spa_misc.c revision 485bbbf5450c6645352388d798251c1a89ef4c9c
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa_impl.h>
28#include <sys/zio.h>
29#include <sys/zio_checksum.h>
30#include <sys/zio_compress.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/zap.h>
34#include <sys/zil.h>
35#include <sys/vdev_impl.h>
36#include <sys/metaslab.h>
37#include <sys/uberblock_impl.h>
38#include <sys/txg.h>
39#include <sys/avl.h>
40#include <sys/unique.h>
41#include <sys/dsl_pool.h>
42#include <sys/dsl_dir.h>
43#include <sys/dsl_prop.h>
44#include <sys/fs/zfs.h>
45#include <sys/metaslab_impl.h>
46#include <sys/sunddi.h>
47#include <sys/arc.h>
48#include <sys/ddt.h>
49#include "zfs_prop.h"
50
51/*
52 * SPA locking
53 *
54 * There are four basic locks for managing spa_t structures:
55 *
56 * spa_namespace_lock (global mutex)
57 *
58 *	This lock must be acquired to do any of the following:
59 *
60 *		- Lookup a spa_t by name
61 *		- Add or remove a spa_t from the namespace
62 *		- Increase spa_refcount from non-zero
63 *		- Check if spa_refcount is zero
64 *		- Rename a spa_t
65 *		- add/remove/attach/detach devices
66 *		- Held for the duration of create/destroy/import/export
67 *
68 *	It does not need to handle recursion.  A create or destroy may
69 *	reference objects (files or zvols) in other pools, but by
70 *	definition they must have an existing reference, and will never need
71 *	to lookup a spa_t by name.
72 *
73 * spa_refcount (per-spa refcount_t protected by mutex)
74 *
75 *	This reference count keep track of any active users of the spa_t.  The
76 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
77 *	the refcount is never really 'zero' - opening a pool implicitly keeps
78 *	some references in the DMU.  Internally we check against spa_minref, but
79 *	present the image of a zero/non-zero value to consumers.
80 *
81 * spa_config_lock[] (per-spa array of rwlocks)
82 *
83 *	This protects the spa_t from config changes, and must be held in
84 *	the following circumstances:
85 *
86 *		- RW_READER to perform I/O to the spa
87 *		- RW_WRITER to change the vdev config
88 *
89 * The locking order is fairly straightforward:
90 *
91 *		spa_namespace_lock	->	spa_refcount
92 *
93 *	The namespace lock must be acquired to increase the refcount from 0
94 *	or to check if it is zero.
95 *
96 *		spa_refcount		->	spa_config_lock[]
97 *
98 *	There must be at least one valid reference on the spa_t to acquire
99 *	the config lock.
100 *
101 *		spa_namespace_lock	->	spa_config_lock[]
102 *
103 *	The namespace lock must always be taken before the config lock.
104 *
105 *
106 * The spa_namespace_lock can be acquired directly and is globally visible.
107 *
108 * The namespace is manipulated using the following functions, all of which
109 * require the spa_namespace_lock to be held.
110 *
111 *	spa_lookup()		Lookup a spa_t by name.
112 *
113 *	spa_add()		Create a new spa_t in the namespace.
114 *
115 *	spa_remove()		Remove a spa_t from the namespace.  This also
116 *				frees up any memory associated with the spa_t.
117 *
118 *	spa_next()		Returns the next spa_t in the system, or the
119 *				first if NULL is passed.
120 *
121 *	spa_evict_all()		Shutdown and remove all spa_t structures in
122 *				the system.
123 *
124 *	spa_guid_exists()	Determine whether a pool/device guid exists.
125 *
126 * The spa_refcount is manipulated using the following functions:
127 *
128 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
129 *				called with spa_namespace_lock held if the
130 *				refcount is currently zero.
131 *
132 *	spa_close()		Remove a reference from the spa_t.  This will
133 *				not free the spa_t or remove it from the
134 *				namespace.  No locking is required.
135 *
136 *	spa_refcount_zero()	Returns true if the refcount is currently
137 *				zero.  Must be called with spa_namespace_lock
138 *				held.
139 *
140 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
141 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
142 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
143 *
144 * To read the configuration, it suffices to hold one of these locks as reader.
145 * To modify the configuration, you must hold all locks as writer.  To modify
146 * vdev state without altering the vdev tree's topology (e.g. online/offline),
147 * you must hold SCL_STATE and SCL_ZIO as writer.
148 *
149 * We use these distinct config locks to avoid recursive lock entry.
150 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
151 * block allocations (SCL_ALLOC), which may require reading space maps
152 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
153 *
154 * The spa config locks cannot be normal rwlocks because we need the
155 * ability to hand off ownership.  For example, SCL_ZIO is acquired
156 * by the issuing thread and later released by an interrupt thread.
157 * They do, however, obey the usual write-wanted semantics to prevent
158 * writer (i.e. system administrator) starvation.
159 *
160 * The lock acquisition rules are as follows:
161 *
162 * SCL_CONFIG
163 *	Protects changes to the vdev tree topology, such as vdev
164 *	add/remove/attach/detach.  Protects the dirty config list
165 *	(spa_config_dirty_list) and the set of spares and l2arc devices.
166 *
167 * SCL_STATE
168 *	Protects changes to pool state and vdev state, such as vdev
169 *	online/offline/fault/degrade/clear.  Protects the dirty state list
170 *	(spa_state_dirty_list) and global pool state (spa_state).
171 *
172 * SCL_ALLOC
173 *	Protects changes to metaslab groups and classes.
174 *	Held as reader by metaslab_alloc() and metaslab_claim().
175 *
176 * SCL_ZIO
177 *	Held by bp-level zios (those which have no io_vd upon entry)
178 *	to prevent changes to the vdev tree.  The bp-level zio implicitly
179 *	protects all of its vdev child zios, which do not hold SCL_ZIO.
180 *
181 * SCL_FREE
182 *	Protects changes to metaslab groups and classes.
183 *	Held as reader by metaslab_free().  SCL_FREE is distinct from
184 *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
185 *	blocks in zio_done() while another i/o that holds either
186 *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
187 *
188 * SCL_VDEV
189 *	Held as reader to prevent changes to the vdev tree during trivial
190 *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
191 *	other locks, and lower than all of them, to ensure that it's safe
192 *	to acquire regardless of caller context.
193 *
194 * In addition, the following rules apply:
195 *
196 * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
197 *	The lock ordering is SCL_CONFIG > spa_props_lock.
198 *
199 * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
200 *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
201 *	or zio_write_phys() -- the caller must ensure that the config cannot
202 *	cannot change in the interim, and that the vdev cannot be reopened.
203 *	SCL_STATE as reader suffices for both.
204 *
205 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
206 *
207 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
208 *				for writing.
209 *
210 *	spa_vdev_exit()		Release the config lock, wait for all I/O
211 *				to complete, sync the updated configs to the
212 *				cache, and release the namespace lock.
213 *
214 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
215 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
216 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
217 *
218 * spa_rename() is also implemented within this file since is requires
219 * manipulation of the namespace.
220 */
221
222static avl_tree_t spa_namespace_avl;
223kmutex_t spa_namespace_lock;
224static kcondvar_t spa_namespace_cv;
225static int spa_active_count;
226int spa_max_replication_override = SPA_DVAS_PER_BP;
227
228static kmutex_t spa_spare_lock;
229static avl_tree_t spa_spare_avl;
230static kmutex_t spa_l2cache_lock;
231static avl_tree_t spa_l2cache_avl;
232
233kmem_cache_t *spa_buffer_pool;
234int spa_mode_global;
235
236#ifdef ZFS_DEBUG
237/* Everything except dprintf is on by default in debug builds */
238int zfs_flags = ~ZFS_DEBUG_DPRINTF;
239#else
240int zfs_flags = 0;
241#endif
242
243/*
244 * zfs_recover can be set to nonzero to attempt to recover from
245 * otherwise-fatal errors, typically caused by on-disk corruption.  When
246 * set, calls to zfs_panic_recover() will turn into warning messages.
247 */
248int zfs_recover = 0;
249
250
251/*
252 * ==========================================================================
253 * SPA config locking
254 * ==========================================================================
255 */
256static void
257spa_config_lock_init(spa_t *spa)
258{
259	for (int i = 0; i < SCL_LOCKS; i++) {
260		spa_config_lock_t *scl = &spa->spa_config_lock[i];
261		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
262		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
263		refcount_create(&scl->scl_count);
264		scl->scl_writer = NULL;
265		scl->scl_write_wanted = 0;
266	}
267}
268
269static void
270spa_config_lock_destroy(spa_t *spa)
271{
272	for (int i = 0; i < SCL_LOCKS; i++) {
273		spa_config_lock_t *scl = &spa->spa_config_lock[i];
274		mutex_destroy(&scl->scl_lock);
275		cv_destroy(&scl->scl_cv);
276		refcount_destroy(&scl->scl_count);
277		ASSERT(scl->scl_writer == NULL);
278		ASSERT(scl->scl_write_wanted == 0);
279	}
280}
281
282int
283spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
284{
285	for (int i = 0; i < SCL_LOCKS; i++) {
286		spa_config_lock_t *scl = &spa->spa_config_lock[i];
287		if (!(locks & (1 << i)))
288			continue;
289		mutex_enter(&scl->scl_lock);
290		if (rw == RW_READER) {
291			if (scl->scl_writer || scl->scl_write_wanted) {
292				mutex_exit(&scl->scl_lock);
293				spa_config_exit(spa, locks ^ (1 << i), tag);
294				return (0);
295			}
296		} else {
297			ASSERT(scl->scl_writer != curthread);
298			if (!refcount_is_zero(&scl->scl_count)) {
299				mutex_exit(&scl->scl_lock);
300				spa_config_exit(spa, locks ^ (1 << i), tag);
301				return (0);
302			}
303			scl->scl_writer = curthread;
304		}
305		(void) refcount_add(&scl->scl_count, tag);
306		mutex_exit(&scl->scl_lock);
307	}
308	return (1);
309}
310
311void
312spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
313{
314	int wlocks_held = 0;
315
316	for (int i = 0; i < SCL_LOCKS; i++) {
317		spa_config_lock_t *scl = &spa->spa_config_lock[i];
318		if (scl->scl_writer == curthread)
319			wlocks_held |= (1 << i);
320		if (!(locks & (1 << i)))
321			continue;
322		mutex_enter(&scl->scl_lock);
323		if (rw == RW_READER) {
324			while (scl->scl_writer || scl->scl_write_wanted) {
325				cv_wait(&scl->scl_cv, &scl->scl_lock);
326			}
327		} else {
328			ASSERT(scl->scl_writer != curthread);
329			while (!refcount_is_zero(&scl->scl_count)) {
330				scl->scl_write_wanted++;
331				cv_wait(&scl->scl_cv, &scl->scl_lock);
332				scl->scl_write_wanted--;
333			}
334			scl->scl_writer = curthread;
335		}
336		(void) refcount_add(&scl->scl_count, tag);
337		mutex_exit(&scl->scl_lock);
338	}
339	ASSERT(wlocks_held <= locks);
340}
341
342void
343spa_config_exit(spa_t *spa, int locks, void *tag)
344{
345	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
346		spa_config_lock_t *scl = &spa->spa_config_lock[i];
347		if (!(locks & (1 << i)))
348			continue;
349		mutex_enter(&scl->scl_lock);
350		ASSERT(!refcount_is_zero(&scl->scl_count));
351		if (refcount_remove(&scl->scl_count, tag) == 0) {
352			ASSERT(scl->scl_writer == NULL ||
353			    scl->scl_writer == curthread);
354			scl->scl_writer = NULL;	/* OK in either case */
355			cv_broadcast(&scl->scl_cv);
356		}
357		mutex_exit(&scl->scl_lock);
358	}
359}
360
361int
362spa_config_held(spa_t *spa, int locks, krw_t rw)
363{
364	int locks_held = 0;
365
366	for (int i = 0; i < SCL_LOCKS; i++) {
367		spa_config_lock_t *scl = &spa->spa_config_lock[i];
368		if (!(locks & (1 << i)))
369			continue;
370		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
371		    (rw == RW_WRITER && scl->scl_writer == curthread))
372			locks_held |= 1 << i;
373	}
374
375	return (locks_held);
376}
377
378/*
379 * ==========================================================================
380 * SPA namespace functions
381 * ==========================================================================
382 */
383
384/*
385 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
386 * Returns NULL if no matching spa_t is found.
387 */
388spa_t *
389spa_lookup(const char *name)
390{
391	static spa_t search;	/* spa_t is large; don't allocate on stack */
392	spa_t *spa;
393	avl_index_t where;
394	char c;
395	char *cp;
396
397	ASSERT(MUTEX_HELD(&spa_namespace_lock));
398
399	/*
400	 * If it's a full dataset name, figure out the pool name and
401	 * just use that.
402	 */
403	cp = strpbrk(name, "/@");
404	if (cp) {
405		c = *cp;
406		*cp = '\0';
407	}
408
409	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
410	spa = avl_find(&spa_namespace_avl, &search, &where);
411
412	if (cp)
413		*cp = c;
414
415	return (spa);
416}
417
418/*
419 * Create an uninitialized spa_t with the given name.  Requires
420 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
421 * exist by calling spa_lookup() first.
422 */
423spa_t *
424spa_add(const char *name, nvlist_t *config, const char *altroot)
425{
426	spa_t *spa;
427	spa_config_dirent_t *dp;
428
429	ASSERT(MUTEX_HELD(&spa_namespace_lock));
430
431	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
432
433	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
434	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
435	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
436	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
437	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
439
440	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
441	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
442	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
443
444	for (int t = 0; t < TXG_SIZE; t++)
445		bplist_init(&spa->spa_free_bplist[t]);
446	bplist_init(&spa->spa_deferred_bplist);
447
448	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
449	spa->spa_state = POOL_STATE_UNINITIALIZED;
450	spa->spa_freeze_txg = UINT64_MAX;
451	spa->spa_final_txg = UINT64_MAX;
452	spa->spa_load_max_txg = UINT64_MAX;
453
454	refcount_create(&spa->spa_refcount);
455	spa_config_lock_init(spa);
456
457	avl_add(&spa_namespace_avl, spa);
458
459	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
460
461	/*
462	 * Set the alternate root, if there is one.
463	 */
464	if (altroot) {
465		spa->spa_root = spa_strdup(altroot);
466		spa_active_count++;
467	}
468
469	/*
470	 * Every pool starts with the default cachefile
471	 */
472	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
473	    offsetof(spa_config_dirent_t, scd_link));
474
475	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
476	dp->scd_path = spa_strdup(spa_config_path);
477	list_insert_head(&spa->spa_config_list, dp);
478
479	if (config != NULL)
480		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
481
482	return (spa);
483}
484
485/*
486 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
487 * spa_namespace_lock.  This is called only after the spa_t has been closed and
488 * deactivated.
489 */
490void
491spa_remove(spa_t *spa)
492{
493	spa_config_dirent_t *dp;
494
495	ASSERT(MUTEX_HELD(&spa_namespace_lock));
496	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
497
498	avl_remove(&spa_namespace_avl, spa);
499	cv_broadcast(&spa_namespace_cv);
500
501	if (spa->spa_root) {
502		spa_strfree(spa->spa_root);
503		spa_active_count--;
504	}
505
506	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
507		list_remove(&spa->spa_config_list, dp);
508		if (dp->scd_path != NULL)
509			spa_strfree(dp->scd_path);
510		kmem_free(dp, sizeof (spa_config_dirent_t));
511	}
512
513	list_destroy(&spa->spa_config_list);
514
515	spa_config_set(spa, NULL);
516
517	refcount_destroy(&spa->spa_refcount);
518
519	spa_config_lock_destroy(spa);
520
521	for (int t = 0; t < TXG_SIZE; t++)
522		bplist_fini(&spa->spa_free_bplist[t]);
523	bplist_fini(&spa->spa_deferred_bplist);
524
525	cv_destroy(&spa->spa_async_cv);
526	cv_destroy(&spa->spa_scrub_io_cv);
527	cv_destroy(&spa->spa_suspend_cv);
528
529	mutex_destroy(&spa->spa_async_lock);
530	mutex_destroy(&spa->spa_scrub_lock);
531	mutex_destroy(&spa->spa_errlog_lock);
532	mutex_destroy(&spa->spa_errlist_lock);
533	mutex_destroy(&spa->spa_history_lock);
534	mutex_destroy(&spa->spa_props_lock);
535	mutex_destroy(&spa->spa_suspend_lock);
536
537	kmem_free(spa, sizeof (spa_t));
538}
539
540/*
541 * Given a pool, return the next pool in the namespace, or NULL if there is
542 * none.  If 'prev' is NULL, return the first pool.
543 */
544spa_t *
545spa_next(spa_t *prev)
546{
547	ASSERT(MUTEX_HELD(&spa_namespace_lock));
548
549	if (prev)
550		return (AVL_NEXT(&spa_namespace_avl, prev));
551	else
552		return (avl_first(&spa_namespace_avl));
553}
554
555/*
556 * ==========================================================================
557 * SPA refcount functions
558 * ==========================================================================
559 */
560
561/*
562 * Add a reference to the given spa_t.  Must have at least one reference, or
563 * have the namespace lock held.
564 */
565void
566spa_open_ref(spa_t *spa, void *tag)
567{
568	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
569	    MUTEX_HELD(&spa_namespace_lock));
570	(void) refcount_add(&spa->spa_refcount, tag);
571}
572
573/*
574 * Remove a reference to the given spa_t.  Must have at least one reference, or
575 * have the namespace lock held.
576 */
577void
578spa_close(spa_t *spa, void *tag)
579{
580	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
581	    MUTEX_HELD(&spa_namespace_lock));
582	(void) refcount_remove(&spa->spa_refcount, tag);
583}
584
585/*
586 * Check to see if the spa refcount is zero.  Must be called with
587 * spa_namespace_lock held.  We really compare against spa_minref, which is the
588 * number of references acquired when opening a pool
589 */
590boolean_t
591spa_refcount_zero(spa_t *spa)
592{
593	ASSERT(MUTEX_HELD(&spa_namespace_lock));
594
595	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
596}
597
598/*
599 * ==========================================================================
600 * SPA spare and l2cache tracking
601 * ==========================================================================
602 */
603
604/*
605 * Hot spares and cache devices are tracked using the same code below,
606 * for 'auxiliary' devices.
607 */
608
609typedef struct spa_aux {
610	uint64_t	aux_guid;
611	uint64_t	aux_pool;
612	avl_node_t	aux_avl;
613	int		aux_count;
614} spa_aux_t;
615
616static int
617spa_aux_compare(const void *a, const void *b)
618{
619	const spa_aux_t *sa = a;
620	const spa_aux_t *sb = b;
621
622	if (sa->aux_guid < sb->aux_guid)
623		return (-1);
624	else if (sa->aux_guid > sb->aux_guid)
625		return (1);
626	else
627		return (0);
628}
629
630void
631spa_aux_add(vdev_t *vd, avl_tree_t *avl)
632{
633	avl_index_t where;
634	spa_aux_t search;
635	spa_aux_t *aux;
636
637	search.aux_guid = vd->vdev_guid;
638	if ((aux = avl_find(avl, &search, &where)) != NULL) {
639		aux->aux_count++;
640	} else {
641		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
642		aux->aux_guid = vd->vdev_guid;
643		aux->aux_count = 1;
644		avl_insert(avl, aux, where);
645	}
646}
647
648void
649spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
650{
651	spa_aux_t search;
652	spa_aux_t *aux;
653	avl_index_t where;
654
655	search.aux_guid = vd->vdev_guid;
656	aux = avl_find(avl, &search, &where);
657
658	ASSERT(aux != NULL);
659
660	if (--aux->aux_count == 0) {
661		avl_remove(avl, aux);
662		kmem_free(aux, sizeof (spa_aux_t));
663	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
664		aux->aux_pool = 0ULL;
665	}
666}
667
668boolean_t
669spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
670{
671	spa_aux_t search, *found;
672
673	search.aux_guid = guid;
674	found = avl_find(avl, &search, NULL);
675
676	if (pool) {
677		if (found)
678			*pool = found->aux_pool;
679		else
680			*pool = 0ULL;
681	}
682
683	if (refcnt) {
684		if (found)
685			*refcnt = found->aux_count;
686		else
687			*refcnt = 0;
688	}
689
690	return (found != NULL);
691}
692
693void
694spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
695{
696	spa_aux_t search, *found;
697	avl_index_t where;
698
699	search.aux_guid = vd->vdev_guid;
700	found = avl_find(avl, &search, &where);
701	ASSERT(found != NULL);
702	ASSERT(found->aux_pool == 0ULL);
703
704	found->aux_pool = spa_guid(vd->vdev_spa);
705}
706
707/*
708 * Spares are tracked globally due to the following constraints:
709 *
710 * 	- A spare may be part of multiple pools.
711 * 	- A spare may be added to a pool even if it's actively in use within
712 *	  another pool.
713 * 	- A spare in use in any pool can only be the source of a replacement if
714 *	  the target is a spare in the same pool.
715 *
716 * We keep track of all spares on the system through the use of a reference
717 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
718 * spare, then we bump the reference count in the AVL tree.  In addition, we set
719 * the 'vdev_isspare' member to indicate that the device is a spare (active or
720 * inactive).  When a spare is made active (used to replace a device in the
721 * pool), we also keep track of which pool its been made a part of.
722 *
723 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
724 * called under the spa_namespace lock as part of vdev reconfiguration.  The
725 * separate spare lock exists for the status query path, which does not need to
726 * be completely consistent with respect to other vdev configuration changes.
727 */
728
729static int
730spa_spare_compare(const void *a, const void *b)
731{
732	return (spa_aux_compare(a, b));
733}
734
735void
736spa_spare_add(vdev_t *vd)
737{
738	mutex_enter(&spa_spare_lock);
739	ASSERT(!vd->vdev_isspare);
740	spa_aux_add(vd, &spa_spare_avl);
741	vd->vdev_isspare = B_TRUE;
742	mutex_exit(&spa_spare_lock);
743}
744
745void
746spa_spare_remove(vdev_t *vd)
747{
748	mutex_enter(&spa_spare_lock);
749	ASSERT(vd->vdev_isspare);
750	spa_aux_remove(vd, &spa_spare_avl);
751	vd->vdev_isspare = B_FALSE;
752	mutex_exit(&spa_spare_lock);
753}
754
755boolean_t
756spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
757{
758	boolean_t found;
759
760	mutex_enter(&spa_spare_lock);
761	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
762	mutex_exit(&spa_spare_lock);
763
764	return (found);
765}
766
767void
768spa_spare_activate(vdev_t *vd)
769{
770	mutex_enter(&spa_spare_lock);
771	ASSERT(vd->vdev_isspare);
772	spa_aux_activate(vd, &spa_spare_avl);
773	mutex_exit(&spa_spare_lock);
774}
775
776/*
777 * Level 2 ARC devices are tracked globally for the same reasons as spares.
778 * Cache devices currently only support one pool per cache device, and so
779 * for these devices the aux reference count is currently unused beyond 1.
780 */
781
782static int
783spa_l2cache_compare(const void *a, const void *b)
784{
785	return (spa_aux_compare(a, b));
786}
787
788void
789spa_l2cache_add(vdev_t *vd)
790{
791	mutex_enter(&spa_l2cache_lock);
792	ASSERT(!vd->vdev_isl2cache);
793	spa_aux_add(vd, &spa_l2cache_avl);
794	vd->vdev_isl2cache = B_TRUE;
795	mutex_exit(&spa_l2cache_lock);
796}
797
798void
799spa_l2cache_remove(vdev_t *vd)
800{
801	mutex_enter(&spa_l2cache_lock);
802	ASSERT(vd->vdev_isl2cache);
803	spa_aux_remove(vd, &spa_l2cache_avl);
804	vd->vdev_isl2cache = B_FALSE;
805	mutex_exit(&spa_l2cache_lock);
806}
807
808boolean_t
809spa_l2cache_exists(uint64_t guid, uint64_t *pool)
810{
811	boolean_t found;
812
813	mutex_enter(&spa_l2cache_lock);
814	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
815	mutex_exit(&spa_l2cache_lock);
816
817	return (found);
818}
819
820void
821spa_l2cache_activate(vdev_t *vd)
822{
823	mutex_enter(&spa_l2cache_lock);
824	ASSERT(vd->vdev_isl2cache);
825	spa_aux_activate(vd, &spa_l2cache_avl);
826	mutex_exit(&spa_l2cache_lock);
827}
828
829/*
830 * ==========================================================================
831 * SPA vdev locking
832 * ==========================================================================
833 */
834
835/*
836 * Lock the given spa_t for the purpose of adding or removing a vdev.
837 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
838 * It returns the next transaction group for the spa_t.
839 */
840uint64_t
841spa_vdev_enter(spa_t *spa)
842{
843	mutex_enter(&spa_namespace_lock);
844	return (spa_vdev_config_enter(spa));
845}
846
847/*
848 * Internal implementation for spa_vdev_enter().  Used when a vdev
849 * operation requires multiple syncs (i.e. removing a device) while
850 * keeping the spa_namespace_lock held.
851 */
852uint64_t
853spa_vdev_config_enter(spa_t *spa)
854{
855	ASSERT(MUTEX_HELD(&spa_namespace_lock));
856
857	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
858
859	return (spa_last_synced_txg(spa) + 1);
860}
861
862/*
863 * Used in combination with spa_vdev_config_enter() to allow the syncing
864 * of multiple transactions without releasing the spa_namespace_lock.
865 */
866void
867spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
868{
869	ASSERT(MUTEX_HELD(&spa_namespace_lock));
870
871	int config_changed = B_FALSE;
872
873	ASSERT(txg > spa_last_synced_txg(spa));
874
875	spa->spa_pending_vdev = NULL;
876
877	/*
878	 * Reassess the DTLs.
879	 */
880	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
881
882	/*
883	 * If the config changed, notify the scrub thread that it must restart.
884	 */
885	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
886		dsl_pool_scrub_restart(spa->spa_dsl_pool);
887		config_changed = B_TRUE;
888		spa->spa_config_generation++;
889	}
890
891	/*
892	 * Verify the metaslab classes.
893	 */
894	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
895	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
896
897	spa_config_exit(spa, SCL_ALL, spa);
898
899	/*
900	 * Panic the system if the specified tag requires it.  This
901	 * is useful for ensuring that configurations are updated
902	 * transactionally.
903	 */
904	if (zio_injection_enabled)
905		zio_handle_panic_injection(spa, tag);
906
907	/*
908	 * Note: this txg_wait_synced() is important because it ensures
909	 * that there won't be more than one config change per txg.
910	 * This allows us to use the txg as the generation number.
911	 */
912	if (error == 0)
913		txg_wait_synced(spa->spa_dsl_pool, txg);
914
915	if (vd != NULL) {
916		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
917		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
918		vdev_free(vd);
919		spa_config_exit(spa, SCL_ALL, spa);
920	}
921
922	/*
923	 * If the config changed, update the config cache.
924	 */
925	if (config_changed)
926		spa_config_sync(spa, B_FALSE, B_TRUE);
927}
928
929/*
930 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
931 * locking of spa_vdev_enter(), we also want make sure the transactions have
932 * synced to disk, and then update the global configuration cache with the new
933 * information.
934 */
935int
936spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
937{
938	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
939	mutex_exit(&spa_namespace_lock);
940
941	return (error);
942}
943
944/*
945 * Lock the given spa_t for the purpose of changing vdev state.
946 */
947void
948spa_vdev_state_enter(spa_t *spa, int oplocks)
949{
950	int locks = SCL_STATE_ALL | oplocks;
951
952	spa_config_enter(spa, locks, spa, RW_WRITER);
953	spa->spa_vdev_locks = locks;
954}
955
956int
957spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
958{
959	if (vd != NULL || error == 0)
960		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
961		    0, 0, B_FALSE);
962
963	if (vd != NULL) {
964		vdev_state_dirty(vd->vdev_top);
965		spa->spa_config_generation++;
966	}
967
968	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
969	spa_config_exit(spa, spa->spa_vdev_locks, spa);
970
971	/*
972	 * If anything changed, wait for it to sync.  This ensures that,
973	 * from the system administrator's perspective, zpool(1M) commands
974	 * are synchronous.  This is important for things like zpool offline:
975	 * when the command completes, you expect no further I/O from ZFS.
976	 */
977	if (vd != NULL)
978		txg_wait_synced(spa->spa_dsl_pool, 0);
979
980	return (error);
981}
982
983/*
984 * ==========================================================================
985 * Miscellaneous functions
986 * ==========================================================================
987 */
988
989/*
990 * Rename a spa_t.
991 */
992int
993spa_rename(const char *name, const char *newname)
994{
995	spa_t *spa;
996	int err;
997
998	/*
999	 * Lookup the spa_t and grab the config lock for writing.  We need to
1000	 * actually open the pool so that we can sync out the necessary labels.
1001	 * It's OK to call spa_open() with the namespace lock held because we
1002	 * allow recursive calls for other reasons.
1003	 */
1004	mutex_enter(&spa_namespace_lock);
1005	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1006		mutex_exit(&spa_namespace_lock);
1007		return (err);
1008	}
1009
1010	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1011
1012	avl_remove(&spa_namespace_avl, spa);
1013	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1014	avl_add(&spa_namespace_avl, spa);
1015
1016	/*
1017	 * Sync all labels to disk with the new names by marking the root vdev
1018	 * dirty and waiting for it to sync.  It will pick up the new pool name
1019	 * during the sync.
1020	 */
1021	vdev_config_dirty(spa->spa_root_vdev);
1022
1023	spa_config_exit(spa, SCL_ALL, FTAG);
1024
1025	txg_wait_synced(spa->spa_dsl_pool, 0);
1026
1027	/*
1028	 * Sync the updated config cache.
1029	 */
1030	spa_config_sync(spa, B_FALSE, B_TRUE);
1031
1032	spa_close(spa, FTAG);
1033
1034	mutex_exit(&spa_namespace_lock);
1035
1036	return (0);
1037}
1038
1039
1040/*
1041 * Determine whether a pool with given pool_guid exists.  If device_guid is
1042 * non-zero, determine whether the pool exists *and* contains a device with the
1043 * specified device_guid.
1044 */
1045boolean_t
1046spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1047{
1048	spa_t *spa;
1049	avl_tree_t *t = &spa_namespace_avl;
1050
1051	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1052
1053	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1054		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1055			continue;
1056		if (spa->spa_root_vdev == NULL)
1057			continue;
1058		if (spa_guid(spa) == pool_guid) {
1059			if (device_guid == 0)
1060				break;
1061
1062			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1063			    device_guid) != NULL)
1064				break;
1065
1066			/*
1067			 * Check any devices we may be in the process of adding.
1068			 */
1069			if (spa->spa_pending_vdev) {
1070				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1071				    device_guid) != NULL)
1072					break;
1073			}
1074		}
1075	}
1076
1077	return (spa != NULL);
1078}
1079
1080char *
1081spa_strdup(const char *s)
1082{
1083	size_t len;
1084	char *new;
1085
1086	len = strlen(s);
1087	new = kmem_alloc(len + 1, KM_SLEEP);
1088	bcopy(s, new, len);
1089	new[len] = '\0';
1090
1091	return (new);
1092}
1093
1094void
1095spa_strfree(char *s)
1096{
1097	kmem_free(s, strlen(s) + 1);
1098}
1099
1100uint64_t
1101spa_get_random(uint64_t range)
1102{
1103	uint64_t r;
1104
1105	ASSERT(range != 0);
1106
1107	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1108
1109	return (r % range);
1110}
1111
1112void
1113sprintf_blkptr(char *buf, const blkptr_t *bp)
1114{
1115	char *type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1116	char *checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1117	char *compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1118
1119	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1120}
1121
1122void
1123spa_freeze(spa_t *spa)
1124{
1125	uint64_t freeze_txg = 0;
1126
1127	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1128	if (spa->spa_freeze_txg == UINT64_MAX) {
1129		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1130		spa->spa_freeze_txg = freeze_txg;
1131	}
1132	spa_config_exit(spa, SCL_ALL, FTAG);
1133	if (freeze_txg != 0)
1134		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1135}
1136
1137void
1138zfs_panic_recover(const char *fmt, ...)
1139{
1140	va_list adx;
1141
1142	va_start(adx, fmt);
1143	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1144	va_end(adx);
1145}
1146
1147/*
1148 * ==========================================================================
1149 * Accessor functions
1150 * ==========================================================================
1151 */
1152
1153boolean_t
1154spa_shutting_down(spa_t *spa)
1155{
1156	return (spa->spa_async_suspended);
1157}
1158
1159dsl_pool_t *
1160spa_get_dsl(spa_t *spa)
1161{
1162	return (spa->spa_dsl_pool);
1163}
1164
1165blkptr_t *
1166spa_get_rootblkptr(spa_t *spa)
1167{
1168	return (&spa->spa_ubsync.ub_rootbp);
1169}
1170
1171void
1172spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1173{
1174	spa->spa_uberblock.ub_rootbp = *bp;
1175}
1176
1177void
1178spa_altroot(spa_t *spa, char *buf, size_t buflen)
1179{
1180	if (spa->spa_root == NULL)
1181		buf[0] = '\0';
1182	else
1183		(void) strncpy(buf, spa->spa_root, buflen);
1184}
1185
1186int
1187spa_sync_pass(spa_t *spa)
1188{
1189	return (spa->spa_sync_pass);
1190}
1191
1192char *
1193spa_name(spa_t *spa)
1194{
1195	return (spa->spa_name);
1196}
1197
1198uint64_t
1199spa_guid(spa_t *spa)
1200{
1201	/*
1202	 * If we fail to parse the config during spa_load(), we can go through
1203	 * the error path (which posts an ereport) and end up here with no root
1204	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1205	 * this case.
1206	 */
1207	if (spa->spa_root_vdev != NULL)
1208		return (spa->spa_root_vdev->vdev_guid);
1209	else
1210		return (spa->spa_load_guid);
1211}
1212
1213uint64_t
1214spa_last_synced_txg(spa_t *spa)
1215{
1216	return (spa->spa_ubsync.ub_txg);
1217}
1218
1219uint64_t
1220spa_first_txg(spa_t *spa)
1221{
1222	return (spa->spa_first_txg);
1223}
1224
1225uint64_t
1226spa_syncing_txg(spa_t *spa)
1227{
1228	return (spa->spa_syncing_txg);
1229}
1230
1231pool_state_t
1232spa_state(spa_t *spa)
1233{
1234	return (spa->spa_state);
1235}
1236
1237uint64_t
1238spa_freeze_txg(spa_t *spa)
1239{
1240	return (spa->spa_freeze_txg);
1241}
1242
1243/* ARGSUSED */
1244uint64_t
1245spa_get_asize(spa_t *spa, uint64_t lsize)
1246{
1247	/*
1248	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1249	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1250	 * times the size; so just assume that.  Add to this the fact that
1251	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1252	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1253	 */
1254	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1255}
1256
1257uint64_t
1258spa_get_dspace(spa_t *spa)
1259{
1260	return (spa->spa_dspace);
1261}
1262
1263void
1264spa_update_dspace(spa_t *spa)
1265{
1266	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1267	    ddt_get_dedup_dspace(spa);
1268}
1269
1270/*
1271 * Return the failure mode that has been set to this pool. The default
1272 * behavior will be to block all I/Os when a complete failure occurs.
1273 */
1274uint8_t
1275spa_get_failmode(spa_t *spa)
1276{
1277	return (spa->spa_failmode);
1278}
1279
1280boolean_t
1281spa_suspended(spa_t *spa)
1282{
1283	return (spa->spa_suspended);
1284}
1285
1286uint64_t
1287spa_version(spa_t *spa)
1288{
1289	return (spa->spa_ubsync.ub_version);
1290}
1291
1292boolean_t
1293spa_deflate(spa_t *spa)
1294{
1295	return (spa->spa_deflate);
1296}
1297
1298metaslab_class_t *
1299spa_normal_class(spa_t *spa)
1300{
1301	return (spa->spa_normal_class);
1302}
1303
1304metaslab_class_t *
1305spa_log_class(spa_t *spa)
1306{
1307	return (spa->spa_log_class);
1308}
1309
1310int
1311spa_max_replication(spa_t *spa)
1312{
1313	/*
1314	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1315	 * handle BPs with more than one DVA allocated.  Set our max
1316	 * replication level accordingly.
1317	 */
1318	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1319		return (1);
1320	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1321}
1322
1323uint64_t
1324dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1325{
1326	uint64_t asize = DVA_GET_ASIZE(dva);
1327	uint64_t dsize = asize;
1328
1329	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1330
1331	if (asize != 0 && spa->spa_deflate) {
1332		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1333		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1334	}
1335
1336	return (dsize);
1337}
1338
1339uint64_t
1340bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1341{
1342	uint64_t dsize = 0;
1343
1344	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1345		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1346
1347	return (dsize);
1348}
1349
1350uint64_t
1351bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1352{
1353	uint64_t dsize = 0;
1354
1355	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1356
1357	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1358		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1359
1360	spa_config_exit(spa, SCL_VDEV, FTAG);
1361
1362	return (dsize);
1363}
1364
1365/*
1366 * ==========================================================================
1367 * Initialization and Termination
1368 * ==========================================================================
1369 */
1370
1371static int
1372spa_name_compare(const void *a1, const void *a2)
1373{
1374	const spa_t *s1 = a1;
1375	const spa_t *s2 = a2;
1376	int s;
1377
1378	s = strcmp(s1->spa_name, s2->spa_name);
1379	if (s > 0)
1380		return (1);
1381	if (s < 0)
1382		return (-1);
1383	return (0);
1384}
1385
1386int
1387spa_busy(void)
1388{
1389	return (spa_active_count);
1390}
1391
1392void
1393spa_boot_init()
1394{
1395	spa_config_load();
1396}
1397
1398void
1399spa_init(int mode)
1400{
1401	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1402	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1403	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1404	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1405
1406	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1407	    offsetof(spa_t, spa_avl));
1408
1409	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1410	    offsetof(spa_aux_t, aux_avl));
1411
1412	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1413	    offsetof(spa_aux_t, aux_avl));
1414
1415	spa_mode_global = mode;
1416
1417	refcount_init();
1418	unique_init();
1419	zio_init();
1420	dmu_init();
1421	zil_init();
1422	vdev_cache_stat_init();
1423	zfs_prop_init();
1424	zpool_prop_init();
1425	spa_config_load();
1426	l2arc_start();
1427}
1428
1429void
1430spa_fini(void)
1431{
1432	l2arc_stop();
1433
1434	spa_evict_all();
1435
1436	vdev_cache_stat_fini();
1437	zil_fini();
1438	dmu_fini();
1439	zio_fini();
1440	unique_fini();
1441	refcount_fini();
1442
1443	avl_destroy(&spa_namespace_avl);
1444	avl_destroy(&spa_spare_avl);
1445	avl_destroy(&spa_l2cache_avl);
1446
1447	cv_destroy(&spa_namespace_cv);
1448	mutex_destroy(&spa_namespace_lock);
1449	mutex_destroy(&spa_spare_lock);
1450	mutex_destroy(&spa_l2cache_lock);
1451}
1452
1453/*
1454 * Return whether this pool has slogs. No locking needed.
1455 * It's not a problem if the wrong answer is returned as it's only for
1456 * performance and not correctness
1457 */
1458boolean_t
1459spa_has_slogs(spa_t *spa)
1460{
1461	return (spa->spa_log_class->mc_rotor != NULL);
1462}
1463
1464spa_log_state_t
1465spa_get_log_state(spa_t *spa)
1466{
1467	return (spa->spa_log_state);
1468}
1469
1470void
1471spa_set_log_state(spa_t *spa, spa_log_state_t state)
1472{
1473	spa->spa_log_state = state;
1474}
1475
1476boolean_t
1477spa_is_root(spa_t *spa)
1478{
1479	return (spa->spa_is_root);
1480}
1481
1482boolean_t
1483spa_writeable(spa_t *spa)
1484{
1485	return (!!(spa->spa_mode & FWRITE));
1486}
1487
1488int
1489spa_mode(spa_t *spa)
1490{
1491	return (spa->spa_mode);
1492}
1493
1494uint64_t
1495spa_bootfs(spa_t *spa)
1496{
1497	return (spa->spa_bootfs);
1498}
1499
1500uint64_t
1501spa_delegation(spa_t *spa)
1502{
1503	return (spa->spa_delegation);
1504}
1505
1506objset_t *
1507spa_meta_objset(spa_t *spa)
1508{
1509	return (spa->spa_meta_objset);
1510}
1511
1512enum zio_checksum
1513spa_dedup_checksum(spa_t *spa)
1514{
1515	return (spa->spa_dedup_checksum);
1516}
1517