xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision e7437265dc2a4920c197ed4337665539d358b22c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 int zio_taskq_threads = 8;
64 
65 /*
66  * ==========================================================================
67  * SPA state manipulation (open/create/destroy/import/export)
68  * ==========================================================================
69  */
70 
71 static int
72 spa_error_entry_compare(const void *a, const void *b)
73 {
74 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
75 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
76 	int ret;
77 
78 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
79 	    sizeof (zbookmark_t));
80 
81 	if (ret < 0)
82 		return (-1);
83 	else if (ret > 0)
84 		return (1);
85 	else
86 		return (0);
87 }
88 
89 /*
90  * Utility function which retrieves copies of the current logs and
91  * re-initializes them in the process.
92  */
93 void
94 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
95 {
96 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
97 
98 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
99 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
100 
101 	avl_create(&spa->spa_errlist_scrub,
102 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
103 	    offsetof(spa_error_entry_t, se_avl));
104 	avl_create(&spa->spa_errlist_last,
105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
106 	    offsetof(spa_error_entry_t, se_avl));
107 }
108 
109 /*
110  * Activate an uninitialized pool.
111  */
112 static void
113 spa_activate(spa_t *spa)
114 {
115 	int t;
116 
117 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
118 
119 	spa->spa_state = POOL_STATE_ACTIVE;
120 
121 	spa->spa_normal_class = metaslab_class_create();
122 	spa->spa_log_class = metaslab_class_create();
123 
124 	for (t = 0; t < ZIO_TYPES; t++) {
125 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
126 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
127 		    TASKQ_PREPOPULATE);
128 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
129 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
130 		    TASKQ_PREPOPULATE);
131 	}
132 
133 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
134 
135 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
136 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
137 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
138 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
139 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
140 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
141 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
142 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
143 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
144 
145 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
146 	    offsetof(vdev_t, vdev_dirty_node));
147 
148 	txg_list_create(&spa->spa_vdev_txg_list,
149 	    offsetof(struct vdev, vdev_txg_node));
150 
151 	avl_create(&spa->spa_errlist_scrub,
152 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
153 	    offsetof(spa_error_entry_t, se_avl));
154 	avl_create(&spa->spa_errlist_last,
155 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
156 	    offsetof(spa_error_entry_t, se_avl));
157 }
158 
159 /*
160  * Opposite of spa_activate().
161  */
162 static void
163 spa_deactivate(spa_t *spa)
164 {
165 	int t;
166 
167 	ASSERT(spa->spa_sync_on == B_FALSE);
168 	ASSERT(spa->spa_dsl_pool == NULL);
169 	ASSERT(spa->spa_root_vdev == NULL);
170 
171 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
172 
173 	txg_list_destroy(&spa->spa_vdev_txg_list);
174 
175 	list_destroy(&spa->spa_dirty_list);
176 
177 	rw_destroy(&spa->spa_traverse_lock);
178 
179 	for (t = 0; t < ZIO_TYPES; t++) {
180 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
181 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
182 		spa->spa_zio_issue_taskq[t] = NULL;
183 		spa->spa_zio_intr_taskq[t] = NULL;
184 	}
185 
186 	metaslab_class_destroy(spa->spa_normal_class);
187 	spa->spa_normal_class = NULL;
188 
189 	metaslab_class_destroy(spa->spa_log_class);
190 	spa->spa_log_class = NULL;
191 
192 	/*
193 	 * If this was part of an import or the open otherwise failed, we may
194 	 * still have errors left in the queues.  Empty them just in case.
195 	 */
196 	spa_errlog_drain(spa);
197 
198 	avl_destroy(&spa->spa_errlist_scrub);
199 	avl_destroy(&spa->spa_errlist_last);
200 
201 	spa->spa_state = POOL_STATE_UNINITIALIZED;
202 }
203 
204 /*
205  * Verify a pool configuration, and construct the vdev tree appropriately.  This
206  * will create all the necessary vdevs in the appropriate layout, with each vdev
207  * in the CLOSED state.  This will prep the pool before open/creation/import.
208  * All vdev validation is done by the vdev_alloc() routine.
209  */
210 static int
211 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
212     uint_t id, int atype)
213 {
214 	nvlist_t **child;
215 	uint_t c, children;
216 	int error;
217 
218 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
219 		return (error);
220 
221 	if ((*vdp)->vdev_ops->vdev_op_leaf)
222 		return (0);
223 
224 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
225 	    &child, &children) != 0) {
226 		vdev_free(*vdp);
227 		*vdp = NULL;
228 		return (EINVAL);
229 	}
230 
231 	for (c = 0; c < children; c++) {
232 		vdev_t *vd;
233 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
234 		    atype)) != 0) {
235 			vdev_free(*vdp);
236 			*vdp = NULL;
237 			return (error);
238 		}
239 	}
240 
241 	ASSERT(*vdp != NULL);
242 
243 	return (0);
244 }
245 
246 /*
247  * Opposite of spa_load().
248  */
249 static void
250 spa_unload(spa_t *spa)
251 {
252 	int i;
253 
254 	/*
255 	 * Stop async tasks.
256 	 */
257 	spa_async_suspend(spa);
258 
259 	/*
260 	 * Stop syncing.
261 	 */
262 	if (spa->spa_sync_on) {
263 		txg_sync_stop(spa->spa_dsl_pool);
264 		spa->spa_sync_on = B_FALSE;
265 	}
266 
267 	/*
268 	 * Wait for any outstanding prefetch I/O to complete.
269 	 */
270 	spa_config_enter(spa, RW_WRITER, FTAG);
271 	spa_config_exit(spa, FTAG);
272 
273 	/*
274 	 * Close the dsl pool.
275 	 */
276 	if (spa->spa_dsl_pool) {
277 		dsl_pool_close(spa->spa_dsl_pool);
278 		spa->spa_dsl_pool = NULL;
279 	}
280 
281 	/*
282 	 * Close all vdevs.
283 	 */
284 	if (spa->spa_root_vdev)
285 		vdev_free(spa->spa_root_vdev);
286 	ASSERT(spa->spa_root_vdev == NULL);
287 
288 	for (i = 0; i < spa->spa_nspares; i++)
289 		vdev_free(spa->spa_spares[i]);
290 	if (spa->spa_spares) {
291 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
292 		spa->spa_spares = NULL;
293 	}
294 	if (spa->spa_sparelist) {
295 		nvlist_free(spa->spa_sparelist);
296 		spa->spa_sparelist = NULL;
297 	}
298 
299 	spa->spa_async_suspended = 0;
300 }
301 
302 /*
303  * Load (or re-load) the current list of vdevs describing the active spares for
304  * this pool.  When this is called, we have some form of basic information in
305  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
306  * re-generate a more complete list including status information.
307  */
308 static void
309 spa_load_spares(spa_t *spa)
310 {
311 	nvlist_t **spares;
312 	uint_t nspares;
313 	int i;
314 	vdev_t *vd, *tvd;
315 
316 	/*
317 	 * First, close and free any existing spare vdevs.
318 	 */
319 	for (i = 0; i < spa->spa_nspares; i++) {
320 		vd = spa->spa_spares[i];
321 
322 		/* Undo the call to spa_activate() below */
323 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
324 		    tvd->vdev_isspare)
325 			spa_spare_remove(tvd);
326 		vdev_close(vd);
327 		vdev_free(vd);
328 	}
329 
330 	if (spa->spa_spares)
331 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
332 
333 	if (spa->spa_sparelist == NULL)
334 		nspares = 0;
335 	else
336 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
337 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
338 
339 	spa->spa_nspares = (int)nspares;
340 	spa->spa_spares = NULL;
341 
342 	if (nspares == 0)
343 		return;
344 
345 	/*
346 	 * Construct the array of vdevs, opening them to get status in the
347 	 * process.   For each spare, there is potentially two different vdev_t
348 	 * structures associated with it: one in the list of spares (used only
349 	 * for basic validation purposes) and one in the active vdev
350 	 * configuration (if it's spared in).  During this phase we open and
351 	 * validate each vdev on the spare list.  If the vdev also exists in the
352 	 * active configuration, then we also mark this vdev as an active spare.
353 	 */
354 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
355 	for (i = 0; i < spa->spa_nspares; i++) {
356 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
357 		    VDEV_ALLOC_SPARE) == 0);
358 		ASSERT(vd != NULL);
359 
360 		spa->spa_spares[i] = vd;
361 
362 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
363 			if (!tvd->vdev_isspare)
364 				spa_spare_add(tvd);
365 
366 			/*
367 			 * We only mark the spare active if we were successfully
368 			 * able to load the vdev.  Otherwise, importing a pool
369 			 * with a bad active spare would result in strange
370 			 * behavior, because multiple pool would think the spare
371 			 * is actively in use.
372 			 *
373 			 * There is a vulnerability here to an equally bizarre
374 			 * circumstance, where a dead active spare is later
375 			 * brought back to life (onlined or otherwise).  Given
376 			 * the rarity of this scenario, and the extra complexity
377 			 * it adds, we ignore the possibility.
378 			 */
379 			if (!vdev_is_dead(tvd))
380 				spa_spare_activate(tvd);
381 		}
382 
383 		if (vdev_open(vd) != 0)
384 			continue;
385 
386 		vd->vdev_top = vd;
387 		(void) vdev_validate_spare(vd);
388 	}
389 
390 	/*
391 	 * Recompute the stashed list of spares, with status information
392 	 * this time.
393 	 */
394 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
395 	    DATA_TYPE_NVLIST_ARRAY) == 0);
396 
397 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
398 	for (i = 0; i < spa->spa_nspares; i++)
399 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
400 		    B_TRUE, B_TRUE);
401 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
402 	    spares, spa->spa_nspares) == 0);
403 	for (i = 0; i < spa->spa_nspares; i++)
404 		nvlist_free(spares[i]);
405 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
406 }
407 
408 static int
409 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
410 {
411 	dmu_buf_t *db;
412 	char *packed = NULL;
413 	size_t nvsize = 0;
414 	int error;
415 	*value = NULL;
416 
417 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
418 	nvsize = *(uint64_t *)db->db_data;
419 	dmu_buf_rele(db, FTAG);
420 
421 	packed = kmem_alloc(nvsize, KM_SLEEP);
422 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
423 	if (error == 0)
424 		error = nvlist_unpack(packed, nvsize, value, 0);
425 	kmem_free(packed, nvsize);
426 
427 	return (error);
428 }
429 
430 /*
431  * Checks to see if the given vdev could not be opened, in which case we post a
432  * sysevent to notify the autoreplace code that the device has been removed.
433  */
434 static void
435 spa_check_removed(vdev_t *vd)
436 {
437 	int c;
438 
439 	for (c = 0; c < vd->vdev_children; c++)
440 		spa_check_removed(vd->vdev_child[c]);
441 
442 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
443 		zfs_post_autoreplace(vd->vdev_spa, vd);
444 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
445 	}
446 }
447 
448 /*
449  * Load an existing storage pool, using the pool's builtin spa_config as a
450  * source of configuration information.
451  */
452 static int
453 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
454 {
455 	int error = 0;
456 	nvlist_t *nvroot = NULL;
457 	vdev_t *rvd;
458 	uberblock_t *ub = &spa->spa_uberblock;
459 	uint64_t config_cache_txg = spa->spa_config_txg;
460 	uint64_t pool_guid;
461 	uint64_t version;
462 	zio_t *zio;
463 	uint64_t autoreplace = 0;
464 
465 	spa->spa_load_state = state;
466 
467 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
468 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
469 		error = EINVAL;
470 		goto out;
471 	}
472 
473 	/*
474 	 * Versioning wasn't explicitly added to the label until later, so if
475 	 * it's not present treat it as the initial version.
476 	 */
477 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
478 		version = SPA_VERSION_INITIAL;
479 
480 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
481 	    &spa->spa_config_txg);
482 
483 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
484 	    spa_guid_exists(pool_guid, 0)) {
485 		error = EEXIST;
486 		goto out;
487 	}
488 
489 	spa->spa_load_guid = pool_guid;
490 
491 	/*
492 	 * Parse the configuration into a vdev tree.  We explicitly set the
493 	 * value that will be returned by spa_version() since parsing the
494 	 * configuration requires knowing the version number.
495 	 */
496 	spa_config_enter(spa, RW_WRITER, FTAG);
497 	spa->spa_ubsync.ub_version = version;
498 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
499 	spa_config_exit(spa, FTAG);
500 
501 	if (error != 0)
502 		goto out;
503 
504 	ASSERT(spa->spa_root_vdev == rvd);
505 	ASSERT(spa_guid(spa) == pool_guid);
506 
507 	/*
508 	 * Try to open all vdevs, loading each label in the process.
509 	 */
510 	error = vdev_open(rvd);
511 	if (error != 0)
512 		goto out;
513 
514 	/*
515 	 * Validate the labels for all leaf vdevs.  We need to grab the config
516 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
517 	 * flag.
518 	 */
519 	spa_config_enter(spa, RW_READER, FTAG);
520 	error = vdev_validate(rvd);
521 	spa_config_exit(spa, FTAG);
522 
523 	if (error != 0)
524 		goto out;
525 
526 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
527 		error = ENXIO;
528 		goto out;
529 	}
530 
531 	/*
532 	 * Find the best uberblock.
533 	 */
534 	bzero(ub, sizeof (uberblock_t));
535 
536 	zio = zio_root(spa, NULL, NULL,
537 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
538 	vdev_uberblock_load(zio, rvd, ub);
539 	error = zio_wait(zio);
540 
541 	/*
542 	 * If we weren't able to find a single valid uberblock, return failure.
543 	 */
544 	if (ub->ub_txg == 0) {
545 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
546 		    VDEV_AUX_CORRUPT_DATA);
547 		error = ENXIO;
548 		goto out;
549 	}
550 
551 	/*
552 	 * If the pool is newer than the code, we can't open it.
553 	 */
554 	if (ub->ub_version > SPA_VERSION) {
555 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
556 		    VDEV_AUX_VERSION_NEWER);
557 		error = ENOTSUP;
558 		goto out;
559 	}
560 
561 	/*
562 	 * If the vdev guid sum doesn't match the uberblock, we have an
563 	 * incomplete configuration.
564 	 */
565 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
566 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
567 		    VDEV_AUX_BAD_GUID_SUM);
568 		error = ENXIO;
569 		goto out;
570 	}
571 
572 	/*
573 	 * Initialize internal SPA structures.
574 	 */
575 	spa->spa_state = POOL_STATE_ACTIVE;
576 	spa->spa_ubsync = spa->spa_uberblock;
577 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
578 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
579 	if (error) {
580 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
581 		    VDEV_AUX_CORRUPT_DATA);
582 		goto out;
583 	}
584 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
585 
586 	if (zap_lookup(spa->spa_meta_objset,
587 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
588 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
589 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
590 		    VDEV_AUX_CORRUPT_DATA);
591 		error = EIO;
592 		goto out;
593 	}
594 
595 	if (!mosconfig) {
596 		nvlist_t *newconfig;
597 		uint64_t hostid;
598 
599 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
600 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
601 			    VDEV_AUX_CORRUPT_DATA);
602 			error = EIO;
603 			goto out;
604 		}
605 
606 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
607 		    &hostid) == 0) {
608 			char *hostname;
609 			unsigned long myhostid = 0;
610 
611 			VERIFY(nvlist_lookup_string(newconfig,
612 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
613 
614 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
615 			if (hostid != 0 && myhostid != 0 &&
616 			    (unsigned long)hostid != myhostid) {
617 				cmn_err(CE_WARN, "pool '%s' could not be "
618 				    "loaded as it was last accessed by "
619 				    "another system (host: %s hostid: 0x%lx).  "
620 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
621 				    spa->spa_name, hostname,
622 				    (unsigned long)hostid);
623 				error = EBADF;
624 				goto out;
625 			}
626 		}
627 
628 		spa_config_set(spa, newconfig);
629 		spa_unload(spa);
630 		spa_deactivate(spa);
631 		spa_activate(spa);
632 
633 		return (spa_load(spa, newconfig, state, B_TRUE));
634 	}
635 
636 	if (zap_lookup(spa->spa_meta_objset,
637 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
638 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
639 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
640 		    VDEV_AUX_CORRUPT_DATA);
641 		error = EIO;
642 		goto out;
643 	}
644 
645 	/*
646 	 * Load the bit that tells us to use the new accounting function
647 	 * (raid-z deflation).  If we have an older pool, this will not
648 	 * be present.
649 	 */
650 	error = zap_lookup(spa->spa_meta_objset,
651 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
652 	    sizeof (uint64_t), 1, &spa->spa_deflate);
653 	if (error != 0 && error != ENOENT) {
654 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
655 		    VDEV_AUX_CORRUPT_DATA);
656 		error = EIO;
657 		goto out;
658 	}
659 
660 	/*
661 	 * Load the persistent error log.  If we have an older pool, this will
662 	 * not be present.
663 	 */
664 	error = zap_lookup(spa->spa_meta_objset,
665 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
666 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
667 	if (error != 0 && error != ENOENT) {
668 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
669 		    VDEV_AUX_CORRUPT_DATA);
670 		error = EIO;
671 		goto out;
672 	}
673 
674 	error = zap_lookup(spa->spa_meta_objset,
675 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
676 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
677 	if (error != 0 && error != ENOENT) {
678 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
679 		    VDEV_AUX_CORRUPT_DATA);
680 		error = EIO;
681 		goto out;
682 	}
683 
684 	/*
685 	 * Load the history object.  If we have an older pool, this
686 	 * will not be present.
687 	 */
688 	error = zap_lookup(spa->spa_meta_objset,
689 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
690 	    sizeof (uint64_t), 1, &spa->spa_history);
691 	if (error != 0 && error != ENOENT) {
692 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
693 		    VDEV_AUX_CORRUPT_DATA);
694 		error = EIO;
695 		goto out;
696 	}
697 
698 	/*
699 	 * Load any hot spares for this pool.
700 	 */
701 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
702 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
703 	if (error != 0 && error != ENOENT) {
704 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
705 		    VDEV_AUX_CORRUPT_DATA);
706 		error = EIO;
707 		goto out;
708 	}
709 	if (error == 0) {
710 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
711 		if (load_nvlist(spa, spa->spa_spares_object,
712 		    &spa->spa_sparelist) != 0) {
713 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
714 			    VDEV_AUX_CORRUPT_DATA);
715 			error = EIO;
716 			goto out;
717 		}
718 
719 		spa_config_enter(spa, RW_WRITER, FTAG);
720 		spa_load_spares(spa);
721 		spa_config_exit(spa, FTAG);
722 	}
723 
724 	spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION);
725 
726 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
727 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
728 
729 	if (error && error != ENOENT) {
730 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
731 		    VDEV_AUX_CORRUPT_DATA);
732 		error = EIO;
733 		goto out;
734 	}
735 
736 	if (error == 0) {
737 		(void) zap_lookup(spa->spa_meta_objset,
738 		    spa->spa_pool_props_object,
739 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
740 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
741 		(void) zap_lookup(spa->spa_meta_objset,
742 		    spa->spa_pool_props_object,
743 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
744 		    sizeof (uint64_t), 1, &autoreplace);
745 		(void) zap_lookup(spa->spa_meta_objset,
746 		    spa->spa_pool_props_object,
747 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
748 		    sizeof (uint64_t), 1, &spa->spa_delegation);
749 	}
750 
751 	/*
752 	 * If the 'autoreplace' property is set, then post a resource notifying
753 	 * the ZFS DE that it should not issue any faults for unopenable
754 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
755 	 * unopenable vdevs so that the normal autoreplace handler can take
756 	 * over.
757 	 */
758 	if (autoreplace)
759 		spa_check_removed(spa->spa_root_vdev);
760 
761 	/*
762 	 * Load the vdev state for all toplevel vdevs.
763 	 */
764 	vdev_load(rvd);
765 
766 	/*
767 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
768 	 */
769 	spa_config_enter(spa, RW_WRITER, FTAG);
770 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
771 	spa_config_exit(spa, FTAG);
772 
773 	/*
774 	 * Check the state of the root vdev.  If it can't be opened, it
775 	 * indicates one or more toplevel vdevs are faulted.
776 	 */
777 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
778 		error = ENXIO;
779 		goto out;
780 	}
781 
782 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
783 		dmu_tx_t *tx;
784 		int need_update = B_FALSE;
785 		int c;
786 
787 		/*
788 		 * Claim log blocks that haven't been committed yet.
789 		 * This must all happen in a single txg.
790 		 */
791 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
792 		    spa_first_txg(spa));
793 		(void) dmu_objset_find(spa->spa_name,
794 		    zil_claim, tx, DS_FIND_CHILDREN);
795 		dmu_tx_commit(tx);
796 
797 		spa->spa_sync_on = B_TRUE;
798 		txg_sync_start(spa->spa_dsl_pool);
799 
800 		/*
801 		 * Wait for all claims to sync.
802 		 */
803 		txg_wait_synced(spa->spa_dsl_pool, 0);
804 
805 		/*
806 		 * If the config cache is stale, or we have uninitialized
807 		 * metaslabs (see spa_vdev_add()), then update the config.
808 		 */
809 		if (config_cache_txg != spa->spa_config_txg ||
810 		    state == SPA_LOAD_IMPORT)
811 			need_update = B_TRUE;
812 
813 		for (c = 0; c < rvd->vdev_children; c++)
814 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
815 				need_update = B_TRUE;
816 
817 		/*
818 		 * Update the config cache asychronously in case we're the
819 		 * root pool, in which case the config cache isn't writable yet.
820 		 */
821 		if (need_update)
822 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
823 	}
824 
825 	error = 0;
826 out:
827 	if (error && error != EBADF)
828 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
829 	spa->spa_load_state = SPA_LOAD_NONE;
830 	spa->spa_ena = 0;
831 
832 	return (error);
833 }
834 
835 /*
836  * Pool Open/Import
837  *
838  * The import case is identical to an open except that the configuration is sent
839  * down from userland, instead of grabbed from the configuration cache.  For the
840  * case of an open, the pool configuration will exist in the
841  * POOL_STATE_UNINITIALIZED state.
842  *
843  * The stats information (gen/count/ustats) is used to gather vdev statistics at
844  * the same time open the pool, without having to keep around the spa_t in some
845  * ambiguous state.
846  */
847 static int
848 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
849 {
850 	spa_t *spa;
851 	int error;
852 	int loaded = B_FALSE;
853 	int locked = B_FALSE;
854 
855 	*spapp = NULL;
856 
857 	/*
858 	 * As disgusting as this is, we need to support recursive calls to this
859 	 * function because dsl_dir_open() is called during spa_load(), and ends
860 	 * up calling spa_open() again.  The real fix is to figure out how to
861 	 * avoid dsl_dir_open() calling this in the first place.
862 	 */
863 	if (mutex_owner(&spa_namespace_lock) != curthread) {
864 		mutex_enter(&spa_namespace_lock);
865 		locked = B_TRUE;
866 	}
867 
868 	if ((spa = spa_lookup(pool)) == NULL) {
869 		if (locked)
870 			mutex_exit(&spa_namespace_lock);
871 		return (ENOENT);
872 	}
873 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
874 
875 		spa_activate(spa);
876 
877 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
878 
879 		if (error == EBADF) {
880 			/*
881 			 * If vdev_validate() returns failure (indicated by
882 			 * EBADF), it indicates that one of the vdevs indicates
883 			 * that the pool has been exported or destroyed.  If
884 			 * this is the case, the config cache is out of sync and
885 			 * we should remove the pool from the namespace.
886 			 */
887 			zfs_post_ok(spa, NULL);
888 			spa_unload(spa);
889 			spa_deactivate(spa);
890 			spa_remove(spa);
891 			spa_config_sync();
892 			if (locked)
893 				mutex_exit(&spa_namespace_lock);
894 			return (ENOENT);
895 		}
896 
897 		if (error) {
898 			/*
899 			 * We can't open the pool, but we still have useful
900 			 * information: the state of each vdev after the
901 			 * attempted vdev_open().  Return this to the user.
902 			 */
903 			if (config != NULL && spa->spa_root_vdev != NULL) {
904 				spa_config_enter(spa, RW_READER, FTAG);
905 				*config = spa_config_generate(spa, NULL, -1ULL,
906 				    B_TRUE);
907 				spa_config_exit(spa, FTAG);
908 			}
909 			spa_unload(spa);
910 			spa_deactivate(spa);
911 			spa->spa_last_open_failed = B_TRUE;
912 			if (locked)
913 				mutex_exit(&spa_namespace_lock);
914 			*spapp = NULL;
915 			return (error);
916 		} else {
917 			zfs_post_ok(spa, NULL);
918 			spa->spa_last_open_failed = B_FALSE;
919 		}
920 
921 		loaded = B_TRUE;
922 	}
923 
924 	spa_open_ref(spa, tag);
925 
926 	/*
927 	 * If we just loaded the pool, resilver anything that's out of date.
928 	 */
929 	if (loaded && (spa_mode & FWRITE))
930 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
931 
932 	if (locked)
933 		mutex_exit(&spa_namespace_lock);
934 
935 	*spapp = spa;
936 
937 	if (config != NULL) {
938 		spa_config_enter(spa, RW_READER, FTAG);
939 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
940 		spa_config_exit(spa, FTAG);
941 	}
942 
943 	return (0);
944 }
945 
946 int
947 spa_open(const char *name, spa_t **spapp, void *tag)
948 {
949 	return (spa_open_common(name, spapp, tag, NULL));
950 }
951 
952 /*
953  * Lookup the given spa_t, incrementing the inject count in the process,
954  * preventing it from being exported or destroyed.
955  */
956 spa_t *
957 spa_inject_addref(char *name)
958 {
959 	spa_t *spa;
960 
961 	mutex_enter(&spa_namespace_lock);
962 	if ((spa = spa_lookup(name)) == NULL) {
963 		mutex_exit(&spa_namespace_lock);
964 		return (NULL);
965 	}
966 	spa->spa_inject_ref++;
967 	mutex_exit(&spa_namespace_lock);
968 
969 	return (spa);
970 }
971 
972 void
973 spa_inject_delref(spa_t *spa)
974 {
975 	mutex_enter(&spa_namespace_lock);
976 	spa->spa_inject_ref--;
977 	mutex_exit(&spa_namespace_lock);
978 }
979 
980 static void
981 spa_add_spares(spa_t *spa, nvlist_t *config)
982 {
983 	nvlist_t **spares;
984 	uint_t i, nspares;
985 	nvlist_t *nvroot;
986 	uint64_t guid;
987 	vdev_stat_t *vs;
988 	uint_t vsc;
989 	uint64_t pool;
990 
991 	if (spa->spa_nspares == 0)
992 		return;
993 
994 	VERIFY(nvlist_lookup_nvlist(config,
995 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
996 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
997 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
998 	if (nspares != 0) {
999 		VERIFY(nvlist_add_nvlist_array(nvroot,
1000 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1001 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1002 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1003 
1004 		/*
1005 		 * Go through and find any spares which have since been
1006 		 * repurposed as an active spare.  If this is the case, update
1007 		 * their status appropriately.
1008 		 */
1009 		for (i = 0; i < nspares; i++) {
1010 			VERIFY(nvlist_lookup_uint64(spares[i],
1011 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1012 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1013 				VERIFY(nvlist_lookup_uint64_array(
1014 				    spares[i], ZPOOL_CONFIG_STATS,
1015 				    (uint64_t **)&vs, &vsc) == 0);
1016 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1017 				vs->vs_aux = VDEV_AUX_SPARED;
1018 			}
1019 		}
1020 	}
1021 }
1022 
1023 int
1024 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1025 {
1026 	int error;
1027 	spa_t *spa;
1028 
1029 	*config = NULL;
1030 	error = spa_open_common(name, &spa, FTAG, config);
1031 
1032 	if (spa && *config != NULL) {
1033 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1034 		    spa_get_errlog_size(spa)) == 0);
1035 
1036 		spa_add_spares(spa, *config);
1037 	}
1038 
1039 	/*
1040 	 * We want to get the alternate root even for faulted pools, so we cheat
1041 	 * and call spa_lookup() directly.
1042 	 */
1043 	if (altroot) {
1044 		if (spa == NULL) {
1045 			mutex_enter(&spa_namespace_lock);
1046 			spa = spa_lookup(name);
1047 			if (spa)
1048 				spa_altroot(spa, altroot, buflen);
1049 			else
1050 				altroot[0] = '\0';
1051 			spa = NULL;
1052 			mutex_exit(&spa_namespace_lock);
1053 		} else {
1054 			spa_altroot(spa, altroot, buflen);
1055 		}
1056 	}
1057 
1058 	if (spa != NULL)
1059 		spa_close(spa, FTAG);
1060 
1061 	return (error);
1062 }
1063 
1064 /*
1065  * Validate that the 'spares' array is well formed.  We must have an array of
1066  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1067  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1068  * as they are well-formed.
1069  */
1070 static int
1071 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1072 {
1073 	nvlist_t **spares;
1074 	uint_t i, nspares;
1075 	vdev_t *vd;
1076 	int error;
1077 
1078 	/*
1079 	 * It's acceptable to have no spares specified.
1080 	 */
1081 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1082 	    &spares, &nspares) != 0)
1083 		return (0);
1084 
1085 	if (nspares == 0)
1086 		return (EINVAL);
1087 
1088 	/*
1089 	 * Make sure the pool is formatted with a version that supports hot
1090 	 * spares.
1091 	 */
1092 	if (spa_version(spa) < SPA_VERSION_SPARES)
1093 		return (ENOTSUP);
1094 
1095 	/*
1096 	 * Set the pending spare list so we correctly handle device in-use
1097 	 * checking.
1098 	 */
1099 	spa->spa_pending_spares = spares;
1100 	spa->spa_pending_nspares = nspares;
1101 
1102 	for (i = 0; i < nspares; i++) {
1103 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1104 		    mode)) != 0)
1105 			goto out;
1106 
1107 		if (!vd->vdev_ops->vdev_op_leaf) {
1108 			vdev_free(vd);
1109 			error = EINVAL;
1110 			goto out;
1111 		}
1112 
1113 		vd->vdev_top = vd;
1114 
1115 		if ((error = vdev_open(vd)) == 0 &&
1116 		    (error = vdev_label_init(vd, crtxg,
1117 		    VDEV_LABEL_SPARE)) == 0) {
1118 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1119 			    vd->vdev_guid) == 0);
1120 		}
1121 
1122 		vdev_free(vd);
1123 
1124 		if (error && mode != VDEV_ALLOC_SPARE)
1125 			goto out;
1126 		else
1127 			error = 0;
1128 	}
1129 
1130 out:
1131 	spa->spa_pending_spares = NULL;
1132 	spa->spa_pending_nspares = 0;
1133 	return (error);
1134 }
1135 
1136 /*
1137  * Pool Creation
1138  */
1139 int
1140 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
1141 {
1142 	spa_t *spa;
1143 	vdev_t *rvd;
1144 	dsl_pool_t *dp;
1145 	dmu_tx_t *tx;
1146 	int c, error = 0;
1147 	uint64_t txg = TXG_INITIAL;
1148 	nvlist_t **spares;
1149 	uint_t nspares;
1150 
1151 	/*
1152 	 * If this pool already exists, return failure.
1153 	 */
1154 	mutex_enter(&spa_namespace_lock);
1155 	if (spa_lookup(pool) != NULL) {
1156 		mutex_exit(&spa_namespace_lock);
1157 		return (EEXIST);
1158 	}
1159 
1160 	/*
1161 	 * Allocate a new spa_t structure.
1162 	 */
1163 	spa = spa_add(pool, altroot);
1164 	spa_activate(spa);
1165 
1166 	spa->spa_uberblock.ub_txg = txg - 1;
1167 	spa->spa_uberblock.ub_version = SPA_VERSION;
1168 	spa->spa_ubsync = spa->spa_uberblock;
1169 
1170 	/*
1171 	 * Create the root vdev.
1172 	 */
1173 	spa_config_enter(spa, RW_WRITER, FTAG);
1174 
1175 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1176 
1177 	ASSERT(error != 0 || rvd != NULL);
1178 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1179 
1180 	if (error == 0 && rvd->vdev_children == 0)
1181 		error = EINVAL;
1182 
1183 	if (error == 0 &&
1184 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1185 	    (error = spa_validate_spares(spa, nvroot, txg,
1186 	    VDEV_ALLOC_ADD)) == 0) {
1187 		for (c = 0; c < rvd->vdev_children; c++)
1188 			vdev_init(rvd->vdev_child[c], txg);
1189 		vdev_config_dirty(rvd);
1190 	}
1191 
1192 	spa_config_exit(spa, FTAG);
1193 
1194 	if (error != 0) {
1195 		spa_unload(spa);
1196 		spa_deactivate(spa);
1197 		spa_remove(spa);
1198 		mutex_exit(&spa_namespace_lock);
1199 		return (error);
1200 	}
1201 
1202 	/*
1203 	 * Get the list of spares, if specified.
1204 	 */
1205 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1206 	    &spares, &nspares) == 0) {
1207 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1208 		    KM_SLEEP) == 0);
1209 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1210 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1211 		spa_config_enter(spa, RW_WRITER, FTAG);
1212 		spa_load_spares(spa);
1213 		spa_config_exit(spa, FTAG);
1214 		spa->spa_sync_spares = B_TRUE;
1215 	}
1216 
1217 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1218 	spa->spa_meta_objset = dp->dp_meta_objset;
1219 
1220 	tx = dmu_tx_create_assigned(dp, txg);
1221 
1222 	/*
1223 	 * Create the pool config object.
1224 	 */
1225 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1226 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1227 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1228 
1229 	if (zap_add(spa->spa_meta_objset,
1230 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1231 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1232 		cmn_err(CE_PANIC, "failed to add pool config");
1233 	}
1234 
1235 	/* Newly created pools are always deflated. */
1236 	spa->spa_deflate = TRUE;
1237 	if (zap_add(spa->spa_meta_objset,
1238 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1239 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1240 		cmn_err(CE_PANIC, "failed to add deflate");
1241 	}
1242 
1243 	/*
1244 	 * Create the deferred-free bplist object.  Turn off compression
1245 	 * because sync-to-convergence takes longer if the blocksize
1246 	 * keeps changing.
1247 	 */
1248 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1249 	    1 << 14, tx);
1250 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1251 	    ZIO_COMPRESS_OFF, tx);
1252 
1253 	if (zap_add(spa->spa_meta_objset,
1254 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1255 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1256 		cmn_err(CE_PANIC, "failed to add bplist");
1257 	}
1258 
1259 	/*
1260 	 * Create the pool's history object.
1261 	 */
1262 	spa_history_create_obj(spa, tx);
1263 
1264 	dmu_tx_commit(tx);
1265 
1266 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1267 	spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1268 	spa->spa_sync_on = B_TRUE;
1269 	txg_sync_start(spa->spa_dsl_pool);
1270 
1271 	/*
1272 	 * We explicitly wait for the first transaction to complete so that our
1273 	 * bean counters are appropriately updated.
1274 	 */
1275 	txg_wait_synced(spa->spa_dsl_pool, txg);
1276 
1277 	spa_config_sync();
1278 
1279 	mutex_exit(&spa_namespace_lock);
1280 
1281 	return (0);
1282 }
1283 
1284 /*
1285  * Import the given pool into the system.  We set up the necessary spa_t and
1286  * then call spa_load() to do the dirty work.
1287  */
1288 int
1289 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1290 {
1291 	spa_t *spa;
1292 	int error;
1293 	nvlist_t *nvroot;
1294 	nvlist_t **spares;
1295 	uint_t nspares;
1296 
1297 	if (!(spa_mode & FWRITE))
1298 		return (EROFS);
1299 
1300 	/*
1301 	 * If a pool with this name exists, return failure.
1302 	 */
1303 	mutex_enter(&spa_namespace_lock);
1304 	if (spa_lookup(pool) != NULL) {
1305 		mutex_exit(&spa_namespace_lock);
1306 		return (EEXIST);
1307 	}
1308 
1309 	/*
1310 	 * Create and initialize the spa structure.
1311 	 */
1312 	spa = spa_add(pool, altroot);
1313 	spa_activate(spa);
1314 
1315 	/*
1316 	 * Pass off the heavy lifting to spa_load().
1317 	 * Pass TRUE for mosconfig because the user-supplied config
1318 	 * is actually the one to trust when doing an import.
1319 	 */
1320 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1321 
1322 	spa_config_enter(spa, RW_WRITER, FTAG);
1323 	/*
1324 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1325 	 * and conflicts with spa_has_spare().
1326 	 */
1327 	if (spa->spa_sparelist) {
1328 		nvlist_free(spa->spa_sparelist);
1329 		spa->spa_sparelist = NULL;
1330 		spa_load_spares(spa);
1331 	}
1332 
1333 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1334 	    &nvroot) == 0);
1335 	if (error == 0)
1336 		error = spa_validate_spares(spa, nvroot, -1ULL,
1337 		    VDEV_ALLOC_SPARE);
1338 	spa_config_exit(spa, FTAG);
1339 
1340 	if (error != 0) {
1341 		spa_unload(spa);
1342 		spa_deactivate(spa);
1343 		spa_remove(spa);
1344 		mutex_exit(&spa_namespace_lock);
1345 		return (error);
1346 	}
1347 
1348 	/*
1349 	 * Override any spares as specified by the user, as these may have
1350 	 * correct device names/devids, etc.
1351 	 */
1352 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1353 	    &spares, &nspares) == 0) {
1354 		if (spa->spa_sparelist)
1355 			VERIFY(nvlist_remove(spa->spa_sparelist,
1356 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1357 		else
1358 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1359 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1360 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1361 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1362 		spa_config_enter(spa, RW_WRITER, FTAG);
1363 		spa_load_spares(spa);
1364 		spa_config_exit(spa, FTAG);
1365 		spa->spa_sync_spares = B_TRUE;
1366 	}
1367 
1368 	/*
1369 	 * Update the config cache to include the newly-imported pool.
1370 	 */
1371 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1372 
1373 	/*
1374 	 * Resilver anything that's out of date.
1375 	 */
1376 	if (spa_mode & FWRITE)
1377 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1378 
1379 	mutex_exit(&spa_namespace_lock);
1380 
1381 	return (0);
1382 }
1383 
1384 /*
1385  * This (illegal) pool name is used when temporarily importing a spa_t in order
1386  * to get the vdev stats associated with the imported devices.
1387  */
1388 #define	TRYIMPORT_NAME	"$import"
1389 
1390 nvlist_t *
1391 spa_tryimport(nvlist_t *tryconfig)
1392 {
1393 	nvlist_t *config = NULL;
1394 	char *poolname;
1395 	spa_t *spa;
1396 	uint64_t state;
1397 
1398 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1399 		return (NULL);
1400 
1401 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1402 		return (NULL);
1403 
1404 	/*
1405 	 * Create and initialize the spa structure.
1406 	 */
1407 	mutex_enter(&spa_namespace_lock);
1408 	spa = spa_add(TRYIMPORT_NAME, NULL);
1409 	spa_activate(spa);
1410 
1411 	/*
1412 	 * Pass off the heavy lifting to spa_load().
1413 	 * Pass TRUE for mosconfig because the user-supplied config
1414 	 * is actually the one to trust when doing an import.
1415 	 */
1416 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1417 
1418 	/*
1419 	 * If 'tryconfig' was at least parsable, return the current config.
1420 	 */
1421 	if (spa->spa_root_vdev != NULL) {
1422 		spa_config_enter(spa, RW_READER, FTAG);
1423 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1424 		spa_config_exit(spa, FTAG);
1425 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1426 		    poolname) == 0);
1427 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1428 		    state) == 0);
1429 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1430 		    spa->spa_uberblock.ub_timestamp) == 0);
1431 
1432 		/*
1433 		 * Add the list of hot spares.
1434 		 */
1435 		spa_add_spares(spa, config);
1436 	}
1437 
1438 	spa_unload(spa);
1439 	spa_deactivate(spa);
1440 	spa_remove(spa);
1441 	mutex_exit(&spa_namespace_lock);
1442 
1443 	return (config);
1444 }
1445 
1446 /*
1447  * Pool export/destroy
1448  *
1449  * The act of destroying or exporting a pool is very simple.  We make sure there
1450  * is no more pending I/O and any references to the pool are gone.  Then, we
1451  * update the pool state and sync all the labels to disk, removing the
1452  * configuration from the cache afterwards.
1453  */
1454 static int
1455 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1456 {
1457 	spa_t *spa;
1458 
1459 	if (oldconfig)
1460 		*oldconfig = NULL;
1461 
1462 	if (!(spa_mode & FWRITE))
1463 		return (EROFS);
1464 
1465 	mutex_enter(&spa_namespace_lock);
1466 	if ((spa = spa_lookup(pool)) == NULL) {
1467 		mutex_exit(&spa_namespace_lock);
1468 		return (ENOENT);
1469 	}
1470 
1471 	/*
1472 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1473 	 * reacquire the namespace lock, and see if we can export.
1474 	 */
1475 	spa_open_ref(spa, FTAG);
1476 	mutex_exit(&spa_namespace_lock);
1477 	spa_async_suspend(spa);
1478 	mutex_enter(&spa_namespace_lock);
1479 	spa_close(spa, FTAG);
1480 
1481 	/*
1482 	 * The pool will be in core if it's openable,
1483 	 * in which case we can modify its state.
1484 	 */
1485 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1486 		/*
1487 		 * Objsets may be open only because they're dirty, so we
1488 		 * have to force it to sync before checking spa_refcnt.
1489 		 */
1490 		spa_scrub_suspend(spa);
1491 		txg_wait_synced(spa->spa_dsl_pool, 0);
1492 
1493 		/*
1494 		 * A pool cannot be exported or destroyed if there are active
1495 		 * references.  If we are resetting a pool, allow references by
1496 		 * fault injection handlers.
1497 		 */
1498 		if (!spa_refcount_zero(spa) ||
1499 		    (spa->spa_inject_ref != 0 &&
1500 		    new_state != POOL_STATE_UNINITIALIZED)) {
1501 			spa_scrub_resume(spa);
1502 			spa_async_resume(spa);
1503 			mutex_exit(&spa_namespace_lock);
1504 			return (EBUSY);
1505 		}
1506 
1507 		spa_scrub_resume(spa);
1508 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1509 
1510 		/*
1511 		 * We want this to be reflected on every label,
1512 		 * so mark them all dirty.  spa_unload() will do the
1513 		 * final sync that pushes these changes out.
1514 		 */
1515 		if (new_state != POOL_STATE_UNINITIALIZED) {
1516 			spa_config_enter(spa, RW_WRITER, FTAG);
1517 			spa->spa_state = new_state;
1518 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1519 			vdev_config_dirty(spa->spa_root_vdev);
1520 			spa_config_exit(spa, FTAG);
1521 		}
1522 	}
1523 
1524 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1525 
1526 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1527 		spa_unload(spa);
1528 		spa_deactivate(spa);
1529 	}
1530 
1531 	if (oldconfig && spa->spa_config)
1532 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1533 
1534 	if (new_state != POOL_STATE_UNINITIALIZED) {
1535 		spa_remove(spa);
1536 		spa_config_sync();
1537 	}
1538 	mutex_exit(&spa_namespace_lock);
1539 
1540 	return (0);
1541 }
1542 
1543 /*
1544  * Destroy a storage pool.
1545  */
1546 int
1547 spa_destroy(char *pool)
1548 {
1549 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1550 }
1551 
1552 /*
1553  * Export a storage pool.
1554  */
1555 int
1556 spa_export(char *pool, nvlist_t **oldconfig)
1557 {
1558 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1559 }
1560 
1561 /*
1562  * Similar to spa_export(), this unloads the spa_t without actually removing it
1563  * from the namespace in any way.
1564  */
1565 int
1566 spa_reset(char *pool)
1567 {
1568 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1569 }
1570 
1571 
1572 /*
1573  * ==========================================================================
1574  * Device manipulation
1575  * ==========================================================================
1576  */
1577 
1578 /*
1579  * Add a device to a storage pool.
1580  */
1581 int
1582 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1583 {
1584 	uint64_t txg;
1585 	int c, error;
1586 	vdev_t *rvd = spa->spa_root_vdev;
1587 	vdev_t *vd, *tvd;
1588 	nvlist_t **spares;
1589 	uint_t i, nspares;
1590 
1591 	txg = spa_vdev_enter(spa);
1592 
1593 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1594 	    VDEV_ALLOC_ADD)) != 0)
1595 		return (spa_vdev_exit(spa, NULL, txg, error));
1596 
1597 	spa->spa_pending_vdev = vd;
1598 
1599 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1600 	    &spares, &nspares) != 0)
1601 		nspares = 0;
1602 
1603 	if (vd->vdev_children == 0 && nspares == 0) {
1604 		spa->spa_pending_vdev = NULL;
1605 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1606 	}
1607 
1608 	if (vd->vdev_children != 0) {
1609 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1610 			spa->spa_pending_vdev = NULL;
1611 			return (spa_vdev_exit(spa, vd, txg, error));
1612 		}
1613 	}
1614 
1615 	/*
1616 	 * We must validate the spares after checking the children.  Otherwise,
1617 	 * vdev_inuse() will blindly overwrite the spare.
1618 	 */
1619 	if ((error = spa_validate_spares(spa, nvroot, txg,
1620 	    VDEV_ALLOC_ADD)) != 0) {
1621 		spa->spa_pending_vdev = NULL;
1622 		return (spa_vdev_exit(spa, vd, txg, error));
1623 	}
1624 
1625 	spa->spa_pending_vdev = NULL;
1626 
1627 	/*
1628 	 * Transfer each new top-level vdev from vd to rvd.
1629 	 */
1630 	for (c = 0; c < vd->vdev_children; c++) {
1631 		tvd = vd->vdev_child[c];
1632 		vdev_remove_child(vd, tvd);
1633 		tvd->vdev_id = rvd->vdev_children;
1634 		vdev_add_child(rvd, tvd);
1635 		vdev_config_dirty(tvd);
1636 	}
1637 
1638 	if (nspares != 0) {
1639 		if (spa->spa_sparelist != NULL) {
1640 			nvlist_t **oldspares;
1641 			uint_t oldnspares;
1642 			nvlist_t **newspares;
1643 
1644 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1645 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1646 
1647 			newspares = kmem_alloc(sizeof (void *) *
1648 			    (nspares + oldnspares), KM_SLEEP);
1649 			for (i = 0; i < oldnspares; i++)
1650 				VERIFY(nvlist_dup(oldspares[i],
1651 				    &newspares[i], KM_SLEEP) == 0);
1652 			for (i = 0; i < nspares; i++)
1653 				VERIFY(nvlist_dup(spares[i],
1654 				    &newspares[i + oldnspares],
1655 				    KM_SLEEP) == 0);
1656 
1657 			VERIFY(nvlist_remove(spa->spa_sparelist,
1658 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1659 
1660 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1661 			    ZPOOL_CONFIG_SPARES, newspares,
1662 			    nspares + oldnspares) == 0);
1663 			for (i = 0; i < oldnspares + nspares; i++)
1664 				nvlist_free(newspares[i]);
1665 			kmem_free(newspares, (oldnspares + nspares) *
1666 			    sizeof (void *));
1667 		} else {
1668 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1669 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1670 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1671 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1672 		}
1673 
1674 		spa_load_spares(spa);
1675 		spa->spa_sync_spares = B_TRUE;
1676 	}
1677 
1678 	/*
1679 	 * We have to be careful when adding new vdevs to an existing pool.
1680 	 * If other threads start allocating from these vdevs before we
1681 	 * sync the config cache, and we lose power, then upon reboot we may
1682 	 * fail to open the pool because there are DVAs that the config cache
1683 	 * can't translate.  Therefore, we first add the vdevs without
1684 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1685 	 * and then let spa_config_update() initialize the new metaslabs.
1686 	 *
1687 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1688 	 * if we lose power at any point in this sequence, the remaining
1689 	 * steps will be completed the next time we load the pool.
1690 	 */
1691 	(void) spa_vdev_exit(spa, vd, txg, 0);
1692 
1693 	mutex_enter(&spa_namespace_lock);
1694 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1695 	mutex_exit(&spa_namespace_lock);
1696 
1697 	return (0);
1698 }
1699 
1700 /*
1701  * Attach a device to a mirror.  The arguments are the path to any device
1702  * in the mirror, and the nvroot for the new device.  If the path specifies
1703  * a device that is not mirrored, we automatically insert the mirror vdev.
1704  *
1705  * If 'replacing' is specified, the new device is intended to replace the
1706  * existing device; in this case the two devices are made into their own
1707  * mirror using the 'replacing' vdev, which is functionally identical to
1708  * the mirror vdev (it actually reuses all the same ops) but has a few
1709  * extra rules: you can't attach to it after it's been created, and upon
1710  * completion of resilvering, the first disk (the one being replaced)
1711  * is automatically detached.
1712  */
1713 int
1714 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1715 {
1716 	uint64_t txg, open_txg;
1717 	int error;
1718 	vdev_t *rvd = spa->spa_root_vdev;
1719 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1720 	vdev_ops_t *pvops;
1721 	int is_log;
1722 
1723 	txg = spa_vdev_enter(spa);
1724 
1725 	oldvd = vdev_lookup_by_guid(rvd, guid);
1726 
1727 	if (oldvd == NULL)
1728 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1729 
1730 	if (!oldvd->vdev_ops->vdev_op_leaf)
1731 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1732 
1733 	pvd = oldvd->vdev_parent;
1734 
1735 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1736 	    VDEV_ALLOC_ADD)) != 0)
1737 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
1738 
1739 	if (newrootvd->vdev_children != 1)
1740 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1741 
1742 	newvd = newrootvd->vdev_child[0];
1743 
1744 	if (!newvd->vdev_ops->vdev_op_leaf)
1745 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1746 
1747 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1748 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1749 
1750 	/*
1751 	 * Spares can't replace logs
1752 	 */
1753 	is_log = oldvd->vdev_islog;
1754 	if (is_log && newvd->vdev_isspare)
1755 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1756 
1757 	if (!replacing) {
1758 		/*
1759 		 * For attach, the only allowable parent is a mirror or the root
1760 		 * vdev.
1761 		 */
1762 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1763 		    pvd->vdev_ops != &vdev_root_ops)
1764 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1765 
1766 		pvops = &vdev_mirror_ops;
1767 	} else {
1768 		/*
1769 		 * Active hot spares can only be replaced by inactive hot
1770 		 * spares.
1771 		 */
1772 		if (pvd->vdev_ops == &vdev_spare_ops &&
1773 		    pvd->vdev_child[1] == oldvd &&
1774 		    !spa_has_spare(spa, newvd->vdev_guid))
1775 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1776 
1777 		/*
1778 		 * If the source is a hot spare, and the parent isn't already a
1779 		 * spare, then we want to create a new hot spare.  Otherwise, we
1780 		 * want to create a replacing vdev.  The user is not allowed to
1781 		 * attach to a spared vdev child unless the 'isspare' state is
1782 		 * the same (spare replaces spare, non-spare replaces
1783 		 * non-spare).
1784 		 */
1785 		if (pvd->vdev_ops == &vdev_replacing_ops)
1786 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1787 		else if (pvd->vdev_ops == &vdev_spare_ops &&
1788 		    newvd->vdev_isspare != oldvd->vdev_isspare)
1789 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1790 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1791 		    newvd->vdev_isspare)
1792 			pvops = &vdev_spare_ops;
1793 		else
1794 			pvops = &vdev_replacing_ops;
1795 	}
1796 
1797 	/*
1798 	 * Compare the new device size with the replaceable/attachable
1799 	 * device size.
1800 	 */
1801 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1802 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1803 
1804 	/*
1805 	 * The new device cannot have a higher alignment requirement
1806 	 * than the top-level vdev.
1807 	 */
1808 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1809 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1810 
1811 	/*
1812 	 * If this is an in-place replacement, update oldvd's path and devid
1813 	 * to make it distinguishable from newvd, and unopenable from now on.
1814 	 */
1815 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1816 		spa_strfree(oldvd->vdev_path);
1817 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1818 		    KM_SLEEP);
1819 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1820 		    newvd->vdev_path, "old");
1821 		if (oldvd->vdev_devid != NULL) {
1822 			spa_strfree(oldvd->vdev_devid);
1823 			oldvd->vdev_devid = NULL;
1824 		}
1825 	}
1826 
1827 	/*
1828 	 * If the parent is not a mirror, or if we're replacing, insert the new
1829 	 * mirror/replacing/spare vdev above oldvd.
1830 	 */
1831 	if (pvd->vdev_ops != pvops)
1832 		pvd = vdev_add_parent(oldvd, pvops);
1833 
1834 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1835 	ASSERT(pvd->vdev_ops == pvops);
1836 	ASSERT(oldvd->vdev_parent == pvd);
1837 
1838 	/*
1839 	 * Extract the new device from its root and add it to pvd.
1840 	 */
1841 	vdev_remove_child(newrootvd, newvd);
1842 	newvd->vdev_id = pvd->vdev_children;
1843 	vdev_add_child(pvd, newvd);
1844 
1845 	/*
1846 	 * If newvd is smaller than oldvd, but larger than its rsize,
1847 	 * the addition of newvd may have decreased our parent's asize.
1848 	 */
1849 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1850 
1851 	tvd = newvd->vdev_top;
1852 	ASSERT(pvd->vdev_top == tvd);
1853 	ASSERT(tvd->vdev_parent == rvd);
1854 
1855 	vdev_config_dirty(tvd);
1856 
1857 	/*
1858 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1859 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1860 	 */
1861 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1862 
1863 	mutex_enter(&newvd->vdev_dtl_lock);
1864 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1865 	    open_txg - TXG_INITIAL + 1);
1866 	mutex_exit(&newvd->vdev_dtl_lock);
1867 
1868 	if (newvd->vdev_isspare)
1869 		spa_spare_activate(newvd);
1870 
1871 	/*
1872 	 * Mark newvd's DTL dirty in this txg.
1873 	 */
1874 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1875 
1876 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1877 
1878 	/*
1879 	 * Kick off a resilver to update newvd.  We need to grab the namespace
1880 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
1881 	 */
1882 	mutex_enter(&spa_namespace_lock);
1883 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1884 	mutex_exit(&spa_namespace_lock);
1885 
1886 	return (0);
1887 }
1888 
1889 /*
1890  * Detach a device from a mirror or replacing vdev.
1891  * If 'replace_done' is specified, only detach if the parent
1892  * is a replacing vdev.
1893  */
1894 int
1895 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1896 {
1897 	uint64_t txg;
1898 	int c, t, error;
1899 	vdev_t *rvd = spa->spa_root_vdev;
1900 	vdev_t *vd, *pvd, *cvd, *tvd;
1901 	boolean_t unspare = B_FALSE;
1902 	uint64_t unspare_guid;
1903 
1904 	txg = spa_vdev_enter(spa);
1905 
1906 	vd = vdev_lookup_by_guid(rvd, guid);
1907 
1908 	if (vd == NULL)
1909 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1910 
1911 	if (!vd->vdev_ops->vdev_op_leaf)
1912 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1913 
1914 	pvd = vd->vdev_parent;
1915 
1916 	/*
1917 	 * If replace_done is specified, only remove this device if it's
1918 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1919 	 * disk can be removed.
1920 	 */
1921 	if (replace_done) {
1922 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1923 			if (vd->vdev_id != 0)
1924 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1925 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1926 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1927 		}
1928 	}
1929 
1930 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1931 	    spa_version(spa) >= SPA_VERSION_SPARES);
1932 
1933 	/*
1934 	 * Only mirror, replacing, and spare vdevs support detach.
1935 	 */
1936 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1937 	    pvd->vdev_ops != &vdev_mirror_ops &&
1938 	    pvd->vdev_ops != &vdev_spare_ops)
1939 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1940 
1941 	/*
1942 	 * If there's only one replica, you can't detach it.
1943 	 */
1944 	if (pvd->vdev_children <= 1)
1945 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1946 
1947 	/*
1948 	 * If all siblings have non-empty DTLs, this device may have the only
1949 	 * valid copy of the data, which means we cannot safely detach it.
1950 	 *
1951 	 * XXX -- as in the vdev_offline() case, we really want a more
1952 	 * precise DTL check.
1953 	 */
1954 	for (c = 0; c < pvd->vdev_children; c++) {
1955 		uint64_t dirty;
1956 
1957 		cvd = pvd->vdev_child[c];
1958 		if (cvd == vd)
1959 			continue;
1960 		if (vdev_is_dead(cvd))
1961 			continue;
1962 		mutex_enter(&cvd->vdev_dtl_lock);
1963 		dirty = cvd->vdev_dtl_map.sm_space |
1964 		    cvd->vdev_dtl_scrub.sm_space;
1965 		mutex_exit(&cvd->vdev_dtl_lock);
1966 		if (!dirty)
1967 			break;
1968 	}
1969 
1970 	/*
1971 	 * If we are a replacing or spare vdev, then we can always detach the
1972 	 * latter child, as that is how one cancels the operation.
1973 	 */
1974 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1975 	    c == pvd->vdev_children)
1976 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1977 
1978 	/*
1979 	 * If we are detaching the original disk from a spare, then it implies
1980 	 * that the spare should become a real disk, and be removed from the
1981 	 * active spare list for the pool.
1982 	 */
1983 	if (pvd->vdev_ops == &vdev_spare_ops &&
1984 	    vd->vdev_id == 0)
1985 		unspare = B_TRUE;
1986 
1987 	/*
1988 	 * Erase the disk labels so the disk can be used for other things.
1989 	 * This must be done after all other error cases are handled,
1990 	 * but before we disembowel vd (so we can still do I/O to it).
1991 	 * But if we can't do it, don't treat the error as fatal --
1992 	 * it may be that the unwritability of the disk is the reason
1993 	 * it's being detached!
1994 	 */
1995 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1996 
1997 	/*
1998 	 * Remove vd from its parent and compact the parent's children.
1999 	 */
2000 	vdev_remove_child(pvd, vd);
2001 	vdev_compact_children(pvd);
2002 
2003 	/*
2004 	 * Remember one of the remaining children so we can get tvd below.
2005 	 */
2006 	cvd = pvd->vdev_child[0];
2007 
2008 	/*
2009 	 * If we need to remove the remaining child from the list of hot spares,
2010 	 * do it now, marking the vdev as no longer a spare in the process.  We
2011 	 * must do this before vdev_remove_parent(), because that can change the
2012 	 * GUID if it creates a new toplevel GUID.
2013 	 */
2014 	if (unspare) {
2015 		ASSERT(cvd->vdev_isspare);
2016 		spa_spare_remove(cvd);
2017 		unspare_guid = cvd->vdev_guid;
2018 	}
2019 
2020 	/*
2021 	 * If the parent mirror/replacing vdev only has one child,
2022 	 * the parent is no longer needed.  Remove it from the tree.
2023 	 */
2024 	if (pvd->vdev_children == 1)
2025 		vdev_remove_parent(cvd);
2026 
2027 	/*
2028 	 * We don't set tvd until now because the parent we just removed
2029 	 * may have been the previous top-level vdev.
2030 	 */
2031 	tvd = cvd->vdev_top;
2032 	ASSERT(tvd->vdev_parent == rvd);
2033 
2034 	/*
2035 	 * Reevaluate the parent vdev state.
2036 	 */
2037 	vdev_propagate_state(cvd);
2038 
2039 	/*
2040 	 * If the device we just detached was smaller than the others, it may be
2041 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2042 	 * can't fail because the existing metaslabs are already in core, so
2043 	 * there's nothing to read from disk.
2044 	 */
2045 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2046 
2047 	vdev_config_dirty(tvd);
2048 
2049 	/*
2050 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2051 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2052 	 * But first make sure we're not on any *other* txg's DTL list, to
2053 	 * prevent vd from being accessed after it's freed.
2054 	 */
2055 	for (t = 0; t < TXG_SIZE; t++)
2056 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2057 	vd->vdev_detached = B_TRUE;
2058 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2059 
2060 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2061 
2062 	error = spa_vdev_exit(spa, vd, txg, 0);
2063 
2064 	/*
2065 	 * If this was the removal of the original device in a hot spare vdev,
2066 	 * then we want to go through and remove the device from the hot spare
2067 	 * list of every other pool.
2068 	 */
2069 	if (unspare) {
2070 		spa = NULL;
2071 		mutex_enter(&spa_namespace_lock);
2072 		while ((spa = spa_next(spa)) != NULL) {
2073 			if (spa->spa_state != POOL_STATE_ACTIVE)
2074 				continue;
2075 
2076 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2077 		}
2078 		mutex_exit(&spa_namespace_lock);
2079 	}
2080 
2081 	return (error);
2082 }
2083 
2084 /*
2085  * Remove a device from the pool.  Currently, this supports removing only hot
2086  * spares.
2087  */
2088 int
2089 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2090 {
2091 	vdev_t *vd;
2092 	nvlist_t **spares, *nv, **newspares;
2093 	uint_t i, j, nspares;
2094 	int ret = 0;
2095 
2096 	spa_config_enter(spa, RW_WRITER, FTAG);
2097 
2098 	vd = spa_lookup_by_guid(spa, guid);
2099 
2100 	nv = NULL;
2101 	if (spa->spa_spares != NULL &&
2102 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2103 	    &spares, &nspares) == 0) {
2104 		for (i = 0; i < nspares; i++) {
2105 			uint64_t theguid;
2106 
2107 			VERIFY(nvlist_lookup_uint64(spares[i],
2108 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2109 			if (theguid == guid) {
2110 				nv = spares[i];
2111 				break;
2112 			}
2113 		}
2114 	}
2115 
2116 	/*
2117 	 * We only support removing a hot spare, and only if it's not currently
2118 	 * in use in this pool.
2119 	 */
2120 	if (nv == NULL && vd == NULL) {
2121 		ret = ENOENT;
2122 		goto out;
2123 	}
2124 
2125 	if (nv == NULL && vd != NULL) {
2126 		ret = ENOTSUP;
2127 		goto out;
2128 	}
2129 
2130 	if (!unspare && nv != NULL && vd != NULL) {
2131 		ret = EBUSY;
2132 		goto out;
2133 	}
2134 
2135 	if (nspares == 1) {
2136 		newspares = NULL;
2137 	} else {
2138 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2139 		    KM_SLEEP);
2140 		for (i = 0, j = 0; i < nspares; i++) {
2141 			if (spares[i] != nv)
2142 				VERIFY(nvlist_dup(spares[i],
2143 				    &newspares[j++], KM_SLEEP) == 0);
2144 		}
2145 	}
2146 
2147 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2148 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2149 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2150 	    newspares, nspares - 1) == 0);
2151 	for (i = 0; i < nspares - 1; i++)
2152 		nvlist_free(newspares[i]);
2153 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2154 	spa_load_spares(spa);
2155 	spa->spa_sync_spares = B_TRUE;
2156 
2157 out:
2158 	spa_config_exit(spa, FTAG);
2159 
2160 	return (ret);
2161 }
2162 
2163 /*
2164  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2165  * current spared, so we can detach it.
2166  */
2167 static vdev_t *
2168 spa_vdev_resilver_done_hunt(vdev_t *vd)
2169 {
2170 	vdev_t *newvd, *oldvd;
2171 	int c;
2172 
2173 	for (c = 0; c < vd->vdev_children; c++) {
2174 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2175 		if (oldvd != NULL)
2176 			return (oldvd);
2177 	}
2178 
2179 	/*
2180 	 * Check for a completed replacement.
2181 	 */
2182 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2183 		oldvd = vd->vdev_child[0];
2184 		newvd = vd->vdev_child[1];
2185 
2186 		mutex_enter(&newvd->vdev_dtl_lock);
2187 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2188 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2189 			mutex_exit(&newvd->vdev_dtl_lock);
2190 			return (oldvd);
2191 		}
2192 		mutex_exit(&newvd->vdev_dtl_lock);
2193 	}
2194 
2195 	/*
2196 	 * Check for a completed resilver with the 'unspare' flag set.
2197 	 */
2198 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2199 		newvd = vd->vdev_child[0];
2200 		oldvd = vd->vdev_child[1];
2201 
2202 		mutex_enter(&newvd->vdev_dtl_lock);
2203 		if (newvd->vdev_unspare &&
2204 		    newvd->vdev_dtl_map.sm_space == 0 &&
2205 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2206 			newvd->vdev_unspare = 0;
2207 			mutex_exit(&newvd->vdev_dtl_lock);
2208 			return (oldvd);
2209 		}
2210 		mutex_exit(&newvd->vdev_dtl_lock);
2211 	}
2212 
2213 	return (NULL);
2214 }
2215 
2216 static void
2217 spa_vdev_resilver_done(spa_t *spa)
2218 {
2219 	vdev_t *vd;
2220 	vdev_t *pvd;
2221 	uint64_t guid;
2222 	uint64_t pguid = 0;
2223 
2224 	spa_config_enter(spa, RW_READER, FTAG);
2225 
2226 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2227 		guid = vd->vdev_guid;
2228 		/*
2229 		 * If we have just finished replacing a hot spared device, then
2230 		 * we need to detach the parent's first child (the original hot
2231 		 * spare) as well.
2232 		 */
2233 		pvd = vd->vdev_parent;
2234 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2235 		    pvd->vdev_id == 0) {
2236 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2237 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2238 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2239 		}
2240 		spa_config_exit(spa, FTAG);
2241 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2242 			return;
2243 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2244 			return;
2245 		spa_config_enter(spa, RW_READER, FTAG);
2246 	}
2247 
2248 	spa_config_exit(spa, FTAG);
2249 }
2250 
2251 /*
2252  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2253  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2254  */
2255 int
2256 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2257 {
2258 	vdev_t *rvd, *vd;
2259 	uint64_t txg;
2260 
2261 	rvd = spa->spa_root_vdev;
2262 
2263 	txg = spa_vdev_enter(spa);
2264 
2265 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2266 		/*
2267 		 * Determine if this is a reference to a hot spare.  In that
2268 		 * case, update the path as stored in the spare list.
2269 		 */
2270 		nvlist_t **spares;
2271 		uint_t i, nspares;
2272 		if (spa->spa_sparelist != NULL) {
2273 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2274 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2275 			for (i = 0; i < nspares; i++) {
2276 				uint64_t theguid;
2277 				VERIFY(nvlist_lookup_uint64(spares[i],
2278 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2279 				if (theguid == guid)
2280 					break;
2281 			}
2282 
2283 			if (i == nspares)
2284 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2285 
2286 			VERIFY(nvlist_add_string(spares[i],
2287 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2288 			spa_load_spares(spa);
2289 			spa->spa_sync_spares = B_TRUE;
2290 			return (spa_vdev_exit(spa, NULL, txg, 0));
2291 		} else {
2292 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2293 		}
2294 	}
2295 
2296 	if (!vd->vdev_ops->vdev_op_leaf)
2297 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2298 
2299 	spa_strfree(vd->vdev_path);
2300 	vd->vdev_path = spa_strdup(newpath);
2301 
2302 	vdev_config_dirty(vd->vdev_top);
2303 
2304 	return (spa_vdev_exit(spa, NULL, txg, 0));
2305 }
2306 
2307 /*
2308  * ==========================================================================
2309  * SPA Scrubbing
2310  * ==========================================================================
2311  */
2312 
2313 static void
2314 spa_scrub_io_done(zio_t *zio)
2315 {
2316 	spa_t *spa = zio->io_spa;
2317 
2318 	arc_data_buf_free(zio->io_data, zio->io_size);
2319 
2320 	mutex_enter(&spa->spa_scrub_lock);
2321 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2322 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2323 		spa->spa_scrub_errors++;
2324 		mutex_enter(&vd->vdev_stat_lock);
2325 		vd->vdev_stat.vs_scrub_errors++;
2326 		mutex_exit(&vd->vdev_stat_lock);
2327 	}
2328 
2329 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2330 		cv_broadcast(&spa->spa_scrub_io_cv);
2331 
2332 	ASSERT(spa->spa_scrub_inflight >= 0);
2333 
2334 	mutex_exit(&spa->spa_scrub_lock);
2335 }
2336 
2337 static void
2338 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2339     zbookmark_t *zb)
2340 {
2341 	size_t size = BP_GET_LSIZE(bp);
2342 	void *data;
2343 
2344 	mutex_enter(&spa->spa_scrub_lock);
2345 	/*
2346 	 * Do not give too much work to vdev(s).
2347 	 */
2348 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2349 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2350 	}
2351 	spa->spa_scrub_inflight++;
2352 	mutex_exit(&spa->spa_scrub_lock);
2353 
2354 	data = arc_data_buf_alloc(size);
2355 
2356 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2357 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2358 
2359 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2360 
2361 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2362 	    spa_scrub_io_done, NULL, priority, flags, zb));
2363 }
2364 
2365 /* ARGSUSED */
2366 static int
2367 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2368 {
2369 	blkptr_t *bp = &bc->bc_blkptr;
2370 	vdev_t *vd = spa->spa_root_vdev;
2371 	dva_t *dva = bp->blk_dva;
2372 	int needs_resilver = B_FALSE;
2373 	int d;
2374 
2375 	if (bc->bc_errno) {
2376 		/*
2377 		 * We can't scrub this block, but we can continue to scrub
2378 		 * the rest of the pool.  Note the error and move along.
2379 		 */
2380 		mutex_enter(&spa->spa_scrub_lock);
2381 		spa->spa_scrub_errors++;
2382 		mutex_exit(&spa->spa_scrub_lock);
2383 
2384 		mutex_enter(&vd->vdev_stat_lock);
2385 		vd->vdev_stat.vs_scrub_errors++;
2386 		mutex_exit(&vd->vdev_stat_lock);
2387 
2388 		return (ERESTART);
2389 	}
2390 
2391 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2392 
2393 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2394 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2395 
2396 		ASSERT(vd != NULL);
2397 
2398 		/*
2399 		 * Keep track of how much data we've examined so that
2400 		 * zpool(1M) status can make useful progress reports.
2401 		 */
2402 		mutex_enter(&vd->vdev_stat_lock);
2403 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2404 		mutex_exit(&vd->vdev_stat_lock);
2405 
2406 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2407 			if (DVA_GET_GANG(&dva[d])) {
2408 				/*
2409 				 * Gang members may be spread across multiple
2410 				 * vdevs, so the best we can do is look at the
2411 				 * pool-wide DTL.
2412 				 * XXX -- it would be better to change our
2413 				 * allocation policy to ensure that this can't
2414 				 * happen.
2415 				 */
2416 				vd = spa->spa_root_vdev;
2417 			}
2418 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2419 			    bp->blk_birth, 1))
2420 				needs_resilver = B_TRUE;
2421 		}
2422 	}
2423 
2424 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2425 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2426 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2427 	else if (needs_resilver)
2428 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2429 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2430 
2431 	return (0);
2432 }
2433 
2434 static void
2435 spa_scrub_thread(spa_t *spa)
2436 {
2437 	callb_cpr_t cprinfo;
2438 	traverse_handle_t *th = spa->spa_scrub_th;
2439 	vdev_t *rvd = spa->spa_root_vdev;
2440 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2441 	int error = 0;
2442 	boolean_t complete;
2443 
2444 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2445 
2446 	/*
2447 	 * If we're restarting due to a snapshot create/delete,
2448 	 * wait for that to complete.
2449 	 */
2450 	txg_wait_synced(spa_get_dsl(spa), 0);
2451 
2452 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2453 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2454 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2455 
2456 	spa_config_enter(spa, RW_WRITER, FTAG);
2457 	vdev_reopen(rvd);		/* purge all vdev caches */
2458 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2459 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2460 	spa_config_exit(spa, FTAG);
2461 
2462 	mutex_enter(&spa->spa_scrub_lock);
2463 	spa->spa_scrub_errors = 0;
2464 	spa->spa_scrub_active = 1;
2465 	ASSERT(spa->spa_scrub_inflight == 0);
2466 
2467 	while (!spa->spa_scrub_stop) {
2468 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2469 		while (spa->spa_scrub_suspended) {
2470 			spa->spa_scrub_active = 0;
2471 			cv_broadcast(&spa->spa_scrub_cv);
2472 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2473 			spa->spa_scrub_active = 1;
2474 		}
2475 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2476 
2477 		if (spa->spa_scrub_restart_txg != 0)
2478 			break;
2479 
2480 		mutex_exit(&spa->spa_scrub_lock);
2481 		error = traverse_more(th);
2482 		mutex_enter(&spa->spa_scrub_lock);
2483 		if (error != EAGAIN)
2484 			break;
2485 	}
2486 
2487 	while (spa->spa_scrub_inflight)
2488 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2489 
2490 	spa->spa_scrub_active = 0;
2491 	cv_broadcast(&spa->spa_scrub_cv);
2492 
2493 	mutex_exit(&spa->spa_scrub_lock);
2494 
2495 	spa_config_enter(spa, RW_WRITER, FTAG);
2496 
2497 	mutex_enter(&spa->spa_scrub_lock);
2498 
2499 	/*
2500 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2501 	 * AND the spa config lock to synchronize with any config changes
2502 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2503 	 */
2504 	if (spa->spa_scrub_restart_txg != 0)
2505 		error = ERESTART;
2506 
2507 	if (spa->spa_scrub_stop)
2508 		error = EINTR;
2509 
2510 	/*
2511 	 * Even if there were uncorrectable errors, we consider the scrub
2512 	 * completed.  The downside is that if there is a transient error during
2513 	 * a resilver, we won't resilver the data properly to the target.  But
2514 	 * if the damage is permanent (more likely) we will resilver forever,
2515 	 * which isn't really acceptable.  Since there is enough information for
2516 	 * the user to know what has failed and why, this seems like a more
2517 	 * tractable approach.
2518 	 */
2519 	complete = (error == 0);
2520 
2521 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2522 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2523 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2524 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2525 
2526 	mutex_exit(&spa->spa_scrub_lock);
2527 
2528 	/*
2529 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2530 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2531 	 */
2532 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2533 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2534 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2535 	spa_errlog_rotate(spa);
2536 
2537 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2538 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2539 
2540 	spa_config_exit(spa, FTAG);
2541 
2542 	mutex_enter(&spa->spa_scrub_lock);
2543 
2544 	/*
2545 	 * We may have finished replacing a device.
2546 	 * Let the async thread assess this and handle the detach.
2547 	 */
2548 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2549 
2550 	/*
2551 	 * If we were told to restart, our final act is to start a new scrub.
2552 	 */
2553 	if (error == ERESTART)
2554 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2555 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2556 
2557 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2558 	spa->spa_scrub_active = 0;
2559 	spa->spa_scrub_thread = NULL;
2560 	cv_broadcast(&spa->spa_scrub_cv);
2561 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2562 	thread_exit();
2563 }
2564 
2565 void
2566 spa_scrub_suspend(spa_t *spa)
2567 {
2568 	mutex_enter(&spa->spa_scrub_lock);
2569 	spa->spa_scrub_suspended++;
2570 	while (spa->spa_scrub_active) {
2571 		cv_broadcast(&spa->spa_scrub_cv);
2572 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2573 	}
2574 	while (spa->spa_scrub_inflight)
2575 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2576 	mutex_exit(&spa->spa_scrub_lock);
2577 }
2578 
2579 void
2580 spa_scrub_resume(spa_t *spa)
2581 {
2582 	mutex_enter(&spa->spa_scrub_lock);
2583 	ASSERT(spa->spa_scrub_suspended != 0);
2584 	if (--spa->spa_scrub_suspended == 0)
2585 		cv_broadcast(&spa->spa_scrub_cv);
2586 	mutex_exit(&spa->spa_scrub_lock);
2587 }
2588 
2589 void
2590 spa_scrub_restart(spa_t *spa, uint64_t txg)
2591 {
2592 	/*
2593 	 * Something happened (e.g. snapshot create/delete) that means
2594 	 * we must restart any in-progress scrubs.  The itinerary will
2595 	 * fix this properly.
2596 	 */
2597 	mutex_enter(&spa->spa_scrub_lock);
2598 	spa->spa_scrub_restart_txg = txg;
2599 	mutex_exit(&spa->spa_scrub_lock);
2600 }
2601 
2602 int
2603 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2604 {
2605 	space_seg_t *ss;
2606 	uint64_t mintxg, maxtxg;
2607 	vdev_t *rvd = spa->spa_root_vdev;
2608 
2609 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2610 		return (ENOTSUP);
2611 
2612 	mutex_enter(&spa->spa_scrub_lock);
2613 
2614 	/*
2615 	 * If there's a scrub or resilver already in progress, stop it.
2616 	 */
2617 	while (spa->spa_scrub_thread != NULL) {
2618 		/*
2619 		 * Don't stop a resilver unless forced.
2620 		 */
2621 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2622 			mutex_exit(&spa->spa_scrub_lock);
2623 			return (EBUSY);
2624 		}
2625 		spa->spa_scrub_stop = 1;
2626 		cv_broadcast(&spa->spa_scrub_cv);
2627 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2628 	}
2629 
2630 	/*
2631 	 * Terminate the previous traverse.
2632 	 */
2633 	if (spa->spa_scrub_th != NULL) {
2634 		traverse_fini(spa->spa_scrub_th);
2635 		spa->spa_scrub_th = NULL;
2636 	}
2637 
2638 	if (rvd == NULL) {
2639 		ASSERT(spa->spa_scrub_stop == 0);
2640 		ASSERT(spa->spa_scrub_type == type);
2641 		ASSERT(spa->spa_scrub_restart_txg == 0);
2642 		mutex_exit(&spa->spa_scrub_lock);
2643 		return (0);
2644 	}
2645 
2646 	mintxg = TXG_INITIAL - 1;
2647 	maxtxg = spa_last_synced_txg(spa) + 1;
2648 
2649 	mutex_enter(&rvd->vdev_dtl_lock);
2650 
2651 	if (rvd->vdev_dtl_map.sm_space == 0) {
2652 		/*
2653 		 * The pool-wide DTL is empty.
2654 		 * If this is a resilver, there's nothing to do except
2655 		 * check whether any in-progress replacements have completed.
2656 		 */
2657 		if (type == POOL_SCRUB_RESILVER) {
2658 			type = POOL_SCRUB_NONE;
2659 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2660 		}
2661 	} else {
2662 		/*
2663 		 * The pool-wide DTL is non-empty.
2664 		 * If this is a normal scrub, upgrade to a resilver instead.
2665 		 */
2666 		if (type == POOL_SCRUB_EVERYTHING)
2667 			type = POOL_SCRUB_RESILVER;
2668 	}
2669 
2670 	if (type == POOL_SCRUB_RESILVER) {
2671 		/*
2672 		 * Determine the resilvering boundaries.
2673 		 *
2674 		 * Note: (mintxg, maxtxg) is an open interval,
2675 		 * i.e. mintxg and maxtxg themselves are not included.
2676 		 *
2677 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2678 		 * so we don't claim to resilver a txg that's still changing.
2679 		 */
2680 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2681 		mintxg = ss->ss_start - 1;
2682 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2683 		maxtxg = MIN(ss->ss_end, maxtxg);
2684 
2685 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
2686 	}
2687 
2688 	mutex_exit(&rvd->vdev_dtl_lock);
2689 
2690 	spa->spa_scrub_stop = 0;
2691 	spa->spa_scrub_type = type;
2692 	spa->spa_scrub_restart_txg = 0;
2693 
2694 	if (type != POOL_SCRUB_NONE) {
2695 		spa->spa_scrub_mintxg = mintxg;
2696 		spa->spa_scrub_maxtxg = maxtxg;
2697 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2698 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2699 		    ZIO_FLAG_CANFAIL);
2700 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2701 		spa->spa_scrub_thread = thread_create(NULL, 0,
2702 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2703 	}
2704 
2705 	mutex_exit(&spa->spa_scrub_lock);
2706 
2707 	return (0);
2708 }
2709 
2710 /*
2711  * ==========================================================================
2712  * SPA async task processing
2713  * ==========================================================================
2714  */
2715 
2716 static void
2717 spa_async_remove(spa_t *spa, vdev_t *vd)
2718 {
2719 	vdev_t *tvd;
2720 	int c;
2721 
2722 	for (c = 0; c < vd->vdev_children; c++) {
2723 		tvd = vd->vdev_child[c];
2724 		if (tvd->vdev_remove_wanted) {
2725 			tvd->vdev_remove_wanted = 0;
2726 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
2727 			    VDEV_AUX_NONE);
2728 			vdev_clear(spa, tvd);
2729 			vdev_config_dirty(tvd->vdev_top);
2730 		}
2731 		spa_async_remove(spa, tvd);
2732 	}
2733 }
2734 
2735 static void
2736 spa_async_thread(spa_t *spa)
2737 {
2738 	int tasks;
2739 	uint64_t txg;
2740 
2741 	ASSERT(spa->spa_sync_on);
2742 
2743 	mutex_enter(&spa->spa_async_lock);
2744 	tasks = spa->spa_async_tasks;
2745 	spa->spa_async_tasks = 0;
2746 	mutex_exit(&spa->spa_async_lock);
2747 
2748 	/*
2749 	 * See if the config needs to be updated.
2750 	 */
2751 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2752 		mutex_enter(&spa_namespace_lock);
2753 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2754 		mutex_exit(&spa_namespace_lock);
2755 	}
2756 
2757 	/*
2758 	 * See if any devices need to be marked REMOVED.
2759 	 */
2760 	if (tasks & SPA_ASYNC_REMOVE) {
2761 		txg = spa_vdev_enter(spa);
2762 		spa_async_remove(spa, spa->spa_root_vdev);
2763 		(void) spa_vdev_exit(spa, NULL, txg, 0);
2764 	}
2765 
2766 	/*
2767 	 * If any devices are done replacing, detach them.
2768 	 */
2769 	if (tasks & SPA_ASYNC_RESILVER_DONE)
2770 		spa_vdev_resilver_done(spa);
2771 
2772 	/*
2773 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
2774 	 * scrub which can become a resilver), we need to hold
2775 	 * spa_namespace_lock() because the sysevent we post via
2776 	 * spa_event_notify() needs to get the name of the pool.
2777 	 */
2778 	if (tasks & SPA_ASYNC_SCRUB) {
2779 		mutex_enter(&spa_namespace_lock);
2780 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2781 		mutex_exit(&spa_namespace_lock);
2782 	}
2783 
2784 	/*
2785 	 * Kick off a resilver.
2786 	 */
2787 	if (tasks & SPA_ASYNC_RESILVER) {
2788 		mutex_enter(&spa_namespace_lock);
2789 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2790 		mutex_exit(&spa_namespace_lock);
2791 	}
2792 
2793 	/*
2794 	 * Let the world know that we're done.
2795 	 */
2796 	mutex_enter(&spa->spa_async_lock);
2797 	spa->spa_async_thread = NULL;
2798 	cv_broadcast(&spa->spa_async_cv);
2799 	mutex_exit(&spa->spa_async_lock);
2800 	thread_exit();
2801 }
2802 
2803 void
2804 spa_async_suspend(spa_t *spa)
2805 {
2806 	mutex_enter(&spa->spa_async_lock);
2807 	spa->spa_async_suspended++;
2808 	while (spa->spa_async_thread != NULL)
2809 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2810 	mutex_exit(&spa->spa_async_lock);
2811 }
2812 
2813 void
2814 spa_async_resume(spa_t *spa)
2815 {
2816 	mutex_enter(&spa->spa_async_lock);
2817 	ASSERT(spa->spa_async_suspended != 0);
2818 	spa->spa_async_suspended--;
2819 	mutex_exit(&spa->spa_async_lock);
2820 }
2821 
2822 static void
2823 spa_async_dispatch(spa_t *spa)
2824 {
2825 	mutex_enter(&spa->spa_async_lock);
2826 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2827 	    spa->spa_async_thread == NULL &&
2828 	    rootdir != NULL && !vn_is_readonly(rootdir))
2829 		spa->spa_async_thread = thread_create(NULL, 0,
2830 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2831 	mutex_exit(&spa->spa_async_lock);
2832 }
2833 
2834 void
2835 spa_async_request(spa_t *spa, int task)
2836 {
2837 	mutex_enter(&spa->spa_async_lock);
2838 	spa->spa_async_tasks |= task;
2839 	mutex_exit(&spa->spa_async_lock);
2840 }
2841 
2842 /*
2843  * ==========================================================================
2844  * SPA syncing routines
2845  * ==========================================================================
2846  */
2847 
2848 static void
2849 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2850 {
2851 	bplist_t *bpl = &spa->spa_sync_bplist;
2852 	dmu_tx_t *tx;
2853 	blkptr_t blk;
2854 	uint64_t itor = 0;
2855 	zio_t *zio;
2856 	int error;
2857 	uint8_t c = 1;
2858 
2859 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2860 
2861 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2862 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2863 
2864 	error = zio_wait(zio);
2865 	ASSERT3U(error, ==, 0);
2866 
2867 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2868 	bplist_vacate(bpl, tx);
2869 
2870 	/*
2871 	 * Pre-dirty the first block so we sync to convergence faster.
2872 	 * (Usually only the first block is needed.)
2873 	 */
2874 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2875 	dmu_tx_commit(tx);
2876 }
2877 
2878 static void
2879 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2880 {
2881 	char *packed = NULL;
2882 	size_t nvsize = 0;
2883 	dmu_buf_t *db;
2884 
2885 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2886 
2887 	packed = kmem_alloc(nvsize, KM_SLEEP);
2888 
2889 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2890 	    KM_SLEEP) == 0);
2891 
2892 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2893 
2894 	kmem_free(packed, nvsize);
2895 
2896 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2897 	dmu_buf_will_dirty(db, tx);
2898 	*(uint64_t *)db->db_data = nvsize;
2899 	dmu_buf_rele(db, FTAG);
2900 }
2901 
2902 static void
2903 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2904 {
2905 	nvlist_t *nvroot;
2906 	nvlist_t **spares;
2907 	int i;
2908 
2909 	if (!spa->spa_sync_spares)
2910 		return;
2911 
2912 	/*
2913 	 * Update the MOS nvlist describing the list of available spares.
2914 	 * spa_validate_spares() will have already made sure this nvlist is
2915 	 * valid and the vdevs are labeled appropriately.
2916 	 */
2917 	if (spa->spa_spares_object == 0) {
2918 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2919 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2920 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2921 		VERIFY(zap_update(spa->spa_meta_objset,
2922 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2923 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2924 	}
2925 
2926 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2927 	if (spa->spa_nspares == 0) {
2928 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2929 		    NULL, 0) == 0);
2930 	} else {
2931 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2932 		    KM_SLEEP);
2933 		for (i = 0; i < spa->spa_nspares; i++)
2934 			spares[i] = vdev_config_generate(spa,
2935 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2936 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2937 		    spares, spa->spa_nspares) == 0);
2938 		for (i = 0; i < spa->spa_nspares; i++)
2939 			nvlist_free(spares[i]);
2940 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2941 	}
2942 
2943 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2944 	nvlist_free(nvroot);
2945 
2946 	spa->spa_sync_spares = B_FALSE;
2947 }
2948 
2949 static void
2950 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2951 {
2952 	nvlist_t *config;
2953 
2954 	if (list_is_empty(&spa->spa_dirty_list))
2955 		return;
2956 
2957 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2958 
2959 	if (spa->spa_config_syncing)
2960 		nvlist_free(spa->spa_config_syncing);
2961 	spa->spa_config_syncing = config;
2962 
2963 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2964 }
2965 
2966 static void
2967 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
2968 {
2969 	spa_t *spa = arg1;
2970 	nvlist_t *nvp = arg2;
2971 	nvpair_t *nvpair;
2972 	objset_t *mos = spa->spa_meta_objset;
2973 	uint64_t zapobj;
2974 	uint64_t intval;
2975 
2976 	mutex_enter(&spa->spa_props_lock);
2977 	if (spa->spa_pool_props_object == 0) {
2978 		zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
2979 		VERIFY(zapobj > 0);
2980 
2981 		spa->spa_pool_props_object = zapobj;
2982 
2983 		VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
2984 		    DMU_POOL_PROPS, 8, 1,
2985 		    &spa->spa_pool_props_object, tx) == 0);
2986 	}
2987 	mutex_exit(&spa->spa_props_lock);
2988 
2989 	nvpair = NULL;
2990 	while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
2991 		switch (zpool_name_to_prop(nvpair_name(nvpair))) {
2992 		case ZPOOL_PROP_DELEGATION:
2993 			VERIFY(nvlist_lookup_uint64(nvp,
2994 			    nvpair_name(nvpair), &intval) == 0);
2995 			VERIFY(zap_update(mos,
2996 			    spa->spa_pool_props_object,
2997 			    nvpair_name(nvpair), 8, 1,
2998 			    &intval, tx) == 0);
2999 			spa->spa_delegation = intval;
3000 			break;
3001 		case ZPOOL_PROP_BOOTFS:
3002 			VERIFY(nvlist_lookup_uint64(nvp,
3003 			    nvpair_name(nvpair), &spa->spa_bootfs) == 0);
3004 			intval = spa->spa_bootfs;
3005 			VERIFY(zap_update(mos,
3006 			    spa->spa_pool_props_object,
3007 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 8, 1,
3008 			    &intval, tx) == 0);
3009 			break;
3010 
3011 		case ZPOOL_PROP_AUTOREPLACE:
3012 			VERIFY(nvlist_lookup_uint64(nvp,
3013 			    nvpair_name(nvpair), &intval) == 0);
3014 			VERIFY(zap_update(mos,
3015 			    spa->spa_pool_props_object,
3016 			    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 8, 1,
3017 			    &intval, tx) == 0);
3018 			break;
3019 		}
3020 		spa_history_internal_log(LOG_POOL_PROPSET,
3021 		    spa, tx, cr, "%s %lld %s",
3022 		    nvpair_name(nvpair), intval,
3023 		    spa->spa_name);
3024 	}
3025 }
3026 
3027 /*
3028  * Sync the specified transaction group.  New blocks may be dirtied as
3029  * part of the process, so we iterate until it converges.
3030  */
3031 void
3032 spa_sync(spa_t *spa, uint64_t txg)
3033 {
3034 	dsl_pool_t *dp = spa->spa_dsl_pool;
3035 	objset_t *mos = spa->spa_meta_objset;
3036 	bplist_t *bpl = &spa->spa_sync_bplist;
3037 	vdev_t *rvd = spa->spa_root_vdev;
3038 	vdev_t *vd;
3039 	dmu_tx_t *tx;
3040 	int dirty_vdevs;
3041 
3042 	/*
3043 	 * Lock out configuration changes.
3044 	 */
3045 	spa_config_enter(spa, RW_READER, FTAG);
3046 
3047 	spa->spa_syncing_txg = txg;
3048 	spa->spa_sync_pass = 0;
3049 
3050 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3051 
3052 	tx = dmu_tx_create_assigned(dp, txg);
3053 
3054 	/*
3055 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3056 	 * set spa_deflate if we have no raid-z vdevs.
3057 	 */
3058 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3059 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3060 		int i;
3061 
3062 		for (i = 0; i < rvd->vdev_children; i++) {
3063 			vd = rvd->vdev_child[i];
3064 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3065 				break;
3066 		}
3067 		if (i == rvd->vdev_children) {
3068 			spa->spa_deflate = TRUE;
3069 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3070 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3071 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3072 		}
3073 	}
3074 
3075 	/*
3076 	 * If anything has changed in this txg, push the deferred frees
3077 	 * from the previous txg.  If not, leave them alone so that we
3078 	 * don't generate work on an otherwise idle system.
3079 	 */
3080 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3081 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3082 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3083 		spa_sync_deferred_frees(spa, txg);
3084 
3085 	/*
3086 	 * Iterate to convergence.
3087 	 */
3088 	do {
3089 		spa->spa_sync_pass++;
3090 
3091 		spa_sync_config_object(spa, tx);
3092 		spa_sync_spares(spa, tx);
3093 		spa_errlog_sync(spa, txg);
3094 		dsl_pool_sync(dp, txg);
3095 
3096 		dirty_vdevs = 0;
3097 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3098 			vdev_sync(vd, txg);
3099 			dirty_vdevs++;
3100 		}
3101 
3102 		bplist_sync(bpl, tx);
3103 	} while (dirty_vdevs);
3104 
3105 	bplist_close(bpl);
3106 
3107 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3108 
3109 	/*
3110 	 * Rewrite the vdev configuration (which includes the uberblock)
3111 	 * to commit the transaction group.
3112 	 *
3113 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3114 	 * Otherwise, pick a random top-level vdev that's known to be
3115 	 * visible in the config cache (see spa_vdev_add() for details).
3116 	 * If the write fails, try the next vdev until we're tried them all.
3117 	 */
3118 	if (!list_is_empty(&spa->spa_dirty_list)) {
3119 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3120 	} else {
3121 		int children = rvd->vdev_children;
3122 		int c0 = spa_get_random(children);
3123 		int c;
3124 
3125 		for (c = 0; c < children; c++) {
3126 			vd = rvd->vdev_child[(c0 + c) % children];
3127 			if (vd->vdev_ms_array == 0)
3128 				continue;
3129 			if (vdev_config_sync(vd, txg) == 0)
3130 				break;
3131 		}
3132 		if (c == children)
3133 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3134 	}
3135 
3136 	dmu_tx_commit(tx);
3137 
3138 	/*
3139 	 * Clear the dirty config list.
3140 	 */
3141 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3142 		vdev_config_clean(vd);
3143 
3144 	/*
3145 	 * Now that the new config has synced transactionally,
3146 	 * let it become visible to the config cache.
3147 	 */
3148 	if (spa->spa_config_syncing != NULL) {
3149 		spa_config_set(spa, spa->spa_config_syncing);
3150 		spa->spa_config_txg = txg;
3151 		spa->spa_config_syncing = NULL;
3152 	}
3153 
3154 	/*
3155 	 * Make a stable copy of the fully synced uberblock.
3156 	 * We use this as the root for pool traversals.
3157 	 */
3158 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3159 
3160 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3161 
3162 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3163 	spa->spa_traverse_wanted = 0;
3164 	spa->spa_ubsync = spa->spa_uberblock;
3165 	rw_exit(&spa->spa_traverse_lock);
3166 
3167 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3168 
3169 	/*
3170 	 * Clean up the ZIL records for the synced txg.
3171 	 */
3172 	dsl_pool_zil_clean(dp);
3173 
3174 	/*
3175 	 * Update usable space statistics.
3176 	 */
3177 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3178 		vdev_sync_done(vd, txg);
3179 
3180 	/*
3181 	 * It had better be the case that we didn't dirty anything
3182 	 * since vdev_config_sync().
3183 	 */
3184 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3185 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3186 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3187 	ASSERT(bpl->bpl_queue == NULL);
3188 
3189 	spa_config_exit(spa, FTAG);
3190 
3191 	/*
3192 	 * If any async tasks have been requested, kick them off.
3193 	 */
3194 	spa_async_dispatch(spa);
3195 }
3196 
3197 /*
3198  * Sync all pools.  We don't want to hold the namespace lock across these
3199  * operations, so we take a reference on the spa_t and drop the lock during the
3200  * sync.
3201  */
3202 void
3203 spa_sync_allpools(void)
3204 {
3205 	spa_t *spa = NULL;
3206 	mutex_enter(&spa_namespace_lock);
3207 	while ((spa = spa_next(spa)) != NULL) {
3208 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3209 			continue;
3210 		spa_open_ref(spa, FTAG);
3211 		mutex_exit(&spa_namespace_lock);
3212 		txg_wait_synced(spa_get_dsl(spa), 0);
3213 		mutex_enter(&spa_namespace_lock);
3214 		spa_close(spa, FTAG);
3215 	}
3216 	mutex_exit(&spa_namespace_lock);
3217 }
3218 
3219 /*
3220  * ==========================================================================
3221  * Miscellaneous routines
3222  * ==========================================================================
3223  */
3224 
3225 /*
3226  * Remove all pools in the system.
3227  */
3228 void
3229 spa_evict_all(void)
3230 {
3231 	spa_t *spa;
3232 
3233 	/*
3234 	 * Remove all cached state.  All pools should be closed now,
3235 	 * so every spa in the AVL tree should be unreferenced.
3236 	 */
3237 	mutex_enter(&spa_namespace_lock);
3238 	while ((spa = spa_next(NULL)) != NULL) {
3239 		/*
3240 		 * Stop async tasks.  The async thread may need to detach
3241 		 * a device that's been replaced, which requires grabbing
3242 		 * spa_namespace_lock, so we must drop it here.
3243 		 */
3244 		spa_open_ref(spa, FTAG);
3245 		mutex_exit(&spa_namespace_lock);
3246 		spa_async_suspend(spa);
3247 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3248 		mutex_enter(&spa_namespace_lock);
3249 		spa_close(spa, FTAG);
3250 
3251 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3252 			spa_unload(spa);
3253 			spa_deactivate(spa);
3254 		}
3255 		spa_remove(spa);
3256 	}
3257 	mutex_exit(&spa_namespace_lock);
3258 }
3259 
3260 vdev_t *
3261 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3262 {
3263 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3264 }
3265 
3266 void
3267 spa_upgrade(spa_t *spa)
3268 {
3269 	spa_config_enter(spa, RW_WRITER, FTAG);
3270 
3271 	/*
3272 	 * This should only be called for a non-faulted pool, and since a
3273 	 * future version would result in an unopenable pool, this shouldn't be
3274 	 * possible.
3275 	 */
3276 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
3277 
3278 	spa->spa_uberblock.ub_version = SPA_VERSION;
3279 	vdev_config_dirty(spa->spa_root_vdev);
3280 
3281 	spa_config_exit(spa, FTAG);
3282 
3283 	txg_wait_synced(spa_get_dsl(spa), 0);
3284 }
3285 
3286 boolean_t
3287 spa_has_spare(spa_t *spa, uint64_t guid)
3288 {
3289 	int i;
3290 	uint64_t spareguid;
3291 
3292 	for (i = 0; i < spa->spa_nspares; i++)
3293 		if (spa->spa_spares[i]->vdev_guid == guid)
3294 			return (B_TRUE);
3295 
3296 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3297 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3298 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3299 		    spareguid == guid)
3300 			return (B_TRUE);
3301 	}
3302 
3303 	return (B_FALSE);
3304 }
3305 
3306 int
3307 spa_set_props(spa_t *spa, nvlist_t *nvp)
3308 {
3309 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
3310 	    spa, nvp, 3));
3311 }
3312 
3313 int
3314 spa_get_props(spa_t *spa, nvlist_t **nvp)
3315 {
3316 	zap_cursor_t zc;
3317 	zap_attribute_t za;
3318 	objset_t *mos = spa->spa_meta_objset;
3319 	zfs_source_t src;
3320 	zpool_prop_t prop;
3321 	nvlist_t *propval;
3322 	uint64_t value;
3323 	int err;
3324 
3325 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3326 
3327 	mutex_enter(&spa->spa_props_lock);
3328 	/* If no props object, then just return empty nvlist */
3329 	if (spa->spa_pool_props_object == 0) {
3330 		mutex_exit(&spa->spa_props_lock);
3331 		return (0);
3332 	}
3333 
3334 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
3335 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
3336 	    zap_cursor_advance(&zc)) {
3337 
3338 		if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
3339 			continue;
3340 
3341 		VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3342 		switch (za.za_integer_length) {
3343 		case 8:
3344 			if (zpool_prop_default_numeric(prop) ==
3345 			    za.za_first_integer)
3346 				src = ZFS_SRC_DEFAULT;
3347 			else
3348 				src = ZFS_SRC_LOCAL;
3349 			value = za.za_first_integer;
3350 
3351 			if (prop == ZPOOL_PROP_BOOTFS) {
3352 				dsl_pool_t *dp;
3353 				dsl_dataset_t *ds = NULL;
3354 				char strval[MAXPATHLEN];
3355 
3356 				dp = spa_get_dsl(spa);
3357 				rw_enter(&dp->dp_config_rwlock, RW_READER);
3358 				if ((err = dsl_dataset_open_obj(dp,
3359 				    za.za_first_integer, NULL, DS_MODE_NONE,
3360 				    FTAG, &ds)) != 0) {
3361 					rw_exit(&dp->dp_config_rwlock);
3362 					break;
3363 				}
3364 				dsl_dataset_name(ds, strval);
3365 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
3366 				rw_exit(&dp->dp_config_rwlock);
3367 
3368 				VERIFY(nvlist_add_uint64(propval,
3369 				    ZFS_PROP_SOURCE, src) == 0);
3370 				VERIFY(nvlist_add_string(propval,
3371 				    ZFS_PROP_VALUE, strval) == 0);
3372 			} else {
3373 				VERIFY(nvlist_add_uint64(propval,
3374 				    ZFS_PROP_SOURCE, src) == 0);
3375 				VERIFY(nvlist_add_uint64(propval,
3376 				    ZFS_PROP_VALUE, value) == 0);
3377 			}
3378 			VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
3379 			    propval) == 0);
3380 			break;
3381 		}
3382 		nvlist_free(propval);
3383 	}
3384 	zap_cursor_fini(&zc);
3385 	mutex_exit(&spa->spa_props_lock);
3386 	if (err && err != ENOENT) {
3387 		nvlist_free(*nvp);
3388 		return (err);
3389 	}
3390 
3391 	return (0);
3392 }
3393 
3394 /*
3395  * If the bootfs property value is dsobj, clear it.
3396  */
3397 void
3398 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
3399 {
3400 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
3401 		VERIFY(zap_remove(spa->spa_meta_objset,
3402 		    spa->spa_pool_props_object,
3403 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
3404 		spa->spa_bootfs = 0;
3405 	}
3406 }
3407 
3408 /*
3409  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3410  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3411  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3412  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3413  * or zdb as real changes.
3414  */
3415 void
3416 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3417 {
3418 #ifdef _KERNEL
3419 	sysevent_t		*ev;
3420 	sysevent_attr_list_t	*attr = NULL;
3421 	sysevent_value_t	value;
3422 	sysevent_id_t		eid;
3423 
3424 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3425 	    SE_SLEEP);
3426 
3427 	value.value_type = SE_DATA_TYPE_STRING;
3428 	value.value.sv_string = spa_name(spa);
3429 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3430 		goto done;
3431 
3432 	value.value_type = SE_DATA_TYPE_UINT64;
3433 	value.value.sv_uint64 = spa_guid(spa);
3434 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3435 		goto done;
3436 
3437 	if (vd) {
3438 		value.value_type = SE_DATA_TYPE_UINT64;
3439 		value.value.sv_uint64 = vd->vdev_guid;
3440 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3441 		    SE_SLEEP) != 0)
3442 			goto done;
3443 
3444 		if (vd->vdev_path) {
3445 			value.value_type = SE_DATA_TYPE_STRING;
3446 			value.value.sv_string = vd->vdev_path;
3447 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3448 			    &value, SE_SLEEP) != 0)
3449 				goto done;
3450 		}
3451 	}
3452 
3453 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3454 
3455 done:
3456 	if (attr)
3457 		sysevent_free_attr(attr);
3458 	sysevent_free(ev);
3459 #endif
3460 }
3461