xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision e9103aaee0c546d4644791198c54abb03c89969e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 
66 #ifdef	_KERNEL
67 #include <sys/bootprops.h>
68 #include <sys/callb.h>
69 #include <sys/cpupart.h>
70 #include <sys/pool.h>
71 #include <sys/sysdc.h>
72 #include <sys/zone.h>
73 #endif	/* _KERNEL */
74 
75 #include "zfs_prop.h"
76 #include "zfs_comutil.h"
77 
78 typedef enum zti_modes {
79 	zti_mode_fixed,			/* value is # of threads (min 1) */
80 	zti_mode_online_percent,	/* value is % of online CPUs */
81 	zti_mode_batch,			/* cpu-intensive; value is ignored */
82 	zti_mode_null,			/* don't create a taskq */
83 	zti_nmodes
84 } zti_modes_t;
85 
86 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
87 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
88 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
89 #define	ZTI_NULL	{ zti_mode_null, 0 }
90 
91 #define	ZTI_ONE		ZTI_FIX(1)
92 
93 typedef struct zio_taskq_info {
94 	enum zti_modes zti_mode;
95 	uint_t zti_value;
96 } zio_taskq_info_t;
97 
98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
99 	"issue", "issue_high", "intr", "intr_high"
100 };
101 
102 /*
103  * Define the taskq threads for the following I/O types:
104  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
105  */
106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
107 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
108 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
109 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
110 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
111 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 };
115 
116 static dsl_syncfunc_t spa_sync_props;
117 static boolean_t spa_has_active_shared_spare(spa_t *spa);
118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
119     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
120     char **ereport);
121 static void spa_vdev_resilver_done(spa_t *spa);
122 
123 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
124 id_t		zio_taskq_psrset_bind = PS_NONE;
125 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
126 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
127 
128 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
129 
130 /*
131  * This (illegal) pool name is used when temporarily importing a spa_t in order
132  * to get the vdev stats associated with the imported devices.
133  */
134 #define	TRYIMPORT_NAME	"$import"
135 
136 /*
137  * ==========================================================================
138  * SPA properties routines
139  * ==========================================================================
140  */
141 
142 /*
143  * Add a (source=src, propname=propval) list to an nvlist.
144  */
145 static void
146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
147     uint64_t intval, zprop_source_t src)
148 {
149 	const char *propname = zpool_prop_to_name(prop);
150 	nvlist_t *propval;
151 
152 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
153 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
154 
155 	if (strval != NULL)
156 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
157 	else
158 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
159 
160 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
161 	nvlist_free(propval);
162 }
163 
164 /*
165  * Get property values from the spa configuration.
166  */
167 static void
168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
169 {
170 	uint64_t size;
171 	uint64_t alloc;
172 	uint64_t cap, version;
173 	zprop_source_t src = ZPROP_SRC_NONE;
174 	spa_config_dirent_t *dp;
175 
176 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
177 
178 	if (spa->spa_root_vdev != NULL) {
179 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
180 		size = metaslab_class_get_space(spa_normal_class(spa));
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
182 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
183 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
184 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
185 		    size - alloc, src);
186 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
187 		    (spa_mode(spa) == FREAD), src);
188 
189 		cap = (size == 0) ? 0 : (alloc * 100 / size);
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
191 
192 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
193 		    ddt_get_pool_dedup_ratio(spa), src);
194 
195 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
196 		    spa->spa_root_vdev->vdev_state, src);
197 
198 		version = spa_version(spa);
199 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
200 			src = ZPROP_SRC_DEFAULT;
201 		else
202 			src = ZPROP_SRC_LOCAL;
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
204 	}
205 
206 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
207 
208 	if (spa->spa_root != NULL)
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
210 		    0, ZPROP_SRC_LOCAL);
211 
212 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
213 		if (dp->scd_path == NULL) {
214 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
215 			    "none", 0, ZPROP_SRC_LOCAL);
216 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
217 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
218 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
219 		}
220 	}
221 }
222 
223 /*
224  * Get zpool property values.
225  */
226 int
227 spa_prop_get(spa_t *spa, nvlist_t **nvp)
228 {
229 	objset_t *mos = spa->spa_meta_objset;
230 	zap_cursor_t zc;
231 	zap_attribute_t za;
232 	int err;
233 
234 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
235 
236 	mutex_enter(&spa->spa_props_lock);
237 
238 	/*
239 	 * Get properties from the spa config.
240 	 */
241 	spa_prop_get_config(spa, nvp);
242 
243 	/* If no pool property object, no more prop to get. */
244 	if (mos == NULL || spa->spa_pool_props_object == 0) {
245 		mutex_exit(&spa->spa_props_lock);
246 		return (0);
247 	}
248 
249 	/*
250 	 * Get properties from the MOS pool property object.
251 	 */
252 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
253 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
254 	    zap_cursor_advance(&zc)) {
255 		uint64_t intval = 0;
256 		char *strval = NULL;
257 		zprop_source_t src = ZPROP_SRC_DEFAULT;
258 		zpool_prop_t prop;
259 
260 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
261 			continue;
262 
263 		switch (za.za_integer_length) {
264 		case 8:
265 			/* integer property */
266 			if (za.za_first_integer !=
267 			    zpool_prop_default_numeric(prop))
268 				src = ZPROP_SRC_LOCAL;
269 
270 			if (prop == ZPOOL_PROP_BOOTFS) {
271 				dsl_pool_t *dp;
272 				dsl_dataset_t *ds = NULL;
273 
274 				dp = spa_get_dsl(spa);
275 				rw_enter(&dp->dp_config_rwlock, RW_READER);
276 				if (err = dsl_dataset_hold_obj(dp,
277 				    za.za_first_integer, FTAG, &ds)) {
278 					rw_exit(&dp->dp_config_rwlock);
279 					break;
280 				}
281 
282 				strval = kmem_alloc(
283 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
284 				    KM_SLEEP);
285 				dsl_dataset_name(ds, strval);
286 				dsl_dataset_rele(ds, FTAG);
287 				rw_exit(&dp->dp_config_rwlock);
288 			} else {
289 				strval = NULL;
290 				intval = za.za_first_integer;
291 			}
292 
293 			spa_prop_add_list(*nvp, prop, strval, intval, src);
294 
295 			if (strval != NULL)
296 				kmem_free(strval,
297 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
298 
299 			break;
300 
301 		case 1:
302 			/* string property */
303 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
304 			err = zap_lookup(mos, spa->spa_pool_props_object,
305 			    za.za_name, 1, za.za_num_integers, strval);
306 			if (err) {
307 				kmem_free(strval, za.za_num_integers);
308 				break;
309 			}
310 			spa_prop_add_list(*nvp, prop, strval, 0, src);
311 			kmem_free(strval, za.za_num_integers);
312 			break;
313 
314 		default:
315 			break;
316 		}
317 	}
318 	zap_cursor_fini(&zc);
319 	mutex_exit(&spa->spa_props_lock);
320 out:
321 	if (err && err != ENOENT) {
322 		nvlist_free(*nvp);
323 		*nvp = NULL;
324 		return (err);
325 	}
326 
327 	return (0);
328 }
329 
330 /*
331  * Validate the given pool properties nvlist and modify the list
332  * for the property values to be set.
333  */
334 static int
335 spa_prop_validate(spa_t *spa, nvlist_t *props)
336 {
337 	nvpair_t *elem;
338 	int error = 0, reset_bootfs = 0;
339 	uint64_t objnum;
340 
341 	elem = NULL;
342 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
343 		zpool_prop_t prop;
344 		char *propname, *strval;
345 		uint64_t intval;
346 		objset_t *os;
347 		char *slash;
348 
349 		propname = nvpair_name(elem);
350 
351 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
352 			return (EINVAL);
353 
354 		switch (prop) {
355 		case ZPOOL_PROP_VERSION:
356 			error = nvpair_value_uint64(elem, &intval);
357 			if (!error &&
358 			    (intval < spa_version(spa) || intval > SPA_VERSION))
359 				error = EINVAL;
360 			break;
361 
362 		case ZPOOL_PROP_DELEGATION:
363 		case ZPOOL_PROP_AUTOREPLACE:
364 		case ZPOOL_PROP_LISTSNAPS:
365 		case ZPOOL_PROP_AUTOEXPAND:
366 			error = nvpair_value_uint64(elem, &intval);
367 			if (!error && intval > 1)
368 				error = EINVAL;
369 			break;
370 
371 		case ZPOOL_PROP_BOOTFS:
372 			/*
373 			 * If the pool version is less than SPA_VERSION_BOOTFS,
374 			 * or the pool is still being created (version == 0),
375 			 * the bootfs property cannot be set.
376 			 */
377 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
378 				error = ENOTSUP;
379 				break;
380 			}
381 
382 			/*
383 			 * Make sure the vdev config is bootable
384 			 */
385 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
386 				error = ENOTSUP;
387 				break;
388 			}
389 
390 			reset_bootfs = 1;
391 
392 			error = nvpair_value_string(elem, &strval);
393 
394 			if (!error) {
395 				uint64_t compress;
396 
397 				if (strval == NULL || strval[0] == '\0') {
398 					objnum = zpool_prop_default_numeric(
399 					    ZPOOL_PROP_BOOTFS);
400 					break;
401 				}
402 
403 				if (error = dmu_objset_hold(strval, FTAG, &os))
404 					break;
405 
406 				/* Must be ZPL and not gzip compressed. */
407 
408 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
409 					error = ENOTSUP;
410 				} else if ((error = dsl_prop_get_integer(strval,
411 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
412 				    &compress, NULL)) == 0 &&
413 				    !BOOTFS_COMPRESS_VALID(compress)) {
414 					error = ENOTSUP;
415 				} else {
416 					objnum = dmu_objset_id(os);
417 				}
418 				dmu_objset_rele(os, FTAG);
419 			}
420 			break;
421 
422 		case ZPOOL_PROP_FAILUREMODE:
423 			error = nvpair_value_uint64(elem, &intval);
424 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
425 			    intval > ZIO_FAILURE_MODE_PANIC))
426 				error = EINVAL;
427 
428 			/*
429 			 * This is a special case which only occurs when
430 			 * the pool has completely failed. This allows
431 			 * the user to change the in-core failmode property
432 			 * without syncing it out to disk (I/Os might
433 			 * currently be blocked). We do this by returning
434 			 * EIO to the caller (spa_prop_set) to trick it
435 			 * into thinking we encountered a property validation
436 			 * error.
437 			 */
438 			if (!error && spa_suspended(spa)) {
439 				spa->spa_failmode = intval;
440 				error = EIO;
441 			}
442 			break;
443 
444 		case ZPOOL_PROP_CACHEFILE:
445 			if ((error = nvpair_value_string(elem, &strval)) != 0)
446 				break;
447 
448 			if (strval[0] == '\0')
449 				break;
450 
451 			if (strcmp(strval, "none") == 0)
452 				break;
453 
454 			if (strval[0] != '/') {
455 				error = EINVAL;
456 				break;
457 			}
458 
459 			slash = strrchr(strval, '/');
460 			ASSERT(slash != NULL);
461 
462 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
463 			    strcmp(slash, "/..") == 0)
464 				error = EINVAL;
465 			break;
466 
467 		case ZPOOL_PROP_DEDUPDITTO:
468 			if (spa_version(spa) < SPA_VERSION_DEDUP)
469 				error = ENOTSUP;
470 			else
471 				error = nvpair_value_uint64(elem, &intval);
472 			if (error == 0 &&
473 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
474 				error = EINVAL;
475 			break;
476 		}
477 
478 		if (error)
479 			break;
480 	}
481 
482 	if (!error && reset_bootfs) {
483 		error = nvlist_remove(props,
484 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
485 
486 		if (!error) {
487 			error = nvlist_add_uint64(props,
488 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
489 		}
490 	}
491 
492 	return (error);
493 }
494 
495 void
496 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
497 {
498 	char *cachefile;
499 	spa_config_dirent_t *dp;
500 
501 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
502 	    &cachefile) != 0)
503 		return;
504 
505 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
506 	    KM_SLEEP);
507 
508 	if (cachefile[0] == '\0')
509 		dp->scd_path = spa_strdup(spa_config_path);
510 	else if (strcmp(cachefile, "none") == 0)
511 		dp->scd_path = NULL;
512 	else
513 		dp->scd_path = spa_strdup(cachefile);
514 
515 	list_insert_head(&spa->spa_config_list, dp);
516 	if (need_sync)
517 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
518 }
519 
520 int
521 spa_prop_set(spa_t *spa, nvlist_t *nvp)
522 {
523 	int error;
524 	nvpair_t *elem;
525 	boolean_t need_sync = B_FALSE;
526 	zpool_prop_t prop;
527 
528 	if ((error = spa_prop_validate(spa, nvp)) != 0)
529 		return (error);
530 
531 	elem = NULL;
532 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
533 		if ((prop = zpool_name_to_prop(
534 		    nvpair_name(elem))) == ZPROP_INVAL)
535 			return (EINVAL);
536 
537 		if (prop == ZPOOL_PROP_CACHEFILE ||
538 		    prop == ZPOOL_PROP_ALTROOT ||
539 		    prop == ZPOOL_PROP_READONLY)
540 			continue;
541 
542 		need_sync = B_TRUE;
543 		break;
544 	}
545 
546 	if (need_sync)
547 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
548 		    spa, nvp, 3));
549 	else
550 		return (0);
551 }
552 
553 /*
554  * If the bootfs property value is dsobj, clear it.
555  */
556 void
557 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
558 {
559 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
560 		VERIFY(zap_remove(spa->spa_meta_objset,
561 		    spa->spa_pool_props_object,
562 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
563 		spa->spa_bootfs = 0;
564 	}
565 }
566 
567 /*
568  * Change the GUID for the pool.  This is done so that we can later
569  * re-import a pool built from a clone of our own vdevs.  We will modify
570  * the root vdev's guid, our own pool guid, and then mark all of our
571  * vdevs dirty.  Note that we must make sure that all our vdevs are
572  * online when we do this, or else any vdevs that weren't present
573  * would be orphaned from our pool.  We are also going to issue a
574  * sysevent to update any watchers.
575  */
576 int
577 spa_change_guid(spa_t *spa)
578 {
579 	uint64_t	oldguid, newguid;
580 	uint64_t	txg;
581 
582 	if (!(spa_mode_global & FWRITE))
583 		return (EROFS);
584 
585 	txg = spa_vdev_enter(spa);
586 
587 	if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
588 		return (spa_vdev_exit(spa, NULL, txg, ENXIO));
589 
590 	oldguid = spa_guid(spa);
591 	newguid = spa_generate_guid(NULL);
592 	ASSERT3U(oldguid, !=, newguid);
593 
594 	spa->spa_root_vdev->vdev_guid = newguid;
595 	spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
596 
597 	vdev_config_dirty(spa->spa_root_vdev);
598 
599 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
600 
601 	return (spa_vdev_exit(spa, NULL, txg, 0));
602 }
603 
604 /*
605  * ==========================================================================
606  * SPA state manipulation (open/create/destroy/import/export)
607  * ==========================================================================
608  */
609 
610 static int
611 spa_error_entry_compare(const void *a, const void *b)
612 {
613 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
614 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
615 	int ret;
616 
617 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
618 	    sizeof (zbookmark_t));
619 
620 	if (ret < 0)
621 		return (-1);
622 	else if (ret > 0)
623 		return (1);
624 	else
625 		return (0);
626 }
627 
628 /*
629  * Utility function which retrieves copies of the current logs and
630  * re-initializes them in the process.
631  */
632 void
633 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
634 {
635 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
636 
637 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
638 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
639 
640 	avl_create(&spa->spa_errlist_scrub,
641 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
642 	    offsetof(spa_error_entry_t, se_avl));
643 	avl_create(&spa->spa_errlist_last,
644 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
645 	    offsetof(spa_error_entry_t, se_avl));
646 }
647 
648 static taskq_t *
649 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
650     uint_t value)
651 {
652 	uint_t flags = 0;
653 	boolean_t batch = B_FALSE;
654 
655 	switch (mode) {
656 	case zti_mode_null:
657 		return (NULL);		/* no taskq needed */
658 
659 	case zti_mode_fixed:
660 		ASSERT3U(value, >=, 1);
661 		value = MAX(value, 1);
662 		break;
663 
664 	case zti_mode_batch:
665 		batch = B_TRUE;
666 		flags |= TASKQ_THREADS_CPU_PCT;
667 		value = zio_taskq_batch_pct;
668 		break;
669 
670 	case zti_mode_online_percent:
671 		flags |= TASKQ_THREADS_CPU_PCT;
672 		break;
673 
674 	default:
675 		panic("unrecognized mode for %s taskq (%u:%u) in "
676 		    "spa_activate()",
677 		    name, mode, value);
678 		break;
679 	}
680 
681 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
682 		if (batch)
683 			flags |= TASKQ_DC_BATCH;
684 
685 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
686 		    spa->spa_proc, zio_taskq_basedc, flags));
687 	}
688 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
689 	    spa->spa_proc, flags));
690 }
691 
692 static void
693 spa_create_zio_taskqs(spa_t *spa)
694 {
695 	for (int t = 0; t < ZIO_TYPES; t++) {
696 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
697 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
698 			enum zti_modes mode = ztip->zti_mode;
699 			uint_t value = ztip->zti_value;
700 			char name[32];
701 
702 			(void) snprintf(name, sizeof (name),
703 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
704 
705 			spa->spa_zio_taskq[t][q] =
706 			    spa_taskq_create(spa, name, mode, value);
707 		}
708 	}
709 }
710 
711 #ifdef _KERNEL
712 static void
713 spa_thread(void *arg)
714 {
715 	callb_cpr_t cprinfo;
716 
717 	spa_t *spa = arg;
718 	user_t *pu = PTOU(curproc);
719 
720 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
721 	    spa->spa_name);
722 
723 	ASSERT(curproc != &p0);
724 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
725 	    "zpool-%s", spa->spa_name);
726 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
727 
728 	/* bind this thread to the requested psrset */
729 	if (zio_taskq_psrset_bind != PS_NONE) {
730 		pool_lock();
731 		mutex_enter(&cpu_lock);
732 		mutex_enter(&pidlock);
733 		mutex_enter(&curproc->p_lock);
734 
735 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
736 		    0, NULL, NULL) == 0)  {
737 			curthread->t_bind_pset = zio_taskq_psrset_bind;
738 		} else {
739 			cmn_err(CE_WARN,
740 			    "Couldn't bind process for zfs pool \"%s\" to "
741 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
742 		}
743 
744 		mutex_exit(&curproc->p_lock);
745 		mutex_exit(&pidlock);
746 		mutex_exit(&cpu_lock);
747 		pool_unlock();
748 	}
749 
750 	if (zio_taskq_sysdc) {
751 		sysdc_thread_enter(curthread, 100, 0);
752 	}
753 
754 	spa->spa_proc = curproc;
755 	spa->spa_did = curthread->t_did;
756 
757 	spa_create_zio_taskqs(spa);
758 
759 	mutex_enter(&spa->spa_proc_lock);
760 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
761 
762 	spa->spa_proc_state = SPA_PROC_ACTIVE;
763 	cv_broadcast(&spa->spa_proc_cv);
764 
765 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
766 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
767 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
768 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
769 
770 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
771 	spa->spa_proc_state = SPA_PROC_GONE;
772 	spa->spa_proc = &p0;
773 	cv_broadcast(&spa->spa_proc_cv);
774 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
775 
776 	mutex_enter(&curproc->p_lock);
777 	lwp_exit();
778 }
779 #endif
780 
781 /*
782  * Activate an uninitialized pool.
783  */
784 static void
785 spa_activate(spa_t *spa, int mode)
786 {
787 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
788 
789 	spa->spa_state = POOL_STATE_ACTIVE;
790 	spa->spa_mode = mode;
791 
792 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
793 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
794 
795 	/* Try to create a covering process */
796 	mutex_enter(&spa->spa_proc_lock);
797 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
798 	ASSERT(spa->spa_proc == &p0);
799 	spa->spa_did = 0;
800 
801 	/* Only create a process if we're going to be around a while. */
802 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
803 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
804 		    NULL, 0) == 0) {
805 			spa->spa_proc_state = SPA_PROC_CREATED;
806 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
807 				cv_wait(&spa->spa_proc_cv,
808 				    &spa->spa_proc_lock);
809 			}
810 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
811 			ASSERT(spa->spa_proc != &p0);
812 			ASSERT(spa->spa_did != 0);
813 		} else {
814 #ifdef _KERNEL
815 			cmn_err(CE_WARN,
816 			    "Couldn't create process for zfs pool \"%s\"\n",
817 			    spa->spa_name);
818 #endif
819 		}
820 	}
821 	mutex_exit(&spa->spa_proc_lock);
822 
823 	/* If we didn't create a process, we need to create our taskqs. */
824 	if (spa->spa_proc == &p0) {
825 		spa_create_zio_taskqs(spa);
826 	}
827 
828 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
829 	    offsetof(vdev_t, vdev_config_dirty_node));
830 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
831 	    offsetof(vdev_t, vdev_state_dirty_node));
832 
833 	txg_list_create(&spa->spa_vdev_txg_list,
834 	    offsetof(struct vdev, vdev_txg_node));
835 
836 	avl_create(&spa->spa_errlist_scrub,
837 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838 	    offsetof(spa_error_entry_t, se_avl));
839 	avl_create(&spa->spa_errlist_last,
840 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
841 	    offsetof(spa_error_entry_t, se_avl));
842 }
843 
844 /*
845  * Opposite of spa_activate().
846  */
847 static void
848 spa_deactivate(spa_t *spa)
849 {
850 	ASSERT(spa->spa_sync_on == B_FALSE);
851 	ASSERT(spa->spa_dsl_pool == NULL);
852 	ASSERT(spa->spa_root_vdev == NULL);
853 	ASSERT(spa->spa_async_zio_root == NULL);
854 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
855 
856 	txg_list_destroy(&spa->spa_vdev_txg_list);
857 
858 	list_destroy(&spa->spa_config_dirty_list);
859 	list_destroy(&spa->spa_state_dirty_list);
860 
861 	for (int t = 0; t < ZIO_TYPES; t++) {
862 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
863 			if (spa->spa_zio_taskq[t][q] != NULL)
864 				taskq_destroy(spa->spa_zio_taskq[t][q]);
865 			spa->spa_zio_taskq[t][q] = NULL;
866 		}
867 	}
868 
869 	metaslab_class_destroy(spa->spa_normal_class);
870 	spa->spa_normal_class = NULL;
871 
872 	metaslab_class_destroy(spa->spa_log_class);
873 	spa->spa_log_class = NULL;
874 
875 	/*
876 	 * If this was part of an import or the open otherwise failed, we may
877 	 * still have errors left in the queues.  Empty them just in case.
878 	 */
879 	spa_errlog_drain(spa);
880 
881 	avl_destroy(&spa->spa_errlist_scrub);
882 	avl_destroy(&spa->spa_errlist_last);
883 
884 	spa->spa_state = POOL_STATE_UNINITIALIZED;
885 
886 	mutex_enter(&spa->spa_proc_lock);
887 	if (spa->spa_proc_state != SPA_PROC_NONE) {
888 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
889 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
890 		cv_broadcast(&spa->spa_proc_cv);
891 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
892 			ASSERT(spa->spa_proc != &p0);
893 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
894 		}
895 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
896 		spa->spa_proc_state = SPA_PROC_NONE;
897 	}
898 	ASSERT(spa->spa_proc == &p0);
899 	mutex_exit(&spa->spa_proc_lock);
900 
901 	/*
902 	 * We want to make sure spa_thread() has actually exited the ZFS
903 	 * module, so that the module can't be unloaded out from underneath
904 	 * it.
905 	 */
906 	if (spa->spa_did != 0) {
907 		thread_join(spa->spa_did);
908 		spa->spa_did = 0;
909 	}
910 }
911 
912 /*
913  * Verify a pool configuration, and construct the vdev tree appropriately.  This
914  * will create all the necessary vdevs in the appropriate layout, with each vdev
915  * in the CLOSED state.  This will prep the pool before open/creation/import.
916  * All vdev validation is done by the vdev_alloc() routine.
917  */
918 static int
919 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
920     uint_t id, int atype)
921 {
922 	nvlist_t **child;
923 	uint_t children;
924 	int error;
925 
926 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
927 		return (error);
928 
929 	if ((*vdp)->vdev_ops->vdev_op_leaf)
930 		return (0);
931 
932 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
933 	    &child, &children);
934 
935 	if (error == ENOENT)
936 		return (0);
937 
938 	if (error) {
939 		vdev_free(*vdp);
940 		*vdp = NULL;
941 		return (EINVAL);
942 	}
943 
944 	for (int c = 0; c < children; c++) {
945 		vdev_t *vd;
946 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
947 		    atype)) != 0) {
948 			vdev_free(*vdp);
949 			*vdp = NULL;
950 			return (error);
951 		}
952 	}
953 
954 	ASSERT(*vdp != NULL);
955 
956 	return (0);
957 }
958 
959 /*
960  * Opposite of spa_load().
961  */
962 static void
963 spa_unload(spa_t *spa)
964 {
965 	int i;
966 
967 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
968 
969 	/*
970 	 * Stop async tasks.
971 	 */
972 	spa_async_suspend(spa);
973 
974 	/*
975 	 * Stop syncing.
976 	 */
977 	if (spa->spa_sync_on) {
978 		txg_sync_stop(spa->spa_dsl_pool);
979 		spa->spa_sync_on = B_FALSE;
980 	}
981 
982 	/*
983 	 * Wait for any outstanding async I/O to complete.
984 	 */
985 	if (spa->spa_async_zio_root != NULL) {
986 		(void) zio_wait(spa->spa_async_zio_root);
987 		spa->spa_async_zio_root = NULL;
988 	}
989 
990 	bpobj_close(&spa->spa_deferred_bpobj);
991 
992 	/*
993 	 * Close the dsl pool.
994 	 */
995 	if (spa->spa_dsl_pool) {
996 		dsl_pool_close(spa->spa_dsl_pool);
997 		spa->spa_dsl_pool = NULL;
998 		spa->spa_meta_objset = NULL;
999 	}
1000 
1001 	ddt_unload(spa);
1002 
1003 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1004 
1005 	/*
1006 	 * Drop and purge level 2 cache
1007 	 */
1008 	spa_l2cache_drop(spa);
1009 
1010 	/*
1011 	 * Close all vdevs.
1012 	 */
1013 	if (spa->spa_root_vdev)
1014 		vdev_free(spa->spa_root_vdev);
1015 	ASSERT(spa->spa_root_vdev == NULL);
1016 
1017 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1018 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1019 	if (spa->spa_spares.sav_vdevs) {
1020 		kmem_free(spa->spa_spares.sav_vdevs,
1021 		    spa->spa_spares.sav_count * sizeof (void *));
1022 		spa->spa_spares.sav_vdevs = NULL;
1023 	}
1024 	if (spa->spa_spares.sav_config) {
1025 		nvlist_free(spa->spa_spares.sav_config);
1026 		spa->spa_spares.sav_config = NULL;
1027 	}
1028 	spa->spa_spares.sav_count = 0;
1029 
1030 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
1031 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1032 	if (spa->spa_l2cache.sav_vdevs) {
1033 		kmem_free(spa->spa_l2cache.sav_vdevs,
1034 		    spa->spa_l2cache.sav_count * sizeof (void *));
1035 		spa->spa_l2cache.sav_vdevs = NULL;
1036 	}
1037 	if (spa->spa_l2cache.sav_config) {
1038 		nvlist_free(spa->spa_l2cache.sav_config);
1039 		spa->spa_l2cache.sav_config = NULL;
1040 	}
1041 	spa->spa_l2cache.sav_count = 0;
1042 
1043 	spa->spa_async_suspended = 0;
1044 
1045 	spa_config_exit(spa, SCL_ALL, FTAG);
1046 }
1047 
1048 /*
1049  * Load (or re-load) the current list of vdevs describing the active spares for
1050  * this pool.  When this is called, we have some form of basic information in
1051  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1052  * then re-generate a more complete list including status information.
1053  */
1054 static void
1055 spa_load_spares(spa_t *spa)
1056 {
1057 	nvlist_t **spares;
1058 	uint_t nspares;
1059 	int i;
1060 	vdev_t *vd, *tvd;
1061 
1062 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1063 
1064 	/*
1065 	 * First, close and free any existing spare vdevs.
1066 	 */
1067 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1068 		vd = spa->spa_spares.sav_vdevs[i];
1069 
1070 		/* Undo the call to spa_activate() below */
1071 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1072 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1073 			spa_spare_remove(tvd);
1074 		vdev_close(vd);
1075 		vdev_free(vd);
1076 	}
1077 
1078 	if (spa->spa_spares.sav_vdevs)
1079 		kmem_free(spa->spa_spares.sav_vdevs,
1080 		    spa->spa_spares.sav_count * sizeof (void *));
1081 
1082 	if (spa->spa_spares.sav_config == NULL)
1083 		nspares = 0;
1084 	else
1085 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1086 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1087 
1088 	spa->spa_spares.sav_count = (int)nspares;
1089 	spa->spa_spares.sav_vdevs = NULL;
1090 
1091 	if (nspares == 0)
1092 		return;
1093 
1094 	/*
1095 	 * Construct the array of vdevs, opening them to get status in the
1096 	 * process.   For each spare, there is potentially two different vdev_t
1097 	 * structures associated with it: one in the list of spares (used only
1098 	 * for basic validation purposes) and one in the active vdev
1099 	 * configuration (if it's spared in).  During this phase we open and
1100 	 * validate each vdev on the spare list.  If the vdev also exists in the
1101 	 * active configuration, then we also mark this vdev as an active spare.
1102 	 */
1103 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1104 	    KM_SLEEP);
1105 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1106 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1107 		    VDEV_ALLOC_SPARE) == 0);
1108 		ASSERT(vd != NULL);
1109 
1110 		spa->spa_spares.sav_vdevs[i] = vd;
1111 
1112 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1113 		    B_FALSE)) != NULL) {
1114 			if (!tvd->vdev_isspare)
1115 				spa_spare_add(tvd);
1116 
1117 			/*
1118 			 * We only mark the spare active if we were successfully
1119 			 * able to load the vdev.  Otherwise, importing a pool
1120 			 * with a bad active spare would result in strange
1121 			 * behavior, because multiple pool would think the spare
1122 			 * is actively in use.
1123 			 *
1124 			 * There is a vulnerability here to an equally bizarre
1125 			 * circumstance, where a dead active spare is later
1126 			 * brought back to life (onlined or otherwise).  Given
1127 			 * the rarity of this scenario, and the extra complexity
1128 			 * it adds, we ignore the possibility.
1129 			 */
1130 			if (!vdev_is_dead(tvd))
1131 				spa_spare_activate(tvd);
1132 		}
1133 
1134 		vd->vdev_top = vd;
1135 		vd->vdev_aux = &spa->spa_spares;
1136 
1137 		if (vdev_open(vd) != 0)
1138 			continue;
1139 
1140 		if (vdev_validate_aux(vd) == 0)
1141 			spa_spare_add(vd);
1142 	}
1143 
1144 	/*
1145 	 * Recompute the stashed list of spares, with status information
1146 	 * this time.
1147 	 */
1148 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1149 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1150 
1151 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1152 	    KM_SLEEP);
1153 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1154 		spares[i] = vdev_config_generate(spa,
1155 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1156 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1157 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1158 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1159 		nvlist_free(spares[i]);
1160 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1161 }
1162 
1163 /*
1164  * Load (or re-load) the current list of vdevs describing the active l2cache for
1165  * this pool.  When this is called, we have some form of basic information in
1166  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1167  * then re-generate a more complete list including status information.
1168  * Devices which are already active have their details maintained, and are
1169  * not re-opened.
1170  */
1171 static void
1172 spa_load_l2cache(spa_t *spa)
1173 {
1174 	nvlist_t **l2cache;
1175 	uint_t nl2cache;
1176 	int i, j, oldnvdevs;
1177 	uint64_t guid;
1178 	vdev_t *vd, **oldvdevs, **newvdevs;
1179 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1180 
1181 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1182 
1183 	if (sav->sav_config != NULL) {
1184 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1185 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1186 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1187 	} else {
1188 		nl2cache = 0;
1189 	}
1190 
1191 	oldvdevs = sav->sav_vdevs;
1192 	oldnvdevs = sav->sav_count;
1193 	sav->sav_vdevs = NULL;
1194 	sav->sav_count = 0;
1195 
1196 	/*
1197 	 * Process new nvlist of vdevs.
1198 	 */
1199 	for (i = 0; i < nl2cache; i++) {
1200 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1201 		    &guid) == 0);
1202 
1203 		newvdevs[i] = NULL;
1204 		for (j = 0; j < oldnvdevs; j++) {
1205 			vd = oldvdevs[j];
1206 			if (vd != NULL && guid == vd->vdev_guid) {
1207 				/*
1208 				 * Retain previous vdev for add/remove ops.
1209 				 */
1210 				newvdevs[i] = vd;
1211 				oldvdevs[j] = NULL;
1212 				break;
1213 			}
1214 		}
1215 
1216 		if (newvdevs[i] == NULL) {
1217 			/*
1218 			 * Create new vdev
1219 			 */
1220 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1221 			    VDEV_ALLOC_L2CACHE) == 0);
1222 			ASSERT(vd != NULL);
1223 			newvdevs[i] = vd;
1224 
1225 			/*
1226 			 * Commit this vdev as an l2cache device,
1227 			 * even if it fails to open.
1228 			 */
1229 			spa_l2cache_add(vd);
1230 
1231 			vd->vdev_top = vd;
1232 			vd->vdev_aux = sav;
1233 
1234 			spa_l2cache_activate(vd);
1235 
1236 			if (vdev_open(vd) != 0)
1237 				continue;
1238 
1239 			(void) vdev_validate_aux(vd);
1240 
1241 			if (!vdev_is_dead(vd))
1242 				l2arc_add_vdev(spa, vd);
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * Purge vdevs that were dropped
1248 	 */
1249 	for (i = 0; i < oldnvdevs; i++) {
1250 		uint64_t pool;
1251 
1252 		vd = oldvdevs[i];
1253 		if (vd != NULL) {
1254 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1255 			    pool != 0ULL && l2arc_vdev_present(vd))
1256 				l2arc_remove_vdev(vd);
1257 			(void) vdev_close(vd);
1258 			spa_l2cache_remove(vd);
1259 		}
1260 	}
1261 
1262 	if (oldvdevs)
1263 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1264 
1265 	if (sav->sav_config == NULL)
1266 		goto out;
1267 
1268 	sav->sav_vdevs = newvdevs;
1269 	sav->sav_count = (int)nl2cache;
1270 
1271 	/*
1272 	 * Recompute the stashed list of l2cache devices, with status
1273 	 * information this time.
1274 	 */
1275 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1276 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1277 
1278 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1279 	for (i = 0; i < sav->sav_count; i++)
1280 		l2cache[i] = vdev_config_generate(spa,
1281 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1282 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1283 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1284 out:
1285 	for (i = 0; i < sav->sav_count; i++)
1286 		nvlist_free(l2cache[i]);
1287 	if (sav->sav_count)
1288 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1289 }
1290 
1291 static int
1292 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1293 {
1294 	dmu_buf_t *db;
1295 	char *packed = NULL;
1296 	size_t nvsize = 0;
1297 	int error;
1298 	*value = NULL;
1299 
1300 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1301 	nvsize = *(uint64_t *)db->db_data;
1302 	dmu_buf_rele(db, FTAG);
1303 
1304 	packed = kmem_alloc(nvsize, KM_SLEEP);
1305 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1306 	    DMU_READ_PREFETCH);
1307 	if (error == 0)
1308 		error = nvlist_unpack(packed, nvsize, value, 0);
1309 	kmem_free(packed, nvsize);
1310 
1311 	return (error);
1312 }
1313 
1314 /*
1315  * Checks to see if the given vdev could not be opened, in which case we post a
1316  * sysevent to notify the autoreplace code that the device has been removed.
1317  */
1318 static void
1319 spa_check_removed(vdev_t *vd)
1320 {
1321 	for (int c = 0; c < vd->vdev_children; c++)
1322 		spa_check_removed(vd->vdev_child[c]);
1323 
1324 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1325 		zfs_post_autoreplace(vd->vdev_spa, vd);
1326 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1327 	}
1328 }
1329 
1330 /*
1331  * Validate the current config against the MOS config
1332  */
1333 static boolean_t
1334 spa_config_valid(spa_t *spa, nvlist_t *config)
1335 {
1336 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1337 	nvlist_t *nv;
1338 
1339 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1340 
1341 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1342 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1343 
1344 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1345 
1346 	/*
1347 	 * If we're doing a normal import, then build up any additional
1348 	 * diagnostic information about missing devices in this config.
1349 	 * We'll pass this up to the user for further processing.
1350 	 */
1351 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1352 		nvlist_t **child, *nv;
1353 		uint64_t idx = 0;
1354 
1355 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1356 		    KM_SLEEP);
1357 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1358 
1359 		for (int c = 0; c < rvd->vdev_children; c++) {
1360 			vdev_t *tvd = rvd->vdev_child[c];
1361 			vdev_t *mtvd  = mrvd->vdev_child[c];
1362 
1363 			if (tvd->vdev_ops == &vdev_missing_ops &&
1364 			    mtvd->vdev_ops != &vdev_missing_ops &&
1365 			    mtvd->vdev_islog)
1366 				child[idx++] = vdev_config_generate(spa, mtvd,
1367 				    B_FALSE, 0);
1368 		}
1369 
1370 		if (idx) {
1371 			VERIFY(nvlist_add_nvlist_array(nv,
1372 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1373 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1374 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1375 
1376 			for (int i = 0; i < idx; i++)
1377 				nvlist_free(child[i]);
1378 		}
1379 		nvlist_free(nv);
1380 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1381 	}
1382 
1383 	/*
1384 	 * Compare the root vdev tree with the information we have
1385 	 * from the MOS config (mrvd). Check each top-level vdev
1386 	 * with the corresponding MOS config top-level (mtvd).
1387 	 */
1388 	for (int c = 0; c < rvd->vdev_children; c++) {
1389 		vdev_t *tvd = rvd->vdev_child[c];
1390 		vdev_t *mtvd  = mrvd->vdev_child[c];
1391 
1392 		/*
1393 		 * Resolve any "missing" vdevs in the current configuration.
1394 		 * If we find that the MOS config has more accurate information
1395 		 * about the top-level vdev then use that vdev instead.
1396 		 */
1397 		if (tvd->vdev_ops == &vdev_missing_ops &&
1398 		    mtvd->vdev_ops != &vdev_missing_ops) {
1399 
1400 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1401 				continue;
1402 
1403 			/*
1404 			 * Device specific actions.
1405 			 */
1406 			if (mtvd->vdev_islog) {
1407 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1408 			} else {
1409 				/*
1410 				 * XXX - once we have 'readonly' pool
1411 				 * support we should be able to handle
1412 				 * missing data devices by transitioning
1413 				 * the pool to readonly.
1414 				 */
1415 				continue;
1416 			}
1417 
1418 			/*
1419 			 * Swap the missing vdev with the data we were
1420 			 * able to obtain from the MOS config.
1421 			 */
1422 			vdev_remove_child(rvd, tvd);
1423 			vdev_remove_child(mrvd, mtvd);
1424 
1425 			vdev_add_child(rvd, mtvd);
1426 			vdev_add_child(mrvd, tvd);
1427 
1428 			spa_config_exit(spa, SCL_ALL, FTAG);
1429 			vdev_load(mtvd);
1430 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1431 
1432 			vdev_reopen(rvd);
1433 		} else if (mtvd->vdev_islog) {
1434 			/*
1435 			 * Load the slog device's state from the MOS config
1436 			 * since it's possible that the label does not
1437 			 * contain the most up-to-date information.
1438 			 */
1439 			vdev_load_log_state(tvd, mtvd);
1440 			vdev_reopen(tvd);
1441 		}
1442 	}
1443 	vdev_free(mrvd);
1444 	spa_config_exit(spa, SCL_ALL, FTAG);
1445 
1446 	/*
1447 	 * Ensure we were able to validate the config.
1448 	 */
1449 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1450 }
1451 
1452 /*
1453  * Check for missing log devices
1454  */
1455 static int
1456 spa_check_logs(spa_t *spa)
1457 {
1458 	switch (spa->spa_log_state) {
1459 	case SPA_LOG_MISSING:
1460 		/* need to recheck in case slog has been restored */
1461 	case SPA_LOG_UNKNOWN:
1462 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1463 		    DS_FIND_CHILDREN)) {
1464 			spa_set_log_state(spa, SPA_LOG_MISSING);
1465 			return (1);
1466 		}
1467 		break;
1468 	}
1469 	return (0);
1470 }
1471 
1472 static boolean_t
1473 spa_passivate_log(spa_t *spa)
1474 {
1475 	vdev_t *rvd = spa->spa_root_vdev;
1476 	boolean_t slog_found = B_FALSE;
1477 
1478 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1479 
1480 	if (!spa_has_slogs(spa))
1481 		return (B_FALSE);
1482 
1483 	for (int c = 0; c < rvd->vdev_children; c++) {
1484 		vdev_t *tvd = rvd->vdev_child[c];
1485 		metaslab_group_t *mg = tvd->vdev_mg;
1486 
1487 		if (tvd->vdev_islog) {
1488 			metaslab_group_passivate(mg);
1489 			slog_found = B_TRUE;
1490 		}
1491 	}
1492 
1493 	return (slog_found);
1494 }
1495 
1496 static void
1497 spa_activate_log(spa_t *spa)
1498 {
1499 	vdev_t *rvd = spa->spa_root_vdev;
1500 
1501 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1502 
1503 	for (int c = 0; c < rvd->vdev_children; c++) {
1504 		vdev_t *tvd = rvd->vdev_child[c];
1505 		metaslab_group_t *mg = tvd->vdev_mg;
1506 
1507 		if (tvd->vdev_islog)
1508 			metaslab_group_activate(mg);
1509 	}
1510 }
1511 
1512 int
1513 spa_offline_log(spa_t *spa)
1514 {
1515 	int error = 0;
1516 
1517 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1518 	    NULL, DS_FIND_CHILDREN)) == 0) {
1519 
1520 		/*
1521 		 * We successfully offlined the log device, sync out the
1522 		 * current txg so that the "stubby" block can be removed
1523 		 * by zil_sync().
1524 		 */
1525 		txg_wait_synced(spa->spa_dsl_pool, 0);
1526 	}
1527 	return (error);
1528 }
1529 
1530 static void
1531 spa_aux_check_removed(spa_aux_vdev_t *sav)
1532 {
1533 	for (int i = 0; i < sav->sav_count; i++)
1534 		spa_check_removed(sav->sav_vdevs[i]);
1535 }
1536 
1537 void
1538 spa_claim_notify(zio_t *zio)
1539 {
1540 	spa_t *spa = zio->io_spa;
1541 
1542 	if (zio->io_error)
1543 		return;
1544 
1545 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1546 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1547 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1548 	mutex_exit(&spa->spa_props_lock);
1549 }
1550 
1551 typedef struct spa_load_error {
1552 	uint64_t	sle_meta_count;
1553 	uint64_t	sle_data_count;
1554 } spa_load_error_t;
1555 
1556 static void
1557 spa_load_verify_done(zio_t *zio)
1558 {
1559 	blkptr_t *bp = zio->io_bp;
1560 	spa_load_error_t *sle = zio->io_private;
1561 	dmu_object_type_t type = BP_GET_TYPE(bp);
1562 	int error = zio->io_error;
1563 
1564 	if (error) {
1565 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1566 		    type != DMU_OT_INTENT_LOG)
1567 			atomic_add_64(&sle->sle_meta_count, 1);
1568 		else
1569 			atomic_add_64(&sle->sle_data_count, 1);
1570 	}
1571 	zio_data_buf_free(zio->io_data, zio->io_size);
1572 }
1573 
1574 /*ARGSUSED*/
1575 static int
1576 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1577     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1578 {
1579 	if (bp != NULL) {
1580 		zio_t *rio = arg;
1581 		size_t size = BP_GET_PSIZE(bp);
1582 		void *data = zio_data_buf_alloc(size);
1583 
1584 		zio_nowait(zio_read(rio, spa, bp, data, size,
1585 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1586 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1587 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1588 	}
1589 	return (0);
1590 }
1591 
1592 static int
1593 spa_load_verify(spa_t *spa)
1594 {
1595 	zio_t *rio;
1596 	spa_load_error_t sle = { 0 };
1597 	zpool_rewind_policy_t policy;
1598 	boolean_t verify_ok = B_FALSE;
1599 	int error;
1600 
1601 	zpool_get_rewind_policy(spa->spa_config, &policy);
1602 
1603 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1604 		return (0);
1605 
1606 	rio = zio_root(spa, NULL, &sle,
1607 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1608 
1609 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1610 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1611 
1612 	(void) zio_wait(rio);
1613 
1614 	spa->spa_load_meta_errors = sle.sle_meta_count;
1615 	spa->spa_load_data_errors = sle.sle_data_count;
1616 
1617 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1618 	    sle.sle_data_count <= policy.zrp_maxdata) {
1619 		int64_t loss = 0;
1620 
1621 		verify_ok = B_TRUE;
1622 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1623 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1624 
1625 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1626 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1627 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1628 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1629 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1630 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1631 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1632 	} else {
1633 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1634 	}
1635 
1636 	if (error) {
1637 		if (error != ENXIO && error != EIO)
1638 			error = EIO;
1639 		return (error);
1640 	}
1641 
1642 	return (verify_ok ? 0 : EIO);
1643 }
1644 
1645 /*
1646  * Find a value in the pool props object.
1647  */
1648 static void
1649 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1650 {
1651 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1652 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1653 }
1654 
1655 /*
1656  * Find a value in the pool directory object.
1657  */
1658 static int
1659 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1660 {
1661 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1662 	    name, sizeof (uint64_t), 1, val));
1663 }
1664 
1665 static int
1666 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1667 {
1668 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1669 	return (err);
1670 }
1671 
1672 /*
1673  * Fix up config after a partly-completed split.  This is done with the
1674  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1675  * pool have that entry in their config, but only the splitting one contains
1676  * a list of all the guids of the vdevs that are being split off.
1677  *
1678  * This function determines what to do with that list: either rejoin
1679  * all the disks to the pool, or complete the splitting process.  To attempt
1680  * the rejoin, each disk that is offlined is marked online again, and
1681  * we do a reopen() call.  If the vdev label for every disk that was
1682  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1683  * then we call vdev_split() on each disk, and complete the split.
1684  *
1685  * Otherwise we leave the config alone, with all the vdevs in place in
1686  * the original pool.
1687  */
1688 static void
1689 spa_try_repair(spa_t *spa, nvlist_t *config)
1690 {
1691 	uint_t extracted;
1692 	uint64_t *glist;
1693 	uint_t i, gcount;
1694 	nvlist_t *nvl;
1695 	vdev_t **vd;
1696 	boolean_t attempt_reopen;
1697 
1698 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1699 		return;
1700 
1701 	/* check that the config is complete */
1702 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1703 	    &glist, &gcount) != 0)
1704 		return;
1705 
1706 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1707 
1708 	/* attempt to online all the vdevs & validate */
1709 	attempt_reopen = B_TRUE;
1710 	for (i = 0; i < gcount; i++) {
1711 		if (glist[i] == 0)	/* vdev is hole */
1712 			continue;
1713 
1714 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1715 		if (vd[i] == NULL) {
1716 			/*
1717 			 * Don't bother attempting to reopen the disks;
1718 			 * just do the split.
1719 			 */
1720 			attempt_reopen = B_FALSE;
1721 		} else {
1722 			/* attempt to re-online it */
1723 			vd[i]->vdev_offline = B_FALSE;
1724 		}
1725 	}
1726 
1727 	if (attempt_reopen) {
1728 		vdev_reopen(spa->spa_root_vdev);
1729 
1730 		/* check each device to see what state it's in */
1731 		for (extracted = 0, i = 0; i < gcount; i++) {
1732 			if (vd[i] != NULL &&
1733 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1734 				break;
1735 			++extracted;
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * If every disk has been moved to the new pool, or if we never
1741 	 * even attempted to look at them, then we split them off for
1742 	 * good.
1743 	 */
1744 	if (!attempt_reopen || gcount == extracted) {
1745 		for (i = 0; i < gcount; i++)
1746 			if (vd[i] != NULL)
1747 				vdev_split(vd[i]);
1748 		vdev_reopen(spa->spa_root_vdev);
1749 	}
1750 
1751 	kmem_free(vd, gcount * sizeof (vdev_t *));
1752 }
1753 
1754 static int
1755 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1756     boolean_t mosconfig)
1757 {
1758 	nvlist_t *config = spa->spa_config;
1759 	char *ereport = FM_EREPORT_ZFS_POOL;
1760 	int error;
1761 	uint64_t pool_guid;
1762 	nvlist_t *nvl;
1763 
1764 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1765 		return (EINVAL);
1766 
1767 	/*
1768 	 * Versioning wasn't explicitly added to the label until later, so if
1769 	 * it's not present treat it as the initial version.
1770 	 */
1771 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1772 	    &spa->spa_ubsync.ub_version) != 0)
1773 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1774 
1775 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1776 	    &spa->spa_config_txg);
1777 
1778 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1779 	    spa_guid_exists(pool_guid, 0)) {
1780 		error = EEXIST;
1781 	} else {
1782 		spa->spa_config_guid = pool_guid;
1783 
1784 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1785 		    &nvl) == 0) {
1786 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1787 			    KM_SLEEP) == 0);
1788 		}
1789 
1790 		gethrestime(&spa->spa_loaded_ts);
1791 		error = spa_load_impl(spa, pool_guid, config, state, type,
1792 		    mosconfig, &ereport);
1793 	}
1794 
1795 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1796 	if (error) {
1797 		if (error != EEXIST) {
1798 			spa->spa_loaded_ts.tv_sec = 0;
1799 			spa->spa_loaded_ts.tv_nsec = 0;
1800 		}
1801 		if (error != EBADF) {
1802 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1803 		}
1804 	}
1805 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1806 	spa->spa_ena = 0;
1807 
1808 	return (error);
1809 }
1810 
1811 /*
1812  * Load an existing storage pool, using the pool's builtin spa_config as a
1813  * source of configuration information.
1814  */
1815 static int
1816 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1817     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1818     char **ereport)
1819 {
1820 	int error = 0;
1821 	nvlist_t *nvroot = NULL;
1822 	vdev_t *rvd;
1823 	uberblock_t *ub = &spa->spa_uberblock;
1824 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1825 	int orig_mode = spa->spa_mode;
1826 	int parse;
1827 	uint64_t obj;
1828 
1829 	/*
1830 	 * If this is an untrusted config, access the pool in read-only mode.
1831 	 * This prevents things like resilvering recently removed devices.
1832 	 */
1833 	if (!mosconfig)
1834 		spa->spa_mode = FREAD;
1835 
1836 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1837 
1838 	spa->spa_load_state = state;
1839 
1840 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1841 		return (EINVAL);
1842 
1843 	parse = (type == SPA_IMPORT_EXISTING ?
1844 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1845 
1846 	/*
1847 	 * Create "The Godfather" zio to hold all async IOs
1848 	 */
1849 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1850 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1851 
1852 	/*
1853 	 * Parse the configuration into a vdev tree.  We explicitly set the
1854 	 * value that will be returned by spa_version() since parsing the
1855 	 * configuration requires knowing the version number.
1856 	 */
1857 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1858 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1859 	spa_config_exit(spa, SCL_ALL, FTAG);
1860 
1861 	if (error != 0)
1862 		return (error);
1863 
1864 	ASSERT(spa->spa_root_vdev == rvd);
1865 
1866 	if (type != SPA_IMPORT_ASSEMBLE) {
1867 		ASSERT(spa_guid(spa) == pool_guid);
1868 	}
1869 
1870 	/*
1871 	 * Try to open all vdevs, loading each label in the process.
1872 	 */
1873 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1874 	error = vdev_open(rvd);
1875 	spa_config_exit(spa, SCL_ALL, FTAG);
1876 	if (error != 0)
1877 		return (error);
1878 
1879 	/*
1880 	 * We need to validate the vdev labels against the configuration that
1881 	 * we have in hand, which is dependent on the setting of mosconfig. If
1882 	 * mosconfig is true then we're validating the vdev labels based on
1883 	 * that config.  Otherwise, we're validating against the cached config
1884 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1885 	 * later we will recursively call spa_load() and validate against
1886 	 * the vdev config.
1887 	 *
1888 	 * If we're assembling a new pool that's been split off from an
1889 	 * existing pool, the labels haven't yet been updated so we skip
1890 	 * validation for now.
1891 	 */
1892 	if (type != SPA_IMPORT_ASSEMBLE) {
1893 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1894 		error = vdev_validate(rvd);
1895 		spa_config_exit(spa, SCL_ALL, FTAG);
1896 
1897 		if (error != 0)
1898 			return (error);
1899 
1900 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1901 			return (ENXIO);
1902 	}
1903 
1904 	/*
1905 	 * Find the best uberblock.
1906 	 */
1907 	vdev_uberblock_load(NULL, rvd, ub);
1908 
1909 	/*
1910 	 * If we weren't able to find a single valid uberblock, return failure.
1911 	 */
1912 	if (ub->ub_txg == 0)
1913 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1914 
1915 	/*
1916 	 * If the pool is newer than the code, we can't open it.
1917 	 */
1918 	if (ub->ub_version > SPA_VERSION)
1919 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1920 
1921 	/*
1922 	 * If the vdev guid sum doesn't match the uberblock, we have an
1923 	 * incomplete configuration.  We first check to see if the pool
1924 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1925 	 * If it is, defer the vdev_guid_sum check till later so we
1926 	 * can handle missing vdevs.
1927 	 */
1928 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1929 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1930 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1931 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1932 
1933 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1934 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1935 		spa_try_repair(spa, config);
1936 		spa_config_exit(spa, SCL_ALL, FTAG);
1937 		nvlist_free(spa->spa_config_splitting);
1938 		spa->spa_config_splitting = NULL;
1939 	}
1940 
1941 	/*
1942 	 * Initialize internal SPA structures.
1943 	 */
1944 	spa->spa_state = POOL_STATE_ACTIVE;
1945 	spa->spa_ubsync = spa->spa_uberblock;
1946 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1947 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1948 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1949 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1950 	spa->spa_claim_max_txg = spa->spa_first_txg;
1951 	spa->spa_prev_software_version = ub->ub_software_version;
1952 
1953 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1954 	if (error)
1955 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1956 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1957 
1958 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1959 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1960 
1961 	if (!mosconfig) {
1962 		uint64_t hostid;
1963 		nvlist_t *policy = NULL, *nvconfig;
1964 
1965 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1966 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1967 
1968 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1969 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1970 			char *hostname;
1971 			unsigned long myhostid = 0;
1972 
1973 			VERIFY(nvlist_lookup_string(nvconfig,
1974 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1975 
1976 #ifdef	_KERNEL
1977 			myhostid = zone_get_hostid(NULL);
1978 #else	/* _KERNEL */
1979 			/*
1980 			 * We're emulating the system's hostid in userland, so
1981 			 * we can't use zone_get_hostid().
1982 			 */
1983 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1984 #endif	/* _KERNEL */
1985 			if (hostid != 0 && myhostid != 0 &&
1986 			    hostid != myhostid) {
1987 				nvlist_free(nvconfig);
1988 				cmn_err(CE_WARN, "pool '%s' could not be "
1989 				    "loaded as it was last accessed by "
1990 				    "another system (host: %s hostid: 0x%lx). "
1991 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1992 				    spa_name(spa), hostname,
1993 				    (unsigned long)hostid);
1994 				return (EBADF);
1995 			}
1996 		}
1997 		if (nvlist_lookup_nvlist(spa->spa_config,
1998 		    ZPOOL_REWIND_POLICY, &policy) == 0)
1999 			VERIFY(nvlist_add_nvlist(nvconfig,
2000 			    ZPOOL_REWIND_POLICY, policy) == 0);
2001 
2002 		spa_config_set(spa, nvconfig);
2003 		spa_unload(spa);
2004 		spa_deactivate(spa);
2005 		spa_activate(spa, orig_mode);
2006 
2007 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2008 	}
2009 
2010 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2011 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2012 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2013 	if (error != 0)
2014 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2015 
2016 	/*
2017 	 * Load the bit that tells us to use the new accounting function
2018 	 * (raid-z deflation).  If we have an older pool, this will not
2019 	 * be present.
2020 	 */
2021 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2022 	if (error != 0 && error != ENOENT)
2023 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2024 
2025 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2026 	    &spa->spa_creation_version);
2027 	if (error != 0 && error != ENOENT)
2028 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2029 
2030 	/*
2031 	 * Load the persistent error log.  If we have an older pool, this will
2032 	 * not be present.
2033 	 */
2034 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2035 	if (error != 0 && error != ENOENT)
2036 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2037 
2038 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2039 	    &spa->spa_errlog_scrub);
2040 	if (error != 0 && error != ENOENT)
2041 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2042 
2043 	/*
2044 	 * Load the history object.  If we have an older pool, this
2045 	 * will not be present.
2046 	 */
2047 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2048 	if (error != 0 && error != ENOENT)
2049 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2050 
2051 	/*
2052 	 * If we're assembling the pool from the split-off vdevs of
2053 	 * an existing pool, we don't want to attach the spares & cache
2054 	 * devices.
2055 	 */
2056 
2057 	/*
2058 	 * Load any hot spares for this pool.
2059 	 */
2060 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2061 	if (error != 0 && error != ENOENT)
2062 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2063 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2064 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2065 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2066 		    &spa->spa_spares.sav_config) != 0)
2067 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2068 
2069 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2070 		spa_load_spares(spa);
2071 		spa_config_exit(spa, SCL_ALL, FTAG);
2072 	} else if (error == 0) {
2073 		spa->spa_spares.sav_sync = B_TRUE;
2074 	}
2075 
2076 	/*
2077 	 * Load any level 2 ARC devices for this pool.
2078 	 */
2079 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2080 	    &spa->spa_l2cache.sav_object);
2081 	if (error != 0 && error != ENOENT)
2082 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2083 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2084 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2085 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2086 		    &spa->spa_l2cache.sav_config) != 0)
2087 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2088 
2089 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2090 		spa_load_l2cache(spa);
2091 		spa_config_exit(spa, SCL_ALL, FTAG);
2092 	} else if (error == 0) {
2093 		spa->spa_l2cache.sav_sync = B_TRUE;
2094 	}
2095 
2096 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2097 
2098 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2099 	if (error && error != ENOENT)
2100 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2101 
2102 	if (error == 0) {
2103 		uint64_t autoreplace;
2104 
2105 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2106 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2107 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2108 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2109 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2110 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2111 		    &spa->spa_dedup_ditto);
2112 
2113 		spa->spa_autoreplace = (autoreplace != 0);
2114 	}
2115 
2116 	/*
2117 	 * If the 'autoreplace' property is set, then post a resource notifying
2118 	 * the ZFS DE that it should not issue any faults for unopenable
2119 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2120 	 * unopenable vdevs so that the normal autoreplace handler can take
2121 	 * over.
2122 	 */
2123 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2124 		spa_check_removed(spa->spa_root_vdev);
2125 		/*
2126 		 * For the import case, this is done in spa_import(), because
2127 		 * at this point we're using the spare definitions from
2128 		 * the MOS config, not necessarily from the userland config.
2129 		 */
2130 		if (state != SPA_LOAD_IMPORT) {
2131 			spa_aux_check_removed(&spa->spa_spares);
2132 			spa_aux_check_removed(&spa->spa_l2cache);
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * Load the vdev state for all toplevel vdevs.
2138 	 */
2139 	vdev_load(rvd);
2140 
2141 	/*
2142 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2143 	 */
2144 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2145 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2146 	spa_config_exit(spa, SCL_ALL, FTAG);
2147 
2148 	/*
2149 	 * Load the DDTs (dedup tables).
2150 	 */
2151 	error = ddt_load(spa);
2152 	if (error != 0)
2153 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2154 
2155 	spa_update_dspace(spa);
2156 
2157 	/*
2158 	 * Validate the config, using the MOS config to fill in any
2159 	 * information which might be missing.  If we fail to validate
2160 	 * the config then declare the pool unfit for use. If we're
2161 	 * assembling a pool from a split, the log is not transferred
2162 	 * over.
2163 	 */
2164 	if (type != SPA_IMPORT_ASSEMBLE) {
2165 		nvlist_t *nvconfig;
2166 
2167 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2168 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2169 
2170 		if (!spa_config_valid(spa, nvconfig)) {
2171 			nvlist_free(nvconfig);
2172 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2173 			    ENXIO));
2174 		}
2175 		nvlist_free(nvconfig);
2176 
2177 		/*
2178 		 * Now that we've validate the config, check the state of the
2179 		 * root vdev.  If it can't be opened, it indicates one or
2180 		 * more toplevel vdevs are faulted.
2181 		 */
2182 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2183 			return (ENXIO);
2184 
2185 		if (spa_check_logs(spa)) {
2186 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2187 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2188 		}
2189 	}
2190 
2191 	/*
2192 	 * We've successfully opened the pool, verify that we're ready
2193 	 * to start pushing transactions.
2194 	 */
2195 	if (state != SPA_LOAD_TRYIMPORT) {
2196 		if (error = spa_load_verify(spa))
2197 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2198 			    error));
2199 	}
2200 
2201 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2202 	    spa->spa_load_max_txg == UINT64_MAX)) {
2203 		dmu_tx_t *tx;
2204 		int need_update = B_FALSE;
2205 
2206 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2207 
2208 		/*
2209 		 * Claim log blocks that haven't been committed yet.
2210 		 * This must all happen in a single txg.
2211 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2212 		 * invoked from zil_claim_log_block()'s i/o done callback.
2213 		 * Price of rollback is that we abandon the log.
2214 		 */
2215 		spa->spa_claiming = B_TRUE;
2216 
2217 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2218 		    spa_first_txg(spa));
2219 		(void) dmu_objset_find(spa_name(spa),
2220 		    zil_claim, tx, DS_FIND_CHILDREN);
2221 		dmu_tx_commit(tx);
2222 
2223 		spa->spa_claiming = B_FALSE;
2224 
2225 		spa_set_log_state(spa, SPA_LOG_GOOD);
2226 		spa->spa_sync_on = B_TRUE;
2227 		txg_sync_start(spa->spa_dsl_pool);
2228 
2229 		/*
2230 		 * Wait for all claims to sync.  We sync up to the highest
2231 		 * claimed log block birth time so that claimed log blocks
2232 		 * don't appear to be from the future.  spa_claim_max_txg
2233 		 * will have been set for us by either zil_check_log_chain()
2234 		 * (invoked from spa_check_logs()) or zil_claim() above.
2235 		 */
2236 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2237 
2238 		/*
2239 		 * If the config cache is stale, or we have uninitialized
2240 		 * metaslabs (see spa_vdev_add()), then update the config.
2241 		 *
2242 		 * If this is a verbatim import, trust the current
2243 		 * in-core spa_config and update the disk labels.
2244 		 */
2245 		if (config_cache_txg != spa->spa_config_txg ||
2246 		    state == SPA_LOAD_IMPORT ||
2247 		    state == SPA_LOAD_RECOVER ||
2248 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2249 			need_update = B_TRUE;
2250 
2251 		for (int c = 0; c < rvd->vdev_children; c++)
2252 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2253 				need_update = B_TRUE;
2254 
2255 		/*
2256 		 * Update the config cache asychronously in case we're the
2257 		 * root pool, in which case the config cache isn't writable yet.
2258 		 */
2259 		if (need_update)
2260 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2261 
2262 		/*
2263 		 * Check all DTLs to see if anything needs resilvering.
2264 		 */
2265 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2266 		    vdev_resilver_needed(rvd, NULL, NULL))
2267 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2268 
2269 		/*
2270 		 * Delete any inconsistent datasets.
2271 		 */
2272 		(void) dmu_objset_find(spa_name(spa),
2273 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2274 
2275 		/*
2276 		 * Clean up any stale temporary dataset userrefs.
2277 		 */
2278 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2279 	}
2280 
2281 	return (0);
2282 }
2283 
2284 static int
2285 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2286 {
2287 	int mode = spa->spa_mode;
2288 
2289 	spa_unload(spa);
2290 	spa_deactivate(spa);
2291 
2292 	spa->spa_load_max_txg--;
2293 
2294 	spa_activate(spa, mode);
2295 	spa_async_suspend(spa);
2296 
2297 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2298 }
2299 
2300 static int
2301 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2302     uint64_t max_request, int rewind_flags)
2303 {
2304 	nvlist_t *config = NULL;
2305 	int load_error, rewind_error;
2306 	uint64_t safe_rewind_txg;
2307 	uint64_t min_txg;
2308 
2309 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2310 		spa->spa_load_max_txg = spa->spa_load_txg;
2311 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2312 	} else {
2313 		spa->spa_load_max_txg = max_request;
2314 	}
2315 
2316 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2317 	    mosconfig);
2318 	if (load_error == 0)
2319 		return (0);
2320 
2321 	if (spa->spa_root_vdev != NULL)
2322 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2323 
2324 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2325 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2326 
2327 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2328 		nvlist_free(config);
2329 		return (load_error);
2330 	}
2331 
2332 	/* Price of rolling back is discarding txgs, including log */
2333 	if (state == SPA_LOAD_RECOVER)
2334 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2335 
2336 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2337 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2338 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2339 	    TXG_INITIAL : safe_rewind_txg;
2340 
2341 	/*
2342 	 * Continue as long as we're finding errors, we're still within
2343 	 * the acceptable rewind range, and we're still finding uberblocks
2344 	 */
2345 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2346 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2347 		if (spa->spa_load_max_txg < safe_rewind_txg)
2348 			spa->spa_extreme_rewind = B_TRUE;
2349 		rewind_error = spa_load_retry(spa, state, mosconfig);
2350 	}
2351 
2352 	spa->spa_extreme_rewind = B_FALSE;
2353 	spa->spa_load_max_txg = UINT64_MAX;
2354 
2355 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2356 		spa_config_set(spa, config);
2357 
2358 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2359 }
2360 
2361 /*
2362  * Pool Open/Import
2363  *
2364  * The import case is identical to an open except that the configuration is sent
2365  * down from userland, instead of grabbed from the configuration cache.  For the
2366  * case of an open, the pool configuration will exist in the
2367  * POOL_STATE_UNINITIALIZED state.
2368  *
2369  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2370  * the same time open the pool, without having to keep around the spa_t in some
2371  * ambiguous state.
2372  */
2373 static int
2374 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2375     nvlist_t **config)
2376 {
2377 	spa_t *spa;
2378 	spa_load_state_t state = SPA_LOAD_OPEN;
2379 	int error;
2380 	int locked = B_FALSE;
2381 
2382 	*spapp = NULL;
2383 
2384 	/*
2385 	 * As disgusting as this is, we need to support recursive calls to this
2386 	 * function because dsl_dir_open() is called during spa_load(), and ends
2387 	 * up calling spa_open() again.  The real fix is to figure out how to
2388 	 * avoid dsl_dir_open() calling this in the first place.
2389 	 */
2390 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2391 		mutex_enter(&spa_namespace_lock);
2392 		locked = B_TRUE;
2393 	}
2394 
2395 	if ((spa = spa_lookup(pool)) == NULL) {
2396 		if (locked)
2397 			mutex_exit(&spa_namespace_lock);
2398 		return (ENOENT);
2399 	}
2400 
2401 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2402 		zpool_rewind_policy_t policy;
2403 
2404 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2405 		    &policy);
2406 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2407 			state = SPA_LOAD_RECOVER;
2408 
2409 		spa_activate(spa, spa_mode_global);
2410 
2411 		if (state != SPA_LOAD_RECOVER)
2412 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2413 
2414 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2415 		    policy.zrp_request);
2416 
2417 		if (error == EBADF) {
2418 			/*
2419 			 * If vdev_validate() returns failure (indicated by
2420 			 * EBADF), it indicates that one of the vdevs indicates
2421 			 * that the pool has been exported or destroyed.  If
2422 			 * this is the case, the config cache is out of sync and
2423 			 * we should remove the pool from the namespace.
2424 			 */
2425 			spa_unload(spa);
2426 			spa_deactivate(spa);
2427 			spa_config_sync(spa, B_TRUE, B_TRUE);
2428 			spa_remove(spa);
2429 			if (locked)
2430 				mutex_exit(&spa_namespace_lock);
2431 			return (ENOENT);
2432 		}
2433 
2434 		if (error) {
2435 			/*
2436 			 * We can't open the pool, but we still have useful
2437 			 * information: the state of each vdev after the
2438 			 * attempted vdev_open().  Return this to the user.
2439 			 */
2440 			if (config != NULL && spa->spa_config) {
2441 				VERIFY(nvlist_dup(spa->spa_config, config,
2442 				    KM_SLEEP) == 0);
2443 				VERIFY(nvlist_add_nvlist(*config,
2444 				    ZPOOL_CONFIG_LOAD_INFO,
2445 				    spa->spa_load_info) == 0);
2446 			}
2447 			spa_unload(spa);
2448 			spa_deactivate(spa);
2449 			spa->spa_last_open_failed = error;
2450 			if (locked)
2451 				mutex_exit(&spa_namespace_lock);
2452 			*spapp = NULL;
2453 			return (error);
2454 		}
2455 	}
2456 
2457 	spa_open_ref(spa, tag);
2458 
2459 	if (config != NULL)
2460 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2461 
2462 	/*
2463 	 * If we've recovered the pool, pass back any information we
2464 	 * gathered while doing the load.
2465 	 */
2466 	if (state == SPA_LOAD_RECOVER) {
2467 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2468 		    spa->spa_load_info) == 0);
2469 	}
2470 
2471 	if (locked) {
2472 		spa->spa_last_open_failed = 0;
2473 		spa->spa_last_ubsync_txg = 0;
2474 		spa->spa_load_txg = 0;
2475 		mutex_exit(&spa_namespace_lock);
2476 	}
2477 
2478 	*spapp = spa;
2479 
2480 	return (0);
2481 }
2482 
2483 int
2484 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2485     nvlist_t **config)
2486 {
2487 	return (spa_open_common(name, spapp, tag, policy, config));
2488 }
2489 
2490 int
2491 spa_open(const char *name, spa_t **spapp, void *tag)
2492 {
2493 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2494 }
2495 
2496 /*
2497  * Lookup the given spa_t, incrementing the inject count in the process,
2498  * preventing it from being exported or destroyed.
2499  */
2500 spa_t *
2501 spa_inject_addref(char *name)
2502 {
2503 	spa_t *spa;
2504 
2505 	mutex_enter(&spa_namespace_lock);
2506 	if ((spa = spa_lookup(name)) == NULL) {
2507 		mutex_exit(&spa_namespace_lock);
2508 		return (NULL);
2509 	}
2510 	spa->spa_inject_ref++;
2511 	mutex_exit(&spa_namespace_lock);
2512 
2513 	return (spa);
2514 }
2515 
2516 void
2517 spa_inject_delref(spa_t *spa)
2518 {
2519 	mutex_enter(&spa_namespace_lock);
2520 	spa->spa_inject_ref--;
2521 	mutex_exit(&spa_namespace_lock);
2522 }
2523 
2524 /*
2525  * Add spares device information to the nvlist.
2526  */
2527 static void
2528 spa_add_spares(spa_t *spa, nvlist_t *config)
2529 {
2530 	nvlist_t **spares;
2531 	uint_t i, nspares;
2532 	nvlist_t *nvroot;
2533 	uint64_t guid;
2534 	vdev_stat_t *vs;
2535 	uint_t vsc;
2536 	uint64_t pool;
2537 
2538 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2539 
2540 	if (spa->spa_spares.sav_count == 0)
2541 		return;
2542 
2543 	VERIFY(nvlist_lookup_nvlist(config,
2544 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2545 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2546 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2547 	if (nspares != 0) {
2548 		VERIFY(nvlist_add_nvlist_array(nvroot,
2549 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2550 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2551 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2552 
2553 		/*
2554 		 * Go through and find any spares which have since been
2555 		 * repurposed as an active spare.  If this is the case, update
2556 		 * their status appropriately.
2557 		 */
2558 		for (i = 0; i < nspares; i++) {
2559 			VERIFY(nvlist_lookup_uint64(spares[i],
2560 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2561 			if (spa_spare_exists(guid, &pool, NULL) &&
2562 			    pool != 0ULL) {
2563 				VERIFY(nvlist_lookup_uint64_array(
2564 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2565 				    (uint64_t **)&vs, &vsc) == 0);
2566 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2567 				vs->vs_aux = VDEV_AUX_SPARED;
2568 			}
2569 		}
2570 	}
2571 }
2572 
2573 /*
2574  * Add l2cache device information to the nvlist, including vdev stats.
2575  */
2576 static void
2577 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2578 {
2579 	nvlist_t **l2cache;
2580 	uint_t i, j, nl2cache;
2581 	nvlist_t *nvroot;
2582 	uint64_t guid;
2583 	vdev_t *vd;
2584 	vdev_stat_t *vs;
2585 	uint_t vsc;
2586 
2587 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2588 
2589 	if (spa->spa_l2cache.sav_count == 0)
2590 		return;
2591 
2592 	VERIFY(nvlist_lookup_nvlist(config,
2593 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2594 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2595 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2596 	if (nl2cache != 0) {
2597 		VERIFY(nvlist_add_nvlist_array(nvroot,
2598 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2599 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2600 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2601 
2602 		/*
2603 		 * Update level 2 cache device stats.
2604 		 */
2605 
2606 		for (i = 0; i < nl2cache; i++) {
2607 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2608 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2609 
2610 			vd = NULL;
2611 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2612 				if (guid ==
2613 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2614 					vd = spa->spa_l2cache.sav_vdevs[j];
2615 					break;
2616 				}
2617 			}
2618 			ASSERT(vd != NULL);
2619 
2620 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2621 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2622 			    == 0);
2623 			vdev_get_stats(vd, vs);
2624 		}
2625 	}
2626 }
2627 
2628 int
2629 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2630 {
2631 	int error;
2632 	spa_t *spa;
2633 
2634 	*config = NULL;
2635 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2636 
2637 	if (spa != NULL) {
2638 		/*
2639 		 * This still leaves a window of inconsistency where the spares
2640 		 * or l2cache devices could change and the config would be
2641 		 * self-inconsistent.
2642 		 */
2643 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2644 
2645 		if (*config != NULL) {
2646 			uint64_t loadtimes[2];
2647 
2648 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2649 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2650 			VERIFY(nvlist_add_uint64_array(*config,
2651 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2652 
2653 			VERIFY(nvlist_add_uint64(*config,
2654 			    ZPOOL_CONFIG_ERRCOUNT,
2655 			    spa_get_errlog_size(spa)) == 0);
2656 
2657 			if (spa_suspended(spa))
2658 				VERIFY(nvlist_add_uint64(*config,
2659 				    ZPOOL_CONFIG_SUSPENDED,
2660 				    spa->spa_failmode) == 0);
2661 
2662 			spa_add_spares(spa, *config);
2663 			spa_add_l2cache(spa, *config);
2664 		}
2665 	}
2666 
2667 	/*
2668 	 * We want to get the alternate root even for faulted pools, so we cheat
2669 	 * and call spa_lookup() directly.
2670 	 */
2671 	if (altroot) {
2672 		if (spa == NULL) {
2673 			mutex_enter(&spa_namespace_lock);
2674 			spa = spa_lookup(name);
2675 			if (spa)
2676 				spa_altroot(spa, altroot, buflen);
2677 			else
2678 				altroot[0] = '\0';
2679 			spa = NULL;
2680 			mutex_exit(&spa_namespace_lock);
2681 		} else {
2682 			spa_altroot(spa, altroot, buflen);
2683 		}
2684 	}
2685 
2686 	if (spa != NULL) {
2687 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2688 		spa_close(spa, FTAG);
2689 	}
2690 
2691 	return (error);
2692 }
2693 
2694 /*
2695  * Validate that the auxiliary device array is well formed.  We must have an
2696  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2697  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2698  * specified, as long as they are well-formed.
2699  */
2700 static int
2701 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2702     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2703     vdev_labeltype_t label)
2704 {
2705 	nvlist_t **dev;
2706 	uint_t i, ndev;
2707 	vdev_t *vd;
2708 	int error;
2709 
2710 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2711 
2712 	/*
2713 	 * It's acceptable to have no devs specified.
2714 	 */
2715 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2716 		return (0);
2717 
2718 	if (ndev == 0)
2719 		return (EINVAL);
2720 
2721 	/*
2722 	 * Make sure the pool is formatted with a version that supports this
2723 	 * device type.
2724 	 */
2725 	if (spa_version(spa) < version)
2726 		return (ENOTSUP);
2727 
2728 	/*
2729 	 * Set the pending device list so we correctly handle device in-use
2730 	 * checking.
2731 	 */
2732 	sav->sav_pending = dev;
2733 	sav->sav_npending = ndev;
2734 
2735 	for (i = 0; i < ndev; i++) {
2736 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2737 		    mode)) != 0)
2738 			goto out;
2739 
2740 		if (!vd->vdev_ops->vdev_op_leaf) {
2741 			vdev_free(vd);
2742 			error = EINVAL;
2743 			goto out;
2744 		}
2745 
2746 		/*
2747 		 * The L2ARC currently only supports disk devices in
2748 		 * kernel context.  For user-level testing, we allow it.
2749 		 */
2750 #ifdef _KERNEL
2751 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2752 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2753 			error = ENOTBLK;
2754 			goto out;
2755 		}
2756 #endif
2757 		vd->vdev_top = vd;
2758 
2759 		if ((error = vdev_open(vd)) == 0 &&
2760 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2761 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2762 			    vd->vdev_guid) == 0);
2763 		}
2764 
2765 		vdev_free(vd);
2766 
2767 		if (error &&
2768 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2769 			goto out;
2770 		else
2771 			error = 0;
2772 	}
2773 
2774 out:
2775 	sav->sav_pending = NULL;
2776 	sav->sav_npending = 0;
2777 	return (error);
2778 }
2779 
2780 static int
2781 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2782 {
2783 	int error;
2784 
2785 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2786 
2787 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2788 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2789 	    VDEV_LABEL_SPARE)) != 0) {
2790 		return (error);
2791 	}
2792 
2793 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2794 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2795 	    VDEV_LABEL_L2CACHE));
2796 }
2797 
2798 static void
2799 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2800     const char *config)
2801 {
2802 	int i;
2803 
2804 	if (sav->sav_config != NULL) {
2805 		nvlist_t **olddevs;
2806 		uint_t oldndevs;
2807 		nvlist_t **newdevs;
2808 
2809 		/*
2810 		 * Generate new dev list by concatentating with the
2811 		 * current dev list.
2812 		 */
2813 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2814 		    &olddevs, &oldndevs) == 0);
2815 
2816 		newdevs = kmem_alloc(sizeof (void *) *
2817 		    (ndevs + oldndevs), KM_SLEEP);
2818 		for (i = 0; i < oldndevs; i++)
2819 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2820 			    KM_SLEEP) == 0);
2821 		for (i = 0; i < ndevs; i++)
2822 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2823 			    KM_SLEEP) == 0);
2824 
2825 		VERIFY(nvlist_remove(sav->sav_config, config,
2826 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2827 
2828 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2829 		    config, newdevs, ndevs + oldndevs) == 0);
2830 		for (i = 0; i < oldndevs + ndevs; i++)
2831 			nvlist_free(newdevs[i]);
2832 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2833 	} else {
2834 		/*
2835 		 * Generate a new dev list.
2836 		 */
2837 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2838 		    KM_SLEEP) == 0);
2839 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2840 		    devs, ndevs) == 0);
2841 	}
2842 }
2843 
2844 /*
2845  * Stop and drop level 2 ARC devices
2846  */
2847 void
2848 spa_l2cache_drop(spa_t *spa)
2849 {
2850 	vdev_t *vd;
2851 	int i;
2852 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2853 
2854 	for (i = 0; i < sav->sav_count; i++) {
2855 		uint64_t pool;
2856 
2857 		vd = sav->sav_vdevs[i];
2858 		ASSERT(vd != NULL);
2859 
2860 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2861 		    pool != 0ULL && l2arc_vdev_present(vd))
2862 			l2arc_remove_vdev(vd);
2863 		if (vd->vdev_isl2cache)
2864 			spa_l2cache_remove(vd);
2865 		vdev_clear_stats(vd);
2866 		(void) vdev_close(vd);
2867 	}
2868 }
2869 
2870 /*
2871  * Pool Creation
2872  */
2873 int
2874 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2875     const char *history_str, nvlist_t *zplprops)
2876 {
2877 	spa_t *spa;
2878 	char *altroot = NULL;
2879 	vdev_t *rvd;
2880 	dsl_pool_t *dp;
2881 	dmu_tx_t *tx;
2882 	int error = 0;
2883 	uint64_t txg = TXG_INITIAL;
2884 	nvlist_t **spares, **l2cache;
2885 	uint_t nspares, nl2cache;
2886 	uint64_t version, obj;
2887 
2888 	/*
2889 	 * If this pool already exists, return failure.
2890 	 */
2891 	mutex_enter(&spa_namespace_lock);
2892 	if (spa_lookup(pool) != NULL) {
2893 		mutex_exit(&spa_namespace_lock);
2894 		return (EEXIST);
2895 	}
2896 
2897 	/*
2898 	 * Allocate a new spa_t structure.
2899 	 */
2900 	(void) nvlist_lookup_string(props,
2901 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2902 	spa = spa_add(pool, NULL, altroot);
2903 	spa_activate(spa, spa_mode_global);
2904 
2905 	if (props && (error = spa_prop_validate(spa, props))) {
2906 		spa_deactivate(spa);
2907 		spa_remove(spa);
2908 		mutex_exit(&spa_namespace_lock);
2909 		return (error);
2910 	}
2911 
2912 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2913 	    &version) != 0)
2914 		version = SPA_VERSION;
2915 	ASSERT(version <= SPA_VERSION);
2916 
2917 	spa->spa_first_txg = txg;
2918 	spa->spa_uberblock.ub_txg = txg - 1;
2919 	spa->spa_uberblock.ub_version = version;
2920 	spa->spa_ubsync = spa->spa_uberblock;
2921 
2922 	/*
2923 	 * Create "The Godfather" zio to hold all async IOs
2924 	 */
2925 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2926 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2927 
2928 	/*
2929 	 * Create the root vdev.
2930 	 */
2931 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2932 
2933 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2934 
2935 	ASSERT(error != 0 || rvd != NULL);
2936 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2937 
2938 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2939 		error = EINVAL;
2940 
2941 	if (error == 0 &&
2942 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2943 	    (error = spa_validate_aux(spa, nvroot, txg,
2944 	    VDEV_ALLOC_ADD)) == 0) {
2945 		for (int c = 0; c < rvd->vdev_children; c++) {
2946 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2947 			vdev_expand(rvd->vdev_child[c], txg);
2948 		}
2949 	}
2950 
2951 	spa_config_exit(spa, SCL_ALL, FTAG);
2952 
2953 	if (error != 0) {
2954 		spa_unload(spa);
2955 		spa_deactivate(spa);
2956 		spa_remove(spa);
2957 		mutex_exit(&spa_namespace_lock);
2958 		return (error);
2959 	}
2960 
2961 	/*
2962 	 * Get the list of spares, if specified.
2963 	 */
2964 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2965 	    &spares, &nspares) == 0) {
2966 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2967 		    KM_SLEEP) == 0);
2968 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2969 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2970 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2971 		spa_load_spares(spa);
2972 		spa_config_exit(spa, SCL_ALL, FTAG);
2973 		spa->spa_spares.sav_sync = B_TRUE;
2974 	}
2975 
2976 	/*
2977 	 * Get the list of level 2 cache devices, if specified.
2978 	 */
2979 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2980 	    &l2cache, &nl2cache) == 0) {
2981 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2982 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2983 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2984 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2985 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2986 		spa_load_l2cache(spa);
2987 		spa_config_exit(spa, SCL_ALL, FTAG);
2988 		spa->spa_l2cache.sav_sync = B_TRUE;
2989 	}
2990 
2991 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2992 	spa->spa_meta_objset = dp->dp_meta_objset;
2993 
2994 	/*
2995 	 * Create DDTs (dedup tables).
2996 	 */
2997 	ddt_create(spa);
2998 
2999 	spa_update_dspace(spa);
3000 
3001 	tx = dmu_tx_create_assigned(dp, txg);
3002 
3003 	/*
3004 	 * Create the pool config object.
3005 	 */
3006 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3007 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3008 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3009 
3010 	if (zap_add(spa->spa_meta_objset,
3011 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3012 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3013 		cmn_err(CE_PANIC, "failed to add pool config");
3014 	}
3015 
3016 	if (zap_add(spa->spa_meta_objset,
3017 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3018 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3019 		cmn_err(CE_PANIC, "failed to add pool version");
3020 	}
3021 
3022 	/* Newly created pools with the right version are always deflated. */
3023 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3024 		spa->spa_deflate = TRUE;
3025 		if (zap_add(spa->spa_meta_objset,
3026 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3027 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3028 			cmn_err(CE_PANIC, "failed to add deflate");
3029 		}
3030 	}
3031 
3032 	/*
3033 	 * Create the deferred-free bpobj.  Turn off compression
3034 	 * because sync-to-convergence takes longer if the blocksize
3035 	 * keeps changing.
3036 	 */
3037 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3038 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3039 	    ZIO_COMPRESS_OFF, tx);
3040 	if (zap_add(spa->spa_meta_objset,
3041 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3042 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3043 		cmn_err(CE_PANIC, "failed to add bpobj");
3044 	}
3045 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3046 	    spa->spa_meta_objset, obj));
3047 
3048 	/*
3049 	 * Create the pool's history object.
3050 	 */
3051 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3052 		spa_history_create_obj(spa, tx);
3053 
3054 	/*
3055 	 * Set pool properties.
3056 	 */
3057 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3058 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3059 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3060 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3061 
3062 	if (props != NULL) {
3063 		spa_configfile_set(spa, props, B_FALSE);
3064 		spa_sync_props(spa, props, tx);
3065 	}
3066 
3067 	dmu_tx_commit(tx);
3068 
3069 	spa->spa_sync_on = B_TRUE;
3070 	txg_sync_start(spa->spa_dsl_pool);
3071 
3072 	/*
3073 	 * We explicitly wait for the first transaction to complete so that our
3074 	 * bean counters are appropriately updated.
3075 	 */
3076 	txg_wait_synced(spa->spa_dsl_pool, txg);
3077 
3078 	spa_config_sync(spa, B_FALSE, B_TRUE);
3079 
3080 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3081 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3082 	spa_history_log_version(spa, LOG_POOL_CREATE);
3083 
3084 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3085 
3086 	mutex_exit(&spa_namespace_lock);
3087 
3088 	return (0);
3089 }
3090 
3091 #ifdef _KERNEL
3092 /*
3093  * Get the root pool information from the root disk, then import the root pool
3094  * during the system boot up time.
3095  */
3096 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3097 
3098 static nvlist_t *
3099 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3100 {
3101 	nvlist_t *config;
3102 	nvlist_t *nvtop, *nvroot;
3103 	uint64_t pgid;
3104 
3105 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3106 		return (NULL);
3107 
3108 	/*
3109 	 * Add this top-level vdev to the child array.
3110 	 */
3111 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3112 	    &nvtop) == 0);
3113 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3114 	    &pgid) == 0);
3115 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3116 
3117 	/*
3118 	 * Put this pool's top-level vdevs into a root vdev.
3119 	 */
3120 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3121 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3122 	    VDEV_TYPE_ROOT) == 0);
3123 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3124 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3125 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3126 	    &nvtop, 1) == 0);
3127 
3128 	/*
3129 	 * Replace the existing vdev_tree with the new root vdev in
3130 	 * this pool's configuration (remove the old, add the new).
3131 	 */
3132 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3133 	nvlist_free(nvroot);
3134 	return (config);
3135 }
3136 
3137 /*
3138  * Walk the vdev tree and see if we can find a device with "better"
3139  * configuration. A configuration is "better" if the label on that
3140  * device has a more recent txg.
3141  */
3142 static void
3143 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3144 {
3145 	for (int c = 0; c < vd->vdev_children; c++)
3146 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3147 
3148 	if (vd->vdev_ops->vdev_op_leaf) {
3149 		nvlist_t *label;
3150 		uint64_t label_txg;
3151 
3152 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3153 		    &label) != 0)
3154 			return;
3155 
3156 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3157 		    &label_txg) == 0);
3158 
3159 		/*
3160 		 * Do we have a better boot device?
3161 		 */
3162 		if (label_txg > *txg) {
3163 			*txg = label_txg;
3164 			*avd = vd;
3165 		}
3166 		nvlist_free(label);
3167 	}
3168 }
3169 
3170 /*
3171  * Import a root pool.
3172  *
3173  * For x86. devpath_list will consist of devid and/or physpath name of
3174  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3175  * The GRUB "findroot" command will return the vdev we should boot.
3176  *
3177  * For Sparc, devpath_list consists the physpath name of the booting device
3178  * no matter the rootpool is a single device pool or a mirrored pool.
3179  * e.g.
3180  *	"/pci@1f,0/ide@d/disk@0,0:a"
3181  */
3182 int
3183 spa_import_rootpool(char *devpath, char *devid)
3184 {
3185 	spa_t *spa;
3186 	vdev_t *rvd, *bvd, *avd = NULL;
3187 	nvlist_t *config, *nvtop;
3188 	uint64_t guid, txg;
3189 	char *pname;
3190 	int error;
3191 
3192 	/*
3193 	 * Read the label from the boot device and generate a configuration.
3194 	 */
3195 	config = spa_generate_rootconf(devpath, devid, &guid);
3196 #if defined(_OBP) && defined(_KERNEL)
3197 	if (config == NULL) {
3198 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3199 			/* iscsi boot */
3200 			get_iscsi_bootpath_phy(devpath);
3201 			config = spa_generate_rootconf(devpath, devid, &guid);
3202 		}
3203 	}
3204 #endif
3205 	if (config == NULL) {
3206 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3207 		    devpath);
3208 		return (EIO);
3209 	}
3210 
3211 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3212 	    &pname) == 0);
3213 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3214 
3215 	mutex_enter(&spa_namespace_lock);
3216 	if ((spa = spa_lookup(pname)) != NULL) {
3217 		/*
3218 		 * Remove the existing root pool from the namespace so that we
3219 		 * can replace it with the correct config we just read in.
3220 		 */
3221 		spa_remove(spa);
3222 	}
3223 
3224 	spa = spa_add(pname, config, NULL);
3225 	spa->spa_is_root = B_TRUE;
3226 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3227 
3228 	/*
3229 	 * Build up a vdev tree based on the boot device's label config.
3230 	 */
3231 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3232 	    &nvtop) == 0);
3233 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3234 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3235 	    VDEV_ALLOC_ROOTPOOL);
3236 	spa_config_exit(spa, SCL_ALL, FTAG);
3237 	if (error) {
3238 		mutex_exit(&spa_namespace_lock);
3239 		nvlist_free(config);
3240 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3241 		    pname);
3242 		return (error);
3243 	}
3244 
3245 	/*
3246 	 * Get the boot vdev.
3247 	 */
3248 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3249 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3250 		    (u_longlong_t)guid);
3251 		error = ENOENT;
3252 		goto out;
3253 	}
3254 
3255 	/*
3256 	 * Determine if there is a better boot device.
3257 	 */
3258 	avd = bvd;
3259 	spa_alt_rootvdev(rvd, &avd, &txg);
3260 	if (avd != bvd) {
3261 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3262 		    "try booting from '%s'", avd->vdev_path);
3263 		error = EINVAL;
3264 		goto out;
3265 	}
3266 
3267 	/*
3268 	 * If the boot device is part of a spare vdev then ensure that
3269 	 * we're booting off the active spare.
3270 	 */
3271 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3272 	    !bvd->vdev_isspare) {
3273 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3274 		    "try booting from '%s'",
3275 		    bvd->vdev_parent->
3276 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3277 		error = EINVAL;
3278 		goto out;
3279 	}
3280 
3281 	error = 0;
3282 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3283 out:
3284 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3285 	vdev_free(rvd);
3286 	spa_config_exit(spa, SCL_ALL, FTAG);
3287 	mutex_exit(&spa_namespace_lock);
3288 
3289 	nvlist_free(config);
3290 	return (error);
3291 }
3292 
3293 #endif
3294 
3295 /*
3296  * Import a non-root pool into the system.
3297  */
3298 int
3299 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3300 {
3301 	spa_t *spa;
3302 	char *altroot = NULL;
3303 	spa_load_state_t state = SPA_LOAD_IMPORT;
3304 	zpool_rewind_policy_t policy;
3305 	uint64_t mode = spa_mode_global;
3306 	uint64_t readonly = B_FALSE;
3307 	int error;
3308 	nvlist_t *nvroot;
3309 	nvlist_t **spares, **l2cache;
3310 	uint_t nspares, nl2cache;
3311 
3312 	/*
3313 	 * If a pool with this name exists, return failure.
3314 	 */
3315 	mutex_enter(&spa_namespace_lock);
3316 	if (spa_lookup(pool) != NULL) {
3317 		mutex_exit(&spa_namespace_lock);
3318 		return (EEXIST);
3319 	}
3320 
3321 	/*
3322 	 * Create and initialize the spa structure.
3323 	 */
3324 	(void) nvlist_lookup_string(props,
3325 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3326 	(void) nvlist_lookup_uint64(props,
3327 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3328 	if (readonly)
3329 		mode = FREAD;
3330 	spa = spa_add(pool, config, altroot);
3331 	spa->spa_import_flags = flags;
3332 
3333 	/*
3334 	 * Verbatim import - Take a pool and insert it into the namespace
3335 	 * as if it had been loaded at boot.
3336 	 */
3337 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3338 		if (props != NULL)
3339 			spa_configfile_set(spa, props, B_FALSE);
3340 
3341 		spa_config_sync(spa, B_FALSE, B_TRUE);
3342 
3343 		mutex_exit(&spa_namespace_lock);
3344 		spa_history_log_version(spa, LOG_POOL_IMPORT);
3345 
3346 		return (0);
3347 	}
3348 
3349 	spa_activate(spa, mode);
3350 
3351 	/*
3352 	 * Don't start async tasks until we know everything is healthy.
3353 	 */
3354 	spa_async_suspend(spa);
3355 
3356 	zpool_get_rewind_policy(config, &policy);
3357 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3358 		state = SPA_LOAD_RECOVER;
3359 
3360 	/*
3361 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3362 	 * because the user-supplied config is actually the one to trust when
3363 	 * doing an import.
3364 	 */
3365 	if (state != SPA_LOAD_RECOVER)
3366 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3367 
3368 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3369 	    policy.zrp_request);
3370 
3371 	/*
3372 	 * Propagate anything learned while loading the pool and pass it
3373 	 * back to caller (i.e. rewind info, missing devices, etc).
3374 	 */
3375 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3376 	    spa->spa_load_info) == 0);
3377 
3378 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3379 	/*
3380 	 * Toss any existing sparelist, as it doesn't have any validity
3381 	 * anymore, and conflicts with spa_has_spare().
3382 	 */
3383 	if (spa->spa_spares.sav_config) {
3384 		nvlist_free(spa->spa_spares.sav_config);
3385 		spa->spa_spares.sav_config = NULL;
3386 		spa_load_spares(spa);
3387 	}
3388 	if (spa->spa_l2cache.sav_config) {
3389 		nvlist_free(spa->spa_l2cache.sav_config);
3390 		spa->spa_l2cache.sav_config = NULL;
3391 		spa_load_l2cache(spa);
3392 	}
3393 
3394 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3395 	    &nvroot) == 0);
3396 	if (error == 0)
3397 		error = spa_validate_aux(spa, nvroot, -1ULL,
3398 		    VDEV_ALLOC_SPARE);
3399 	if (error == 0)
3400 		error = spa_validate_aux(spa, nvroot, -1ULL,
3401 		    VDEV_ALLOC_L2CACHE);
3402 	spa_config_exit(spa, SCL_ALL, FTAG);
3403 
3404 	if (props != NULL)
3405 		spa_configfile_set(spa, props, B_FALSE);
3406 
3407 	if (error != 0 || (props && spa_writeable(spa) &&
3408 	    (error = spa_prop_set(spa, props)))) {
3409 		spa_unload(spa);
3410 		spa_deactivate(spa);
3411 		spa_remove(spa);
3412 		mutex_exit(&spa_namespace_lock);
3413 		return (error);
3414 	}
3415 
3416 	spa_async_resume(spa);
3417 
3418 	/*
3419 	 * Override any spares and level 2 cache devices as specified by
3420 	 * the user, as these may have correct device names/devids, etc.
3421 	 */
3422 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3423 	    &spares, &nspares) == 0) {
3424 		if (spa->spa_spares.sav_config)
3425 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3426 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3427 		else
3428 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3429 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3430 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3431 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3432 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3433 		spa_load_spares(spa);
3434 		spa_config_exit(spa, SCL_ALL, FTAG);
3435 		spa->spa_spares.sav_sync = B_TRUE;
3436 	}
3437 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3438 	    &l2cache, &nl2cache) == 0) {
3439 		if (spa->spa_l2cache.sav_config)
3440 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3441 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3442 		else
3443 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3444 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3445 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3446 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3447 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3448 		spa_load_l2cache(spa);
3449 		spa_config_exit(spa, SCL_ALL, FTAG);
3450 		spa->spa_l2cache.sav_sync = B_TRUE;
3451 	}
3452 
3453 	/*
3454 	 * Check for any removed devices.
3455 	 */
3456 	if (spa->spa_autoreplace) {
3457 		spa_aux_check_removed(&spa->spa_spares);
3458 		spa_aux_check_removed(&spa->spa_l2cache);
3459 	}
3460 
3461 	if (spa_writeable(spa)) {
3462 		/*
3463 		 * Update the config cache to include the newly-imported pool.
3464 		 */
3465 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3466 	}
3467 
3468 	/*
3469 	 * It's possible that the pool was expanded while it was exported.
3470 	 * We kick off an async task to handle this for us.
3471 	 */
3472 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3473 
3474 	mutex_exit(&spa_namespace_lock);
3475 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3476 
3477 	return (0);
3478 }
3479 
3480 nvlist_t *
3481 spa_tryimport(nvlist_t *tryconfig)
3482 {
3483 	nvlist_t *config = NULL;
3484 	char *poolname;
3485 	spa_t *spa;
3486 	uint64_t state;
3487 	int error;
3488 
3489 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3490 		return (NULL);
3491 
3492 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3493 		return (NULL);
3494 
3495 	/*
3496 	 * Create and initialize the spa structure.
3497 	 */
3498 	mutex_enter(&spa_namespace_lock);
3499 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3500 	spa_activate(spa, FREAD);
3501 
3502 	/*
3503 	 * Pass off the heavy lifting to spa_load().
3504 	 * Pass TRUE for mosconfig because the user-supplied config
3505 	 * is actually the one to trust when doing an import.
3506 	 */
3507 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3508 
3509 	/*
3510 	 * If 'tryconfig' was at least parsable, return the current config.
3511 	 */
3512 	if (spa->spa_root_vdev != NULL) {
3513 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3514 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3515 		    poolname) == 0);
3516 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3517 		    state) == 0);
3518 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3519 		    spa->spa_uberblock.ub_timestamp) == 0);
3520 
3521 		/*
3522 		 * If the bootfs property exists on this pool then we
3523 		 * copy it out so that external consumers can tell which
3524 		 * pools are bootable.
3525 		 */
3526 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3527 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3528 
3529 			/*
3530 			 * We have to play games with the name since the
3531 			 * pool was opened as TRYIMPORT_NAME.
3532 			 */
3533 			if (dsl_dsobj_to_dsname(spa_name(spa),
3534 			    spa->spa_bootfs, tmpname) == 0) {
3535 				char *cp;
3536 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3537 
3538 				cp = strchr(tmpname, '/');
3539 				if (cp == NULL) {
3540 					(void) strlcpy(dsname, tmpname,
3541 					    MAXPATHLEN);
3542 				} else {
3543 					(void) snprintf(dsname, MAXPATHLEN,
3544 					    "%s/%s", poolname, ++cp);
3545 				}
3546 				VERIFY(nvlist_add_string(config,
3547 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3548 				kmem_free(dsname, MAXPATHLEN);
3549 			}
3550 			kmem_free(tmpname, MAXPATHLEN);
3551 		}
3552 
3553 		/*
3554 		 * Add the list of hot spares and level 2 cache devices.
3555 		 */
3556 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3557 		spa_add_spares(spa, config);
3558 		spa_add_l2cache(spa, config);
3559 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3560 	}
3561 
3562 	spa_unload(spa);
3563 	spa_deactivate(spa);
3564 	spa_remove(spa);
3565 	mutex_exit(&spa_namespace_lock);
3566 
3567 	return (config);
3568 }
3569 
3570 /*
3571  * Pool export/destroy
3572  *
3573  * The act of destroying or exporting a pool is very simple.  We make sure there
3574  * is no more pending I/O and any references to the pool are gone.  Then, we
3575  * update the pool state and sync all the labels to disk, removing the
3576  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3577  * we don't sync the labels or remove the configuration cache.
3578  */
3579 static int
3580 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3581     boolean_t force, boolean_t hardforce)
3582 {
3583 	spa_t *spa;
3584 
3585 	if (oldconfig)
3586 		*oldconfig = NULL;
3587 
3588 	if (!(spa_mode_global & FWRITE))
3589 		return (EROFS);
3590 
3591 	mutex_enter(&spa_namespace_lock);
3592 	if ((spa = spa_lookup(pool)) == NULL) {
3593 		mutex_exit(&spa_namespace_lock);
3594 		return (ENOENT);
3595 	}
3596 
3597 	/*
3598 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3599 	 * reacquire the namespace lock, and see if we can export.
3600 	 */
3601 	spa_open_ref(spa, FTAG);
3602 	mutex_exit(&spa_namespace_lock);
3603 	spa_async_suspend(spa);
3604 	mutex_enter(&spa_namespace_lock);
3605 	spa_close(spa, FTAG);
3606 
3607 	/*
3608 	 * The pool will be in core if it's openable,
3609 	 * in which case we can modify its state.
3610 	 */
3611 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3612 		/*
3613 		 * Objsets may be open only because they're dirty, so we
3614 		 * have to force it to sync before checking spa_refcnt.
3615 		 */
3616 		txg_wait_synced(spa->spa_dsl_pool, 0);
3617 
3618 		/*
3619 		 * A pool cannot be exported or destroyed if there are active
3620 		 * references.  If we are resetting a pool, allow references by
3621 		 * fault injection handlers.
3622 		 */
3623 		if (!spa_refcount_zero(spa) ||
3624 		    (spa->spa_inject_ref != 0 &&
3625 		    new_state != POOL_STATE_UNINITIALIZED)) {
3626 			spa_async_resume(spa);
3627 			mutex_exit(&spa_namespace_lock);
3628 			return (EBUSY);
3629 		}
3630 
3631 		/*
3632 		 * A pool cannot be exported if it has an active shared spare.
3633 		 * This is to prevent other pools stealing the active spare
3634 		 * from an exported pool. At user's own will, such pool can
3635 		 * be forcedly exported.
3636 		 */
3637 		if (!force && new_state == POOL_STATE_EXPORTED &&
3638 		    spa_has_active_shared_spare(spa)) {
3639 			spa_async_resume(spa);
3640 			mutex_exit(&spa_namespace_lock);
3641 			return (EXDEV);
3642 		}
3643 
3644 		/*
3645 		 * We want this to be reflected on every label,
3646 		 * so mark them all dirty.  spa_unload() will do the
3647 		 * final sync that pushes these changes out.
3648 		 */
3649 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3650 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3651 			spa->spa_state = new_state;
3652 			spa->spa_final_txg = spa_last_synced_txg(spa) +
3653 			    TXG_DEFER_SIZE + 1;
3654 			vdev_config_dirty(spa->spa_root_vdev);
3655 			spa_config_exit(spa, SCL_ALL, FTAG);
3656 		}
3657 	}
3658 
3659 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3660 
3661 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3662 		spa_unload(spa);
3663 		spa_deactivate(spa);
3664 	}
3665 
3666 	if (oldconfig && spa->spa_config)
3667 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3668 
3669 	if (new_state != POOL_STATE_UNINITIALIZED) {
3670 		if (!hardforce)
3671 			spa_config_sync(spa, B_TRUE, B_TRUE);
3672 		spa_remove(spa);
3673 	}
3674 	mutex_exit(&spa_namespace_lock);
3675 
3676 	return (0);
3677 }
3678 
3679 /*
3680  * Destroy a storage pool.
3681  */
3682 int
3683 spa_destroy(char *pool)
3684 {
3685 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3686 	    B_FALSE, B_FALSE));
3687 }
3688 
3689 /*
3690  * Export a storage pool.
3691  */
3692 int
3693 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3694     boolean_t hardforce)
3695 {
3696 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3697 	    force, hardforce));
3698 }
3699 
3700 /*
3701  * Similar to spa_export(), this unloads the spa_t without actually removing it
3702  * from the namespace in any way.
3703  */
3704 int
3705 spa_reset(char *pool)
3706 {
3707 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3708 	    B_FALSE, B_FALSE));
3709 }
3710 
3711 /*
3712  * ==========================================================================
3713  * Device manipulation
3714  * ==========================================================================
3715  */
3716 
3717 /*
3718  * Add a device to a storage pool.
3719  */
3720 int
3721 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3722 {
3723 	uint64_t txg, id;
3724 	int error;
3725 	vdev_t *rvd = spa->spa_root_vdev;
3726 	vdev_t *vd, *tvd;
3727 	nvlist_t **spares, **l2cache;
3728 	uint_t nspares, nl2cache;
3729 
3730 	ASSERT(spa_writeable(spa));
3731 
3732 	txg = spa_vdev_enter(spa);
3733 
3734 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3735 	    VDEV_ALLOC_ADD)) != 0)
3736 		return (spa_vdev_exit(spa, NULL, txg, error));
3737 
3738 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3739 
3740 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3741 	    &nspares) != 0)
3742 		nspares = 0;
3743 
3744 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3745 	    &nl2cache) != 0)
3746 		nl2cache = 0;
3747 
3748 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3749 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3750 
3751 	if (vd->vdev_children != 0 &&
3752 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3753 		return (spa_vdev_exit(spa, vd, txg, error));
3754 
3755 	/*
3756 	 * We must validate the spares and l2cache devices after checking the
3757 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3758 	 */
3759 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3760 		return (spa_vdev_exit(spa, vd, txg, error));
3761 
3762 	/*
3763 	 * Transfer each new top-level vdev from vd to rvd.
3764 	 */
3765 	for (int c = 0; c < vd->vdev_children; c++) {
3766 
3767 		/*
3768 		 * Set the vdev id to the first hole, if one exists.
3769 		 */
3770 		for (id = 0; id < rvd->vdev_children; id++) {
3771 			if (rvd->vdev_child[id]->vdev_ishole) {
3772 				vdev_free(rvd->vdev_child[id]);
3773 				break;
3774 			}
3775 		}
3776 		tvd = vd->vdev_child[c];
3777 		vdev_remove_child(vd, tvd);
3778 		tvd->vdev_id = id;
3779 		vdev_add_child(rvd, tvd);
3780 		vdev_config_dirty(tvd);
3781 	}
3782 
3783 	if (nspares != 0) {
3784 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3785 		    ZPOOL_CONFIG_SPARES);
3786 		spa_load_spares(spa);
3787 		spa->spa_spares.sav_sync = B_TRUE;
3788 	}
3789 
3790 	if (nl2cache != 0) {
3791 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3792 		    ZPOOL_CONFIG_L2CACHE);
3793 		spa_load_l2cache(spa);
3794 		spa->spa_l2cache.sav_sync = B_TRUE;
3795 	}
3796 
3797 	/*
3798 	 * We have to be careful when adding new vdevs to an existing pool.
3799 	 * If other threads start allocating from these vdevs before we
3800 	 * sync the config cache, and we lose power, then upon reboot we may
3801 	 * fail to open the pool because there are DVAs that the config cache
3802 	 * can't translate.  Therefore, we first add the vdevs without
3803 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3804 	 * and then let spa_config_update() initialize the new metaslabs.
3805 	 *
3806 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3807 	 * if we lose power at any point in this sequence, the remaining
3808 	 * steps will be completed the next time we load the pool.
3809 	 */
3810 	(void) spa_vdev_exit(spa, vd, txg, 0);
3811 
3812 	mutex_enter(&spa_namespace_lock);
3813 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3814 	mutex_exit(&spa_namespace_lock);
3815 
3816 	return (0);
3817 }
3818 
3819 /*
3820  * Attach a device to a mirror.  The arguments are the path to any device
3821  * in the mirror, and the nvroot for the new device.  If the path specifies
3822  * a device that is not mirrored, we automatically insert the mirror vdev.
3823  *
3824  * If 'replacing' is specified, the new device is intended to replace the
3825  * existing device; in this case the two devices are made into their own
3826  * mirror using the 'replacing' vdev, which is functionally identical to
3827  * the mirror vdev (it actually reuses all the same ops) but has a few
3828  * extra rules: you can't attach to it after it's been created, and upon
3829  * completion of resilvering, the first disk (the one being replaced)
3830  * is automatically detached.
3831  */
3832 int
3833 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3834 {
3835 	uint64_t txg, dtl_max_txg;
3836 	vdev_t *rvd = spa->spa_root_vdev;
3837 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3838 	vdev_ops_t *pvops;
3839 	char *oldvdpath, *newvdpath;
3840 	int newvd_isspare;
3841 	int error;
3842 
3843 	ASSERT(spa_writeable(spa));
3844 
3845 	txg = spa_vdev_enter(spa);
3846 
3847 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3848 
3849 	if (oldvd == NULL)
3850 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3851 
3852 	if (!oldvd->vdev_ops->vdev_op_leaf)
3853 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3854 
3855 	pvd = oldvd->vdev_parent;
3856 
3857 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3858 	    VDEV_ALLOC_ADD)) != 0)
3859 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3860 
3861 	if (newrootvd->vdev_children != 1)
3862 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3863 
3864 	newvd = newrootvd->vdev_child[0];
3865 
3866 	if (!newvd->vdev_ops->vdev_op_leaf)
3867 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3868 
3869 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3870 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3871 
3872 	/*
3873 	 * Spares can't replace logs
3874 	 */
3875 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3876 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3877 
3878 	if (!replacing) {
3879 		/*
3880 		 * For attach, the only allowable parent is a mirror or the root
3881 		 * vdev.
3882 		 */
3883 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3884 		    pvd->vdev_ops != &vdev_root_ops)
3885 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3886 
3887 		pvops = &vdev_mirror_ops;
3888 	} else {
3889 		/*
3890 		 * Active hot spares can only be replaced by inactive hot
3891 		 * spares.
3892 		 */
3893 		if (pvd->vdev_ops == &vdev_spare_ops &&
3894 		    oldvd->vdev_isspare &&
3895 		    !spa_has_spare(spa, newvd->vdev_guid))
3896 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3897 
3898 		/*
3899 		 * If the source is a hot spare, and the parent isn't already a
3900 		 * spare, then we want to create a new hot spare.  Otherwise, we
3901 		 * want to create a replacing vdev.  The user is not allowed to
3902 		 * attach to a spared vdev child unless the 'isspare' state is
3903 		 * the same (spare replaces spare, non-spare replaces
3904 		 * non-spare).
3905 		 */
3906 		if (pvd->vdev_ops == &vdev_replacing_ops &&
3907 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3908 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3909 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
3910 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
3911 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3912 		}
3913 
3914 		if (newvd->vdev_isspare)
3915 			pvops = &vdev_spare_ops;
3916 		else
3917 			pvops = &vdev_replacing_ops;
3918 	}
3919 
3920 	/*
3921 	 * Make sure the new device is big enough.
3922 	 */
3923 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3924 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3925 
3926 	/*
3927 	 * The new device cannot have a higher alignment requirement
3928 	 * than the top-level vdev.
3929 	 */
3930 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3931 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3932 
3933 	/*
3934 	 * If this is an in-place replacement, update oldvd's path and devid
3935 	 * to make it distinguishable from newvd, and unopenable from now on.
3936 	 */
3937 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3938 		spa_strfree(oldvd->vdev_path);
3939 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3940 		    KM_SLEEP);
3941 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3942 		    newvd->vdev_path, "old");
3943 		if (oldvd->vdev_devid != NULL) {
3944 			spa_strfree(oldvd->vdev_devid);
3945 			oldvd->vdev_devid = NULL;
3946 		}
3947 	}
3948 
3949 	/* mark the device being resilvered */
3950 	newvd->vdev_resilvering = B_TRUE;
3951 
3952 	/*
3953 	 * If the parent is not a mirror, or if we're replacing, insert the new
3954 	 * mirror/replacing/spare vdev above oldvd.
3955 	 */
3956 	if (pvd->vdev_ops != pvops)
3957 		pvd = vdev_add_parent(oldvd, pvops);
3958 
3959 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3960 	ASSERT(pvd->vdev_ops == pvops);
3961 	ASSERT(oldvd->vdev_parent == pvd);
3962 
3963 	/*
3964 	 * Extract the new device from its root and add it to pvd.
3965 	 */
3966 	vdev_remove_child(newrootvd, newvd);
3967 	newvd->vdev_id = pvd->vdev_children;
3968 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3969 	vdev_add_child(pvd, newvd);
3970 
3971 	tvd = newvd->vdev_top;
3972 	ASSERT(pvd->vdev_top == tvd);
3973 	ASSERT(tvd->vdev_parent == rvd);
3974 
3975 	vdev_config_dirty(tvd);
3976 
3977 	/*
3978 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
3979 	 * for any dmu_sync-ed blocks.  It will propagate upward when
3980 	 * spa_vdev_exit() calls vdev_dtl_reassess().
3981 	 */
3982 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
3983 
3984 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
3985 	    dtl_max_txg - TXG_INITIAL);
3986 
3987 	if (newvd->vdev_isspare) {
3988 		spa_spare_activate(newvd);
3989 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3990 	}
3991 
3992 	oldvdpath = spa_strdup(oldvd->vdev_path);
3993 	newvdpath = spa_strdup(newvd->vdev_path);
3994 	newvd_isspare = newvd->vdev_isspare;
3995 
3996 	/*
3997 	 * Mark newvd's DTL dirty in this txg.
3998 	 */
3999 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4000 
4001 	/*
4002 	 * Restart the resilver
4003 	 */
4004 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4005 
4006 	/*
4007 	 * Commit the config
4008 	 */
4009 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4010 
4011 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4012 	    "%s vdev=%s %s vdev=%s",
4013 	    replacing && newvd_isspare ? "spare in" :
4014 	    replacing ? "replace" : "attach", newvdpath,
4015 	    replacing ? "for" : "to", oldvdpath);
4016 
4017 	spa_strfree(oldvdpath);
4018 	spa_strfree(newvdpath);
4019 
4020 	if (spa->spa_bootfs)
4021 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4022 
4023 	return (0);
4024 }
4025 
4026 /*
4027  * Detach a device from a mirror or replacing vdev.
4028  * If 'replace_done' is specified, only detach if the parent
4029  * is a replacing vdev.
4030  */
4031 int
4032 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4033 {
4034 	uint64_t txg;
4035 	int error;
4036 	vdev_t *rvd = spa->spa_root_vdev;
4037 	vdev_t *vd, *pvd, *cvd, *tvd;
4038 	boolean_t unspare = B_FALSE;
4039 	uint64_t unspare_guid;
4040 	char *vdpath;
4041 
4042 	ASSERT(spa_writeable(spa));
4043 
4044 	txg = spa_vdev_enter(spa);
4045 
4046 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4047 
4048 	if (vd == NULL)
4049 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4050 
4051 	if (!vd->vdev_ops->vdev_op_leaf)
4052 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4053 
4054 	pvd = vd->vdev_parent;
4055 
4056 	/*
4057 	 * If the parent/child relationship is not as expected, don't do it.
4058 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4059 	 * vdev that's replacing B with C.  The user's intent in replacing
4060 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4061 	 * the replace by detaching C, the expected behavior is to end up
4062 	 * M(A,B).  But suppose that right after deciding to detach C,
4063 	 * the replacement of B completes.  We would have M(A,C), and then
4064 	 * ask to detach C, which would leave us with just A -- not what
4065 	 * the user wanted.  To prevent this, we make sure that the
4066 	 * parent/child relationship hasn't changed -- in this example,
4067 	 * that C's parent is still the replacing vdev R.
4068 	 */
4069 	if (pvd->vdev_guid != pguid && pguid != 0)
4070 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4071 
4072 	/*
4073 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4074 	 */
4075 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4076 	    pvd->vdev_ops != &vdev_spare_ops)
4077 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4078 
4079 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4080 	    spa_version(spa) >= SPA_VERSION_SPARES);
4081 
4082 	/*
4083 	 * Only mirror, replacing, and spare vdevs support detach.
4084 	 */
4085 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4086 	    pvd->vdev_ops != &vdev_mirror_ops &&
4087 	    pvd->vdev_ops != &vdev_spare_ops)
4088 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4089 
4090 	/*
4091 	 * If this device has the only valid copy of some data,
4092 	 * we cannot safely detach it.
4093 	 */
4094 	if (vdev_dtl_required(vd))
4095 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4096 
4097 	ASSERT(pvd->vdev_children >= 2);
4098 
4099 	/*
4100 	 * If we are detaching the second disk from a replacing vdev, then
4101 	 * check to see if we changed the original vdev's path to have "/old"
4102 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4103 	 */
4104 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4105 	    vd->vdev_path != NULL) {
4106 		size_t len = strlen(vd->vdev_path);
4107 
4108 		for (int c = 0; c < pvd->vdev_children; c++) {
4109 			cvd = pvd->vdev_child[c];
4110 
4111 			if (cvd == vd || cvd->vdev_path == NULL)
4112 				continue;
4113 
4114 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4115 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4116 				spa_strfree(cvd->vdev_path);
4117 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4118 				break;
4119 			}
4120 		}
4121 	}
4122 
4123 	/*
4124 	 * If we are detaching the original disk from a spare, then it implies
4125 	 * that the spare should become a real disk, and be removed from the
4126 	 * active spare list for the pool.
4127 	 */
4128 	if (pvd->vdev_ops == &vdev_spare_ops &&
4129 	    vd->vdev_id == 0 &&
4130 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4131 		unspare = B_TRUE;
4132 
4133 	/*
4134 	 * Erase the disk labels so the disk can be used for other things.
4135 	 * This must be done after all other error cases are handled,
4136 	 * but before we disembowel vd (so we can still do I/O to it).
4137 	 * But if we can't do it, don't treat the error as fatal --
4138 	 * it may be that the unwritability of the disk is the reason
4139 	 * it's being detached!
4140 	 */
4141 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4142 
4143 	/*
4144 	 * Remove vd from its parent and compact the parent's children.
4145 	 */
4146 	vdev_remove_child(pvd, vd);
4147 	vdev_compact_children(pvd);
4148 
4149 	/*
4150 	 * Remember one of the remaining children so we can get tvd below.
4151 	 */
4152 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4153 
4154 	/*
4155 	 * If we need to remove the remaining child from the list of hot spares,
4156 	 * do it now, marking the vdev as no longer a spare in the process.
4157 	 * We must do this before vdev_remove_parent(), because that can
4158 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4159 	 * reason, we must remove the spare now, in the same txg as the detach;
4160 	 * otherwise someone could attach a new sibling, change the GUID, and
4161 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4162 	 */
4163 	if (unspare) {
4164 		ASSERT(cvd->vdev_isspare);
4165 		spa_spare_remove(cvd);
4166 		unspare_guid = cvd->vdev_guid;
4167 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4168 		cvd->vdev_unspare = B_TRUE;
4169 	}
4170 
4171 	/*
4172 	 * If the parent mirror/replacing vdev only has one child,
4173 	 * the parent is no longer needed.  Remove it from the tree.
4174 	 */
4175 	if (pvd->vdev_children == 1) {
4176 		if (pvd->vdev_ops == &vdev_spare_ops)
4177 			cvd->vdev_unspare = B_FALSE;
4178 		vdev_remove_parent(cvd);
4179 		cvd->vdev_resilvering = B_FALSE;
4180 	}
4181 
4182 
4183 	/*
4184 	 * We don't set tvd until now because the parent we just removed
4185 	 * may have been the previous top-level vdev.
4186 	 */
4187 	tvd = cvd->vdev_top;
4188 	ASSERT(tvd->vdev_parent == rvd);
4189 
4190 	/*
4191 	 * Reevaluate the parent vdev state.
4192 	 */
4193 	vdev_propagate_state(cvd);
4194 
4195 	/*
4196 	 * If the 'autoexpand' property is set on the pool then automatically
4197 	 * try to expand the size of the pool. For example if the device we
4198 	 * just detached was smaller than the others, it may be possible to
4199 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4200 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4201 	 */
4202 	if (spa->spa_autoexpand) {
4203 		vdev_reopen(tvd);
4204 		vdev_expand(tvd, txg);
4205 	}
4206 
4207 	vdev_config_dirty(tvd);
4208 
4209 	/*
4210 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4211 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4212 	 * But first make sure we're not on any *other* txg's DTL list, to
4213 	 * prevent vd from being accessed after it's freed.
4214 	 */
4215 	vdpath = spa_strdup(vd->vdev_path);
4216 	for (int t = 0; t < TXG_SIZE; t++)
4217 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4218 	vd->vdev_detached = B_TRUE;
4219 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4220 
4221 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4222 
4223 	/* hang on to the spa before we release the lock */
4224 	spa_open_ref(spa, FTAG);
4225 
4226 	error = spa_vdev_exit(spa, vd, txg, 0);
4227 
4228 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4229 	    "vdev=%s", vdpath);
4230 	spa_strfree(vdpath);
4231 
4232 	/*
4233 	 * If this was the removal of the original device in a hot spare vdev,
4234 	 * then we want to go through and remove the device from the hot spare
4235 	 * list of every other pool.
4236 	 */
4237 	if (unspare) {
4238 		spa_t *altspa = NULL;
4239 
4240 		mutex_enter(&spa_namespace_lock);
4241 		while ((altspa = spa_next(altspa)) != NULL) {
4242 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4243 			    altspa == spa)
4244 				continue;
4245 
4246 			spa_open_ref(altspa, FTAG);
4247 			mutex_exit(&spa_namespace_lock);
4248 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4249 			mutex_enter(&spa_namespace_lock);
4250 			spa_close(altspa, FTAG);
4251 		}
4252 		mutex_exit(&spa_namespace_lock);
4253 
4254 		/* search the rest of the vdevs for spares to remove */
4255 		spa_vdev_resilver_done(spa);
4256 	}
4257 
4258 	/* all done with the spa; OK to release */
4259 	mutex_enter(&spa_namespace_lock);
4260 	spa_close(spa, FTAG);
4261 	mutex_exit(&spa_namespace_lock);
4262 
4263 	return (error);
4264 }
4265 
4266 /*
4267  * Split a set of devices from their mirrors, and create a new pool from them.
4268  */
4269 int
4270 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4271     nvlist_t *props, boolean_t exp)
4272 {
4273 	int error = 0;
4274 	uint64_t txg, *glist;
4275 	spa_t *newspa;
4276 	uint_t c, children, lastlog;
4277 	nvlist_t **child, *nvl, *tmp;
4278 	dmu_tx_t *tx;
4279 	char *altroot = NULL;
4280 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4281 	boolean_t activate_slog;
4282 
4283 	ASSERT(spa_writeable(spa));
4284 
4285 	txg = spa_vdev_enter(spa);
4286 
4287 	/* clear the log and flush everything up to now */
4288 	activate_slog = spa_passivate_log(spa);
4289 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4290 	error = spa_offline_log(spa);
4291 	txg = spa_vdev_config_enter(spa);
4292 
4293 	if (activate_slog)
4294 		spa_activate_log(spa);
4295 
4296 	if (error != 0)
4297 		return (spa_vdev_exit(spa, NULL, txg, error));
4298 
4299 	/* check new spa name before going any further */
4300 	if (spa_lookup(newname) != NULL)
4301 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4302 
4303 	/*
4304 	 * scan through all the children to ensure they're all mirrors
4305 	 */
4306 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4307 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4308 	    &children) != 0)
4309 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4310 
4311 	/* first, check to ensure we've got the right child count */
4312 	rvd = spa->spa_root_vdev;
4313 	lastlog = 0;
4314 	for (c = 0; c < rvd->vdev_children; c++) {
4315 		vdev_t *vd = rvd->vdev_child[c];
4316 
4317 		/* don't count the holes & logs as children */
4318 		if (vd->vdev_islog || vd->vdev_ishole) {
4319 			if (lastlog == 0)
4320 				lastlog = c;
4321 			continue;
4322 		}
4323 
4324 		lastlog = 0;
4325 	}
4326 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4327 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4328 
4329 	/* next, ensure no spare or cache devices are part of the split */
4330 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4331 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4332 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4333 
4334 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4335 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4336 
4337 	/* then, loop over each vdev and validate it */
4338 	for (c = 0; c < children; c++) {
4339 		uint64_t is_hole = 0;
4340 
4341 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4342 		    &is_hole);
4343 
4344 		if (is_hole != 0) {
4345 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4346 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4347 				continue;
4348 			} else {
4349 				error = EINVAL;
4350 				break;
4351 			}
4352 		}
4353 
4354 		/* which disk is going to be split? */
4355 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4356 		    &glist[c]) != 0) {
4357 			error = EINVAL;
4358 			break;
4359 		}
4360 
4361 		/* look it up in the spa */
4362 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4363 		if (vml[c] == NULL) {
4364 			error = ENODEV;
4365 			break;
4366 		}
4367 
4368 		/* make sure there's nothing stopping the split */
4369 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4370 		    vml[c]->vdev_islog ||
4371 		    vml[c]->vdev_ishole ||
4372 		    vml[c]->vdev_isspare ||
4373 		    vml[c]->vdev_isl2cache ||
4374 		    !vdev_writeable(vml[c]) ||
4375 		    vml[c]->vdev_children != 0 ||
4376 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4377 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4378 			error = EINVAL;
4379 			break;
4380 		}
4381 
4382 		if (vdev_dtl_required(vml[c])) {
4383 			error = EBUSY;
4384 			break;
4385 		}
4386 
4387 		/* we need certain info from the top level */
4388 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4389 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4390 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4391 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4392 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4393 		    vml[c]->vdev_top->vdev_asize) == 0);
4394 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4395 		    vml[c]->vdev_top->vdev_ashift) == 0);
4396 	}
4397 
4398 	if (error != 0) {
4399 		kmem_free(vml, children * sizeof (vdev_t *));
4400 		kmem_free(glist, children * sizeof (uint64_t));
4401 		return (spa_vdev_exit(spa, NULL, txg, error));
4402 	}
4403 
4404 	/* stop writers from using the disks */
4405 	for (c = 0; c < children; c++) {
4406 		if (vml[c] != NULL)
4407 			vml[c]->vdev_offline = B_TRUE;
4408 	}
4409 	vdev_reopen(spa->spa_root_vdev);
4410 
4411 	/*
4412 	 * Temporarily record the splitting vdevs in the spa config.  This
4413 	 * will disappear once the config is regenerated.
4414 	 */
4415 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4416 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4417 	    glist, children) == 0);
4418 	kmem_free(glist, children * sizeof (uint64_t));
4419 
4420 	mutex_enter(&spa->spa_props_lock);
4421 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4422 	    nvl) == 0);
4423 	mutex_exit(&spa->spa_props_lock);
4424 	spa->spa_config_splitting = nvl;
4425 	vdev_config_dirty(spa->spa_root_vdev);
4426 
4427 	/* configure and create the new pool */
4428 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4429 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4430 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4431 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4432 	    spa_version(spa)) == 0);
4433 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4434 	    spa->spa_config_txg) == 0);
4435 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4436 	    spa_generate_guid(NULL)) == 0);
4437 	(void) nvlist_lookup_string(props,
4438 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4439 
4440 	/* add the new pool to the namespace */
4441 	newspa = spa_add(newname, config, altroot);
4442 	newspa->spa_config_txg = spa->spa_config_txg;
4443 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4444 
4445 	/* release the spa config lock, retaining the namespace lock */
4446 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4447 
4448 	if (zio_injection_enabled)
4449 		zio_handle_panic_injection(spa, FTAG, 1);
4450 
4451 	spa_activate(newspa, spa_mode_global);
4452 	spa_async_suspend(newspa);
4453 
4454 	/* create the new pool from the disks of the original pool */
4455 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4456 	if (error)
4457 		goto out;
4458 
4459 	/* if that worked, generate a real config for the new pool */
4460 	if (newspa->spa_root_vdev != NULL) {
4461 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4462 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4463 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4464 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4465 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4466 		    B_TRUE));
4467 	}
4468 
4469 	/* set the props */
4470 	if (props != NULL) {
4471 		spa_configfile_set(newspa, props, B_FALSE);
4472 		error = spa_prop_set(newspa, props);
4473 		if (error)
4474 			goto out;
4475 	}
4476 
4477 	/* flush everything */
4478 	txg = spa_vdev_config_enter(newspa);
4479 	vdev_config_dirty(newspa->spa_root_vdev);
4480 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4481 
4482 	if (zio_injection_enabled)
4483 		zio_handle_panic_injection(spa, FTAG, 2);
4484 
4485 	spa_async_resume(newspa);
4486 
4487 	/* finally, update the original pool's config */
4488 	txg = spa_vdev_config_enter(spa);
4489 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4490 	error = dmu_tx_assign(tx, TXG_WAIT);
4491 	if (error != 0)
4492 		dmu_tx_abort(tx);
4493 	for (c = 0; c < children; c++) {
4494 		if (vml[c] != NULL) {
4495 			vdev_split(vml[c]);
4496 			if (error == 0)
4497 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4498 				    spa, tx, "vdev=%s",
4499 				    vml[c]->vdev_path);
4500 			vdev_free(vml[c]);
4501 		}
4502 	}
4503 	vdev_config_dirty(spa->spa_root_vdev);
4504 	spa->spa_config_splitting = NULL;
4505 	nvlist_free(nvl);
4506 	if (error == 0)
4507 		dmu_tx_commit(tx);
4508 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4509 
4510 	if (zio_injection_enabled)
4511 		zio_handle_panic_injection(spa, FTAG, 3);
4512 
4513 	/* split is complete; log a history record */
4514 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4515 	    "split new pool %s from pool %s", newname, spa_name(spa));
4516 
4517 	kmem_free(vml, children * sizeof (vdev_t *));
4518 
4519 	/* if we're not going to mount the filesystems in userland, export */
4520 	if (exp)
4521 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4522 		    B_FALSE, B_FALSE);
4523 
4524 	return (error);
4525 
4526 out:
4527 	spa_unload(newspa);
4528 	spa_deactivate(newspa);
4529 	spa_remove(newspa);
4530 
4531 	txg = spa_vdev_config_enter(spa);
4532 
4533 	/* re-online all offlined disks */
4534 	for (c = 0; c < children; c++) {
4535 		if (vml[c] != NULL)
4536 			vml[c]->vdev_offline = B_FALSE;
4537 	}
4538 	vdev_reopen(spa->spa_root_vdev);
4539 
4540 	nvlist_free(spa->spa_config_splitting);
4541 	spa->spa_config_splitting = NULL;
4542 	(void) spa_vdev_exit(spa, NULL, txg, error);
4543 
4544 	kmem_free(vml, children * sizeof (vdev_t *));
4545 	return (error);
4546 }
4547 
4548 static nvlist_t *
4549 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4550 {
4551 	for (int i = 0; i < count; i++) {
4552 		uint64_t guid;
4553 
4554 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4555 		    &guid) == 0);
4556 
4557 		if (guid == target_guid)
4558 			return (nvpp[i]);
4559 	}
4560 
4561 	return (NULL);
4562 }
4563 
4564 static void
4565 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4566 	nvlist_t *dev_to_remove)
4567 {
4568 	nvlist_t **newdev = NULL;
4569 
4570 	if (count > 1)
4571 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4572 
4573 	for (int i = 0, j = 0; i < count; i++) {
4574 		if (dev[i] == dev_to_remove)
4575 			continue;
4576 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4577 	}
4578 
4579 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4580 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4581 
4582 	for (int i = 0; i < count - 1; i++)
4583 		nvlist_free(newdev[i]);
4584 
4585 	if (count > 1)
4586 		kmem_free(newdev, (count - 1) * sizeof (void *));
4587 }
4588 
4589 /*
4590  * Evacuate the device.
4591  */
4592 static int
4593 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4594 {
4595 	uint64_t txg;
4596 	int error = 0;
4597 
4598 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4599 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4600 	ASSERT(vd == vd->vdev_top);
4601 
4602 	/*
4603 	 * Evacuate the device.  We don't hold the config lock as writer
4604 	 * since we need to do I/O but we do keep the
4605 	 * spa_namespace_lock held.  Once this completes the device
4606 	 * should no longer have any blocks allocated on it.
4607 	 */
4608 	if (vd->vdev_islog) {
4609 		if (vd->vdev_stat.vs_alloc != 0)
4610 			error = spa_offline_log(spa);
4611 	} else {
4612 		error = ENOTSUP;
4613 	}
4614 
4615 	if (error)
4616 		return (error);
4617 
4618 	/*
4619 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4620 	 * associated with this vdev, and wait for these changes to sync.
4621 	 */
4622 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4623 	txg = spa_vdev_config_enter(spa);
4624 	vd->vdev_removing = B_TRUE;
4625 	vdev_dirty(vd, 0, NULL, txg);
4626 	vdev_config_dirty(vd);
4627 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4628 
4629 	return (0);
4630 }
4631 
4632 /*
4633  * Complete the removal by cleaning up the namespace.
4634  */
4635 static void
4636 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4637 {
4638 	vdev_t *rvd = spa->spa_root_vdev;
4639 	uint64_t id = vd->vdev_id;
4640 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4641 
4642 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4643 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4644 	ASSERT(vd == vd->vdev_top);
4645 
4646 	/*
4647 	 * Only remove any devices which are empty.
4648 	 */
4649 	if (vd->vdev_stat.vs_alloc != 0)
4650 		return;
4651 
4652 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4653 
4654 	if (list_link_active(&vd->vdev_state_dirty_node))
4655 		vdev_state_clean(vd);
4656 	if (list_link_active(&vd->vdev_config_dirty_node))
4657 		vdev_config_clean(vd);
4658 
4659 	vdev_free(vd);
4660 
4661 	if (last_vdev) {
4662 		vdev_compact_children(rvd);
4663 	} else {
4664 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4665 		vdev_add_child(rvd, vd);
4666 	}
4667 	vdev_config_dirty(rvd);
4668 
4669 	/*
4670 	 * Reassess the health of our root vdev.
4671 	 */
4672 	vdev_reopen(rvd);
4673 }
4674 
4675 /*
4676  * Remove a device from the pool -
4677  *
4678  * Removing a device from the vdev namespace requires several steps
4679  * and can take a significant amount of time.  As a result we use
4680  * the spa_vdev_config_[enter/exit] functions which allow us to
4681  * grab and release the spa_config_lock while still holding the namespace
4682  * lock.  During each step the configuration is synced out.
4683  */
4684 
4685 /*
4686  * Remove a device from the pool.  Currently, this supports removing only hot
4687  * spares, slogs, and level 2 ARC devices.
4688  */
4689 int
4690 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4691 {
4692 	vdev_t *vd;
4693 	metaslab_group_t *mg;
4694 	nvlist_t **spares, **l2cache, *nv;
4695 	uint64_t txg = 0;
4696 	uint_t nspares, nl2cache;
4697 	int error = 0;
4698 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4699 
4700 	ASSERT(spa_writeable(spa));
4701 
4702 	if (!locked)
4703 		txg = spa_vdev_enter(spa);
4704 
4705 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4706 
4707 	if (spa->spa_spares.sav_vdevs != NULL &&
4708 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4709 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4710 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4711 		/*
4712 		 * Only remove the hot spare if it's not currently in use
4713 		 * in this pool.
4714 		 */
4715 		if (vd == NULL || unspare) {
4716 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4717 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4718 			spa_load_spares(spa);
4719 			spa->spa_spares.sav_sync = B_TRUE;
4720 		} else {
4721 			error = EBUSY;
4722 		}
4723 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4724 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4725 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4726 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4727 		/*
4728 		 * Cache devices can always be removed.
4729 		 */
4730 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4731 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4732 		spa_load_l2cache(spa);
4733 		spa->spa_l2cache.sav_sync = B_TRUE;
4734 	} else if (vd != NULL && vd->vdev_islog) {
4735 		ASSERT(!locked);
4736 		ASSERT(vd == vd->vdev_top);
4737 
4738 		/*
4739 		 * XXX - Once we have bp-rewrite this should
4740 		 * become the common case.
4741 		 */
4742 
4743 		mg = vd->vdev_mg;
4744 
4745 		/*
4746 		 * Stop allocating from this vdev.
4747 		 */
4748 		metaslab_group_passivate(mg);
4749 
4750 		/*
4751 		 * Wait for the youngest allocations and frees to sync,
4752 		 * and then wait for the deferral of those frees to finish.
4753 		 */
4754 		spa_vdev_config_exit(spa, NULL,
4755 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4756 
4757 		/*
4758 		 * Attempt to evacuate the vdev.
4759 		 */
4760 		error = spa_vdev_remove_evacuate(spa, vd);
4761 
4762 		txg = spa_vdev_config_enter(spa);
4763 
4764 		/*
4765 		 * If we couldn't evacuate the vdev, unwind.
4766 		 */
4767 		if (error) {
4768 			metaslab_group_activate(mg);
4769 			return (spa_vdev_exit(spa, NULL, txg, error));
4770 		}
4771 
4772 		/*
4773 		 * Clean up the vdev namespace.
4774 		 */
4775 		spa_vdev_remove_from_namespace(spa, vd);
4776 
4777 	} else if (vd != NULL) {
4778 		/*
4779 		 * Normal vdevs cannot be removed (yet).
4780 		 */
4781 		error = ENOTSUP;
4782 	} else {
4783 		/*
4784 		 * There is no vdev of any kind with the specified guid.
4785 		 */
4786 		error = ENOENT;
4787 	}
4788 
4789 	if (!locked)
4790 		return (spa_vdev_exit(spa, NULL, txg, error));
4791 
4792 	return (error);
4793 }
4794 
4795 /*
4796  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4797  * current spared, so we can detach it.
4798  */
4799 static vdev_t *
4800 spa_vdev_resilver_done_hunt(vdev_t *vd)
4801 {
4802 	vdev_t *newvd, *oldvd;
4803 
4804 	for (int c = 0; c < vd->vdev_children; c++) {
4805 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4806 		if (oldvd != NULL)
4807 			return (oldvd);
4808 	}
4809 
4810 	/*
4811 	 * Check for a completed replacement.  We always consider the first
4812 	 * vdev in the list to be the oldest vdev, and the last one to be
4813 	 * the newest (see spa_vdev_attach() for how that works).  In
4814 	 * the case where the newest vdev is faulted, we will not automatically
4815 	 * remove it after a resilver completes.  This is OK as it will require
4816 	 * user intervention to determine which disk the admin wishes to keep.
4817 	 */
4818 	if (vd->vdev_ops == &vdev_replacing_ops) {
4819 		ASSERT(vd->vdev_children > 1);
4820 
4821 		newvd = vd->vdev_child[vd->vdev_children - 1];
4822 		oldvd = vd->vdev_child[0];
4823 
4824 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4825 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4826 		    !vdev_dtl_required(oldvd))
4827 			return (oldvd);
4828 	}
4829 
4830 	/*
4831 	 * Check for a completed resilver with the 'unspare' flag set.
4832 	 */
4833 	if (vd->vdev_ops == &vdev_spare_ops) {
4834 		vdev_t *first = vd->vdev_child[0];
4835 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4836 
4837 		if (last->vdev_unspare) {
4838 			oldvd = first;
4839 			newvd = last;
4840 		} else if (first->vdev_unspare) {
4841 			oldvd = last;
4842 			newvd = first;
4843 		} else {
4844 			oldvd = NULL;
4845 		}
4846 
4847 		if (oldvd != NULL &&
4848 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4849 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4850 		    !vdev_dtl_required(oldvd))
4851 			return (oldvd);
4852 
4853 		/*
4854 		 * If there are more than two spares attached to a disk,
4855 		 * and those spares are not required, then we want to
4856 		 * attempt to free them up now so that they can be used
4857 		 * by other pools.  Once we're back down to a single
4858 		 * disk+spare, we stop removing them.
4859 		 */
4860 		if (vd->vdev_children > 2) {
4861 			newvd = vd->vdev_child[1];
4862 
4863 			if (newvd->vdev_isspare && last->vdev_isspare &&
4864 			    vdev_dtl_empty(last, DTL_MISSING) &&
4865 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
4866 			    !vdev_dtl_required(newvd))
4867 				return (newvd);
4868 		}
4869 	}
4870 
4871 	return (NULL);
4872 }
4873 
4874 static void
4875 spa_vdev_resilver_done(spa_t *spa)
4876 {
4877 	vdev_t *vd, *pvd, *ppvd;
4878 	uint64_t guid, sguid, pguid, ppguid;
4879 
4880 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4881 
4882 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4883 		pvd = vd->vdev_parent;
4884 		ppvd = pvd->vdev_parent;
4885 		guid = vd->vdev_guid;
4886 		pguid = pvd->vdev_guid;
4887 		ppguid = ppvd->vdev_guid;
4888 		sguid = 0;
4889 		/*
4890 		 * If we have just finished replacing a hot spared device, then
4891 		 * we need to detach the parent's first child (the original hot
4892 		 * spare) as well.
4893 		 */
4894 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4895 		    ppvd->vdev_children == 2) {
4896 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4897 			sguid = ppvd->vdev_child[1]->vdev_guid;
4898 		}
4899 		spa_config_exit(spa, SCL_ALL, FTAG);
4900 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4901 			return;
4902 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4903 			return;
4904 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4905 	}
4906 
4907 	spa_config_exit(spa, SCL_ALL, FTAG);
4908 }
4909 
4910 /*
4911  * Update the stored path or FRU for this vdev.
4912  */
4913 int
4914 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4915     boolean_t ispath)
4916 {
4917 	vdev_t *vd;
4918 	boolean_t sync = B_FALSE;
4919 
4920 	ASSERT(spa_writeable(spa));
4921 
4922 	spa_vdev_state_enter(spa, SCL_ALL);
4923 
4924 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4925 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4926 
4927 	if (!vd->vdev_ops->vdev_op_leaf)
4928 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4929 
4930 	if (ispath) {
4931 		if (strcmp(value, vd->vdev_path) != 0) {
4932 			spa_strfree(vd->vdev_path);
4933 			vd->vdev_path = spa_strdup(value);
4934 			sync = B_TRUE;
4935 		}
4936 	} else {
4937 		if (vd->vdev_fru == NULL) {
4938 			vd->vdev_fru = spa_strdup(value);
4939 			sync = B_TRUE;
4940 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4941 			spa_strfree(vd->vdev_fru);
4942 			vd->vdev_fru = spa_strdup(value);
4943 			sync = B_TRUE;
4944 		}
4945 	}
4946 
4947 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4948 }
4949 
4950 int
4951 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4952 {
4953 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4954 }
4955 
4956 int
4957 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4958 {
4959 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4960 }
4961 
4962 /*
4963  * ==========================================================================
4964  * SPA Scanning
4965  * ==========================================================================
4966  */
4967 
4968 int
4969 spa_scan_stop(spa_t *spa)
4970 {
4971 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4972 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
4973 		return (EBUSY);
4974 	return (dsl_scan_cancel(spa->spa_dsl_pool));
4975 }
4976 
4977 int
4978 spa_scan(spa_t *spa, pool_scan_func_t func)
4979 {
4980 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4981 
4982 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
4983 		return (ENOTSUP);
4984 
4985 	/*
4986 	 * If a resilver was requested, but there is no DTL on a
4987 	 * writeable leaf device, we have nothing to do.
4988 	 */
4989 	if (func == POOL_SCAN_RESILVER &&
4990 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4991 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4992 		return (0);
4993 	}
4994 
4995 	return (dsl_scan(spa->spa_dsl_pool, func));
4996 }
4997 
4998 /*
4999  * ==========================================================================
5000  * SPA async task processing
5001  * ==========================================================================
5002  */
5003 
5004 static void
5005 spa_async_remove(spa_t *spa, vdev_t *vd)
5006 {
5007 	if (vd->vdev_remove_wanted) {
5008 		vd->vdev_remove_wanted = B_FALSE;
5009 		vd->vdev_delayed_close = B_FALSE;
5010 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5011 
5012 		/*
5013 		 * We want to clear the stats, but we don't want to do a full
5014 		 * vdev_clear() as that will cause us to throw away
5015 		 * degraded/faulted state as well as attempt to reopen the
5016 		 * device, all of which is a waste.
5017 		 */
5018 		vd->vdev_stat.vs_read_errors = 0;
5019 		vd->vdev_stat.vs_write_errors = 0;
5020 		vd->vdev_stat.vs_checksum_errors = 0;
5021 
5022 		vdev_state_dirty(vd->vdev_top);
5023 	}
5024 
5025 	for (int c = 0; c < vd->vdev_children; c++)
5026 		spa_async_remove(spa, vd->vdev_child[c]);
5027 }
5028 
5029 static void
5030 spa_async_probe(spa_t *spa, vdev_t *vd)
5031 {
5032 	if (vd->vdev_probe_wanted) {
5033 		vd->vdev_probe_wanted = B_FALSE;
5034 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5035 	}
5036 
5037 	for (int c = 0; c < vd->vdev_children; c++)
5038 		spa_async_probe(spa, vd->vdev_child[c]);
5039 }
5040 
5041 static void
5042 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5043 {
5044 	sysevent_id_t eid;
5045 	nvlist_t *attr;
5046 	char *physpath;
5047 
5048 	if (!spa->spa_autoexpand)
5049 		return;
5050 
5051 	for (int c = 0; c < vd->vdev_children; c++) {
5052 		vdev_t *cvd = vd->vdev_child[c];
5053 		spa_async_autoexpand(spa, cvd);
5054 	}
5055 
5056 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5057 		return;
5058 
5059 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5060 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5061 
5062 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5063 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5064 
5065 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5066 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5067 
5068 	nvlist_free(attr);
5069 	kmem_free(physpath, MAXPATHLEN);
5070 }
5071 
5072 static void
5073 spa_async_thread(spa_t *spa)
5074 {
5075 	int tasks;
5076 
5077 	ASSERT(spa->spa_sync_on);
5078 
5079 	mutex_enter(&spa->spa_async_lock);
5080 	tasks = spa->spa_async_tasks;
5081 	spa->spa_async_tasks = 0;
5082 	mutex_exit(&spa->spa_async_lock);
5083 
5084 	/*
5085 	 * See if the config needs to be updated.
5086 	 */
5087 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5088 		uint64_t old_space, new_space;
5089 
5090 		mutex_enter(&spa_namespace_lock);
5091 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5092 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5093 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5094 		mutex_exit(&spa_namespace_lock);
5095 
5096 		/*
5097 		 * If the pool grew as a result of the config update,
5098 		 * then log an internal history event.
5099 		 */
5100 		if (new_space != old_space) {
5101 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5102 			    spa, NULL,
5103 			    "pool '%s' size: %llu(+%llu)",
5104 			    spa_name(spa), new_space, new_space - old_space);
5105 		}
5106 	}
5107 
5108 	/*
5109 	 * See if any devices need to be marked REMOVED.
5110 	 */
5111 	if (tasks & SPA_ASYNC_REMOVE) {
5112 		spa_vdev_state_enter(spa, SCL_NONE);
5113 		spa_async_remove(spa, spa->spa_root_vdev);
5114 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5115 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5116 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5117 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5118 		(void) spa_vdev_state_exit(spa, NULL, 0);
5119 	}
5120 
5121 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5122 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5123 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5124 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5125 	}
5126 
5127 	/*
5128 	 * See if any devices need to be probed.
5129 	 */
5130 	if (tasks & SPA_ASYNC_PROBE) {
5131 		spa_vdev_state_enter(spa, SCL_NONE);
5132 		spa_async_probe(spa, spa->spa_root_vdev);
5133 		(void) spa_vdev_state_exit(spa, NULL, 0);
5134 	}
5135 
5136 	/*
5137 	 * If any devices are done replacing, detach them.
5138 	 */
5139 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5140 		spa_vdev_resilver_done(spa);
5141 
5142 	/*
5143 	 * Kick off a resilver.
5144 	 */
5145 	if (tasks & SPA_ASYNC_RESILVER)
5146 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5147 
5148 	/*
5149 	 * Let the world know that we're done.
5150 	 */
5151 	mutex_enter(&spa->spa_async_lock);
5152 	spa->spa_async_thread = NULL;
5153 	cv_broadcast(&spa->spa_async_cv);
5154 	mutex_exit(&spa->spa_async_lock);
5155 	thread_exit();
5156 }
5157 
5158 void
5159 spa_async_suspend(spa_t *spa)
5160 {
5161 	mutex_enter(&spa->spa_async_lock);
5162 	spa->spa_async_suspended++;
5163 	while (spa->spa_async_thread != NULL)
5164 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5165 	mutex_exit(&spa->spa_async_lock);
5166 }
5167 
5168 void
5169 spa_async_resume(spa_t *spa)
5170 {
5171 	mutex_enter(&spa->spa_async_lock);
5172 	ASSERT(spa->spa_async_suspended != 0);
5173 	spa->spa_async_suspended--;
5174 	mutex_exit(&spa->spa_async_lock);
5175 }
5176 
5177 static void
5178 spa_async_dispatch(spa_t *spa)
5179 {
5180 	mutex_enter(&spa->spa_async_lock);
5181 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5182 	    spa->spa_async_thread == NULL &&
5183 	    rootdir != NULL && !vn_is_readonly(rootdir))
5184 		spa->spa_async_thread = thread_create(NULL, 0,
5185 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5186 	mutex_exit(&spa->spa_async_lock);
5187 }
5188 
5189 void
5190 spa_async_request(spa_t *spa, int task)
5191 {
5192 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5193 	mutex_enter(&spa->spa_async_lock);
5194 	spa->spa_async_tasks |= task;
5195 	mutex_exit(&spa->spa_async_lock);
5196 }
5197 
5198 /*
5199  * ==========================================================================
5200  * SPA syncing routines
5201  * ==========================================================================
5202  */
5203 
5204 static int
5205 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5206 {
5207 	bpobj_t *bpo = arg;
5208 	bpobj_enqueue(bpo, bp, tx);
5209 	return (0);
5210 }
5211 
5212 static int
5213 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5214 {
5215 	zio_t *zio = arg;
5216 
5217 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5218 	    zio->io_flags));
5219 	return (0);
5220 }
5221 
5222 static void
5223 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5224 {
5225 	char *packed = NULL;
5226 	size_t bufsize;
5227 	size_t nvsize = 0;
5228 	dmu_buf_t *db;
5229 
5230 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5231 
5232 	/*
5233 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5234 	 * information.  This avoids the dbuf_will_dirty() path and
5235 	 * saves us a pre-read to get data we don't actually care about.
5236 	 */
5237 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5238 	packed = kmem_alloc(bufsize, KM_SLEEP);
5239 
5240 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5241 	    KM_SLEEP) == 0);
5242 	bzero(packed + nvsize, bufsize - nvsize);
5243 
5244 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5245 
5246 	kmem_free(packed, bufsize);
5247 
5248 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5249 	dmu_buf_will_dirty(db, tx);
5250 	*(uint64_t *)db->db_data = nvsize;
5251 	dmu_buf_rele(db, FTAG);
5252 }
5253 
5254 static void
5255 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5256     const char *config, const char *entry)
5257 {
5258 	nvlist_t *nvroot;
5259 	nvlist_t **list;
5260 	int i;
5261 
5262 	if (!sav->sav_sync)
5263 		return;
5264 
5265 	/*
5266 	 * Update the MOS nvlist describing the list of available devices.
5267 	 * spa_validate_aux() will have already made sure this nvlist is
5268 	 * valid and the vdevs are labeled appropriately.
5269 	 */
5270 	if (sav->sav_object == 0) {
5271 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5272 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5273 		    sizeof (uint64_t), tx);
5274 		VERIFY(zap_update(spa->spa_meta_objset,
5275 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5276 		    &sav->sav_object, tx) == 0);
5277 	}
5278 
5279 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5280 	if (sav->sav_count == 0) {
5281 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5282 	} else {
5283 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5284 		for (i = 0; i < sav->sav_count; i++)
5285 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5286 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5287 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5288 		    sav->sav_count) == 0);
5289 		for (i = 0; i < sav->sav_count; i++)
5290 			nvlist_free(list[i]);
5291 		kmem_free(list, sav->sav_count * sizeof (void *));
5292 	}
5293 
5294 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5295 	nvlist_free(nvroot);
5296 
5297 	sav->sav_sync = B_FALSE;
5298 }
5299 
5300 static void
5301 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5302 {
5303 	nvlist_t *config;
5304 
5305 	if (list_is_empty(&spa->spa_config_dirty_list))
5306 		return;
5307 
5308 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5309 
5310 	config = spa_config_generate(spa, spa->spa_root_vdev,
5311 	    dmu_tx_get_txg(tx), B_FALSE);
5312 
5313 	spa_config_exit(spa, SCL_STATE, FTAG);
5314 
5315 	if (spa->spa_config_syncing)
5316 		nvlist_free(spa->spa_config_syncing);
5317 	spa->spa_config_syncing = config;
5318 
5319 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5320 }
5321 
5322 /*
5323  * Set zpool properties.
5324  */
5325 static void
5326 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5327 {
5328 	spa_t *spa = arg1;
5329 	objset_t *mos = spa->spa_meta_objset;
5330 	nvlist_t *nvp = arg2;
5331 	nvpair_t *elem;
5332 	uint64_t intval;
5333 	char *strval;
5334 	zpool_prop_t prop;
5335 	const char *propname;
5336 	zprop_type_t proptype;
5337 
5338 	mutex_enter(&spa->spa_props_lock);
5339 
5340 	elem = NULL;
5341 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5342 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5343 		case ZPOOL_PROP_VERSION:
5344 			/*
5345 			 * Only set version for non-zpool-creation cases
5346 			 * (set/import). spa_create() needs special care
5347 			 * for version setting.
5348 			 */
5349 			if (tx->tx_txg != TXG_INITIAL) {
5350 				VERIFY(nvpair_value_uint64(elem,
5351 				    &intval) == 0);
5352 				ASSERT(intval <= SPA_VERSION);
5353 				ASSERT(intval >= spa_version(spa));
5354 				spa->spa_uberblock.ub_version = intval;
5355 				vdev_config_dirty(spa->spa_root_vdev);
5356 			}
5357 			break;
5358 
5359 		case ZPOOL_PROP_ALTROOT:
5360 			/*
5361 			 * 'altroot' is a non-persistent property. It should
5362 			 * have been set temporarily at creation or import time.
5363 			 */
5364 			ASSERT(spa->spa_root != NULL);
5365 			break;
5366 
5367 		case ZPOOL_PROP_READONLY:
5368 		case ZPOOL_PROP_CACHEFILE:
5369 			/*
5370 			 * 'readonly' and 'cachefile' are also non-persisitent
5371 			 * properties.
5372 			 */
5373 			break;
5374 		default:
5375 			/*
5376 			 * Set pool property values in the poolprops mos object.
5377 			 */
5378 			if (spa->spa_pool_props_object == 0) {
5379 				VERIFY((spa->spa_pool_props_object =
5380 				    zap_create(mos, DMU_OT_POOL_PROPS,
5381 				    DMU_OT_NONE, 0, tx)) > 0);
5382 
5383 				VERIFY(zap_update(mos,
5384 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5385 				    8, 1, &spa->spa_pool_props_object, tx)
5386 				    == 0);
5387 			}
5388 
5389 			/* normalize the property name */
5390 			propname = zpool_prop_to_name(prop);
5391 			proptype = zpool_prop_get_type(prop);
5392 
5393 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5394 				ASSERT(proptype == PROP_TYPE_STRING);
5395 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5396 				VERIFY(zap_update(mos,
5397 				    spa->spa_pool_props_object, propname,
5398 				    1, strlen(strval) + 1, strval, tx) == 0);
5399 
5400 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5401 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5402 
5403 				if (proptype == PROP_TYPE_INDEX) {
5404 					const char *unused;
5405 					VERIFY(zpool_prop_index_to_string(
5406 					    prop, intval, &unused) == 0);
5407 				}
5408 				VERIFY(zap_update(mos,
5409 				    spa->spa_pool_props_object, propname,
5410 				    8, 1, &intval, tx) == 0);
5411 			} else {
5412 				ASSERT(0); /* not allowed */
5413 			}
5414 
5415 			switch (prop) {
5416 			case ZPOOL_PROP_DELEGATION:
5417 				spa->spa_delegation = intval;
5418 				break;
5419 			case ZPOOL_PROP_BOOTFS:
5420 				spa->spa_bootfs = intval;
5421 				break;
5422 			case ZPOOL_PROP_FAILUREMODE:
5423 				spa->spa_failmode = intval;
5424 				break;
5425 			case ZPOOL_PROP_AUTOEXPAND:
5426 				spa->spa_autoexpand = intval;
5427 				if (tx->tx_txg != TXG_INITIAL)
5428 					spa_async_request(spa,
5429 					    SPA_ASYNC_AUTOEXPAND);
5430 				break;
5431 			case ZPOOL_PROP_DEDUPDITTO:
5432 				spa->spa_dedup_ditto = intval;
5433 				break;
5434 			default:
5435 				break;
5436 			}
5437 		}
5438 
5439 		/* log internal history if this is not a zpool create */
5440 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5441 		    tx->tx_txg != TXG_INITIAL) {
5442 			spa_history_log_internal(LOG_POOL_PROPSET,
5443 			    spa, tx, "%s %lld %s",
5444 			    nvpair_name(elem), intval, spa_name(spa));
5445 		}
5446 	}
5447 
5448 	mutex_exit(&spa->spa_props_lock);
5449 }
5450 
5451 /*
5452  * Perform one-time upgrade on-disk changes.  spa_version() does not
5453  * reflect the new version this txg, so there must be no changes this
5454  * txg to anything that the upgrade code depends on after it executes.
5455  * Therefore this must be called after dsl_pool_sync() does the sync
5456  * tasks.
5457  */
5458 static void
5459 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5460 {
5461 	dsl_pool_t *dp = spa->spa_dsl_pool;
5462 
5463 	ASSERT(spa->spa_sync_pass == 1);
5464 
5465 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5466 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5467 		dsl_pool_create_origin(dp, tx);
5468 
5469 		/* Keeping the origin open increases spa_minref */
5470 		spa->spa_minref += 3;
5471 	}
5472 
5473 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5474 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5475 		dsl_pool_upgrade_clones(dp, tx);
5476 	}
5477 
5478 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5479 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5480 		dsl_pool_upgrade_dir_clones(dp, tx);
5481 
5482 		/* Keeping the freedir open increases spa_minref */
5483 		spa->spa_minref += 3;
5484 	}
5485 }
5486 
5487 /*
5488  * Sync the specified transaction group.  New blocks may be dirtied as
5489  * part of the process, so we iterate until it converges.
5490  */
5491 void
5492 spa_sync(spa_t *spa, uint64_t txg)
5493 {
5494 	dsl_pool_t *dp = spa->spa_dsl_pool;
5495 	objset_t *mos = spa->spa_meta_objset;
5496 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5497 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5498 	vdev_t *rvd = spa->spa_root_vdev;
5499 	vdev_t *vd;
5500 	dmu_tx_t *tx;
5501 	int error;
5502 
5503 	VERIFY(spa_writeable(spa));
5504 
5505 	/*
5506 	 * Lock out configuration changes.
5507 	 */
5508 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5509 
5510 	spa->spa_syncing_txg = txg;
5511 	spa->spa_sync_pass = 0;
5512 
5513 	/*
5514 	 * If there are any pending vdev state changes, convert them
5515 	 * into config changes that go out with this transaction group.
5516 	 */
5517 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5518 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5519 		/*
5520 		 * We need the write lock here because, for aux vdevs,
5521 		 * calling vdev_config_dirty() modifies sav_config.
5522 		 * This is ugly and will become unnecessary when we
5523 		 * eliminate the aux vdev wart by integrating all vdevs
5524 		 * into the root vdev tree.
5525 		 */
5526 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5527 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5528 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5529 			vdev_state_clean(vd);
5530 			vdev_config_dirty(vd);
5531 		}
5532 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5533 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5534 	}
5535 	spa_config_exit(spa, SCL_STATE, FTAG);
5536 
5537 	tx = dmu_tx_create_assigned(dp, txg);
5538 
5539 	/*
5540 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5541 	 * set spa_deflate if we have no raid-z vdevs.
5542 	 */
5543 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5544 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5545 		int i;
5546 
5547 		for (i = 0; i < rvd->vdev_children; i++) {
5548 			vd = rvd->vdev_child[i];
5549 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5550 				break;
5551 		}
5552 		if (i == rvd->vdev_children) {
5553 			spa->spa_deflate = TRUE;
5554 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5555 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5556 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5557 		}
5558 	}
5559 
5560 	/*
5561 	 * If anything has changed in this txg, or if someone is waiting
5562 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5563 	 * deferred frees from the previous txg.  If not, leave them
5564 	 * alone so that we don't generate work on an otherwise idle
5565 	 * system.
5566 	 */
5567 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5568 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5569 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5570 	    ((dsl_scan_active(dp->dp_scan) ||
5571 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5572 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5573 		VERIFY3U(bpobj_iterate(defer_bpo,
5574 		    spa_free_sync_cb, zio, tx), ==, 0);
5575 		VERIFY3U(zio_wait(zio), ==, 0);
5576 	}
5577 
5578 	/*
5579 	 * Iterate to convergence.
5580 	 */
5581 	do {
5582 		int pass = ++spa->spa_sync_pass;
5583 
5584 		spa_sync_config_object(spa, tx);
5585 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5586 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5587 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5588 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5589 		spa_errlog_sync(spa, txg);
5590 		dsl_pool_sync(dp, txg);
5591 
5592 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5593 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5594 			bplist_iterate(free_bpl, spa_free_sync_cb,
5595 			    zio, tx);
5596 			VERIFY(zio_wait(zio) == 0);
5597 		} else {
5598 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5599 			    defer_bpo, tx);
5600 		}
5601 
5602 		ddt_sync(spa, txg);
5603 		dsl_scan_sync(dp, tx);
5604 
5605 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5606 			vdev_sync(vd, txg);
5607 
5608 		if (pass == 1)
5609 			spa_sync_upgrades(spa, tx);
5610 
5611 	} while (dmu_objset_is_dirty(mos, txg));
5612 
5613 	/*
5614 	 * Rewrite the vdev configuration (which includes the uberblock)
5615 	 * to commit the transaction group.
5616 	 *
5617 	 * If there are no dirty vdevs, we sync the uberblock to a few
5618 	 * random top-level vdevs that are known to be visible in the
5619 	 * config cache (see spa_vdev_add() for a complete description).
5620 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5621 	 */
5622 	for (;;) {
5623 		/*
5624 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5625 		 * while we're attempting to write the vdev labels.
5626 		 */
5627 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5628 
5629 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5630 			vdev_t *svd[SPA_DVAS_PER_BP];
5631 			int svdcount = 0;
5632 			int children = rvd->vdev_children;
5633 			int c0 = spa_get_random(children);
5634 
5635 			for (int c = 0; c < children; c++) {
5636 				vd = rvd->vdev_child[(c0 + c) % children];
5637 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5638 					continue;
5639 				svd[svdcount++] = vd;
5640 				if (svdcount == SPA_DVAS_PER_BP)
5641 					break;
5642 			}
5643 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5644 			if (error != 0)
5645 				error = vdev_config_sync(svd, svdcount, txg,
5646 				    B_TRUE);
5647 		} else {
5648 			error = vdev_config_sync(rvd->vdev_child,
5649 			    rvd->vdev_children, txg, B_FALSE);
5650 			if (error != 0)
5651 				error = vdev_config_sync(rvd->vdev_child,
5652 				    rvd->vdev_children, txg, B_TRUE);
5653 		}
5654 
5655 		spa_config_exit(spa, SCL_STATE, FTAG);
5656 
5657 		if (error == 0)
5658 			break;
5659 		zio_suspend(spa, NULL);
5660 		zio_resume_wait(spa);
5661 	}
5662 	dmu_tx_commit(tx);
5663 
5664 	/*
5665 	 * Clear the dirty config list.
5666 	 */
5667 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5668 		vdev_config_clean(vd);
5669 
5670 	/*
5671 	 * Now that the new config has synced transactionally,
5672 	 * let it become visible to the config cache.
5673 	 */
5674 	if (spa->spa_config_syncing != NULL) {
5675 		spa_config_set(spa, spa->spa_config_syncing);
5676 		spa->spa_config_txg = txg;
5677 		spa->spa_config_syncing = NULL;
5678 	}
5679 
5680 	spa->spa_ubsync = spa->spa_uberblock;
5681 
5682 	dsl_pool_sync_done(dp, txg);
5683 
5684 	/*
5685 	 * Update usable space statistics.
5686 	 */
5687 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5688 		vdev_sync_done(vd, txg);
5689 
5690 	spa_update_dspace(spa);
5691 
5692 	/*
5693 	 * It had better be the case that we didn't dirty anything
5694 	 * since vdev_config_sync().
5695 	 */
5696 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5697 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5698 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5699 
5700 	spa->spa_sync_pass = 0;
5701 
5702 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5703 
5704 	spa_handle_ignored_writes(spa);
5705 
5706 	/*
5707 	 * If any async tasks have been requested, kick them off.
5708 	 */
5709 	spa_async_dispatch(spa);
5710 }
5711 
5712 /*
5713  * Sync all pools.  We don't want to hold the namespace lock across these
5714  * operations, so we take a reference on the spa_t and drop the lock during the
5715  * sync.
5716  */
5717 void
5718 spa_sync_allpools(void)
5719 {
5720 	spa_t *spa = NULL;
5721 	mutex_enter(&spa_namespace_lock);
5722 	while ((spa = spa_next(spa)) != NULL) {
5723 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
5724 		    !spa_writeable(spa) || spa_suspended(spa))
5725 			continue;
5726 		spa_open_ref(spa, FTAG);
5727 		mutex_exit(&spa_namespace_lock);
5728 		txg_wait_synced(spa_get_dsl(spa), 0);
5729 		mutex_enter(&spa_namespace_lock);
5730 		spa_close(spa, FTAG);
5731 	}
5732 	mutex_exit(&spa_namespace_lock);
5733 }
5734 
5735 /*
5736  * ==========================================================================
5737  * Miscellaneous routines
5738  * ==========================================================================
5739  */
5740 
5741 /*
5742  * Remove all pools in the system.
5743  */
5744 void
5745 spa_evict_all(void)
5746 {
5747 	spa_t *spa;
5748 
5749 	/*
5750 	 * Remove all cached state.  All pools should be closed now,
5751 	 * so every spa in the AVL tree should be unreferenced.
5752 	 */
5753 	mutex_enter(&spa_namespace_lock);
5754 	while ((spa = spa_next(NULL)) != NULL) {
5755 		/*
5756 		 * Stop async tasks.  The async thread may need to detach
5757 		 * a device that's been replaced, which requires grabbing
5758 		 * spa_namespace_lock, so we must drop it here.
5759 		 */
5760 		spa_open_ref(spa, FTAG);
5761 		mutex_exit(&spa_namespace_lock);
5762 		spa_async_suspend(spa);
5763 		mutex_enter(&spa_namespace_lock);
5764 		spa_close(spa, FTAG);
5765 
5766 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5767 			spa_unload(spa);
5768 			spa_deactivate(spa);
5769 		}
5770 		spa_remove(spa);
5771 	}
5772 	mutex_exit(&spa_namespace_lock);
5773 }
5774 
5775 vdev_t *
5776 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5777 {
5778 	vdev_t *vd;
5779 	int i;
5780 
5781 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5782 		return (vd);
5783 
5784 	if (aux) {
5785 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5786 			vd = spa->spa_l2cache.sav_vdevs[i];
5787 			if (vd->vdev_guid == guid)
5788 				return (vd);
5789 		}
5790 
5791 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5792 			vd = spa->spa_spares.sav_vdevs[i];
5793 			if (vd->vdev_guid == guid)
5794 				return (vd);
5795 		}
5796 	}
5797 
5798 	return (NULL);
5799 }
5800 
5801 void
5802 spa_upgrade(spa_t *spa, uint64_t version)
5803 {
5804 	ASSERT(spa_writeable(spa));
5805 
5806 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5807 
5808 	/*
5809 	 * This should only be called for a non-faulted pool, and since a
5810 	 * future version would result in an unopenable pool, this shouldn't be
5811 	 * possible.
5812 	 */
5813 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5814 	ASSERT(version >= spa->spa_uberblock.ub_version);
5815 
5816 	spa->spa_uberblock.ub_version = version;
5817 	vdev_config_dirty(spa->spa_root_vdev);
5818 
5819 	spa_config_exit(spa, SCL_ALL, FTAG);
5820 
5821 	txg_wait_synced(spa_get_dsl(spa), 0);
5822 }
5823 
5824 boolean_t
5825 spa_has_spare(spa_t *spa, uint64_t guid)
5826 {
5827 	int i;
5828 	uint64_t spareguid;
5829 	spa_aux_vdev_t *sav = &spa->spa_spares;
5830 
5831 	for (i = 0; i < sav->sav_count; i++)
5832 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5833 			return (B_TRUE);
5834 
5835 	for (i = 0; i < sav->sav_npending; i++) {
5836 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5837 		    &spareguid) == 0 && spareguid == guid)
5838 			return (B_TRUE);
5839 	}
5840 
5841 	return (B_FALSE);
5842 }
5843 
5844 /*
5845  * Check if a pool has an active shared spare device.
5846  * Note: reference count of an active spare is 2, as a spare and as a replace
5847  */
5848 static boolean_t
5849 spa_has_active_shared_spare(spa_t *spa)
5850 {
5851 	int i, refcnt;
5852 	uint64_t pool;
5853 	spa_aux_vdev_t *sav = &spa->spa_spares;
5854 
5855 	for (i = 0; i < sav->sav_count; i++) {
5856 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5857 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5858 		    refcnt > 2)
5859 			return (B_TRUE);
5860 	}
5861 
5862 	return (B_FALSE);
5863 }
5864 
5865 /*
5866  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5867  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5868  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5869  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5870  * or zdb as real changes.
5871  */
5872 void
5873 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5874 {
5875 #ifdef _KERNEL
5876 	sysevent_t		*ev;
5877 	sysevent_attr_list_t	*attr = NULL;
5878 	sysevent_value_t	value;
5879 	sysevent_id_t		eid;
5880 
5881 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5882 	    SE_SLEEP);
5883 
5884 	value.value_type = SE_DATA_TYPE_STRING;
5885 	value.value.sv_string = spa_name(spa);
5886 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5887 		goto done;
5888 
5889 	value.value_type = SE_DATA_TYPE_UINT64;
5890 	value.value.sv_uint64 = spa_guid(spa);
5891 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5892 		goto done;
5893 
5894 	if (vd) {
5895 		value.value_type = SE_DATA_TYPE_UINT64;
5896 		value.value.sv_uint64 = vd->vdev_guid;
5897 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5898 		    SE_SLEEP) != 0)
5899 			goto done;
5900 
5901 		if (vd->vdev_path) {
5902 			value.value_type = SE_DATA_TYPE_STRING;
5903 			value.value.sv_string = vd->vdev_path;
5904 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5905 			    &value, SE_SLEEP) != 0)
5906 				goto done;
5907 		}
5908 	}
5909 
5910 	if (sysevent_attach_attributes(ev, attr) != 0)
5911 		goto done;
5912 	attr = NULL;
5913 
5914 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5915 
5916 done:
5917 	if (attr)
5918 		sysevent_free_attr(attr);
5919 	sysevent_free(ev);
5920 #endif
5921 }
5922