spa.c revision e69acc927b15c46de46ae637e53e1b808990a5bc
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu.h>
39#include <sys/dmu_tx.h>
40#include <sys/zap.h>
41#include <sys/zil.h>
42#include <sys/ddt.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/metaslab_impl.h>
46#include <sys/uberblock_impl.h>
47#include <sys/txg.h>
48#include <sys/avl.h>
49#include <sys/dmu_traverse.h>
50#include <sys/dmu_objset.h>
51#include <sys/unique.h>
52#include <sys/dsl_pool.h>
53#include <sys/dsl_dataset.h>
54#include <sys/dsl_dir.h>
55#include <sys/dsl_prop.h>
56#include <sys/dsl_synctask.h>
57#include <sys/fs/zfs.h>
58#include <sys/arc.h>
59#include <sys/callb.h>
60#include <sys/systeminfo.h>
61#include <sys/spa_boot.h>
62#include <sys/zfs_ioctl.h>
63
64#ifdef	_KERNEL
65#include <sys/bootprops.h>
66#include <sys/callb.h>
67#include <sys/cpupart.h>
68#include <sys/pool.h>
69#include <sys/sysdc.h>
70#include <sys/zone.h>
71#endif	/* _KERNEL */
72
73#include "zfs_prop.h"
74#include "zfs_comutil.h"
75
76typedef enum zti_modes {
77	zti_mode_fixed,			/* value is # of threads (min 1) */
78	zti_mode_online_percent,	/* value is % of online CPUs */
79	zti_mode_batch,			/* cpu-intensive; value is ignored */
80	zti_mode_null,			/* don't create a taskq */
81	zti_nmodes
82} zti_modes_t;
83
84#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
85#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
86#define	ZTI_BATCH	{ zti_mode_batch, 0 }
87#define	ZTI_NULL	{ zti_mode_null, 0 }
88
89#define	ZTI_ONE		ZTI_FIX(1)
90
91typedef struct zio_taskq_info {
92	enum zti_modes zti_mode;
93	uint_t zti_value;
94} zio_taskq_info_t;
95
96static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
97	"issue", "issue_high", "intr", "intr_high"
98};
99
100/*
101 * Define the taskq threads for the following I/O types:
102 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
103 */
104const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
105	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
106	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
107	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
108	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
109	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112};
113
114static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
115static boolean_t spa_has_active_shared_spare(spa_t *spa);
116static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
117    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
118    char **ereport);
119
120uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
121id_t		zio_taskq_psrset_bind = PS_NONE;
122boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
123uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
124
125boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
126
127/*
128 * This (illegal) pool name is used when temporarily importing a spa_t in order
129 * to get the vdev stats associated with the imported devices.
130 */
131#define	TRYIMPORT_NAME	"$import"
132
133/*
134 * ==========================================================================
135 * SPA properties routines
136 * ==========================================================================
137 */
138
139/*
140 * Add a (source=src, propname=propval) list to an nvlist.
141 */
142static void
143spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
144    uint64_t intval, zprop_source_t src)
145{
146	const char *propname = zpool_prop_to_name(prop);
147	nvlist_t *propval;
148
149	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
150	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
151
152	if (strval != NULL)
153		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
154	else
155		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
156
157	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
158	nvlist_free(propval);
159}
160
161/*
162 * Get property values from the spa configuration.
163 */
164static void
165spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
166{
167	uint64_t size;
168	uint64_t alloc;
169	uint64_t cap, version;
170	zprop_source_t src = ZPROP_SRC_NONE;
171	spa_config_dirent_t *dp;
172
173	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
174
175	if (spa->spa_root_vdev != NULL) {
176		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
177		size = metaslab_class_get_space(spa_normal_class(spa));
178		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
179		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
180		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
181		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
182		    size - alloc, src);
183
184		cap = (size == 0) ? 0 : (alloc * 100 / size);
185		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
186
187		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
188		    ddt_get_pool_dedup_ratio(spa), src);
189
190		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
191		    spa->spa_root_vdev->vdev_state, src);
192
193		version = spa_version(spa);
194		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
195			src = ZPROP_SRC_DEFAULT;
196		else
197			src = ZPROP_SRC_LOCAL;
198		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
199	}
200
201	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
202
203	if (spa->spa_root != NULL)
204		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
205		    0, ZPROP_SRC_LOCAL);
206
207	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
208		if (dp->scd_path == NULL) {
209			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
210			    "none", 0, ZPROP_SRC_LOCAL);
211		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
212			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
213			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
214		}
215	}
216}
217
218/*
219 * Get zpool property values.
220 */
221int
222spa_prop_get(spa_t *spa, nvlist_t **nvp)
223{
224	objset_t *mos = spa->spa_meta_objset;
225	zap_cursor_t zc;
226	zap_attribute_t za;
227	int err;
228
229	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
230
231	mutex_enter(&spa->spa_props_lock);
232
233	/*
234	 * Get properties from the spa config.
235	 */
236	spa_prop_get_config(spa, nvp);
237
238	/* If no pool property object, no more prop to get. */
239	if (mos == NULL || spa->spa_pool_props_object == 0) {
240		mutex_exit(&spa->spa_props_lock);
241		return (0);
242	}
243
244	/*
245	 * Get properties from the MOS pool property object.
246	 */
247	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
248	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
249	    zap_cursor_advance(&zc)) {
250		uint64_t intval = 0;
251		char *strval = NULL;
252		zprop_source_t src = ZPROP_SRC_DEFAULT;
253		zpool_prop_t prop;
254
255		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
256			continue;
257
258		switch (za.za_integer_length) {
259		case 8:
260			/* integer property */
261			if (za.za_first_integer !=
262			    zpool_prop_default_numeric(prop))
263				src = ZPROP_SRC_LOCAL;
264
265			if (prop == ZPOOL_PROP_BOOTFS) {
266				dsl_pool_t *dp;
267				dsl_dataset_t *ds = NULL;
268
269				dp = spa_get_dsl(spa);
270				rw_enter(&dp->dp_config_rwlock, RW_READER);
271				if (err = dsl_dataset_hold_obj(dp,
272				    za.za_first_integer, FTAG, &ds)) {
273					rw_exit(&dp->dp_config_rwlock);
274					break;
275				}
276
277				strval = kmem_alloc(
278				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
279				    KM_SLEEP);
280				dsl_dataset_name(ds, strval);
281				dsl_dataset_rele(ds, FTAG);
282				rw_exit(&dp->dp_config_rwlock);
283			} else {
284				strval = NULL;
285				intval = za.za_first_integer;
286			}
287
288			spa_prop_add_list(*nvp, prop, strval, intval, src);
289
290			if (strval != NULL)
291				kmem_free(strval,
292				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
293
294			break;
295
296		case 1:
297			/* string property */
298			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
299			err = zap_lookup(mos, spa->spa_pool_props_object,
300			    za.za_name, 1, za.za_num_integers, strval);
301			if (err) {
302				kmem_free(strval, za.za_num_integers);
303				break;
304			}
305			spa_prop_add_list(*nvp, prop, strval, 0, src);
306			kmem_free(strval, za.za_num_integers);
307			break;
308
309		default:
310			break;
311		}
312	}
313	zap_cursor_fini(&zc);
314	mutex_exit(&spa->spa_props_lock);
315out:
316	if (err && err != ENOENT) {
317		nvlist_free(*nvp);
318		*nvp = NULL;
319		return (err);
320	}
321
322	return (0);
323}
324
325/*
326 * Validate the given pool properties nvlist and modify the list
327 * for the property values to be set.
328 */
329static int
330spa_prop_validate(spa_t *spa, nvlist_t *props)
331{
332	nvpair_t *elem;
333	int error = 0, reset_bootfs = 0;
334	uint64_t objnum;
335
336	elem = NULL;
337	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
338		zpool_prop_t prop;
339		char *propname, *strval;
340		uint64_t intval;
341		objset_t *os;
342		char *slash;
343
344		propname = nvpair_name(elem);
345
346		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
347			return (EINVAL);
348
349		switch (prop) {
350		case ZPOOL_PROP_VERSION:
351			error = nvpair_value_uint64(elem, &intval);
352			if (!error &&
353			    (intval < spa_version(spa) || intval > SPA_VERSION))
354				error = EINVAL;
355			break;
356
357		case ZPOOL_PROP_DELEGATION:
358		case ZPOOL_PROP_AUTOREPLACE:
359		case ZPOOL_PROP_LISTSNAPS:
360		case ZPOOL_PROP_AUTOEXPAND:
361			error = nvpair_value_uint64(elem, &intval);
362			if (!error && intval > 1)
363				error = EINVAL;
364			break;
365
366		case ZPOOL_PROP_BOOTFS:
367			/*
368			 * If the pool version is less than SPA_VERSION_BOOTFS,
369			 * or the pool is still being created (version == 0),
370			 * the bootfs property cannot be set.
371			 */
372			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
373				error = ENOTSUP;
374				break;
375			}
376
377			/*
378			 * Make sure the vdev config is bootable
379			 */
380			if (!vdev_is_bootable(spa->spa_root_vdev)) {
381				error = ENOTSUP;
382				break;
383			}
384
385			reset_bootfs = 1;
386
387			error = nvpair_value_string(elem, &strval);
388
389			if (!error) {
390				uint64_t compress;
391
392				if (strval == NULL || strval[0] == '\0') {
393					objnum = zpool_prop_default_numeric(
394					    ZPOOL_PROP_BOOTFS);
395					break;
396				}
397
398				if (error = dmu_objset_hold(strval, FTAG, &os))
399					break;
400
401				/* Must be ZPL and not gzip compressed. */
402
403				if (dmu_objset_type(os) != DMU_OST_ZFS) {
404					error = ENOTSUP;
405				} else if ((error = dsl_prop_get_integer(strval,
406				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
407				    &compress, NULL)) == 0 &&
408				    !BOOTFS_COMPRESS_VALID(compress)) {
409					error = ENOTSUP;
410				} else {
411					objnum = dmu_objset_id(os);
412				}
413				dmu_objset_rele(os, FTAG);
414			}
415			break;
416
417		case ZPOOL_PROP_FAILUREMODE:
418			error = nvpair_value_uint64(elem, &intval);
419			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
420			    intval > ZIO_FAILURE_MODE_PANIC))
421				error = EINVAL;
422
423			/*
424			 * This is a special case which only occurs when
425			 * the pool has completely failed. This allows
426			 * the user to change the in-core failmode property
427			 * without syncing it out to disk (I/Os might
428			 * currently be blocked). We do this by returning
429			 * EIO to the caller (spa_prop_set) to trick it
430			 * into thinking we encountered a property validation
431			 * error.
432			 */
433			if (!error && spa_suspended(spa)) {
434				spa->spa_failmode = intval;
435				error = EIO;
436			}
437			break;
438
439		case ZPOOL_PROP_CACHEFILE:
440			if ((error = nvpair_value_string(elem, &strval)) != 0)
441				break;
442
443			if (strval[0] == '\0')
444				break;
445
446			if (strcmp(strval, "none") == 0)
447				break;
448
449			if (strval[0] != '/') {
450				error = EINVAL;
451				break;
452			}
453
454			slash = strrchr(strval, '/');
455			ASSERT(slash != NULL);
456
457			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
458			    strcmp(slash, "/..") == 0)
459				error = EINVAL;
460			break;
461
462		case ZPOOL_PROP_DEDUPDITTO:
463			if (spa_version(spa) < SPA_VERSION_DEDUP)
464				error = ENOTSUP;
465			else
466				error = nvpair_value_uint64(elem, &intval);
467			if (error == 0 &&
468			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
469				error = EINVAL;
470			break;
471		}
472
473		if (error)
474			break;
475	}
476
477	if (!error && reset_bootfs) {
478		error = nvlist_remove(props,
479		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
480
481		if (!error) {
482			error = nvlist_add_uint64(props,
483			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
484		}
485	}
486
487	return (error);
488}
489
490void
491spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
492{
493	char *cachefile;
494	spa_config_dirent_t *dp;
495
496	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
497	    &cachefile) != 0)
498		return;
499
500	dp = kmem_alloc(sizeof (spa_config_dirent_t),
501	    KM_SLEEP);
502
503	if (cachefile[0] == '\0')
504		dp->scd_path = spa_strdup(spa_config_path);
505	else if (strcmp(cachefile, "none") == 0)
506		dp->scd_path = NULL;
507	else
508		dp->scd_path = spa_strdup(cachefile);
509
510	list_insert_head(&spa->spa_config_list, dp);
511	if (need_sync)
512		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
513}
514
515int
516spa_prop_set(spa_t *spa, nvlist_t *nvp)
517{
518	int error;
519	nvpair_t *elem;
520	boolean_t need_sync = B_FALSE;
521	zpool_prop_t prop;
522
523	if ((error = spa_prop_validate(spa, nvp)) != 0)
524		return (error);
525
526	elem = NULL;
527	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
528		if ((prop = zpool_name_to_prop(
529		    nvpair_name(elem))) == ZPROP_INVAL)
530			return (EINVAL);
531
532		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
533			continue;
534
535		need_sync = B_TRUE;
536		break;
537	}
538
539	if (need_sync)
540		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
541		    spa, nvp, 3));
542	else
543		return (0);
544}
545
546/*
547 * If the bootfs property value is dsobj, clear it.
548 */
549void
550spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
551{
552	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
553		VERIFY(zap_remove(spa->spa_meta_objset,
554		    spa->spa_pool_props_object,
555		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
556		spa->spa_bootfs = 0;
557	}
558}
559
560/*
561 * ==========================================================================
562 * SPA state manipulation (open/create/destroy/import/export)
563 * ==========================================================================
564 */
565
566static int
567spa_error_entry_compare(const void *a, const void *b)
568{
569	spa_error_entry_t *sa = (spa_error_entry_t *)a;
570	spa_error_entry_t *sb = (spa_error_entry_t *)b;
571	int ret;
572
573	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
574	    sizeof (zbookmark_t));
575
576	if (ret < 0)
577		return (-1);
578	else if (ret > 0)
579		return (1);
580	else
581		return (0);
582}
583
584/*
585 * Utility function which retrieves copies of the current logs and
586 * re-initializes them in the process.
587 */
588void
589spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
590{
591	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
592
593	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
594	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
595
596	avl_create(&spa->spa_errlist_scrub,
597	    spa_error_entry_compare, sizeof (spa_error_entry_t),
598	    offsetof(spa_error_entry_t, se_avl));
599	avl_create(&spa->spa_errlist_last,
600	    spa_error_entry_compare, sizeof (spa_error_entry_t),
601	    offsetof(spa_error_entry_t, se_avl));
602}
603
604static taskq_t *
605spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
606    uint_t value)
607{
608	uint_t flags = TASKQ_PREPOPULATE;
609	boolean_t batch = B_FALSE;
610
611	switch (mode) {
612	case zti_mode_null:
613		return (NULL);		/* no taskq needed */
614
615	case zti_mode_fixed:
616		ASSERT3U(value, >=, 1);
617		value = MAX(value, 1);
618		break;
619
620	case zti_mode_batch:
621		batch = B_TRUE;
622		flags |= TASKQ_THREADS_CPU_PCT;
623		value = zio_taskq_batch_pct;
624		break;
625
626	case zti_mode_online_percent:
627		flags |= TASKQ_THREADS_CPU_PCT;
628		break;
629
630	default:
631		panic("unrecognized mode for %s taskq (%u:%u) in "
632		    "spa_activate()",
633		    name, mode, value);
634		break;
635	}
636
637	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
638		if (batch)
639			flags |= TASKQ_DC_BATCH;
640
641		return (taskq_create_sysdc(name, value, 50, INT_MAX,
642		    spa->spa_proc, zio_taskq_basedc, flags));
643	}
644	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
645	    spa->spa_proc, flags));
646}
647
648static void
649spa_create_zio_taskqs(spa_t *spa)
650{
651	for (int t = 0; t < ZIO_TYPES; t++) {
652		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
653			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
654			enum zti_modes mode = ztip->zti_mode;
655			uint_t value = ztip->zti_value;
656			char name[32];
657
658			(void) snprintf(name, sizeof (name),
659			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
660
661			spa->spa_zio_taskq[t][q] =
662			    spa_taskq_create(spa, name, mode, value);
663		}
664	}
665}
666
667#ifdef _KERNEL
668static void
669spa_thread(void *arg)
670{
671	callb_cpr_t cprinfo;
672
673	spa_t *spa = arg;
674	user_t *pu = PTOU(curproc);
675
676	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
677	    spa->spa_name);
678
679	ASSERT(curproc != &p0);
680	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
681	    "zpool-%s", spa->spa_name);
682	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
683
684	/* bind this thread to the requested psrset */
685	if (zio_taskq_psrset_bind != PS_NONE) {
686		pool_lock();
687		mutex_enter(&cpu_lock);
688		mutex_enter(&pidlock);
689		mutex_enter(&curproc->p_lock);
690
691		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
692		    0, NULL, NULL) == 0)  {
693			curthread->t_bind_pset = zio_taskq_psrset_bind;
694		} else {
695			cmn_err(CE_WARN,
696			    "Couldn't bind process for zfs pool \"%s\" to "
697			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
698		}
699
700		mutex_exit(&curproc->p_lock);
701		mutex_exit(&pidlock);
702		mutex_exit(&cpu_lock);
703		pool_unlock();
704	}
705
706	if (zio_taskq_sysdc) {
707		sysdc_thread_enter(curthread, 100, 0);
708	}
709
710	spa->spa_proc = curproc;
711	spa->spa_did = curthread->t_did;
712
713	spa_create_zio_taskqs(spa);
714
715	mutex_enter(&spa->spa_proc_lock);
716	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
717
718	spa->spa_proc_state = SPA_PROC_ACTIVE;
719	cv_broadcast(&spa->spa_proc_cv);
720
721	CALLB_CPR_SAFE_BEGIN(&cprinfo);
722	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
723		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
724	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
725
726	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
727	spa->spa_proc_state = SPA_PROC_GONE;
728	spa->spa_proc = &p0;
729	cv_broadcast(&spa->spa_proc_cv);
730	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
731
732	mutex_enter(&curproc->p_lock);
733	lwp_exit();
734}
735#endif
736
737/*
738 * Activate an uninitialized pool.
739 */
740static void
741spa_activate(spa_t *spa, int mode)
742{
743	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
744
745	spa->spa_state = POOL_STATE_ACTIVE;
746	spa->spa_mode = mode;
747
748	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
749	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
750
751	/* Try to create a covering process */
752	mutex_enter(&spa->spa_proc_lock);
753	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
754	ASSERT(spa->spa_proc == &p0);
755	spa->spa_did = 0;
756
757	/* Only create a process if we're going to be around a while. */
758	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
759		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
760		    NULL, 0) == 0) {
761			spa->spa_proc_state = SPA_PROC_CREATED;
762			while (spa->spa_proc_state == SPA_PROC_CREATED) {
763				cv_wait(&spa->spa_proc_cv,
764				    &spa->spa_proc_lock);
765			}
766			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
767			ASSERT(spa->spa_proc != &p0);
768			ASSERT(spa->spa_did != 0);
769		} else {
770#ifdef _KERNEL
771			cmn_err(CE_WARN,
772			    "Couldn't create process for zfs pool \"%s\"\n",
773			    spa->spa_name);
774#endif
775		}
776	}
777	mutex_exit(&spa->spa_proc_lock);
778
779	/* If we didn't create a process, we need to create our taskqs. */
780	if (spa->spa_proc == &p0) {
781		spa_create_zio_taskqs(spa);
782	}
783
784	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
785	    offsetof(vdev_t, vdev_config_dirty_node));
786	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
787	    offsetof(vdev_t, vdev_state_dirty_node));
788
789	txg_list_create(&spa->spa_vdev_txg_list,
790	    offsetof(struct vdev, vdev_txg_node));
791
792	avl_create(&spa->spa_errlist_scrub,
793	    spa_error_entry_compare, sizeof (spa_error_entry_t),
794	    offsetof(spa_error_entry_t, se_avl));
795	avl_create(&spa->spa_errlist_last,
796	    spa_error_entry_compare, sizeof (spa_error_entry_t),
797	    offsetof(spa_error_entry_t, se_avl));
798}
799
800/*
801 * Opposite of spa_activate().
802 */
803static void
804spa_deactivate(spa_t *spa)
805{
806	ASSERT(spa->spa_sync_on == B_FALSE);
807	ASSERT(spa->spa_dsl_pool == NULL);
808	ASSERT(spa->spa_root_vdev == NULL);
809	ASSERT(spa->spa_async_zio_root == NULL);
810	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
811
812	txg_list_destroy(&spa->spa_vdev_txg_list);
813
814	list_destroy(&spa->spa_config_dirty_list);
815	list_destroy(&spa->spa_state_dirty_list);
816
817	for (int t = 0; t < ZIO_TYPES; t++) {
818		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
819			if (spa->spa_zio_taskq[t][q] != NULL)
820				taskq_destroy(spa->spa_zio_taskq[t][q]);
821			spa->spa_zio_taskq[t][q] = NULL;
822		}
823	}
824
825	metaslab_class_destroy(spa->spa_normal_class);
826	spa->spa_normal_class = NULL;
827
828	metaslab_class_destroy(spa->spa_log_class);
829	spa->spa_log_class = NULL;
830
831	/*
832	 * If this was part of an import or the open otherwise failed, we may
833	 * still have errors left in the queues.  Empty them just in case.
834	 */
835	spa_errlog_drain(spa);
836
837	avl_destroy(&spa->spa_errlist_scrub);
838	avl_destroy(&spa->spa_errlist_last);
839
840	spa->spa_state = POOL_STATE_UNINITIALIZED;
841
842	mutex_enter(&spa->spa_proc_lock);
843	if (spa->spa_proc_state != SPA_PROC_NONE) {
844		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
845		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
846		cv_broadcast(&spa->spa_proc_cv);
847		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
848			ASSERT(spa->spa_proc != &p0);
849			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
850		}
851		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
852		spa->spa_proc_state = SPA_PROC_NONE;
853	}
854	ASSERT(spa->spa_proc == &p0);
855	mutex_exit(&spa->spa_proc_lock);
856
857	/*
858	 * We want to make sure spa_thread() has actually exited the ZFS
859	 * module, so that the module can't be unloaded out from underneath
860	 * it.
861	 */
862	if (spa->spa_did != 0) {
863		thread_join(spa->spa_did);
864		spa->spa_did = 0;
865	}
866}
867
868/*
869 * Verify a pool configuration, and construct the vdev tree appropriately.  This
870 * will create all the necessary vdevs in the appropriate layout, with each vdev
871 * in the CLOSED state.  This will prep the pool before open/creation/import.
872 * All vdev validation is done by the vdev_alloc() routine.
873 */
874static int
875spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
876    uint_t id, int atype)
877{
878	nvlist_t **child;
879	uint_t children;
880	int error;
881
882	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
883		return (error);
884
885	if ((*vdp)->vdev_ops->vdev_op_leaf)
886		return (0);
887
888	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
889	    &child, &children);
890
891	if (error == ENOENT)
892		return (0);
893
894	if (error) {
895		vdev_free(*vdp);
896		*vdp = NULL;
897		return (EINVAL);
898	}
899
900	for (int c = 0; c < children; c++) {
901		vdev_t *vd;
902		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
903		    atype)) != 0) {
904			vdev_free(*vdp);
905			*vdp = NULL;
906			return (error);
907		}
908	}
909
910	ASSERT(*vdp != NULL);
911
912	return (0);
913}
914
915/*
916 * Opposite of spa_load().
917 */
918static void
919spa_unload(spa_t *spa)
920{
921	int i;
922
923	ASSERT(MUTEX_HELD(&spa_namespace_lock));
924
925	/*
926	 * Stop async tasks.
927	 */
928	spa_async_suspend(spa);
929
930	/*
931	 * Stop syncing.
932	 */
933	if (spa->spa_sync_on) {
934		txg_sync_stop(spa->spa_dsl_pool);
935		spa->spa_sync_on = B_FALSE;
936	}
937
938	/*
939	 * Wait for any outstanding async I/O to complete.
940	 */
941	if (spa->spa_async_zio_root != NULL) {
942		(void) zio_wait(spa->spa_async_zio_root);
943		spa->spa_async_zio_root = NULL;
944	}
945
946	/*
947	 * Close the dsl pool.
948	 */
949	if (spa->spa_dsl_pool) {
950		dsl_pool_close(spa->spa_dsl_pool);
951		spa->spa_dsl_pool = NULL;
952		spa->spa_meta_objset = NULL;
953	}
954
955	ddt_unload(spa);
956
957	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
958
959	/*
960	 * Drop and purge level 2 cache
961	 */
962	spa_l2cache_drop(spa);
963
964	/*
965	 * Close all vdevs.
966	 */
967	if (spa->spa_root_vdev)
968		vdev_free(spa->spa_root_vdev);
969	ASSERT(spa->spa_root_vdev == NULL);
970
971	for (i = 0; i < spa->spa_spares.sav_count; i++)
972		vdev_free(spa->spa_spares.sav_vdevs[i]);
973	if (spa->spa_spares.sav_vdevs) {
974		kmem_free(spa->spa_spares.sav_vdevs,
975		    spa->spa_spares.sav_count * sizeof (void *));
976		spa->spa_spares.sav_vdevs = NULL;
977	}
978	if (spa->spa_spares.sav_config) {
979		nvlist_free(spa->spa_spares.sav_config);
980		spa->spa_spares.sav_config = NULL;
981	}
982	spa->spa_spares.sav_count = 0;
983
984	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
985		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
986	if (spa->spa_l2cache.sav_vdevs) {
987		kmem_free(spa->spa_l2cache.sav_vdevs,
988		    spa->spa_l2cache.sav_count * sizeof (void *));
989		spa->spa_l2cache.sav_vdevs = NULL;
990	}
991	if (spa->spa_l2cache.sav_config) {
992		nvlist_free(spa->spa_l2cache.sav_config);
993		spa->spa_l2cache.sav_config = NULL;
994	}
995	spa->spa_l2cache.sav_count = 0;
996
997	spa->spa_async_suspended = 0;
998
999	spa_config_exit(spa, SCL_ALL, FTAG);
1000}
1001
1002/*
1003 * Load (or re-load) the current list of vdevs describing the active spares for
1004 * this pool.  When this is called, we have some form of basic information in
1005 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1006 * then re-generate a more complete list including status information.
1007 */
1008static void
1009spa_load_spares(spa_t *spa)
1010{
1011	nvlist_t **spares;
1012	uint_t nspares;
1013	int i;
1014	vdev_t *vd, *tvd;
1015
1016	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1017
1018	/*
1019	 * First, close and free any existing spare vdevs.
1020	 */
1021	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1022		vd = spa->spa_spares.sav_vdevs[i];
1023
1024		/* Undo the call to spa_activate() below */
1025		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1026		    B_FALSE)) != NULL && tvd->vdev_isspare)
1027			spa_spare_remove(tvd);
1028		vdev_close(vd);
1029		vdev_free(vd);
1030	}
1031
1032	if (spa->spa_spares.sav_vdevs)
1033		kmem_free(spa->spa_spares.sav_vdevs,
1034		    spa->spa_spares.sav_count * sizeof (void *));
1035
1036	if (spa->spa_spares.sav_config == NULL)
1037		nspares = 0;
1038	else
1039		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1040		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1041
1042	spa->spa_spares.sav_count = (int)nspares;
1043	spa->spa_spares.sav_vdevs = NULL;
1044
1045	if (nspares == 0)
1046		return;
1047
1048	/*
1049	 * Construct the array of vdevs, opening them to get status in the
1050	 * process.   For each spare, there is potentially two different vdev_t
1051	 * structures associated with it: one in the list of spares (used only
1052	 * for basic validation purposes) and one in the active vdev
1053	 * configuration (if it's spared in).  During this phase we open and
1054	 * validate each vdev on the spare list.  If the vdev also exists in the
1055	 * active configuration, then we also mark this vdev as an active spare.
1056	 */
1057	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1058	    KM_SLEEP);
1059	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1060		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1061		    VDEV_ALLOC_SPARE) == 0);
1062		ASSERT(vd != NULL);
1063
1064		spa->spa_spares.sav_vdevs[i] = vd;
1065
1066		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1067		    B_FALSE)) != NULL) {
1068			if (!tvd->vdev_isspare)
1069				spa_spare_add(tvd);
1070
1071			/*
1072			 * We only mark the spare active if we were successfully
1073			 * able to load the vdev.  Otherwise, importing a pool
1074			 * with a bad active spare would result in strange
1075			 * behavior, because multiple pool would think the spare
1076			 * is actively in use.
1077			 *
1078			 * There is a vulnerability here to an equally bizarre
1079			 * circumstance, where a dead active spare is later
1080			 * brought back to life (onlined or otherwise).  Given
1081			 * the rarity of this scenario, and the extra complexity
1082			 * it adds, we ignore the possibility.
1083			 */
1084			if (!vdev_is_dead(tvd))
1085				spa_spare_activate(tvd);
1086		}
1087
1088		vd->vdev_top = vd;
1089		vd->vdev_aux = &spa->spa_spares;
1090
1091		if (vdev_open(vd) != 0)
1092			continue;
1093
1094		if (vdev_validate_aux(vd) == 0)
1095			spa_spare_add(vd);
1096	}
1097
1098	/*
1099	 * Recompute the stashed list of spares, with status information
1100	 * this time.
1101	 */
1102	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1103	    DATA_TYPE_NVLIST_ARRAY) == 0);
1104
1105	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1106	    KM_SLEEP);
1107	for (i = 0; i < spa->spa_spares.sav_count; i++)
1108		spares[i] = vdev_config_generate(spa,
1109		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
1110	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1111	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1112	for (i = 0; i < spa->spa_spares.sav_count; i++)
1113		nvlist_free(spares[i]);
1114	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1115}
1116
1117/*
1118 * Load (or re-load) the current list of vdevs describing the active l2cache for
1119 * this pool.  When this is called, we have some form of basic information in
1120 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1121 * then re-generate a more complete list including status information.
1122 * Devices which are already active have their details maintained, and are
1123 * not re-opened.
1124 */
1125static void
1126spa_load_l2cache(spa_t *spa)
1127{
1128	nvlist_t **l2cache;
1129	uint_t nl2cache;
1130	int i, j, oldnvdevs;
1131	uint64_t guid;
1132	vdev_t *vd, **oldvdevs, **newvdevs;
1133	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1134
1135	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1136
1137	if (sav->sav_config != NULL) {
1138		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1139		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1140		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1141	} else {
1142		nl2cache = 0;
1143	}
1144
1145	oldvdevs = sav->sav_vdevs;
1146	oldnvdevs = sav->sav_count;
1147	sav->sav_vdevs = NULL;
1148	sav->sav_count = 0;
1149
1150	/*
1151	 * Process new nvlist of vdevs.
1152	 */
1153	for (i = 0; i < nl2cache; i++) {
1154		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1155		    &guid) == 0);
1156
1157		newvdevs[i] = NULL;
1158		for (j = 0; j < oldnvdevs; j++) {
1159			vd = oldvdevs[j];
1160			if (vd != NULL && guid == vd->vdev_guid) {
1161				/*
1162				 * Retain previous vdev for add/remove ops.
1163				 */
1164				newvdevs[i] = vd;
1165				oldvdevs[j] = NULL;
1166				break;
1167			}
1168		}
1169
1170		if (newvdevs[i] == NULL) {
1171			/*
1172			 * Create new vdev
1173			 */
1174			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1175			    VDEV_ALLOC_L2CACHE) == 0);
1176			ASSERT(vd != NULL);
1177			newvdevs[i] = vd;
1178
1179			/*
1180			 * Commit this vdev as an l2cache device,
1181			 * even if it fails to open.
1182			 */
1183			spa_l2cache_add(vd);
1184
1185			vd->vdev_top = vd;
1186			vd->vdev_aux = sav;
1187
1188			spa_l2cache_activate(vd);
1189
1190			if (vdev_open(vd) != 0)
1191				continue;
1192
1193			(void) vdev_validate_aux(vd);
1194
1195			if (!vdev_is_dead(vd))
1196				l2arc_add_vdev(spa, vd);
1197		}
1198	}
1199
1200	/*
1201	 * Purge vdevs that were dropped
1202	 */
1203	for (i = 0; i < oldnvdevs; i++) {
1204		uint64_t pool;
1205
1206		vd = oldvdevs[i];
1207		if (vd != NULL) {
1208			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1209			    pool != 0ULL && l2arc_vdev_present(vd))
1210				l2arc_remove_vdev(vd);
1211			(void) vdev_close(vd);
1212			spa_l2cache_remove(vd);
1213		}
1214	}
1215
1216	if (oldvdevs)
1217		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1218
1219	if (sav->sav_config == NULL)
1220		goto out;
1221
1222	sav->sav_vdevs = newvdevs;
1223	sav->sav_count = (int)nl2cache;
1224
1225	/*
1226	 * Recompute the stashed list of l2cache devices, with status
1227	 * information this time.
1228	 */
1229	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1230	    DATA_TYPE_NVLIST_ARRAY) == 0);
1231
1232	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1233	for (i = 0; i < sav->sav_count; i++)
1234		l2cache[i] = vdev_config_generate(spa,
1235		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1236	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1237	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1238out:
1239	for (i = 0; i < sav->sav_count; i++)
1240		nvlist_free(l2cache[i]);
1241	if (sav->sav_count)
1242		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1243}
1244
1245static int
1246load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1247{
1248	dmu_buf_t *db;
1249	char *packed = NULL;
1250	size_t nvsize = 0;
1251	int error;
1252	*value = NULL;
1253
1254	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1255	nvsize = *(uint64_t *)db->db_data;
1256	dmu_buf_rele(db, FTAG);
1257
1258	packed = kmem_alloc(nvsize, KM_SLEEP);
1259	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1260	    DMU_READ_PREFETCH);
1261	if (error == 0)
1262		error = nvlist_unpack(packed, nvsize, value, 0);
1263	kmem_free(packed, nvsize);
1264
1265	return (error);
1266}
1267
1268/*
1269 * Checks to see if the given vdev could not be opened, in which case we post a
1270 * sysevent to notify the autoreplace code that the device has been removed.
1271 */
1272static void
1273spa_check_removed(vdev_t *vd)
1274{
1275	for (int c = 0; c < vd->vdev_children; c++)
1276		spa_check_removed(vd->vdev_child[c]);
1277
1278	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1279		zfs_post_autoreplace(vd->vdev_spa, vd);
1280		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1281	}
1282}
1283
1284/*
1285 * Load the slog device state from the config object since it's possible
1286 * that the label does not contain the most up-to-date information.
1287 */
1288void
1289spa_load_log_state(spa_t *spa, nvlist_t *nv)
1290{
1291	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1292
1293	/*
1294	 * Load the original root vdev tree from the passed config.
1295	 */
1296	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1297	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1298
1299	for (int c = 0; c < rvd->vdev_children; c++) {
1300		vdev_t *cvd = rvd->vdev_child[c];
1301		if (cvd->vdev_islog)
1302			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1303	}
1304	vdev_free(ovd);
1305	spa_config_exit(spa, SCL_ALL, FTAG);
1306}
1307
1308/*
1309 * Check for missing log devices
1310 */
1311int
1312spa_check_logs(spa_t *spa)
1313{
1314	switch (spa->spa_log_state) {
1315	case SPA_LOG_MISSING:
1316		/* need to recheck in case slog has been restored */
1317	case SPA_LOG_UNKNOWN:
1318		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1319		    DS_FIND_CHILDREN)) {
1320			spa_set_log_state(spa, SPA_LOG_MISSING);
1321			return (1);
1322		}
1323		break;
1324	}
1325	return (0);
1326}
1327
1328static boolean_t
1329spa_passivate_log(spa_t *spa)
1330{
1331	vdev_t *rvd = spa->spa_root_vdev;
1332	boolean_t slog_found = B_FALSE;
1333
1334	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1335
1336	if (!spa_has_slogs(spa))
1337		return (B_FALSE);
1338
1339	for (int c = 0; c < rvd->vdev_children; c++) {
1340		vdev_t *tvd = rvd->vdev_child[c];
1341		metaslab_group_t *mg = tvd->vdev_mg;
1342
1343		if (tvd->vdev_islog) {
1344			metaslab_group_passivate(mg);
1345			slog_found = B_TRUE;
1346		}
1347	}
1348
1349	return (slog_found);
1350}
1351
1352static void
1353spa_activate_log(spa_t *spa)
1354{
1355	vdev_t *rvd = spa->spa_root_vdev;
1356
1357	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1358
1359	for (int c = 0; c < rvd->vdev_children; c++) {
1360		vdev_t *tvd = rvd->vdev_child[c];
1361		metaslab_group_t *mg = tvd->vdev_mg;
1362
1363		if (tvd->vdev_islog)
1364			metaslab_group_activate(mg);
1365	}
1366}
1367
1368int
1369spa_offline_log(spa_t *spa)
1370{
1371	int error = 0;
1372
1373	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1374	    NULL, DS_FIND_CHILDREN)) == 0) {
1375
1376		/*
1377		 * We successfully offlined the log device, sync out the
1378		 * current txg so that the "stubby" block can be removed
1379		 * by zil_sync().
1380		 */
1381		txg_wait_synced(spa->spa_dsl_pool, 0);
1382	}
1383	return (error);
1384}
1385
1386static void
1387spa_aux_check_removed(spa_aux_vdev_t *sav)
1388{
1389	for (int i = 0; i < sav->sav_count; i++)
1390		spa_check_removed(sav->sav_vdevs[i]);
1391}
1392
1393void
1394spa_claim_notify(zio_t *zio)
1395{
1396	spa_t *spa = zio->io_spa;
1397
1398	if (zio->io_error)
1399		return;
1400
1401	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1402	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1403		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1404	mutex_exit(&spa->spa_props_lock);
1405}
1406
1407typedef struct spa_load_error {
1408	uint64_t	sle_meta_count;
1409	uint64_t	sle_data_count;
1410} spa_load_error_t;
1411
1412static void
1413spa_load_verify_done(zio_t *zio)
1414{
1415	blkptr_t *bp = zio->io_bp;
1416	spa_load_error_t *sle = zio->io_private;
1417	dmu_object_type_t type = BP_GET_TYPE(bp);
1418	int error = zio->io_error;
1419
1420	if (error) {
1421		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1422		    type != DMU_OT_INTENT_LOG)
1423			atomic_add_64(&sle->sle_meta_count, 1);
1424		else
1425			atomic_add_64(&sle->sle_data_count, 1);
1426	}
1427	zio_data_buf_free(zio->io_data, zio->io_size);
1428}
1429
1430/*ARGSUSED*/
1431static int
1432spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1433    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1434{
1435	if (bp != NULL) {
1436		zio_t *rio = arg;
1437		size_t size = BP_GET_PSIZE(bp);
1438		void *data = zio_data_buf_alloc(size);
1439
1440		zio_nowait(zio_read(rio, spa, bp, data, size,
1441		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1442		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1443		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1444	}
1445	return (0);
1446}
1447
1448static int
1449spa_load_verify(spa_t *spa)
1450{
1451	zio_t *rio;
1452	spa_load_error_t sle = { 0 };
1453	zpool_rewind_policy_t policy;
1454	boolean_t verify_ok = B_FALSE;
1455	int error;
1456
1457	zpool_get_rewind_policy(spa->spa_config, &policy);
1458
1459	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1460		return (0);
1461
1462	rio = zio_root(spa, NULL, &sle,
1463	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1464
1465	error = traverse_pool(spa, spa->spa_verify_min_txg,
1466	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1467
1468	(void) zio_wait(rio);
1469
1470	spa->spa_load_meta_errors = sle.sle_meta_count;
1471	spa->spa_load_data_errors = sle.sle_data_count;
1472
1473	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1474	    sle.sle_data_count <= policy.zrp_maxdata) {
1475		verify_ok = B_TRUE;
1476		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1477		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1478	} else {
1479		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1480	}
1481
1482	if (error) {
1483		if (error != ENXIO && error != EIO)
1484			error = EIO;
1485		return (error);
1486	}
1487
1488	return (verify_ok ? 0 : EIO);
1489}
1490
1491/*
1492 * Find a value in the pool props object.
1493 */
1494static void
1495spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1496{
1497	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1498	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1499}
1500
1501/*
1502 * Find a value in the pool directory object.
1503 */
1504static int
1505spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1506{
1507	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1508	    name, sizeof (uint64_t), 1, val));
1509}
1510
1511static int
1512spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1513{
1514	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1515	return (err);
1516}
1517
1518/*
1519 * Fix up config after a partly-completed split.  This is done with the
1520 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1521 * pool have that entry in their config, but only the splitting one contains
1522 * a list of all the guids of the vdevs that are being split off.
1523 *
1524 * This function determines what to do with that list: either rejoin
1525 * all the disks to the pool, or complete the splitting process.  To attempt
1526 * the rejoin, each disk that is offlined is marked online again, and
1527 * we do a reopen() call.  If the vdev label for every disk that was
1528 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1529 * then we call vdev_split() on each disk, and complete the split.
1530 *
1531 * Otherwise we leave the config alone, with all the vdevs in place in
1532 * the original pool.
1533 */
1534static void
1535spa_try_repair(spa_t *spa, nvlist_t *config)
1536{
1537	uint_t extracted;
1538	uint64_t *glist;
1539	uint_t i, gcount;
1540	nvlist_t *nvl;
1541	vdev_t **vd;
1542	boolean_t attempt_reopen;
1543
1544	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1545		return;
1546
1547	/* check that the config is complete */
1548	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1549	    &glist, &gcount) != 0)
1550		return;
1551
1552	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1553
1554	/* attempt to online all the vdevs & validate */
1555	attempt_reopen = B_TRUE;
1556	for (i = 0; i < gcount; i++) {
1557		if (glist[i] == 0)	/* vdev is hole */
1558			continue;
1559
1560		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1561		if (vd[i] == NULL) {
1562			/*
1563			 * Don't bother attempting to reopen the disks;
1564			 * just do the split.
1565			 */
1566			attempt_reopen = B_FALSE;
1567		} else {
1568			/* attempt to re-online it */
1569			vd[i]->vdev_offline = B_FALSE;
1570		}
1571	}
1572
1573	if (attempt_reopen) {
1574		vdev_reopen(spa->spa_root_vdev);
1575
1576		/* check each device to see what state it's in */
1577		for (extracted = 0, i = 0; i < gcount; i++) {
1578			if (vd[i] != NULL &&
1579			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1580				break;
1581			++extracted;
1582		}
1583	}
1584
1585	/*
1586	 * If every disk has been moved to the new pool, or if we never
1587	 * even attempted to look at them, then we split them off for
1588	 * good.
1589	 */
1590	if (!attempt_reopen || gcount == extracted) {
1591		for (i = 0; i < gcount; i++)
1592			if (vd[i] != NULL)
1593				vdev_split(vd[i]);
1594		vdev_reopen(spa->spa_root_vdev);
1595	}
1596
1597	kmem_free(vd, gcount * sizeof (vdev_t *));
1598}
1599
1600static int
1601spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1602    boolean_t mosconfig)
1603{
1604	nvlist_t *config = spa->spa_config;
1605	char *ereport = FM_EREPORT_ZFS_POOL;
1606	int error;
1607	uint64_t pool_guid;
1608	nvlist_t *nvl;
1609
1610	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1611		return (EINVAL);
1612
1613	/*
1614	 * Versioning wasn't explicitly added to the label until later, so if
1615	 * it's not present treat it as the initial version.
1616	 */
1617	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1618	    &spa->spa_ubsync.ub_version) != 0)
1619		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1620
1621	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1622	    &spa->spa_config_txg);
1623
1624	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1625	    spa_guid_exists(pool_guid, 0)) {
1626		error = EEXIST;
1627	} else {
1628		spa->spa_load_guid = pool_guid;
1629
1630		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1631		    &nvl) == 0) {
1632			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1633			    KM_SLEEP) == 0);
1634		}
1635
1636		error = spa_load_impl(spa, pool_guid, config, state, type,
1637		    mosconfig, &ereport);
1638	}
1639
1640	spa->spa_minref = refcount_count(&spa->spa_refcount);
1641	if (error && error != EBADF)
1642		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1643	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1644	spa->spa_ena = 0;
1645
1646	return (error);
1647}
1648
1649/*
1650 * Load an existing storage pool, using the pool's builtin spa_config as a
1651 * source of configuration information.
1652 */
1653static int
1654spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1655    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1656    char **ereport)
1657{
1658	int error = 0;
1659	nvlist_t *nvroot = NULL;
1660	vdev_t *rvd;
1661	uberblock_t *ub = &spa->spa_uberblock;
1662	uint64_t config_cache_txg = spa->spa_config_txg;
1663	int orig_mode = spa->spa_mode;
1664	int parse;
1665
1666	/*
1667	 * If this is an untrusted config, access the pool in read-only mode.
1668	 * This prevents things like resilvering recently removed devices.
1669	 */
1670	if (!mosconfig)
1671		spa->spa_mode = FREAD;
1672
1673	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1674
1675	spa->spa_load_state = state;
1676
1677	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1678		return (EINVAL);
1679
1680	parse = (type == SPA_IMPORT_EXISTING ?
1681	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1682
1683	/*
1684	 * Create "The Godfather" zio to hold all async IOs
1685	 */
1686	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1687	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1688
1689	/*
1690	 * Parse the configuration into a vdev tree.  We explicitly set the
1691	 * value that will be returned by spa_version() since parsing the
1692	 * configuration requires knowing the version number.
1693	 */
1694	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1695	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1696	spa_config_exit(spa, SCL_ALL, FTAG);
1697
1698	if (error != 0)
1699		return (error);
1700
1701	ASSERT(spa->spa_root_vdev == rvd);
1702
1703	if (type != SPA_IMPORT_ASSEMBLE) {
1704		ASSERT(spa_guid(spa) == pool_guid);
1705	}
1706
1707	/*
1708	 * Try to open all vdevs, loading each label in the process.
1709	 */
1710	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1711	error = vdev_open(rvd);
1712	spa_config_exit(spa, SCL_ALL, FTAG);
1713	if (error != 0)
1714		return (error);
1715
1716	/*
1717	 * We need to validate the vdev labels against the configuration that
1718	 * we have in hand, which is dependent on the setting of mosconfig. If
1719	 * mosconfig is true then we're validating the vdev labels based on
1720	 * that config.  Otherwise, we're validating against the cached config
1721	 * (zpool.cache) that was read when we loaded the zfs module, and then
1722	 * later we will recursively call spa_load() and validate against
1723	 * the vdev config.
1724	 *
1725	 * If we're assembling a new pool that's been split off from an
1726	 * existing pool, the labels haven't yet been updated so we skip
1727	 * validation for now.
1728	 */
1729	if (type != SPA_IMPORT_ASSEMBLE) {
1730		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1731		error = vdev_validate(rvd);
1732		spa_config_exit(spa, SCL_ALL, FTAG);
1733
1734		if (error != 0)
1735			return (error);
1736
1737		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1738			return (ENXIO);
1739	}
1740
1741	/*
1742	 * Find the best uberblock.
1743	 */
1744	vdev_uberblock_load(NULL, rvd, ub);
1745
1746	/*
1747	 * If we weren't able to find a single valid uberblock, return failure.
1748	 */
1749	if (ub->ub_txg == 0)
1750		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1751
1752	/*
1753	 * If the pool is newer than the code, we can't open it.
1754	 */
1755	if (ub->ub_version > SPA_VERSION)
1756		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1757
1758	/*
1759	 * If the vdev guid sum doesn't match the uberblock, we have an
1760	 * incomplete configuration.
1761	 */
1762	if (mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1763	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1764		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1765
1766	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1767		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1768		spa_try_repair(spa, config);
1769		spa_config_exit(spa, SCL_ALL, FTAG);
1770		nvlist_free(spa->spa_config_splitting);
1771		spa->spa_config_splitting = NULL;
1772	}
1773
1774	/*
1775	 * Initialize internal SPA structures.
1776	 */
1777	spa->spa_state = POOL_STATE_ACTIVE;
1778	spa->spa_ubsync = spa->spa_uberblock;
1779	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1780	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1781	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1782	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1783	spa->spa_claim_max_txg = spa->spa_first_txg;
1784
1785	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1786	if (error)
1787		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1788	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1789
1790	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1791		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1792
1793	if (!mosconfig) {
1794		uint64_t hostid;
1795		nvlist_t *policy = NULL, *nvconfig;
1796
1797		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1798			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1799
1800		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1801		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1802			char *hostname;
1803			unsigned long myhostid = 0;
1804
1805			VERIFY(nvlist_lookup_string(nvconfig,
1806			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1807
1808#ifdef	_KERNEL
1809			myhostid = zone_get_hostid(NULL);
1810#else	/* _KERNEL */
1811			/*
1812			 * We're emulating the system's hostid in userland, so
1813			 * we can't use zone_get_hostid().
1814			 */
1815			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1816#endif	/* _KERNEL */
1817			if (hostid != 0 && myhostid != 0 &&
1818			    hostid != myhostid) {
1819				nvlist_free(nvconfig);
1820				cmn_err(CE_WARN, "pool '%s' could not be "
1821				    "loaded as it was last accessed by "
1822				    "another system (host: %s hostid: 0x%lx). "
1823				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1824				    spa_name(spa), hostname,
1825				    (unsigned long)hostid);
1826				return (EBADF);
1827			}
1828		}
1829		if (nvlist_lookup_nvlist(spa->spa_config,
1830		    ZPOOL_REWIND_POLICY, &policy) == 0)
1831			VERIFY(nvlist_add_nvlist(nvconfig,
1832			    ZPOOL_REWIND_POLICY, policy) == 0);
1833
1834		spa_config_set(spa, nvconfig);
1835		spa_unload(spa);
1836		spa_deactivate(spa);
1837		spa_activate(spa, orig_mode);
1838
1839		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1840	}
1841
1842	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST,
1843	    &spa->spa_deferred_bplist_obj) != 0)
1844		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1845
1846	/*
1847	 * Load the bit that tells us to use the new accounting function
1848	 * (raid-z deflation).  If we have an older pool, this will not
1849	 * be present.
1850	 */
1851	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1852	if (error != 0 && error != ENOENT)
1853		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1854
1855	/*
1856	 * Load the persistent error log.  If we have an older pool, this will
1857	 * not be present.
1858	 */
1859	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1860	if (error != 0 && error != ENOENT)
1861		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1862
1863	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
1864	    &spa->spa_errlog_scrub);
1865	if (error != 0 && error != ENOENT)
1866		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1867
1868	/*
1869	 * Load the history object.  If we have an older pool, this
1870	 * will not be present.
1871	 */
1872	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
1873	if (error != 0 && error != ENOENT)
1874		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1875
1876	/*
1877	 * If we're assembling the pool from the split-off vdevs of
1878	 * an existing pool, we don't want to attach the spares & cache
1879	 * devices.
1880	 */
1881
1882	/*
1883	 * Load any hot spares for this pool.
1884	 */
1885	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
1886	if (error != 0 && error != ENOENT)
1887		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1888	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1889		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1890		if (load_nvlist(spa, spa->spa_spares.sav_object,
1891		    &spa->spa_spares.sav_config) != 0)
1892			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1893
1894		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1895		spa_load_spares(spa);
1896		spa_config_exit(spa, SCL_ALL, FTAG);
1897	} else if (error == 0) {
1898		spa->spa_spares.sav_sync = B_TRUE;
1899	}
1900
1901	/*
1902	 * Load any level 2 ARC devices for this pool.
1903	 */
1904	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
1905	    &spa->spa_l2cache.sav_object);
1906	if (error != 0 && error != ENOENT)
1907		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1908	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1909		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1910		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1911		    &spa->spa_l2cache.sav_config) != 0)
1912			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1913
1914		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1915		spa_load_l2cache(spa);
1916		spa_config_exit(spa, SCL_ALL, FTAG);
1917	} else if (error == 0) {
1918		spa->spa_l2cache.sav_sync = B_TRUE;
1919	}
1920
1921	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1922
1923	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
1924	if (error && error != ENOENT)
1925		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1926
1927	if (error == 0) {
1928		uint64_t autoreplace;
1929
1930		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
1931		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
1932		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
1933		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
1934		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
1935		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
1936		    &spa->spa_dedup_ditto);
1937
1938		spa->spa_autoreplace = (autoreplace != 0);
1939	}
1940
1941	/*
1942	 * If the 'autoreplace' property is set, then post a resource notifying
1943	 * the ZFS DE that it should not issue any faults for unopenable
1944	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1945	 * unopenable vdevs so that the normal autoreplace handler can take
1946	 * over.
1947	 */
1948	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1949		spa_check_removed(spa->spa_root_vdev);
1950		/*
1951		 * For the import case, this is done in spa_import(), because
1952		 * at this point we're using the spare definitions from
1953		 * the MOS config, not necessarily from the userland config.
1954		 */
1955		if (state != SPA_LOAD_IMPORT) {
1956			spa_aux_check_removed(&spa->spa_spares);
1957			spa_aux_check_removed(&spa->spa_l2cache);
1958		}
1959	}
1960
1961	/*
1962	 * Load the vdev state for all toplevel vdevs.
1963	 */
1964	vdev_load(rvd);
1965
1966	/*
1967	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1968	 */
1969	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1970	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1971	spa_config_exit(spa, SCL_ALL, FTAG);
1972
1973	/*
1974	 * Check the state of the root vdev.  If it can't be opened, it
1975	 * indicates one or more toplevel vdevs are faulted.
1976	 */
1977	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1978		return (ENXIO);
1979
1980	/*
1981	 * Load the DDTs (dedup tables).
1982	 */
1983	error = ddt_load(spa);
1984	if (error != 0)
1985		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1986
1987	spa_update_dspace(spa);
1988
1989	if (state != SPA_LOAD_TRYIMPORT) {
1990		error = spa_load_verify(spa);
1991		if (error)
1992			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
1993			    error));
1994	}
1995
1996	/*
1997	 * Load the intent log state and check log integrity.  If we're
1998	 * assembling a pool from a split, the log is not transferred over.
1999	 */
2000	if (type != SPA_IMPORT_ASSEMBLE) {
2001		nvlist_t *nvconfig;
2002
2003		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2004			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2005
2006		VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
2007		    &nvroot) == 0);
2008		spa_load_log_state(spa, nvroot);
2009		nvlist_free(nvconfig);
2010
2011		if (spa_check_logs(spa)) {
2012			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2013			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2014		}
2015	}
2016
2017	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2018	    spa->spa_load_max_txg == UINT64_MAX)) {
2019		dmu_tx_t *tx;
2020		int need_update = B_FALSE;
2021
2022		ASSERT(state != SPA_LOAD_TRYIMPORT);
2023
2024		/*
2025		 * Claim log blocks that haven't been committed yet.
2026		 * This must all happen in a single txg.
2027		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2028		 * invoked from zil_claim_log_block()'s i/o done callback.
2029		 * Price of rollback is that we abandon the log.
2030		 */
2031		spa->spa_claiming = B_TRUE;
2032
2033		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2034		    spa_first_txg(spa));
2035		(void) dmu_objset_find(spa_name(spa),
2036		    zil_claim, tx, DS_FIND_CHILDREN);
2037		dmu_tx_commit(tx);
2038
2039		spa->spa_claiming = B_FALSE;
2040
2041		spa_set_log_state(spa, SPA_LOG_GOOD);
2042		spa->spa_sync_on = B_TRUE;
2043		txg_sync_start(spa->spa_dsl_pool);
2044
2045		/*
2046		 * Wait for all claims to sync.  We sync up to the highest
2047		 * claimed log block birth time so that claimed log blocks
2048		 * don't appear to be from the future.  spa_claim_max_txg
2049		 * will have been set for us by either zil_check_log_chain()
2050		 * (invoked from spa_check_logs()) or zil_claim() above.
2051		 */
2052		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2053
2054		/*
2055		 * If the config cache is stale, or we have uninitialized
2056		 * metaslabs (see spa_vdev_add()), then update the config.
2057		 *
2058		 * If spa_load_verbatim is true, trust the current
2059		 * in-core spa_config and update the disk labels.
2060		 */
2061		if (config_cache_txg != spa->spa_config_txg ||
2062		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
2063		    state == SPA_LOAD_RECOVER)
2064			need_update = B_TRUE;
2065
2066		for (int c = 0; c < rvd->vdev_children; c++)
2067			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2068				need_update = B_TRUE;
2069
2070		/*
2071		 * Update the config cache asychronously in case we're the
2072		 * root pool, in which case the config cache isn't writable yet.
2073		 */
2074		if (need_update)
2075			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2076
2077		/*
2078		 * Check all DTLs to see if anything needs resilvering.
2079		 */
2080		if (vdev_resilver_needed(rvd, NULL, NULL))
2081			spa_async_request(spa, SPA_ASYNC_RESILVER);
2082
2083		/*
2084		 * Delete any inconsistent datasets.
2085		 */
2086		(void) dmu_objset_find(spa_name(spa),
2087		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2088
2089		/*
2090		 * Clean up any stale temporary dataset userrefs.
2091		 */
2092		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2093	}
2094
2095	return (0);
2096}
2097
2098static int
2099spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2100{
2101	spa_unload(spa);
2102	spa_deactivate(spa);
2103
2104	spa->spa_load_max_txg--;
2105
2106	spa_activate(spa, spa_mode_global);
2107	spa_async_suspend(spa);
2108
2109	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2110}
2111
2112static int
2113spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2114    uint64_t max_request, int rewind_flags)
2115{
2116	nvlist_t *config = NULL;
2117	int load_error, rewind_error;
2118	uint64_t safe_rewind_txg;
2119	uint64_t min_txg;
2120
2121	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2122		spa->spa_load_max_txg = spa->spa_load_txg;
2123		spa_set_log_state(spa, SPA_LOG_CLEAR);
2124	} else {
2125		spa->spa_load_max_txg = max_request;
2126	}
2127
2128	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2129	    mosconfig);
2130	if (load_error == 0)
2131		return (0);
2132
2133	if (spa->spa_root_vdev != NULL)
2134		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2135
2136	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2137	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2138
2139	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2140		nvlist_free(config);
2141		return (load_error);
2142	}
2143
2144	/* Price of rolling back is discarding txgs, including log */
2145	if (state == SPA_LOAD_RECOVER)
2146		spa_set_log_state(spa, SPA_LOG_CLEAR);
2147
2148	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2149	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2150	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2151	    TXG_INITIAL : safe_rewind_txg;
2152
2153	/*
2154	 * Continue as long as we're finding errors, we're still within
2155	 * the acceptable rewind range, and we're still finding uberblocks
2156	 */
2157	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2158	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2159		if (spa->spa_load_max_txg < safe_rewind_txg)
2160			spa->spa_extreme_rewind = B_TRUE;
2161		rewind_error = spa_load_retry(spa, state, mosconfig);
2162	}
2163
2164	if (config)
2165		spa_rewind_data_to_nvlist(spa, config);
2166
2167	spa->spa_extreme_rewind = B_FALSE;
2168	spa->spa_load_max_txg = UINT64_MAX;
2169
2170	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2171		spa_config_set(spa, config);
2172
2173	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2174}
2175
2176/*
2177 * Pool Open/Import
2178 *
2179 * The import case is identical to an open except that the configuration is sent
2180 * down from userland, instead of grabbed from the configuration cache.  For the
2181 * case of an open, the pool configuration will exist in the
2182 * POOL_STATE_UNINITIALIZED state.
2183 *
2184 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2185 * the same time open the pool, without having to keep around the spa_t in some
2186 * ambiguous state.
2187 */
2188static int
2189spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2190    nvlist_t **config)
2191{
2192	spa_t *spa;
2193	int error;
2194	int locked = B_FALSE;
2195
2196	*spapp = NULL;
2197
2198	/*
2199	 * As disgusting as this is, we need to support recursive calls to this
2200	 * function because dsl_dir_open() is called during spa_load(), and ends
2201	 * up calling spa_open() again.  The real fix is to figure out how to
2202	 * avoid dsl_dir_open() calling this in the first place.
2203	 */
2204	if (mutex_owner(&spa_namespace_lock) != curthread) {
2205		mutex_enter(&spa_namespace_lock);
2206		locked = B_TRUE;
2207	}
2208
2209	if ((spa = spa_lookup(pool)) == NULL) {
2210		if (locked)
2211			mutex_exit(&spa_namespace_lock);
2212		return (ENOENT);
2213	}
2214
2215	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2216		spa_load_state_t state = SPA_LOAD_OPEN;
2217		zpool_rewind_policy_t policy;
2218
2219		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2220		    &policy);
2221		if (policy.zrp_request & ZPOOL_DO_REWIND)
2222			state = SPA_LOAD_RECOVER;
2223
2224		spa_activate(spa, spa_mode_global);
2225
2226		if (spa->spa_last_open_failed && (policy.zrp_request &
2227		    (ZPOOL_NO_REWIND | ZPOOL_NEVER_REWIND))) {
2228			if (config != NULL && spa->spa_config)
2229				VERIFY(nvlist_dup(spa->spa_config,
2230				    config, KM_SLEEP) == 0);
2231			spa_deactivate(spa);
2232			if (locked)
2233				mutex_exit(&spa_namespace_lock);
2234			return (spa->spa_last_open_failed);
2235		}
2236
2237		if (state != SPA_LOAD_RECOVER)
2238			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2239
2240		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2241		    policy.zrp_request);
2242
2243		if (error == EBADF) {
2244			/*
2245			 * If vdev_validate() returns failure (indicated by
2246			 * EBADF), it indicates that one of the vdevs indicates
2247			 * that the pool has been exported or destroyed.  If
2248			 * this is the case, the config cache is out of sync and
2249			 * we should remove the pool from the namespace.
2250			 */
2251			spa_unload(spa);
2252			spa_deactivate(spa);
2253			spa_config_sync(spa, B_TRUE, B_TRUE);
2254			spa_remove(spa);
2255			if (locked)
2256				mutex_exit(&spa_namespace_lock);
2257			return (ENOENT);
2258		}
2259
2260		if (error) {
2261			/*
2262			 * We can't open the pool, but we still have useful
2263			 * information: the state of each vdev after the
2264			 * attempted vdev_open().  Return this to the user.
2265			 */
2266			if (config != NULL && spa->spa_config)
2267				VERIFY(nvlist_dup(spa->spa_config, config,
2268				    KM_SLEEP) == 0);
2269			spa_unload(spa);
2270			spa_deactivate(spa);
2271			spa->spa_last_open_failed = error;
2272			if (locked)
2273				mutex_exit(&spa_namespace_lock);
2274			*spapp = NULL;
2275			return (error);
2276		}
2277
2278	}
2279
2280	spa_open_ref(spa, tag);
2281
2282
2283	if (config != NULL)
2284		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2285
2286	if (locked) {
2287		spa->spa_last_open_failed = 0;
2288		spa->spa_last_ubsync_txg = 0;
2289		spa->spa_load_txg = 0;
2290		mutex_exit(&spa_namespace_lock);
2291	}
2292
2293	*spapp = spa;
2294
2295	return (0);
2296}
2297
2298int
2299spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2300    nvlist_t **config)
2301{
2302	return (spa_open_common(name, spapp, tag, policy, config));
2303}
2304
2305int
2306spa_open(const char *name, spa_t **spapp, void *tag)
2307{
2308	return (spa_open_common(name, spapp, tag, NULL, NULL));
2309}
2310
2311/*
2312 * Lookup the given spa_t, incrementing the inject count in the process,
2313 * preventing it from being exported or destroyed.
2314 */
2315spa_t *
2316spa_inject_addref(char *name)
2317{
2318	spa_t *spa;
2319
2320	mutex_enter(&spa_namespace_lock);
2321	if ((spa = spa_lookup(name)) == NULL) {
2322		mutex_exit(&spa_namespace_lock);
2323		return (NULL);
2324	}
2325	spa->spa_inject_ref++;
2326	mutex_exit(&spa_namespace_lock);
2327
2328	return (spa);
2329}
2330
2331void
2332spa_inject_delref(spa_t *spa)
2333{
2334	mutex_enter(&spa_namespace_lock);
2335	spa->spa_inject_ref--;
2336	mutex_exit(&spa_namespace_lock);
2337}
2338
2339/*
2340 * Add spares device information to the nvlist.
2341 */
2342static void
2343spa_add_spares(spa_t *spa, nvlist_t *config)
2344{
2345	nvlist_t **spares;
2346	uint_t i, nspares;
2347	nvlist_t *nvroot;
2348	uint64_t guid;
2349	vdev_stat_t *vs;
2350	uint_t vsc;
2351	uint64_t pool;
2352
2353	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2354
2355	if (spa->spa_spares.sav_count == 0)
2356		return;
2357
2358	VERIFY(nvlist_lookup_nvlist(config,
2359	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2360	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2361	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2362	if (nspares != 0) {
2363		VERIFY(nvlist_add_nvlist_array(nvroot,
2364		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2365		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2366		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2367
2368		/*
2369		 * Go through and find any spares which have since been
2370		 * repurposed as an active spare.  If this is the case, update
2371		 * their status appropriately.
2372		 */
2373		for (i = 0; i < nspares; i++) {
2374			VERIFY(nvlist_lookup_uint64(spares[i],
2375			    ZPOOL_CONFIG_GUID, &guid) == 0);
2376			if (spa_spare_exists(guid, &pool, NULL) &&
2377			    pool != 0ULL) {
2378				VERIFY(nvlist_lookup_uint64_array(
2379				    spares[i], ZPOOL_CONFIG_STATS,
2380				    (uint64_t **)&vs, &vsc) == 0);
2381				vs->vs_state = VDEV_STATE_CANT_OPEN;
2382				vs->vs_aux = VDEV_AUX_SPARED;
2383			}
2384		}
2385	}
2386}
2387
2388/*
2389 * Add l2cache device information to the nvlist, including vdev stats.
2390 */
2391static void
2392spa_add_l2cache(spa_t *spa, nvlist_t *config)
2393{
2394	nvlist_t **l2cache;
2395	uint_t i, j, nl2cache;
2396	nvlist_t *nvroot;
2397	uint64_t guid;
2398	vdev_t *vd;
2399	vdev_stat_t *vs;
2400	uint_t vsc;
2401
2402	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2403
2404	if (spa->spa_l2cache.sav_count == 0)
2405		return;
2406
2407	VERIFY(nvlist_lookup_nvlist(config,
2408	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2409	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2410	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2411	if (nl2cache != 0) {
2412		VERIFY(nvlist_add_nvlist_array(nvroot,
2413		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2414		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2415		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2416
2417		/*
2418		 * Update level 2 cache device stats.
2419		 */
2420
2421		for (i = 0; i < nl2cache; i++) {
2422			VERIFY(nvlist_lookup_uint64(l2cache[i],
2423			    ZPOOL_CONFIG_GUID, &guid) == 0);
2424
2425			vd = NULL;
2426			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2427				if (guid ==
2428				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2429					vd = spa->spa_l2cache.sav_vdevs[j];
2430					break;
2431				}
2432			}
2433			ASSERT(vd != NULL);
2434
2435			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2436			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2437			vdev_get_stats(vd, vs);
2438		}
2439	}
2440}
2441
2442int
2443spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2444{
2445	int error;
2446	spa_t *spa;
2447
2448	*config = NULL;
2449	error = spa_open_common(name, &spa, FTAG, NULL, config);
2450
2451	if (spa != NULL) {
2452		/*
2453		 * This still leaves a window of inconsistency where the spares
2454		 * or l2cache devices could change and the config would be
2455		 * self-inconsistent.
2456		 */
2457		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2458
2459		if (*config != NULL) {
2460			VERIFY(nvlist_add_uint64(*config,
2461			    ZPOOL_CONFIG_ERRCOUNT,
2462			    spa_get_errlog_size(spa)) == 0);
2463
2464			if (spa_suspended(spa))
2465				VERIFY(nvlist_add_uint64(*config,
2466				    ZPOOL_CONFIG_SUSPENDED,
2467				    spa->spa_failmode) == 0);
2468
2469			spa_add_spares(spa, *config);
2470			spa_add_l2cache(spa, *config);
2471		}
2472	}
2473
2474	/*
2475	 * We want to get the alternate root even for faulted pools, so we cheat
2476	 * and call spa_lookup() directly.
2477	 */
2478	if (altroot) {
2479		if (spa == NULL) {
2480			mutex_enter(&spa_namespace_lock);
2481			spa = spa_lookup(name);
2482			if (spa)
2483				spa_altroot(spa, altroot, buflen);
2484			else
2485				altroot[0] = '\0';
2486			spa = NULL;
2487			mutex_exit(&spa_namespace_lock);
2488		} else {
2489			spa_altroot(spa, altroot, buflen);
2490		}
2491	}
2492
2493	if (spa != NULL) {
2494		spa_config_exit(spa, SCL_CONFIG, FTAG);
2495		spa_close(spa, FTAG);
2496	}
2497
2498	return (error);
2499}
2500
2501/*
2502 * Validate that the auxiliary device array is well formed.  We must have an
2503 * array of nvlists, each which describes a valid leaf vdev.  If this is an
2504 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2505 * specified, as long as they are well-formed.
2506 */
2507static int
2508spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2509    spa_aux_vdev_t *sav, const char *config, uint64_t version,
2510    vdev_labeltype_t label)
2511{
2512	nvlist_t **dev;
2513	uint_t i, ndev;
2514	vdev_t *vd;
2515	int error;
2516
2517	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2518
2519	/*
2520	 * It's acceptable to have no devs specified.
2521	 */
2522	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2523		return (0);
2524
2525	if (ndev == 0)
2526		return (EINVAL);
2527
2528	/*
2529	 * Make sure the pool is formatted with a version that supports this
2530	 * device type.
2531	 */
2532	if (spa_version(spa) < version)
2533		return (ENOTSUP);
2534
2535	/*
2536	 * Set the pending device list so we correctly handle device in-use
2537	 * checking.
2538	 */
2539	sav->sav_pending = dev;
2540	sav->sav_npending = ndev;
2541
2542	for (i = 0; i < ndev; i++) {
2543		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2544		    mode)) != 0)
2545			goto out;
2546
2547		if (!vd->vdev_ops->vdev_op_leaf) {
2548			vdev_free(vd);
2549			error = EINVAL;
2550			goto out;
2551		}
2552
2553		/*
2554		 * The L2ARC currently only supports disk devices in
2555		 * kernel context.  For user-level testing, we allow it.
2556		 */
2557#ifdef _KERNEL
2558		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2559		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2560			error = ENOTBLK;
2561			goto out;
2562		}
2563#endif
2564		vd->vdev_top = vd;
2565
2566		if ((error = vdev_open(vd)) == 0 &&
2567		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2568			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2569			    vd->vdev_guid) == 0);
2570		}
2571
2572		vdev_free(vd);
2573
2574		if (error &&
2575		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2576			goto out;
2577		else
2578			error = 0;
2579	}
2580
2581out:
2582	sav->sav_pending = NULL;
2583	sav->sav_npending = 0;
2584	return (error);
2585}
2586
2587static int
2588spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2589{
2590	int error;
2591
2592	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2593
2594	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2595	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2596	    VDEV_LABEL_SPARE)) != 0) {
2597		return (error);
2598	}
2599
2600	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2601	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2602	    VDEV_LABEL_L2CACHE));
2603}
2604
2605static void
2606spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2607    const char *config)
2608{
2609	int i;
2610
2611	if (sav->sav_config != NULL) {
2612		nvlist_t **olddevs;
2613		uint_t oldndevs;
2614		nvlist_t **newdevs;
2615
2616		/*
2617		 * Generate new dev list by concatentating with the
2618		 * current dev list.
2619		 */
2620		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2621		    &olddevs, &oldndevs) == 0);
2622
2623		newdevs = kmem_alloc(sizeof (void *) *
2624		    (ndevs + oldndevs), KM_SLEEP);
2625		for (i = 0; i < oldndevs; i++)
2626			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2627			    KM_SLEEP) == 0);
2628		for (i = 0; i < ndevs; i++)
2629			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2630			    KM_SLEEP) == 0);
2631
2632		VERIFY(nvlist_remove(sav->sav_config, config,
2633		    DATA_TYPE_NVLIST_ARRAY) == 0);
2634
2635		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2636		    config, newdevs, ndevs + oldndevs) == 0);
2637		for (i = 0; i < oldndevs + ndevs; i++)
2638			nvlist_free(newdevs[i]);
2639		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2640	} else {
2641		/*
2642		 * Generate a new dev list.
2643		 */
2644		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2645		    KM_SLEEP) == 0);
2646		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2647		    devs, ndevs) == 0);
2648	}
2649}
2650
2651/*
2652 * Stop and drop level 2 ARC devices
2653 */
2654void
2655spa_l2cache_drop(spa_t *spa)
2656{
2657	vdev_t *vd;
2658	int i;
2659	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2660
2661	for (i = 0; i < sav->sav_count; i++) {
2662		uint64_t pool;
2663
2664		vd = sav->sav_vdevs[i];
2665		ASSERT(vd != NULL);
2666
2667		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2668		    pool != 0ULL && l2arc_vdev_present(vd))
2669			l2arc_remove_vdev(vd);
2670		if (vd->vdev_isl2cache)
2671			spa_l2cache_remove(vd);
2672		vdev_clear_stats(vd);
2673		(void) vdev_close(vd);
2674	}
2675}
2676
2677/*
2678 * Pool Creation
2679 */
2680int
2681spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2682    const char *history_str, nvlist_t *zplprops)
2683{
2684	spa_t *spa;
2685	char *altroot = NULL;
2686	vdev_t *rvd;
2687	dsl_pool_t *dp;
2688	dmu_tx_t *tx;
2689	int error = 0;
2690	uint64_t txg = TXG_INITIAL;
2691	nvlist_t **spares, **l2cache;
2692	uint_t nspares, nl2cache;
2693	uint64_t version;
2694
2695	/*
2696	 * If this pool already exists, return failure.
2697	 */
2698	mutex_enter(&spa_namespace_lock);
2699	if (spa_lookup(pool) != NULL) {
2700		mutex_exit(&spa_namespace_lock);
2701		return (EEXIST);
2702	}
2703
2704	/*
2705	 * Allocate a new spa_t structure.
2706	 */
2707	(void) nvlist_lookup_string(props,
2708	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2709	spa = spa_add(pool, NULL, altroot);
2710	spa_activate(spa, spa_mode_global);
2711
2712	if (props && (error = spa_prop_validate(spa, props))) {
2713		spa_deactivate(spa);
2714		spa_remove(spa);
2715		mutex_exit(&spa_namespace_lock);
2716		return (error);
2717	}
2718
2719	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2720	    &version) != 0)
2721		version = SPA_VERSION;
2722	ASSERT(version <= SPA_VERSION);
2723
2724	spa->spa_first_txg = txg;
2725	spa->spa_uberblock.ub_txg = txg - 1;
2726	spa->spa_uberblock.ub_version = version;
2727	spa->spa_ubsync = spa->spa_uberblock;
2728
2729	/*
2730	 * Create "The Godfather" zio to hold all async IOs
2731	 */
2732	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2733	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2734
2735	/*
2736	 * Create the root vdev.
2737	 */
2738	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2739
2740	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2741
2742	ASSERT(error != 0 || rvd != NULL);
2743	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2744
2745	if (error == 0 && !zfs_allocatable_devs(nvroot))
2746		error = EINVAL;
2747
2748	if (error == 0 &&
2749	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2750	    (error = spa_validate_aux(spa, nvroot, txg,
2751	    VDEV_ALLOC_ADD)) == 0) {
2752		for (int c = 0; c < rvd->vdev_children; c++) {
2753			vdev_metaslab_set_size(rvd->vdev_child[c]);
2754			vdev_expand(rvd->vdev_child[c], txg);
2755		}
2756	}
2757
2758	spa_config_exit(spa, SCL_ALL, FTAG);
2759
2760	if (error != 0) {
2761		spa_unload(spa);
2762		spa_deactivate(spa);
2763		spa_remove(spa);
2764		mutex_exit(&spa_namespace_lock);
2765		return (error);
2766	}
2767
2768	/*
2769	 * Get the list of spares, if specified.
2770	 */
2771	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2772	    &spares, &nspares) == 0) {
2773		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2774		    KM_SLEEP) == 0);
2775		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2776		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2777		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2778		spa_load_spares(spa);
2779		spa_config_exit(spa, SCL_ALL, FTAG);
2780		spa->spa_spares.sav_sync = B_TRUE;
2781	}
2782
2783	/*
2784	 * Get the list of level 2 cache devices, if specified.
2785	 */
2786	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2787	    &l2cache, &nl2cache) == 0) {
2788		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2789		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2790		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2791		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2792		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2793		spa_load_l2cache(spa);
2794		spa_config_exit(spa, SCL_ALL, FTAG);
2795		spa->spa_l2cache.sav_sync = B_TRUE;
2796	}
2797
2798	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2799	spa->spa_meta_objset = dp->dp_meta_objset;
2800
2801	/*
2802	 * Create DDTs (dedup tables).
2803	 */
2804	ddt_create(spa);
2805
2806	spa_update_dspace(spa);
2807
2808	tx = dmu_tx_create_assigned(dp, txg);
2809
2810	/*
2811	 * Create the pool config object.
2812	 */
2813	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2814	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2815	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2816
2817	if (zap_add(spa->spa_meta_objset,
2818	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2819	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2820		cmn_err(CE_PANIC, "failed to add pool config");
2821	}
2822
2823	/* Newly created pools with the right version are always deflated. */
2824	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2825		spa->spa_deflate = TRUE;
2826		if (zap_add(spa->spa_meta_objset,
2827		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2828		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2829			cmn_err(CE_PANIC, "failed to add deflate");
2830		}
2831	}
2832
2833	/*
2834	 * Create the deferred-free bplist object.  Turn off compression
2835	 * because sync-to-convergence takes longer if the blocksize
2836	 * keeps changing.
2837	 */
2838	spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2839	    1 << 14, tx);
2840	dmu_object_set_compress(spa->spa_meta_objset,
2841	    spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2842
2843	if (zap_add(spa->spa_meta_objset,
2844	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2845	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2846		cmn_err(CE_PANIC, "failed to add bplist");
2847	}
2848
2849	/*
2850	 * Create the pool's history object.
2851	 */
2852	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2853		spa_history_create_obj(spa, tx);
2854
2855	/*
2856	 * Set pool properties.
2857	 */
2858	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2859	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2860	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2861	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2862
2863	if (props != NULL) {
2864		spa_configfile_set(spa, props, B_FALSE);
2865		spa_sync_props(spa, props, CRED(), tx);
2866	}
2867
2868	dmu_tx_commit(tx);
2869
2870	spa->spa_sync_on = B_TRUE;
2871	txg_sync_start(spa->spa_dsl_pool);
2872
2873	/*
2874	 * We explicitly wait for the first transaction to complete so that our
2875	 * bean counters are appropriately updated.
2876	 */
2877	txg_wait_synced(spa->spa_dsl_pool, txg);
2878
2879	spa_config_sync(spa, B_FALSE, B_TRUE);
2880
2881	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2882		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2883	spa_history_log_version(spa, LOG_POOL_CREATE);
2884
2885	spa->spa_minref = refcount_count(&spa->spa_refcount);
2886
2887	mutex_exit(&spa_namespace_lock);
2888
2889	return (0);
2890}
2891
2892#ifdef _KERNEL
2893/*
2894 * Get the root pool information from the root disk, then import the root pool
2895 * during the system boot up time.
2896 */
2897extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2898
2899static nvlist_t *
2900spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2901{
2902	nvlist_t *config;
2903	nvlist_t *nvtop, *nvroot;
2904	uint64_t pgid;
2905
2906	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2907		return (NULL);
2908
2909	/*
2910	 * Add this top-level vdev to the child array.
2911	 */
2912	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2913	    &nvtop) == 0);
2914	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2915	    &pgid) == 0);
2916	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2917
2918	/*
2919	 * Put this pool's top-level vdevs into a root vdev.
2920	 */
2921	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2922	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2923	    VDEV_TYPE_ROOT) == 0);
2924	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2925	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2926	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2927	    &nvtop, 1) == 0);
2928
2929	/*
2930	 * Replace the existing vdev_tree with the new root vdev in
2931	 * this pool's configuration (remove the old, add the new).
2932	 */
2933	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2934	nvlist_free(nvroot);
2935	return (config);
2936}
2937
2938/*
2939 * Walk the vdev tree and see if we can find a device with "better"
2940 * configuration. A configuration is "better" if the label on that
2941 * device has a more recent txg.
2942 */
2943static void
2944spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2945{
2946	for (int c = 0; c < vd->vdev_children; c++)
2947		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2948
2949	if (vd->vdev_ops->vdev_op_leaf) {
2950		nvlist_t *label;
2951		uint64_t label_txg;
2952
2953		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2954		    &label) != 0)
2955			return;
2956
2957		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2958		    &label_txg) == 0);
2959
2960		/*
2961		 * Do we have a better boot device?
2962		 */
2963		if (label_txg > *txg) {
2964			*txg = label_txg;
2965			*avd = vd;
2966		}
2967		nvlist_free(label);
2968	}
2969}
2970
2971/*
2972 * Import a root pool.
2973 *
2974 * For x86. devpath_list will consist of devid and/or physpath name of
2975 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2976 * The GRUB "findroot" command will return the vdev we should boot.
2977 *
2978 * For Sparc, devpath_list consists the physpath name of the booting device
2979 * no matter the rootpool is a single device pool or a mirrored pool.
2980 * e.g.
2981 *	"/pci@1f,0/ide@d/disk@0,0:a"
2982 */
2983int
2984spa_import_rootpool(char *devpath, char *devid)
2985{
2986	spa_t *spa;
2987	vdev_t *rvd, *bvd, *avd = NULL;
2988	nvlist_t *config, *nvtop;
2989	uint64_t guid, txg;
2990	char *pname;
2991	int error;
2992
2993	/*
2994	 * Read the label from the boot device and generate a configuration.
2995	 */
2996	config = spa_generate_rootconf(devpath, devid, &guid);
2997#if defined(_OBP) && defined(_KERNEL)
2998	if (config == NULL) {
2999		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3000			/* iscsi boot */
3001			get_iscsi_bootpath_phy(devpath);
3002			config = spa_generate_rootconf(devpath, devid, &guid);
3003		}
3004	}
3005#endif
3006	if (config == NULL) {
3007		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3008		    devpath);
3009		return (EIO);
3010	}
3011
3012	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3013	    &pname) == 0);
3014	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3015
3016	mutex_enter(&spa_namespace_lock);
3017	if ((spa = spa_lookup(pname)) != NULL) {
3018		/*
3019		 * Remove the existing root pool from the namespace so that we
3020		 * can replace it with the correct config we just read in.
3021		 */
3022		spa_remove(spa);
3023	}
3024
3025	spa = spa_add(pname, config, NULL);
3026	spa->spa_is_root = B_TRUE;
3027	spa->spa_load_verbatim = B_TRUE;
3028
3029	/*
3030	 * Build up a vdev tree based on the boot device's label config.
3031	 */
3032	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3033	    &nvtop) == 0);
3034	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3035	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3036	    VDEV_ALLOC_ROOTPOOL);
3037	spa_config_exit(spa, SCL_ALL, FTAG);
3038	if (error) {
3039		mutex_exit(&spa_namespace_lock);
3040		nvlist_free(config);
3041		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3042		    pname);
3043		return (error);
3044	}
3045
3046	/*
3047	 * Get the boot vdev.
3048	 */
3049	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3050		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3051		    (u_longlong_t)guid);
3052		error = ENOENT;
3053		goto out;
3054	}
3055
3056	/*
3057	 * Determine if there is a better boot device.
3058	 */
3059	avd = bvd;
3060	spa_alt_rootvdev(rvd, &avd, &txg);
3061	if (avd != bvd) {
3062		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3063		    "try booting from '%s'", avd->vdev_path);
3064		error = EINVAL;
3065		goto out;
3066	}
3067
3068	/*
3069	 * If the boot device is part of a spare vdev then ensure that
3070	 * we're booting off the active spare.
3071	 */
3072	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3073	    !bvd->vdev_isspare) {
3074		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3075		    "try booting from '%s'",
3076		    bvd->vdev_parent->vdev_child[1]->vdev_path);
3077		error = EINVAL;
3078		goto out;
3079	}
3080
3081	error = 0;
3082	spa_history_log_version(spa, LOG_POOL_IMPORT);
3083out:
3084	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3085	vdev_free(rvd);
3086	spa_config_exit(spa, SCL_ALL, FTAG);
3087	mutex_exit(&spa_namespace_lock);
3088
3089	nvlist_free(config);
3090	return (error);
3091}
3092
3093#endif
3094
3095/*
3096 * Take a pool and insert it into the namespace as if it had been loaded at
3097 * boot.
3098 */
3099int
3100spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
3101{
3102	spa_t *spa;
3103	char *altroot = NULL;
3104
3105	mutex_enter(&spa_namespace_lock);
3106	if (spa_lookup(pool) != NULL) {
3107		mutex_exit(&spa_namespace_lock);
3108		return (EEXIST);
3109	}
3110
3111	(void) nvlist_lookup_string(props,
3112	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3113	spa = spa_add(pool, config, altroot);
3114
3115	spa->spa_load_verbatim = B_TRUE;
3116
3117	if (props != NULL)
3118		spa_configfile_set(spa, props, B_FALSE);
3119
3120	spa_config_sync(spa, B_FALSE, B_TRUE);
3121
3122	mutex_exit(&spa_namespace_lock);
3123	spa_history_log_version(spa, LOG_POOL_IMPORT);
3124
3125	return (0);
3126}
3127
3128/*
3129 * Import a non-root pool into the system.
3130 */
3131int
3132spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
3133{
3134	spa_t *spa;
3135	char *altroot = NULL;
3136	spa_load_state_t state = SPA_LOAD_IMPORT;
3137	zpool_rewind_policy_t policy;
3138	int error;
3139	nvlist_t *nvroot;
3140	nvlist_t **spares, **l2cache;
3141	uint_t nspares, nl2cache;
3142
3143	/*
3144	 * If a pool with this name exists, return failure.
3145	 */
3146	mutex_enter(&spa_namespace_lock);
3147	if (spa_lookup(pool) != NULL) {
3148		mutex_exit(&spa_namespace_lock);
3149		return (EEXIST);
3150	}
3151
3152	zpool_get_rewind_policy(config, &policy);
3153	if (policy.zrp_request & ZPOOL_DO_REWIND)
3154		state = SPA_LOAD_RECOVER;
3155
3156	/*
3157	 * Create and initialize the spa structure.
3158	 */
3159	(void) nvlist_lookup_string(props,
3160	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3161	spa = spa_add(pool, config, altroot);
3162	spa_activate(spa, spa_mode_global);
3163
3164	/*
3165	 * Don't start async tasks until we know everything is healthy.
3166	 */
3167	spa_async_suspend(spa);
3168
3169	/*
3170	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3171	 * because the user-supplied config is actually the one to trust when
3172	 * doing an import.
3173	 */
3174	if (state != SPA_LOAD_RECOVER)
3175		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3176	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3177	    policy.zrp_request);
3178
3179	/*
3180	 * Propagate anything learned about failing or best txgs
3181	 * back to caller
3182	 */
3183	spa_rewind_data_to_nvlist(spa, config);
3184
3185	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3186	/*
3187	 * Toss any existing sparelist, as it doesn't have any validity
3188	 * anymore, and conflicts with spa_has_spare().
3189	 */
3190	if (spa->spa_spares.sav_config) {
3191		nvlist_free(spa->spa_spares.sav_config);
3192		spa->spa_spares.sav_config = NULL;
3193		spa_load_spares(spa);
3194	}
3195	if (spa->spa_l2cache.sav_config) {
3196		nvlist_free(spa->spa_l2cache.sav_config);
3197		spa->spa_l2cache.sav_config = NULL;
3198		spa_load_l2cache(spa);
3199	}
3200
3201	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3202	    &nvroot) == 0);
3203	if (error == 0)
3204		error = spa_validate_aux(spa, nvroot, -1ULL,
3205		    VDEV_ALLOC_SPARE);
3206	if (error == 0)
3207		error = spa_validate_aux(spa, nvroot, -1ULL,
3208		    VDEV_ALLOC_L2CACHE);
3209	spa_config_exit(spa, SCL_ALL, FTAG);
3210
3211	if (props != NULL)
3212		spa_configfile_set(spa, props, B_FALSE);
3213
3214	if (error != 0 || (props && spa_writeable(spa) &&
3215	    (error = spa_prop_set(spa, props)))) {
3216		spa_unload(spa);
3217		spa_deactivate(spa);
3218		spa_remove(spa);
3219		mutex_exit(&spa_namespace_lock);
3220		return (error);
3221	}
3222
3223	spa_async_resume(spa);
3224
3225	/*
3226	 * Override any spares and level 2 cache devices as specified by
3227	 * the user, as these may have correct device names/devids, etc.
3228	 */
3229	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3230	    &spares, &nspares) == 0) {
3231		if (spa->spa_spares.sav_config)
3232			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3233			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3234		else
3235			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3236			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3237		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3238		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3239		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3240		spa_load_spares(spa);
3241		spa_config_exit(spa, SCL_ALL, FTAG);
3242		spa->spa_spares.sav_sync = B_TRUE;
3243	}
3244	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3245	    &l2cache, &nl2cache) == 0) {
3246		if (spa->spa_l2cache.sav_config)
3247			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3248			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3249		else
3250			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3251			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3252		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3253		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3254		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3255		spa_load_l2cache(spa);
3256		spa_config_exit(spa, SCL_ALL, FTAG);
3257		spa->spa_l2cache.sav_sync = B_TRUE;
3258	}
3259
3260	/*
3261	 * Check for any removed devices.
3262	 */
3263	if (spa->spa_autoreplace) {
3264		spa_aux_check_removed(&spa->spa_spares);
3265		spa_aux_check_removed(&spa->spa_l2cache);
3266	}
3267
3268	if (spa_writeable(spa)) {
3269		/*
3270		 * Update the config cache to include the newly-imported pool.
3271		 */
3272		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3273	}
3274
3275	/*
3276	 * It's possible that the pool was expanded while it was exported.
3277	 * We kick off an async task to handle this for us.
3278	 */
3279	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3280
3281	mutex_exit(&spa_namespace_lock);
3282	spa_history_log_version(spa, LOG_POOL_IMPORT);
3283
3284	return (0);
3285}
3286
3287nvlist_t *
3288spa_tryimport(nvlist_t *tryconfig)
3289{
3290	nvlist_t *config = NULL;
3291	char *poolname;
3292	spa_t *spa;
3293	uint64_t state;
3294	int error;
3295
3296	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3297		return (NULL);
3298
3299	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3300		return (NULL);
3301
3302	/*
3303	 * Create and initialize the spa structure.
3304	 */
3305	mutex_enter(&spa_namespace_lock);
3306	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3307	spa_activate(spa, FREAD);
3308
3309	/*
3310	 * Pass off the heavy lifting to spa_load().
3311	 * Pass TRUE for mosconfig because the user-supplied config
3312	 * is actually the one to trust when doing an import.
3313	 */
3314	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3315
3316	/*
3317	 * If 'tryconfig' was at least parsable, return the current config.
3318	 */
3319	if (spa->spa_root_vdev != NULL) {
3320		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3321		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3322		    poolname) == 0);
3323		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3324		    state) == 0);
3325		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3326		    spa->spa_uberblock.ub_timestamp) == 0);
3327
3328		/*
3329		 * If the bootfs property exists on this pool then we
3330		 * copy it out so that external consumers can tell which
3331		 * pools are bootable.
3332		 */
3333		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3334			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3335
3336			/*
3337			 * We have to play games with the name since the
3338			 * pool was opened as TRYIMPORT_NAME.
3339			 */
3340			if (dsl_dsobj_to_dsname(spa_name(spa),
3341			    spa->spa_bootfs, tmpname) == 0) {
3342				char *cp;
3343				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3344
3345				cp = strchr(tmpname, '/');
3346				if (cp == NULL) {
3347					(void) strlcpy(dsname, tmpname,
3348					    MAXPATHLEN);
3349				} else {
3350					(void) snprintf(dsname, MAXPATHLEN,
3351					    "%s/%s", poolname, ++cp);
3352				}
3353				VERIFY(nvlist_add_string(config,
3354				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3355				kmem_free(dsname, MAXPATHLEN);
3356			}
3357			kmem_free(tmpname, MAXPATHLEN);
3358		}
3359
3360		/*
3361		 * Add the list of hot spares and level 2 cache devices.
3362		 */
3363		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3364		spa_add_spares(spa, config);
3365		spa_add_l2cache(spa, config);
3366		spa_config_exit(spa, SCL_CONFIG, FTAG);
3367	}
3368
3369	spa_unload(spa);
3370	spa_deactivate(spa);
3371	spa_remove(spa);
3372	mutex_exit(&spa_namespace_lock);
3373
3374	return (config);
3375}
3376
3377/*
3378 * Pool export/destroy
3379 *
3380 * The act of destroying or exporting a pool is very simple.  We make sure there
3381 * is no more pending I/O and any references to the pool are gone.  Then, we
3382 * update the pool state and sync all the labels to disk, removing the
3383 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3384 * we don't sync the labels or remove the configuration cache.
3385 */
3386static int
3387spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3388    boolean_t force, boolean_t hardforce)
3389{
3390	spa_t *spa;
3391
3392	if (oldconfig)
3393		*oldconfig = NULL;
3394
3395	if (!(spa_mode_global & FWRITE))
3396		return (EROFS);
3397
3398	mutex_enter(&spa_namespace_lock);
3399	if ((spa = spa_lookup(pool)) == NULL) {
3400		mutex_exit(&spa_namespace_lock);
3401		return (ENOENT);
3402	}
3403
3404	/*
3405	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3406	 * reacquire the namespace lock, and see if we can export.
3407	 */
3408	spa_open_ref(spa, FTAG);
3409	mutex_exit(&spa_namespace_lock);
3410	spa_async_suspend(spa);
3411	mutex_enter(&spa_namespace_lock);
3412	spa_close(spa, FTAG);
3413
3414	/*
3415	 * The pool will be in core if it's openable,
3416	 * in which case we can modify its state.
3417	 */
3418	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3419		/*
3420		 * Objsets may be open only because they're dirty, so we
3421		 * have to force it to sync before checking spa_refcnt.
3422		 */
3423		txg_wait_synced(spa->spa_dsl_pool, 0);
3424
3425		/*
3426		 * A pool cannot be exported or destroyed if there are active
3427		 * references.  If we are resetting a pool, allow references by
3428		 * fault injection handlers.
3429		 */
3430		if (!spa_refcount_zero(spa) ||
3431		    (spa->spa_inject_ref != 0 &&
3432		    new_state != POOL_STATE_UNINITIALIZED)) {
3433			spa_async_resume(spa);
3434			mutex_exit(&spa_namespace_lock);
3435			return (EBUSY);
3436		}
3437
3438		/*
3439		 * A pool cannot be exported if it has an active shared spare.
3440		 * This is to prevent other pools stealing the active spare
3441		 * from an exported pool. At user's own will, such pool can
3442		 * be forcedly exported.
3443		 */
3444		if (!force && new_state == POOL_STATE_EXPORTED &&
3445		    spa_has_active_shared_spare(spa)) {
3446			spa_async_resume(spa);
3447			mutex_exit(&spa_namespace_lock);
3448			return (EXDEV);
3449		}
3450
3451		/*
3452		 * We want this to be reflected on every label,
3453		 * so mark them all dirty.  spa_unload() will do the
3454		 * final sync that pushes these changes out.
3455		 */
3456		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3457			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3458			spa->spa_state = new_state;
3459			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3460			vdev_config_dirty(spa->spa_root_vdev);
3461			spa_config_exit(spa, SCL_ALL, FTAG);
3462		}
3463	}
3464
3465	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3466
3467	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3468		spa_unload(spa);
3469		spa_deactivate(spa);
3470	}
3471
3472	if (oldconfig && spa->spa_config)
3473		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3474
3475	if (new_state != POOL_STATE_UNINITIALIZED) {
3476		if (!hardforce)
3477			spa_config_sync(spa, B_TRUE, B_TRUE);
3478		spa_remove(spa);
3479	}
3480	mutex_exit(&spa_namespace_lock);
3481
3482	return (0);
3483}
3484
3485/*
3486 * Destroy a storage pool.
3487 */
3488int
3489spa_destroy(char *pool)
3490{
3491	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3492	    B_FALSE, B_FALSE));
3493}
3494
3495/*
3496 * Export a storage pool.
3497 */
3498int
3499spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3500    boolean_t hardforce)
3501{
3502	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3503	    force, hardforce));
3504}
3505
3506/*
3507 * Similar to spa_export(), this unloads the spa_t without actually removing it
3508 * from the namespace in any way.
3509 */
3510int
3511spa_reset(char *pool)
3512{
3513	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3514	    B_FALSE, B_FALSE));
3515}
3516
3517/*
3518 * ==========================================================================
3519 * Device manipulation
3520 * ==========================================================================
3521 */
3522
3523/*
3524 * Add a device to a storage pool.
3525 */
3526int
3527spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3528{
3529	uint64_t txg, id;
3530	int error;
3531	vdev_t *rvd = spa->spa_root_vdev;
3532	vdev_t *vd, *tvd;
3533	nvlist_t **spares, **l2cache;
3534	uint_t nspares, nl2cache;
3535
3536	txg = spa_vdev_enter(spa);
3537
3538	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3539	    VDEV_ALLOC_ADD)) != 0)
3540		return (spa_vdev_exit(spa, NULL, txg, error));
3541
3542	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3543
3544	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3545	    &nspares) != 0)
3546		nspares = 0;
3547
3548	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3549	    &nl2cache) != 0)
3550		nl2cache = 0;
3551
3552	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3553		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3554
3555	if (vd->vdev_children != 0 &&
3556	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3557		return (spa_vdev_exit(spa, vd, txg, error));
3558
3559	/*
3560	 * We must validate the spares and l2cache devices after checking the
3561	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3562	 */
3563	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3564		return (spa_vdev_exit(spa, vd, txg, error));
3565
3566	/*
3567	 * Transfer each new top-level vdev from vd to rvd.
3568	 */
3569	for (int c = 0; c < vd->vdev_children; c++) {
3570
3571		/*
3572		 * Set the vdev id to the first hole, if one exists.
3573		 */
3574		for (id = 0; id < rvd->vdev_children; id++) {
3575			if (rvd->vdev_child[id]->vdev_ishole) {
3576				vdev_free(rvd->vdev_child[id]);
3577				break;
3578			}
3579		}
3580		tvd = vd->vdev_child[c];
3581		vdev_remove_child(vd, tvd);
3582		tvd->vdev_id = id;
3583		vdev_add_child(rvd, tvd);
3584		vdev_config_dirty(tvd);
3585	}
3586
3587	if (nspares != 0) {
3588		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3589		    ZPOOL_CONFIG_SPARES);
3590		spa_load_spares(spa);
3591		spa->spa_spares.sav_sync = B_TRUE;
3592	}
3593
3594	if (nl2cache != 0) {
3595		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3596		    ZPOOL_CONFIG_L2CACHE);
3597		spa_load_l2cache(spa);
3598		spa->spa_l2cache.sav_sync = B_TRUE;
3599	}
3600
3601	/*
3602	 * We have to be careful when adding new vdevs to an existing pool.
3603	 * If other threads start allocating from these vdevs before we
3604	 * sync the config cache, and we lose power, then upon reboot we may
3605	 * fail to open the pool because there are DVAs that the config cache
3606	 * can't translate.  Therefore, we first add the vdevs without
3607	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3608	 * and then let spa_config_update() initialize the new metaslabs.
3609	 *
3610	 * spa_load() checks for added-but-not-initialized vdevs, so that
3611	 * if we lose power at any point in this sequence, the remaining
3612	 * steps will be completed the next time we load the pool.
3613	 */
3614	(void) spa_vdev_exit(spa, vd, txg, 0);
3615
3616	mutex_enter(&spa_namespace_lock);
3617	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3618	mutex_exit(&spa_namespace_lock);
3619
3620	return (0);
3621}
3622
3623/*
3624 * Attach a device to a mirror.  The arguments are the path to any device
3625 * in the mirror, and the nvroot for the new device.  If the path specifies
3626 * a device that is not mirrored, we automatically insert the mirror vdev.
3627 *
3628 * If 'replacing' is specified, the new device is intended to replace the
3629 * existing device; in this case the two devices are made into their own
3630 * mirror using the 'replacing' vdev, which is functionally identical to
3631 * the mirror vdev (it actually reuses all the same ops) but has a few
3632 * extra rules: you can't attach to it after it's been created, and upon
3633 * completion of resilvering, the first disk (the one being replaced)
3634 * is automatically detached.
3635 */
3636int
3637spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3638{
3639	uint64_t txg, open_txg;
3640	vdev_t *rvd = spa->spa_root_vdev;
3641	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3642	vdev_ops_t *pvops;
3643	char *oldvdpath, *newvdpath;
3644	int newvd_isspare;
3645	int error;
3646
3647	txg = spa_vdev_enter(spa);
3648
3649	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3650
3651	if (oldvd == NULL)
3652		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3653
3654	if (!oldvd->vdev_ops->vdev_op_leaf)
3655		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3656
3657	pvd = oldvd->vdev_parent;
3658
3659	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3660	    VDEV_ALLOC_ADD)) != 0)
3661		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3662
3663	if (newrootvd->vdev_children != 1)
3664		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3665
3666	newvd = newrootvd->vdev_child[0];
3667
3668	if (!newvd->vdev_ops->vdev_op_leaf)
3669		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3670
3671	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3672		return (spa_vdev_exit(spa, newrootvd, txg, error));
3673
3674	/*
3675	 * Spares can't replace logs
3676	 */
3677	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3678		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3679
3680	if (!replacing) {
3681		/*
3682		 * For attach, the only allowable parent is a mirror or the root
3683		 * vdev.
3684		 */
3685		if (pvd->vdev_ops != &vdev_mirror_ops &&
3686		    pvd->vdev_ops != &vdev_root_ops)
3687			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3688
3689		pvops = &vdev_mirror_ops;
3690	} else {
3691		/*
3692		 * Active hot spares can only be replaced by inactive hot
3693		 * spares.
3694		 */
3695		if (pvd->vdev_ops == &vdev_spare_ops &&
3696		    pvd->vdev_child[1] == oldvd &&
3697		    !spa_has_spare(spa, newvd->vdev_guid))
3698			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3699
3700		/*
3701		 * If the source is a hot spare, and the parent isn't already a
3702		 * spare, then we want to create a new hot spare.  Otherwise, we
3703		 * want to create a replacing vdev.  The user is not allowed to
3704		 * attach to a spared vdev child unless the 'isspare' state is
3705		 * the same (spare replaces spare, non-spare replaces
3706		 * non-spare).
3707		 */
3708		if (pvd->vdev_ops == &vdev_replacing_ops)
3709			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3710		else if (pvd->vdev_ops == &vdev_spare_ops &&
3711		    newvd->vdev_isspare != oldvd->vdev_isspare)
3712			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3713		else if (pvd->vdev_ops != &vdev_spare_ops &&
3714		    newvd->vdev_isspare)
3715			pvops = &vdev_spare_ops;
3716		else
3717			pvops = &vdev_replacing_ops;
3718	}
3719
3720	/*
3721	 * Make sure the new device is big enough.
3722	 */
3723	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3724		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3725
3726	/*
3727	 * The new device cannot have a higher alignment requirement
3728	 * than the top-level vdev.
3729	 */
3730	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3731		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3732
3733	/*
3734	 * If this is an in-place replacement, update oldvd's path and devid
3735	 * to make it distinguishable from newvd, and unopenable from now on.
3736	 */
3737	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3738		spa_strfree(oldvd->vdev_path);
3739		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3740		    KM_SLEEP);
3741		(void) sprintf(oldvd->vdev_path, "%s/%s",
3742		    newvd->vdev_path, "old");
3743		if (oldvd->vdev_devid != NULL) {
3744			spa_strfree(oldvd->vdev_devid);
3745			oldvd->vdev_devid = NULL;
3746		}
3747	}
3748
3749	/*
3750	 * If the parent is not a mirror, or if we're replacing, insert the new
3751	 * mirror/replacing/spare vdev above oldvd.
3752	 */
3753	if (pvd->vdev_ops != pvops)
3754		pvd = vdev_add_parent(oldvd, pvops);
3755
3756	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3757	ASSERT(pvd->vdev_ops == pvops);
3758	ASSERT(oldvd->vdev_parent == pvd);
3759
3760	/*
3761	 * Extract the new device from its root and add it to pvd.
3762	 */
3763	vdev_remove_child(newrootvd, newvd);
3764	newvd->vdev_id = pvd->vdev_children;
3765	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3766	vdev_add_child(pvd, newvd);
3767
3768	tvd = newvd->vdev_top;
3769	ASSERT(pvd->vdev_top == tvd);
3770	ASSERT(tvd->vdev_parent == rvd);
3771
3772	vdev_config_dirty(tvd);
3773
3774	/*
3775	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3776	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3777	 */
3778	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3779
3780	vdev_dtl_dirty(newvd, DTL_MISSING,
3781	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3782
3783	if (newvd->vdev_isspare) {
3784		spa_spare_activate(newvd);
3785		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3786	}
3787
3788	oldvdpath = spa_strdup(oldvd->vdev_path);
3789	newvdpath = spa_strdup(newvd->vdev_path);
3790	newvd_isspare = newvd->vdev_isspare;
3791
3792	/*
3793	 * Mark newvd's DTL dirty in this txg.
3794	 */
3795	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3796
3797	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3798
3799	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3800	    CRED(),  "%s vdev=%s %s vdev=%s",
3801	    replacing && newvd_isspare ? "spare in" :
3802	    replacing ? "replace" : "attach", newvdpath,
3803	    replacing ? "for" : "to", oldvdpath);
3804
3805	spa_strfree(oldvdpath);
3806	spa_strfree(newvdpath);
3807
3808	/*
3809	 * Kick off a resilver to update newvd.
3810	 */
3811	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3812
3813	return (0);
3814}
3815
3816/*
3817 * Detach a device from a mirror or replacing vdev.
3818 * If 'replace_done' is specified, only detach if the parent
3819 * is a replacing vdev.
3820 */
3821int
3822spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3823{
3824	uint64_t txg;
3825	int error;
3826	vdev_t *rvd = spa->spa_root_vdev;
3827	vdev_t *vd, *pvd, *cvd, *tvd;
3828	boolean_t unspare = B_FALSE;
3829	uint64_t unspare_guid;
3830	size_t len;
3831	char *vdpath;
3832
3833	txg = spa_vdev_enter(spa);
3834
3835	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3836
3837	if (vd == NULL)
3838		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3839
3840	if (!vd->vdev_ops->vdev_op_leaf)
3841		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3842
3843	pvd = vd->vdev_parent;
3844
3845	/*
3846	 * If the parent/child relationship is not as expected, don't do it.
3847	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3848	 * vdev that's replacing B with C.  The user's intent in replacing
3849	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3850	 * the replace by detaching C, the expected behavior is to end up
3851	 * M(A,B).  But suppose that right after deciding to detach C,
3852	 * the replacement of B completes.  We would have M(A,C), and then
3853	 * ask to detach C, which would leave us with just A -- not what
3854	 * the user wanted.  To prevent this, we make sure that the
3855	 * parent/child relationship hasn't changed -- in this example,
3856	 * that C's parent is still the replacing vdev R.
3857	 */
3858	if (pvd->vdev_guid != pguid && pguid != 0)
3859		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3860
3861	/*
3862	 * If replace_done is specified, only remove this device if it's
3863	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3864	 * disk can be removed.
3865	 */
3866	if (replace_done) {
3867		if (pvd->vdev_ops == &vdev_replacing_ops) {
3868			if (vd->vdev_id != 0)
3869				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3870		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3871			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3872		}
3873	}
3874
3875	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3876	    spa_version(spa) >= SPA_VERSION_SPARES);
3877
3878	/*
3879	 * Only mirror, replacing, and spare vdevs support detach.
3880	 */
3881	if (pvd->vdev_ops != &vdev_replacing_ops &&
3882	    pvd->vdev_ops != &vdev_mirror_ops &&
3883	    pvd->vdev_ops != &vdev_spare_ops)
3884		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3885
3886	/*
3887	 * If this device has the only valid copy of some data,
3888	 * we cannot safely detach it.
3889	 */
3890	if (vdev_dtl_required(vd))
3891		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3892
3893	ASSERT(pvd->vdev_children >= 2);
3894
3895	/*
3896	 * If we are detaching the second disk from a replacing vdev, then
3897	 * check to see if we changed the original vdev's path to have "/old"
3898	 * at the end in spa_vdev_attach().  If so, undo that change now.
3899	 */
3900	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3901	    pvd->vdev_child[0]->vdev_path != NULL &&
3902	    pvd->vdev_child[1]->vdev_path != NULL) {
3903		ASSERT(pvd->vdev_child[1] == vd);
3904		cvd = pvd->vdev_child[0];
3905		len = strlen(vd->vdev_path);
3906		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3907		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3908			spa_strfree(cvd->vdev_path);
3909			cvd->vdev_path = spa_strdup(vd->vdev_path);
3910		}
3911	}
3912
3913	/*
3914	 * If we are detaching the original disk from a spare, then it implies
3915	 * that the spare should become a real disk, and be removed from the
3916	 * active spare list for the pool.
3917	 */
3918	if (pvd->vdev_ops == &vdev_spare_ops &&
3919	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3920		unspare = B_TRUE;
3921
3922	/*
3923	 * Erase the disk labels so the disk can be used for other things.
3924	 * This must be done after all other error cases are handled,
3925	 * but before we disembowel vd (so we can still do I/O to it).
3926	 * But if we can't do it, don't treat the error as fatal --
3927	 * it may be that the unwritability of the disk is the reason
3928	 * it's being detached!
3929	 */
3930	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3931
3932	/*
3933	 * Remove vd from its parent and compact the parent's children.
3934	 */
3935	vdev_remove_child(pvd, vd);
3936	vdev_compact_children(pvd);
3937
3938	/*
3939	 * Remember one of the remaining children so we can get tvd below.
3940	 */
3941	cvd = pvd->vdev_child[0];
3942
3943	/*
3944	 * If we need to remove the remaining child from the list of hot spares,
3945	 * do it now, marking the vdev as no longer a spare in the process.
3946	 * We must do this before vdev_remove_parent(), because that can
3947	 * change the GUID if it creates a new toplevel GUID.  For a similar
3948	 * reason, we must remove the spare now, in the same txg as the detach;
3949	 * otherwise someone could attach a new sibling, change the GUID, and
3950	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3951	 */
3952	if (unspare) {
3953		ASSERT(cvd->vdev_isspare);
3954		spa_spare_remove(cvd);
3955		unspare_guid = cvd->vdev_guid;
3956		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3957	}
3958
3959	/*
3960	 * If the parent mirror/replacing vdev only has one child,
3961	 * the parent is no longer needed.  Remove it from the tree.
3962	 */
3963	if (pvd->vdev_children == 1)
3964		vdev_remove_parent(cvd);
3965
3966	/*
3967	 * We don't set tvd until now because the parent we just removed
3968	 * may have been the previous top-level vdev.
3969	 */
3970	tvd = cvd->vdev_top;
3971	ASSERT(tvd->vdev_parent == rvd);
3972
3973	/*
3974	 * Reevaluate the parent vdev state.
3975	 */
3976	vdev_propagate_state(cvd);
3977
3978	/*
3979	 * If the 'autoexpand' property is set on the pool then automatically
3980	 * try to expand the size of the pool. For example if the device we
3981	 * just detached was smaller than the others, it may be possible to
3982	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3983	 * first so that we can obtain the updated sizes of the leaf vdevs.
3984	 */
3985	if (spa->spa_autoexpand) {
3986		vdev_reopen(tvd);
3987		vdev_expand(tvd, txg);
3988	}
3989
3990	vdev_config_dirty(tvd);
3991
3992	/*
3993	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3994	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3995	 * But first make sure we're not on any *other* txg's DTL list, to
3996	 * prevent vd from being accessed after it's freed.
3997	 */
3998	vdpath = spa_strdup(vd->vdev_path);
3999	for (int t = 0; t < TXG_SIZE; t++)
4000		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4001	vd->vdev_detached = B_TRUE;
4002	vdev_dirty(tvd, VDD_DTL, vd, txg);
4003
4004	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4005
4006	error = spa_vdev_exit(spa, vd, txg, 0);
4007
4008	spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(),
4009	    "vdev=%s", vdpath);
4010	spa_strfree(vdpath);
4011
4012	/*
4013	 * If this was the removal of the original device in a hot spare vdev,
4014	 * then we want to go through and remove the device from the hot spare
4015	 * list of every other pool.
4016	 */
4017	if (unspare) {
4018		spa_t *myspa = spa;
4019		spa = NULL;
4020		mutex_enter(&spa_namespace_lock);
4021		while ((spa = spa_next(spa)) != NULL) {
4022			if (spa->spa_state != POOL_STATE_ACTIVE)
4023				continue;
4024			if (spa == myspa)
4025				continue;
4026			spa_open_ref(spa, FTAG);
4027			mutex_exit(&spa_namespace_lock);
4028			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4029			mutex_enter(&spa_namespace_lock);
4030			spa_close(spa, FTAG);
4031		}
4032		mutex_exit(&spa_namespace_lock);
4033	}
4034
4035	return (error);
4036}
4037
4038/*
4039 * Split a set of devices from their mirrors, and create a new pool from them.
4040 */
4041int
4042spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4043    nvlist_t *props, boolean_t exp)
4044{
4045	int error = 0;
4046	uint64_t txg, *glist;
4047	spa_t *newspa;
4048	uint_t c, children, lastlog;
4049	nvlist_t **child, *nvl, *tmp;
4050	dmu_tx_t *tx;
4051	char *altroot = NULL;
4052	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4053	boolean_t activate_slog;
4054
4055	if (!spa_writeable(spa))
4056		return (EROFS);
4057
4058	txg = spa_vdev_enter(spa);
4059
4060	/* clear the log and flush everything up to now */
4061	activate_slog = spa_passivate_log(spa);
4062	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4063	error = spa_offline_log(spa);
4064	txg = spa_vdev_config_enter(spa);
4065
4066	if (activate_slog)
4067		spa_activate_log(spa);
4068
4069	if (error != 0)
4070		return (spa_vdev_exit(spa, NULL, txg, error));
4071
4072	/* check new spa name before going any further */
4073	if (spa_lookup(newname) != NULL)
4074		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4075
4076	/*
4077	 * scan through all the children to ensure they're all mirrors
4078	 */
4079	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4080	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4081	    &children) != 0)
4082		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4083
4084	/* first, check to ensure we've got the right child count */
4085	rvd = spa->spa_root_vdev;
4086	lastlog = 0;
4087	for (c = 0; c < rvd->vdev_children; c++) {
4088		vdev_t *vd = rvd->vdev_child[c];
4089
4090		/* don't count the holes & logs as children */
4091		if (vd->vdev_islog || vd->vdev_ishole) {
4092			if (lastlog == 0)
4093				lastlog = c;
4094			continue;
4095		}
4096
4097		lastlog = 0;
4098	}
4099	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4100		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4101
4102	/* next, ensure no spare or cache devices are part of the split */
4103	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4104	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4105		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4106
4107	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4108	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4109
4110	/* then, loop over each vdev and validate it */
4111	for (c = 0; c < children; c++) {
4112		uint64_t is_hole = 0;
4113
4114		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4115		    &is_hole);
4116
4117		if (is_hole != 0) {
4118			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4119			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4120				continue;
4121			} else {
4122				error = EINVAL;
4123				break;
4124			}
4125		}
4126
4127		/* which disk is going to be split? */
4128		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4129		    &glist[c]) != 0) {
4130			error = EINVAL;
4131			break;
4132		}
4133
4134		/* look it up in the spa */
4135		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4136		if (vml[c] == NULL) {
4137			error = ENODEV;
4138			break;
4139		}
4140
4141		/* make sure there's nothing stopping the split */
4142		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4143		    vml[c]->vdev_islog ||
4144		    vml[c]->vdev_ishole ||
4145		    vml[c]->vdev_isspare ||
4146		    vml[c]->vdev_isl2cache ||
4147		    !vdev_writeable(vml[c]) ||
4148		    vml[c]->vdev_children != 0 ||
4149		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4150		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4151			error = EINVAL;
4152			break;
4153		}
4154
4155		if (vdev_dtl_required(vml[c])) {
4156			error = EBUSY;
4157			break;
4158		}
4159
4160		/* we need certain info from the top level */
4161		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4162		    vml[c]->vdev_top->vdev_ms_array) == 0);
4163		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4164		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4165		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4166		    vml[c]->vdev_top->vdev_asize) == 0);
4167		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4168		    vml[c]->vdev_top->vdev_ashift) == 0);
4169	}
4170
4171	if (error != 0) {
4172		kmem_free(vml, children * sizeof (vdev_t *));
4173		kmem_free(glist, children * sizeof (uint64_t));
4174		return (spa_vdev_exit(spa, NULL, txg, error));
4175	}
4176
4177	/* stop writers from using the disks */
4178	for (c = 0; c < children; c++) {
4179		if (vml[c] != NULL)
4180			vml[c]->vdev_offline = B_TRUE;
4181	}
4182	vdev_reopen(spa->spa_root_vdev);
4183
4184	/*
4185	 * Temporarily record the splitting vdevs in the spa config.  This
4186	 * will disappear once the config is regenerated.
4187	 */
4188	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4189	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4190	    glist, children) == 0);
4191	kmem_free(glist, children * sizeof (uint64_t));
4192
4193	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4194	    nvl) == 0);
4195	spa->spa_config_splitting = nvl;
4196	vdev_config_dirty(spa->spa_root_vdev);
4197
4198	/* configure and create the new pool */
4199	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4200	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4201	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4202	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4203	    spa_version(spa)) == 0);
4204	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4205	    spa->spa_config_txg) == 0);
4206	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4207	    spa_generate_guid(NULL)) == 0);
4208	(void) nvlist_lookup_string(props,
4209	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4210
4211	/* add the new pool to the namespace */
4212	newspa = spa_add(newname, config, altroot);
4213	newspa->spa_config_txg = spa->spa_config_txg;
4214	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4215
4216	/* release the spa config lock, retaining the namespace lock */
4217	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4218
4219	if (zio_injection_enabled)
4220		zio_handle_panic_injection(spa, FTAG, 1);
4221
4222	spa_activate(newspa, spa_mode_global);
4223	spa_async_suspend(newspa);
4224
4225	/* create the new pool from the disks of the original pool */
4226	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4227	if (error)
4228		goto out;
4229
4230	/* if that worked, generate a real config for the new pool */
4231	if (newspa->spa_root_vdev != NULL) {
4232		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4233		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4234		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4235		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4236		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4237		    B_TRUE));
4238	}
4239
4240	/* set the props */
4241	if (props != NULL) {
4242		spa_configfile_set(newspa, props, B_FALSE);
4243		error = spa_prop_set(newspa, props);
4244		if (error)
4245			goto out;
4246	}
4247
4248	/* flush everything */
4249	txg = spa_vdev_config_enter(newspa);
4250	vdev_config_dirty(newspa->spa_root_vdev);
4251	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4252
4253	if (zio_injection_enabled)
4254		zio_handle_panic_injection(spa, FTAG, 2);
4255
4256	spa_async_resume(newspa);
4257
4258	/* finally, update the original pool's config */
4259	txg = spa_vdev_config_enter(spa);
4260	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4261	error = dmu_tx_assign(tx, TXG_WAIT);
4262	if (error != 0)
4263		dmu_tx_abort(tx);
4264	for (c = 0; c < children; c++) {
4265		if (vml[c] != NULL) {
4266			vdev_split(vml[c]);
4267			if (error == 0)
4268				spa_history_internal_log(LOG_POOL_VDEV_DETACH,
4269				    spa, tx, CRED(), "vdev=%s",
4270				    vml[c]->vdev_path);
4271			vdev_free(vml[c]);
4272		}
4273	}
4274	vdev_config_dirty(spa->spa_root_vdev);
4275	spa->spa_config_splitting = NULL;
4276	nvlist_free(nvl);
4277	if (error == 0)
4278		dmu_tx_commit(tx);
4279	(void) spa_vdev_exit(spa, NULL, txg, 0);
4280
4281	if (zio_injection_enabled)
4282		zio_handle_panic_injection(spa, FTAG, 3);
4283
4284	/* split is complete; log a history record */
4285	spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(),
4286	    "split new pool %s from pool %s", newname, spa_name(spa));
4287
4288	kmem_free(vml, children * sizeof (vdev_t *));
4289
4290	/* if we're not going to mount the filesystems in userland, export */
4291	if (exp)
4292		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4293		    B_FALSE, B_FALSE);
4294
4295	return (error);
4296
4297out:
4298	spa_unload(newspa);
4299	spa_deactivate(newspa);
4300	spa_remove(newspa);
4301
4302	txg = spa_vdev_config_enter(spa);
4303	nvlist_free(spa->spa_config_splitting);
4304	spa->spa_config_splitting = NULL;
4305	(void) spa_vdev_exit(spa, NULL, txg, error);
4306
4307	kmem_free(vml, children * sizeof (vdev_t *));
4308	return (error);
4309}
4310
4311static nvlist_t *
4312spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4313{
4314	for (int i = 0; i < count; i++) {
4315		uint64_t guid;
4316
4317		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4318		    &guid) == 0);
4319
4320		if (guid == target_guid)
4321			return (nvpp[i]);
4322	}
4323
4324	return (NULL);
4325}
4326
4327static void
4328spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4329	nvlist_t *dev_to_remove)
4330{
4331	nvlist_t **newdev = NULL;
4332
4333	if (count > 1)
4334		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4335
4336	for (int i = 0, j = 0; i < count; i++) {
4337		if (dev[i] == dev_to_remove)
4338			continue;
4339		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4340	}
4341
4342	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4343	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4344
4345	for (int i = 0; i < count - 1; i++)
4346		nvlist_free(newdev[i]);
4347
4348	if (count > 1)
4349		kmem_free(newdev, (count - 1) * sizeof (void *));
4350}
4351
4352/*
4353 * Removing a device from the vdev namespace requires several steps
4354 * and can take a significant amount of time.  As a result we use
4355 * the spa_vdev_config_[enter/exit] functions which allow us to
4356 * grab and release the spa_config_lock while still holding the namespace
4357 * lock.  During each step the configuration is synced out.
4358 */
4359
4360/*
4361 * Evacuate the device.
4362 */
4363int
4364spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4365{
4366	int error = 0;
4367	uint64_t txg;
4368
4369	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4370	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4371	ASSERT(vd == vd->vdev_top);
4372
4373	/*
4374	 * Evacuate the device.  We don't hold the config lock as writer
4375	 * since we need to do I/O but we do keep the
4376	 * spa_namespace_lock held.  Once this completes the device
4377	 * should no longer have any blocks allocated on it.
4378	 */
4379	if (vd->vdev_islog) {
4380		error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
4381		    NULL, DS_FIND_CHILDREN);
4382	} else {
4383		error = ENOTSUP;	/* until we have bp rewrite */
4384	}
4385
4386	txg_wait_synced(spa_get_dsl(spa), 0);
4387
4388	if (error)
4389		return (error);
4390
4391	/*
4392	 * The evacuation succeeded.  Remove any remaining MOS metadata
4393	 * associated with this vdev, and wait for these changes to sync.
4394	 */
4395	txg = spa_vdev_config_enter(spa);
4396	vd->vdev_removing = B_TRUE;
4397	vdev_dirty(vd, 0, NULL, txg);
4398	vdev_config_dirty(vd);
4399	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4400
4401	return (0);
4402}
4403
4404/*
4405 * Complete the removal by cleaning up the namespace.
4406 */
4407void
4408spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4409{
4410	vdev_t *rvd = spa->spa_root_vdev;
4411	uint64_t id = vd->vdev_id;
4412	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4413
4414	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4415	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4416	ASSERT(vd == vd->vdev_top);
4417
4418	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4419
4420	if (list_link_active(&vd->vdev_state_dirty_node))
4421		vdev_state_clean(vd);
4422	if (list_link_active(&vd->vdev_config_dirty_node))
4423		vdev_config_clean(vd);
4424
4425	vdev_free(vd);
4426
4427	if (last_vdev) {
4428		vdev_compact_children(rvd);
4429	} else {
4430		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4431		vdev_add_child(rvd, vd);
4432	}
4433	vdev_config_dirty(rvd);
4434
4435	/*
4436	 * Reassess the health of our root vdev.
4437	 */
4438	vdev_reopen(rvd);
4439}
4440
4441/*
4442 * Remove a device from the pool.  Currently, this supports removing only hot
4443 * spares, slogs, and level 2 ARC devices.
4444 */
4445int
4446spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4447{
4448	vdev_t *vd;
4449	metaslab_group_t *mg;
4450	nvlist_t **spares, **l2cache, *nv;
4451	uint64_t txg = 0;
4452	uint_t nspares, nl2cache;
4453	int error = 0;
4454	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4455
4456	if (!locked)
4457		txg = spa_vdev_enter(spa);
4458
4459	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4460
4461	if (spa->spa_spares.sav_vdevs != NULL &&
4462	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4463	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4464	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4465		/*
4466		 * Only remove the hot spare if it's not currently in use
4467		 * in this pool.
4468		 */
4469		if (vd == NULL || unspare) {
4470			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4471			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4472			spa_load_spares(spa);
4473			spa->spa_spares.sav_sync = B_TRUE;
4474		} else {
4475			error = EBUSY;
4476		}
4477	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4478	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4479	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4480	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4481		/*
4482		 * Cache devices can always be removed.
4483		 */
4484		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4485		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4486		spa_load_l2cache(spa);
4487		spa->spa_l2cache.sav_sync = B_TRUE;
4488	} else if (vd != NULL && vd->vdev_islog) {
4489		ASSERT(!locked);
4490		ASSERT(vd == vd->vdev_top);
4491
4492		/*
4493		 * XXX - Once we have bp-rewrite this should
4494		 * become the common case.
4495		 */
4496
4497		mg = vd->vdev_mg;
4498
4499		/*
4500		 * Stop allocating from this vdev.
4501		 */
4502		metaslab_group_passivate(mg);
4503
4504		/*
4505		 * Wait for the youngest allocations and frees to sync,
4506		 * and then wait for the deferral of those frees to finish.
4507		 */
4508		spa_vdev_config_exit(spa, NULL,
4509		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4510
4511		/*
4512		 * Attempt to evacuate the vdev.
4513		 */
4514		error = spa_vdev_remove_evacuate(spa, vd);
4515
4516		txg = spa_vdev_config_enter(spa);
4517
4518		/*
4519		 * If we couldn't evacuate the vdev, unwind.
4520		 */
4521		if (error) {
4522			metaslab_group_activate(mg);
4523			return (spa_vdev_exit(spa, NULL, txg, error));
4524		}
4525
4526		/*
4527		 * Clean up the vdev namespace.
4528		 */
4529		spa_vdev_remove_from_namespace(spa, vd);
4530
4531	} else if (vd != NULL) {
4532		/*
4533		 * Normal vdevs cannot be removed (yet).
4534		 */
4535		error = ENOTSUP;
4536	} else {
4537		/*
4538		 * There is no vdev of any kind with the specified guid.
4539		 */
4540		error = ENOENT;
4541	}
4542
4543	if (!locked)
4544		return (spa_vdev_exit(spa, NULL, txg, error));
4545
4546	return (error);
4547}
4548
4549/*
4550 * Find any device that's done replacing, or a vdev marked 'unspare' that's
4551 * current spared, so we can detach it.
4552 */
4553static vdev_t *
4554spa_vdev_resilver_done_hunt(vdev_t *vd)
4555{
4556	vdev_t *newvd, *oldvd;
4557
4558	for (int c = 0; c < vd->vdev_children; c++) {
4559		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4560		if (oldvd != NULL)
4561			return (oldvd);
4562	}
4563
4564	/*
4565	 * Check for a completed replacement.
4566	 */
4567	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4568		oldvd = vd->vdev_child[0];
4569		newvd = vd->vdev_child[1];
4570
4571		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4572		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4573		    !vdev_dtl_required(oldvd))
4574			return (oldvd);
4575	}
4576
4577	/*
4578	 * Check for a completed resilver with the 'unspare' flag set.
4579	 */
4580	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4581		newvd = vd->vdev_child[0];
4582		oldvd = vd->vdev_child[1];
4583
4584		if (newvd->vdev_unspare &&
4585		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4586		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4587		    !vdev_dtl_required(oldvd)) {
4588			newvd->vdev_unspare = 0;
4589			return (oldvd);
4590		}
4591	}
4592
4593	return (NULL);
4594}
4595
4596static void
4597spa_vdev_resilver_done(spa_t *spa)
4598{
4599	vdev_t *vd, *pvd, *ppvd;
4600	uint64_t guid, sguid, pguid, ppguid;
4601
4602	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4603
4604	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4605		pvd = vd->vdev_parent;
4606		ppvd = pvd->vdev_parent;
4607		guid = vd->vdev_guid;
4608		pguid = pvd->vdev_guid;
4609		ppguid = ppvd->vdev_guid;
4610		sguid = 0;
4611		/*
4612		 * If we have just finished replacing a hot spared device, then
4613		 * we need to detach the parent's first child (the original hot
4614		 * spare) as well.
4615		 */
4616		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4617			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4618			ASSERT(ppvd->vdev_children == 2);
4619			sguid = ppvd->vdev_child[1]->vdev_guid;
4620		}
4621		spa_config_exit(spa, SCL_ALL, FTAG);
4622		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4623			return;
4624		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4625			return;
4626		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4627	}
4628
4629	spa_config_exit(spa, SCL_ALL, FTAG);
4630}
4631
4632/*
4633 * Update the stored path or FRU for this vdev.
4634 */
4635int
4636spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4637    boolean_t ispath)
4638{
4639	vdev_t *vd;
4640	boolean_t sync = B_FALSE;
4641
4642	spa_vdev_state_enter(spa, SCL_ALL);
4643
4644	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4645		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4646
4647	if (!vd->vdev_ops->vdev_op_leaf)
4648		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4649
4650	if (ispath) {
4651		if (strcmp(value, vd->vdev_path) != 0) {
4652			spa_strfree(vd->vdev_path);
4653			vd->vdev_path = spa_strdup(value);
4654			sync = B_TRUE;
4655		}
4656	} else {
4657		if (vd->vdev_fru == NULL) {
4658			vd->vdev_fru = spa_strdup(value);
4659			sync = B_TRUE;
4660		} else if (strcmp(value, vd->vdev_fru) != 0) {
4661			spa_strfree(vd->vdev_fru);
4662			vd->vdev_fru = spa_strdup(value);
4663			sync = B_TRUE;
4664		}
4665	}
4666
4667	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4668}
4669
4670int
4671spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4672{
4673	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4674}
4675
4676int
4677spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4678{
4679	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4680}
4681
4682/*
4683 * ==========================================================================
4684 * SPA Scrubbing
4685 * ==========================================================================
4686 */
4687
4688int
4689spa_scrub(spa_t *spa, pool_scrub_type_t type)
4690{
4691	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4692
4693	if ((uint_t)type >= POOL_SCRUB_TYPES)
4694		return (ENOTSUP);
4695
4696	/*
4697	 * If a resilver was requested, but there is no DTL on a
4698	 * writeable leaf device, we have nothing to do.
4699	 */
4700	if (type == POOL_SCRUB_RESILVER &&
4701	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4702		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4703		return (0);
4704	}
4705
4706	if (type == POOL_SCRUB_EVERYTHING &&
4707	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4708	    spa->spa_dsl_pool->dp_scrub_isresilver)
4709		return (EBUSY);
4710
4711	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4712		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4713	} else if (type == POOL_SCRUB_NONE) {
4714		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4715	} else {
4716		return (EINVAL);
4717	}
4718}
4719
4720/*
4721 * ==========================================================================
4722 * SPA async task processing
4723 * ==========================================================================
4724 */
4725
4726static void
4727spa_async_remove(spa_t *spa, vdev_t *vd)
4728{
4729	if (vd->vdev_remove_wanted) {
4730		vd->vdev_remove_wanted = 0;
4731		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4732
4733		/*
4734		 * We want to clear the stats, but we don't want to do a full
4735		 * vdev_clear() as that will cause us to throw away
4736		 * degraded/faulted state as well as attempt to reopen the
4737		 * device, all of which is a waste.
4738		 */
4739		vd->vdev_stat.vs_read_errors = 0;
4740		vd->vdev_stat.vs_write_errors = 0;
4741		vd->vdev_stat.vs_checksum_errors = 0;
4742
4743		vdev_state_dirty(vd->vdev_top);
4744	}
4745
4746	for (int c = 0; c < vd->vdev_children; c++)
4747		spa_async_remove(spa, vd->vdev_child[c]);
4748}
4749
4750static void
4751spa_async_probe(spa_t *spa, vdev_t *vd)
4752{
4753	if (vd->vdev_probe_wanted) {
4754		vd->vdev_probe_wanted = 0;
4755		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4756	}
4757
4758	for (int c = 0; c < vd->vdev_children; c++)
4759		spa_async_probe(spa, vd->vdev_child[c]);
4760}
4761
4762static void
4763spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4764{
4765	sysevent_id_t eid;
4766	nvlist_t *attr;
4767	char *physpath;
4768
4769	if (!spa->spa_autoexpand)
4770		return;
4771
4772	for (int c = 0; c < vd->vdev_children; c++) {
4773		vdev_t *cvd = vd->vdev_child[c];
4774		spa_async_autoexpand(spa, cvd);
4775	}
4776
4777	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4778		return;
4779
4780	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4781	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4782
4783	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4784	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4785
4786	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4787	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4788
4789	nvlist_free(attr);
4790	kmem_free(physpath, MAXPATHLEN);
4791}
4792
4793static void
4794spa_async_thread(spa_t *spa)
4795{
4796	int tasks;
4797
4798	ASSERT(spa->spa_sync_on);
4799
4800	mutex_enter(&spa->spa_async_lock);
4801	tasks = spa->spa_async_tasks;
4802	spa->spa_async_tasks = 0;
4803	mutex_exit(&spa->spa_async_lock);
4804
4805	/*
4806	 * See if the config needs to be updated.
4807	 */
4808	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4809		uint64_t old_space, new_space;
4810
4811		mutex_enter(&spa_namespace_lock);
4812		old_space = metaslab_class_get_space(spa_normal_class(spa));
4813		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4814		new_space = metaslab_class_get_space(spa_normal_class(spa));
4815		mutex_exit(&spa_namespace_lock);
4816
4817		/*
4818		 * If the pool grew as a result of the config update,
4819		 * then log an internal history event.
4820		 */
4821		if (new_space != old_space) {
4822			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4823			    spa, NULL, CRED(),
4824			    "pool '%s' size: %llu(+%llu)",
4825			    spa_name(spa), new_space, new_space - old_space);
4826		}
4827	}
4828
4829	/*
4830	 * See if any devices need to be marked REMOVED.
4831	 */
4832	if (tasks & SPA_ASYNC_REMOVE) {
4833		spa_vdev_state_enter(spa, SCL_NONE);
4834		spa_async_remove(spa, spa->spa_root_vdev);
4835		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4836			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4837		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4838			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4839		(void) spa_vdev_state_exit(spa, NULL, 0);
4840	}
4841
4842	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4843		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4844		spa_async_autoexpand(spa, spa->spa_root_vdev);
4845		spa_config_exit(spa, SCL_CONFIG, FTAG);
4846	}
4847
4848	/*
4849	 * See if any devices need to be probed.
4850	 */
4851	if (tasks & SPA_ASYNC_PROBE) {
4852		spa_vdev_state_enter(spa, SCL_NONE);
4853		spa_async_probe(spa, spa->spa_root_vdev);
4854		(void) spa_vdev_state_exit(spa, NULL, 0);
4855	}
4856
4857	/*
4858	 * If any devices are done replacing, detach them.
4859	 */
4860	if (tasks & SPA_ASYNC_RESILVER_DONE)
4861		spa_vdev_resilver_done(spa);
4862
4863	/*
4864	 * Kick off a resilver.
4865	 */
4866	if (tasks & SPA_ASYNC_RESILVER)
4867		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4868
4869	/*
4870	 * Let the world know that we're done.
4871	 */
4872	mutex_enter(&spa->spa_async_lock);
4873	spa->spa_async_thread = NULL;
4874	cv_broadcast(&spa->spa_async_cv);
4875	mutex_exit(&spa->spa_async_lock);
4876	thread_exit();
4877}
4878
4879void
4880spa_async_suspend(spa_t *spa)
4881{
4882	mutex_enter(&spa->spa_async_lock);
4883	spa->spa_async_suspended++;
4884	while (spa->spa_async_thread != NULL)
4885		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4886	mutex_exit(&spa->spa_async_lock);
4887}
4888
4889void
4890spa_async_resume(spa_t *spa)
4891{
4892	mutex_enter(&spa->spa_async_lock);
4893	ASSERT(spa->spa_async_suspended != 0);
4894	spa->spa_async_suspended--;
4895	mutex_exit(&spa->spa_async_lock);
4896}
4897
4898static void
4899spa_async_dispatch(spa_t *spa)
4900{
4901	mutex_enter(&spa->spa_async_lock);
4902	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4903	    spa->spa_async_thread == NULL &&
4904	    rootdir != NULL && !vn_is_readonly(rootdir))
4905		spa->spa_async_thread = thread_create(NULL, 0,
4906		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4907	mutex_exit(&spa->spa_async_lock);
4908}
4909
4910void
4911spa_async_request(spa_t *spa, int task)
4912{
4913	mutex_enter(&spa->spa_async_lock);
4914	spa->spa_async_tasks |= task;
4915	mutex_exit(&spa->spa_async_lock);
4916}
4917
4918/*
4919 * ==========================================================================
4920 * SPA syncing routines
4921 * ==========================================================================
4922 */
4923static void
4924spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4925{
4926	blkptr_t blk;
4927	uint64_t itor = 0;
4928	uint8_t c = 1;
4929
4930	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4931		ASSERT(blk.blk_birth < txg);
4932		zio_free(spa, txg, &blk);
4933	}
4934
4935	bplist_vacate(bpl, tx);
4936
4937	/*
4938	 * Pre-dirty the first block so we sync to convergence faster.
4939	 * (Usually only the first block is needed.)
4940	 */
4941	dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4942}
4943
4944static void
4945spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4946{
4947	zio_t *zio = arg;
4948
4949	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4950	    zio->io_flags));
4951}
4952
4953static void
4954spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4955{
4956	char *packed = NULL;
4957	size_t bufsize;
4958	size_t nvsize = 0;
4959	dmu_buf_t *db;
4960
4961	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4962
4963	/*
4964	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4965	 * information.  This avoids the dbuf_will_dirty() path and
4966	 * saves us a pre-read to get data we don't actually care about.
4967	 */
4968	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4969	packed = kmem_alloc(bufsize, KM_SLEEP);
4970
4971	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4972	    KM_SLEEP) == 0);
4973	bzero(packed + nvsize, bufsize - nvsize);
4974
4975	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4976
4977	kmem_free(packed, bufsize);
4978
4979	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4980	dmu_buf_will_dirty(db, tx);
4981	*(uint64_t *)db->db_data = nvsize;
4982	dmu_buf_rele(db, FTAG);
4983}
4984
4985static void
4986spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4987    const char *config, const char *entry)
4988{
4989	nvlist_t *nvroot;
4990	nvlist_t **list;
4991	int i;
4992
4993	if (!sav->sav_sync)
4994		return;
4995
4996	/*
4997	 * Update the MOS nvlist describing the list of available devices.
4998	 * spa_validate_aux() will have already made sure this nvlist is
4999	 * valid and the vdevs are labeled appropriately.
5000	 */
5001	if (sav->sav_object == 0) {
5002		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5003		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5004		    sizeof (uint64_t), tx);
5005		VERIFY(zap_update(spa->spa_meta_objset,
5006		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5007		    &sav->sav_object, tx) == 0);
5008	}
5009
5010	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5011	if (sav->sav_count == 0) {
5012		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5013	} else {
5014		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5015		for (i = 0; i < sav->sav_count; i++)
5016			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5017			    B_FALSE, B_FALSE, B_TRUE);
5018		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5019		    sav->sav_count) == 0);
5020		for (i = 0; i < sav->sav_count; i++)
5021			nvlist_free(list[i]);
5022		kmem_free(list, sav->sav_count * sizeof (void *));
5023	}
5024
5025	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5026	nvlist_free(nvroot);
5027
5028	sav->sav_sync = B_FALSE;
5029}
5030
5031static void
5032spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5033{
5034	nvlist_t *config;
5035
5036	if (list_is_empty(&spa->spa_config_dirty_list))
5037		return;
5038
5039	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5040
5041	config = spa_config_generate(spa, spa->spa_root_vdev,
5042	    dmu_tx_get_txg(tx), B_FALSE);
5043
5044	spa_config_exit(spa, SCL_STATE, FTAG);
5045
5046	if (spa->spa_config_syncing)
5047		nvlist_free(spa->spa_config_syncing);
5048	spa->spa_config_syncing = config;
5049
5050	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5051}
5052
5053/*
5054 * Set zpool properties.
5055 */
5056static void
5057spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
5058{
5059	spa_t *spa = arg1;
5060	objset_t *mos = spa->spa_meta_objset;
5061	nvlist_t *nvp = arg2;
5062	nvpair_t *elem;
5063	uint64_t intval;
5064	char *strval;
5065	zpool_prop_t prop;
5066	const char *propname;
5067	zprop_type_t proptype;
5068
5069	mutex_enter(&spa->spa_props_lock);
5070
5071	elem = NULL;
5072	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5073		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5074		case ZPOOL_PROP_VERSION:
5075			/*
5076			 * Only set version for non-zpool-creation cases
5077			 * (set/import). spa_create() needs special care
5078			 * for version setting.
5079			 */
5080			if (tx->tx_txg != TXG_INITIAL) {
5081				VERIFY(nvpair_value_uint64(elem,
5082				    &intval) == 0);
5083				ASSERT(intval <= SPA_VERSION);
5084				ASSERT(intval >= spa_version(spa));
5085				spa->spa_uberblock.ub_version = intval;
5086				vdev_config_dirty(spa->spa_root_vdev);
5087			}
5088			break;
5089
5090		case ZPOOL_PROP_ALTROOT:
5091			/*
5092			 * 'altroot' is a non-persistent property. It should
5093			 * have been set temporarily at creation or import time.
5094			 */
5095			ASSERT(spa->spa_root != NULL);
5096			break;
5097
5098		case ZPOOL_PROP_CACHEFILE:
5099			/*
5100			 * 'cachefile' is also a non-persisitent property.
5101			 */
5102			break;
5103		default:
5104			/*
5105			 * Set pool property values in the poolprops mos object.
5106			 */
5107			if (spa->spa_pool_props_object == 0) {
5108				VERIFY((spa->spa_pool_props_object =
5109				    zap_create(mos, DMU_OT_POOL_PROPS,
5110				    DMU_OT_NONE, 0, tx)) > 0);
5111
5112				VERIFY(zap_update(mos,
5113				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5114				    8, 1, &spa->spa_pool_props_object, tx)
5115				    == 0);
5116			}
5117
5118			/* normalize the property name */
5119			propname = zpool_prop_to_name(prop);
5120			proptype = zpool_prop_get_type(prop);
5121
5122			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5123				ASSERT(proptype == PROP_TYPE_STRING);
5124				VERIFY(nvpair_value_string(elem, &strval) == 0);
5125				VERIFY(zap_update(mos,
5126				    spa->spa_pool_props_object, propname,
5127				    1, strlen(strval) + 1, strval, tx) == 0);
5128
5129			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5130				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5131
5132				if (proptype == PROP_TYPE_INDEX) {
5133					const char *unused;
5134					VERIFY(zpool_prop_index_to_string(
5135					    prop, intval, &unused) == 0);
5136				}
5137				VERIFY(zap_update(mos,
5138				    spa->spa_pool_props_object, propname,
5139				    8, 1, &intval, tx) == 0);
5140			} else {
5141				ASSERT(0); /* not allowed */
5142			}
5143
5144			switch (prop) {
5145			case ZPOOL_PROP_DELEGATION:
5146				spa->spa_delegation = intval;
5147				break;
5148			case ZPOOL_PROP_BOOTFS:
5149				spa->spa_bootfs = intval;
5150				break;
5151			case ZPOOL_PROP_FAILUREMODE:
5152				spa->spa_failmode = intval;
5153				break;
5154			case ZPOOL_PROP_AUTOEXPAND:
5155				spa->spa_autoexpand = intval;
5156				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5157				break;
5158			case ZPOOL_PROP_DEDUPDITTO:
5159				spa->spa_dedup_ditto = intval;
5160				break;
5161			default:
5162				break;
5163			}
5164		}
5165
5166		/* log internal history if this is not a zpool create */
5167		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5168		    tx->tx_txg != TXG_INITIAL) {
5169			spa_history_internal_log(LOG_POOL_PROPSET,
5170			    spa, tx, cr, "%s %lld %s",
5171			    nvpair_name(elem), intval, spa_name(spa));
5172		}
5173	}
5174
5175	mutex_exit(&spa->spa_props_lock);
5176}
5177
5178/*
5179 * Sync the specified transaction group.  New blocks may be dirtied as
5180 * part of the process, so we iterate until it converges.
5181 */
5182void
5183spa_sync(spa_t *spa, uint64_t txg)
5184{
5185	dsl_pool_t *dp = spa->spa_dsl_pool;
5186	objset_t *mos = spa->spa_meta_objset;
5187	bplist_t *defer_bpl = &spa->spa_deferred_bplist;
5188	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5189	vdev_t *rvd = spa->spa_root_vdev;
5190	vdev_t *vd;
5191	dmu_tx_t *tx;
5192	int error;
5193
5194	/*
5195	 * Lock out configuration changes.
5196	 */
5197	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5198
5199	spa->spa_syncing_txg = txg;
5200	spa->spa_sync_pass = 0;
5201
5202	/*
5203	 * If there are any pending vdev state changes, convert them
5204	 * into config changes that go out with this transaction group.
5205	 */
5206	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5207	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5208		/*
5209		 * We need the write lock here because, for aux vdevs,
5210		 * calling vdev_config_dirty() modifies sav_config.
5211		 * This is ugly and will become unnecessary when we
5212		 * eliminate the aux vdev wart by integrating all vdevs
5213		 * into the root vdev tree.
5214		 */
5215		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5216		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5217		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5218			vdev_state_clean(vd);
5219			vdev_config_dirty(vd);
5220		}
5221		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5222		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5223	}
5224	spa_config_exit(spa, SCL_STATE, FTAG);
5225
5226	VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
5227
5228	tx = dmu_tx_create_assigned(dp, txg);
5229
5230	/*
5231	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5232	 * set spa_deflate if we have no raid-z vdevs.
5233	 */
5234	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5235	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5236		int i;
5237
5238		for (i = 0; i < rvd->vdev_children; i++) {
5239			vd = rvd->vdev_child[i];
5240			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5241				break;
5242		}
5243		if (i == rvd->vdev_children) {
5244			spa->spa_deflate = TRUE;
5245			VERIFY(0 == zap_add(spa->spa_meta_objset,
5246			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5247			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5248		}
5249	}
5250
5251	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5252	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5253		dsl_pool_create_origin(dp, tx);
5254
5255		/* Keeping the origin open increases spa_minref */
5256		spa->spa_minref += 3;
5257	}
5258
5259	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5260	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5261		dsl_pool_upgrade_clones(dp, tx);
5262	}
5263
5264	/*
5265	 * If anything has changed in this txg, push the deferred frees
5266	 * from the previous txg.  If not, leave them alone so that we
5267	 * don't generate work on an otherwise idle system.
5268	 */
5269	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5270	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5271	    !txg_list_empty(&dp->dp_sync_tasks, txg))
5272		spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
5273
5274	/*
5275	 * Iterate to convergence.
5276	 */
5277	do {
5278		int pass = ++spa->spa_sync_pass;
5279
5280		spa_sync_config_object(spa, tx);
5281		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5282		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5283		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5284		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5285		spa_errlog_sync(spa, txg);
5286		dsl_pool_sync(dp, txg);
5287
5288		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5289			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5290			bplist_sync(free_bpl, spa_sync_free, zio, tx);
5291			VERIFY(zio_wait(zio) == 0);
5292		} else {
5293			bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
5294		}
5295
5296		ddt_sync(spa, txg);
5297
5298		mutex_enter(&spa->spa_scrub_lock);
5299		while (spa->spa_scrub_inflight > 0)
5300			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5301		mutex_exit(&spa->spa_scrub_lock);
5302
5303		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5304			vdev_sync(vd, txg);
5305
5306	} while (dmu_objset_is_dirty(mos, txg));
5307
5308	ASSERT(free_bpl->bpl_queue == NULL);
5309
5310	bplist_close(defer_bpl);
5311
5312	/*
5313	 * Rewrite the vdev configuration (which includes the uberblock)
5314	 * to commit the transaction group.
5315	 *
5316	 * If there are no dirty vdevs, we sync the uberblock to a few
5317	 * random top-level vdevs that are known to be visible in the
5318	 * config cache (see spa_vdev_add() for a complete description).
5319	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5320	 */
5321	for (;;) {
5322		/*
5323		 * We hold SCL_STATE to prevent vdev open/close/etc.
5324		 * while we're attempting to write the vdev labels.
5325		 */
5326		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5327
5328		if (list_is_empty(&spa->spa_config_dirty_list)) {
5329			vdev_t *svd[SPA_DVAS_PER_BP];
5330			int svdcount = 0;
5331			int children = rvd->vdev_children;
5332			int c0 = spa_get_random(children);
5333
5334			for (int c = 0; c < children; c++) {
5335				vd = rvd->vdev_child[(c0 + c) % children];
5336				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5337					continue;
5338				svd[svdcount++] = vd;
5339				if (svdcount == SPA_DVAS_PER_BP)
5340					break;
5341			}
5342			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5343			if (error != 0)
5344				error = vdev_config_sync(svd, svdcount, txg,
5345				    B_TRUE);
5346		} else {
5347			error = vdev_config_sync(rvd->vdev_child,
5348			    rvd->vdev_children, txg, B_FALSE);
5349			if (error != 0)
5350				error = vdev_config_sync(rvd->vdev_child,
5351				    rvd->vdev_children, txg, B_TRUE);
5352		}
5353
5354		spa_config_exit(spa, SCL_STATE, FTAG);
5355
5356		if (error == 0)
5357			break;
5358		zio_suspend(spa, NULL);
5359		zio_resume_wait(spa);
5360	}
5361	dmu_tx_commit(tx);
5362
5363	/*
5364	 * Clear the dirty config list.
5365	 */
5366	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5367		vdev_config_clean(vd);
5368
5369	/*
5370	 * Now that the new config has synced transactionally,
5371	 * let it become visible to the config cache.
5372	 */
5373	if (spa->spa_config_syncing != NULL) {
5374		spa_config_set(spa, spa->spa_config_syncing);
5375		spa->spa_config_txg = txg;
5376		spa->spa_config_syncing = NULL;
5377	}
5378
5379	spa->spa_ubsync = spa->spa_uberblock;
5380
5381	dsl_pool_sync_done(dp, txg);
5382
5383	/*
5384	 * Update usable space statistics.
5385	 */
5386	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5387		vdev_sync_done(vd, txg);
5388
5389	spa_update_dspace(spa);
5390
5391	/*
5392	 * It had better be the case that we didn't dirty anything
5393	 * since vdev_config_sync().
5394	 */
5395	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5396	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5397	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5398	ASSERT(defer_bpl->bpl_queue == NULL);
5399	ASSERT(free_bpl->bpl_queue == NULL);
5400
5401	spa->spa_sync_pass = 0;
5402
5403	spa_config_exit(spa, SCL_CONFIG, FTAG);
5404
5405	spa_handle_ignored_writes(spa);
5406
5407	/*
5408	 * If any async tasks have been requested, kick them off.
5409	 */
5410	spa_async_dispatch(spa);
5411}
5412
5413/*
5414 * Sync all pools.  We don't want to hold the namespace lock across these
5415 * operations, so we take a reference on the spa_t and drop the lock during the
5416 * sync.
5417 */
5418void
5419spa_sync_allpools(void)
5420{
5421	spa_t *spa = NULL;
5422	mutex_enter(&spa_namespace_lock);
5423	while ((spa = spa_next(spa)) != NULL) {
5424		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
5425			continue;
5426		spa_open_ref(spa, FTAG);
5427		mutex_exit(&spa_namespace_lock);
5428		txg_wait_synced(spa_get_dsl(spa), 0);
5429		mutex_enter(&spa_namespace_lock);
5430		spa_close(spa, FTAG);
5431	}
5432	mutex_exit(&spa_namespace_lock);
5433}
5434
5435/*
5436 * ==========================================================================
5437 * Miscellaneous routines
5438 * ==========================================================================
5439 */
5440
5441/*
5442 * Remove all pools in the system.
5443 */
5444void
5445spa_evict_all(void)
5446{
5447	spa_t *spa;
5448
5449	/*
5450	 * Remove all cached state.  All pools should be closed now,
5451	 * so every spa in the AVL tree should be unreferenced.
5452	 */
5453	mutex_enter(&spa_namespace_lock);
5454	while ((spa = spa_next(NULL)) != NULL) {
5455		/*
5456		 * Stop async tasks.  The async thread may need to detach
5457		 * a device that's been replaced, which requires grabbing
5458		 * spa_namespace_lock, so we must drop it here.
5459		 */
5460		spa_open_ref(spa, FTAG);
5461		mutex_exit(&spa_namespace_lock);
5462		spa_async_suspend(spa);
5463		mutex_enter(&spa_namespace_lock);
5464		spa_close(spa, FTAG);
5465
5466		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5467			spa_unload(spa);
5468			spa_deactivate(spa);
5469		}
5470		spa_remove(spa);
5471	}
5472	mutex_exit(&spa_namespace_lock);
5473}
5474
5475vdev_t *
5476spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5477{
5478	vdev_t *vd;
5479	int i;
5480
5481	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5482		return (vd);
5483
5484	if (aux) {
5485		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5486			vd = spa->spa_l2cache.sav_vdevs[i];
5487			if (vd->vdev_guid == guid)
5488				return (vd);
5489		}
5490
5491		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5492			vd = spa->spa_spares.sav_vdevs[i];
5493			if (vd->vdev_guid == guid)
5494				return (vd);
5495		}
5496	}
5497
5498	return (NULL);
5499}
5500
5501void
5502spa_upgrade(spa_t *spa, uint64_t version)
5503{
5504	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5505
5506	/*
5507	 * This should only be called for a non-faulted pool, and since a
5508	 * future version would result in an unopenable pool, this shouldn't be
5509	 * possible.
5510	 */
5511	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5512	ASSERT(version >= spa->spa_uberblock.ub_version);
5513
5514	spa->spa_uberblock.ub_version = version;
5515	vdev_config_dirty(spa->spa_root_vdev);
5516
5517	spa_config_exit(spa, SCL_ALL, FTAG);
5518
5519	txg_wait_synced(spa_get_dsl(spa), 0);
5520}
5521
5522boolean_t
5523spa_has_spare(spa_t *spa, uint64_t guid)
5524{
5525	int i;
5526	uint64_t spareguid;
5527	spa_aux_vdev_t *sav = &spa->spa_spares;
5528
5529	for (i = 0; i < sav->sav_count; i++)
5530		if (sav->sav_vdevs[i]->vdev_guid == guid)
5531			return (B_TRUE);
5532
5533	for (i = 0; i < sav->sav_npending; i++) {
5534		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5535		    &spareguid) == 0 && spareguid == guid)
5536			return (B_TRUE);
5537	}
5538
5539	return (B_FALSE);
5540}
5541
5542/*
5543 * Check if a pool has an active shared spare device.
5544 * Note: reference count of an active spare is 2, as a spare and as a replace
5545 */
5546static boolean_t
5547spa_has_active_shared_spare(spa_t *spa)
5548{
5549	int i, refcnt;
5550	uint64_t pool;
5551	spa_aux_vdev_t *sav = &spa->spa_spares;
5552
5553	for (i = 0; i < sav->sav_count; i++) {
5554		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5555		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5556		    refcnt > 2)
5557			return (B_TRUE);
5558	}
5559
5560	return (B_FALSE);
5561}
5562
5563/*
5564 * Post a sysevent corresponding to the given event.  The 'name' must be one of
5565 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5566 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5567 * in the userland libzpool, as we don't want consumers to misinterpret ztest
5568 * or zdb as real changes.
5569 */
5570void
5571spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5572{
5573#ifdef _KERNEL
5574	sysevent_t		*ev;
5575	sysevent_attr_list_t	*attr = NULL;
5576	sysevent_value_t	value;
5577	sysevent_id_t		eid;
5578
5579	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5580	    SE_SLEEP);
5581
5582	value.value_type = SE_DATA_TYPE_STRING;
5583	value.value.sv_string = spa_name(spa);
5584	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5585		goto done;
5586
5587	value.value_type = SE_DATA_TYPE_UINT64;
5588	value.value.sv_uint64 = spa_guid(spa);
5589	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5590		goto done;
5591
5592	if (vd) {
5593		value.value_type = SE_DATA_TYPE_UINT64;
5594		value.value.sv_uint64 = vd->vdev_guid;
5595		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5596		    SE_SLEEP) != 0)
5597			goto done;
5598
5599		if (vd->vdev_path) {
5600			value.value_type = SE_DATA_TYPE_STRING;
5601			value.value.sv_string = vd->vdev_path;
5602			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5603			    &value, SE_SLEEP) != 0)
5604				goto done;
5605		}
5606	}
5607
5608	if (sysevent_attach_attributes(ev, attr) != 0)
5609		goto done;
5610	attr = NULL;
5611
5612	(void) log_sysevent(ev, SE_SLEEP, &eid);
5613
5614done:
5615	if (attr)
5616		sysevent_free_attr(attr);
5617	sysevent_free(ev);
5618#endif
5619}
5620