xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 468c413a79615e77179e8d98f22a7e513a8135bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dasize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	int wlocks_held = 0;
314 
315 	for (int i = 0; i < SCL_LOCKS; i++) {
316 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 		if (scl->scl_writer == curthread)
318 			wlocks_held |= (1 << i);
319 		if (!(locks & (1 << i)))
320 			continue;
321 		mutex_enter(&scl->scl_lock);
322 		if (rw == RW_READER) {
323 			while (scl->scl_writer || scl->scl_write_wanted) {
324 				cv_wait(&scl->scl_cv, &scl->scl_lock);
325 			}
326 		} else {
327 			ASSERT(scl->scl_writer != curthread);
328 			while (!refcount_is_zero(&scl->scl_count)) {
329 				scl->scl_write_wanted++;
330 				cv_wait(&scl->scl_cv, &scl->scl_lock);
331 				scl->scl_write_wanted--;
332 			}
333 			scl->scl_writer = curthread;
334 		}
335 		(void) refcount_add(&scl->scl_count, tag);
336 		mutex_exit(&scl->scl_lock);
337 	}
338 	ASSERT(wlocks_held <= locks);
339 }
340 
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 		if (!(locks & (1 << i)))
347 			continue;
348 		mutex_enter(&scl->scl_lock);
349 		ASSERT(!refcount_is_zero(&scl->scl_count));
350 		if (refcount_remove(&scl->scl_count, tag) == 0) {
351 			ASSERT(scl->scl_writer == NULL ||
352 			    scl->scl_writer == curthread);
353 			scl->scl_writer = NULL;	/* OK in either case */
354 			cv_broadcast(&scl->scl_cv);
355 		}
356 		mutex_exit(&scl->scl_lock);
357 	}
358 }
359 
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 	int locks_held = 0;
364 
365 	for (int i = 0; i < SCL_LOCKS; i++) {
366 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 		if (!(locks & (1 << i)))
368 			continue;
369 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 		    (rw == RW_WRITER && scl->scl_writer == curthread))
371 			locks_held |= 1 << i;
372 	}
373 
374 	return (locks_held);
375 }
376 
377 /*
378  * ==========================================================================
379  * SPA namespace functions
380  * ==========================================================================
381  */
382 
383 /*
384  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
385  * Returns NULL if no matching spa_t is found.
386  */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 	static spa_t search;	/* spa_t is large; don't allocate on stack */
391 	spa_t *spa;
392 	avl_index_t where;
393 	char c;
394 	char *cp;
395 
396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
397 
398 	/*
399 	 * If it's a full dataset name, figure out the pool name and
400 	 * just use that.
401 	 */
402 	cp = strpbrk(name, "/@");
403 	if (cp) {
404 		c = *cp;
405 		*cp = '\0';
406 	}
407 
408 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 	spa = avl_find(&spa_namespace_avl, &search, &where);
410 
411 	if (cp)
412 		*cp = c;
413 
414 	return (spa);
415 }
416 
417 /*
418  * Create an uninitialized spa_t with the given name.  Requires
419  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
420  * exist by calling spa_lookup() first.
421  */
422 spa_t *
423 spa_add(const char *name, nvlist_t *config, const char *altroot)
424 {
425 	spa_t *spa;
426 	spa_config_dirent_t *dp;
427 
428 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
429 
430 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431 
432 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
439 
440 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
441 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
442 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
443 
444 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
445 	spa->spa_state = POOL_STATE_UNINITIALIZED;
446 	spa->spa_freeze_txg = UINT64_MAX;
447 	spa->spa_final_txg = UINT64_MAX;
448 	spa->spa_load_max_txg = UINT64_MAX;
449 
450 	refcount_create(&spa->spa_refcount);
451 	spa_config_lock_init(spa);
452 
453 	avl_add(&spa_namespace_avl, spa);
454 
455 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
456 
457 	/*
458 	 * Set the alternate root, if there is one.
459 	 */
460 	if (altroot) {
461 		spa->spa_root = spa_strdup(altroot);
462 		spa_active_count++;
463 	}
464 
465 	/*
466 	 * Every pool starts with the default cachefile
467 	 */
468 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
469 	    offsetof(spa_config_dirent_t, scd_link));
470 
471 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
472 	dp->scd_path = spa_strdup(spa_config_path);
473 	list_insert_head(&spa->spa_config_list, dp);
474 
475 	if (config != NULL)
476 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
477 
478 	return (spa);
479 }
480 
481 /*
482  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
483  * spa_namespace_lock.  This is called only after the spa_t has been closed and
484  * deactivated.
485  */
486 void
487 spa_remove(spa_t *spa)
488 {
489 	spa_config_dirent_t *dp;
490 
491 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
492 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
493 
494 	avl_remove(&spa_namespace_avl, spa);
495 	cv_broadcast(&spa_namespace_cv);
496 
497 	if (spa->spa_root) {
498 		spa_strfree(spa->spa_root);
499 		spa_active_count--;
500 	}
501 
502 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
503 		list_remove(&spa->spa_config_list, dp);
504 		if (dp->scd_path != NULL)
505 			spa_strfree(dp->scd_path);
506 		kmem_free(dp, sizeof (spa_config_dirent_t));
507 	}
508 
509 	list_destroy(&spa->spa_config_list);
510 
511 	spa_config_set(spa, NULL);
512 
513 	refcount_destroy(&spa->spa_refcount);
514 
515 	spa_config_lock_destroy(spa);
516 
517 	cv_destroy(&spa->spa_async_cv);
518 	cv_destroy(&spa->spa_scrub_io_cv);
519 	cv_destroy(&spa->spa_suspend_cv);
520 
521 	mutex_destroy(&spa->spa_async_lock);
522 	mutex_destroy(&spa->spa_scrub_lock);
523 	mutex_destroy(&spa->spa_errlog_lock);
524 	mutex_destroy(&spa->spa_errlist_lock);
525 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
526 	mutex_destroy(&spa->spa_history_lock);
527 	mutex_destroy(&spa->spa_props_lock);
528 	mutex_destroy(&spa->spa_suspend_lock);
529 
530 	kmem_free(spa, sizeof (spa_t));
531 }
532 
533 /*
534  * Given a pool, return the next pool in the namespace, or NULL if there is
535  * none.  If 'prev' is NULL, return the first pool.
536  */
537 spa_t *
538 spa_next(spa_t *prev)
539 {
540 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
541 
542 	if (prev)
543 		return (AVL_NEXT(&spa_namespace_avl, prev));
544 	else
545 		return (avl_first(&spa_namespace_avl));
546 }
547 
548 /*
549  * ==========================================================================
550  * SPA refcount functions
551  * ==========================================================================
552  */
553 
554 /*
555  * Add a reference to the given spa_t.  Must have at least one reference, or
556  * have the namespace lock held.
557  */
558 void
559 spa_open_ref(spa_t *spa, void *tag)
560 {
561 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
562 	    MUTEX_HELD(&spa_namespace_lock));
563 	(void) refcount_add(&spa->spa_refcount, tag);
564 }
565 
566 /*
567  * Remove a reference to the given spa_t.  Must have at least one reference, or
568  * have the namespace lock held.
569  */
570 void
571 spa_close(spa_t *spa, void *tag)
572 {
573 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
574 	    MUTEX_HELD(&spa_namespace_lock));
575 	(void) refcount_remove(&spa->spa_refcount, tag);
576 }
577 
578 /*
579  * Check to see if the spa refcount is zero.  Must be called with
580  * spa_namespace_lock held.  We really compare against spa_minref, which is the
581  * number of references acquired when opening a pool
582  */
583 boolean_t
584 spa_refcount_zero(spa_t *spa)
585 {
586 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
587 
588 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
589 }
590 
591 /*
592  * ==========================================================================
593  * SPA spare and l2cache tracking
594  * ==========================================================================
595  */
596 
597 /*
598  * Hot spares and cache devices are tracked using the same code below,
599  * for 'auxiliary' devices.
600  */
601 
602 typedef struct spa_aux {
603 	uint64_t	aux_guid;
604 	uint64_t	aux_pool;
605 	avl_node_t	aux_avl;
606 	int		aux_count;
607 } spa_aux_t;
608 
609 static int
610 spa_aux_compare(const void *a, const void *b)
611 {
612 	const spa_aux_t *sa = a;
613 	const spa_aux_t *sb = b;
614 
615 	if (sa->aux_guid < sb->aux_guid)
616 		return (-1);
617 	else if (sa->aux_guid > sb->aux_guid)
618 		return (1);
619 	else
620 		return (0);
621 }
622 
623 void
624 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
625 {
626 	avl_index_t where;
627 	spa_aux_t search;
628 	spa_aux_t *aux;
629 
630 	search.aux_guid = vd->vdev_guid;
631 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
632 		aux->aux_count++;
633 	} else {
634 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
635 		aux->aux_guid = vd->vdev_guid;
636 		aux->aux_count = 1;
637 		avl_insert(avl, aux, where);
638 	}
639 }
640 
641 void
642 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
643 {
644 	spa_aux_t search;
645 	spa_aux_t *aux;
646 	avl_index_t where;
647 
648 	search.aux_guid = vd->vdev_guid;
649 	aux = avl_find(avl, &search, &where);
650 
651 	ASSERT(aux != NULL);
652 
653 	if (--aux->aux_count == 0) {
654 		avl_remove(avl, aux);
655 		kmem_free(aux, sizeof (spa_aux_t));
656 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
657 		aux->aux_pool = 0ULL;
658 	}
659 }
660 
661 boolean_t
662 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
663 {
664 	spa_aux_t search, *found;
665 
666 	search.aux_guid = guid;
667 	found = avl_find(avl, &search, NULL);
668 
669 	if (pool) {
670 		if (found)
671 			*pool = found->aux_pool;
672 		else
673 			*pool = 0ULL;
674 	}
675 
676 	if (refcnt) {
677 		if (found)
678 			*refcnt = found->aux_count;
679 		else
680 			*refcnt = 0;
681 	}
682 
683 	return (found != NULL);
684 }
685 
686 void
687 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
688 {
689 	spa_aux_t search, *found;
690 	avl_index_t where;
691 
692 	search.aux_guid = vd->vdev_guid;
693 	found = avl_find(avl, &search, &where);
694 	ASSERT(found != NULL);
695 	ASSERT(found->aux_pool == 0ULL);
696 
697 	found->aux_pool = spa_guid(vd->vdev_spa);
698 }
699 
700 /*
701  * Spares are tracked globally due to the following constraints:
702  *
703  * 	- A spare may be part of multiple pools.
704  * 	- A spare may be added to a pool even if it's actively in use within
705  *	  another pool.
706  * 	- A spare in use in any pool can only be the source of a replacement if
707  *	  the target is a spare in the same pool.
708  *
709  * We keep track of all spares on the system through the use of a reference
710  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
711  * spare, then we bump the reference count in the AVL tree.  In addition, we set
712  * the 'vdev_isspare' member to indicate that the device is a spare (active or
713  * inactive).  When a spare is made active (used to replace a device in the
714  * pool), we also keep track of which pool its been made a part of.
715  *
716  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
717  * called under the spa_namespace lock as part of vdev reconfiguration.  The
718  * separate spare lock exists for the status query path, which does not need to
719  * be completely consistent with respect to other vdev configuration changes.
720  */
721 
722 static int
723 spa_spare_compare(const void *a, const void *b)
724 {
725 	return (spa_aux_compare(a, b));
726 }
727 
728 void
729 spa_spare_add(vdev_t *vd)
730 {
731 	mutex_enter(&spa_spare_lock);
732 	ASSERT(!vd->vdev_isspare);
733 	spa_aux_add(vd, &spa_spare_avl);
734 	vd->vdev_isspare = B_TRUE;
735 	mutex_exit(&spa_spare_lock);
736 }
737 
738 void
739 spa_spare_remove(vdev_t *vd)
740 {
741 	mutex_enter(&spa_spare_lock);
742 	ASSERT(vd->vdev_isspare);
743 	spa_aux_remove(vd, &spa_spare_avl);
744 	vd->vdev_isspare = B_FALSE;
745 	mutex_exit(&spa_spare_lock);
746 }
747 
748 boolean_t
749 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
750 {
751 	boolean_t found;
752 
753 	mutex_enter(&spa_spare_lock);
754 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
755 	mutex_exit(&spa_spare_lock);
756 
757 	return (found);
758 }
759 
760 void
761 spa_spare_activate(vdev_t *vd)
762 {
763 	mutex_enter(&spa_spare_lock);
764 	ASSERT(vd->vdev_isspare);
765 	spa_aux_activate(vd, &spa_spare_avl);
766 	mutex_exit(&spa_spare_lock);
767 }
768 
769 /*
770  * Level 2 ARC devices are tracked globally for the same reasons as spares.
771  * Cache devices currently only support one pool per cache device, and so
772  * for these devices the aux reference count is currently unused beyond 1.
773  */
774 
775 static int
776 spa_l2cache_compare(const void *a, const void *b)
777 {
778 	return (spa_aux_compare(a, b));
779 }
780 
781 void
782 spa_l2cache_add(vdev_t *vd)
783 {
784 	mutex_enter(&spa_l2cache_lock);
785 	ASSERT(!vd->vdev_isl2cache);
786 	spa_aux_add(vd, &spa_l2cache_avl);
787 	vd->vdev_isl2cache = B_TRUE;
788 	mutex_exit(&spa_l2cache_lock);
789 }
790 
791 void
792 spa_l2cache_remove(vdev_t *vd)
793 {
794 	mutex_enter(&spa_l2cache_lock);
795 	ASSERT(vd->vdev_isl2cache);
796 	spa_aux_remove(vd, &spa_l2cache_avl);
797 	vd->vdev_isl2cache = B_FALSE;
798 	mutex_exit(&spa_l2cache_lock);
799 }
800 
801 boolean_t
802 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
803 {
804 	boolean_t found;
805 
806 	mutex_enter(&spa_l2cache_lock);
807 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
808 	mutex_exit(&spa_l2cache_lock);
809 
810 	return (found);
811 }
812 
813 void
814 spa_l2cache_activate(vdev_t *vd)
815 {
816 	mutex_enter(&spa_l2cache_lock);
817 	ASSERT(vd->vdev_isl2cache);
818 	spa_aux_activate(vd, &spa_l2cache_avl);
819 	mutex_exit(&spa_l2cache_lock);
820 }
821 
822 void
823 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
824 {
825 	vdev_space_update(vd, space, alloc, 0, B_FALSE);
826 }
827 
828 /*
829  * ==========================================================================
830  * SPA vdev locking
831  * ==========================================================================
832  */
833 
834 /*
835  * Lock the given spa_t for the purpose of adding or removing a vdev.
836  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
837  * It returns the next transaction group for the spa_t.
838  */
839 uint64_t
840 spa_vdev_enter(spa_t *spa)
841 {
842 	mutex_enter(&spa_namespace_lock);
843 	return (spa_vdev_config_enter(spa));
844 }
845 
846 /*
847  * Internal implementation for spa_vdev_enter().  Used when a vdev
848  * operation requires multiple syncs (i.e. removing a device) while
849  * keeping the spa_namespace_lock held.
850  */
851 uint64_t
852 spa_vdev_config_enter(spa_t *spa)
853 {
854 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
855 
856 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
857 
858 	return (spa_last_synced_txg(spa) + 1);
859 }
860 
861 /*
862  * Used in combination with spa_vdev_config_enter() to allow the syncing
863  * of multiple transactions without releasing the spa_namespace_lock.
864  */
865 void
866 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
867 {
868 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
869 
870 	int config_changed = B_FALSE;
871 
872 	ASSERT(txg > spa_last_synced_txg(spa));
873 
874 	spa->spa_pending_vdev = NULL;
875 
876 	/*
877 	 * Reassess the DTLs.
878 	 */
879 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
880 
881 	/*
882 	 * If the config changed, notify the scrub thread that it must restart.
883 	 */
884 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
885 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
886 		config_changed = B_TRUE;
887 		spa->spa_config_generation++;
888 	}
889 
890 	/*
891 	 * Verify the metaslab classes.
892 	 */
893 	ASSERT(metaslab_class_validate(spa->spa_normal_class) == 0);
894 	ASSERT(metaslab_class_validate(spa->spa_log_class) == 0);
895 
896 	spa_config_exit(spa, SCL_ALL, spa);
897 
898 	/*
899 	 * Panic the system if the specified tag requires it.  This
900 	 * is useful for ensuring that configurations are updated
901 	 * transactionally.
902 	 */
903 	if (zio_injection_enabled)
904 		zio_handle_panic_injection(spa, tag);
905 
906 	/*
907 	 * Note: this txg_wait_synced() is important because it ensures
908 	 * that there won't be more than one config change per txg.
909 	 * This allows us to use the txg as the generation number.
910 	 */
911 	if (error == 0)
912 		txg_wait_synced(spa->spa_dsl_pool, txg);
913 
914 	if (vd != NULL) {
915 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
916 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
917 		vdev_free(vd);
918 		spa_config_exit(spa, SCL_ALL, spa);
919 	}
920 
921 	/*
922 	 * If the config changed, update the config cache.
923 	 */
924 	if (config_changed)
925 		spa_config_sync(spa, B_FALSE, B_TRUE);
926 }
927 
928 /*
929  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
930  * locking of spa_vdev_enter(), we also want make sure the transactions have
931  * synced to disk, and then update the global configuration cache with the new
932  * information.
933  */
934 int
935 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
936 {
937 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
938 	mutex_exit(&spa_namespace_lock);
939 
940 	return (error);
941 }
942 
943 /*
944  * Lock the given spa_t for the purpose of changing vdev state.
945  */
946 void
947 spa_vdev_state_enter(spa_t *spa, int oplocks)
948 {
949 	int locks = SCL_STATE_ALL | oplocks;
950 
951 	spa_config_enter(spa, locks, spa, RW_WRITER);
952 	spa->spa_vdev_locks = locks;
953 }
954 
955 int
956 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
957 {
958 	if (vd != NULL) {
959 		vdev_state_dirty(vd->vdev_top);
960 		spa->spa_config_generation++;
961 	}
962 
963 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
964 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
965 
966 	/*
967 	 * If anything changed, wait for it to sync.  This ensures that,
968 	 * from the system administrator's perspective, zpool(1M) commands
969 	 * are synchronous.  This is important for things like zpool offline:
970 	 * when the command completes, you expect no further I/O from ZFS.
971 	 */
972 	if (vd != NULL)
973 		txg_wait_synced(spa->spa_dsl_pool, 0);
974 
975 	return (error);
976 }
977 
978 /*
979  * ==========================================================================
980  * Miscellaneous functions
981  * ==========================================================================
982  */
983 
984 /*
985  * Rename a spa_t.
986  */
987 int
988 spa_rename(const char *name, const char *newname)
989 {
990 	spa_t *spa;
991 	int err;
992 
993 	/*
994 	 * Lookup the spa_t and grab the config lock for writing.  We need to
995 	 * actually open the pool so that we can sync out the necessary labels.
996 	 * It's OK to call spa_open() with the namespace lock held because we
997 	 * allow recursive calls for other reasons.
998 	 */
999 	mutex_enter(&spa_namespace_lock);
1000 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1001 		mutex_exit(&spa_namespace_lock);
1002 		return (err);
1003 	}
1004 
1005 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1006 
1007 	avl_remove(&spa_namespace_avl, spa);
1008 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1009 	avl_add(&spa_namespace_avl, spa);
1010 
1011 	/*
1012 	 * Sync all labels to disk with the new names by marking the root vdev
1013 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1014 	 * during the sync.
1015 	 */
1016 	vdev_config_dirty(spa->spa_root_vdev);
1017 
1018 	spa_config_exit(spa, SCL_ALL, FTAG);
1019 
1020 	txg_wait_synced(spa->spa_dsl_pool, 0);
1021 
1022 	/*
1023 	 * Sync the updated config cache.
1024 	 */
1025 	spa_config_sync(spa, B_FALSE, B_TRUE);
1026 
1027 	spa_close(spa, FTAG);
1028 
1029 	mutex_exit(&spa_namespace_lock);
1030 
1031 	return (0);
1032 }
1033 
1034 
1035 /*
1036  * Determine whether a pool with given pool_guid exists.  If device_guid is
1037  * non-zero, determine whether the pool exists *and* contains a device with the
1038  * specified device_guid.
1039  */
1040 boolean_t
1041 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1042 {
1043 	spa_t *spa;
1044 	avl_tree_t *t = &spa_namespace_avl;
1045 
1046 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1047 
1048 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1049 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1050 			continue;
1051 		if (spa->spa_root_vdev == NULL)
1052 			continue;
1053 		if (spa_guid(spa) == pool_guid) {
1054 			if (device_guid == 0)
1055 				break;
1056 
1057 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1058 			    device_guid) != NULL)
1059 				break;
1060 
1061 			/*
1062 			 * Check any devices we may be in the process of adding.
1063 			 */
1064 			if (spa->spa_pending_vdev) {
1065 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1066 				    device_guid) != NULL)
1067 					break;
1068 			}
1069 		}
1070 	}
1071 
1072 	return (spa != NULL);
1073 }
1074 
1075 char *
1076 spa_strdup(const char *s)
1077 {
1078 	size_t len;
1079 	char *new;
1080 
1081 	len = strlen(s);
1082 	new = kmem_alloc(len + 1, KM_SLEEP);
1083 	bcopy(s, new, len);
1084 	new[len] = '\0';
1085 
1086 	return (new);
1087 }
1088 
1089 void
1090 spa_strfree(char *s)
1091 {
1092 	kmem_free(s, strlen(s) + 1);
1093 }
1094 
1095 uint64_t
1096 spa_get_random(uint64_t range)
1097 {
1098 	uint64_t r;
1099 
1100 	ASSERT(range != 0);
1101 
1102 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1103 
1104 	return (r % range);
1105 }
1106 
1107 void
1108 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1109 {
1110 	int d;
1111 
1112 	if (bp == NULL) {
1113 		(void) snprintf(buf, len, "<NULL>");
1114 		return;
1115 	}
1116 
1117 	if (BP_IS_HOLE(bp)) {
1118 		(void) snprintf(buf, len, "<hole>");
1119 		return;
1120 	}
1121 
1122 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1123 	    (u_longlong_t)BP_GET_LEVEL(bp),
1124 	    BP_GET_TYPE(bp) < DMU_OT_NUMTYPES ?
1125 	    dmu_ot[BP_GET_TYPE(bp)].ot_name : "UNKNOWN",
1126 	    (u_longlong_t)BP_GET_LSIZE(bp),
1127 	    (u_longlong_t)BP_GET_PSIZE(bp));
1128 
1129 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1130 		const dva_t *dva = &bp->blk_dva[d];
1131 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
1132 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
1133 		    (u_longlong_t)DVA_GET_VDEV(dva),
1134 		    (u_longlong_t)DVA_GET_OFFSET(dva),
1135 		    (u_longlong_t)DVA_GET_ASIZE(dva));
1136 	}
1137 
1138 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
1139 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1140 	    BP_GET_CHECKSUM(bp) < ZIO_CHECKSUM_FUNCTIONS ?
1141 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name : "UNKNOWN",
1142 	    BP_GET_COMPRESS(bp) < ZIO_COMPRESS_FUNCTIONS ?
1143 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name : "UNKNOWN",
1144 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1145 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
1146 	    (u_longlong_t)bp->blk_birth,
1147 	    (u_longlong_t)bp->blk_fill,
1148 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
1149 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
1150 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
1151 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
1152 }
1153 
1154 void
1155 spa_freeze(spa_t *spa)
1156 {
1157 	uint64_t freeze_txg = 0;
1158 
1159 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1160 	if (spa->spa_freeze_txg == UINT64_MAX) {
1161 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1162 		spa->spa_freeze_txg = freeze_txg;
1163 	}
1164 	spa_config_exit(spa, SCL_ALL, FTAG);
1165 	if (freeze_txg != 0)
1166 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1167 }
1168 
1169 void
1170 zfs_panic_recover(const char *fmt, ...)
1171 {
1172 	va_list adx;
1173 
1174 	va_start(adx, fmt);
1175 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1176 	va_end(adx);
1177 }
1178 
1179 /*
1180  * ==========================================================================
1181  * Accessor functions
1182  * ==========================================================================
1183  */
1184 
1185 boolean_t
1186 spa_shutting_down(spa_t *spa)
1187 {
1188 	return (spa->spa_async_suspended);
1189 }
1190 
1191 dsl_pool_t *
1192 spa_get_dsl(spa_t *spa)
1193 {
1194 	return (spa->spa_dsl_pool);
1195 }
1196 
1197 blkptr_t *
1198 spa_get_rootblkptr(spa_t *spa)
1199 {
1200 	return (&spa->spa_ubsync.ub_rootbp);
1201 }
1202 
1203 void
1204 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1205 {
1206 	spa->spa_uberblock.ub_rootbp = *bp;
1207 }
1208 
1209 void
1210 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1211 {
1212 	if (spa->spa_root == NULL)
1213 		buf[0] = '\0';
1214 	else
1215 		(void) strncpy(buf, spa->spa_root, buflen);
1216 }
1217 
1218 int
1219 spa_sync_pass(spa_t *spa)
1220 {
1221 	return (spa->spa_sync_pass);
1222 }
1223 
1224 char *
1225 spa_name(spa_t *spa)
1226 {
1227 	return (spa->spa_name);
1228 }
1229 
1230 uint64_t
1231 spa_guid(spa_t *spa)
1232 {
1233 	/*
1234 	 * If we fail to parse the config during spa_load(), we can go through
1235 	 * the error path (which posts an ereport) and end up here with no root
1236 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1237 	 * this case.
1238 	 */
1239 	if (spa->spa_root_vdev != NULL)
1240 		return (spa->spa_root_vdev->vdev_guid);
1241 	else
1242 		return (spa->spa_load_guid);
1243 }
1244 
1245 uint64_t
1246 spa_last_synced_txg(spa_t *spa)
1247 {
1248 	return (spa->spa_ubsync.ub_txg);
1249 }
1250 
1251 uint64_t
1252 spa_first_txg(spa_t *spa)
1253 {
1254 	return (spa->spa_first_txg);
1255 }
1256 
1257 pool_state_t
1258 spa_state(spa_t *spa)
1259 {
1260 	return (spa->spa_state);
1261 }
1262 
1263 uint64_t
1264 spa_freeze_txg(spa_t *spa)
1265 {
1266 	return (spa->spa_freeze_txg);
1267 }
1268 
1269 /*
1270  * Return how much space is allocated in the pool (ie. sum of all asize)
1271  */
1272 uint64_t
1273 spa_get_alloc(spa_t *spa)
1274 {
1275 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1276 }
1277 
1278 /*
1279  * Return how much (raid-z inflated) space there is in the pool.
1280  */
1281 uint64_t
1282 spa_get_space(spa_t *spa)
1283 {
1284 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1285 }
1286 
1287 /*
1288  * Return the amount of raid-z-deflated space in the pool.
1289  */
1290 uint64_t
1291 spa_get_dspace(spa_t *spa)
1292 {
1293 	if (spa->spa_deflate)
1294 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1295 	else
1296 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1297 }
1298 
1299 /*
1300  * Return the amount of space deferred from freeing (in in-core maps only)
1301  */
1302 uint64_t
1303 spa_get_defers(spa_t *spa)
1304 {
1305 	return (spa->spa_root_vdev->vdev_stat.vs_defer);
1306 }
1307 
1308 /* ARGSUSED */
1309 uint64_t
1310 spa_get_asize(spa_t *spa, uint64_t lsize)
1311 {
1312 	/*
1313 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1314 	 * case the space requirement is exactly 2x; so just assume that.
1315 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1316 	 * we have to multiply by a total of 6x.
1317 	 */
1318 	return (lsize * 6);
1319 }
1320 
1321 /*
1322  * Return the failure mode that has been set to this pool. The default
1323  * behavior will be to block all I/Os when a complete failure occurs.
1324  */
1325 uint8_t
1326 spa_get_failmode(spa_t *spa)
1327 {
1328 	return (spa->spa_failmode);
1329 }
1330 
1331 boolean_t
1332 spa_suspended(spa_t *spa)
1333 {
1334 	return (spa->spa_suspended);
1335 }
1336 
1337 uint64_t
1338 spa_version(spa_t *spa)
1339 {
1340 	return (spa->spa_ubsync.ub_version);
1341 }
1342 
1343 int
1344 spa_max_replication(spa_t *spa)
1345 {
1346 	/*
1347 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1348 	 * handle BPs with more than one DVA allocated.  Set our max
1349 	 * replication level accordingly.
1350 	 */
1351 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1352 		return (1);
1353 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1354 }
1355 
1356 uint64_t
1357 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1358 {
1359 	int sz = 0, i;
1360 
1361 	if (!spa->spa_deflate)
1362 		return (BP_GET_ASIZE(bp));
1363 
1364 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1365 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1366 		vdev_t *vd =
1367 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1368 		if (vd)
1369 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1370 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1371 	}
1372 	spa_config_exit(spa, SCL_VDEV, FTAG);
1373 	return (sz);
1374 }
1375 
1376 /*
1377  * ==========================================================================
1378  * Initialization and Termination
1379  * ==========================================================================
1380  */
1381 
1382 static int
1383 spa_name_compare(const void *a1, const void *a2)
1384 {
1385 	const spa_t *s1 = a1;
1386 	const spa_t *s2 = a2;
1387 	int s;
1388 
1389 	s = strcmp(s1->spa_name, s2->spa_name);
1390 	if (s > 0)
1391 		return (1);
1392 	if (s < 0)
1393 		return (-1);
1394 	return (0);
1395 }
1396 
1397 int
1398 spa_busy(void)
1399 {
1400 	return (spa_active_count);
1401 }
1402 
1403 void
1404 spa_boot_init()
1405 {
1406 	spa_config_load();
1407 }
1408 
1409 void
1410 spa_init(int mode)
1411 {
1412 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1413 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1414 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1415 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1416 
1417 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1418 	    offsetof(spa_t, spa_avl));
1419 
1420 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1421 	    offsetof(spa_aux_t, aux_avl));
1422 
1423 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1424 	    offsetof(spa_aux_t, aux_avl));
1425 
1426 	spa_mode_global = mode;
1427 
1428 	refcount_init();
1429 	unique_init();
1430 	zio_init();
1431 	dmu_init();
1432 	zil_init();
1433 	vdev_cache_stat_init();
1434 	zfs_prop_init();
1435 	zpool_prop_init();
1436 	spa_config_load();
1437 	l2arc_start();
1438 }
1439 
1440 void
1441 spa_fini(void)
1442 {
1443 	l2arc_stop();
1444 
1445 	spa_evict_all();
1446 
1447 	vdev_cache_stat_fini();
1448 	zil_fini();
1449 	dmu_fini();
1450 	zio_fini();
1451 	unique_fini();
1452 	refcount_fini();
1453 
1454 	avl_destroy(&spa_namespace_avl);
1455 	avl_destroy(&spa_spare_avl);
1456 	avl_destroy(&spa_l2cache_avl);
1457 
1458 	cv_destroy(&spa_namespace_cv);
1459 	mutex_destroy(&spa_namespace_lock);
1460 	mutex_destroy(&spa_spare_lock);
1461 	mutex_destroy(&spa_l2cache_lock);
1462 }
1463 
1464 /*
1465  * Return whether this pool has slogs. No locking needed.
1466  * It's not a problem if the wrong answer is returned as it's only for
1467  * performance and not correctness
1468  */
1469 boolean_t
1470 spa_has_slogs(spa_t *spa)
1471 {
1472 	return (spa->spa_log_class->mc_rotor != NULL);
1473 }
1474 
1475 /*
1476  * Return whether this pool is the root pool.
1477  */
1478 boolean_t
1479 spa_is_root(spa_t *spa)
1480 {
1481 	return (spa->spa_is_root);
1482 }
1483 
1484 boolean_t
1485 spa_writeable(spa_t *spa)
1486 {
1487 	return (!!(spa->spa_mode & FWRITE));
1488 }
1489 
1490 int
1491 spa_mode(spa_t *spa)
1492 {
1493 	return (spa->spa_mode);
1494 }
1495