xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa_misc.c (revision 0125049cd6136d1d2ca9e982382a915b6d7916ce)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 
48 /*
49  * SPA locking
50  *
51  * There are four basic locks for managing spa_t structures:
52  *
53  * spa_namespace_lock (global mutex)
54  *
55  *	This lock must be acquired to do any of the following:
56  *
57  *		- Lookup a spa_t by name
58  *		- Add or remove a spa_t from the namespace
59  *		- Increase spa_refcount from non-zero
60  *		- Check if spa_refcount is zero
61  *		- Rename a spa_t
62  *		- add/remove/attach/detach devices
63  *		- Held for the duration of create/destroy/import/export
64  *
65  *	It does not need to handle recursion.  A create or destroy may
66  *	reference objects (files or zvols) in other pools, but by
67  *	definition they must have an existing reference, and will never need
68  *	to lookup a spa_t by name.
69  *
70  * spa_refcount (per-spa refcount_t protected by mutex)
71  *
72  *	This reference count keep track of any active users of the spa_t.  The
73  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
74  *	the refcount is never really 'zero' - opening a pool implicitly keeps
75  *	some references in the DMU.  Internally we check against SPA_MINREF, but
76  *	present the image of a zero/non-zero value to consumers.
77  *
78  * spa_config_lock (per-spa crazy rwlock)
79  *
80  *	This SPA special is a recursive rwlock, capable of being acquired from
81  *	asynchronous threads.  It has protects the spa_t from config changes,
82  *	and must be held in the following circumstances:
83  *
84  *		- RW_READER to perform I/O to the spa
85  *		- RW_WRITER to change the vdev config
86  *
87  * spa_config_cache_lock (per-spa mutex)
88  *
89  *	This mutex prevents the spa_config nvlist from being updated.  No
90  *      other locks are required to obtain this lock, although implicitly you
91  *      must have the namespace lock or non-zero refcount to have any kind
92  *      of spa_t pointer at all.
93  *
94  * The locking order is fairly straightforward:
95  *
96  *		spa_namespace_lock	->	spa_refcount
97  *
98  *	The namespace lock must be acquired to increase the refcount from 0
99  *	or to check if it is zero.
100  *
101  *		spa_refcount		->	spa_config_lock
102  *
103  *	There must be at least one valid reference on the spa_t to acquire
104  *	the config lock.
105  *
106  *		spa_namespace_lock	->	spa_config_lock
107  *
108  *	The namespace lock must always be taken before the config lock.
109  *
110  *
111  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
112  * are globally visible.
113  *
114  * The namespace is manipulated using the following functions, all which require
115  * the spa_namespace_lock to be held.
116  *
117  *	spa_lookup()		Lookup a spa_t by name.
118  *
119  *	spa_add()		Create a new spa_t in the namespace.
120  *
121  *	spa_remove()		Remove a spa_t from the namespace.  This also
122  *				frees up any memory associated with the spa_t.
123  *
124  *	spa_next()		Returns the next spa_t in the system, or the
125  *				first if NULL is passed.
126  *
127  *	spa_evict_all()		Shutdown and remove all spa_t structures in
128  *				the system.
129  *
130  *	spa_guid_exists()	Determine whether a pool/device guid exists.
131  *
132  * The spa_refcount is manipulated using the following functions:
133  *
134  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135  *				called with spa_namespace_lock held if the
136  *				refcount is currently zero.
137  *
138  *	spa_close()		Remove a reference from the spa_t.  This will
139  *				not free the spa_t or remove it from the
140  *				namespace.  No locking is required.
141  *
142  *	spa_refcount_zero()	Returns true if the refcount is currently
143  *				zero.  Must be called with spa_namespace_lock
144  *				held.
145  *
146  * The spa_config_lock is manipulated using the following functions:
147  *
148  *	spa_config_enter()	Acquire the config lock as RW_READER or
149  *				RW_WRITER.  At least one reference on the spa_t
150  *				must exist.
151  *
152  *	spa_config_exit()	Release the config lock.
153  *
154  *	spa_config_held()	Returns true if the config lock is currently
155  *				held in the given state.
156  *
157  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
158  *
159  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
160  *				for writing.
161  *
162  *	spa_vdev_exit()		Release the config lock, wait for all I/O
163  *				to complete, sync the updated configs to the
164  *				cache, and release the namespace lock.
165  *
166  * The spa_name() function also requires either the spa_namespace_lock
167  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
168  * also implemented within this file since is requires manipulation of the
169  * namespace.
170  */
171 
172 static avl_tree_t spa_namespace_avl;
173 kmutex_t spa_namespace_lock;
174 static kcondvar_t spa_namespace_cv;
175 static int spa_active_count;
176 int spa_max_replication_override = SPA_DVAS_PER_BP;
177 
178 static kmutex_t spa_spare_lock;
179 static avl_tree_t spa_spare_avl;
180 
181 kmem_cache_t *spa_buffer_pool;
182 int spa_mode;
183 
184 #ifdef ZFS_DEBUG
185 int zfs_flags = ~0;
186 #else
187 int zfs_flags = 0;
188 #endif
189 
190 /*
191  * zfs_recover can be set to nonzero to attempt to recover from
192  * otherwise-fatal errors, typically caused by on-disk corruption.  When
193  * set, calls to zfs_panic_recover() will turn into warning messages.
194  */
195 int zfs_recover = 0;
196 
197 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
198 
199 /*
200  * ==========================================================================
201  * SPA namespace functions
202  * ==========================================================================
203  */
204 
205 /*
206  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
207  * Returns NULL if no matching spa_t is found.
208  */
209 spa_t *
210 spa_lookup(const char *name)
211 {
212 	spa_t search, *spa;
213 	avl_index_t where;
214 
215 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
216 
217 	search.spa_name = (char *)name;
218 	spa = avl_find(&spa_namespace_avl, &search, &where);
219 
220 	return (spa);
221 }
222 
223 /*
224  * Create an uninitialized spa_t with the given name.  Requires
225  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
226  * exist by calling spa_lookup() first.
227  */
228 spa_t *
229 spa_add(const char *name, const char *altroot)
230 {
231 	spa_t *spa;
232 
233 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
234 
235 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
236 
237 	spa->spa_name = spa_strdup(name);
238 	spa->spa_state = POOL_STATE_UNINITIALIZED;
239 	spa->spa_freeze_txg = UINT64_MAX;
240 	spa->spa_final_txg = UINT64_MAX;
241 
242 	refcount_create(&spa->spa_refcount);
243 	refcount_create(&spa->spa_config_lock.scl_count);
244 
245 	avl_add(&spa_namespace_avl, spa);
246 
247 	/*
248 	 * Set the alternate root, if there is one.
249 	 */
250 	if (altroot) {
251 		spa->spa_root = spa_strdup(altroot);
252 		spa_active_count++;
253 	}
254 
255 	return (spa);
256 }
257 
258 /*
259  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
260  * spa_namespace_lock.  This is called only after the spa_t has been closed and
261  * deactivated.
262  */
263 void
264 spa_remove(spa_t *spa)
265 {
266 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
267 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
268 	ASSERT(spa->spa_scrub_thread == NULL);
269 
270 	avl_remove(&spa_namespace_avl, spa);
271 	cv_broadcast(&spa_namespace_cv);
272 
273 	if (spa->spa_root) {
274 		spa_strfree(spa->spa_root);
275 		spa_active_count--;
276 	}
277 
278 	if (spa->spa_name)
279 		spa_strfree(spa->spa_name);
280 
281 	spa_config_set(spa, NULL);
282 
283 	refcount_destroy(&spa->spa_refcount);
284 	refcount_destroy(&spa->spa_config_lock.scl_count);
285 
286 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
287 	mutex_destroy(&spa->spa_config_lock.scl_lock);
288 	mutex_destroy(&spa->spa_errlist_lock);
289 	mutex_destroy(&spa->spa_errlog_lock);
290 	mutex_destroy(&spa->spa_scrub_lock);
291 	mutex_destroy(&spa->spa_config_cache_lock);
292 	mutex_destroy(&spa->spa_async_lock);
293 	mutex_destroy(&spa->spa_history_lock);
294 
295 	kmem_free(spa, sizeof (spa_t));
296 }
297 
298 /*
299  * Given a pool, return the next pool in the namespace, or NULL if there is
300  * none.  If 'prev' is NULL, return the first pool.
301  */
302 spa_t *
303 spa_next(spa_t *prev)
304 {
305 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
306 
307 	if (prev)
308 		return (AVL_NEXT(&spa_namespace_avl, prev));
309 	else
310 		return (avl_first(&spa_namespace_avl));
311 }
312 
313 /*
314  * ==========================================================================
315  * SPA refcount functions
316  * ==========================================================================
317  */
318 
319 /*
320  * Add a reference to the given spa_t.  Must have at least one reference, or
321  * have the namespace lock held.
322  */
323 void
324 spa_open_ref(spa_t *spa, void *tag)
325 {
326 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
327 	    MUTEX_HELD(&spa_namespace_lock));
328 
329 	(void) refcount_add(&spa->spa_refcount, tag);
330 }
331 
332 /*
333  * Remove a reference to the given spa_t.  Must have at least one reference, or
334  * have the namespace lock held.
335  */
336 void
337 spa_close(spa_t *spa, void *tag)
338 {
339 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
340 	    MUTEX_HELD(&spa_namespace_lock));
341 
342 	(void) refcount_remove(&spa->spa_refcount, tag);
343 }
344 
345 /*
346  * Check to see if the spa refcount is zero.  Must be called with
347  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
348  * number of references acquired when opening a pool
349  */
350 boolean_t
351 spa_refcount_zero(spa_t *spa)
352 {
353 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
354 
355 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
356 }
357 
358 /*
359  * ==========================================================================
360  * SPA spare tracking
361  * ==========================================================================
362  */
363 
364 /*
365  * Spares are tracked globally due to the following constraints:
366  *
367  * 	- A spare may be part of multiple pools.
368  * 	- A spare may be added to a pool even if it's actively in use within
369  *	  another pool.
370  * 	- A spare in use in any pool can only be the source of a replacement if
371  *	  the target is a spare in the same pool.
372  *
373  * We keep track of all spares on the system through the use of a reference
374  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
375  * spare, then we bump the reference count in the AVL tree.  In addition, we set
376  * the 'vdev_isspare' member to indicate that the device is a spare (active or
377  * inactive).  When a spare is made active (used to replace a device in the
378  * pool), we also keep track of which pool its been made a part of.
379  *
380  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
381  * called under the spa_namespace lock as part of vdev reconfiguration.  The
382  * separate spare lock exists for the status query path, which does not need to
383  * be completely consistent with respect to other vdev configuration changes.
384  */
385 
386 typedef struct spa_spare {
387 	uint64_t	spare_guid;
388 	uint64_t	spare_pool;
389 	avl_node_t	spare_avl;
390 	int		spare_count;
391 } spa_spare_t;
392 
393 static int
394 spa_spare_compare(const void *a, const void *b)
395 {
396 	const spa_spare_t *sa = a;
397 	const spa_spare_t *sb = b;
398 
399 	if (sa->spare_guid < sb->spare_guid)
400 		return (-1);
401 	else if (sa->spare_guid > sb->spare_guid)
402 		return (1);
403 	else
404 		return (0);
405 }
406 
407 void
408 spa_spare_add(vdev_t *vd)
409 {
410 	avl_index_t where;
411 	spa_spare_t search;
412 	spa_spare_t *spare;
413 
414 	mutex_enter(&spa_spare_lock);
415 	ASSERT(!vd->vdev_isspare);
416 
417 	search.spare_guid = vd->vdev_guid;
418 	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
419 		spare->spare_count++;
420 	} else {
421 		spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
422 		spare->spare_guid = vd->vdev_guid;
423 		spare->spare_count = 1;
424 		avl_insert(&spa_spare_avl, spare, where);
425 	}
426 	vd->vdev_isspare = B_TRUE;
427 
428 	mutex_exit(&spa_spare_lock);
429 }
430 
431 void
432 spa_spare_remove(vdev_t *vd)
433 {
434 	spa_spare_t search;
435 	spa_spare_t *spare;
436 	avl_index_t where;
437 
438 	mutex_enter(&spa_spare_lock);
439 
440 	search.spare_guid = vd->vdev_guid;
441 	spare = avl_find(&spa_spare_avl, &search, &where);
442 
443 	ASSERT(vd->vdev_isspare);
444 	ASSERT(spare != NULL);
445 
446 	if (--spare->spare_count == 0) {
447 		avl_remove(&spa_spare_avl, spare);
448 		kmem_free(spare, sizeof (spa_spare_t));
449 	} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
450 		spare->spare_pool = 0ULL;
451 	}
452 
453 	vd->vdev_isspare = B_FALSE;
454 	mutex_exit(&spa_spare_lock);
455 }
456 
457 boolean_t
458 spa_spare_exists(uint64_t guid, uint64_t *pool)
459 {
460 	spa_spare_t search, *found;
461 	avl_index_t where;
462 
463 	mutex_enter(&spa_spare_lock);
464 
465 	search.spare_guid = guid;
466 	found = avl_find(&spa_spare_avl, &search, &where);
467 
468 	if (pool) {
469 		if (found)
470 			*pool = found->spare_pool;
471 		else
472 			*pool = 0ULL;
473 	}
474 
475 	mutex_exit(&spa_spare_lock);
476 
477 	return (found != NULL);
478 }
479 
480 void
481 spa_spare_activate(vdev_t *vd)
482 {
483 	spa_spare_t search, *found;
484 	avl_index_t where;
485 
486 	mutex_enter(&spa_spare_lock);
487 	ASSERT(vd->vdev_isspare);
488 
489 	search.spare_guid = vd->vdev_guid;
490 	found = avl_find(&spa_spare_avl, &search, &where);
491 	ASSERT(found != NULL);
492 	ASSERT(found->spare_pool == 0ULL);
493 
494 	found->spare_pool = spa_guid(vd->vdev_spa);
495 	mutex_exit(&spa_spare_lock);
496 }
497 
498 /*
499  * ==========================================================================
500  * SPA config locking
501  * ==========================================================================
502  */
503 
504 /*
505  * Acquire the config lock.  The config lock is a special rwlock that allows for
506  * recursive enters.  Because these enters come from the same thread as well as
507  * asynchronous threads working on behalf of the owner, we must unilaterally
508  * allow all reads access as long at least one reader is held (even if a write
509  * is requested).  This has the side effect of write starvation, but write locks
510  * are extremely rare, and a solution to this problem would be significantly
511  * more complex (if even possible).
512  *
513  * We would like to assert that the namespace lock isn't held, but this is a
514  * valid use during create.
515  */
516 void
517 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
518 {
519 	spa_config_lock_t *scl = &spa->spa_config_lock;
520 
521 	mutex_enter(&scl->scl_lock);
522 
523 	if (scl->scl_writer != curthread) {
524 		if (rw == RW_READER) {
525 			while (scl->scl_writer != NULL)
526 				cv_wait(&scl->scl_cv, &scl->scl_lock);
527 		} else {
528 			while (scl->scl_writer != NULL ||
529 			    !refcount_is_zero(&scl->scl_count))
530 				cv_wait(&scl->scl_cv, &scl->scl_lock);
531 			scl->scl_writer = curthread;
532 		}
533 	}
534 
535 	(void) refcount_add(&scl->scl_count, tag);
536 
537 	mutex_exit(&scl->scl_lock);
538 }
539 
540 /*
541  * Release the spa config lock, notifying any waiters in the process.
542  */
543 void
544 spa_config_exit(spa_t *spa, void *tag)
545 {
546 	spa_config_lock_t *scl = &spa->spa_config_lock;
547 
548 	mutex_enter(&scl->scl_lock);
549 
550 	ASSERT(!refcount_is_zero(&scl->scl_count));
551 	if (refcount_remove(&scl->scl_count, tag) == 0) {
552 		cv_broadcast(&scl->scl_cv);
553 		scl->scl_writer = NULL;  /* OK in either case */
554 	}
555 
556 	mutex_exit(&scl->scl_lock);
557 }
558 
559 /*
560  * Returns true if the config lock is held in the given manner.
561  */
562 boolean_t
563 spa_config_held(spa_t *spa, krw_t rw)
564 {
565 	spa_config_lock_t *scl = &spa->spa_config_lock;
566 	boolean_t held;
567 
568 	mutex_enter(&scl->scl_lock);
569 	if (rw == RW_WRITER)
570 		held = (scl->scl_writer == curthread);
571 	else
572 		held = !refcount_is_zero(&scl->scl_count);
573 	mutex_exit(&scl->scl_lock);
574 
575 	return (held);
576 }
577 
578 /*
579  * ==========================================================================
580  * SPA vdev locking
581  * ==========================================================================
582  */
583 
584 /*
585  * Lock the given spa_t for the purpose of adding or removing a vdev.
586  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
587  * It returns the next transaction group for the spa_t.
588  */
589 uint64_t
590 spa_vdev_enter(spa_t *spa)
591 {
592 	/*
593 	 * Suspend scrub activity while we mess with the config.
594 	 */
595 	spa_scrub_suspend(spa);
596 
597 	mutex_enter(&spa_namespace_lock);
598 
599 	spa_config_enter(spa, RW_WRITER, spa);
600 
601 	return (spa_last_synced_txg(spa) + 1);
602 }
603 
604 /*
605  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
606  * locking of spa_vdev_enter(), we also want make sure the transactions have
607  * synced to disk, and then update the global configuration cache with the new
608  * information.
609  */
610 int
611 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
612 {
613 	int config_changed = B_FALSE;
614 
615 	ASSERT(txg > spa_last_synced_txg(spa));
616 
617 	/*
618 	 * Reassess the DTLs.
619 	 */
620 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
621 
622 	/*
623 	 * If the config changed, notify the scrub thread that it must restart.
624 	 */
625 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
626 		config_changed = B_TRUE;
627 		spa_scrub_restart(spa, txg);
628 	}
629 
630 	spa_config_exit(spa, spa);
631 
632 	/*
633 	 * Allow scrubbing to resume.
634 	 */
635 	spa_scrub_resume(spa);
636 
637 	/*
638 	 * Note: this txg_wait_synced() is important because it ensures
639 	 * that there won't be more than one config change per txg.
640 	 * This allows us to use the txg as the generation number.
641 	 */
642 	if (error == 0)
643 		txg_wait_synced(spa->spa_dsl_pool, txg);
644 
645 	if (vd != NULL) {
646 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
647 		vdev_free(vd);
648 	}
649 
650 	/*
651 	 * If the config changed, update the config cache.
652 	 */
653 	if (config_changed)
654 		spa_config_sync();
655 
656 	mutex_exit(&spa_namespace_lock);
657 
658 	return (error);
659 }
660 
661 /*
662  * ==========================================================================
663  * Miscellaneous functions
664  * ==========================================================================
665  */
666 
667 /*
668  * Rename a spa_t.
669  */
670 int
671 spa_rename(const char *name, const char *newname)
672 {
673 	spa_t *spa;
674 	int err;
675 
676 	/*
677 	 * Lookup the spa_t and grab the config lock for writing.  We need to
678 	 * actually open the pool so that we can sync out the necessary labels.
679 	 * It's OK to call spa_open() with the namespace lock held because we
680 	 * allow recursive calls for other reasons.
681 	 */
682 	mutex_enter(&spa_namespace_lock);
683 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
684 		mutex_exit(&spa_namespace_lock);
685 		return (err);
686 	}
687 
688 	spa_config_enter(spa, RW_WRITER, FTAG);
689 
690 	avl_remove(&spa_namespace_avl, spa);
691 	spa_strfree(spa->spa_name);
692 	spa->spa_name = spa_strdup(newname);
693 	avl_add(&spa_namespace_avl, spa);
694 
695 	/*
696 	 * Sync all labels to disk with the new names by marking the root vdev
697 	 * dirty and waiting for it to sync.  It will pick up the new pool name
698 	 * during the sync.
699 	 */
700 	vdev_config_dirty(spa->spa_root_vdev);
701 
702 	spa_config_exit(spa, FTAG);
703 
704 	txg_wait_synced(spa->spa_dsl_pool, 0);
705 
706 	/*
707 	 * Sync the updated config cache.
708 	 */
709 	spa_config_sync();
710 
711 	spa_close(spa, FTAG);
712 
713 	mutex_exit(&spa_namespace_lock);
714 
715 	return (0);
716 }
717 
718 
719 /*
720  * Determine whether a pool with given pool_guid exists.  If device_guid is
721  * non-zero, determine whether the pool exists *and* contains a device with the
722  * specified device_guid.
723  */
724 boolean_t
725 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
726 {
727 	spa_t *spa;
728 	avl_tree_t *t = &spa_namespace_avl;
729 
730 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
731 
732 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
733 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
734 			continue;
735 		if (spa->spa_root_vdev == NULL)
736 			continue;
737 		if (spa_guid(spa) == pool_guid) {
738 			if (device_guid == 0)
739 				break;
740 
741 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
742 			    device_guid) != NULL)
743 				break;
744 
745 			/*
746 			 * Check any devices we may in the process of adding.
747 			 */
748 			if (spa->spa_pending_vdev) {
749 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
750 				    device_guid) != NULL)
751 					break;
752 			}
753 		}
754 	}
755 
756 	return (spa != NULL);
757 }
758 
759 char *
760 spa_strdup(const char *s)
761 {
762 	size_t len;
763 	char *new;
764 
765 	len = strlen(s);
766 	new = kmem_alloc(len + 1, KM_SLEEP);
767 	bcopy(s, new, len);
768 	new[len] = '\0';
769 
770 	return (new);
771 }
772 
773 void
774 spa_strfree(char *s)
775 {
776 	kmem_free(s, strlen(s) + 1);
777 }
778 
779 uint64_t
780 spa_get_random(uint64_t range)
781 {
782 	uint64_t r;
783 
784 	ASSERT(range != 0);
785 
786 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
787 
788 	return (r % range);
789 }
790 
791 void
792 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
793 {
794 	int d;
795 
796 	if (bp == NULL) {
797 		(void) snprintf(buf, len, "<NULL>");
798 		return;
799 	}
800 
801 	if (BP_IS_HOLE(bp)) {
802 		(void) snprintf(buf, len, "<hole>");
803 		return;
804 	}
805 
806 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
807 	    (u_longlong_t)BP_GET_LEVEL(bp),
808 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
809 	    (u_longlong_t)BP_GET_LSIZE(bp),
810 	    (u_longlong_t)BP_GET_PSIZE(bp));
811 
812 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
813 		const dva_t *dva = &bp->blk_dva[d];
814 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
815 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
816 		    (u_longlong_t)DVA_GET_VDEV(dva),
817 		    (u_longlong_t)DVA_GET_OFFSET(dva),
818 		    (u_longlong_t)DVA_GET_ASIZE(dva));
819 	}
820 
821 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
822 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
823 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
824 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
825 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
826 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
827 	    (u_longlong_t)bp->blk_birth,
828 	    (u_longlong_t)bp->blk_fill,
829 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
830 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
831 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
832 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
833 }
834 
835 void
836 spa_freeze(spa_t *spa)
837 {
838 	uint64_t freeze_txg = 0;
839 
840 	spa_config_enter(spa, RW_WRITER, FTAG);
841 	if (spa->spa_freeze_txg == UINT64_MAX) {
842 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
843 		spa->spa_freeze_txg = freeze_txg;
844 	}
845 	spa_config_exit(spa, FTAG);
846 	if (freeze_txg != 0)
847 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
848 }
849 
850 void
851 zfs_panic_recover(const char *fmt, ...)
852 {
853 	va_list adx;
854 
855 	va_start(adx, fmt);
856 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
857 	va_end(adx);
858 }
859 
860 /*
861  * ==========================================================================
862  * Accessor functions
863  * ==========================================================================
864  */
865 
866 krwlock_t *
867 spa_traverse_rwlock(spa_t *spa)
868 {
869 	return (&spa->spa_traverse_lock);
870 }
871 
872 int
873 spa_traverse_wanted(spa_t *spa)
874 {
875 	return (spa->spa_traverse_wanted);
876 }
877 
878 dsl_pool_t *
879 spa_get_dsl(spa_t *spa)
880 {
881 	return (spa->spa_dsl_pool);
882 }
883 
884 blkptr_t *
885 spa_get_rootblkptr(spa_t *spa)
886 {
887 	return (&spa->spa_ubsync.ub_rootbp);
888 }
889 
890 void
891 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
892 {
893 	spa->spa_uberblock.ub_rootbp = *bp;
894 }
895 
896 void
897 spa_altroot(spa_t *spa, char *buf, size_t buflen)
898 {
899 	if (spa->spa_root == NULL)
900 		buf[0] = '\0';
901 	else
902 		(void) strncpy(buf, spa->spa_root, buflen);
903 }
904 
905 int
906 spa_sync_pass(spa_t *spa)
907 {
908 	return (spa->spa_sync_pass);
909 }
910 
911 char *
912 spa_name(spa_t *spa)
913 {
914 	/*
915 	 * Accessing the name requires holding either the namespace lock or the
916 	 * config lock, both of which are required to do a rename.
917 	 */
918 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
919 	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));
920 
921 	return (spa->spa_name);
922 }
923 
924 uint64_t
925 spa_guid(spa_t *spa)
926 {
927 	/*
928 	 * If we fail to parse the config during spa_load(), we can go through
929 	 * the error path (which posts an ereport) and end up here with no root
930 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
931 	 * this case.
932 	 */
933 	if (spa->spa_root_vdev != NULL)
934 		return (spa->spa_root_vdev->vdev_guid);
935 	else
936 		return (spa->spa_load_guid);
937 }
938 
939 uint64_t
940 spa_last_synced_txg(spa_t *spa)
941 {
942 	return (spa->spa_ubsync.ub_txg);
943 }
944 
945 uint64_t
946 spa_first_txg(spa_t *spa)
947 {
948 	return (spa->spa_first_txg);
949 }
950 
951 int
952 spa_state(spa_t *spa)
953 {
954 	return (spa->spa_state);
955 }
956 
957 uint64_t
958 spa_freeze_txg(spa_t *spa)
959 {
960 	return (spa->spa_freeze_txg);
961 }
962 
963 /*
964  * In the future, this may select among different metaslab classes
965  * depending on the zdp.  For now, there's no such distinction.
966  */
967 metaslab_class_t *
968 spa_metaslab_class_select(spa_t *spa)
969 {
970 	return (spa->spa_normal_class);
971 }
972 
973 /*
974  * Return how much space is allocated in the pool (ie. sum of all asize)
975  */
976 uint64_t
977 spa_get_alloc(spa_t *spa)
978 {
979 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
980 }
981 
982 /*
983  * Return how much (raid-z inflated) space there is in the pool.
984  */
985 uint64_t
986 spa_get_space(spa_t *spa)
987 {
988 	return (spa->spa_root_vdev->vdev_stat.vs_space);
989 }
990 
991 /*
992  * Return the amount of raid-z-deflated space in the pool.
993  */
994 uint64_t
995 spa_get_dspace(spa_t *spa)
996 {
997 	if (spa->spa_deflate)
998 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
999 	else
1000 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1001 }
1002 
1003 /* ARGSUSED */
1004 uint64_t
1005 spa_get_asize(spa_t *spa, uint64_t lsize)
1006 {
1007 	/*
1008 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1009 	 * case the space requirement is exactly 2x; so just assume that.
1010 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1011 	 * we have to multiply by a total of 6x.
1012 	 */
1013 	return (lsize * 6);
1014 }
1015 
1016 uint64_t
1017 spa_version(spa_t *spa)
1018 {
1019 	return (spa->spa_ubsync.ub_version);
1020 }
1021 
1022 int
1023 spa_max_replication(spa_t *spa)
1024 {
1025 	/*
1026 	 * As of ZFS_VERSION == ZFS_VERSION_DITTO_BLOCKS, we are able to
1027 	 * handle BPs with more than one DVA allocated.  Set our max
1028 	 * replication level accordingly.
1029 	 */
1030 	if (spa_version(spa) < ZFS_VERSION_DITTO_BLOCKS)
1031 		return (1);
1032 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1033 }
1034 
1035 uint64_t
1036 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1037 {
1038 	int sz = 0, i;
1039 
1040 	if (!spa->spa_deflate)
1041 		return (BP_GET_ASIZE(bp));
1042 
1043 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1044 		vdev_t *vd =
1045 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1046 		sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
1047 		    vd->vdev_deflate_ratio;
1048 	}
1049 	return (sz);
1050 }
1051 
1052 /*
1053  * ==========================================================================
1054  * Initialization and Termination
1055  * ==========================================================================
1056  */
1057 
1058 static int
1059 spa_name_compare(const void *a1, const void *a2)
1060 {
1061 	const spa_t *s1 = a1;
1062 	const spa_t *s2 = a2;
1063 	int s;
1064 
1065 	s = strcmp(s1->spa_name, s2->spa_name);
1066 	if (s > 0)
1067 		return (1);
1068 	if (s < 0)
1069 		return (-1);
1070 	return (0);
1071 }
1072 
1073 int
1074 spa_busy(void)
1075 {
1076 	return (spa_active_count);
1077 }
1078 
1079 void
1080 spa_init(int mode)
1081 {
1082 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1083 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1084 
1085 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1086 	    offsetof(spa_t, spa_avl));
1087 
1088 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
1089 	    offsetof(spa_spare_t, spare_avl));
1090 
1091 	spa_mode = mode;
1092 
1093 	refcount_init();
1094 	unique_init();
1095 	zio_init();
1096 	dmu_init();
1097 	zil_init();
1098 	spa_config_load();
1099 }
1100 
1101 void
1102 spa_fini(void)
1103 {
1104 	spa_evict_all();
1105 
1106 	zil_fini();
1107 	dmu_fini();
1108 	zio_fini();
1109 	refcount_fini();
1110 
1111 	avl_destroy(&spa_namespace_avl);
1112 	avl_destroy(&spa_spare_avl);
1113 
1114 	cv_destroy(&spa_namespace_cv);
1115 	mutex_destroy(&spa_namespace_lock);
1116 }
1117