xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 084fd14f7c3336eb67ee283cabad2da8998b00d6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2014 Integros [integros.com]
28  * Copyright (c) 2017 Datto Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/spa_impl.h>
34 #include <sys/spa_boot.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/zio_compress.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/vdev_initialize.h>
44 #include <sys/vdev_trim.h>
45 #include <sys/metaslab.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/unique.h>
50 #include <sys/dsl_pool.h>
51 #include <sys/dsl_dir.h>
52 #include <sys/dsl_prop.h>
53 #include <sys/dsl_scan.h>
54 #include <sys/fs/zfs.h>
55 #include <sys/metaslab_impl.h>
56 #include <sys/arc.h>
57 #include <sys/ddt.h>
58 #include "zfs_prop.h"
59 #include <sys/zfeature.h>
60 
61 /*
62  * SPA locking
63  *
64  * There are four basic locks for managing spa_t structures:
65  *
66  * spa_namespace_lock (global mutex)
67  *
68  *	This lock must be acquired to do any of the following:
69  *
70  *		- Lookup a spa_t by name
71  *		- Add or remove a spa_t from the namespace
72  *		- Increase spa_refcount from non-zero
73  *		- Check if spa_refcount is zero
74  *		- Rename a spa_t
75  *		- add/remove/attach/detach devices
76  *		- Held for the duration of create/destroy/import/export
77  *
78  *	It does not need to handle recursion.  A create or destroy may
79  *	reference objects (files or zvols) in other pools, but by
80  *	definition they must have an existing reference, and will never need
81  *	to lookup a spa_t by name.
82  *
83  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
84  *
85  *	This reference count keep track of any active users of the spa_t.  The
86  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
87  *	the refcount is never really 'zero' - opening a pool implicitly keeps
88  *	some references in the DMU.  Internally we check against spa_minref, but
89  *	present the image of a zero/non-zero value to consumers.
90  *
91  * spa_config_lock[] (per-spa array of rwlocks)
92  *
93  *	This protects the spa_t from config changes, and must be held in
94  *	the following circumstances:
95  *
96  *		- RW_READER to perform I/O to the spa
97  *		- RW_WRITER to change the vdev config
98  *
99  * The locking order is fairly straightforward:
100  *
101  *		spa_namespace_lock	->	spa_refcount
102  *
103  *	The namespace lock must be acquired to increase the refcount from 0
104  *	or to check if it is zero.
105  *
106  *		spa_refcount		->	spa_config_lock[]
107  *
108  *	There must be at least one valid reference on the spa_t to acquire
109  *	the config lock.
110  *
111  *		spa_namespace_lock	->	spa_config_lock[]
112  *
113  *	The namespace lock must always be taken before the config lock.
114  *
115  *
116  * The spa_namespace_lock can be acquired directly and is globally visible.
117  *
118  * The namespace is manipulated using the following functions, all of which
119  * require the spa_namespace_lock to be held.
120  *
121  *	spa_lookup()		Lookup a spa_t by name.
122  *
123  *	spa_add()		Create a new spa_t in the namespace.
124  *
125  *	spa_remove()		Remove a spa_t from the namespace.  This also
126  *				frees up any memory associated with the spa_t.
127  *
128  *	spa_next()		Returns the next spa_t in the system, or the
129  *				first if NULL is passed.
130  *
131  *	spa_evict_all()		Shutdown and remove all spa_t structures in
132  *				the system.
133  *
134  *	spa_guid_exists()	Determine whether a pool/device guid exists.
135  *
136  * The spa_refcount is manipulated using the following functions:
137  *
138  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
139  *				called with spa_namespace_lock held if the
140  *				refcount is currently zero.
141  *
142  *	spa_close()		Remove a reference from the spa_t.  This will
143  *				not free the spa_t or remove it from the
144  *				namespace.  No locking is required.
145  *
146  *	spa_refcount_zero()	Returns true if the refcount is currently
147  *				zero.  Must be called with spa_namespace_lock
148  *				held.
149  *
150  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153  *
154  * To read the configuration, it suffices to hold one of these locks as reader.
155  * To modify the configuration, you must hold all locks as writer.  To modify
156  * vdev state without altering the vdev tree's topology (e.g. online/offline),
157  * you must hold SCL_STATE and SCL_ZIO as writer.
158  *
159  * We use these distinct config locks to avoid recursive lock entry.
160  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161  * block allocations (SCL_ALLOC), which may require reading space maps
162  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163  *
164  * The spa config locks cannot be normal rwlocks because we need the
165  * ability to hand off ownership.  For example, SCL_ZIO is acquired
166  * by the issuing thread and later released by an interrupt thread.
167  * They do, however, obey the usual write-wanted semantics to prevent
168  * writer (i.e. system administrator) starvation.
169  *
170  * The lock acquisition rules are as follows:
171  *
172  * SCL_CONFIG
173  *	Protects changes to the vdev tree topology, such as vdev
174  *	add/remove/attach/detach.  Protects the dirty config list
175  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
176  *
177  * SCL_STATE
178  *	Protects changes to pool state and vdev state, such as vdev
179  *	online/offline/fault/degrade/clear.  Protects the dirty state list
180  *	(spa_state_dirty_list) and global pool state (spa_state).
181  *
182  * SCL_ALLOC
183  *	Protects changes to metaslab groups and classes.
184  *	Held as reader by metaslab_alloc() and metaslab_claim().
185  *
186  * SCL_ZIO
187  *	Held by bp-level zios (those which have no io_vd upon entry)
188  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
189  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
190  *
191  * SCL_FREE
192  *	Protects changes to metaslab groups and classes.
193  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
194  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195  *	blocks in zio_done() while another i/o that holds either
196  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197  *
198  * SCL_VDEV
199  *	Held as reader to prevent changes to the vdev tree during trivial
200  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
201  *	other locks, and lower than all of them, to ensure that it's safe
202  *	to acquire regardless of caller context.
203  *
204  * In addition, the following rules apply:
205  *
206  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
207  *	The lock ordering is SCL_CONFIG > spa_props_lock.
208  *
209  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
210  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211  *	or zio_write_phys() -- the caller must ensure that the config cannot
212  *	cannot change in the interim, and that the vdev cannot be reopened.
213  *	SCL_STATE as reader suffices for both.
214  *
215  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216  *
217  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
218  *				for writing.
219  *
220  *	spa_vdev_exit()		Release the config lock, wait for all I/O
221  *				to complete, sync the updated configs to the
222  *				cache, and release the namespace lock.
223  *
224  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227  */
228 
229 static avl_tree_t spa_namespace_avl;
230 kmutex_t spa_namespace_lock;
231 static kcondvar_t spa_namespace_cv;
232 static int spa_active_count;
233 int spa_max_replication_override = SPA_DVAS_PER_BP;
234 
235 static kmutex_t spa_spare_lock;
236 static avl_tree_t spa_spare_avl;
237 static kmutex_t spa_l2cache_lock;
238 static avl_tree_t spa_l2cache_avl;
239 
240 kmem_cache_t *spa_buffer_pool;
241 int spa_mode_global;
242 
243 #ifdef ZFS_DEBUG
244 /*
245  * Everything except dprintf, spa, and indirect_remap is on by default
246  * in debug builds.
247  */
248 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_INDIRECT_REMAP);
249 #else
250 int zfs_flags = 0;
251 #endif
252 
253 /*
254  * zfs_recover can be set to nonzero to attempt to recover from
255  * otherwise-fatal errors, typically caused by on-disk corruption.  When
256  * set, calls to zfs_panic_recover() will turn into warning messages.
257  * This should only be used as a last resort, as it typically results
258  * in leaked space, or worse.
259  */
260 boolean_t zfs_recover = B_FALSE;
261 
262 /*
263  * If destroy encounters an EIO while reading metadata (e.g. indirect
264  * blocks), space referenced by the missing metadata can not be freed.
265  * Normally this causes the background destroy to become "stalled", as
266  * it is unable to make forward progress.  While in this stalled state,
267  * all remaining space to free from the error-encountering filesystem is
268  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
269  * permanently leak the space from indirect blocks that can not be read,
270  * and continue to free everything else that it can.
271  *
272  * The default, "stalling" behavior is useful if the storage partially
273  * fails (i.e. some but not all i/os fail), and then later recovers.  In
274  * this case, we will be able to continue pool operations while it is
275  * partially failed, and when it recovers, we can continue to free the
276  * space, with no leaks.  However, note that this case is actually
277  * fairly rare.
278  *
279  * Typically pools either (a) fail completely (but perhaps temporarily,
280  * e.g. a top-level vdev going offline), or (b) have localized,
281  * permanent errors (e.g. disk returns the wrong data due to bit flip or
282  * firmware bug).  In case (a), this setting does not matter because the
283  * pool will be suspended and the sync thread will not be able to make
284  * forward progress regardless.  In case (b), because the error is
285  * permanent, the best we can do is leak the minimum amount of space,
286  * which is what setting this flag will do.  Therefore, it is reasonable
287  * for this flag to normally be set, but we chose the more conservative
288  * approach of not setting it, so that there is no possibility of
289  * leaking space in the "partial temporary" failure case.
290  */
291 boolean_t zfs_free_leak_on_eio = B_FALSE;
292 
293 /*
294  * Expiration time in milliseconds. This value has two meanings. First it is
295  * used to determine when the spa_deadman() logic should fire. By default the
296  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
297  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
298  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
299  * in a system panic.
300  */
301 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
302 
303 /*
304  * Check time in milliseconds. This defines the frequency at which we check
305  * for hung I/O.
306  */
307 uint64_t zfs_deadman_checktime_ms = 5000ULL;
308 
309 /*
310  * Override the zfs deadman behavior via /etc/system. By default the
311  * deadman is enabled except on VMware and sparc deployments.
312  */
313 int zfs_deadman_enabled = -1;
314 
315 /*
316  * The worst case is single-sector max-parity RAID-Z blocks, in which
317  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
318  * times the size; so just assume that.  Add to this the fact that
319  * we can have up to 3 DVAs per bp, and one more factor of 2 because
320  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
321  * the worst case is:
322  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
323  */
324 int spa_asize_inflation = 24;
325 
326 /*
327  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
328  * the pool to be consumed.  This ensures that we don't run the pool
329  * completely out of space, due to unaccounted changes (e.g. to the MOS).
330  * It also limits the worst-case time to allocate space.  If we have
331  * less than this amount of free space, most ZPL operations (e.g. write,
332  * create) will return ENOSPC.
333  *
334  * Certain operations (e.g. file removal, most administrative actions) can
335  * use half the slop space.  They will only return ENOSPC if less than half
336  * the slop space is free.  Typically, once the pool has less than the slop
337  * space free, the user will use these operations to free up space in the pool.
338  * These are the operations that call dsl_pool_adjustedsize() with the netfree
339  * argument set to TRUE.
340  *
341  * Operations that are almost guaranteed to free up space in the absence of
342  * a pool checkpoint can use up to three quarters of the slop space
343  * (e.g zfs destroy).
344  *
345  * A very restricted set of operations are always permitted, regardless of
346  * the amount of free space.  These are the operations that call
347  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
348  * increase in the amount of space used, it is possible to run the pool
349  * completely out of space, causing it to be permanently read-only.
350  *
351  * Note that on very small pools, the slop space will be larger than
352  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
353  * but we never allow it to be more than half the pool size.
354  *
355  * See also the comments in zfs_space_check_t.
356  */
357 int spa_slop_shift = 5;
358 uint64_t spa_min_slop = 128 * 1024 * 1024;
359 
360 int spa_allocators = 4;
361 
362 /*PRINTFLIKE2*/
363 void
364 spa_load_failed(spa_t *spa, const char *fmt, ...)
365 {
366 	va_list adx;
367 	char buf[256];
368 
369 	va_start(adx, fmt);
370 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
371 	va_end(adx);
372 
373 	zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
374 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
375 }
376 
377 /*PRINTFLIKE2*/
378 void
379 spa_load_note(spa_t *spa, const char *fmt, ...)
380 {
381 	va_list adx;
382 	char buf[256];
383 
384 	va_start(adx, fmt);
385 	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
386 	va_end(adx);
387 
388 	zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
389 	    spa->spa_trust_config ? "trusted" : "untrusted", buf);
390 }
391 
392 /*
393  * By default dedup and user data indirects land in the special class
394  */
395 int zfs_ddt_data_is_special = B_TRUE;
396 int zfs_user_indirect_is_special = B_TRUE;
397 
398 /*
399  * The percentage of special class final space reserved for metadata only.
400  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
401  * let metadata into the class.
402  */
403 int zfs_special_class_metadata_reserve_pct = 25;
404 
405 /*
406  * ==========================================================================
407  * SPA config locking
408  * ==========================================================================
409  */
410 static void
411 spa_config_lock_init(spa_t *spa)
412 {
413 	for (int i = 0; i < SCL_LOCKS; i++) {
414 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
415 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
416 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
417 		zfs_refcount_create_untracked(&scl->scl_count);
418 		scl->scl_writer = NULL;
419 		scl->scl_write_wanted = 0;
420 	}
421 }
422 
423 static void
424 spa_config_lock_destroy(spa_t *spa)
425 {
426 	for (int i = 0; i < SCL_LOCKS; i++) {
427 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
428 		mutex_destroy(&scl->scl_lock);
429 		cv_destroy(&scl->scl_cv);
430 		zfs_refcount_destroy(&scl->scl_count);
431 		ASSERT(scl->scl_writer == NULL);
432 		ASSERT(scl->scl_write_wanted == 0);
433 	}
434 }
435 
436 int
437 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
438 {
439 	for (int i = 0; i < SCL_LOCKS; i++) {
440 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
441 		if (!(locks & (1 << i)))
442 			continue;
443 		mutex_enter(&scl->scl_lock);
444 		if (rw == RW_READER) {
445 			if (scl->scl_writer || scl->scl_write_wanted) {
446 				mutex_exit(&scl->scl_lock);
447 				spa_config_exit(spa, locks & ((1 << i) - 1),
448 				    tag);
449 				return (0);
450 			}
451 		} else {
452 			ASSERT(scl->scl_writer != curthread);
453 			if (!zfs_refcount_is_zero(&scl->scl_count)) {
454 				mutex_exit(&scl->scl_lock);
455 				spa_config_exit(spa, locks & ((1 << i) - 1),
456 				    tag);
457 				return (0);
458 			}
459 			scl->scl_writer = curthread;
460 		}
461 		(void) zfs_refcount_add(&scl->scl_count, tag);
462 		mutex_exit(&scl->scl_lock);
463 	}
464 	return (1);
465 }
466 
467 void
468 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
469 {
470 	int wlocks_held = 0;
471 
472 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
473 
474 	for (int i = 0; i < SCL_LOCKS; i++) {
475 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
476 		if (scl->scl_writer == curthread)
477 			wlocks_held |= (1 << i);
478 		if (!(locks & (1 << i)))
479 			continue;
480 		mutex_enter(&scl->scl_lock);
481 		if (rw == RW_READER) {
482 			while (scl->scl_writer || scl->scl_write_wanted) {
483 				cv_wait(&scl->scl_cv, &scl->scl_lock);
484 			}
485 		} else {
486 			ASSERT(scl->scl_writer != curthread);
487 			while (!zfs_refcount_is_zero(&scl->scl_count)) {
488 				scl->scl_write_wanted++;
489 				cv_wait(&scl->scl_cv, &scl->scl_lock);
490 				scl->scl_write_wanted--;
491 			}
492 			scl->scl_writer = curthread;
493 		}
494 		(void) zfs_refcount_add(&scl->scl_count, tag);
495 		mutex_exit(&scl->scl_lock);
496 	}
497 	ASSERT3U(wlocks_held, <=, locks);
498 }
499 
500 void
501 spa_config_exit(spa_t *spa, int locks, void *tag)
502 {
503 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
504 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
505 		if (!(locks & (1 << i)))
506 			continue;
507 		mutex_enter(&scl->scl_lock);
508 		ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
509 		if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
510 			ASSERT(scl->scl_writer == NULL ||
511 			    scl->scl_writer == curthread);
512 			scl->scl_writer = NULL;	/* OK in either case */
513 			cv_broadcast(&scl->scl_cv);
514 		}
515 		mutex_exit(&scl->scl_lock);
516 	}
517 }
518 
519 int
520 spa_config_held(spa_t *spa, int locks, krw_t rw)
521 {
522 	int locks_held = 0;
523 
524 	for (int i = 0; i < SCL_LOCKS; i++) {
525 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
526 		if (!(locks & (1 << i)))
527 			continue;
528 		if ((rw == RW_READER &&
529 		    !zfs_refcount_is_zero(&scl->scl_count)) ||
530 		    (rw == RW_WRITER && scl->scl_writer == curthread))
531 			locks_held |= 1 << i;
532 	}
533 
534 	return (locks_held);
535 }
536 
537 /*
538  * ==========================================================================
539  * SPA namespace functions
540  * ==========================================================================
541  */
542 
543 /*
544  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
545  * Returns NULL if no matching spa_t is found.
546  */
547 spa_t *
548 spa_lookup(const char *name)
549 {
550 	static spa_t search;	/* spa_t is large; don't allocate on stack */
551 	spa_t *spa;
552 	avl_index_t where;
553 	char *cp;
554 
555 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
556 
557 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
558 
559 	/*
560 	 * If it's a full dataset name, figure out the pool name and
561 	 * just use that.
562 	 */
563 	cp = strpbrk(search.spa_name, "/@#");
564 	if (cp != NULL)
565 		*cp = '\0';
566 
567 	spa = avl_find(&spa_namespace_avl, &search, &where);
568 
569 	return (spa);
570 }
571 
572 /*
573  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
574  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
575  * looking for potentially hung I/Os.
576  */
577 void
578 spa_deadman(void *arg)
579 {
580 	spa_t *spa = arg;
581 
582 	/*
583 	 * Disable the deadman timer if the pool is suspended.
584 	 */
585 	if (spa_suspended(spa)) {
586 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
587 		return;
588 	}
589 
590 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
591 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
592 	    ++spa->spa_deadman_calls);
593 	if (zfs_deadman_enabled)
594 		vdev_deadman(spa->spa_root_vdev);
595 }
596 
597 /*
598  * Create an uninitialized spa_t with the given name.  Requires
599  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
600  * exist by calling spa_lookup() first.
601  */
602 spa_t *
603 spa_add(const char *name, nvlist_t *config, const char *altroot)
604 {
605 	spa_t *spa;
606 	spa_config_dirent_t *dp;
607 	cyc_handler_t hdlr;
608 	cyc_time_t when;
609 
610 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
611 
612 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
613 
614 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
615 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
616 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
617 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
618 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
619 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
620 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
621 	mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
622 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
623 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
624 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
625 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
626 
627 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
628 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
629 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
630 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
631 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
632 
633 	for (int t = 0; t < TXG_SIZE; t++)
634 		bplist_create(&spa->spa_free_bplist[t]);
635 
636 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
637 	spa->spa_state = POOL_STATE_UNINITIALIZED;
638 	spa->spa_freeze_txg = UINT64_MAX;
639 	spa->spa_final_txg = UINT64_MAX;
640 	spa->spa_load_max_txg = UINT64_MAX;
641 	spa->spa_proc = &p0;
642 	spa->spa_proc_state = SPA_PROC_NONE;
643 	spa->spa_trust_config = B_TRUE;
644 
645 	hdlr.cyh_func = spa_deadman;
646 	hdlr.cyh_arg = spa;
647 	hdlr.cyh_level = CY_LOW_LEVEL;
648 
649 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
650 
651 	/*
652 	 * This determines how often we need to check for hung I/Os after
653 	 * the cyclic has already fired. Since checking for hung I/Os is
654 	 * an expensive operation we don't want to check too frequently.
655 	 * Instead wait for 5 seconds before checking again.
656 	 */
657 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
658 	when.cyt_when = CY_INFINITY;
659 	mutex_enter(&cpu_lock);
660 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
661 	mutex_exit(&cpu_lock);
662 
663 	zfs_refcount_create(&spa->spa_refcount);
664 	spa_config_lock_init(spa);
665 
666 	avl_add(&spa_namespace_avl, spa);
667 
668 	/*
669 	 * Set the alternate root, if there is one.
670 	 */
671 	if (altroot) {
672 		spa->spa_root = spa_strdup(altroot);
673 		spa_active_count++;
674 	}
675 
676 	spa->spa_alloc_count = spa_allocators;
677 	spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
678 	    sizeof (kmutex_t), KM_SLEEP);
679 	spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
680 	    sizeof (avl_tree_t), KM_SLEEP);
681 	for (int i = 0; i < spa->spa_alloc_count; i++) {
682 		mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
683 		avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
684 		    sizeof (zio_t), offsetof(zio_t, io_alloc_node));
685 	}
686 
687 	/*
688 	 * Every pool starts with the default cachefile
689 	 */
690 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
691 	    offsetof(spa_config_dirent_t, scd_link));
692 
693 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
694 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
695 	list_insert_head(&spa->spa_config_list, dp);
696 
697 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
698 	    KM_SLEEP) == 0);
699 
700 	if (config != NULL) {
701 		nvlist_t *features;
702 
703 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
704 		    &features) == 0) {
705 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
706 			    0) == 0);
707 		}
708 
709 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
710 	}
711 
712 	if (spa->spa_label_features == NULL) {
713 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
714 		    KM_SLEEP) == 0);
715 	}
716 
717 	spa->spa_iokstat = kstat_create("zfs", 0, name,
718 	    "disk", KSTAT_TYPE_IO, 1, 0);
719 	if (spa->spa_iokstat) {
720 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
721 		kstat_install(spa->spa_iokstat);
722 	}
723 
724 	spa->spa_min_ashift = INT_MAX;
725 	spa->spa_max_ashift = 0;
726 
727 	/*
728 	 * As a pool is being created, treat all features as disabled by
729 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
730 	 * refcount cache.
731 	 */
732 	for (int i = 0; i < SPA_FEATURES; i++) {
733 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
734 	}
735 
736 	list_create(&spa->spa_leaf_list, sizeof (vdev_t),
737 	    offsetof(vdev_t, vdev_leaf_node));
738 
739 	return (spa);
740 }
741 
742 /*
743  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
744  * spa_namespace_lock.  This is called only after the spa_t has been closed and
745  * deactivated.
746  */
747 void
748 spa_remove(spa_t *spa)
749 {
750 	spa_config_dirent_t *dp;
751 
752 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
753 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
754 	ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
755 
756 	nvlist_free(spa->spa_config_splitting);
757 
758 	avl_remove(&spa_namespace_avl, spa);
759 	cv_broadcast(&spa_namespace_cv);
760 
761 	if (spa->spa_root) {
762 		spa_strfree(spa->spa_root);
763 		spa_active_count--;
764 	}
765 
766 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
767 		list_remove(&spa->spa_config_list, dp);
768 		if (dp->scd_path != NULL)
769 			spa_strfree(dp->scd_path);
770 		kmem_free(dp, sizeof (spa_config_dirent_t));
771 	}
772 
773 	for (int i = 0; i < spa->spa_alloc_count; i++) {
774 		avl_destroy(&spa->spa_alloc_trees[i]);
775 		mutex_destroy(&spa->spa_alloc_locks[i]);
776 	}
777 	kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
778 	    sizeof (kmutex_t));
779 	kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
780 	    sizeof (avl_tree_t));
781 
782 	list_destroy(&spa->spa_config_list);
783 	list_destroy(&spa->spa_leaf_list);
784 
785 	nvlist_free(spa->spa_label_features);
786 	nvlist_free(spa->spa_load_info);
787 	spa_config_set(spa, NULL);
788 
789 	mutex_enter(&cpu_lock);
790 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
791 		cyclic_remove(spa->spa_deadman_cycid);
792 	mutex_exit(&cpu_lock);
793 	spa->spa_deadman_cycid = CYCLIC_NONE;
794 
795 	zfs_refcount_destroy(&spa->spa_refcount);
796 
797 	spa_config_lock_destroy(spa);
798 
799 	kstat_delete(spa->spa_iokstat);
800 	spa->spa_iokstat = NULL;
801 
802 	for (int t = 0; t < TXG_SIZE; t++)
803 		bplist_destroy(&spa->spa_free_bplist[t]);
804 
805 	zio_checksum_templates_free(spa);
806 
807 	cv_destroy(&spa->spa_async_cv);
808 	cv_destroy(&spa->spa_evicting_os_cv);
809 	cv_destroy(&spa->spa_proc_cv);
810 	cv_destroy(&spa->spa_scrub_io_cv);
811 	cv_destroy(&spa->spa_suspend_cv);
812 
813 	mutex_destroy(&spa->spa_async_lock);
814 	mutex_destroy(&spa->spa_errlist_lock);
815 	mutex_destroy(&spa->spa_errlog_lock);
816 	mutex_destroy(&spa->spa_evicting_os_lock);
817 	mutex_destroy(&spa->spa_history_lock);
818 	mutex_destroy(&spa->spa_proc_lock);
819 	mutex_destroy(&spa->spa_props_lock);
820 	mutex_destroy(&spa->spa_cksum_tmpls_lock);
821 	mutex_destroy(&spa->spa_scrub_lock);
822 	mutex_destroy(&spa->spa_suspend_lock);
823 	mutex_destroy(&spa->spa_vdev_top_lock);
824 	mutex_destroy(&spa->spa_iokstat_lock);
825 
826 	kmem_free(spa, sizeof (spa_t));
827 }
828 
829 /*
830  * Given a pool, return the next pool in the namespace, or NULL if there is
831  * none.  If 'prev' is NULL, return the first pool.
832  */
833 spa_t *
834 spa_next(spa_t *prev)
835 {
836 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
837 
838 	if (prev)
839 		return (AVL_NEXT(&spa_namespace_avl, prev));
840 	else
841 		return (avl_first(&spa_namespace_avl));
842 }
843 
844 /*
845  * ==========================================================================
846  * SPA refcount functions
847  * ==========================================================================
848  */
849 
850 /*
851  * Add a reference to the given spa_t.  Must have at least one reference, or
852  * have the namespace lock held.
853  */
854 void
855 spa_open_ref(spa_t *spa, void *tag)
856 {
857 	ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
858 	    MUTEX_HELD(&spa_namespace_lock));
859 	(void) zfs_refcount_add(&spa->spa_refcount, tag);
860 }
861 
862 /*
863  * Remove a reference to the given spa_t.  Must have at least one reference, or
864  * have the namespace lock held.
865  */
866 void
867 spa_close(spa_t *spa, void *tag)
868 {
869 	ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
870 	    MUTEX_HELD(&spa_namespace_lock));
871 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
872 }
873 
874 /*
875  * Remove a reference to the given spa_t held by a dsl dir that is
876  * being asynchronously released.  Async releases occur from a taskq
877  * performing eviction of dsl datasets and dirs.  The namespace lock
878  * isn't held and the hold by the object being evicted may contribute to
879  * spa_minref (e.g. dataset or directory released during pool export),
880  * so the asserts in spa_close() do not apply.
881  */
882 void
883 spa_async_close(spa_t *spa, void *tag)
884 {
885 	(void) zfs_refcount_remove(&spa->spa_refcount, tag);
886 }
887 
888 /*
889  * Check to see if the spa refcount is zero.  Must be called with
890  * spa_namespace_lock held.  We really compare against spa_minref, which is the
891  * number of references acquired when opening a pool
892  */
893 boolean_t
894 spa_refcount_zero(spa_t *spa)
895 {
896 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
897 
898 	return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
899 }
900 
901 /*
902  * ==========================================================================
903  * SPA spare and l2cache tracking
904  * ==========================================================================
905  */
906 
907 /*
908  * Hot spares and cache devices are tracked using the same code below,
909  * for 'auxiliary' devices.
910  */
911 
912 typedef struct spa_aux {
913 	uint64_t	aux_guid;
914 	uint64_t	aux_pool;
915 	avl_node_t	aux_avl;
916 	int		aux_count;
917 } spa_aux_t;
918 
919 static inline int
920 spa_aux_compare(const void *a, const void *b)
921 {
922 	const spa_aux_t *sa = (const spa_aux_t *)a;
923 	const spa_aux_t *sb = (const spa_aux_t *)b;
924 
925 	return (AVL_CMP(sa->aux_guid, sb->aux_guid));
926 }
927 
928 void
929 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
930 {
931 	avl_index_t where;
932 	spa_aux_t search;
933 	spa_aux_t *aux;
934 
935 	search.aux_guid = vd->vdev_guid;
936 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
937 		aux->aux_count++;
938 	} else {
939 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
940 		aux->aux_guid = vd->vdev_guid;
941 		aux->aux_count = 1;
942 		avl_insert(avl, aux, where);
943 	}
944 }
945 
946 void
947 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
948 {
949 	spa_aux_t search;
950 	spa_aux_t *aux;
951 	avl_index_t where;
952 
953 	search.aux_guid = vd->vdev_guid;
954 	aux = avl_find(avl, &search, &where);
955 
956 	ASSERT(aux != NULL);
957 
958 	if (--aux->aux_count == 0) {
959 		avl_remove(avl, aux);
960 		kmem_free(aux, sizeof (spa_aux_t));
961 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
962 		aux->aux_pool = 0ULL;
963 	}
964 }
965 
966 boolean_t
967 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
968 {
969 	spa_aux_t search, *found;
970 
971 	search.aux_guid = guid;
972 	found = avl_find(avl, &search, NULL);
973 
974 	if (pool) {
975 		if (found)
976 			*pool = found->aux_pool;
977 		else
978 			*pool = 0ULL;
979 	}
980 
981 	if (refcnt) {
982 		if (found)
983 			*refcnt = found->aux_count;
984 		else
985 			*refcnt = 0;
986 	}
987 
988 	return (found != NULL);
989 }
990 
991 void
992 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
993 {
994 	spa_aux_t search, *found;
995 	avl_index_t where;
996 
997 	search.aux_guid = vd->vdev_guid;
998 	found = avl_find(avl, &search, &where);
999 	ASSERT(found != NULL);
1000 	ASSERT(found->aux_pool == 0ULL);
1001 
1002 	found->aux_pool = spa_guid(vd->vdev_spa);
1003 }
1004 
1005 /*
1006  * Spares are tracked globally due to the following constraints:
1007  *
1008  *	- A spare may be part of multiple pools.
1009  *	- A spare may be added to a pool even if it's actively in use within
1010  *	  another pool.
1011  *	- A spare in use in any pool can only be the source of a replacement if
1012  *	  the target is a spare in the same pool.
1013  *
1014  * We keep track of all spares on the system through the use of a reference
1015  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1016  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1017  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1018  * inactive).  When a spare is made active (used to replace a device in the
1019  * pool), we also keep track of which pool its been made a part of.
1020  *
1021  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1022  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1023  * separate spare lock exists for the status query path, which does not need to
1024  * be completely consistent with respect to other vdev configuration changes.
1025  */
1026 
1027 static int
1028 spa_spare_compare(const void *a, const void *b)
1029 {
1030 	return (spa_aux_compare(a, b));
1031 }
1032 
1033 void
1034 spa_spare_add(vdev_t *vd)
1035 {
1036 	mutex_enter(&spa_spare_lock);
1037 	ASSERT(!vd->vdev_isspare);
1038 	spa_aux_add(vd, &spa_spare_avl);
1039 	vd->vdev_isspare = B_TRUE;
1040 	mutex_exit(&spa_spare_lock);
1041 }
1042 
1043 void
1044 spa_spare_remove(vdev_t *vd)
1045 {
1046 	mutex_enter(&spa_spare_lock);
1047 	ASSERT(vd->vdev_isspare);
1048 	spa_aux_remove(vd, &spa_spare_avl);
1049 	vd->vdev_isspare = B_FALSE;
1050 	mutex_exit(&spa_spare_lock);
1051 }
1052 
1053 boolean_t
1054 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1055 {
1056 	boolean_t found;
1057 
1058 	mutex_enter(&spa_spare_lock);
1059 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1060 	mutex_exit(&spa_spare_lock);
1061 
1062 	return (found);
1063 }
1064 
1065 void
1066 spa_spare_activate(vdev_t *vd)
1067 {
1068 	mutex_enter(&spa_spare_lock);
1069 	ASSERT(vd->vdev_isspare);
1070 	spa_aux_activate(vd, &spa_spare_avl);
1071 	mutex_exit(&spa_spare_lock);
1072 }
1073 
1074 /*
1075  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1076  * Cache devices currently only support one pool per cache device, and so
1077  * for these devices the aux reference count is currently unused beyond 1.
1078  */
1079 
1080 static int
1081 spa_l2cache_compare(const void *a, const void *b)
1082 {
1083 	return (spa_aux_compare(a, b));
1084 }
1085 
1086 void
1087 spa_l2cache_add(vdev_t *vd)
1088 {
1089 	mutex_enter(&spa_l2cache_lock);
1090 	ASSERT(!vd->vdev_isl2cache);
1091 	spa_aux_add(vd, &spa_l2cache_avl);
1092 	vd->vdev_isl2cache = B_TRUE;
1093 	mutex_exit(&spa_l2cache_lock);
1094 }
1095 
1096 void
1097 spa_l2cache_remove(vdev_t *vd)
1098 {
1099 	mutex_enter(&spa_l2cache_lock);
1100 	ASSERT(vd->vdev_isl2cache);
1101 	spa_aux_remove(vd, &spa_l2cache_avl);
1102 	vd->vdev_isl2cache = B_FALSE;
1103 	mutex_exit(&spa_l2cache_lock);
1104 }
1105 
1106 boolean_t
1107 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1108 {
1109 	boolean_t found;
1110 
1111 	mutex_enter(&spa_l2cache_lock);
1112 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1113 	mutex_exit(&spa_l2cache_lock);
1114 
1115 	return (found);
1116 }
1117 
1118 void
1119 spa_l2cache_activate(vdev_t *vd)
1120 {
1121 	mutex_enter(&spa_l2cache_lock);
1122 	ASSERT(vd->vdev_isl2cache);
1123 	spa_aux_activate(vd, &spa_l2cache_avl);
1124 	mutex_exit(&spa_l2cache_lock);
1125 }
1126 
1127 /*
1128  * ==========================================================================
1129  * SPA vdev locking
1130  * ==========================================================================
1131  */
1132 
1133 /*
1134  * Lock the given spa_t for the purpose of adding or removing a vdev.
1135  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1136  * It returns the next transaction group for the spa_t.
1137  */
1138 uint64_t
1139 spa_vdev_enter(spa_t *spa)
1140 {
1141 	mutex_enter(&spa->spa_vdev_top_lock);
1142 	mutex_enter(&spa_namespace_lock);
1143 
1144 	vdev_autotrim_stop_all(spa);
1145 
1146 	return (spa_vdev_config_enter(spa));
1147 }
1148 
1149 /*
1150  * Internal implementation for spa_vdev_enter().  Used when a vdev
1151  * operation requires multiple syncs (i.e. removing a device) while
1152  * keeping the spa_namespace_lock held.
1153  */
1154 uint64_t
1155 spa_vdev_config_enter(spa_t *spa)
1156 {
1157 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1158 
1159 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1160 
1161 	return (spa_last_synced_txg(spa) + 1);
1162 }
1163 
1164 /*
1165  * Used in combination with spa_vdev_config_enter() to allow the syncing
1166  * of multiple transactions without releasing the spa_namespace_lock.
1167  */
1168 void
1169 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1170 {
1171 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1172 
1173 	int config_changed = B_FALSE;
1174 
1175 	ASSERT(txg > spa_last_synced_txg(spa));
1176 
1177 	spa->spa_pending_vdev = NULL;
1178 
1179 	/*
1180 	 * Reassess the DTLs.
1181 	 */
1182 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1183 
1184 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1185 		config_changed = B_TRUE;
1186 		spa->spa_config_generation++;
1187 	}
1188 
1189 	/*
1190 	 * Verify the metaslab classes.
1191 	 */
1192 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1193 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1194 	ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1195 	ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1196 
1197 	spa_config_exit(spa, SCL_ALL, spa);
1198 
1199 	/*
1200 	 * Panic the system if the specified tag requires it.  This
1201 	 * is useful for ensuring that configurations are updated
1202 	 * transactionally.
1203 	 */
1204 	if (zio_injection_enabled)
1205 		zio_handle_panic_injection(spa, tag, 0);
1206 
1207 	/*
1208 	 * Note: this txg_wait_synced() is important because it ensures
1209 	 * that there won't be more than one config change per txg.
1210 	 * This allows us to use the txg as the generation number.
1211 	 */
1212 	if (error == 0)
1213 		txg_wait_synced(spa->spa_dsl_pool, txg);
1214 
1215 	if (vd != NULL) {
1216 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1217 		if (vd->vdev_ops->vdev_op_leaf) {
1218 			mutex_enter(&vd->vdev_initialize_lock);
1219 			vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1220 			    NULL);
1221 			mutex_exit(&vd->vdev_initialize_lock);
1222 
1223 			mutex_enter(&vd->vdev_trim_lock);
1224 			vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1225 			mutex_exit(&vd->vdev_trim_lock);
1226 		}
1227 
1228 		/*
1229 		 * The vdev may be both a leaf and top-level device.
1230 		 */
1231 		vdev_autotrim_stop_wait(vd);
1232 
1233 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1234 		vdev_free(vd);
1235 		spa_config_exit(spa, SCL_ALL, spa);
1236 	}
1237 
1238 	/*
1239 	 * If the config changed, update the config cache.
1240 	 */
1241 	if (config_changed)
1242 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1243 }
1244 
1245 /*
1246  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1247  * locking of spa_vdev_enter(), we also want make sure the transactions have
1248  * synced to disk, and then update the global configuration cache with the new
1249  * information.
1250  */
1251 int
1252 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1253 {
1254 	vdev_autotrim_restart(spa);
1255 
1256 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1257 	mutex_exit(&spa_namespace_lock);
1258 	mutex_exit(&spa->spa_vdev_top_lock);
1259 
1260 	return (error);
1261 }
1262 
1263 /*
1264  * Lock the given spa_t for the purpose of changing vdev state.
1265  */
1266 void
1267 spa_vdev_state_enter(spa_t *spa, int oplocks)
1268 {
1269 	int locks = SCL_STATE_ALL | oplocks;
1270 
1271 	/*
1272 	 * Root pools may need to read of the underlying devfs filesystem
1273 	 * when opening up a vdev.  Unfortunately if we're holding the
1274 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1275 	 * the read from the root filesystem.  Instead we "prefetch"
1276 	 * the associated vnodes that we need prior to opening the
1277 	 * underlying devices and cache them so that we can prevent
1278 	 * any I/O when we are doing the actual open.
1279 	 */
1280 	if (spa_is_root(spa)) {
1281 		int low = locks & ~(SCL_ZIO - 1);
1282 		int high = locks & ~low;
1283 
1284 		spa_config_enter(spa, high, spa, RW_WRITER);
1285 		vdev_hold(spa->spa_root_vdev);
1286 		spa_config_enter(spa, low, spa, RW_WRITER);
1287 	} else {
1288 		spa_config_enter(spa, locks, spa, RW_WRITER);
1289 	}
1290 	spa->spa_vdev_locks = locks;
1291 }
1292 
1293 int
1294 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1295 {
1296 	boolean_t config_changed = B_FALSE;
1297 
1298 	if (vd != NULL || error == 0)
1299 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1300 		    0, 0, B_FALSE);
1301 
1302 	if (vd != NULL) {
1303 		vdev_state_dirty(vd->vdev_top);
1304 		config_changed = B_TRUE;
1305 		spa->spa_config_generation++;
1306 	}
1307 
1308 	if (spa_is_root(spa))
1309 		vdev_rele(spa->spa_root_vdev);
1310 
1311 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1312 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1313 
1314 	/*
1315 	 * If anything changed, wait for it to sync.  This ensures that,
1316 	 * from the system administrator's perspective, zpool(1M) commands
1317 	 * are synchronous.  This is important for things like zpool offline:
1318 	 * when the command completes, you expect no further I/O from ZFS.
1319 	 */
1320 	if (vd != NULL)
1321 		txg_wait_synced(spa->spa_dsl_pool, 0);
1322 
1323 	/*
1324 	 * If the config changed, update the config cache.
1325 	 */
1326 	if (config_changed) {
1327 		mutex_enter(&spa_namespace_lock);
1328 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
1329 		mutex_exit(&spa_namespace_lock);
1330 	}
1331 
1332 	return (error);
1333 }
1334 
1335 /*
1336  * ==========================================================================
1337  * Miscellaneous functions
1338  * ==========================================================================
1339  */
1340 
1341 void
1342 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1343 {
1344 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1345 		fnvlist_add_boolean(spa->spa_label_features, feature);
1346 		/*
1347 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1348 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1349 		 * Thankfully, in this case we don't need to dirty the config
1350 		 * because it will be written out anyway when we finish
1351 		 * creating the pool.
1352 		 */
1353 		if (tx->tx_txg != TXG_INITIAL)
1354 			vdev_config_dirty(spa->spa_root_vdev);
1355 	}
1356 }
1357 
1358 void
1359 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1360 {
1361 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1362 		vdev_config_dirty(spa->spa_root_vdev);
1363 }
1364 
1365 /*
1366  * Return the spa_t associated with given pool_guid, if it exists.  If
1367  * device_guid is non-zero, determine whether the pool exists *and* contains
1368  * a device with the specified device_guid.
1369  */
1370 spa_t *
1371 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1372 {
1373 	spa_t *spa;
1374 	avl_tree_t *t = &spa_namespace_avl;
1375 
1376 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1377 
1378 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1379 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1380 			continue;
1381 		if (spa->spa_root_vdev == NULL)
1382 			continue;
1383 		if (spa_guid(spa) == pool_guid) {
1384 			if (device_guid == 0)
1385 				break;
1386 
1387 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1388 			    device_guid) != NULL)
1389 				break;
1390 
1391 			/*
1392 			 * Check any devices we may be in the process of adding.
1393 			 */
1394 			if (spa->spa_pending_vdev) {
1395 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1396 				    device_guid) != NULL)
1397 					break;
1398 			}
1399 		}
1400 	}
1401 
1402 	return (spa);
1403 }
1404 
1405 /*
1406  * Determine whether a pool with the given pool_guid exists.
1407  */
1408 boolean_t
1409 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1410 {
1411 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1412 }
1413 
1414 char *
1415 spa_strdup(const char *s)
1416 {
1417 	size_t len;
1418 	char *new;
1419 
1420 	len = strlen(s);
1421 	new = kmem_alloc(len + 1, KM_SLEEP);
1422 	bcopy(s, new, len);
1423 	new[len] = '\0';
1424 
1425 	return (new);
1426 }
1427 
1428 void
1429 spa_strfree(char *s)
1430 {
1431 	kmem_free(s, strlen(s) + 1);
1432 }
1433 
1434 uint64_t
1435 spa_get_random(uint64_t range)
1436 {
1437 	uint64_t r;
1438 
1439 	ASSERT(range != 0);
1440 
1441 	if (range == 1)
1442 		return (0);
1443 
1444 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1445 
1446 	return (r % range);
1447 }
1448 
1449 uint64_t
1450 spa_generate_guid(spa_t *spa)
1451 {
1452 	uint64_t guid = spa_get_random(-1ULL);
1453 
1454 	if (spa != NULL) {
1455 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1456 			guid = spa_get_random(-1ULL);
1457 	} else {
1458 		while (guid == 0 || spa_guid_exists(guid, 0))
1459 			guid = spa_get_random(-1ULL);
1460 	}
1461 
1462 	return (guid);
1463 }
1464 
1465 void
1466 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1467 {
1468 	char type[256];
1469 	char *checksum = NULL;
1470 	char *compress = NULL;
1471 
1472 	if (bp != NULL) {
1473 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1474 			dmu_object_byteswap_t bswap =
1475 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1476 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1477 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1478 			    "metadata" : "data",
1479 			    dmu_ot_byteswap[bswap].ob_name);
1480 		} else {
1481 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1482 			    sizeof (type));
1483 		}
1484 		if (!BP_IS_EMBEDDED(bp)) {
1485 			checksum =
1486 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1487 		}
1488 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1489 	}
1490 
1491 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1492 	    compress);
1493 }
1494 
1495 void
1496 spa_freeze(spa_t *spa)
1497 {
1498 	uint64_t freeze_txg = 0;
1499 
1500 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1501 	if (spa->spa_freeze_txg == UINT64_MAX) {
1502 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1503 		spa->spa_freeze_txg = freeze_txg;
1504 	}
1505 	spa_config_exit(spa, SCL_ALL, FTAG);
1506 	if (freeze_txg != 0)
1507 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1508 }
1509 
1510 void
1511 zfs_panic_recover(const char *fmt, ...)
1512 {
1513 	va_list adx;
1514 
1515 	va_start(adx, fmt);
1516 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1517 	va_end(adx);
1518 }
1519 
1520 /*
1521  * This is a stripped-down version of strtoull, suitable only for converting
1522  * lowercase hexadecimal numbers that don't overflow.
1523  */
1524 uint64_t
1525 zfs_strtonum(const char *str, char **nptr)
1526 {
1527 	uint64_t val = 0;
1528 	char c;
1529 	int digit;
1530 
1531 	while ((c = *str) != '\0') {
1532 		if (c >= '0' && c <= '9')
1533 			digit = c - '0';
1534 		else if (c >= 'a' && c <= 'f')
1535 			digit = 10 + c - 'a';
1536 		else
1537 			break;
1538 
1539 		val *= 16;
1540 		val += digit;
1541 
1542 		str++;
1543 	}
1544 
1545 	if (nptr)
1546 		*nptr = (char *)str;
1547 
1548 	return (val);
1549 }
1550 
1551 void
1552 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1553 {
1554 	/*
1555 	 * We bump the feature refcount for each special vdev added to the pool
1556 	 */
1557 	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1558 	spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1559 }
1560 
1561 /*
1562  * ==========================================================================
1563  * Accessor functions
1564  * ==========================================================================
1565  */
1566 
1567 boolean_t
1568 spa_shutting_down(spa_t *spa)
1569 {
1570 	return (spa->spa_async_suspended);
1571 }
1572 
1573 dsl_pool_t *
1574 spa_get_dsl(spa_t *spa)
1575 {
1576 	return (spa->spa_dsl_pool);
1577 }
1578 
1579 boolean_t
1580 spa_is_initializing(spa_t *spa)
1581 {
1582 	return (spa->spa_is_initializing);
1583 }
1584 
1585 boolean_t
1586 spa_indirect_vdevs_loaded(spa_t *spa)
1587 {
1588 	return (spa->spa_indirect_vdevs_loaded);
1589 }
1590 
1591 blkptr_t *
1592 spa_get_rootblkptr(spa_t *spa)
1593 {
1594 	return (&spa->spa_ubsync.ub_rootbp);
1595 }
1596 
1597 void
1598 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1599 {
1600 	spa->spa_uberblock.ub_rootbp = *bp;
1601 }
1602 
1603 void
1604 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1605 {
1606 	if (spa->spa_root == NULL)
1607 		buf[0] = '\0';
1608 	else
1609 		(void) strncpy(buf, spa->spa_root, buflen);
1610 }
1611 
1612 int
1613 spa_sync_pass(spa_t *spa)
1614 {
1615 	return (spa->spa_sync_pass);
1616 }
1617 
1618 char *
1619 spa_name(spa_t *spa)
1620 {
1621 	return (spa->spa_name);
1622 }
1623 
1624 uint64_t
1625 spa_guid(spa_t *spa)
1626 {
1627 	dsl_pool_t *dp = spa_get_dsl(spa);
1628 	uint64_t guid;
1629 
1630 	/*
1631 	 * If we fail to parse the config during spa_load(), we can go through
1632 	 * the error path (which posts an ereport) and end up here with no root
1633 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1634 	 * this case.
1635 	 */
1636 	if (spa->spa_root_vdev == NULL)
1637 		return (spa->spa_config_guid);
1638 
1639 	guid = spa->spa_last_synced_guid != 0 ?
1640 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1641 
1642 	/*
1643 	 * Return the most recently synced out guid unless we're
1644 	 * in syncing context.
1645 	 */
1646 	if (dp && dsl_pool_sync_context(dp))
1647 		return (spa->spa_root_vdev->vdev_guid);
1648 	else
1649 		return (guid);
1650 }
1651 
1652 uint64_t
1653 spa_load_guid(spa_t *spa)
1654 {
1655 	/*
1656 	 * This is a GUID that exists solely as a reference for the
1657 	 * purposes of the arc.  It is generated at load time, and
1658 	 * is never written to persistent storage.
1659 	 */
1660 	return (spa->spa_load_guid);
1661 }
1662 
1663 uint64_t
1664 spa_last_synced_txg(spa_t *spa)
1665 {
1666 	return (spa->spa_ubsync.ub_txg);
1667 }
1668 
1669 uint64_t
1670 spa_first_txg(spa_t *spa)
1671 {
1672 	return (spa->spa_first_txg);
1673 }
1674 
1675 uint64_t
1676 spa_syncing_txg(spa_t *spa)
1677 {
1678 	return (spa->spa_syncing_txg);
1679 }
1680 
1681 /*
1682  * Return the last txg where data can be dirtied. The final txgs
1683  * will be used to just clear out any deferred frees that remain.
1684  */
1685 uint64_t
1686 spa_final_dirty_txg(spa_t *spa)
1687 {
1688 	return (spa->spa_final_txg - TXG_DEFER_SIZE);
1689 }
1690 
1691 pool_state_t
1692 spa_state(spa_t *spa)
1693 {
1694 	return (spa->spa_state);
1695 }
1696 
1697 spa_load_state_t
1698 spa_load_state(spa_t *spa)
1699 {
1700 	return (spa->spa_load_state);
1701 }
1702 
1703 uint64_t
1704 spa_freeze_txg(spa_t *spa)
1705 {
1706 	return (spa->spa_freeze_txg);
1707 }
1708 
1709 /* ARGSUSED */
1710 uint64_t
1711 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1712 {
1713 	return (lsize * spa_asize_inflation);
1714 }
1715 
1716 /*
1717  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1718  * or at least 128MB, unless that would cause it to be more than half the
1719  * pool size.
1720  *
1721  * See the comment above spa_slop_shift for details.
1722  */
1723 uint64_t
1724 spa_get_slop_space(spa_t *spa)
1725 {
1726 	uint64_t space = spa_get_dspace(spa);
1727 	return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1728 }
1729 
1730 uint64_t
1731 spa_get_dspace(spa_t *spa)
1732 {
1733 	return (spa->spa_dspace);
1734 }
1735 
1736 uint64_t
1737 spa_get_checkpoint_space(spa_t *spa)
1738 {
1739 	return (spa->spa_checkpoint_info.sci_dspace);
1740 }
1741 
1742 void
1743 spa_update_dspace(spa_t *spa)
1744 {
1745 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1746 	    ddt_get_dedup_dspace(spa);
1747 	if (spa->spa_vdev_removal != NULL) {
1748 		/*
1749 		 * We can't allocate from the removing device, so
1750 		 * subtract its size.  This prevents the DMU/DSL from
1751 		 * filling up the (now smaller) pool while we are in the
1752 		 * middle of removing the device.
1753 		 *
1754 		 * Note that the DMU/DSL doesn't actually know or care
1755 		 * how much space is allocated (it does its own tracking
1756 		 * of how much space has been logically used).  So it
1757 		 * doesn't matter that the data we are moving may be
1758 		 * allocated twice (on the old device and the new
1759 		 * device).
1760 		 */
1761 		spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1762 		vdev_t *vd =
1763 		    vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1764 		spa->spa_dspace -= spa_deflate(spa) ?
1765 		    vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1766 		spa_config_exit(spa, SCL_VDEV, FTAG);
1767 	}
1768 }
1769 
1770 /*
1771  * Return the failure mode that has been set to this pool. The default
1772  * behavior will be to block all I/Os when a complete failure occurs.
1773  */
1774 uint8_t
1775 spa_get_failmode(spa_t *spa)
1776 {
1777 	return (spa->spa_failmode);
1778 }
1779 
1780 boolean_t
1781 spa_suspended(spa_t *spa)
1782 {
1783 	return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1784 }
1785 
1786 uint64_t
1787 spa_version(spa_t *spa)
1788 {
1789 	return (spa->spa_ubsync.ub_version);
1790 }
1791 
1792 boolean_t
1793 spa_deflate(spa_t *spa)
1794 {
1795 	return (spa->spa_deflate);
1796 }
1797 
1798 metaslab_class_t *
1799 spa_normal_class(spa_t *spa)
1800 {
1801 	return (spa->spa_normal_class);
1802 }
1803 
1804 metaslab_class_t *
1805 spa_log_class(spa_t *spa)
1806 {
1807 	return (spa->spa_log_class);
1808 }
1809 
1810 metaslab_class_t *
1811 spa_special_class(spa_t *spa)
1812 {
1813 	return (spa->spa_special_class);
1814 }
1815 
1816 metaslab_class_t *
1817 spa_dedup_class(spa_t *spa)
1818 {
1819 	return (spa->spa_dedup_class);
1820 }
1821 
1822 /*
1823  * Locate an appropriate allocation class
1824  */
1825 metaslab_class_t *
1826 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1827     uint_t level, uint_t special_smallblk)
1828 {
1829 	if (DMU_OT_IS_ZIL(objtype)) {
1830 		if (spa->spa_log_class->mc_groups != 0)
1831 			return (spa_log_class(spa));
1832 		else
1833 			return (spa_normal_class(spa));
1834 	}
1835 
1836 	boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1837 
1838 	if (DMU_OT_IS_DDT(objtype)) {
1839 		if (spa->spa_dedup_class->mc_groups != 0)
1840 			return (spa_dedup_class(spa));
1841 		else if (has_special_class && zfs_ddt_data_is_special)
1842 			return (spa_special_class(spa));
1843 		else
1844 			return (spa_normal_class(spa));
1845 	}
1846 
1847 	/* Indirect blocks for user data can land in special if allowed */
1848 	if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1849 		if (has_special_class && zfs_user_indirect_is_special)
1850 			return (spa_special_class(spa));
1851 		else
1852 			return (spa_normal_class(spa));
1853 	}
1854 
1855 	if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1856 		if (has_special_class)
1857 			return (spa_special_class(spa));
1858 		else
1859 			return (spa_normal_class(spa));
1860 	}
1861 
1862 	/*
1863 	 * Allow small file blocks in special class in some cases (like
1864 	 * for the dRAID vdev feature). But always leave a reserve of
1865 	 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1866 	 */
1867 	if (DMU_OT_IS_FILE(objtype) &&
1868 	    has_special_class && size <= special_smallblk) {
1869 		metaslab_class_t *special = spa_special_class(spa);
1870 		uint64_t alloc = metaslab_class_get_alloc(special);
1871 		uint64_t space = metaslab_class_get_space(special);
1872 		uint64_t limit =
1873 		    (space * (100 - zfs_special_class_metadata_reserve_pct))
1874 		    / 100;
1875 
1876 		if (alloc < limit)
1877 			return (special);
1878 	}
1879 
1880 	return (spa_normal_class(spa));
1881 }
1882 
1883 void
1884 spa_evicting_os_register(spa_t *spa, objset_t *os)
1885 {
1886 	mutex_enter(&spa->spa_evicting_os_lock);
1887 	list_insert_head(&spa->spa_evicting_os_list, os);
1888 	mutex_exit(&spa->spa_evicting_os_lock);
1889 }
1890 
1891 void
1892 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1893 {
1894 	mutex_enter(&spa->spa_evicting_os_lock);
1895 	list_remove(&spa->spa_evicting_os_list, os);
1896 	cv_broadcast(&spa->spa_evicting_os_cv);
1897 	mutex_exit(&spa->spa_evicting_os_lock);
1898 }
1899 
1900 void
1901 spa_evicting_os_wait(spa_t *spa)
1902 {
1903 	mutex_enter(&spa->spa_evicting_os_lock);
1904 	while (!list_is_empty(&spa->spa_evicting_os_list))
1905 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1906 	mutex_exit(&spa->spa_evicting_os_lock);
1907 
1908 	dmu_buf_user_evict_wait();
1909 }
1910 
1911 int
1912 spa_max_replication(spa_t *spa)
1913 {
1914 	/*
1915 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1916 	 * handle BPs with more than one DVA allocated.  Set our max
1917 	 * replication level accordingly.
1918 	 */
1919 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1920 		return (1);
1921 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1922 }
1923 
1924 int
1925 spa_prev_software_version(spa_t *spa)
1926 {
1927 	return (spa->spa_prev_software_version);
1928 }
1929 
1930 uint64_t
1931 spa_deadman_synctime(spa_t *spa)
1932 {
1933 	return (spa->spa_deadman_synctime);
1934 }
1935 
1936 spa_autotrim_t
1937 spa_get_autotrim(spa_t *spa)
1938 {
1939 	return (spa->spa_autotrim);
1940 }
1941 
1942 uint64_t
1943 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1944 {
1945 	uint64_t asize = DVA_GET_ASIZE(dva);
1946 	uint64_t dsize = asize;
1947 
1948 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1949 
1950 	if (asize != 0 && spa->spa_deflate) {
1951 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1952 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1953 	}
1954 
1955 	return (dsize);
1956 }
1957 
1958 uint64_t
1959 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1960 {
1961 	uint64_t dsize = 0;
1962 
1963 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1964 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1965 
1966 	return (dsize);
1967 }
1968 
1969 uint64_t
1970 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1971 {
1972 	uint64_t dsize = 0;
1973 
1974 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1975 
1976 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1977 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1978 
1979 	spa_config_exit(spa, SCL_VDEV, FTAG);
1980 
1981 	return (dsize);
1982 }
1983 
1984 uint64_t
1985 spa_dirty_data(spa_t *spa)
1986 {
1987 	return (spa->spa_dsl_pool->dp_dirty_total);
1988 }
1989 
1990 /*
1991  * ==========================================================================
1992  * Initialization and Termination
1993  * ==========================================================================
1994  */
1995 
1996 static int
1997 spa_name_compare(const void *a1, const void *a2)
1998 {
1999 	const spa_t *s1 = a1;
2000 	const spa_t *s2 = a2;
2001 	int s;
2002 
2003 	s = strcmp(s1->spa_name, s2->spa_name);
2004 
2005 	return (AVL_ISIGN(s));
2006 }
2007 
2008 int
2009 spa_busy(void)
2010 {
2011 	return (spa_active_count);
2012 }
2013 
2014 void
2015 spa_boot_init()
2016 {
2017 	spa_config_load();
2018 }
2019 
2020 void
2021 spa_init(int mode)
2022 {
2023 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2024 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2025 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2026 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2027 
2028 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2029 	    offsetof(spa_t, spa_avl));
2030 
2031 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2032 	    offsetof(spa_aux_t, aux_avl));
2033 
2034 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2035 	    offsetof(spa_aux_t, aux_avl));
2036 
2037 	spa_mode_global = mode;
2038 
2039 #ifdef _KERNEL
2040 	spa_arch_init();
2041 #else
2042 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
2043 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
2044 		if (arc_procfd == -1) {
2045 			perror("could not enable watchpoints: "
2046 			    "opening /proc/self/ctl failed: ");
2047 		} else {
2048 			arc_watch = B_TRUE;
2049 		}
2050 	}
2051 #endif
2052 
2053 	zfs_refcount_init();
2054 	unique_init();
2055 	range_tree_init();
2056 	metaslab_alloc_trace_init();
2057 	zio_init();
2058 	dmu_init();
2059 	zil_init();
2060 	vdev_cache_stat_init();
2061 	vdev_mirror_stat_init();
2062 	zfs_prop_init();
2063 	zpool_prop_init();
2064 	zpool_feature_init();
2065 	spa_config_load();
2066 	l2arc_start();
2067 	scan_init();
2068 }
2069 
2070 void
2071 spa_fini(void)
2072 {
2073 	l2arc_stop();
2074 
2075 	spa_evict_all();
2076 
2077 	vdev_cache_stat_fini();
2078 	vdev_mirror_stat_fini();
2079 	zil_fini();
2080 	dmu_fini();
2081 	zio_fini();
2082 	metaslab_alloc_trace_fini();
2083 	range_tree_fini();
2084 	unique_fini();
2085 	zfs_refcount_fini();
2086 	scan_fini();
2087 
2088 	avl_destroy(&spa_namespace_avl);
2089 	avl_destroy(&spa_spare_avl);
2090 	avl_destroy(&spa_l2cache_avl);
2091 
2092 	cv_destroy(&spa_namespace_cv);
2093 	mutex_destroy(&spa_namespace_lock);
2094 	mutex_destroy(&spa_spare_lock);
2095 	mutex_destroy(&spa_l2cache_lock);
2096 }
2097 
2098 /*
2099  * Return whether this pool has slogs. No locking needed.
2100  * It's not a problem if the wrong answer is returned as it's only for
2101  * performance and not correctness
2102  */
2103 boolean_t
2104 spa_has_slogs(spa_t *spa)
2105 {
2106 	return (spa->spa_log_class->mc_rotor != NULL);
2107 }
2108 
2109 spa_log_state_t
2110 spa_get_log_state(spa_t *spa)
2111 {
2112 	return (spa->spa_log_state);
2113 }
2114 
2115 void
2116 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2117 {
2118 	spa->spa_log_state = state;
2119 }
2120 
2121 boolean_t
2122 spa_is_root(spa_t *spa)
2123 {
2124 	return (spa->spa_is_root);
2125 }
2126 
2127 boolean_t
2128 spa_writeable(spa_t *spa)
2129 {
2130 	return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2131 }
2132 
2133 /*
2134  * Returns true if there is a pending sync task in any of the current
2135  * syncing txg, the current quiescing txg, or the current open txg.
2136  */
2137 boolean_t
2138 spa_has_pending_synctask(spa_t *spa)
2139 {
2140 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2141 	    !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2142 }
2143 
2144 int
2145 spa_mode(spa_t *spa)
2146 {
2147 	return (spa->spa_mode);
2148 }
2149 
2150 uint64_t
2151 spa_bootfs(spa_t *spa)
2152 {
2153 	return (spa->spa_bootfs);
2154 }
2155 
2156 uint64_t
2157 spa_delegation(spa_t *spa)
2158 {
2159 	return (spa->spa_delegation);
2160 }
2161 
2162 objset_t *
2163 spa_meta_objset(spa_t *spa)
2164 {
2165 	return (spa->spa_meta_objset);
2166 }
2167 
2168 enum zio_checksum
2169 spa_dedup_checksum(spa_t *spa)
2170 {
2171 	return (spa->spa_dedup_checksum);
2172 }
2173 
2174 /*
2175  * Reset pool scan stat per scan pass (or reboot).
2176  */
2177 void
2178 spa_scan_stat_init(spa_t *spa)
2179 {
2180 	/* data not stored on disk */
2181 	spa->spa_scan_pass_start = gethrestime_sec();
2182 	if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2183 		spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2184 	else
2185 		spa->spa_scan_pass_scrub_pause = 0;
2186 	spa->spa_scan_pass_scrub_spent_paused = 0;
2187 	spa->spa_scan_pass_exam = 0;
2188 	spa->spa_scan_pass_issued = 0;
2189 	vdev_scan_stat_init(spa->spa_root_vdev);
2190 }
2191 
2192 /*
2193  * Get scan stats for zpool status reports
2194  */
2195 int
2196 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2197 {
2198 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2199 
2200 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2201 		return (SET_ERROR(ENOENT));
2202 	bzero(ps, sizeof (pool_scan_stat_t));
2203 
2204 	/* data stored on disk */
2205 	ps->pss_func = scn->scn_phys.scn_func;
2206 	ps->pss_state = scn->scn_phys.scn_state;
2207 	ps->pss_start_time = scn->scn_phys.scn_start_time;
2208 	ps->pss_end_time = scn->scn_phys.scn_end_time;
2209 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2210 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2211 	ps->pss_processed = scn->scn_phys.scn_processed;
2212 	ps->pss_errors = scn->scn_phys.scn_errors;
2213 	ps->pss_examined = scn->scn_phys.scn_examined;
2214 	ps->pss_issued =
2215 	    scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2216 	ps->pss_state = scn->scn_phys.scn_state;
2217 
2218 	/* data not stored on disk */
2219 	ps->pss_pass_start = spa->spa_scan_pass_start;
2220 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2221 	ps->pss_pass_issued = spa->spa_scan_pass_issued;
2222 	ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2223 	ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2224 
2225 	return (0);
2226 }
2227 
2228 int
2229 spa_maxblocksize(spa_t *spa)
2230 {
2231 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2232 		return (SPA_MAXBLOCKSIZE);
2233 	else
2234 		return (SPA_OLD_MAXBLOCKSIZE);
2235 }
2236 
2237 int
2238 spa_maxdnodesize(spa_t *spa)
2239 {
2240 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2241 		return (DNODE_MAX_SIZE);
2242 	else
2243 		return (DNODE_MIN_SIZE);
2244 }
2245 
2246 boolean_t
2247 spa_multihost(spa_t *spa)
2248 {
2249 	return (spa->spa_multihost ? B_TRUE : B_FALSE);
2250 }
2251 
2252 unsigned long
2253 spa_get_hostid(void)
2254 {
2255 	unsigned long myhostid;
2256 
2257 #ifdef	_KERNEL
2258 	myhostid = zone_get_hostid(NULL);
2259 #else	/* _KERNEL */
2260 	/*
2261 	 * We're emulating the system's hostid in userland, so
2262 	 * we can't use zone_get_hostid().
2263 	 */
2264 	(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2265 #endif	/* _KERNEL */
2266 
2267 	return (myhostid);
2268 }
2269 
2270 /*
2271  * Returns the txg that the last device removal completed. No indirect mappings
2272  * have been added since this txg.
2273  */
2274 uint64_t
2275 spa_get_last_removal_txg(spa_t *spa)
2276 {
2277 	uint64_t vdevid;
2278 	uint64_t ret = -1ULL;
2279 
2280 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2281 	/*
2282 	 * sr_prev_indirect_vdev is only modified while holding all the
2283 	 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2284 	 * examining it.
2285 	 */
2286 	vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2287 
2288 	while (vdevid != -1ULL) {
2289 		vdev_t *vd = vdev_lookup_top(spa, vdevid);
2290 		vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2291 
2292 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2293 
2294 		/*
2295 		 * If the removal did not remap any data, we don't care.
2296 		 */
2297 		if (vdev_indirect_births_count(vib) != 0) {
2298 			ret = vdev_indirect_births_last_entry_txg(vib);
2299 			break;
2300 		}
2301 
2302 		vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2303 	}
2304 	spa_config_exit(spa, SCL_VDEV, FTAG);
2305 
2306 	IMPLY(ret != -1ULL,
2307 	    spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2308 
2309 	return (ret);
2310 }
2311 
2312 boolean_t
2313 spa_trust_config(spa_t *spa)
2314 {
2315 	return (spa->spa_trust_config);
2316 }
2317 
2318 uint64_t
2319 spa_missing_tvds_allowed(spa_t *spa)
2320 {
2321 	return (spa->spa_missing_tvds_allowed);
2322 }
2323 
2324 void
2325 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2326 {
2327 	spa->spa_missing_tvds = missing;
2328 }
2329 
2330 boolean_t
2331 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2332 {
2333 	vdev_t *rvd = spa->spa_root_vdev;
2334 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2335 		if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2336 			return (B_FALSE);
2337 	}
2338 	return (B_TRUE);
2339 }
2340 
2341 boolean_t
2342 spa_has_checkpoint(spa_t *spa)
2343 {
2344 	return (spa->spa_checkpoint_txg != 0);
2345 }
2346 
2347 boolean_t
2348 spa_importing_readonly_checkpoint(spa_t *spa)
2349 {
2350 	return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2351 	    spa->spa_mode == FREAD);
2352 }
2353 
2354 uint64_t
2355 spa_min_claim_txg(spa_t *spa)
2356 {
2357 	uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2358 
2359 	if (checkpoint_txg != 0)
2360 		return (checkpoint_txg + 1);
2361 
2362 	return (spa->spa_first_txg);
2363 }
2364 
2365 /*
2366  * If there is a checkpoint, async destroys may consume more space from
2367  * the pool instead of freeing it. In an attempt to save the pool from
2368  * getting suspended when it is about to run out of space, we stop
2369  * processing async destroys.
2370  */
2371 boolean_t
2372 spa_suspend_async_destroy(spa_t *spa)
2373 {
2374 	dsl_pool_t *dp = spa_get_dsl(spa);
2375 
2376 	uint64_t unreserved = dsl_pool_unreserved_space(dp,
2377 	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
2378 	uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2379 	uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2380 
2381 	if (spa_has_checkpoint(spa) && avail == 0)
2382 		return (B_TRUE);
2383 
2384 	return (B_FALSE);
2385 }
2386