1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
31 * Copyright 2019 Joyent, Inc.
32 * Copyright (c) 2017, Intel Corporation.
33 * Copyright 2020 Joshua M. Clulow <josh@sysmgr.org>
34 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association.
35 */
36
37 /*
38 * SPA: Storage Pool Allocator
39 *
40 * This file contains all the routines used when modifying on-disk SPA state.
41 * This includes opening, importing, destroying, exporting a pool, and syncing a
42 * pool.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_trim.h>
61 #include <sys/metaslab.h>
62 #include <sys/metaslab_impl.h>
63 #include <sys/mmp.h>
64 #include <sys/uberblock_impl.h>
65 #include <sys/txg.h>
66 #include <sys/avl.h>
67 #include <sys/bpobj.h>
68 #include <sys/dmu_traverse.h>
69 #include <sys/dmu_objset.h>
70 #include <sys/unique.h>
71 #include <sys/dsl_pool.h>
72 #include <sys/dsl_dataset.h>
73 #include <sys/dsl_dir.h>
74 #include <sys/dsl_prop.h>
75 #include <sys/dsl_synctask.h>
76 #include <sys/fs/zfs.h>
77 #include <sys/arc.h>
78 #include <sys/callb.h>
79 #include <sys/systeminfo.h>
80 #include <sys/spa_boot.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/dsl_scan.h>
83 #include <sys/zfeature.h>
84 #include <sys/dsl_destroy.h>
85 #include <sys/abd.h>
86
87 #ifdef _KERNEL
88 #include <sys/bootprops.h>
89 #include <sys/callb.h>
90 #include <sys/cpupart.h>
91 #include <sys/pool.h>
92 #include <sys/sysdc.h>
93 #include <sys/zone.h>
94 #endif /* _KERNEL */
95
96 #include "zfs_prop.h"
97 #include "zfs_comutil.h"
98
99 /*
100 * The interval, in seconds, at which failed configuration cache file writes
101 * should be retried.
102 */
103 int zfs_ccw_retry_interval = 300;
104
105 typedef enum zti_modes {
106 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
107 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
108 ZTI_MODE_NULL, /* don't create a taskq */
109 ZTI_NMODES
110 } zti_modes_t;
111
112 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
113 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
114 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
115
116 #define ZTI_N(n) ZTI_P(n, 1)
117 #define ZTI_ONE ZTI_N(1)
118
119 typedef struct zio_taskq_info {
120 zti_modes_t zti_mode;
121 uint_t zti_value;
122 uint_t zti_count;
123 } zio_taskq_info_t;
124
125 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
126 "issue", "issue_high", "intr", "intr_high"
127 };
128
129 /*
130 * This table defines the taskq settings for each ZFS I/O type. When
131 * initializing a pool, we use this table to create an appropriately sized
132 * taskq. Some operations are low volume and therefore have a small, static
133 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
134 * macros. Other operations process a large amount of data; the ZTI_BATCH
135 * macro causes us to create a taskq oriented for throughput. Some operations
136 * are so high frequency and short-lived that the taskq itself can become a
137 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
138 * additional degree of parallelism specified by the number of threads per-
139 * taskq and the number of taskqs; when dispatching an event in this case, the
140 * particular taskq is chosen at random.
141 *
142 * The different taskq priorities are to handle the different contexts (issue
143 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
144 * need to be handled with minimum delay.
145 */
146 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
147 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
148 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
149 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
150 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
151 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
152 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
153 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
154 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
155 };
156
157 static void spa_sync_version(void *arg, dmu_tx_t *tx);
158 static void spa_sync_props(void *arg, dmu_tx_t *tx);
159 static boolean_t spa_has_active_shared_spare(spa_t *spa);
160 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
161 static void spa_vdev_resilver_done(spa_t *spa);
162
163 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
164 id_t zio_taskq_psrset_bind = PS_NONE;
165 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
166 uint_t zio_taskq_basedc = 80; /* base duty cycle */
167
168 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
169 extern int zfs_sync_pass_deferred_free;
170
171 /*
172 * Report any spa_load_verify errors found, but do not fail spa_load.
173 * This is used by zdb to analyze non-idle pools.
174 */
175 boolean_t spa_load_verify_dryrun = B_FALSE;
176
177 /*
178 * This (illegal) pool name is used when temporarily importing a spa_t in order
179 * to get the vdev stats associated with the imported devices.
180 */
181 #define TRYIMPORT_NAME "$import"
182
183 /*
184 * For debugging purposes: print out vdev tree during pool import.
185 */
186 boolean_t spa_load_print_vdev_tree = B_FALSE;
187
188 /*
189 * A non-zero value for zfs_max_missing_tvds means that we allow importing
190 * pools with missing top-level vdevs. This is strictly intended for advanced
191 * pool recovery cases since missing data is almost inevitable. Pools with
192 * missing devices can only be imported read-only for safety reasons, and their
193 * fail-mode will be automatically set to "continue".
194 *
195 * With 1 missing vdev we should be able to import the pool and mount all
196 * datasets. User data that was not modified after the missing device has been
197 * added should be recoverable. This means that snapshots created prior to the
198 * addition of that device should be completely intact.
199 *
200 * With 2 missing vdevs, some datasets may fail to mount since there are
201 * dataset statistics that are stored as regular metadata. Some data might be
202 * recoverable if those vdevs were added recently.
203 *
204 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
205 * may be missing entirely. Chances of data recovery are very low. Note that
206 * there are also risks of performing an inadvertent rewind as we might be
207 * missing all the vdevs with the latest uberblocks.
208 */
209 uint64_t zfs_max_missing_tvds = 0;
210
211 /*
212 * The parameters below are similar to zfs_max_missing_tvds but are only
213 * intended for a preliminary open of the pool with an untrusted config which
214 * might be incomplete or out-dated.
215 *
216 * We are more tolerant for pools opened from a cachefile since we could have
217 * an out-dated cachefile where a device removal was not registered.
218 * We could have set the limit arbitrarily high but in the case where devices
219 * are really missing we would want to return the proper error codes; we chose
220 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
221 * and we get a chance to retrieve the trusted config.
222 */
223 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
224
225 /*
226 * In the case where config was assembled by scanning device paths (/dev/dsks
227 * by default) we are less tolerant since all the existing devices should have
228 * been detected and we want spa_load to return the right error codes.
229 */
230 uint64_t zfs_max_missing_tvds_scan = 0;
231
232 /*
233 * Interval in seconds at which to poll spare vdevs for health.
234 * Setting this to zero disables spare polling.
235 * Set to three hours by default.
236 */
237 uint_t spa_spare_poll_interval_seconds = 60 * 60 * 3;
238
239 /*
240 * Debugging aid that pauses spa_sync() towards the end.
241 */
242 boolean_t zfs_pause_spa_sync = B_FALSE;
243
244 /*
245 * ==========================================================================
246 * SPA properties routines
247 * ==========================================================================
248 */
249
250 /*
251 * Add a (source=src, propname=propval) list to an nvlist.
252 */
253 static void
spa_prop_add_list(nvlist_t * nvl,zpool_prop_t prop,char * strval,uint64_t intval,zprop_source_t src)254 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
255 uint64_t intval, zprop_source_t src)
256 {
257 const char *propname = zpool_prop_to_name(prop);
258 nvlist_t *propval;
259
260 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
261 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
262
263 if (strval != NULL)
264 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
265 else
266 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
267
268 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
269 nvlist_free(propval);
270 }
271
272 /*
273 * Get property values from the spa configuration.
274 */
275 static void
spa_prop_get_config(spa_t * spa,nvlist_t ** nvp)276 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
277 {
278 vdev_t *rvd = spa->spa_root_vdev;
279 dsl_pool_t *pool = spa->spa_dsl_pool;
280 uint64_t size, alloc, cap, version;
281 zprop_source_t src = ZPROP_SRC_NONE;
282 spa_config_dirent_t *dp;
283 metaslab_class_t *mc = spa_normal_class(spa);
284
285 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
286
287 if (rvd != NULL) {
288 alloc = metaslab_class_get_alloc(mc);
289 alloc += metaslab_class_get_alloc(spa_special_class(spa));
290 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
291
292 size = metaslab_class_get_space(mc);
293 size += metaslab_class_get_space(spa_special_class(spa));
294 size += metaslab_class_get_space(spa_dedup_class(spa));
295
296 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
297 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
298 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
299 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
300 size - alloc, src);
301 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
302 spa->spa_checkpoint_info.sci_dspace, src);
303
304 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
305 metaslab_class_fragmentation(mc), src);
306 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
307 metaslab_class_expandable_space(mc), src);
308 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
309 (spa_mode(spa) == FREAD), src);
310
311 cap = (size == 0) ? 0 : (alloc * 100 / size);
312 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
313
314 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
315 ddt_get_pool_dedup_ratio(spa), src);
316
317 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
318 rvd->vdev_state, src);
319
320 version = spa_version(spa);
321 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
322 src = ZPROP_SRC_DEFAULT;
323 else
324 src = ZPROP_SRC_LOCAL;
325 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
326 }
327
328 if (pool != NULL) {
329 /*
330 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
331 * when opening pools before this version freedir will be NULL.
332 */
333 if (pool->dp_free_dir != NULL) {
334 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
335 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
336 src);
337 } else {
338 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
339 NULL, 0, src);
340 }
341
342 if (pool->dp_leak_dir != NULL) {
343 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
344 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
345 src);
346 } else {
347 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
348 NULL, 0, src);
349 }
350 }
351
352 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
353
354 if (spa->spa_comment != NULL) {
355 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
356 0, ZPROP_SRC_LOCAL);
357 }
358
359 if (spa->spa_root != NULL)
360 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
361 0, ZPROP_SRC_LOCAL);
362
363 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
364 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
365 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
366 } else {
367 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
368 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
369 }
370
371 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
372 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
373 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
374 } else {
375 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
376 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
377 }
378
379 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
380 if (dp->scd_path == NULL) {
381 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
382 "none", 0, ZPROP_SRC_LOCAL);
383 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
384 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
385 dp->scd_path, 0, ZPROP_SRC_LOCAL);
386 }
387 }
388 }
389
390 /*
391 * Get zpool property values.
392 */
393 int
spa_prop_get(spa_t * spa,nvlist_t ** nvp)394 spa_prop_get(spa_t *spa, nvlist_t **nvp)
395 {
396 objset_t *mos = spa->spa_meta_objset;
397 zap_cursor_t zc;
398 zap_attribute_t za;
399 int err;
400
401 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
402
403 mutex_enter(&spa->spa_props_lock);
404
405 /*
406 * Get properties from the spa config.
407 */
408 spa_prop_get_config(spa, nvp);
409
410 /* If no pool property object, no more prop to get. */
411 if (mos == NULL || spa->spa_pool_props_object == 0) {
412 mutex_exit(&spa->spa_props_lock);
413 return (0);
414 }
415
416 /*
417 * Get properties from the MOS pool property object.
418 */
419 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
420 (err = zap_cursor_retrieve(&zc, &za)) == 0;
421 zap_cursor_advance(&zc)) {
422 uint64_t intval = 0;
423 char *strval = NULL;
424 zprop_source_t src = ZPROP_SRC_DEFAULT;
425 zpool_prop_t prop;
426
427 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
428 continue;
429
430 switch (za.za_integer_length) {
431 case 8:
432 /* integer property */
433 if (za.za_first_integer !=
434 zpool_prop_default_numeric(prop))
435 src = ZPROP_SRC_LOCAL;
436
437 if (prop == ZPOOL_PROP_BOOTFS) {
438 dsl_pool_t *dp;
439 dsl_dataset_t *ds = NULL;
440
441 dp = spa_get_dsl(spa);
442 dsl_pool_config_enter(dp, FTAG);
443 err = dsl_dataset_hold_obj(dp,
444 za.za_first_integer, FTAG, &ds);
445 if (err != 0) {
446 dsl_pool_config_exit(dp, FTAG);
447 break;
448 }
449
450 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
451 KM_SLEEP);
452 dsl_dataset_name(ds, strval);
453 dsl_dataset_rele(ds, FTAG);
454 dsl_pool_config_exit(dp, FTAG);
455 } else {
456 strval = NULL;
457 intval = za.za_first_integer;
458 }
459
460 spa_prop_add_list(*nvp, prop, strval, intval, src);
461
462 if (strval != NULL)
463 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
464
465 break;
466
467 case 1:
468 /* string property */
469 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
470 err = zap_lookup(mos, spa->spa_pool_props_object,
471 za.za_name, 1, za.za_num_integers, strval);
472 if (err) {
473 kmem_free(strval, za.za_num_integers);
474 break;
475 }
476 spa_prop_add_list(*nvp, prop, strval, 0, src);
477 kmem_free(strval, za.za_num_integers);
478 break;
479
480 default:
481 break;
482 }
483 }
484 zap_cursor_fini(&zc);
485 mutex_exit(&spa->spa_props_lock);
486 out:
487 if (err && err != ENOENT) {
488 nvlist_free(*nvp);
489 *nvp = NULL;
490 return (err);
491 }
492
493 return (0);
494 }
495
496 /*
497 * Validate the given pool properties nvlist and modify the list
498 * for the property values to be set.
499 */
500 static int
spa_prop_validate(spa_t * spa,nvlist_t * props)501 spa_prop_validate(spa_t *spa, nvlist_t *props)
502 {
503 nvpair_t *elem;
504 int error = 0, reset_bootfs = 0;
505 uint64_t objnum = 0;
506 boolean_t has_feature = B_FALSE;
507
508 elem = NULL;
509 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
510 uint64_t intval;
511 char *strval, *slash, *check, *fname;
512 const char *propname = nvpair_name(elem);
513 zpool_prop_t prop = zpool_name_to_prop(propname);
514
515 switch (prop) {
516 case ZPOOL_PROP_INVAL:
517 if (!zpool_prop_feature(propname)) {
518 error = SET_ERROR(EINVAL);
519 break;
520 }
521
522 /*
523 * Sanitize the input.
524 */
525 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
526 error = SET_ERROR(EINVAL);
527 break;
528 }
529
530 if (nvpair_value_uint64(elem, &intval) != 0) {
531 error = SET_ERROR(EINVAL);
532 break;
533 }
534
535 if (intval != 0) {
536 error = SET_ERROR(EINVAL);
537 break;
538 }
539
540 fname = strchr(propname, '@') + 1;
541 if (zfeature_lookup_name(fname, NULL) != 0) {
542 error = SET_ERROR(EINVAL);
543 break;
544 }
545
546 has_feature = B_TRUE;
547 break;
548
549 case ZPOOL_PROP_VERSION:
550 error = nvpair_value_uint64(elem, &intval);
551 if (!error &&
552 (intval < spa_version(spa) ||
553 intval > SPA_VERSION_BEFORE_FEATURES ||
554 has_feature))
555 error = SET_ERROR(EINVAL);
556 break;
557
558 case ZPOOL_PROP_DELEGATION:
559 case ZPOOL_PROP_AUTOREPLACE:
560 case ZPOOL_PROP_LISTSNAPS:
561 case ZPOOL_PROP_AUTOEXPAND:
562 case ZPOOL_PROP_AUTOTRIM:
563 error = nvpair_value_uint64(elem, &intval);
564 if (!error && intval > 1)
565 error = SET_ERROR(EINVAL);
566 break;
567
568 case ZPOOL_PROP_MULTIHOST:
569 error = nvpair_value_uint64(elem, &intval);
570 if (!error && intval > 1)
571 error = SET_ERROR(EINVAL);
572
573 if (!error && !spa_get_hostid())
574 error = SET_ERROR(ENOTSUP);
575
576 break;
577
578 case ZPOOL_PROP_BOOTFS:
579 /*
580 * If the pool version is less than SPA_VERSION_BOOTFS,
581 * or the pool is still being created (version == 0),
582 * the bootfs property cannot be set.
583 */
584 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
585 error = SET_ERROR(ENOTSUP);
586 break;
587 }
588
589 /*
590 * Make sure the vdev config is bootable
591 */
592 if (!vdev_is_bootable(spa->spa_root_vdev)) {
593 error = SET_ERROR(ENOTSUP);
594 break;
595 }
596
597 reset_bootfs = 1;
598
599 error = nvpair_value_string(elem, &strval);
600
601 if (!error) {
602 objset_t *os;
603 uint64_t propval;
604
605 if (strval == NULL || strval[0] == '\0') {
606 objnum = zpool_prop_default_numeric(
607 ZPOOL_PROP_BOOTFS);
608 break;
609 }
610
611 error = dmu_objset_hold(strval, FTAG, &os);
612 if (error != 0)
613 break;
614
615 /*
616 * Must be ZPL, and its property settings
617 * must be supported.
618 */
619
620 if (dmu_objset_type(os) != DMU_OST_ZFS) {
621 error = SET_ERROR(ENOTSUP);
622 } else if ((error =
623 dsl_prop_get_int_ds(dmu_objset_ds(os),
624 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
625 &propval)) == 0 &&
626 !BOOTFS_COMPRESS_VALID(propval)) {
627 error = SET_ERROR(ENOTSUP);
628 } else {
629 objnum = dmu_objset_id(os);
630 }
631 dmu_objset_rele(os, FTAG);
632 }
633 break;
634
635 case ZPOOL_PROP_FAILUREMODE:
636 error = nvpair_value_uint64(elem, &intval);
637 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
638 intval > ZIO_FAILURE_MODE_PANIC))
639 error = SET_ERROR(EINVAL);
640
641 /*
642 * This is a special case which only occurs when
643 * the pool has completely failed. This allows
644 * the user to change the in-core failmode property
645 * without syncing it out to disk (I/Os might
646 * currently be blocked). We do this by returning
647 * EIO to the caller (spa_prop_set) to trick it
648 * into thinking we encountered a property validation
649 * error.
650 */
651 if (!error && spa_suspended(spa)) {
652 spa->spa_failmode = intval;
653 error = SET_ERROR(EIO);
654 }
655 break;
656
657 case ZPOOL_PROP_CACHEFILE:
658 if ((error = nvpair_value_string(elem, &strval)) != 0)
659 break;
660
661 if (strval[0] == '\0')
662 break;
663
664 if (strcmp(strval, "none") == 0)
665 break;
666
667 if (strval[0] != '/') {
668 error = SET_ERROR(EINVAL);
669 break;
670 }
671
672 slash = strrchr(strval, '/');
673 ASSERT(slash != NULL);
674
675 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
676 strcmp(slash, "/..") == 0)
677 error = SET_ERROR(EINVAL);
678 break;
679
680 case ZPOOL_PROP_COMMENT:
681 if ((error = nvpair_value_string(elem, &strval)) != 0)
682 break;
683 for (check = strval; *check != '\0'; check++) {
684 /*
685 * The kernel doesn't have an easy isprint()
686 * check. For this kernel check, we merely
687 * check ASCII apart from DEL. Fix this if
688 * there is an easy-to-use kernel isprint().
689 */
690 if (*check >= 0x7f) {
691 error = SET_ERROR(EINVAL);
692 break;
693 }
694 }
695 if (strlen(strval) > ZPROP_MAX_COMMENT)
696 error = E2BIG;
697 break;
698
699 case ZPOOL_PROP_DEDUPDITTO:
700 if (spa_version(spa) < SPA_VERSION_DEDUP)
701 error = SET_ERROR(ENOTSUP);
702 else
703 error = nvpair_value_uint64(elem, &intval);
704 if (error == 0 &&
705 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
706 error = SET_ERROR(EINVAL);
707 break;
708 }
709
710 if (error)
711 break;
712 }
713
714 if (!error && reset_bootfs) {
715 error = nvlist_remove(props,
716 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
717
718 if (!error) {
719 error = nvlist_add_uint64(props,
720 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
721 }
722 }
723
724 return (error);
725 }
726
727 void
spa_configfile_set(spa_t * spa,nvlist_t * nvp,boolean_t need_sync)728 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
729 {
730 char *cachefile;
731 spa_config_dirent_t *dp;
732
733 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
734 &cachefile) != 0)
735 return;
736
737 dp = kmem_alloc(sizeof (spa_config_dirent_t),
738 KM_SLEEP);
739
740 if (cachefile[0] == '\0')
741 dp->scd_path = spa_strdup(spa_config_path);
742 else if (strcmp(cachefile, "none") == 0)
743 dp->scd_path = NULL;
744 else
745 dp->scd_path = spa_strdup(cachefile);
746
747 list_insert_head(&spa->spa_config_list, dp);
748 if (need_sync)
749 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
750 }
751
752 int
spa_prop_set(spa_t * spa,nvlist_t * nvp)753 spa_prop_set(spa_t *spa, nvlist_t *nvp)
754 {
755 int error;
756 nvpair_t *elem = NULL;
757 boolean_t need_sync = B_FALSE;
758
759 if ((error = spa_prop_validate(spa, nvp)) != 0)
760 return (error);
761
762 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
763 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
764
765 if (prop == ZPOOL_PROP_CACHEFILE ||
766 prop == ZPOOL_PROP_ALTROOT ||
767 prop == ZPOOL_PROP_READONLY)
768 continue;
769
770 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
771 uint64_t ver;
772
773 if (prop == ZPOOL_PROP_VERSION) {
774 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
775 } else {
776 ASSERT(zpool_prop_feature(nvpair_name(elem)));
777 ver = SPA_VERSION_FEATURES;
778 need_sync = B_TRUE;
779 }
780
781 /* Save time if the version is already set. */
782 if (ver == spa_version(spa))
783 continue;
784
785 /*
786 * In addition to the pool directory object, we might
787 * create the pool properties object, the features for
788 * read object, the features for write object, or the
789 * feature descriptions object.
790 */
791 error = dsl_sync_task(spa->spa_name, NULL,
792 spa_sync_version, &ver,
793 6, ZFS_SPACE_CHECK_RESERVED);
794 if (error)
795 return (error);
796 continue;
797 }
798
799 need_sync = B_TRUE;
800 break;
801 }
802
803 if (need_sync) {
804 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
805 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
806 }
807
808 return (0);
809 }
810
811 /*
812 * If the bootfs property value is dsobj, clear it.
813 */
814 void
spa_prop_clear_bootfs(spa_t * spa,uint64_t dsobj,dmu_tx_t * tx)815 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
816 {
817 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
818 VERIFY(zap_remove(spa->spa_meta_objset,
819 spa->spa_pool_props_object,
820 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
821 spa->spa_bootfs = 0;
822 }
823 }
824
825 /*ARGSUSED*/
826 static int
spa_change_guid_check(void * arg,dmu_tx_t * tx)827 spa_change_guid_check(void *arg, dmu_tx_t *tx)
828 {
829 uint64_t *newguid = arg;
830 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
831 vdev_t *rvd = spa->spa_root_vdev;
832 uint64_t vdev_state;
833
834 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
835 int error = (spa_has_checkpoint(spa)) ?
836 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
837 return (SET_ERROR(error));
838 }
839
840 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
841 vdev_state = rvd->vdev_state;
842 spa_config_exit(spa, SCL_STATE, FTAG);
843
844 if (vdev_state != VDEV_STATE_HEALTHY)
845 return (SET_ERROR(ENXIO));
846
847 ASSERT3U(spa_guid(spa), !=, *newguid);
848
849 return (0);
850 }
851
852 static void
spa_change_guid_sync(void * arg,dmu_tx_t * tx)853 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
854 {
855 uint64_t *newguid = arg;
856 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
857 uint64_t oldguid;
858 vdev_t *rvd = spa->spa_root_vdev;
859
860 oldguid = spa_guid(spa);
861
862 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
863 rvd->vdev_guid = *newguid;
864 rvd->vdev_guid_sum += (*newguid - oldguid);
865 vdev_config_dirty(rvd);
866 spa_config_exit(spa, SCL_STATE, FTAG);
867
868 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
869 oldguid, *newguid);
870 }
871
872 /*
873 * Change the GUID for the pool. This is done so that we can later
874 * re-import a pool built from a clone of our own vdevs. We will modify
875 * the root vdev's guid, our own pool guid, and then mark all of our
876 * vdevs dirty. Note that we must make sure that all our vdevs are
877 * online when we do this, or else any vdevs that weren't present
878 * would be orphaned from our pool. We are also going to issue a
879 * sysevent to update any watchers.
880 */
881 int
spa_change_guid(spa_t * spa)882 spa_change_guid(spa_t *spa)
883 {
884 int error;
885 uint64_t guid;
886
887 mutex_enter(&spa->spa_vdev_top_lock);
888 mutex_enter(&spa_namespace_lock);
889 guid = spa_generate_guid(NULL);
890
891 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
892 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
893
894 if (error == 0) {
895 spa_write_cachefile(spa, B_FALSE, B_TRUE);
896 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
897 }
898
899 mutex_exit(&spa_namespace_lock);
900 mutex_exit(&spa->spa_vdev_top_lock);
901
902 return (error);
903 }
904
905 /*
906 * ==========================================================================
907 * SPA state manipulation (open/create/destroy/import/export)
908 * ==========================================================================
909 */
910
911 static int
spa_error_entry_compare(const void * a,const void * b)912 spa_error_entry_compare(const void *a, const void *b)
913 {
914 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
915 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
916 int ret;
917
918 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
919 sizeof (zbookmark_phys_t));
920
921 return (TREE_ISIGN(ret));
922 }
923
924 /*
925 * Utility function which retrieves copies of the current logs and
926 * re-initializes them in the process.
927 */
928 void
spa_get_errlists(spa_t * spa,avl_tree_t * last,avl_tree_t * scrub)929 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
930 {
931 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
932
933 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
934 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
935
936 avl_create(&spa->spa_errlist_scrub,
937 spa_error_entry_compare, sizeof (spa_error_entry_t),
938 offsetof(spa_error_entry_t, se_avl));
939 avl_create(&spa->spa_errlist_last,
940 spa_error_entry_compare, sizeof (spa_error_entry_t),
941 offsetof(spa_error_entry_t, se_avl));
942 }
943
944 static void
spa_taskqs_init(spa_t * spa,zio_type_t t,zio_taskq_type_t q)945 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946 {
947 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
948 enum zti_modes mode = ztip->zti_mode;
949 uint_t value = ztip->zti_value;
950 uint_t count = ztip->zti_count;
951 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
952 char name[32];
953 uint_t flags = 0;
954 boolean_t batch = B_FALSE;
955
956 if (mode == ZTI_MODE_NULL) {
957 tqs->stqs_count = 0;
958 tqs->stqs_taskq = NULL;
959 return;
960 }
961
962 ASSERT3U(count, >, 0);
963
964 tqs->stqs_count = count;
965 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
966
967 switch (mode) {
968 case ZTI_MODE_FIXED:
969 ASSERT3U(value, >=, 1);
970 value = MAX(value, 1);
971 break;
972
973 case ZTI_MODE_BATCH:
974 batch = B_TRUE;
975 flags |= TASKQ_THREADS_CPU_PCT;
976 value = zio_taskq_batch_pct;
977 break;
978
979 default:
980 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
981 "spa_activate()",
982 zio_type_name[t], zio_taskq_types[q], mode, value);
983 break;
984 }
985
986 for (uint_t i = 0; i < count; i++) {
987 taskq_t *tq;
988
989 if (count > 1) {
990 (void) snprintf(name, sizeof (name), "%s_%s_%u",
991 zio_type_name[t], zio_taskq_types[q], i);
992 } else {
993 (void) snprintf(name, sizeof (name), "%s_%s",
994 zio_type_name[t], zio_taskq_types[q]);
995 }
996
997 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
998 if (batch)
999 flags |= TASKQ_DC_BATCH;
1000
1001 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1002 spa->spa_proc, zio_taskq_basedc, flags);
1003 } else {
1004 pri_t pri = maxclsyspri;
1005 /*
1006 * The write issue taskq can be extremely CPU
1007 * intensive. Run it at slightly lower priority
1008 * than the other taskqs.
1009 */
1010 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1011 pri--;
1012
1013 tq = taskq_create_proc(name, value, pri, 50,
1014 INT_MAX, spa->spa_proc, flags);
1015 }
1016
1017 tqs->stqs_taskq[i] = tq;
1018 }
1019 }
1020
1021 static void
spa_taskqs_fini(spa_t * spa,zio_type_t t,zio_taskq_type_t q)1022 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1023 {
1024 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1025
1026 if (tqs->stqs_taskq == NULL) {
1027 ASSERT0(tqs->stqs_count);
1028 return;
1029 }
1030
1031 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1032 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1033 taskq_destroy(tqs->stqs_taskq[i]);
1034 }
1035
1036 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1037 tqs->stqs_taskq = NULL;
1038 }
1039
1040 /*
1041 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1042 * Note that a type may have multiple discrete taskqs to avoid lock contention
1043 * on the taskq itself. In that case we choose which taskq at random by using
1044 * the low bits of gethrtime().
1045 */
1046 void
spa_taskq_dispatch_ent(spa_t * spa,zio_type_t t,zio_taskq_type_t q,task_func_t * func,void * arg,uint_t flags,taskq_ent_t * ent)1047 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1048 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1049 {
1050 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1051 taskq_t *tq;
1052
1053 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1054 ASSERT3U(tqs->stqs_count, !=, 0);
1055
1056 if (tqs->stqs_count == 1) {
1057 tq = tqs->stqs_taskq[0];
1058 } else {
1059 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1060 }
1061
1062 taskq_dispatch_ent(tq, func, arg, flags, ent);
1063 }
1064
1065 static void
spa_create_zio_taskqs(spa_t * spa)1066 spa_create_zio_taskqs(spa_t *spa)
1067 {
1068 for (int t = 0; t < ZIO_TYPES; t++) {
1069 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1070 spa_taskqs_init(spa, t, q);
1071 }
1072 }
1073 }
1074
1075 #ifdef _KERNEL
1076 static void
spa_thread(void * arg)1077 spa_thread(void *arg)
1078 {
1079 callb_cpr_t cprinfo;
1080
1081 spa_t *spa = arg;
1082 user_t *pu = PTOU(curproc);
1083
1084 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1085 spa->spa_name);
1086
1087 ASSERT(curproc != &p0);
1088 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1089 "zpool-%s", spa->spa_name);
1090 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1091
1092 /* bind this thread to the requested psrset */
1093 if (zio_taskq_psrset_bind != PS_NONE) {
1094 pool_lock();
1095 mutex_enter(&cpu_lock);
1096 mutex_enter(&pidlock);
1097 mutex_enter(&curproc->p_lock);
1098
1099 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1100 0, NULL, NULL) == 0) {
1101 curthread->t_bind_pset = zio_taskq_psrset_bind;
1102 } else {
1103 cmn_err(CE_WARN,
1104 "Couldn't bind process for zfs pool \"%s\" to "
1105 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1106 }
1107
1108 mutex_exit(&curproc->p_lock);
1109 mutex_exit(&pidlock);
1110 mutex_exit(&cpu_lock);
1111 pool_unlock();
1112 }
1113
1114 if (zio_taskq_sysdc) {
1115 sysdc_thread_enter(curthread, 100, 0);
1116 }
1117
1118 spa->spa_proc = curproc;
1119 spa->spa_did = curthread->t_did;
1120
1121 spa_create_zio_taskqs(spa);
1122
1123 mutex_enter(&spa->spa_proc_lock);
1124 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1125
1126 spa->spa_proc_state = SPA_PROC_ACTIVE;
1127 cv_broadcast(&spa->spa_proc_cv);
1128
1129 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1130 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1133
1134 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1135 spa->spa_proc_state = SPA_PROC_GONE;
1136 spa->spa_proc = &p0;
1137 cv_broadcast(&spa->spa_proc_cv);
1138 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1139
1140 mutex_enter(&curproc->p_lock);
1141 lwp_exit();
1142 }
1143 #endif
1144
1145 /*
1146 * Activate an uninitialized pool.
1147 */
1148 static void
spa_activate(spa_t * spa,int mode)1149 spa_activate(spa_t *spa, int mode)
1150 {
1151 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1152
1153 spa->spa_state = POOL_STATE_ACTIVE;
1154 spa->spa_mode = mode;
1155
1156 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1157 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1158 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1159 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1160
1161 /* Try to create a covering process */
1162 mutex_enter(&spa->spa_proc_lock);
1163 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1164 ASSERT(spa->spa_proc == &p0);
1165 spa->spa_did = 0;
1166
1167 /* Only create a process if we're going to be around a while. */
1168 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1169 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1170 NULL, 0) == 0) {
1171 spa->spa_proc_state = SPA_PROC_CREATED;
1172 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1173 cv_wait(&spa->spa_proc_cv,
1174 &spa->spa_proc_lock);
1175 }
1176 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1177 ASSERT(spa->spa_proc != &p0);
1178 ASSERT(spa->spa_did != 0);
1179 } else {
1180 #ifdef _KERNEL
1181 cmn_err(CE_WARN,
1182 "Couldn't create process for zfs pool \"%s\"\n",
1183 spa->spa_name);
1184 #endif
1185 }
1186 }
1187 mutex_exit(&spa->spa_proc_lock);
1188
1189 /* If we didn't create a process, we need to create our taskqs. */
1190 if (spa->spa_proc == &p0) {
1191 spa_create_zio_taskqs(spa);
1192 }
1193
1194 for (size_t i = 0; i < TXG_SIZE; i++) {
1195 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1196 ZIO_FLAG_CANFAIL);
1197 }
1198
1199 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1200 offsetof(vdev_t, vdev_config_dirty_node));
1201 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1202 offsetof(objset_t, os_evicting_node));
1203 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1204 offsetof(vdev_t, vdev_state_dirty_node));
1205
1206 txg_list_create(&spa->spa_vdev_txg_list, spa,
1207 offsetof(struct vdev, vdev_txg_node));
1208
1209 avl_create(&spa->spa_errlist_scrub,
1210 spa_error_entry_compare, sizeof (spa_error_entry_t),
1211 offsetof(spa_error_entry_t, se_avl));
1212 avl_create(&spa->spa_errlist_last,
1213 spa_error_entry_compare, sizeof (spa_error_entry_t),
1214 offsetof(spa_error_entry_t, se_avl));
1215
1216 spa_keystore_init(&spa->spa_keystore);
1217
1218 /*
1219 * The taskq to upgrade datasets in this pool. Currently used by
1220 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1221 */
1222 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1223 minclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1224 }
1225
1226 /*
1227 * Opposite of spa_activate().
1228 */
1229 static void
spa_deactivate(spa_t * spa)1230 spa_deactivate(spa_t *spa)
1231 {
1232 ASSERT(spa->spa_sync_on == B_FALSE);
1233 ASSERT(spa->spa_dsl_pool == NULL);
1234 ASSERT(spa->spa_root_vdev == NULL);
1235 ASSERT(spa->spa_async_zio_root == NULL);
1236 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1237
1238 spa_evicting_os_wait(spa);
1239
1240 if (spa->spa_upgrade_taskq) {
1241 taskq_destroy(spa->spa_upgrade_taskq);
1242 spa->spa_upgrade_taskq = NULL;
1243 }
1244
1245 txg_list_destroy(&spa->spa_vdev_txg_list);
1246
1247 list_destroy(&spa->spa_config_dirty_list);
1248 list_destroy(&spa->spa_evicting_os_list);
1249 list_destroy(&spa->spa_state_dirty_list);
1250
1251 for (int t = 0; t < ZIO_TYPES; t++) {
1252 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1253 spa_taskqs_fini(spa, t, q);
1254 }
1255 }
1256
1257 for (size_t i = 0; i < TXG_SIZE; i++) {
1258 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1259 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1260 spa->spa_txg_zio[i] = NULL;
1261 }
1262
1263 metaslab_class_destroy(spa->spa_normal_class);
1264 spa->spa_normal_class = NULL;
1265
1266 metaslab_class_destroy(spa->spa_log_class);
1267 spa->spa_log_class = NULL;
1268
1269 metaslab_class_destroy(spa->spa_special_class);
1270 spa->spa_special_class = NULL;
1271
1272 metaslab_class_destroy(spa->spa_dedup_class);
1273 spa->spa_dedup_class = NULL;
1274
1275 /*
1276 * If this was part of an import or the open otherwise failed, we may
1277 * still have errors left in the queues. Empty them just in case.
1278 */
1279 spa_errlog_drain(spa);
1280 avl_destroy(&spa->spa_errlist_scrub);
1281 avl_destroy(&spa->spa_errlist_last);
1282
1283 spa_keystore_fini(&spa->spa_keystore);
1284
1285 spa->spa_state = POOL_STATE_UNINITIALIZED;
1286
1287 mutex_enter(&spa->spa_proc_lock);
1288 if (spa->spa_proc_state != SPA_PROC_NONE) {
1289 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1290 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1291 cv_broadcast(&spa->spa_proc_cv);
1292 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1293 ASSERT(spa->spa_proc != &p0);
1294 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1295 }
1296 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1297 spa->spa_proc_state = SPA_PROC_NONE;
1298 }
1299 ASSERT(spa->spa_proc == &p0);
1300 mutex_exit(&spa->spa_proc_lock);
1301
1302 /*
1303 * We want to make sure spa_thread() has actually exited the ZFS
1304 * module, so that the module can't be unloaded out from underneath
1305 * it.
1306 */
1307 if (spa->spa_did != 0) {
1308 thread_join(spa->spa_did);
1309 spa->spa_did = 0;
1310 }
1311 }
1312
1313 /*
1314 * Verify a pool configuration, and construct the vdev tree appropriately. This
1315 * will create all the necessary vdevs in the appropriate layout, with each vdev
1316 * in the CLOSED state. This will prep the pool before open/creation/import.
1317 * All vdev validation is done by the vdev_alloc() routine.
1318 */
1319 static int
spa_config_parse(spa_t * spa,vdev_t ** vdp,nvlist_t * nv,vdev_t * parent,uint_t id,int atype)1320 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1321 uint_t id, int atype)
1322 {
1323 nvlist_t **child;
1324 uint_t children;
1325 int error;
1326
1327 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1328 return (error);
1329
1330 if ((*vdp)->vdev_ops->vdev_op_leaf)
1331 return (0);
1332
1333 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1334 &child, &children);
1335
1336 if (error == ENOENT)
1337 return (0);
1338
1339 if (error) {
1340 vdev_free(*vdp);
1341 *vdp = NULL;
1342 return (SET_ERROR(EINVAL));
1343 }
1344
1345 for (int c = 0; c < children; c++) {
1346 vdev_t *vd;
1347 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1348 atype)) != 0) {
1349 vdev_free(*vdp);
1350 *vdp = NULL;
1351 return (error);
1352 }
1353 }
1354
1355 ASSERT(*vdp != NULL);
1356
1357 return (0);
1358 }
1359
1360 static boolean_t
spa_should_flush_logs_on_unload(spa_t * spa)1361 spa_should_flush_logs_on_unload(spa_t *spa)
1362 {
1363 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1364 return (B_FALSE);
1365
1366 if (!spa_writeable(spa))
1367 return (B_FALSE);
1368
1369 if (!spa->spa_sync_on)
1370 return (B_FALSE);
1371
1372 if (spa_state(spa) != POOL_STATE_EXPORTED)
1373 return (B_FALSE);
1374
1375 if (zfs_keep_log_spacemaps_at_export)
1376 return (B_FALSE);
1377
1378 return (B_TRUE);
1379 }
1380
1381 /*
1382 * Opens a transaction that will set the flag that will instruct
1383 * spa_sync to attempt to flush all the metaslabs for that txg.
1384 */
1385 static void
spa_unload_log_sm_flush_all(spa_t * spa)1386 spa_unload_log_sm_flush_all(spa_t *spa)
1387 {
1388 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1389
1390 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1391
1392 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1393 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1394
1395 dmu_tx_commit(tx);
1396 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1397 }
1398
1399 static void
spa_unload_log_sm_metadata(spa_t * spa)1400 spa_unload_log_sm_metadata(spa_t *spa)
1401 {
1402 void *cookie = NULL;
1403 spa_log_sm_t *sls;
1404
1405 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1406 &cookie)) != NULL) {
1407 VERIFY0(sls->sls_mscount);
1408 kmem_free(sls, sizeof (spa_log_sm_t));
1409 }
1410
1411 for (log_summary_entry_t *e = list_head(&spa->spa_log_summary);
1412 e != NULL; e = list_head(&spa->spa_log_summary)) {
1413 VERIFY0(e->lse_mscount);
1414 list_remove(&spa->spa_log_summary, e);
1415 kmem_free(e, sizeof (log_summary_entry_t));
1416 }
1417
1418 spa->spa_unflushed_stats.sus_nblocks = 0;
1419 spa->spa_unflushed_stats.sus_memused = 0;
1420 spa->spa_unflushed_stats.sus_blocklimit = 0;
1421 }
1422
1423 /*
1424 * Opposite of spa_load().
1425 */
1426 static void
spa_unload(spa_t * spa)1427 spa_unload(spa_t *spa)
1428 {
1429 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1430 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1431
1432 spa_import_progress_remove(spa);
1433 spa_load_note(spa, "UNLOADING");
1434
1435 /*
1436 * If the log space map feature is enabled and the pool is getting
1437 * exported (but not destroyed), we want to spend some time flushing
1438 * as many metaslabs as we can in an attempt to destroy log space
1439 * maps and save import time.
1440 */
1441 if (spa_should_flush_logs_on_unload(spa))
1442 spa_unload_log_sm_flush_all(spa);
1443
1444 /*
1445 * Stop async tasks.
1446 */
1447 spa_async_suspend(spa);
1448
1449 if (spa->spa_root_vdev) {
1450 vdev_t *root_vdev = spa->spa_root_vdev;
1451 vdev_initialize_stop_all(root_vdev, VDEV_INITIALIZE_ACTIVE);
1452 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1453 vdev_autotrim_stop_all(spa);
1454 }
1455
1456 /*
1457 * Stop syncing.
1458 */
1459 if (spa->spa_sync_on) {
1460 txg_sync_stop(spa->spa_dsl_pool);
1461 spa->spa_sync_on = B_FALSE;
1462 }
1463
1464 /*
1465 * This ensures that there is no async metaslab prefetching
1466 * while we attempt to unload the spa.
1467 */
1468 if (spa->spa_root_vdev != NULL) {
1469 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
1470 vdev_t *vc = spa->spa_root_vdev->vdev_child[c];
1471 if (vc->vdev_mg != NULL)
1472 taskq_wait(vc->vdev_mg->mg_taskq);
1473 }
1474 }
1475
1476 if (spa->spa_mmp.mmp_thread)
1477 mmp_thread_stop(spa);
1478
1479 /*
1480 * Wait for any outstanding async I/O to complete.
1481 */
1482 if (spa->spa_async_zio_root != NULL) {
1483 for (int i = 0; i < max_ncpus; i++)
1484 (void) zio_wait(spa->spa_async_zio_root[i]);
1485 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1486 spa->spa_async_zio_root = NULL;
1487 }
1488
1489 if (spa->spa_vdev_removal != NULL) {
1490 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1491 spa->spa_vdev_removal = NULL;
1492 }
1493
1494 if (spa->spa_condense_zthr != NULL) {
1495 zthr_destroy(spa->spa_condense_zthr);
1496 spa->spa_condense_zthr = NULL;
1497 }
1498
1499 if (spa->spa_checkpoint_discard_zthr != NULL) {
1500 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1501 spa->spa_checkpoint_discard_zthr = NULL;
1502 }
1503
1504 spa_condense_fini(spa);
1505
1506 bpobj_close(&spa->spa_deferred_bpobj);
1507
1508 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1509
1510 /*
1511 * Close all vdevs.
1512 */
1513 if (spa->spa_root_vdev)
1514 vdev_free(spa->spa_root_vdev);
1515 ASSERT(spa->spa_root_vdev == NULL);
1516
1517 /*
1518 * Close the dsl pool.
1519 */
1520 if (spa->spa_dsl_pool) {
1521 dsl_pool_close(spa->spa_dsl_pool);
1522 spa->spa_dsl_pool = NULL;
1523 spa->spa_meta_objset = NULL;
1524 }
1525
1526 ddt_unload(spa);
1527 spa_unload_log_sm_metadata(spa);
1528
1529 /*
1530 * Drop and purge level 2 cache
1531 */
1532 spa_l2cache_drop(spa);
1533
1534 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1535 vdev_free(spa->spa_spares.sav_vdevs[i]);
1536 if (spa->spa_spares.sav_vdevs) {
1537 kmem_free(spa->spa_spares.sav_vdevs,
1538 spa->spa_spares.sav_count * sizeof (void *));
1539 spa->spa_spares.sav_vdevs = NULL;
1540 }
1541 if (spa->spa_spares.sav_config) {
1542 nvlist_free(spa->spa_spares.sav_config);
1543 spa->spa_spares.sav_config = NULL;
1544 }
1545 spa->spa_spares.sav_count = 0;
1546
1547 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1548 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1549 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1550 }
1551 if (spa->spa_l2cache.sav_vdevs) {
1552 kmem_free(spa->spa_l2cache.sav_vdevs,
1553 spa->spa_l2cache.sav_count * sizeof (void *));
1554 spa->spa_l2cache.sav_vdevs = NULL;
1555 }
1556 if (spa->spa_l2cache.sav_config) {
1557 nvlist_free(spa->spa_l2cache.sav_config);
1558 spa->spa_l2cache.sav_config = NULL;
1559 }
1560 spa->spa_l2cache.sav_count = 0;
1561
1562 spa->spa_async_suspended = 0;
1563
1564 spa->spa_indirect_vdevs_loaded = B_FALSE;
1565
1566 if (spa->spa_comment != NULL) {
1567 spa_strfree(spa->spa_comment);
1568 spa->spa_comment = NULL;
1569 }
1570
1571 spa_config_exit(spa, SCL_ALL, spa);
1572 }
1573
1574 /*
1575 * Load (or re-load) the current list of vdevs describing the active spares for
1576 * this pool. When this is called, we have some form of basic information in
1577 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1578 * then re-generate a more complete list including status information.
1579 */
1580 void
spa_load_spares(spa_t * spa)1581 spa_load_spares(spa_t *spa)
1582 {
1583 nvlist_t **spares;
1584 uint_t nspares;
1585 int i;
1586 vdev_t *vd, *tvd;
1587
1588 #ifndef _KERNEL
1589 /*
1590 * zdb opens both the current state of the pool and the
1591 * checkpointed state (if present), with a different spa_t.
1592 *
1593 * As spare vdevs are shared among open pools, we skip loading
1594 * them when we load the checkpointed state of the pool.
1595 */
1596 if (!spa_writeable(spa))
1597 return;
1598 #endif
1599
1600 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1601
1602 /*
1603 * First, close and free any existing spare vdevs.
1604 */
1605 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1606 vd = spa->spa_spares.sav_vdevs[i];
1607
1608 /* Undo the call to spa_activate() below */
1609 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1610 B_FALSE)) != NULL && tvd->vdev_isspare)
1611 spa_spare_remove(tvd);
1612 vdev_close(vd);
1613 vdev_free(vd);
1614 }
1615
1616 if (spa->spa_spares.sav_vdevs)
1617 kmem_free(spa->spa_spares.sav_vdevs,
1618 spa->spa_spares.sav_count * sizeof (void *));
1619
1620 if (spa->spa_spares.sav_config == NULL)
1621 nspares = 0;
1622 else
1623 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1624 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1625
1626 spa->spa_spares.sav_count = (int)nspares;
1627 spa->spa_spares.sav_vdevs = NULL;
1628
1629 if (nspares == 0)
1630 return;
1631
1632 /*
1633 * Construct the array of vdevs, opening them to get status in the
1634 * process. For each spare, there is potentially two different vdev_t
1635 * structures associated with it: one in the list of spares (used only
1636 * for basic validation purposes) and one in the active vdev
1637 * configuration (if it's spared in). During this phase we open and
1638 * validate each vdev on the spare list. If the vdev also exists in the
1639 * active configuration, then we also mark this vdev as an active spare.
1640 */
1641 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1642 KM_SLEEP);
1643 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1644 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1645 VDEV_ALLOC_SPARE) == 0);
1646 ASSERT(vd != NULL);
1647
1648 spa->spa_spares.sav_vdevs[i] = vd;
1649
1650 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1651 B_FALSE)) != NULL) {
1652 if (!tvd->vdev_isspare)
1653 spa_spare_add(tvd);
1654
1655 /*
1656 * We only mark the spare active if we were successfully
1657 * able to load the vdev. Otherwise, importing a pool
1658 * with a bad active spare would result in strange
1659 * behavior, because multiple pool would think the spare
1660 * is actively in use.
1661 *
1662 * There is a vulnerability here to an equally bizarre
1663 * circumstance, where a dead active spare is later
1664 * brought back to life (onlined or otherwise). Given
1665 * the rarity of this scenario, and the extra complexity
1666 * it adds, we ignore the possibility.
1667 */
1668 if (!vdev_is_dead(tvd))
1669 spa_spare_activate(tvd);
1670 }
1671
1672 vd->vdev_top = vd;
1673 vd->vdev_aux = &spa->spa_spares;
1674
1675 if (vdev_open(vd) != 0)
1676 continue;
1677
1678 if (vdev_validate_aux(vd) == 0)
1679 spa_spare_add(vd);
1680 }
1681
1682 /*
1683 * Recompute the stashed list of spares, with status information
1684 * this time.
1685 */
1686 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1687 DATA_TYPE_NVLIST_ARRAY) == 0);
1688
1689 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1690 KM_SLEEP);
1691 for (i = 0; i < spa->spa_spares.sav_count; i++)
1692 spares[i] = vdev_config_generate(spa,
1693 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1694 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1695 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1696 for (i = 0; i < spa->spa_spares.sav_count; i++)
1697 nvlist_free(spares[i]);
1698 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1699 }
1700
1701 /*
1702 * Load (or re-load) the current list of vdevs describing the active l2cache for
1703 * this pool. When this is called, we have some form of basic information in
1704 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1705 * then re-generate a more complete list including status information.
1706 * Devices which are already active have their details maintained, and are
1707 * not re-opened.
1708 */
1709 void
spa_load_l2cache(spa_t * spa)1710 spa_load_l2cache(spa_t *spa)
1711 {
1712 nvlist_t **l2cache;
1713 uint_t nl2cache;
1714 int i, j, oldnvdevs;
1715 uint64_t guid;
1716 vdev_t *vd, **oldvdevs, **newvdevs;
1717 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1718
1719 #ifndef _KERNEL
1720 /*
1721 * zdb opens both the current state of the pool and the
1722 * checkpointed state (if present), with a different spa_t.
1723 *
1724 * As L2 caches are part of the ARC which is shared among open
1725 * pools, we skip loading them when we load the checkpointed
1726 * state of the pool.
1727 */
1728 if (!spa_writeable(spa))
1729 return;
1730 #endif
1731
1732 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1733
1734 nl2cache = 0;
1735 newvdevs = NULL;
1736 if (sav->sav_config != NULL) {
1737 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1738 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1739 if (nl2cache > 0) {
1740 newvdevs = kmem_alloc(
1741 nl2cache * sizeof (void *), KM_SLEEP);
1742 }
1743 }
1744
1745 oldvdevs = sav->sav_vdevs;
1746 oldnvdevs = sav->sav_count;
1747 sav->sav_vdevs = NULL;
1748 sav->sav_count = 0;
1749
1750 /*
1751 * Process new nvlist of vdevs.
1752 */
1753 for (i = 0; i < nl2cache; i++) {
1754 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1755 &guid) == 0);
1756
1757 newvdevs[i] = NULL;
1758 for (j = 0; j < oldnvdevs; j++) {
1759 vd = oldvdevs[j];
1760 if (vd != NULL && guid == vd->vdev_guid) {
1761 /*
1762 * Retain previous vdev for add/remove ops.
1763 */
1764 newvdevs[i] = vd;
1765 oldvdevs[j] = NULL;
1766 break;
1767 }
1768 }
1769
1770 if (newvdevs[i] == NULL) {
1771 /*
1772 * Create new vdev
1773 */
1774 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1775 VDEV_ALLOC_L2CACHE) == 0);
1776 ASSERT(vd != NULL);
1777 newvdevs[i] = vd;
1778
1779 /*
1780 * Commit this vdev as an l2cache device,
1781 * even if it fails to open.
1782 */
1783 spa_l2cache_add(vd);
1784
1785 vd->vdev_top = vd;
1786 vd->vdev_aux = sav;
1787
1788 spa_l2cache_activate(vd);
1789
1790 if (vdev_open(vd) != 0)
1791 continue;
1792
1793 (void) vdev_validate_aux(vd);
1794
1795 if (!vdev_is_dead(vd))
1796 l2arc_add_vdev(spa, vd);
1797 }
1798 }
1799
1800 /*
1801 * Purge vdevs that were dropped
1802 */
1803 for (i = 0; i < oldnvdevs; i++) {
1804 uint64_t pool;
1805
1806 vd = oldvdevs[i];
1807 if (vd != NULL) {
1808 ASSERT(vd->vdev_isl2cache);
1809
1810 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1811 pool != 0ULL && l2arc_vdev_present(vd))
1812 l2arc_remove_vdev(vd);
1813 vdev_clear_stats(vd);
1814 vdev_free(vd);
1815 }
1816 }
1817
1818 if (oldvdevs)
1819 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1820
1821 if (sav->sav_config == NULL)
1822 goto out;
1823
1824 sav->sav_vdevs = newvdevs;
1825 sav->sav_count = (int)nl2cache;
1826
1827 /*
1828 * Recompute the stashed list of l2cache devices, with status
1829 * information this time.
1830 */
1831 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1832 DATA_TYPE_NVLIST_ARRAY) == 0);
1833
1834 l2cache = NULL;
1835 if (sav->sav_count > 0) {
1836 l2cache = kmem_alloc(
1837 sav->sav_count * sizeof (void *), KM_SLEEP);
1838 }
1839 for (i = 0; i < sav->sav_count; i++)
1840 l2cache[i] = vdev_config_generate(spa,
1841 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1842 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1843 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1844 out:
1845 for (i = 0; i < sav->sav_count; i++)
1846 nvlist_free(l2cache[i]);
1847 if (sav->sav_count)
1848 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1849 }
1850
1851 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)1852 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1853 {
1854 dmu_buf_t *db;
1855 char *packed = NULL;
1856 size_t nvsize = 0;
1857 int error;
1858 *value = NULL;
1859
1860 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1861 if (error != 0)
1862 return (error);
1863
1864 nvsize = *(uint64_t *)db->db_data;
1865 dmu_buf_rele(db, FTAG);
1866
1867 packed = kmem_alloc(nvsize, KM_SLEEP);
1868 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1869 DMU_READ_PREFETCH);
1870 if (error == 0)
1871 error = nvlist_unpack(packed, nvsize, value, 0);
1872 kmem_free(packed, nvsize);
1873
1874 return (error);
1875 }
1876
1877 /*
1878 * Concrete top-level vdevs that are not missing and are not logs. At every
1879 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1880 */
1881 static uint64_t
spa_healthy_core_tvds(spa_t * spa)1882 spa_healthy_core_tvds(spa_t *spa)
1883 {
1884 vdev_t *rvd = spa->spa_root_vdev;
1885 uint64_t tvds = 0;
1886
1887 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1888 vdev_t *vd = rvd->vdev_child[i];
1889 if (vd->vdev_islog)
1890 continue;
1891 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1892 tvds++;
1893 }
1894
1895 return (tvds);
1896 }
1897
1898 /*
1899 * Checks to see if the given vdev could not be opened, in which case we post a
1900 * sysevent to notify the autoreplace code that the device has been removed.
1901 */
1902 static void
spa_check_removed(vdev_t * vd)1903 spa_check_removed(vdev_t *vd)
1904 {
1905 for (uint64_t c = 0; c < vd->vdev_children; c++)
1906 spa_check_removed(vd->vdev_child[c]);
1907
1908 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1909 vdev_is_concrete(vd)) {
1910 zfs_post_autoreplace(vd->vdev_spa, vd);
1911 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1912 }
1913 }
1914
1915 static int
spa_check_for_missing_logs(spa_t * spa)1916 spa_check_for_missing_logs(spa_t *spa)
1917 {
1918 vdev_t *rvd = spa->spa_root_vdev;
1919
1920 /*
1921 * If we're doing a normal import, then build up any additional
1922 * diagnostic information about missing log devices.
1923 * We'll pass this up to the user for further processing.
1924 */
1925 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1926 nvlist_t **child, *nv;
1927 uint64_t idx = 0;
1928
1929 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1930 KM_SLEEP);
1931 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1932
1933 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1934 vdev_t *tvd = rvd->vdev_child[c];
1935
1936 /*
1937 * We consider a device as missing only if it failed
1938 * to open (i.e. offline or faulted is not considered
1939 * as missing).
1940 */
1941 if (tvd->vdev_islog &&
1942 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1943 child[idx++] = vdev_config_generate(spa, tvd,
1944 B_FALSE, VDEV_CONFIG_MISSING);
1945 }
1946 }
1947
1948 if (idx > 0) {
1949 fnvlist_add_nvlist_array(nv,
1950 ZPOOL_CONFIG_CHILDREN, child, idx);
1951 fnvlist_add_nvlist(spa->spa_load_info,
1952 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1953
1954 for (uint64_t i = 0; i < idx; i++)
1955 nvlist_free(child[i]);
1956 }
1957 nvlist_free(nv);
1958 kmem_free(child, rvd->vdev_children * sizeof (char **));
1959
1960 if (idx > 0) {
1961 spa_load_failed(spa, "some log devices are missing");
1962 vdev_dbgmsg_print_tree(rvd, 2);
1963 return (SET_ERROR(ENXIO));
1964 }
1965 } else {
1966 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1967 vdev_t *tvd = rvd->vdev_child[c];
1968
1969 if (tvd->vdev_islog &&
1970 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1971 spa_set_log_state(spa, SPA_LOG_CLEAR);
1972 spa_load_note(spa, "some log devices are "
1973 "missing, ZIL is dropped.");
1974 vdev_dbgmsg_print_tree(rvd, 2);
1975 break;
1976 }
1977 }
1978 }
1979
1980 return (0);
1981 }
1982
1983 /*
1984 * Check for missing log devices
1985 */
1986 static boolean_t
spa_check_logs(spa_t * spa)1987 spa_check_logs(spa_t *spa)
1988 {
1989 boolean_t rv = B_FALSE;
1990 dsl_pool_t *dp = spa_get_dsl(spa);
1991
1992 switch (spa->spa_log_state) {
1993 case SPA_LOG_MISSING:
1994 /* need to recheck in case slog has been restored */
1995 case SPA_LOG_UNKNOWN:
1996 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1997 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1998 if (rv)
1999 spa_set_log_state(spa, SPA_LOG_MISSING);
2000 break;
2001 }
2002 return (rv);
2003 }
2004
2005 static boolean_t
spa_passivate_log(spa_t * spa)2006 spa_passivate_log(spa_t *spa)
2007 {
2008 vdev_t *rvd = spa->spa_root_vdev;
2009 boolean_t slog_found = B_FALSE;
2010
2011 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2012
2013 if (!spa_has_slogs(spa))
2014 return (B_FALSE);
2015
2016 for (int c = 0; c < rvd->vdev_children; c++) {
2017 vdev_t *tvd = rvd->vdev_child[c];
2018 metaslab_group_t *mg = tvd->vdev_mg;
2019
2020 if (tvd->vdev_islog) {
2021 metaslab_group_passivate(mg);
2022 slog_found = B_TRUE;
2023 }
2024 }
2025
2026 return (slog_found);
2027 }
2028
2029 static void
spa_activate_log(spa_t * spa)2030 spa_activate_log(spa_t *spa)
2031 {
2032 vdev_t *rvd = spa->spa_root_vdev;
2033
2034 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2035
2036 for (int c = 0; c < rvd->vdev_children; c++) {
2037 vdev_t *tvd = rvd->vdev_child[c];
2038 metaslab_group_t *mg = tvd->vdev_mg;
2039
2040 if (tvd->vdev_islog)
2041 metaslab_group_activate(mg);
2042 }
2043 }
2044
2045 int
spa_reset_logs(spa_t * spa)2046 spa_reset_logs(spa_t *spa)
2047 {
2048 int error;
2049
2050 error = dmu_objset_find(spa_name(spa), zil_reset,
2051 NULL, DS_FIND_CHILDREN);
2052 if (error == 0) {
2053 /*
2054 * We successfully offlined the log device, sync out the
2055 * current txg so that the "stubby" block can be removed
2056 * by zil_sync().
2057 */
2058 txg_wait_synced(spa->spa_dsl_pool, 0);
2059 }
2060 return (error);
2061 }
2062
2063 static void
spa_aux_check_removed(spa_aux_vdev_t * sav)2064 spa_aux_check_removed(spa_aux_vdev_t *sav)
2065 {
2066 for (int i = 0; i < sav->sav_count; i++)
2067 spa_check_removed(sav->sav_vdevs[i]);
2068 }
2069
2070 void
spa_claim_notify(zio_t * zio)2071 spa_claim_notify(zio_t *zio)
2072 {
2073 spa_t *spa = zio->io_spa;
2074
2075 if (zio->io_error)
2076 return;
2077
2078 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2079 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2080 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2081 mutex_exit(&spa->spa_props_lock);
2082 }
2083
2084 typedef struct spa_load_error {
2085 uint64_t sle_meta_count;
2086 uint64_t sle_data_count;
2087 } spa_load_error_t;
2088
2089 static void
spa_load_verify_done(zio_t * zio)2090 spa_load_verify_done(zio_t *zio)
2091 {
2092 blkptr_t *bp = zio->io_bp;
2093 spa_load_error_t *sle = zio->io_private;
2094 dmu_object_type_t type = BP_GET_TYPE(bp);
2095 int error = zio->io_error;
2096 spa_t *spa = zio->io_spa;
2097
2098 abd_free(zio->io_abd);
2099 if (error) {
2100 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2101 type != DMU_OT_INTENT_LOG)
2102 atomic_inc_64(&sle->sle_meta_count);
2103 else
2104 atomic_inc_64(&sle->sle_data_count);
2105 }
2106
2107 mutex_enter(&spa->spa_scrub_lock);
2108 spa->spa_load_verify_ios--;
2109 cv_broadcast(&spa->spa_scrub_io_cv);
2110 mutex_exit(&spa->spa_scrub_lock);
2111 }
2112
2113 /*
2114 * Maximum number of concurrent scrub i/os to create while verifying
2115 * a pool while importing it.
2116 */
2117 int spa_load_verify_maxinflight = 10000;
2118 boolean_t spa_load_verify_metadata = B_TRUE;
2119 boolean_t spa_load_verify_data = B_TRUE;
2120
2121 /*ARGSUSED*/
2122 static int
spa_load_verify_cb(spa_t * spa,zilog_t * zilog,const blkptr_t * bp,const zbookmark_phys_t * zb,const dnode_phys_t * dnp,void * arg)2123 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2124 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2125 {
2126 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2127 return (0);
2128 /*
2129 * Note: normally this routine will not be called if
2130 * spa_load_verify_metadata is not set. However, it may be useful
2131 * to manually set the flag after the traversal has begun.
2132 */
2133 if (!spa_load_verify_metadata)
2134 return (0);
2135 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2136 return (0);
2137
2138 zio_t *rio = arg;
2139 size_t size = BP_GET_PSIZE(bp);
2140
2141 mutex_enter(&spa->spa_scrub_lock);
2142 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2143 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2144 spa->spa_load_verify_ios++;
2145 mutex_exit(&spa->spa_scrub_lock);
2146
2147 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2148 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2149 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2150 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2151 return (0);
2152 }
2153
2154 /* ARGSUSED */
2155 int
verify_dataset_name_len(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)2156 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2157 {
2158 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2159 return (SET_ERROR(ENAMETOOLONG));
2160
2161 return (0);
2162 }
2163
2164 static int
spa_load_verify(spa_t * spa)2165 spa_load_verify(spa_t *spa)
2166 {
2167 zio_t *rio;
2168 spa_load_error_t sle = { 0 };
2169 zpool_load_policy_t policy;
2170 boolean_t verify_ok = B_FALSE;
2171 int error = 0;
2172
2173 zpool_get_load_policy(spa->spa_config, &policy);
2174
2175 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2176 return (0);
2177
2178 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2179 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2180 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2181 DS_FIND_CHILDREN);
2182 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2183 if (error != 0)
2184 return (error);
2185
2186 rio = zio_root(spa, NULL, &sle,
2187 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2188
2189 if (spa_load_verify_metadata) {
2190 if (spa->spa_extreme_rewind) {
2191 spa_load_note(spa, "performing a complete scan of the "
2192 "pool since extreme rewind is on. This may take "
2193 "a very long time.\n (spa_load_verify_data=%u, "
2194 "spa_load_verify_metadata=%u)",
2195 spa_load_verify_data, spa_load_verify_metadata);
2196 }
2197 error = traverse_pool(spa, spa->spa_verify_min_txg,
2198 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2199 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2200 }
2201
2202 (void) zio_wait(rio);
2203
2204 spa->spa_load_meta_errors = sle.sle_meta_count;
2205 spa->spa_load_data_errors = sle.sle_data_count;
2206
2207 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2208 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2209 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2210 (u_longlong_t)sle.sle_data_count);
2211 }
2212
2213 if (spa_load_verify_dryrun ||
2214 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2215 sle.sle_data_count <= policy.zlp_maxdata)) {
2216 int64_t loss = 0;
2217
2218 verify_ok = B_TRUE;
2219 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2220 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2221
2222 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2223 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2224 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2225 VERIFY(nvlist_add_int64(spa->spa_load_info,
2226 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2227 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2228 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2229 } else {
2230 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2231 }
2232
2233 if (spa_load_verify_dryrun)
2234 return (0);
2235
2236 if (error) {
2237 if (error != ENXIO && error != EIO)
2238 error = SET_ERROR(EIO);
2239 return (error);
2240 }
2241
2242 return (verify_ok ? 0 : EIO);
2243 }
2244
2245 /*
2246 * Find a value in the pool props object.
2247 */
2248 static void
spa_prop_find(spa_t * spa,zpool_prop_t prop,uint64_t * val)2249 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2250 {
2251 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2252 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2253 }
2254
2255 /*
2256 * Find a value in the pool directory object.
2257 */
2258 static int
spa_dir_prop(spa_t * spa,const char * name,uint64_t * val,boolean_t log_enoent)2259 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2260 {
2261 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2262 name, sizeof (uint64_t), 1, val);
2263
2264 if (error != 0 && (error != ENOENT || log_enoent)) {
2265 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2266 "[error=%d]", name, error);
2267 }
2268
2269 return (error);
2270 }
2271
2272 static int
spa_vdev_err(vdev_t * vdev,vdev_aux_t aux,int err)2273 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2274 {
2275 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2276 return (SET_ERROR(err));
2277 }
2278
2279 static void
spa_spawn_aux_threads(spa_t * spa)2280 spa_spawn_aux_threads(spa_t *spa)
2281 {
2282 ASSERT(spa_writeable(spa));
2283
2284 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2285
2286 spa_start_indirect_condensing_thread(spa);
2287
2288 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2289 spa->spa_checkpoint_discard_zthr =
2290 zthr_create(spa_checkpoint_discard_thread_check,
2291 spa_checkpoint_discard_thread, spa);
2292 }
2293
2294 /*
2295 * Fix up config after a partly-completed split. This is done with the
2296 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2297 * pool have that entry in their config, but only the splitting one contains
2298 * a list of all the guids of the vdevs that are being split off.
2299 *
2300 * This function determines what to do with that list: either rejoin
2301 * all the disks to the pool, or complete the splitting process. To attempt
2302 * the rejoin, each disk that is offlined is marked online again, and
2303 * we do a reopen() call. If the vdev label for every disk that was
2304 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2305 * then we call vdev_split() on each disk, and complete the split.
2306 *
2307 * Otherwise we leave the config alone, with all the vdevs in place in
2308 * the original pool.
2309 */
2310 static void
spa_try_repair(spa_t * spa,nvlist_t * config)2311 spa_try_repair(spa_t *spa, nvlist_t *config)
2312 {
2313 uint_t extracted;
2314 uint64_t *glist;
2315 uint_t i, gcount;
2316 nvlist_t *nvl;
2317 vdev_t **vd;
2318 boolean_t attempt_reopen;
2319
2320 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2321 return;
2322
2323 /* check that the config is complete */
2324 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2325 &glist, &gcount) != 0)
2326 return;
2327
2328 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2329
2330 /* attempt to online all the vdevs & validate */
2331 attempt_reopen = B_TRUE;
2332 for (i = 0; i < gcount; i++) {
2333 if (glist[i] == 0) /* vdev is hole */
2334 continue;
2335
2336 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2337 if (vd[i] == NULL) {
2338 /*
2339 * Don't bother attempting to reopen the disks;
2340 * just do the split.
2341 */
2342 attempt_reopen = B_FALSE;
2343 } else {
2344 /* attempt to re-online it */
2345 vd[i]->vdev_offline = B_FALSE;
2346 }
2347 }
2348
2349 if (attempt_reopen) {
2350 vdev_reopen(spa->spa_root_vdev);
2351
2352 /* check each device to see what state it's in */
2353 for (extracted = 0, i = 0; i < gcount; i++) {
2354 if (vd[i] != NULL &&
2355 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2356 break;
2357 ++extracted;
2358 }
2359 }
2360
2361 /*
2362 * If every disk has been moved to the new pool, or if we never
2363 * even attempted to look at them, then we split them off for
2364 * good.
2365 */
2366 if (!attempt_reopen || gcount == extracted) {
2367 for (i = 0; i < gcount; i++)
2368 if (vd[i] != NULL)
2369 vdev_split(vd[i]);
2370 vdev_reopen(spa->spa_root_vdev);
2371 }
2372
2373 kmem_free(vd, gcount * sizeof (vdev_t *));
2374 }
2375
2376 static int
spa_load(spa_t * spa,spa_load_state_t state,spa_import_type_t type)2377 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2378 {
2379 char *ereport = FM_EREPORT_ZFS_POOL;
2380 int error;
2381
2382 spa->spa_load_state = state;
2383 (void) spa_import_progress_set_state(spa, spa_load_state(spa));
2384
2385 gethrestime(&spa->spa_loaded_ts);
2386 error = spa_load_impl(spa, type, &ereport);
2387
2388 /*
2389 * Don't count references from objsets that are already closed
2390 * and are making their way through the eviction process.
2391 */
2392 spa_evicting_os_wait(spa);
2393 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2394 if (error) {
2395 if (error != EEXIST) {
2396 spa->spa_loaded_ts.tv_sec = 0;
2397 spa->spa_loaded_ts.tv_nsec = 0;
2398 }
2399 if (error != EBADF) {
2400 (void) zfs_ereport_post(ereport, spa,
2401 NULL, NULL, NULL, 0, 0);
2402 }
2403 }
2404 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2405 spa->spa_ena = 0;
2406
2407 (void) spa_import_progress_set_state(spa, spa_load_state(spa));
2408
2409 return (error);
2410 }
2411
2412 /*
2413 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2414 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2415 * spa's per-vdev ZAP list.
2416 */
2417 static uint64_t
vdev_count_verify_zaps(vdev_t * vd)2418 vdev_count_verify_zaps(vdev_t *vd)
2419 {
2420 spa_t *spa = vd->vdev_spa;
2421 uint64_t total = 0;
2422 if (vd->vdev_top_zap != 0) {
2423 total++;
2424 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2425 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2426 }
2427 if (vd->vdev_leaf_zap != 0) {
2428 total++;
2429 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2430 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2431 }
2432
2433 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2434 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2435 }
2436
2437 return (total);
2438 }
2439
2440 /*
2441 * Determine whether the activity check is required.
2442 */
2443 static boolean_t
spa_activity_check_required(spa_t * spa,uberblock_t * ub,nvlist_t * label,nvlist_t * config)2444 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2445 nvlist_t *config)
2446 {
2447 uint64_t state = 0;
2448 uint64_t hostid = 0;
2449 uint64_t tryconfig_txg = 0;
2450 uint64_t tryconfig_timestamp = 0;
2451 uint16_t tryconfig_mmp_seq = 0;
2452 nvlist_t *nvinfo;
2453
2454 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2455 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2456 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2457 &tryconfig_txg);
2458 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2459 &tryconfig_timestamp);
2460 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
2461 &tryconfig_mmp_seq);
2462 }
2463
2464 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2465
2466 /*
2467 * Disable the MMP activity check - This is used by zdb which
2468 * is intended to be used on potentially active pools.
2469 */
2470 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2471 return (B_FALSE);
2472
2473 /*
2474 * Skip the activity check when the MMP feature is disabled.
2475 */
2476 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2477 return (B_FALSE);
2478
2479 /*
2480 * If the tryconfig_ values are nonzero, they are the results of an
2481 * earlier tryimport. If they all match the uberblock we just found,
2482 * then the pool has not changed and we return false so we do not test
2483 * a second time.
2484 */
2485 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2486 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
2487 tryconfig_mmp_seq && tryconfig_mmp_seq ==
2488 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
2489 return (B_FALSE);
2490
2491 /*
2492 * Allow the activity check to be skipped when importing the pool
2493 * on the same host which last imported it. Since the hostid from
2494 * configuration may be stale use the one read from the label.
2495 */
2496 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2497 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2498
2499 if (hostid == spa_get_hostid())
2500 return (B_FALSE);
2501
2502 /*
2503 * Skip the activity test when the pool was cleanly exported.
2504 */
2505 if (state != POOL_STATE_ACTIVE)
2506 return (B_FALSE);
2507
2508 return (B_TRUE);
2509 }
2510
2511 /*
2512 * Nanoseconds the activity check must watch for changes on-disk.
2513 */
2514 static uint64_t
spa_activity_check_duration(spa_t * spa,uberblock_t * ub)2515 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
2516 {
2517 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2518 uint64_t multihost_interval = MSEC2NSEC(
2519 MMP_INTERVAL_OK(zfs_multihost_interval));
2520 uint64_t import_delay = MAX(NANOSEC, import_intervals *
2521 multihost_interval);
2522
2523 /*
2524 * Local tunables determine a minimum duration except for the case
2525 * where we know when the remote host will suspend the pool if MMP
2526 * writes do not land.
2527 *
2528 * See Big Theory comment at the top of mmp.c for the reasoning behind
2529 * these cases and times.
2530 */
2531
2532 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
2533
2534 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2535 MMP_FAIL_INT(ub) > 0) {
2536
2537 /* MMP on remote host will suspend pool after failed writes */
2538 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
2539 MMP_IMPORT_SAFETY_FACTOR / 100;
2540
2541 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
2542 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
2543 "import_intervals=%u", import_delay, MMP_FAIL_INT(ub),
2544 MMP_INTERVAL(ub), import_intervals);
2545
2546 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
2547 MMP_FAIL_INT(ub) == 0) {
2548
2549 /* MMP on remote host will never suspend pool */
2550 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
2551 ub->ub_mmp_delay) * import_intervals);
2552
2553 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
2554 "mmp_interval=%llu ub_mmp_delay=%llu "
2555 "import_intervals=%u", import_delay, MMP_INTERVAL(ub),
2556 ub->ub_mmp_delay, import_intervals);
2557
2558 } else if (MMP_VALID(ub)) {
2559 /*
2560 * zfs-0.7 compatability case
2561 */
2562
2563 import_delay = MAX(import_delay, (multihost_interval +
2564 ub->ub_mmp_delay) * import_intervals);
2565
2566 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
2567 "import_intervals=%u leaves=%u", import_delay,
2568 ub->ub_mmp_delay, import_intervals,
2569 vdev_count_leaves(spa));
2570 } else {
2571 /* Using local tunings is the only reasonable option */
2572 zfs_dbgmsg("pool last imported on non-MMP aware "
2573 "host using import_delay=%llu multihost_interval=%llu "
2574 "import_intervals=%u", import_delay, multihost_interval,
2575 import_intervals);
2576 }
2577
2578 return (import_delay);
2579 }
2580
2581 /*
2582 * Perform the import activity check. If the user canceled the import or
2583 * we detected activity then fail.
2584 */
2585 static int
spa_activity_check(spa_t * spa,uberblock_t * ub,nvlist_t * config)2586 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2587 {
2588 uint64_t txg = ub->ub_txg;
2589 uint64_t timestamp = ub->ub_timestamp;
2590 uint64_t mmp_config = ub->ub_mmp_config;
2591 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
2592 uint64_t import_delay;
2593 hrtime_t import_expire;
2594 nvlist_t *mmp_label = NULL;
2595 vdev_t *rvd = spa->spa_root_vdev;
2596 kcondvar_t cv;
2597 kmutex_t mtx;
2598 int error = 0;
2599
2600 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2601 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2602 mutex_enter(&mtx);
2603
2604 /*
2605 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2606 * during the earlier tryimport. If the txg recorded there is 0 then
2607 * the pool is known to be active on another host.
2608 *
2609 * Otherwise, the pool might be in use on another host. Check for
2610 * changes in the uberblocks on disk if necessary.
2611 */
2612 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2613 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2614 ZPOOL_CONFIG_LOAD_INFO);
2615
2616 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2617 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2618 vdev_uberblock_load(rvd, ub, &mmp_label);
2619 error = SET_ERROR(EREMOTEIO);
2620 goto out;
2621 }
2622 }
2623
2624 import_delay = spa_activity_check_duration(spa, ub);
2625
2626 /* Add a small random factor in case of simultaneous imports (0-25%) */
2627 import_delay += import_delay * spa_get_random(250) / 1000;
2628
2629 import_expire = gethrtime() + import_delay;
2630
2631 while (gethrtime() < import_expire) {
2632 (void) spa_import_progress_set_mmp_check(spa,
2633 NSEC2SEC(import_expire - gethrtime()));
2634
2635 vdev_uberblock_load(rvd, ub, &mmp_label);
2636
2637 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
2638 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
2639 zfs_dbgmsg("multihost activity detected "
2640 "txg %llu ub_txg %llu "
2641 "timestamp %llu ub_timestamp %llu "
2642 "mmp_config %#llx ub_mmp_config %#llx",
2643 txg, ub->ub_txg, timestamp, ub->ub_timestamp,
2644 mmp_config, ub->ub_mmp_config);
2645
2646 error = SET_ERROR(EREMOTEIO);
2647 break;
2648 }
2649
2650 if (mmp_label) {
2651 nvlist_free(mmp_label);
2652 mmp_label = NULL;
2653 }
2654
2655 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2656 if (error != -1) {
2657 error = SET_ERROR(EINTR);
2658 break;
2659 }
2660 error = 0;
2661 }
2662
2663 out:
2664 mutex_exit(&mtx);
2665 mutex_destroy(&mtx);
2666 cv_destroy(&cv);
2667
2668 /*
2669 * If the pool is determined to be active store the status in the
2670 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2671 * available from configuration read from disk store them as well.
2672 * This allows 'zpool import' to generate a more useful message.
2673 *
2674 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2675 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2676 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2677 */
2678 if (error == EREMOTEIO) {
2679 char *hostname = "<unknown>";
2680 uint64_t hostid = 0;
2681
2682 if (mmp_label) {
2683 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2684 hostname = fnvlist_lookup_string(mmp_label,
2685 ZPOOL_CONFIG_HOSTNAME);
2686 fnvlist_add_string(spa->spa_load_info,
2687 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2688 }
2689
2690 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2691 hostid = fnvlist_lookup_uint64(mmp_label,
2692 ZPOOL_CONFIG_HOSTID);
2693 fnvlist_add_uint64(spa->spa_load_info,
2694 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2695 }
2696 }
2697
2698 fnvlist_add_uint64(spa->spa_load_info,
2699 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2700 fnvlist_add_uint64(spa->spa_load_info,
2701 ZPOOL_CONFIG_MMP_TXG, 0);
2702
2703 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2704 }
2705
2706 if (mmp_label)
2707 nvlist_free(mmp_label);
2708
2709 return (error);
2710 }
2711
2712 static int
spa_verify_host(spa_t * spa,nvlist_t * mos_config)2713 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2714 {
2715 uint64_t hostid;
2716 char *hostname;
2717 uint64_t myhostid = 0;
2718
2719 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2720 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2721 hostname = fnvlist_lookup_string(mos_config,
2722 ZPOOL_CONFIG_HOSTNAME);
2723
2724 myhostid = zone_get_hostid(NULL);
2725
2726 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2727 cmn_err(CE_WARN, "pool '%s' could not be "
2728 "loaded as it was last accessed by "
2729 "another system (host: %s hostid: 0x%llx). "
2730 "See: http://illumos.org/msg/ZFS-8000-EY",
2731 spa_name(spa), hostname, (u_longlong_t)hostid);
2732 spa_load_failed(spa, "hostid verification failed: pool "
2733 "last accessed by host: %s (hostid: 0x%llx)",
2734 hostname, (u_longlong_t)hostid);
2735 return (SET_ERROR(EBADF));
2736 }
2737 }
2738
2739 return (0);
2740 }
2741
2742 static int
spa_ld_parse_config(spa_t * spa,spa_import_type_t type)2743 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2744 {
2745 int error = 0;
2746 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2747 int parse;
2748 vdev_t *rvd;
2749 uint64_t pool_guid;
2750 char *comment;
2751
2752 /*
2753 * Versioning wasn't explicitly added to the label until later, so if
2754 * it's not present treat it as the initial version.
2755 */
2756 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2757 &spa->spa_ubsync.ub_version) != 0)
2758 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2759
2760 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2761 spa_load_failed(spa, "invalid config provided: '%s' missing",
2762 ZPOOL_CONFIG_POOL_GUID);
2763 return (SET_ERROR(EINVAL));
2764 }
2765
2766 /*
2767 * If we are doing an import, ensure that the pool is not already
2768 * imported by checking if its pool guid already exists in the
2769 * spa namespace.
2770 *
2771 * The only case that we allow an already imported pool to be
2772 * imported again, is when the pool is checkpointed and we want to
2773 * look at its checkpointed state from userland tools like zdb.
2774 */
2775 #ifdef _KERNEL
2776 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2777 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2778 spa_guid_exists(pool_guid, 0)) {
2779 #else
2780 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2781 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2782 spa_guid_exists(pool_guid, 0) &&
2783 !spa_importing_readonly_checkpoint(spa)) {
2784 #endif
2785 spa_load_failed(spa, "a pool with guid %llu is already open",
2786 (u_longlong_t)pool_guid);
2787 return (SET_ERROR(EEXIST));
2788 }
2789
2790 spa->spa_config_guid = pool_guid;
2791
2792 nvlist_free(spa->spa_load_info);
2793 spa->spa_load_info = fnvlist_alloc();
2794
2795 ASSERT(spa->spa_comment == NULL);
2796 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2797 spa->spa_comment = spa_strdup(comment);
2798
2799 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2800 &spa->spa_config_txg);
2801
2802 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2803 spa->spa_config_splitting = fnvlist_dup(nvl);
2804
2805 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2806 spa_load_failed(spa, "invalid config provided: '%s' missing",
2807 ZPOOL_CONFIG_VDEV_TREE);
2808 return (SET_ERROR(EINVAL));
2809 }
2810
2811 /*
2812 * Create "The Godfather" zio to hold all async IOs
2813 */
2814 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2815 KM_SLEEP);
2816 for (int i = 0; i < max_ncpus; i++) {
2817 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2818 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2819 ZIO_FLAG_GODFATHER);
2820 }
2821
2822 /*
2823 * Parse the configuration into a vdev tree. We explicitly set the
2824 * value that will be returned by spa_version() since parsing the
2825 * configuration requires knowing the version number.
2826 */
2827 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2828 parse = (type == SPA_IMPORT_EXISTING ?
2829 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2830 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2831 spa_config_exit(spa, SCL_ALL, FTAG);
2832
2833 if (error != 0) {
2834 spa_load_failed(spa, "unable to parse config [error=%d]",
2835 error);
2836 return (error);
2837 }
2838
2839 ASSERT(spa->spa_root_vdev == rvd);
2840 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2841 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2842
2843 if (type != SPA_IMPORT_ASSEMBLE) {
2844 ASSERT(spa_guid(spa) == pool_guid);
2845 }
2846
2847 return (0);
2848 }
2849
2850 /*
2851 * Recursively open all vdevs in the vdev tree. This function is called twice:
2852 * first with the untrusted config, then with the trusted config.
2853 */
2854 static int
2855 spa_ld_open_vdevs(spa_t *spa)
2856 {
2857 int error = 0;
2858
2859 /*
2860 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2861 * missing/unopenable for the root vdev to be still considered openable.
2862 */
2863 if (spa->spa_trust_config) {
2864 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2865 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2866 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2867 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2868 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2869 } else {
2870 spa->spa_missing_tvds_allowed = 0;
2871 }
2872
2873 spa->spa_missing_tvds_allowed =
2874 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2875
2876 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2877 error = vdev_open(spa->spa_root_vdev);
2878 spa_config_exit(spa, SCL_ALL, FTAG);
2879
2880 if (spa->spa_missing_tvds != 0) {
2881 spa_load_note(spa, "vdev tree has %lld missing top-level "
2882 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2883 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2884 /*
2885 * Although theoretically we could allow users to open
2886 * incomplete pools in RW mode, we'd need to add a lot
2887 * of extra logic (e.g. adjust pool space to account
2888 * for missing vdevs).
2889 * This limitation also prevents users from accidentally
2890 * opening the pool in RW mode during data recovery and
2891 * damaging it further.
2892 */
2893 spa_load_note(spa, "pools with missing top-level "
2894 "vdevs can only be opened in read-only mode.");
2895 error = SET_ERROR(ENXIO);
2896 } else {
2897 spa_load_note(spa, "current settings allow for maximum "
2898 "%lld missing top-level vdevs at this stage.",
2899 (u_longlong_t)spa->spa_missing_tvds_allowed);
2900 }
2901 }
2902 if (error != 0) {
2903 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2904 error);
2905 }
2906 if (spa->spa_missing_tvds != 0 || error != 0)
2907 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2908
2909 return (error);
2910 }
2911
2912 /*
2913 * We need to validate the vdev labels against the configuration that
2914 * we have in hand. This function is called twice: first with an untrusted
2915 * config, then with a trusted config. The validation is more strict when the
2916 * config is trusted.
2917 */
2918 static int
2919 spa_ld_validate_vdevs(spa_t *spa)
2920 {
2921 int error = 0;
2922 vdev_t *rvd = spa->spa_root_vdev;
2923
2924 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2925 error = vdev_validate(rvd);
2926 spa_config_exit(spa, SCL_ALL, FTAG);
2927
2928 if (error != 0) {
2929 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2930 return (error);
2931 }
2932
2933 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2934 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2935 "some vdevs");
2936 vdev_dbgmsg_print_tree(rvd, 2);
2937 return (SET_ERROR(ENXIO));
2938 }
2939
2940 return (0);
2941 }
2942
2943 static void
2944 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2945 {
2946 spa->spa_state = POOL_STATE_ACTIVE;
2947 spa->spa_ubsync = spa->spa_uberblock;
2948 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2949 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2950 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2951 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2952 spa->spa_claim_max_txg = spa->spa_first_txg;
2953 spa->spa_prev_software_version = ub->ub_software_version;
2954 }
2955
2956 static int
2957 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2958 {
2959 vdev_t *rvd = spa->spa_root_vdev;
2960 nvlist_t *label;
2961 uberblock_t *ub = &spa->spa_uberblock;
2962 boolean_t activity_check = B_FALSE;
2963
2964 /*
2965 * If we are opening the checkpointed state of the pool by
2966 * rewinding to it, at this point we will have written the
2967 * checkpointed uberblock to the vdev labels, so searching
2968 * the labels will find the right uberblock. However, if
2969 * we are opening the checkpointed state read-only, we have
2970 * not modified the labels. Therefore, we must ignore the
2971 * labels and continue using the spa_uberblock that was set
2972 * by spa_ld_checkpoint_rewind.
2973 *
2974 * Note that it would be fine to ignore the labels when
2975 * rewinding (opening writeable) as well. However, if we
2976 * crash just after writing the labels, we will end up
2977 * searching the labels. Doing so in the common case means
2978 * that this code path gets exercised normally, rather than
2979 * just in the edge case.
2980 */
2981 if (ub->ub_checkpoint_txg != 0 &&
2982 spa_importing_readonly_checkpoint(spa)) {
2983 spa_ld_select_uberblock_done(spa, ub);
2984 return (0);
2985 }
2986
2987 /*
2988 * Find the best uberblock.
2989 */
2990 vdev_uberblock_load(rvd, ub, &label);
2991
2992 /*
2993 * If we weren't able to find a single valid uberblock, return failure.
2994 */
2995 if (ub->ub_txg == 0) {
2996 nvlist_free(label);
2997 spa_load_failed(spa, "no valid uberblock found");
2998 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2999 }
3000
3001 if (spa->spa_load_max_txg != UINT64_MAX) {
3002 (void) spa_import_progress_set_max_txg(spa,
3003 (u_longlong_t)spa->spa_load_max_txg);
3004 }
3005 spa_load_note(spa, "using uberblock with txg=%llu",
3006 (u_longlong_t)ub->ub_txg);
3007
3008 /*
3009 * For pools which have the multihost property on determine if the
3010 * pool is truly inactive and can be safely imported. Prevent
3011 * hosts which don't have a hostid set from importing the pool.
3012 */
3013 activity_check = spa_activity_check_required(spa, ub, label,
3014 spa->spa_config);
3015 if (activity_check) {
3016 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3017 spa_get_hostid() == 0) {
3018 nvlist_free(label);
3019 fnvlist_add_uint64(spa->spa_load_info,
3020 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3021 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3022 }
3023
3024 int error = spa_activity_check(spa, ub, spa->spa_config);
3025 if (error) {
3026 nvlist_free(label);
3027 return (error);
3028 }
3029
3030 fnvlist_add_uint64(spa->spa_load_info,
3031 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3032 fnvlist_add_uint64(spa->spa_load_info,
3033 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3034 fnvlist_add_uint16(spa->spa_load_info,
3035 ZPOOL_CONFIG_MMP_SEQ,
3036 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3037 }
3038
3039 /*
3040 * If the pool has an unsupported version we can't open it.
3041 */
3042 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3043 nvlist_free(label);
3044 spa_load_failed(spa, "version %llu is not supported",
3045 (u_longlong_t)ub->ub_version);
3046 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3047 }
3048
3049 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3050 nvlist_t *features;
3051
3052 /*
3053 * If we weren't able to find what's necessary for reading the
3054 * MOS in the label, return failure.
3055 */
3056 if (label == NULL) {
3057 spa_load_failed(spa, "label config unavailable");
3058 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3059 ENXIO));
3060 }
3061
3062 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3063 &features) != 0) {
3064 nvlist_free(label);
3065 spa_load_failed(spa, "invalid label: '%s' missing",
3066 ZPOOL_CONFIG_FEATURES_FOR_READ);
3067 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3068 ENXIO));
3069 }
3070
3071 /*
3072 * Update our in-core representation with the definitive values
3073 * from the label.
3074 */
3075 nvlist_free(spa->spa_label_features);
3076 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
3077 }
3078
3079 nvlist_free(label);
3080
3081 /*
3082 * Look through entries in the label nvlist's features_for_read. If
3083 * there is a feature listed there which we don't understand then we
3084 * cannot open a pool.
3085 */
3086 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3087 nvlist_t *unsup_feat;
3088
3089 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3090 0);
3091
3092 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3093 NULL); nvp != NULL;
3094 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3095 if (!zfeature_is_supported(nvpair_name(nvp))) {
3096 VERIFY(nvlist_add_string(unsup_feat,
3097 nvpair_name(nvp), "") == 0);
3098 }
3099 }
3100
3101 if (!nvlist_empty(unsup_feat)) {
3102 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3103 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3104 nvlist_free(unsup_feat);
3105 spa_load_failed(spa, "some features are unsupported");
3106 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3107 ENOTSUP));
3108 }
3109
3110 nvlist_free(unsup_feat);
3111 }
3112
3113 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3115 spa_try_repair(spa, spa->spa_config);
3116 spa_config_exit(spa, SCL_ALL, FTAG);
3117 nvlist_free(spa->spa_config_splitting);
3118 spa->spa_config_splitting = NULL;
3119 }
3120
3121 /*
3122 * Initialize internal SPA structures.
3123 */
3124 spa_ld_select_uberblock_done(spa, ub);
3125
3126 return (0);
3127 }
3128
3129 static int
3130 spa_ld_open_rootbp(spa_t *spa)
3131 {
3132 int error = 0;
3133 vdev_t *rvd = spa->spa_root_vdev;
3134
3135 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3136 if (error != 0) {
3137 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3138 "[error=%d]", error);
3139 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3140 }
3141 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3142
3143 return (0);
3144 }
3145
3146 static int
3147 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3148 boolean_t reloading)
3149 {
3150 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3151 nvlist_t *nv, *mos_config, *policy;
3152 int error = 0, copy_error;
3153 uint64_t healthy_tvds, healthy_tvds_mos;
3154 uint64_t mos_config_txg;
3155
3156 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3157 != 0)
3158 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3159
3160 /*
3161 * If we're assembling a pool from a split, the config provided is
3162 * already trusted so there is nothing to do.
3163 */
3164 if (type == SPA_IMPORT_ASSEMBLE)
3165 return (0);
3166
3167 healthy_tvds = spa_healthy_core_tvds(spa);
3168
3169 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3170 != 0) {
3171 spa_load_failed(spa, "unable to retrieve MOS config");
3172 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3173 }
3174
3175 /*
3176 * If we are doing an open, pool owner wasn't verified yet, thus do
3177 * the verification here.
3178 */
3179 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3180 error = spa_verify_host(spa, mos_config);
3181 if (error != 0) {
3182 nvlist_free(mos_config);
3183 return (error);
3184 }
3185 }
3186
3187 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3188
3189 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3190
3191 /*
3192 * Build a new vdev tree from the trusted config
3193 */
3194 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3195
3196 /*
3197 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3198 * obtained by scanning /dev/dsk, then it will have the right vdev
3199 * paths. We update the trusted MOS config with this information.
3200 * We first try to copy the paths with vdev_copy_path_strict, which
3201 * succeeds only when both configs have exactly the same vdev tree.
3202 * If that fails, we fall back to a more flexible method that has a
3203 * best effort policy.
3204 */
3205 copy_error = vdev_copy_path_strict(rvd, mrvd);
3206 if (copy_error != 0 || spa_load_print_vdev_tree) {
3207 spa_load_note(spa, "provided vdev tree:");
3208 vdev_dbgmsg_print_tree(rvd, 2);
3209 spa_load_note(spa, "MOS vdev tree:");
3210 vdev_dbgmsg_print_tree(mrvd, 2);
3211 }
3212 if (copy_error != 0) {
3213 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3214 "back to vdev_copy_path_relaxed");
3215 vdev_copy_path_relaxed(rvd, mrvd);
3216 }
3217
3218 vdev_close(rvd);
3219 vdev_free(rvd);
3220 spa->spa_root_vdev = mrvd;
3221 rvd = mrvd;
3222 spa_config_exit(spa, SCL_ALL, FTAG);
3223
3224 /*
3225 * We will use spa_config if we decide to reload the spa or if spa_load
3226 * fails and we rewind. We must thus regenerate the config using the
3227 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3228 * pass settings on how to load the pool and is not stored in the MOS.
3229 * We copy it over to our new, trusted config.
3230 */
3231 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3232 ZPOOL_CONFIG_POOL_TXG);
3233 nvlist_free(mos_config);
3234 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3235 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3236 &policy) == 0)
3237 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3238 spa_config_set(spa, mos_config);
3239 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3240
3241 /*
3242 * Now that we got the config from the MOS, we should be more strict
3243