&spa_namespace_lock);
1279 	mutex_exit(&spa->spa_vdev_top_lock);
1280 
1281 	return (error);
1282 }
1283 
1284 /*
1285  * Lock the given spa_t for the purpose of changing vdev state.
1286  */
1287 void
1288 spa_vdev_state_enter(spa_t *spa, int oplocks)
1289 {
1290 	int locks = SCL_STATE_ALL | oplocks;
1291 
1292 	/*
1293 	 * Root pools may need to read of the underlying devfs filesystem
1294 	 * when opening up a vdev.  Unfortunately if we're holding the
1295 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1296 	 * the read from the root filesystem.  Instead we "prefetch"
1297 	 * the associated vnodes that we need prior to opening the
1298 	 * underlying devices and cache them so that we can prevent
1299 	 * any I/O when we are doing the actual open.
1300 	 */
1301 	if (spa_is_root(spa)) {
1302 		int low = locks & ~(SCL_ZIO - 1);
1303 		int high = locks & ~low;
1304 
1305 		spa_config_enter(spa, high, spa, RW_WRITER);
1306 		vdev_hold(spa->spa_root_vdev);
1307 		spa_config_enter(spa, low, spa, RW_WRITER);
1308 	} else {
1309 		spa_config_enter(spa, locks, spa, RW_WRITER);
1310 	}
1311 	spa->spa_vdev_locks = locks;
1312 }
1313 
1314 int
1315 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1316 {
1317 	boolean_t config_changed = B_FALSE;
1318 
1319 	if (vd != NULL || error == 0)
1320 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1321 		    0, 0, B_FALSE);
1322 
1323 	if (vd != NULL) {
1324 		vdev_state_dirty(vd->vdev_top);
1325 		config_changed = B_TRUE;
1326 		spa->spa_config_generation++;
1327 	}
1328 
1329 	if (spa_is_root(spa))
1330 		vdev_rele(spa->spa_root_vdev);
1331 
1332 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1333 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1334 
1335 	/*
1336 	 * If anything changed, wait for it to sync.  This ensures that,
1337 	 * from the system administrator's perspective, zpool(1M) commands
1338 	 * are synchronous.  This is important for things like zpool offline:
1339 	 * when the command completes, you expect no further I/O from ZFS.
1340 	 */
1341 	if (vd != NULL)
1342 		txg_wait_synced(spa->spa_dsl_pool, 0);
1343 
1344 	/*
1345 	 * If the config changed, update the config cache.
1346 	 */
1347 	if (config_changed) {
1348 		mutex_enter(&spa_namespace_lock);
1349 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1350 		mutex_exit(&spa_namespace_lock);
1351 	}
1352 
1353 	return (error);
1354 }
1355 
1356 /*
1357  * ==========================================================================
1358  * Miscellaneous functions
1359  * ==========================================================================
1360  */
1361 
1362 void
1363 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1364 {
1365 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1366 		fnvlist_add_boolean(spa->spa_label_features, feature);
1367 		/*
1368 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1369 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1370 		 * Thankfully, in this case we don't need to dirty the config
1371 		 * because it will be written out anyway when we finish
1372 		 * creating the pool.
1373 		 */
1374 		if (tx->tx_txg != TXG_INITIAL)
1375 			vdev_config_dirty(spa->spa_root_vdev);
1376 	}
1377 }
1378 
1379 void
1380 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1381 {
1382 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1383 		vdev_config_dirty(spa->spa_root_vdev);
1384 }
1385 
1386 /*
1387  * Return the spa_t associated with given pool_guid, if it exists.  If
1388  * device_guid is non-zero, determine whether the pool exists *and* contains
1389  * a device with the specified device_guid.
1390  */
1391 spa_t *
1392 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1393 {
1394 	spa_t *spa;
1395 	avl_tree_t *t = &spa_namespace_avl;
1396 
1397 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1398 
1399 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1400 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1401 			continue;
1402 		if (spa->spa_root_vdev == NULL)
1403 			continue;
1404 		if (spa_guid(spa) == pool_guid) {
1405 			if (device_guid == 0)
1406 				break;
1407 
1408 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1409 			    device_guid) != NULL)
1410 				break;
1411 
1412 			/*
1413 			 * Check any devices we may be in the process of adding.
1414 			 */
1415 			if (spa->spa_pending_vdev) {
1416 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1417 				    device_guid) != NULL)
1418 					break;
1419 			}
1420 		}
1421 	}
1422 
1423 	return (spa);
1424 }
1425 
1426 /*
1427  * Determine whether a pool with the given pool_guid exists.
1428  */
1429 boolean_t
1430 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1431 {
1432 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1433 }
1434 
1435 char *
1436 spa_strdup(const char *s)
1437 {
1438 	size_t len;
1439 	char *new;
1440 
1441 	len = strlen(s);
1442 	new = kmem_alloc(len + 1, KM_SLEEP);
1443 	bcopy(s, new, len);
1444 	new[len] = '\0';
1445 
1446 	return (new);
1447 }
1448 
1449 void
1450 spa_strfree(char *s)
1451 {
1452 	kmem_free(s, strlen(s) + 1);
1453 }
1454 
1455 uint64_t
1456 spa_get_random(uint64_t range)
1457 {
1458 	uint64_t r;
1459 
1460 	ASSERT(range != 0);
1461 
1462 	if (range == 1)
1463 		return (0);
1464 
1465 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1466 
1467 	return (r % range);
1468 }
1469 
1470 uint64_t
1471 spa_generate_guid(spa_t *spa)
1472 {
1473 	uint64_t guid = spa_get_random(-1ULL);
1474 
1475 	if (spa != NULL) {
1476 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1477 			guid = spa_get_random(-1ULL);
1478 	} else {
1479 		while (guid == 0 || spa_guid_exists(guid, 0))
1480 			guid = spa_get_random(-1ULL);
1481 	}
1482 
1483 	return (guid);
1484 }
1485 
1486 void
1487 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1488 {
1489 	char type[256];
1490 	char *checksum = NULL;
1491 	char *compress = NULL;
1492 
1493 	if (bp != NULL) {
1494 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1495 			dmu_object_byteswap_t bswap =
1496 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1497 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1498 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1499 			    "metadata" : "data",
1500 			    dmu_ot_byteswap[bswap].ob_name);
1501 		} else {
1502 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1503 			    sizeof (type));
1504 		}
1505 		if (!BP_IS_EMBEDDED(bp)) {
1506 			checksum =
1507 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1508 		}
1509 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1510 	}
1511 
1512 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1513 	    compress);
1514 }
1515 
1516 void
1517 spa_freeze(spa_t *spa)
1518 {
1519 	uint64_t freeze_txg = 0;
1520 
1521 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1522 	if (spa->spa_freeze_txg == UINT64_MAX) {
1523 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1524 		spa->spa_freeze_txg = freeze_txg;
1525 	}
1526 	spa_config_exit(spa, SCL_ALL, FTAG);
1527 	if (freeze_txg != 0)
1528 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1529 }
1530 
1531 void
1532 zfs_panic_recover(const char *fmt, ...)
1533 {
1534 	va_list adx;
1535 
1536 	va_start(adx, fmt);
1537 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1538 	va_end(adx);
1539 }
1540 
1541 /*
1542  * This is a stripped-down version of strtoull, suitable only for converting
1543  * lowercase hexadecimal numbers that don't overflow.
1544  */
1545 uint64_t
1546 zfs_strtonum(const char *str, char **nptr)
1547 {
1548 	uint64_t val = 0;
1549 	char c;
1550 	int digit;
1551 
1552 	while ((c = *str) != '\0') {
1553 		if (c >= '0' && c <= '9')
1554 			digit = c - '0';
1555 		else if (c >= 'a' && c <= 'f')
1556 			digit = 10 + c - 'a';
1557 		else
1558 			break;
1559 
1560 		val *= 16;
1561 		val += digit;
1562 
1563 		str++;
1564 	}
1565 
1566 	if (nptr)
1567 		*nptr = (char *)str;
1568 
1569 	return (val);
1570 }
1571 
1572 void
1573 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1574 {
1575 	/*
1576 	 * We bump the feature refcount for each special vdev added to the pool
1577 	 */
1578 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1579 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1580 }
1581 
1582 /*
1583  * ==========================================================================
1584  * Accessor functions
1585  * ==========================================================================
1586  */
1587 
1588 boolean_t
1589 spa_shutting_down(spa_t *spa)
1590 {
1591 	return (spa->spa_async_suspended);
1592 }
1593 
1594 dsl_pool_t *
1595 spa_get_dsl(spa_t *spa)
1596 {
1597 	return (spa->spa_dsl_pool);
1598 }
1599 
1600 boolean_t
1601 spa_is_initializing(spa_t *spa)
1602 {
1603 	return (spa->spa_is_initializing);
1604 }
1605 
1606 boolean_t
1607 spa_indirect_vdevs_loaded(spa_t *spa)
1608 {
1609 	return (spa->spa_indirect_vdevs_loaded);
1610 }
1611 
1612 blkptr_t *
1613 spa_get_rootblkptr(spa_t *spa)
1614 {
1615 	return (&spa->spa_ubsync.ub_rootbp);
1616 }
1617 
1618 void
1619 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1620 {
1621 	spa->spa_uberblock.ub_rootbp = *bp;
1622 }
1623 
1624 void
1625 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1626 {
1627 	if (spa->spa_root == NULL)
1628 		buf[0] = '\0';
1629 	else
1630 		(void) strncpy(buf, spa->spa_root, buflen);
1631 }
1632 
1633 int
1634 spa_sync_pass(spa_t *spa)
1635 {
1636 	return (spa->spa_sync_pass);
1637 }
1638 
1639 char *
1640 spa_name(spa_t *spa)
1641 {
1642 	return (spa->spa_name);
1643 }
1644 
1645 uint64_t
1646 spa_guid(spa_t *spa)
1647 {
1648 	dsl_pool_t *dp = spa_get_dsl(spa);
1649 	uint64_t guid;
1650 
1651 	/*
1652 	 * If we fail to parse the config during spa_load(), we can go through
1653 	 * the error path (which posts an ereport) and end up here with no root
1654 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1655 	 * this case.
1656 	 */
1657 	if (spa->spa_root_vdev == NULL)
1658 		return (spa->spa_config_guid);
1659 
1660 	guid = spa->spa_last_synced_guid != 0 ?
1661 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1662 
1663 	/*
1664 	 * Return the most recently synced out guid unless we're
1665 	 * in syncing context.
1666 	 */
1667 	if (dp && dsl_pool_sync_context(dp))
1668 		return (spa->spa_root_vdev->vdev_guid);
1669 	else
1670 		return (guid);
1671 }
1672 
1673 uint64_t
1674 spa_load_guid(spa_t *spa)
1675 {
1676 	/*
1677 	 * This is a GUID that exists solely as a reference for the
1678 	 * purposes of the arc.  It is generated at load time, and
1679 	 * is never written to persistent storage.
1680 	 */
1681 	return (spa->spa_load_guid);
1682 }
1683 
1684 uint64_t
1685 spa_last_synced_txg(spa_t *spa)
1686 {
1687 	return (spa->spa_ubsync.ub_txg);
1688 }
1689 
1690 uint64_t
1691 spa_first_txg(spa_t *spa)
1692 {
1693 	return (spa->spa_first_txg);
1694 }
1695 
1696 uint64_t
1697 spa_syncing_txg(spa_t *spa)
1698 {
1699 	return (spa->spa_syncing_txg);
1700 }
1701 
1702 /*
1703  * Return the last txg where data can be dirtied. The final txgs
1704  * will be used to just clear out any deferred frees that remain.
1705  */
1706 uint64_t
1707 spa_final_dirty_txg(spa_t *spa)
1708 {
1709 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1710 }
1711 
1712 pool_state_t
1713 spa_state(spa_t *spa)
1714 {
1715 	return (spa->spa_state);
1716 }
1717 
1718 spa_load_state_t
1719 spa_load_state(spa_t *spa)
1720 {
1721 	return (spa->spa_load_state);
1722 }
1723 
1724 uint64_t
1725 spa_freeze_txg(spa_t *spa)
1726 {
1727 	return (spa->spa_freeze_txg);
1728 }
1729 
1730 /* ARGSUSED */
1731 uint64_t
1732 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1733 {
1734 	return (lsize * spa_asize_inflation);
1735 }
1736 
1737 /*
1738  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1739  * or at least 128MB, unless that would cause it to be more than half the
1740  * pool size.
1741  *
1742  * See the comment above spa_slop_shift for details.
1743  */
1744 uint64_t
1745 spa_get_slop_space(spa_t *spa)
1746 {
1747 	uint64_t space = spa_get_dspace(spa);
1748 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1749 }
1750 
1751 uint64_t
1752 spa_get_dspace(spa_t *spa)
1753 {
1754 	return (spa->spa_dspace);
1755 }
1756 
1757 uint64_t
1758 spa_get_checkpoint_space(spa_t *spa)
1759 {
1760 	return (spa->spa_checkpoint_info.sci_dspace);
1761 }
1762 
1763 void
1764 spa_update_dspace(spa_t *spa)
1765 {
1766 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1767 	    ddt_get_dedup_dspace(spa);
1768 	if (spa->spa_vdev_removal != NULL) {
1769 		/*
1770 		 * We can't allocate from the removing device, so
1771 		 * subtract its size.  This prevents the DMU/DSL from
1772 		 * filling up the (now smaller) pool while we are in the
1773 		 * middle of removing the device.
1774 		 *
1775 		 * Note that the DMU/DSL doesn't actually know or care
1776 		 * how much space is allocated (it does its own tracking
1777 		 * of how much space has been logically used).  So it
1778 		 * doesn't matter that the data we are moving may be
1779 		 * allocated twice (on the old device and the new
1780 		 * device).
1781 		 */
1782 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1783 		vdev_t *vd =
1784 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1785 		spa->spa_dspace -= spa_deflate(spa) ?
1786 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1787 		spa_config_exit(spa, SCL_VDEV, FTAG);
1788 	}
1789 }
1790 
1791 /*
1792  * Return the failure mode that has been set to this pool. The default
1793  * behavior will be to block all I/Os when a complete failure occurs.
1794  */
1795 uint8_t
1796 spa_get_failmode(spa_t *spa)
1797 {
1798 	return (spa->spa_failmode);
1799 }
1800 
1801 boolean_t
1802 spa_suspended(spa_t *spa)
1803 {
1804 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1805 }
1806 
1807 uint64_t
1808 spa_version(spa_t *spa)
1809 {
1810 	return (spa->spa_ubsync.ub_version);
1811 }
1812 
1813 boolean_t
1814 spa_deflate(spa_t *spa)
1815 {
1816 	return (spa->spa_deflate);
1817 }
1818 
1819 metaslab_class_t *
1820 spa_normal_class(spa_t *spa)
1821 {
1822 	return (spa->spa_normal_class);
1823 }
1824 
1825 metaslab_class_t *
1826 spa_log_class(spa_t *spa)
1827 {
1828 	return (spa->spa_log_class);
1829 }
1830 
1831 metaslab_class_t *
1832 spa_special_class(spa_t *spa)
1833 {
1834 	return (spa->spa_special_class);
1835 }
1836 
1837 metaslab_class_t *
1838 spa_dedup_class(spa_t *spa)
1839 {
1840 	return (spa->spa_dedup_class);
1841 }
1842 
1843 /*
1844  * Locate an appropriate allocation class
1845  */
1846 metaslab_class_t *
1847 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1848     uint_t level, uint_t special_smallblk)
1849 {
1850 	if (DMU_OT_IS_ZIL(objtype)) {
1851 		if (spa->spa_log_class->mc_groups != 0)
1852 			return (spa_log_class(spa));
1853 		else
1854 			return (spa_normal_class(spa));
1855 	}
1856 
1857 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1858 
1859 	if (DMU_OT_IS_DDT(objtype)) {
1860 		if (spa->spa_dedup_class->mc_groups != 0)
1861 			return (spa_dedup_class(spa));
1862 		else if (has_special_class && zfs_ddt_data_is_special)
1863 			return (spa_special_class(spa));
1864 		else
1865 			return (spa_normal_class(spa));
1866 	}
1867 
1868 	/* Indirect blocks for user data can land in special if allowed */
1869 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1870 		if (has_special_class && zfs_user_indirect_is_special)
1871 			return (spa_special_class(spa));
1872 		else
1873 			return (spa_normal_class(spa));
1874 	}
1875 
1876 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1877 		if (has_special_class)
1878 			return (spa_special_class(spa));
1879 		else
1880 			return (spa_normal_class(spa));
1881 	}
1882 
1883 	/*
1884 	 * Allow small file blocks in special class in some cases (like
1885 	 * for the dRAID vdev feature). But always leave a reserve of
1886 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1887 	 */
1888 	if (DMU_OT_IS_FILE(objtype) &&
1889 	    has_special_class && size <= special_smallblk) {
1890 		metaslab_class_t *special = spa_special_class(spa);
1891 		uint64_t alloc = metaslab_class_get_alloc(special);
1892 		uint64_t space = metaslab_class_get_space(special);
1893 		uint64_t limit =
1894 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1895 		    / 100;
1896 
1897 		if (alloc < limit)
1898 			return (special);
1899 	}
1900 
1901 	return (spa_normal_class(spa));
1902 }
1903 
1904 void
1905 spa_evicting_os_register(spa_t *spa, objset_t *os)
1906 {
1907 	mutex_enter(&spa->spa_evicting_os_lock);
1908 	list_insert_head(&spa->spa_evicting_os_list, os);
1909 	mutex_exit(&spa->spa_evicting_os_lock);
1910 }
1911 
1912 void
1913 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1914 {
1915 	mutex_enter(&spa->spa_evicting_os_lock);
1916 	list_remove(&spa->spa_evicting_os_list, os);
1917 	cv_broadcast(&spa->spa_evicting_os_cv);
1918 	mutex_exit(&spa->spa_evicting_os_lock);
1919 }
1920 
1921 void
1922 spa_evicting_os_wait(spa_t *spa)
1923 {
1924 	mutex_enter(&spa->spa_evicting_os_lock);
1925 	while (!list_is_empty(&spa->spa_evicting_os_list))
1926 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1927 	mutex_exit(&spa->spa_evicting_os_lock);
1928 
1929 	dmu_buf_user_evict_wait();
1930 }
1931 
1932 int
1933 spa_max_replication(spa_t *spa)
1934 {
1935 	/*
1936 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1937 	 * handle BPs with more than one DVA allocated.  Set our max
1938 	 * replication level accordingly.
1939 	 */
1940 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1941 		return (1);
1942 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1943 }
1944 
1945 int
1946 spa_prev_software_version(spa_t *spa)
1947 {
1948 	return (spa->spa_prev_software_version);
1949 }
1950 
1951 uint64_t
1952 spa_deadman_synctime(spa_t *spa)
1953 {
1954 	return (spa->spa_deadman_synctime);
1955 }
1956 
1957 spa_autotrim_t
1958 spa_get_autotrim(spa_t *spa)
1959 {
1960 	return (spa->spa_autotrim);
1961 }
1962 
1963 uint64_t
1964 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1965 {
1966 	uint64_t asize = DVA_GET_ASIZE(dva);
1967 	uint64_t dsize = asize;
1968 
1969 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1970 
1971 	if (asize != 0 && spa->spa_deflate) {
1972 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1973 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1974 	}
1975 
1976 	return (dsize);
1977 }
1978 
1979 uint64_t
1980 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1981 {
1982 	uint64_t dsize = 0;
1983 
1984 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1985 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1986 
1987 	return (dsize);
1988 }
1989 
1990 uint64_t
1991 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1992 {
1993 	uint64_t dsize = 0;
1994 
1995 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1996 
1997 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1998 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1999 
2000 	spa_config_exit(spa, SCL_VDEV, FTAG);
2001 
2002 	return (dsize);
2003 }
2004 
2005 uint64_t
2006 spa_dirty_data(spa_t *spa)
2007 {
2008 	return (spa->spa_dsl_pool->dp_dirty_total);
2009 }
2010 
2011 /*
2012  * ==========================================================================
2013  * Initialization and Termination
2014  * ==========================================================================
2015  */
2016 
2017 static int
2018 spa_name_compare(const void *a1, const void *a2)
2019 {
2020 	const spa_t *s1 = a1;
2021 	const spa_t *s2 = a2;
2022 	int s;
2023 
2024 	s = strcmp(s1->spa_name, s2->spa_name);
2025 
2026 	return (TREE_ISIGN(s));
2027 }
2028 
2029 int
2030 spa_busy(void)
2031 {
2032 	return (spa_active_count);
2033 }
2034 
2035 void
2036 spa_boot_init()
2037 {
2038 	spa_config_load();
2039 }
2040 
2041 void
2042 spa_init(int mode)
2043 {
2044 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2045 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2046 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2047 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2048 
2049 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2050 	    offsetof(spa_t, spa_avl));
2051 
2052 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2053 	    offsetof(spa_aux_t, aux_avl));
2054 
2055 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2056 	    offsetof(spa_aux_t, aux_avl));
2057 
2058 	spa_mode_global = mode;
2059 
2060 #ifdef _KERNEL
2061 	spa_arch_init();
2062 #else
2063 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2064 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2065 		if (arc_procfd == -1) {
2066 			perror("could not enable watchpoints: "
2067 			    "opening /proc/self/ctl failed: ");
2068 		} else {
2069 			arc_watch = B_TRUE;
2070 		}
2071 	}
2072 #endif
2073 
2074 	zfs_refcount_init();
2075 	unique_init();
2076 	zfs_btree_init();
2077 	metaslab_stat_init();
2078 	zio_init();
2079 	dmu_init();
2080 	zil_init();
2081 	vdev_cache_stat_init();
2082 	vdev_mirror_stat_init();
2083 	zfs_prop_init();
2084 	zpool_prop_init();
2085 	zpool_feature_init();
2086 	spa_config_load();
2087 	l2arc_start();
2088 	scan_init();
2089 }
2090 
2091 void
2092 spa_fini(void)
2093 {
2094 	l2arc_stop();
2095 
2096 	spa_evict_all();
2097 
2098 	vdev_cache_stat_fini();
2099 	vdev_mirror_stat_fini();
2100 	zil_fini();
2101 	dmu_fini();
2102 	zio_fini();
2103 	metaslab_stat_fini();
2104 	zfs_btree_fini();
2105 	unique_fini();
2106 	zfs_refcount_fini();
2107 	scan_fini();
2108 
2109 	avl_destroy(&spa_namespace_avl);
2110 	avl_destroy(&spa_spare_avl);
2111 	avl_destroy(&spa_l2cache_avl);
2112 
2113 	cv_destroy(&spa_namespace_cv);
2114 	mutex_destroy(&spa_namespace_lock);
2115 	mutex_destroy(&spa_spare_lock);
2116 	mutex_destroy(&spa_l2cache_lock);
2117 }
2118 
2119 /*
2120  * Return whether this pool has slogs. No locking needed.
2121  * It's not a problem if the wrong answer is returned as it's only for
2122  * performance and not correctness
2123  */
2124 boolean_t
2125 spa_has_slogs(spa_t *spa)
2126 {
2127 	return (spa->spa_log_class->mc_rotor != NULL);
2128 }
2129 
2130 spa_log_state_t
2131 spa_get_log_state(spa_t *spa)
2132 {
2133 	return (spa->spa_log_state);
2134 }
2135 
2136 void
2137 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2138 {
2139 	spa->spa_log_state = state;
2140 }
2141 
2142 boolean_t
2143 spa_is_root(spa_t *spa)
2144 {
2145 	return (spa->spa_is_root);
2146 }
2147 
2148 boolean_t
2149 spa_writeable(spa_t *spa)
2150 {
2151 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2152 }
2153 
2154 /*
2155  * Returns true if there is a pending sync task in any of the current
2156  * syncing txg, the current quiescing txg, or the current open txg.
2157  */
2158 boolean_t
2159 spa_has_pending_synctask(spa_t *spa)
2160 {
2161 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2162 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2163 }
2164 
2165 int
2166 spa_mode(spa_t *spa)
2167 {
2168 	return (spa->spa_mode);
2169 }
2170 
2171 uint64_t
2172 spa_bootfs(spa_t *spa)
2173 {
2174 	return (spa->spa_bootfs);
2175 }
2176 
2177 uint64_t
2178 spa_delegation(spa_t *spa)
2179 {
2180 	return (spa->spa_delegation);
2181 }
2182 
2183 objset_t *
2184 spa_meta_objset(spa_t *spa)
2185 {
2186 	return (spa->spa_meta_objset);
2187 }
2188 
2189 enum zio_checksum
2190 spa_dedup_checksum(spa_t *spa)
2191 {
2192 	return (spa->spa_dedup_checksum);
2193 }
2194 
2195 /*
2196  * Reset pool scan stat per scan pass (or reboot).
2197  */
2198 void
2199 spa_scan_stat_init(spa_t *spa)
2200 {
2201 	/* data not stored on disk */
2202 	spa->spa_scan_pass_start = gethrestime_sec();
2203 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2204 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2205 	else
2206 		spa->spa_scan_pass_scrub_pause = 0;
2207 	spa->spa_scan_pass_scrub_spent_paused = 0;
2208 	spa->spa_scan_pass_exam = 0;
2209 	spa->spa_scan_pass_issued = 0;
2210 	vdev_scan_stat_init(spa->spa_root_vdev);
2211 }
2212 
2213 /*
2214  * Get scan stats for zpool status reports
2215  */
2216 int
2217 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2218 {
2219 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2220 
2221 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2222 		return (SET_ERROR(ENOENT));
2223 	bzero(ps, sizeof (pool_scan_stat_t));
2224 
2225 	/* data stored on disk */
2226 	ps->pss_func = scn->scn_phys.scn_func;
2227 	ps->pss_state = scn->scn_phys.scn_state;
2228 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2229 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2230 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2231 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2232 	ps->pss_processed = scn->scn_phys.scn_processed;
2233 	ps->pss_errors = scn->scn_phys.scn_errors;
2234 	ps->pss_examined = scn->scn_phys.scn_examined;
2235 	ps->pss_issued =
2236 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2237 	ps->pss_state = scn->scn_phys.scn_state;
2238 
2239 	/* data not stored on disk */
2240 	ps->pss_pass_start = spa->spa_scan_pass_start;
2241 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2242 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2243 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2244 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2245 
2246 	return (0);
2247 }
2248 
2249 int
2250 spa_maxblocksize(spa_t *spa)
2251 {
2252 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2253 		return (SPA_MAXBLOCKSIZE);
2254 	else
2255 		return (SPA_OLD_MAXBLOCKSIZE);
2256 }
2257 
2258 int
2259 spa_maxdnodesize(spa_t *spa)
2260 {
2261 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2262 		return (DNODE_MAX_SIZE);
2263 	else
2264 		return (DNODE_MIN_SIZE);
2265 }
2266 
2267 boolean_t
2268 spa_multihost(spa_t *spa)
2269 {
2270 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2271 }
2272 
2273 unsigned long
2274 spa_get_hostid(void)
2275 {
2276 	unsigned long myhostid;
2277 
2278 #ifdef	_KERNEL
2279 	myhostid = zone_get_hostid(NULL);
2280 #else	/* _KERNEL */
2281 	/*
2282 	 * We're emulating the system's hostid in userland, so
2283 	 * we can't use zone_get_hostid().
2284 	 */
2285 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2286 #endif	/* _KERNEL */
2287 
2288 	return (myhostid);
2289 }
2290 
2291 /*
2292  * Returns the txg that the last device removal completed. No indirect mappings
2293  * have been added since this txg.
2294  */
2295 uint64_t
2296 spa_get_last_removal_txg(spa_t *spa)
2297 {
2298 	uint64_t vdevid;
2299 	uint64_t ret = -1ULL;
2300 
2301 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2302 	/*
2303 	 * sr_prev_indirect_vdev is only modified while holding all the
2304 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2305 	 * examining it.
2306 	 */
2307 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2308 
2309 	while (vdevid != -1ULL) {
2310 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2311 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2312 
2313 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2314 
2315 		/*
2316 		 * If the removal did not remap any data, we don't care.
2317 		 */
2318 		if (vdev_indirect_births_count(vib) != 0) {
2319 			ret = vdev_indirect_births_last_entry_txg(vib);
2320 			break;
2321 		}
2322 
2323 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2324 	}
2325 	spa_config_exit(spa, SCL_VDEV, FTAG);
2326 
2327 	IMPLY(ret != -1ULL,
2328 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2329 
2330 	return (ret);
2331 }
2332 
2333 boolean_t
2334 spa_trust_config(spa_t *spa)
2335 {
2336 	return (spa->spa_trust_config);
2337 }
2338 
2339 uint64_t
2340 spa_missing_tvds_allowed(spa_t *spa)
2341 {
2342 	return (spa->spa_missing_tvds_allowed);
2343 }
2344 
2345 space_map_t *
2346 spa_syncing_log_sm(spa_t *spa)
2347 {
2348 	return (spa->spa_syncing_log_sm);
2349 }
2350 
2351 void
2352 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2353 {
2354 	spa->spa_missing_tvds = missing;
2355 }
2356 
2357 boolean_t
2358 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2359 {
2360 	vdev_t *rvd = spa->spa_root_vdev;
2361 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2362 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2363 			return (B_FALSE);
2364 	}
2365 	return (B_TRUE);
2366 }
2367 
2368 boolean_t
2369 spa_has_checkpoint(spa_t *spa)
2370 {
2371 	return (spa->spa_checkpoint_txg != 0);
2372 }
2373 
2374 boolean_t
2375 spa_importing_readonly_checkpoint(spa_t *spa)
2376 {
2377 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2378 	    spa->spa_mode == FREAD);
2379 }
2380 
2381 uint64_t
2382 spa_min_claim_txg(spa_t *spa)
2383 {
2384 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2385 
2386 	if (checkpoint_txg != 0)
2387 		return (checkpoint_txg + 1);
2388 
2389 	return (spa->spa_first_txg);
2390 }
2391 
2392 /*
2393  * If there is a checkpoint, async destroys may consume more space from
2394  * the pool instead of freeing it. In an attempt to save the pool from
2395  * getting suspended when it is about to run out of space, we stop
2396  * processing async destroys.
2397  */
2398 boolean_t
2399 spa_suspend_async_destroy(spa_t *spa)
2400 {
2401 	dsl_pool_t *dp = spa_get_dsl(spa);
2402 
2403 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2404 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2405 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2406 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2407 
2408 	if (spa_has_checkpoint(spa) && avail == 0)
2409 		return (B_TRUE);
2410 
2411 	return (B_FALSE);
2412 }
2413