xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision e42d205944d245bf5d1c4fc45261cbe09e28a7b9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size;
198 	uint64_t alloc;
199 	uint64_t space;
200 	uint64_t cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 
204 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 
206 	if (rvd != NULL) {
207 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 		size = metaslab_class_get_space(spa_normal_class(spa));
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 		    size - alloc, src);
214 
215 		space = 0;
216 		for (int c = 0; c < rvd->vdev_children; c++) {
217 			vdev_t *tvd = rvd->vdev_child[c];
218 			space += tvd->vdev_max_asize - tvd->vdev_asize;
219 		}
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 		    src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		/*
245 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 		 * when opening pools before this version freedir will be NULL.
247 		 */
248 		if (pool->dp_free_dir != NULL) {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
251 		} else {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
253 			    NULL, 0, src);
254 		}
255 
256 		if (pool->dp_leak_dir != NULL) {
257 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
258 			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
259 		} else {
260 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 			    NULL, 0, src);
262 		}
263 	}
264 
265 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266 
267 	if (spa->spa_comment != NULL) {
268 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 		    0, ZPROP_SRC_LOCAL);
270 	}
271 
272 	if (spa->spa_root != NULL)
273 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 		    0, ZPROP_SRC_LOCAL);
275 
276 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
277 		if (dp->scd_path == NULL) {
278 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
279 			    "none", 0, ZPROP_SRC_LOCAL);
280 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
281 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
282 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
283 		}
284 	}
285 }
286 
287 /*
288  * Get zpool property values.
289  */
290 int
291 spa_prop_get(spa_t *spa, nvlist_t **nvp)
292 {
293 	objset_t *mos = spa->spa_meta_objset;
294 	zap_cursor_t zc;
295 	zap_attribute_t za;
296 	int err;
297 
298 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
299 
300 	mutex_enter(&spa->spa_props_lock);
301 
302 	/*
303 	 * Get properties from the spa config.
304 	 */
305 	spa_prop_get_config(spa, nvp);
306 
307 	/* If no pool property object, no more prop to get. */
308 	if (mos == NULL || spa->spa_pool_props_object == 0) {
309 		mutex_exit(&spa->spa_props_lock);
310 		return (0);
311 	}
312 
313 	/*
314 	 * Get properties from the MOS pool property object.
315 	 */
316 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
317 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
318 	    zap_cursor_advance(&zc)) {
319 		uint64_t intval = 0;
320 		char *strval = NULL;
321 		zprop_source_t src = ZPROP_SRC_DEFAULT;
322 		zpool_prop_t prop;
323 
324 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
325 			continue;
326 
327 		switch (za.za_integer_length) {
328 		case 8:
329 			/* integer property */
330 			if (za.za_first_integer !=
331 			    zpool_prop_default_numeric(prop))
332 				src = ZPROP_SRC_LOCAL;
333 
334 			if (prop == ZPOOL_PROP_BOOTFS) {
335 				dsl_pool_t *dp;
336 				dsl_dataset_t *ds = NULL;
337 
338 				dp = spa_get_dsl(spa);
339 				dsl_pool_config_enter(dp, FTAG);
340 				if (err = dsl_dataset_hold_obj(dp,
341 				    za.za_first_integer, FTAG, &ds)) {
342 					dsl_pool_config_exit(dp, FTAG);
343 					break;
344 				}
345 
346 				strval = kmem_alloc(
347 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
348 				    KM_SLEEP);
349 				dsl_dataset_name(ds, strval);
350 				dsl_dataset_rele(ds, FTAG);
351 				dsl_pool_config_exit(dp, FTAG);
352 			} else {
353 				strval = NULL;
354 				intval = za.za_first_integer;
355 			}
356 
357 			spa_prop_add_list(*nvp, prop, strval, intval, src);
358 
359 			if (strval != NULL)
360 				kmem_free(strval,
361 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
362 
363 			break;
364 
365 		case 1:
366 			/* string property */
367 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
368 			err = zap_lookup(mos, spa->spa_pool_props_object,
369 			    za.za_name, 1, za.za_num_integers, strval);
370 			if (err) {
371 				kmem_free(strval, za.za_num_integers);
372 				break;
373 			}
374 			spa_prop_add_list(*nvp, prop, strval, 0, src);
375 			kmem_free(strval, za.za_num_integers);
376 			break;
377 
378 		default:
379 			break;
380 		}
381 	}
382 	zap_cursor_fini(&zc);
383 	mutex_exit(&spa->spa_props_lock);
384 out:
385 	if (err && err != ENOENT) {
386 		nvlist_free(*nvp);
387 		*nvp = NULL;
388 		return (err);
389 	}
390 
391 	return (0);
392 }
393 
394 /*
395  * Validate the given pool properties nvlist and modify the list
396  * for the property values to be set.
397  */
398 static int
399 spa_prop_validate(spa_t *spa, nvlist_t *props)
400 {
401 	nvpair_t *elem;
402 	int error = 0, reset_bootfs = 0;
403 	uint64_t objnum = 0;
404 	boolean_t has_feature = B_FALSE;
405 
406 	elem = NULL;
407 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
408 		uint64_t intval;
409 		char *strval, *slash, *check, *fname;
410 		const char *propname = nvpair_name(elem);
411 		zpool_prop_t prop = zpool_name_to_prop(propname);
412 
413 		switch (prop) {
414 		case ZPROP_INVAL:
415 			if (!zpool_prop_feature(propname)) {
416 				error = SET_ERROR(EINVAL);
417 				break;
418 			}
419 
420 			/*
421 			 * Sanitize the input.
422 			 */
423 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
424 				error = SET_ERROR(EINVAL);
425 				break;
426 			}
427 
428 			if (nvpair_value_uint64(elem, &intval) != 0) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			if (intval != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			fname = strchr(propname, '@') + 1;
439 			if (zfeature_lookup_name(fname, NULL) != 0) {
440 				error = SET_ERROR(EINVAL);
441 				break;
442 			}
443 
444 			has_feature = B_TRUE;
445 			break;
446 
447 		case ZPOOL_PROP_VERSION:
448 			error = nvpair_value_uint64(elem, &intval);
449 			if (!error &&
450 			    (intval < spa_version(spa) ||
451 			    intval > SPA_VERSION_BEFORE_FEATURES ||
452 			    has_feature))
453 				error = SET_ERROR(EINVAL);
454 			break;
455 
456 		case ZPOOL_PROP_DELEGATION:
457 		case ZPOOL_PROP_AUTOREPLACE:
458 		case ZPOOL_PROP_LISTSNAPS:
459 		case ZPOOL_PROP_AUTOEXPAND:
460 			error = nvpair_value_uint64(elem, &intval);
461 			if (!error && intval > 1)
462 				error = SET_ERROR(EINVAL);
463 			break;
464 
465 		case ZPOOL_PROP_BOOTFS:
466 			/*
467 			 * If the pool version is less than SPA_VERSION_BOOTFS,
468 			 * or the pool is still being created (version == 0),
469 			 * the bootfs property cannot be set.
470 			 */
471 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
472 				error = SET_ERROR(ENOTSUP);
473 				break;
474 			}
475 
476 			/*
477 			 * Make sure the vdev config is bootable
478 			 */
479 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
480 				error = SET_ERROR(ENOTSUP);
481 				break;
482 			}
483 
484 			reset_bootfs = 1;
485 
486 			error = nvpair_value_string(elem, &strval);
487 
488 			if (!error) {
489 				objset_t *os;
490 				uint64_t compress;
491 
492 				if (strval == NULL || strval[0] == '\0') {
493 					objnum = zpool_prop_default_numeric(
494 					    ZPOOL_PROP_BOOTFS);
495 					break;
496 				}
497 
498 				if (error = dmu_objset_hold(strval, FTAG, &os))
499 					break;
500 
501 				/* Must be ZPL and not gzip compressed. */
502 
503 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
504 					error = SET_ERROR(ENOTSUP);
505 				} else if ((error =
506 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
507 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
508 				    &compress)) == 0 &&
509 				    !BOOTFS_COMPRESS_VALID(compress)) {
510 					error = SET_ERROR(ENOTSUP);
511 				} else {
512 					objnum = dmu_objset_id(os);
513 				}
514 				dmu_objset_rele(os, FTAG);
515 			}
516 			break;
517 
518 		case ZPOOL_PROP_FAILUREMODE:
519 			error = nvpair_value_uint64(elem, &intval);
520 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
521 			    intval > ZIO_FAILURE_MODE_PANIC))
522 				error = SET_ERROR(EINVAL);
523 
524 			/*
525 			 * This is a special case which only occurs when
526 			 * the pool has completely failed. This allows
527 			 * the user to change the in-core failmode property
528 			 * without syncing it out to disk (I/Os might
529 			 * currently be blocked). We do this by returning
530 			 * EIO to the caller (spa_prop_set) to trick it
531 			 * into thinking we encountered a property validation
532 			 * error.
533 			 */
534 			if (!error && spa_suspended(spa)) {
535 				spa->spa_failmode = intval;
536 				error = SET_ERROR(EIO);
537 			}
538 			break;
539 
540 		case ZPOOL_PROP_CACHEFILE:
541 			if ((error = nvpair_value_string(elem, &strval)) != 0)
542 				break;
543 
544 			if (strval[0] == '\0')
545 				break;
546 
547 			if (strcmp(strval, "none") == 0)
548 				break;
549 
550 			if (strval[0] != '/') {
551 				error = SET_ERROR(EINVAL);
552 				break;
553 			}
554 
555 			slash = strrchr(strval, '/');
556 			ASSERT(slash != NULL);
557 
558 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
559 			    strcmp(slash, "/..") == 0)
560 				error = SET_ERROR(EINVAL);
561 			break;
562 
563 		case ZPOOL_PROP_COMMENT:
564 			if ((error = nvpair_value_string(elem, &strval)) != 0)
565 				break;
566 			for (check = strval; *check != '\0'; check++) {
567 				/*
568 				 * The kernel doesn't have an easy isprint()
569 				 * check.  For this kernel check, we merely
570 				 * check ASCII apart from DEL.  Fix this if
571 				 * there is an easy-to-use kernel isprint().
572 				 */
573 				if (*check >= 0x7f) {
574 					error = SET_ERROR(EINVAL);
575 					break;
576 				}
577 				check++;
578 			}
579 			if (strlen(strval) > ZPROP_MAX_COMMENT)
580 				error = E2BIG;
581 			break;
582 
583 		case ZPOOL_PROP_DEDUPDITTO:
584 			if (spa_version(spa) < SPA_VERSION_DEDUP)
585 				error = SET_ERROR(ENOTSUP);
586 			else
587 				error = nvpair_value_uint64(elem, &intval);
588 			if (error == 0 &&
589 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
590 				error = SET_ERROR(EINVAL);
591 			break;
592 		}
593 
594 		if (error)
595 			break;
596 	}
597 
598 	if (!error && reset_bootfs) {
599 		error = nvlist_remove(props,
600 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
601 
602 		if (!error) {
603 			error = nvlist_add_uint64(props,
604 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
605 		}
606 	}
607 
608 	return (error);
609 }
610 
611 void
612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
613 {
614 	char *cachefile;
615 	spa_config_dirent_t *dp;
616 
617 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
618 	    &cachefile) != 0)
619 		return;
620 
621 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
622 	    KM_SLEEP);
623 
624 	if (cachefile[0] == '\0')
625 		dp->scd_path = spa_strdup(spa_config_path);
626 	else if (strcmp(cachefile, "none") == 0)
627 		dp->scd_path = NULL;
628 	else
629 		dp->scd_path = spa_strdup(cachefile);
630 
631 	list_insert_head(&spa->spa_config_list, dp);
632 	if (need_sync)
633 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
634 }
635 
636 int
637 spa_prop_set(spa_t *spa, nvlist_t *nvp)
638 {
639 	int error;
640 	nvpair_t *elem = NULL;
641 	boolean_t need_sync = B_FALSE;
642 
643 	if ((error = spa_prop_validate(spa, nvp)) != 0)
644 		return (error);
645 
646 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
647 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
648 
649 		if (prop == ZPOOL_PROP_CACHEFILE ||
650 		    prop == ZPOOL_PROP_ALTROOT ||
651 		    prop == ZPOOL_PROP_READONLY)
652 			continue;
653 
654 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
655 			uint64_t ver;
656 
657 			if (prop == ZPOOL_PROP_VERSION) {
658 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
659 			} else {
660 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
661 				ver = SPA_VERSION_FEATURES;
662 				need_sync = B_TRUE;
663 			}
664 
665 			/* Save time if the version is already set. */
666 			if (ver == spa_version(spa))
667 				continue;
668 
669 			/*
670 			 * In addition to the pool directory object, we might
671 			 * create the pool properties object, the features for
672 			 * read object, the features for write object, or the
673 			 * feature descriptions object.
674 			 */
675 			error = dsl_sync_task(spa->spa_name, NULL,
676 			    spa_sync_version, &ver,
677 			    6, ZFS_SPACE_CHECK_RESERVED);
678 			if (error)
679 				return (error);
680 			continue;
681 		}
682 
683 		need_sync = B_TRUE;
684 		break;
685 	}
686 
687 	if (need_sync) {
688 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
689 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
690 	}
691 
692 	return (0);
693 }
694 
695 /*
696  * If the bootfs property value is dsobj, clear it.
697  */
698 void
699 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
700 {
701 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
702 		VERIFY(zap_remove(spa->spa_meta_objset,
703 		    spa->spa_pool_props_object,
704 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
705 		spa->spa_bootfs = 0;
706 	}
707 }
708 
709 /*ARGSUSED*/
710 static int
711 spa_change_guid_check(void *arg, dmu_tx_t *tx)
712 {
713 	uint64_t *newguid = arg;
714 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
715 	vdev_t *rvd = spa->spa_root_vdev;
716 	uint64_t vdev_state;
717 
718 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
719 	vdev_state = rvd->vdev_state;
720 	spa_config_exit(spa, SCL_STATE, FTAG);
721 
722 	if (vdev_state != VDEV_STATE_HEALTHY)
723 		return (SET_ERROR(ENXIO));
724 
725 	ASSERT3U(spa_guid(spa), !=, *newguid);
726 
727 	return (0);
728 }
729 
730 static void
731 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
732 {
733 	uint64_t *newguid = arg;
734 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
735 	uint64_t oldguid;
736 	vdev_t *rvd = spa->spa_root_vdev;
737 
738 	oldguid = spa_guid(spa);
739 
740 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
741 	rvd->vdev_guid = *newguid;
742 	rvd->vdev_guid_sum += (*newguid - oldguid);
743 	vdev_config_dirty(rvd);
744 	spa_config_exit(spa, SCL_STATE, FTAG);
745 
746 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
747 	    oldguid, *newguid);
748 }
749 
750 /*
751  * Change the GUID for the pool.  This is done so that we can later
752  * re-import a pool built from a clone of our own vdevs.  We will modify
753  * the root vdev's guid, our own pool guid, and then mark all of our
754  * vdevs dirty.  Note that we must make sure that all our vdevs are
755  * online when we do this, or else any vdevs that weren't present
756  * would be orphaned from our pool.  We are also going to issue a
757  * sysevent to update any watchers.
758  */
759 int
760 spa_change_guid(spa_t *spa)
761 {
762 	int error;
763 	uint64_t guid;
764 
765 	mutex_enter(&spa->spa_vdev_top_lock);
766 	mutex_enter(&spa_namespace_lock);
767 	guid = spa_generate_guid(NULL);
768 
769 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
770 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
771 
772 	if (error == 0) {
773 		spa_config_sync(spa, B_FALSE, B_TRUE);
774 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
775 	}
776 
777 	mutex_exit(&spa_namespace_lock);
778 	mutex_exit(&spa->spa_vdev_top_lock);
779 
780 	return (error);
781 }
782 
783 /*
784  * ==========================================================================
785  * SPA state manipulation (open/create/destroy/import/export)
786  * ==========================================================================
787  */
788 
789 static int
790 spa_error_entry_compare(const void *a, const void *b)
791 {
792 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
793 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
794 	int ret;
795 
796 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
797 	    sizeof (zbookmark_phys_t));
798 
799 	if (ret < 0)
800 		return (-1);
801 	else if (ret > 0)
802 		return (1);
803 	else
804 		return (0);
805 }
806 
807 /*
808  * Utility function which retrieves copies of the current logs and
809  * re-initializes them in the process.
810  */
811 void
812 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
813 {
814 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
815 
816 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
817 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
818 
819 	avl_create(&spa->spa_errlist_scrub,
820 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
821 	    offsetof(spa_error_entry_t, se_avl));
822 	avl_create(&spa->spa_errlist_last,
823 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
824 	    offsetof(spa_error_entry_t, se_avl));
825 }
826 
827 static void
828 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
829 {
830 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
831 	enum zti_modes mode = ztip->zti_mode;
832 	uint_t value = ztip->zti_value;
833 	uint_t count = ztip->zti_count;
834 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
835 	char name[32];
836 	uint_t flags = 0;
837 	boolean_t batch = B_FALSE;
838 
839 	if (mode == ZTI_MODE_NULL) {
840 		tqs->stqs_count = 0;
841 		tqs->stqs_taskq = NULL;
842 		return;
843 	}
844 
845 	ASSERT3U(count, >, 0);
846 
847 	tqs->stqs_count = count;
848 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
849 
850 	switch (mode) {
851 	case ZTI_MODE_FIXED:
852 		ASSERT3U(value, >=, 1);
853 		value = MAX(value, 1);
854 		break;
855 
856 	case ZTI_MODE_BATCH:
857 		batch = B_TRUE;
858 		flags |= TASKQ_THREADS_CPU_PCT;
859 		value = zio_taskq_batch_pct;
860 		break;
861 
862 	default:
863 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
864 		    "spa_activate()",
865 		    zio_type_name[t], zio_taskq_types[q], mode, value);
866 		break;
867 	}
868 
869 	for (uint_t i = 0; i < count; i++) {
870 		taskq_t *tq;
871 
872 		if (count > 1) {
873 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
874 			    zio_type_name[t], zio_taskq_types[q], i);
875 		} else {
876 			(void) snprintf(name, sizeof (name), "%s_%s",
877 			    zio_type_name[t], zio_taskq_types[q]);
878 		}
879 
880 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
881 			if (batch)
882 				flags |= TASKQ_DC_BATCH;
883 
884 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
885 			    spa->spa_proc, zio_taskq_basedc, flags);
886 		} else {
887 			pri_t pri = maxclsyspri;
888 			/*
889 			 * The write issue taskq can be extremely CPU
890 			 * intensive.  Run it at slightly lower priority
891 			 * than the other taskqs.
892 			 */
893 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
894 				pri--;
895 
896 			tq = taskq_create_proc(name, value, pri, 50,
897 			    INT_MAX, spa->spa_proc, flags);
898 		}
899 
900 		tqs->stqs_taskq[i] = tq;
901 	}
902 }
903 
904 static void
905 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
906 {
907 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
908 
909 	if (tqs->stqs_taskq == NULL) {
910 		ASSERT0(tqs->stqs_count);
911 		return;
912 	}
913 
914 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
915 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
916 		taskq_destroy(tqs->stqs_taskq[i]);
917 	}
918 
919 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
920 	tqs->stqs_taskq = NULL;
921 }
922 
923 /*
924  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
925  * Note that a type may have multiple discrete taskqs to avoid lock contention
926  * on the taskq itself. In that case we choose which taskq at random by using
927  * the low bits of gethrtime().
928  */
929 void
930 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
931     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
932 {
933 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
934 	taskq_t *tq;
935 
936 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
937 	ASSERT3U(tqs->stqs_count, !=, 0);
938 
939 	if (tqs->stqs_count == 1) {
940 		tq = tqs->stqs_taskq[0];
941 	} else {
942 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
943 	}
944 
945 	taskq_dispatch_ent(tq, func, arg, flags, ent);
946 }
947 
948 static void
949 spa_create_zio_taskqs(spa_t *spa)
950 {
951 	for (int t = 0; t < ZIO_TYPES; t++) {
952 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
953 			spa_taskqs_init(spa, t, q);
954 		}
955 	}
956 }
957 
958 #ifdef _KERNEL
959 static void
960 spa_thread(void *arg)
961 {
962 	callb_cpr_t cprinfo;
963 
964 	spa_t *spa = arg;
965 	user_t *pu = PTOU(curproc);
966 
967 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
968 	    spa->spa_name);
969 
970 	ASSERT(curproc != &p0);
971 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
972 	    "zpool-%s", spa->spa_name);
973 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
974 
975 	/* bind this thread to the requested psrset */
976 	if (zio_taskq_psrset_bind != PS_NONE) {
977 		pool_lock();
978 		mutex_enter(&cpu_lock);
979 		mutex_enter(&pidlock);
980 		mutex_enter(&curproc->p_lock);
981 
982 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
983 		    0, NULL, NULL) == 0)  {
984 			curthread->t_bind_pset = zio_taskq_psrset_bind;
985 		} else {
986 			cmn_err(CE_WARN,
987 			    "Couldn't bind process for zfs pool \"%s\" to "
988 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
989 		}
990 
991 		mutex_exit(&curproc->p_lock);
992 		mutex_exit(&pidlock);
993 		mutex_exit(&cpu_lock);
994 		pool_unlock();
995 	}
996 
997 	if (zio_taskq_sysdc) {
998 		sysdc_thread_enter(curthread, 100, 0);
999 	}
1000 
1001 	spa->spa_proc = curproc;
1002 	spa->spa_did = curthread->t_did;
1003 
1004 	spa_create_zio_taskqs(spa);
1005 
1006 	mutex_enter(&spa->spa_proc_lock);
1007 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1008 
1009 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1010 	cv_broadcast(&spa->spa_proc_cv);
1011 
1012 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1013 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1014 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1015 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1016 
1017 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1018 	spa->spa_proc_state = SPA_PROC_GONE;
1019 	spa->spa_proc = &p0;
1020 	cv_broadcast(&spa->spa_proc_cv);
1021 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1022 
1023 	mutex_enter(&curproc->p_lock);
1024 	lwp_exit();
1025 }
1026 #endif
1027 
1028 /*
1029  * Activate an uninitialized pool.
1030  */
1031 static void
1032 spa_activate(spa_t *spa, int mode)
1033 {
1034 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1035 
1036 	spa->spa_state = POOL_STATE_ACTIVE;
1037 	spa->spa_mode = mode;
1038 
1039 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1040 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1041 
1042 	/* Try to create a covering process */
1043 	mutex_enter(&spa->spa_proc_lock);
1044 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1045 	ASSERT(spa->spa_proc == &p0);
1046 	spa->spa_did = 0;
1047 
1048 	/* Only create a process if we're going to be around a while. */
1049 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1050 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1051 		    NULL, 0) == 0) {
1052 			spa->spa_proc_state = SPA_PROC_CREATED;
1053 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1054 				cv_wait(&spa->spa_proc_cv,
1055 				    &spa->spa_proc_lock);
1056 			}
1057 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1058 			ASSERT(spa->spa_proc != &p0);
1059 			ASSERT(spa->spa_did != 0);
1060 		} else {
1061 #ifdef _KERNEL
1062 			cmn_err(CE_WARN,
1063 			    "Couldn't create process for zfs pool \"%s\"\n",
1064 			    spa->spa_name);
1065 #endif
1066 		}
1067 	}
1068 	mutex_exit(&spa->spa_proc_lock);
1069 
1070 	/* If we didn't create a process, we need to create our taskqs. */
1071 	if (spa->spa_proc == &p0) {
1072 		spa_create_zio_taskqs(spa);
1073 	}
1074 
1075 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1076 	    offsetof(vdev_t, vdev_config_dirty_node));
1077 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1078 	    offsetof(vdev_t, vdev_state_dirty_node));
1079 
1080 	txg_list_create(&spa->spa_vdev_txg_list,
1081 	    offsetof(struct vdev, vdev_txg_node));
1082 
1083 	avl_create(&spa->spa_errlist_scrub,
1084 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1085 	    offsetof(spa_error_entry_t, se_avl));
1086 	avl_create(&spa->spa_errlist_last,
1087 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1088 	    offsetof(spa_error_entry_t, se_avl));
1089 }
1090 
1091 /*
1092  * Opposite of spa_activate().
1093  */
1094 static void
1095 spa_deactivate(spa_t *spa)
1096 {
1097 	ASSERT(spa->spa_sync_on == B_FALSE);
1098 	ASSERT(spa->spa_dsl_pool == NULL);
1099 	ASSERT(spa->spa_root_vdev == NULL);
1100 	ASSERT(spa->spa_async_zio_root == NULL);
1101 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1102 
1103 	txg_list_destroy(&spa->spa_vdev_txg_list);
1104 
1105 	list_destroy(&spa->spa_config_dirty_list);
1106 	list_destroy(&spa->spa_state_dirty_list);
1107 
1108 	for (int t = 0; t < ZIO_TYPES; t++) {
1109 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1110 			spa_taskqs_fini(spa, t, q);
1111 		}
1112 	}
1113 
1114 	metaslab_class_destroy(spa->spa_normal_class);
1115 	spa->spa_normal_class = NULL;
1116 
1117 	metaslab_class_destroy(spa->spa_log_class);
1118 	spa->spa_log_class = NULL;
1119 
1120 	/*
1121 	 * If this was part of an import or the open otherwise failed, we may
1122 	 * still have errors left in the queues.  Empty them just in case.
1123 	 */
1124 	spa_errlog_drain(spa);
1125 
1126 	avl_destroy(&spa->spa_errlist_scrub);
1127 	avl_destroy(&spa->spa_errlist_last);
1128 
1129 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1130 
1131 	mutex_enter(&spa->spa_proc_lock);
1132 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1133 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1134 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1135 		cv_broadcast(&spa->spa_proc_cv);
1136 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1137 			ASSERT(spa->spa_proc != &p0);
1138 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1139 		}
1140 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1141 		spa->spa_proc_state = SPA_PROC_NONE;
1142 	}
1143 	ASSERT(spa->spa_proc == &p0);
1144 	mutex_exit(&spa->spa_proc_lock);
1145 
1146 	/*
1147 	 * We want to make sure spa_thread() has actually exited the ZFS
1148 	 * module, so that the module can't be unloaded out from underneath
1149 	 * it.
1150 	 */
1151 	if (spa->spa_did != 0) {
1152 		thread_join(spa->spa_did);
1153 		spa->spa_did = 0;
1154 	}
1155 }
1156 
1157 /*
1158  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1159  * will create all the necessary vdevs in the appropriate layout, with each vdev
1160  * in the CLOSED state.  This will prep the pool before open/creation/import.
1161  * All vdev validation is done by the vdev_alloc() routine.
1162  */
1163 static int
1164 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1165     uint_t id, int atype)
1166 {
1167 	nvlist_t **child;
1168 	uint_t children;
1169 	int error;
1170 
1171 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1172 		return (error);
1173 
1174 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1175 		return (0);
1176 
1177 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1178 	    &child, &children);
1179 
1180 	if (error == ENOENT)
1181 		return (0);
1182 
1183 	if (error) {
1184 		vdev_free(*vdp);
1185 		*vdp = NULL;
1186 		return (SET_ERROR(EINVAL));
1187 	}
1188 
1189 	for (int c = 0; c < children; c++) {
1190 		vdev_t *vd;
1191 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1192 		    atype)) != 0) {
1193 			vdev_free(*vdp);
1194 			*vdp = NULL;
1195 			return (error);
1196 		}
1197 	}
1198 
1199 	ASSERT(*vdp != NULL);
1200 
1201 	return (0);
1202 }
1203 
1204 /*
1205  * Opposite of spa_load().
1206  */
1207 static void
1208 spa_unload(spa_t *spa)
1209 {
1210 	int i;
1211 
1212 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1213 
1214 	/*
1215 	 * Stop async tasks.
1216 	 */
1217 	spa_async_suspend(spa);
1218 
1219 	/*
1220 	 * Stop syncing.
1221 	 */
1222 	if (spa->spa_sync_on) {
1223 		txg_sync_stop(spa->spa_dsl_pool);
1224 		spa->spa_sync_on = B_FALSE;
1225 	}
1226 
1227 	/*
1228 	 * Wait for any outstanding async I/O to complete.
1229 	 */
1230 	if (spa->spa_async_zio_root != NULL) {
1231 		(void) zio_wait(spa->spa_async_zio_root);
1232 		spa->spa_async_zio_root = NULL;
1233 	}
1234 
1235 	bpobj_close(&spa->spa_deferred_bpobj);
1236 
1237 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238 
1239 	/*
1240 	 * Close all vdevs.
1241 	 */
1242 	if (spa->spa_root_vdev)
1243 		vdev_free(spa->spa_root_vdev);
1244 	ASSERT(spa->spa_root_vdev == NULL);
1245 
1246 	/*
1247 	 * Close the dsl pool.
1248 	 */
1249 	if (spa->spa_dsl_pool) {
1250 		dsl_pool_close(spa->spa_dsl_pool);
1251 		spa->spa_dsl_pool = NULL;
1252 		spa->spa_meta_objset = NULL;
1253 	}
1254 
1255 	ddt_unload(spa);
1256 
1257 
1258 	/*
1259 	 * Drop and purge level 2 cache
1260 	 */
1261 	spa_l2cache_drop(spa);
1262 
1263 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1264 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1265 	if (spa->spa_spares.sav_vdevs) {
1266 		kmem_free(spa->spa_spares.sav_vdevs,
1267 		    spa->spa_spares.sav_count * sizeof (void *));
1268 		spa->spa_spares.sav_vdevs = NULL;
1269 	}
1270 	if (spa->spa_spares.sav_config) {
1271 		nvlist_free(spa->spa_spares.sav_config);
1272 		spa->spa_spares.sav_config = NULL;
1273 	}
1274 	spa->spa_spares.sav_count = 0;
1275 
1276 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1277 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1278 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1279 	}
1280 	if (spa->spa_l2cache.sav_vdevs) {
1281 		kmem_free(spa->spa_l2cache.sav_vdevs,
1282 		    spa->spa_l2cache.sav_count * sizeof (void *));
1283 		spa->spa_l2cache.sav_vdevs = NULL;
1284 	}
1285 	if (spa->spa_l2cache.sav_config) {
1286 		nvlist_free(spa->spa_l2cache.sav_config);
1287 		spa->spa_l2cache.sav_config = NULL;
1288 	}
1289 	spa->spa_l2cache.sav_count = 0;
1290 
1291 	spa->spa_async_suspended = 0;
1292 
1293 	if (spa->spa_comment != NULL) {
1294 		spa_strfree(spa->spa_comment);
1295 		spa->spa_comment = NULL;
1296 	}
1297 
1298 	spa_config_exit(spa, SCL_ALL, FTAG);
1299 }
1300 
1301 /*
1302  * Load (or re-load) the current list of vdevs describing the active spares for
1303  * this pool.  When this is called, we have some form of basic information in
1304  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1305  * then re-generate a more complete list including status information.
1306  */
1307 static void
1308 spa_load_spares(spa_t *spa)
1309 {
1310 	nvlist_t **spares;
1311 	uint_t nspares;
1312 	int i;
1313 	vdev_t *vd, *tvd;
1314 
1315 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1316 
1317 	/*
1318 	 * First, close and free any existing spare vdevs.
1319 	 */
1320 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1321 		vd = spa->spa_spares.sav_vdevs[i];
1322 
1323 		/* Undo the call to spa_activate() below */
1324 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1325 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1326 			spa_spare_remove(tvd);
1327 		vdev_close(vd);
1328 		vdev_free(vd);
1329 	}
1330 
1331 	if (spa->spa_spares.sav_vdevs)
1332 		kmem_free(spa->spa_spares.sav_vdevs,
1333 		    spa->spa_spares.sav_count * sizeof (void *));
1334 
1335 	if (spa->spa_spares.sav_config == NULL)
1336 		nspares = 0;
1337 	else
1338 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1339 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1340 
1341 	spa->spa_spares.sav_count = (int)nspares;
1342 	spa->spa_spares.sav_vdevs = NULL;
1343 
1344 	if (nspares == 0)
1345 		return;
1346 
1347 	/*
1348 	 * Construct the array of vdevs, opening them to get status in the
1349 	 * process.   For each spare, there is potentially two different vdev_t
1350 	 * structures associated with it: one in the list of spares (used only
1351 	 * for basic validation purposes) and one in the active vdev
1352 	 * configuration (if it's spared in).  During this phase we open and
1353 	 * validate each vdev on the spare list.  If the vdev also exists in the
1354 	 * active configuration, then we also mark this vdev as an active spare.
1355 	 */
1356 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1357 	    KM_SLEEP);
1358 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1359 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1360 		    VDEV_ALLOC_SPARE) == 0);
1361 		ASSERT(vd != NULL);
1362 
1363 		spa->spa_spares.sav_vdevs[i] = vd;
1364 
1365 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1366 		    B_FALSE)) != NULL) {
1367 			if (!tvd->vdev_isspare)
1368 				spa_spare_add(tvd);
1369 
1370 			/*
1371 			 * We only mark the spare active if we were successfully
1372 			 * able to load the vdev.  Otherwise, importing a pool
1373 			 * with a bad active spare would result in strange
1374 			 * behavior, because multiple pool would think the spare
1375 			 * is actively in use.
1376 			 *
1377 			 * There is a vulnerability here to an equally bizarre
1378 			 * circumstance, where a dead active spare is later
1379 			 * brought back to life (onlined or otherwise).  Given
1380 			 * the rarity of this scenario, and the extra complexity
1381 			 * it adds, we ignore the possibility.
1382 			 */
1383 			if (!vdev_is_dead(tvd))
1384 				spa_spare_activate(tvd);
1385 		}
1386 
1387 		vd->vdev_top = vd;
1388 		vd->vdev_aux = &spa->spa_spares;
1389 
1390 		if (vdev_open(vd) != 0)
1391 			continue;
1392 
1393 		if (vdev_validate_aux(vd) == 0)
1394 			spa_spare_add(vd);
1395 	}
1396 
1397 	/*
1398 	 * Recompute the stashed list of spares, with status information
1399 	 * this time.
1400 	 */
1401 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1402 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1403 
1404 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1405 	    KM_SLEEP);
1406 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1407 		spares[i] = vdev_config_generate(spa,
1408 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1409 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1410 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1411 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1412 		nvlist_free(spares[i]);
1413 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1414 }
1415 
1416 /*
1417  * Load (or re-load) the current list of vdevs describing the active l2cache for
1418  * this pool.  When this is called, we have some form of basic information in
1419  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1420  * then re-generate a more complete list including status information.
1421  * Devices which are already active have their details maintained, and are
1422  * not re-opened.
1423  */
1424 static void
1425 spa_load_l2cache(spa_t *spa)
1426 {
1427 	nvlist_t **l2cache;
1428 	uint_t nl2cache;
1429 	int i, j, oldnvdevs;
1430 	uint64_t guid;
1431 	vdev_t *vd, **oldvdevs, **newvdevs;
1432 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1433 
1434 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1435 
1436 	if (sav->sav_config != NULL) {
1437 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1438 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1439 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1440 	} else {
1441 		nl2cache = 0;
1442 		newvdevs = NULL;
1443 	}
1444 
1445 	oldvdevs = sav->sav_vdevs;
1446 	oldnvdevs = sav->sav_count;
1447 	sav->sav_vdevs = NULL;
1448 	sav->sav_count = 0;
1449 
1450 	/*
1451 	 * Process new nvlist of vdevs.
1452 	 */
1453 	for (i = 0; i < nl2cache; i++) {
1454 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1455 		    &guid) == 0);
1456 
1457 		newvdevs[i] = NULL;
1458 		for (j = 0; j < oldnvdevs; j++) {
1459 			vd = oldvdevs[j];
1460 			if (vd != NULL && guid == vd->vdev_guid) {
1461 				/*
1462 				 * Retain previous vdev for add/remove ops.
1463 				 */
1464 				newvdevs[i] = vd;
1465 				oldvdevs[j] = NULL;
1466 				break;
1467 			}
1468 		}
1469 
1470 		if (newvdevs[i] == NULL) {
1471 			/*
1472 			 * Create new vdev
1473 			 */
1474 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1475 			    VDEV_ALLOC_L2CACHE) == 0);
1476 			ASSERT(vd != NULL);
1477 			newvdevs[i] = vd;
1478 
1479 			/*
1480 			 * Commit this vdev as an l2cache device,
1481 			 * even if it fails to open.
1482 			 */
1483 			spa_l2cache_add(vd);
1484 
1485 			vd->vdev_top = vd;
1486 			vd->vdev_aux = sav;
1487 
1488 			spa_l2cache_activate(vd);
1489 
1490 			if (vdev_open(vd) != 0)
1491 				continue;
1492 
1493 			(void) vdev_validate_aux(vd);
1494 
1495 			if (!vdev_is_dead(vd))
1496 				l2arc_add_vdev(spa, vd);
1497 		}
1498 	}
1499 
1500 	/*
1501 	 * Purge vdevs that were dropped
1502 	 */
1503 	for (i = 0; i < oldnvdevs; i++) {
1504 		uint64_t pool;
1505 
1506 		vd = oldvdevs[i];
1507 		if (vd != NULL) {
1508 			ASSERT(vd->vdev_isl2cache);
1509 
1510 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1511 			    pool != 0ULL && l2arc_vdev_present(vd))
1512 				l2arc_remove_vdev(vd);
1513 			vdev_clear_stats(vd);
1514 			vdev_free(vd);
1515 		}
1516 	}
1517 
1518 	if (oldvdevs)
1519 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1520 
1521 	if (sav->sav_config == NULL)
1522 		goto out;
1523 
1524 	sav->sav_vdevs = newvdevs;
1525 	sav->sav_count = (int)nl2cache;
1526 
1527 	/*
1528 	 * Recompute the stashed list of l2cache devices, with status
1529 	 * information this time.
1530 	 */
1531 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1532 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1533 
1534 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1535 	for (i = 0; i < sav->sav_count; i++)
1536 		l2cache[i] = vdev_config_generate(spa,
1537 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1538 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1539 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1540 out:
1541 	for (i = 0; i < sav->sav_count; i++)
1542 		nvlist_free(l2cache[i]);
1543 	if (sav->sav_count)
1544 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1545 }
1546 
1547 static int
1548 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1549 {
1550 	dmu_buf_t *db;
1551 	char *packed = NULL;
1552 	size_t nvsize = 0;
1553 	int error;
1554 	*value = NULL;
1555 
1556 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1557 	nvsize = *(uint64_t *)db->db_data;
1558 	dmu_buf_rele(db, FTAG);
1559 
1560 	packed = kmem_alloc(nvsize, KM_SLEEP);
1561 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1562 	    DMU_READ_PREFETCH);
1563 	if (error == 0)
1564 		error = nvlist_unpack(packed, nvsize, value, 0);
1565 	kmem_free(packed, nvsize);
1566 
1567 	return (error);
1568 }
1569 
1570 /*
1571  * Checks to see if the given vdev could not be opened, in which case we post a
1572  * sysevent to notify the autoreplace code that the device has been removed.
1573  */
1574 static void
1575 spa_check_removed(vdev_t *vd)
1576 {
1577 	for (int c = 0; c < vd->vdev_children; c++)
1578 		spa_check_removed(vd->vdev_child[c]);
1579 
1580 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1581 	    !vd->vdev_ishole) {
1582 		zfs_post_autoreplace(vd->vdev_spa, vd);
1583 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1584 	}
1585 }
1586 
1587 /*
1588  * Validate the current config against the MOS config
1589  */
1590 static boolean_t
1591 spa_config_valid(spa_t *spa, nvlist_t *config)
1592 {
1593 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1594 	nvlist_t *nv;
1595 
1596 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1597 
1598 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1599 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1600 
1601 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1602 
1603 	/*
1604 	 * If we're doing a normal import, then build up any additional
1605 	 * diagnostic information about missing devices in this config.
1606 	 * We'll pass this up to the user for further processing.
1607 	 */
1608 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1609 		nvlist_t **child, *nv;
1610 		uint64_t idx = 0;
1611 
1612 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1613 		    KM_SLEEP);
1614 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1615 
1616 		for (int c = 0; c < rvd->vdev_children; c++) {
1617 			vdev_t *tvd = rvd->vdev_child[c];
1618 			vdev_t *mtvd  = mrvd->vdev_child[c];
1619 
1620 			if (tvd->vdev_ops == &vdev_missing_ops &&
1621 			    mtvd->vdev_ops != &vdev_missing_ops &&
1622 			    mtvd->vdev_islog)
1623 				child[idx++] = vdev_config_generate(spa, mtvd,
1624 				    B_FALSE, 0);
1625 		}
1626 
1627 		if (idx) {
1628 			VERIFY(nvlist_add_nvlist_array(nv,
1629 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1630 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1631 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1632 
1633 			for (int i = 0; i < idx; i++)
1634 				nvlist_free(child[i]);
1635 		}
1636 		nvlist_free(nv);
1637 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1638 	}
1639 
1640 	/*
1641 	 * Compare the root vdev tree with the information we have
1642 	 * from the MOS config (mrvd). Check each top-level vdev
1643 	 * with the corresponding MOS config top-level (mtvd).
1644 	 */
1645 	for (int c = 0; c < rvd->vdev_children; c++) {
1646 		vdev_t *tvd = rvd->vdev_child[c];
1647 		vdev_t *mtvd  = mrvd->vdev_child[c];
1648 
1649 		/*
1650 		 * Resolve any "missing" vdevs in the current configuration.
1651 		 * If we find that the MOS config has more accurate information
1652 		 * about the top-level vdev then use that vdev instead.
1653 		 */
1654 		if (tvd->vdev_ops == &vdev_missing_ops &&
1655 		    mtvd->vdev_ops != &vdev_missing_ops) {
1656 
1657 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1658 				continue;
1659 
1660 			/*
1661 			 * Device specific actions.
1662 			 */
1663 			if (mtvd->vdev_islog) {
1664 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1665 			} else {
1666 				/*
1667 				 * XXX - once we have 'readonly' pool
1668 				 * support we should be able to handle
1669 				 * missing data devices by transitioning
1670 				 * the pool to readonly.
1671 				 */
1672 				continue;
1673 			}
1674 
1675 			/*
1676 			 * Swap the missing vdev with the data we were
1677 			 * able to obtain from the MOS config.
1678 			 */
1679 			vdev_remove_child(rvd, tvd);
1680 			vdev_remove_child(mrvd, mtvd);
1681 
1682 			vdev_add_child(rvd, mtvd);
1683 			vdev_add_child(mrvd, tvd);
1684 
1685 			spa_config_exit(spa, SCL_ALL, FTAG);
1686 			vdev_load(mtvd);
1687 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1688 
1689 			vdev_reopen(rvd);
1690 		} else if (mtvd->vdev_islog) {
1691 			/*
1692 			 * Load the slog device's state from the MOS config
1693 			 * since it's possible that the label does not
1694 			 * contain the most up-to-date information.
1695 			 */
1696 			vdev_load_log_state(tvd, mtvd);
1697 			vdev_reopen(tvd);
1698 		}
1699 	}
1700 	vdev_free(mrvd);
1701 	spa_config_exit(spa, SCL_ALL, FTAG);
1702 
1703 	/*
1704 	 * Ensure we were able to validate the config.
1705 	 */
1706 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1707 }
1708 
1709 /*
1710  * Check for missing log devices
1711  */
1712 static boolean_t
1713 spa_check_logs(spa_t *spa)
1714 {
1715 	boolean_t rv = B_FALSE;
1716 
1717 	switch (spa->spa_log_state) {
1718 	case SPA_LOG_MISSING:
1719 		/* need to recheck in case slog has been restored */
1720 	case SPA_LOG_UNKNOWN:
1721 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1722 		    NULL, DS_FIND_CHILDREN) != 0);
1723 		if (rv)
1724 			spa_set_log_state(spa, SPA_LOG_MISSING);
1725 		break;
1726 	}
1727 	return (rv);
1728 }
1729 
1730 static boolean_t
1731 spa_passivate_log(spa_t *spa)
1732 {
1733 	vdev_t *rvd = spa->spa_root_vdev;
1734 	boolean_t slog_found = B_FALSE;
1735 
1736 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1737 
1738 	if (!spa_has_slogs(spa))
1739 		return (B_FALSE);
1740 
1741 	for (int c = 0; c < rvd->vdev_children; c++) {
1742 		vdev_t *tvd = rvd->vdev_child[c];
1743 		metaslab_group_t *mg = tvd->vdev_mg;
1744 
1745 		if (tvd->vdev_islog) {
1746 			metaslab_group_passivate(mg);
1747 			slog_found = B_TRUE;
1748 		}
1749 	}
1750 
1751 	return (slog_found);
1752 }
1753 
1754 static void
1755 spa_activate_log(spa_t *spa)
1756 {
1757 	vdev_t *rvd = spa->spa_root_vdev;
1758 
1759 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1760 
1761 	for (int c = 0; c < rvd->vdev_children; c++) {
1762 		vdev_t *tvd = rvd->vdev_child[c];
1763 		metaslab_group_t *mg = tvd->vdev_mg;
1764 
1765 		if (tvd->vdev_islog)
1766 			metaslab_group_activate(mg);
1767 	}
1768 }
1769 
1770 int
1771 spa_offline_log(spa_t *spa)
1772 {
1773 	int error;
1774 
1775 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1776 	    NULL, DS_FIND_CHILDREN);
1777 	if (error == 0) {
1778 		/*
1779 		 * We successfully offlined the log device, sync out the
1780 		 * current txg so that the "stubby" block can be removed
1781 		 * by zil_sync().
1782 		 */
1783 		txg_wait_synced(spa->spa_dsl_pool, 0);
1784 	}
1785 	return (error);
1786 }
1787 
1788 static void
1789 spa_aux_check_removed(spa_aux_vdev_t *sav)
1790 {
1791 	for (int i = 0; i < sav->sav_count; i++)
1792 		spa_check_removed(sav->sav_vdevs[i]);
1793 }
1794 
1795 void
1796 spa_claim_notify(zio_t *zio)
1797 {
1798 	spa_t *spa = zio->io_spa;
1799 
1800 	if (zio->io_error)
1801 		return;
1802 
1803 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1804 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1805 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1806 	mutex_exit(&spa->spa_props_lock);
1807 }
1808 
1809 typedef struct spa_load_error {
1810 	uint64_t	sle_meta_count;
1811 	uint64_t	sle_data_count;
1812 } spa_load_error_t;
1813 
1814 static void
1815 spa_load_verify_done(zio_t *zio)
1816 {
1817 	blkptr_t *bp = zio->io_bp;
1818 	spa_load_error_t *sle = zio->io_private;
1819 	dmu_object_type_t type = BP_GET_TYPE(bp);
1820 	int error = zio->io_error;
1821 	spa_t *spa = zio->io_spa;
1822 
1823 	if (error) {
1824 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1825 		    type != DMU_OT_INTENT_LOG)
1826 			atomic_add_64(&sle->sle_meta_count, 1);
1827 		else
1828 			atomic_add_64(&sle->sle_data_count, 1);
1829 	}
1830 	zio_data_buf_free(zio->io_data, zio->io_size);
1831 
1832 	mutex_enter(&spa->spa_scrub_lock);
1833 	spa->spa_scrub_inflight--;
1834 	cv_broadcast(&spa->spa_scrub_io_cv);
1835 	mutex_exit(&spa->spa_scrub_lock);
1836 }
1837 
1838 /*
1839  * Maximum number of concurrent scrub i/os to create while verifying
1840  * a pool while importing it.
1841  */
1842 int spa_load_verify_maxinflight = 10000;
1843 boolean_t spa_load_verify_metadata = B_TRUE;
1844 boolean_t spa_load_verify_data = B_TRUE;
1845 
1846 /*ARGSUSED*/
1847 static int
1848 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1849     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1850 {
1851 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1852 		return (0);
1853 	/*
1854 	 * Note: normally this routine will not be called if
1855 	 * spa_load_verify_metadata is not set.  However, it may be useful
1856 	 * to manually set the flag after the traversal has begun.
1857 	 */
1858 	if (!spa_load_verify_metadata)
1859 		return (0);
1860 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1861 		return (0);
1862 
1863 	zio_t *rio = arg;
1864 	size_t size = BP_GET_PSIZE(bp);
1865 	void *data = zio_data_buf_alloc(size);
1866 
1867 	mutex_enter(&spa->spa_scrub_lock);
1868 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1869 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1870 	spa->spa_scrub_inflight++;
1871 	mutex_exit(&spa->spa_scrub_lock);
1872 
1873 	zio_nowait(zio_read(rio, spa, bp, data, size,
1874 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1875 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1876 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1877 	return (0);
1878 }
1879 
1880 static int
1881 spa_load_verify(spa_t *spa)
1882 {
1883 	zio_t *rio;
1884 	spa_load_error_t sle = { 0 };
1885 	zpool_rewind_policy_t policy;
1886 	boolean_t verify_ok = B_FALSE;
1887 	int error = 0;
1888 
1889 	zpool_get_rewind_policy(spa->spa_config, &policy);
1890 
1891 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1892 		return (0);
1893 
1894 	rio = zio_root(spa, NULL, &sle,
1895 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1896 
1897 	if (spa_load_verify_metadata) {
1898 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1899 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1900 		    spa_load_verify_cb, rio);
1901 	}
1902 
1903 	(void) zio_wait(rio);
1904 
1905 	spa->spa_load_meta_errors = sle.sle_meta_count;
1906 	spa->spa_load_data_errors = sle.sle_data_count;
1907 
1908 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1909 	    sle.sle_data_count <= policy.zrp_maxdata) {
1910 		int64_t loss = 0;
1911 
1912 		verify_ok = B_TRUE;
1913 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1914 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1915 
1916 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1917 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1918 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1919 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1920 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1921 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1922 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1923 	} else {
1924 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1925 	}
1926 
1927 	if (error) {
1928 		if (error != ENXIO && error != EIO)
1929 			error = SET_ERROR(EIO);
1930 		return (error);
1931 	}
1932 
1933 	return (verify_ok ? 0 : EIO);
1934 }
1935 
1936 /*
1937  * Find a value in the pool props object.
1938  */
1939 static void
1940 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1941 {
1942 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1943 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1944 }
1945 
1946 /*
1947  * Find a value in the pool directory object.
1948  */
1949 static int
1950 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1951 {
1952 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1953 	    name, sizeof (uint64_t), 1, val));
1954 }
1955 
1956 static int
1957 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1958 {
1959 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1960 	return (err);
1961 }
1962 
1963 /*
1964  * Fix up config after a partly-completed split.  This is done with the
1965  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1966  * pool have that entry in their config, but only the splitting one contains
1967  * a list of all the guids of the vdevs that are being split off.
1968  *
1969  * This function determines what to do with that list: either rejoin
1970  * all the disks to the pool, or complete the splitting process.  To attempt
1971  * the rejoin, each disk that is offlined is marked online again, and
1972  * we do a reopen() call.  If the vdev label for every disk that was
1973  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1974  * then we call vdev_split() on each disk, and complete the split.
1975  *
1976  * Otherwise we leave the config alone, with all the vdevs in place in
1977  * the original pool.
1978  */
1979 static void
1980 spa_try_repair(spa_t *spa, nvlist_t *config)
1981 {
1982 	uint_t extracted;
1983 	uint64_t *glist;
1984 	uint_t i, gcount;
1985 	nvlist_t *nvl;
1986 	vdev_t **vd;
1987 	boolean_t attempt_reopen;
1988 
1989 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1990 		return;
1991 
1992 	/* check that the config is complete */
1993 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1994 	    &glist, &gcount) != 0)
1995 		return;
1996 
1997 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1998 
1999 	/* attempt to online all the vdevs & validate */
2000 	attempt_reopen = B_TRUE;
2001 	for (i = 0; i < gcount; i++) {
2002 		if (glist[i] == 0)	/* vdev is hole */
2003 			continue;
2004 
2005 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2006 		if (vd[i] == NULL) {
2007 			/*
2008 			 * Don't bother attempting to reopen the disks;
2009 			 * just do the split.
2010 			 */
2011 			attempt_reopen = B_FALSE;
2012 		} else {
2013 			/* attempt to re-online it */
2014 			vd[i]->vdev_offline = B_FALSE;
2015 		}
2016 	}
2017 
2018 	if (attempt_reopen) {
2019 		vdev_reopen(spa->spa_root_vdev);
2020 
2021 		/* check each device to see what state it's in */
2022 		for (extracted = 0, i = 0; i < gcount; i++) {
2023 			if (vd[i] != NULL &&
2024 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2025 				break;
2026 			++extracted;
2027 		}
2028 	}
2029 
2030 	/*
2031 	 * If every disk has been moved to the new pool, or if we never
2032 	 * even attempted to look at them, then we split them off for
2033 	 * good.
2034 	 */
2035 	if (!attempt_reopen || gcount == extracted) {
2036 		for (i = 0; i < gcount; i++)
2037 			if (vd[i] != NULL)
2038 				vdev_split(vd[i]);
2039 		vdev_reopen(spa->spa_root_vdev);
2040 	}
2041 
2042 	kmem_free(vd, gcount * sizeof (vdev_t *));
2043 }
2044 
2045 static int
2046 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2047     boolean_t mosconfig)
2048 {
2049 	nvlist_t *config = spa->spa_config;
2050 	char *ereport = FM_EREPORT_ZFS_POOL;
2051 	char *comment;
2052 	int error;
2053 	uint64_t pool_guid;
2054 	nvlist_t *nvl;
2055 
2056 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2057 		return (SET_ERROR(EINVAL));
2058 
2059 	ASSERT(spa->spa_comment == NULL);
2060 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2061 		spa->spa_comment = spa_strdup(comment);
2062 
2063 	/*
2064 	 * Versioning wasn't explicitly added to the label until later, so if
2065 	 * it's not present treat it as the initial version.
2066 	 */
2067 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2068 	    &spa->spa_ubsync.ub_version) != 0)
2069 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2070 
2071 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2072 	    &spa->spa_config_txg);
2073 
2074 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2075 	    spa_guid_exists(pool_guid, 0)) {
2076 		error = SET_ERROR(EEXIST);
2077 	} else {
2078 		spa->spa_config_guid = pool_guid;
2079 
2080 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2081 		    &nvl) == 0) {
2082 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2083 			    KM_SLEEP) == 0);
2084 		}
2085 
2086 		nvlist_free(spa->spa_load_info);
2087 		spa->spa_load_info = fnvlist_alloc();
2088 
2089 		gethrestime(&spa->spa_loaded_ts);
2090 		error = spa_load_impl(spa, pool_guid, config, state, type,
2091 		    mosconfig, &ereport);
2092 	}
2093 
2094 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2095 	if (error) {
2096 		if (error != EEXIST) {
2097 			spa->spa_loaded_ts.tv_sec = 0;
2098 			spa->spa_loaded_ts.tv_nsec = 0;
2099 		}
2100 		if (error != EBADF) {
2101 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2102 		}
2103 	}
2104 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2105 	spa->spa_ena = 0;
2106 
2107 	return (error);
2108 }
2109 
2110 /*
2111  * Load an existing storage pool, using the pool's builtin spa_config as a
2112  * source of configuration information.
2113  */
2114 static int
2115 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2116     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2117     char **ereport)
2118 {
2119 	int error = 0;
2120 	nvlist_t *nvroot = NULL;
2121 	nvlist_t *label;
2122 	vdev_t *rvd;
2123 	uberblock_t *ub = &spa->spa_uberblock;
2124 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2125 	int orig_mode = spa->spa_mode;
2126 	int parse;
2127 	uint64_t obj;
2128 	boolean_t missing_feat_write = B_FALSE;
2129 
2130 	/*
2131 	 * If this is an untrusted config, access the pool in read-only mode.
2132 	 * This prevents things like resilvering recently removed devices.
2133 	 */
2134 	if (!mosconfig)
2135 		spa->spa_mode = FREAD;
2136 
2137 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2138 
2139 	spa->spa_load_state = state;
2140 
2141 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2142 		return (SET_ERROR(EINVAL));
2143 
2144 	parse = (type == SPA_IMPORT_EXISTING ?
2145 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2146 
2147 	/*
2148 	 * Create "The Godfather" zio to hold all async IOs
2149 	 */
2150 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2151 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2152 
2153 	/*
2154 	 * Parse the configuration into a vdev tree.  We explicitly set the
2155 	 * value that will be returned by spa_version() since parsing the
2156 	 * configuration requires knowing the version number.
2157 	 */
2158 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2159 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2160 	spa_config_exit(spa, SCL_ALL, FTAG);
2161 
2162 	if (error != 0)
2163 		return (error);
2164 
2165 	ASSERT(spa->spa_root_vdev == rvd);
2166 
2167 	if (type != SPA_IMPORT_ASSEMBLE) {
2168 		ASSERT(spa_guid(spa) == pool_guid);
2169 	}
2170 
2171 	/*
2172 	 * Try to open all vdevs, loading each label in the process.
2173 	 */
2174 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2175 	error = vdev_open(rvd);
2176 	spa_config_exit(spa, SCL_ALL, FTAG);
2177 	if (error != 0)
2178 		return (error);
2179 
2180 	/*
2181 	 * We need to validate the vdev labels against the configuration that
2182 	 * we have in hand, which is dependent on the setting of mosconfig. If
2183 	 * mosconfig is true then we're validating the vdev labels based on
2184 	 * that config.  Otherwise, we're validating against the cached config
2185 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2186 	 * later we will recursively call spa_load() and validate against
2187 	 * the vdev config.
2188 	 *
2189 	 * If we're assembling a new pool that's been split off from an
2190 	 * existing pool, the labels haven't yet been updated so we skip
2191 	 * validation for now.
2192 	 */
2193 	if (type != SPA_IMPORT_ASSEMBLE) {
2194 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195 		error = vdev_validate(rvd, mosconfig);
2196 		spa_config_exit(spa, SCL_ALL, FTAG);
2197 
2198 		if (error != 0)
2199 			return (error);
2200 
2201 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2202 			return (SET_ERROR(ENXIO));
2203 	}
2204 
2205 	/*
2206 	 * Find the best uberblock.
2207 	 */
2208 	vdev_uberblock_load(rvd, ub, &label);
2209 
2210 	/*
2211 	 * If we weren't able to find a single valid uberblock, return failure.
2212 	 */
2213 	if (ub->ub_txg == 0) {
2214 		nvlist_free(label);
2215 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2216 	}
2217 
2218 	/*
2219 	 * If the pool has an unsupported version we can't open it.
2220 	 */
2221 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2222 		nvlist_free(label);
2223 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2224 	}
2225 
2226 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2227 		nvlist_t *features;
2228 
2229 		/*
2230 		 * If we weren't able to find what's necessary for reading the
2231 		 * MOS in the label, return failure.
2232 		 */
2233 		if (label == NULL || nvlist_lookup_nvlist(label,
2234 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2235 			nvlist_free(label);
2236 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2237 			    ENXIO));
2238 		}
2239 
2240 		/*
2241 		 * Update our in-core representation with the definitive values
2242 		 * from the label.
2243 		 */
2244 		nvlist_free(spa->spa_label_features);
2245 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2246 	}
2247 
2248 	nvlist_free(label);
2249 
2250 	/*
2251 	 * Look through entries in the label nvlist's features_for_read. If
2252 	 * there is a feature listed there which we don't understand then we
2253 	 * cannot open a pool.
2254 	 */
2255 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2256 		nvlist_t *unsup_feat;
2257 
2258 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2259 		    0);
2260 
2261 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2262 		    NULL); nvp != NULL;
2263 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2264 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2265 				VERIFY(nvlist_add_string(unsup_feat,
2266 				    nvpair_name(nvp), "") == 0);
2267 			}
2268 		}
2269 
2270 		if (!nvlist_empty(unsup_feat)) {
2271 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2272 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2273 			nvlist_free(unsup_feat);
2274 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2275 			    ENOTSUP));
2276 		}
2277 
2278 		nvlist_free(unsup_feat);
2279 	}
2280 
2281 	/*
2282 	 * If the vdev guid sum doesn't match the uberblock, we have an
2283 	 * incomplete configuration.  We first check to see if the pool
2284 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2285 	 * If it is, defer the vdev_guid_sum check till later so we
2286 	 * can handle missing vdevs.
2287 	 */
2288 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2289 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2290 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2291 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2292 
2293 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2294 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2295 		spa_try_repair(spa, config);
2296 		spa_config_exit(spa, SCL_ALL, FTAG);
2297 		nvlist_free(spa->spa_config_splitting);
2298 		spa->spa_config_splitting = NULL;
2299 	}
2300 
2301 	/*
2302 	 * Initialize internal SPA structures.
2303 	 */
2304 	spa->spa_state = POOL_STATE_ACTIVE;
2305 	spa->spa_ubsync = spa->spa_uberblock;
2306 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2307 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2308 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2309 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2310 	spa->spa_claim_max_txg = spa->spa_first_txg;
2311 	spa->spa_prev_software_version = ub->ub_software_version;
2312 
2313 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2314 	if (error)
2315 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2316 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2317 
2318 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2319 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2320 
2321 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2322 		boolean_t missing_feat_read = B_FALSE;
2323 		nvlist_t *unsup_feat, *enabled_feat;
2324 
2325 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2326 		    &spa->spa_feat_for_read_obj) != 0) {
2327 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2328 		}
2329 
2330 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2331 		    &spa->spa_feat_for_write_obj) != 0) {
2332 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2333 		}
2334 
2335 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2336 		    &spa->spa_feat_desc_obj) != 0) {
2337 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2338 		}
2339 
2340 		enabled_feat = fnvlist_alloc();
2341 		unsup_feat = fnvlist_alloc();
2342 
2343 		if (!spa_features_check(spa, B_FALSE,
2344 		    unsup_feat, enabled_feat))
2345 			missing_feat_read = B_TRUE;
2346 
2347 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2348 			if (!spa_features_check(spa, B_TRUE,
2349 			    unsup_feat, enabled_feat)) {
2350 				missing_feat_write = B_TRUE;
2351 			}
2352 		}
2353 
2354 		fnvlist_add_nvlist(spa->spa_load_info,
2355 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2356 
2357 		if (!nvlist_empty(unsup_feat)) {
2358 			fnvlist_add_nvlist(spa->spa_load_info,
2359 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2360 		}
2361 
2362 		fnvlist_free(enabled_feat);
2363 		fnvlist_free(unsup_feat);
2364 
2365 		if (!missing_feat_read) {
2366 			fnvlist_add_boolean(spa->spa_load_info,
2367 			    ZPOOL_CONFIG_CAN_RDONLY);
2368 		}
2369 
2370 		/*
2371 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2372 		 * twofold: to determine whether the pool is available for
2373 		 * import in read-write mode and (if it is not) whether the
2374 		 * pool is available for import in read-only mode. If the pool
2375 		 * is available for import in read-write mode, it is displayed
2376 		 * as available in userland; if it is not available for import
2377 		 * in read-only mode, it is displayed as unavailable in
2378 		 * userland. If the pool is available for import in read-only
2379 		 * mode but not read-write mode, it is displayed as unavailable
2380 		 * in userland with a special note that the pool is actually
2381 		 * available for open in read-only mode.
2382 		 *
2383 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2384 		 * missing a feature for write, we must first determine whether
2385 		 * the pool can be opened read-only before returning to
2386 		 * userland in order to know whether to display the
2387 		 * abovementioned note.
2388 		 */
2389 		if (missing_feat_read || (missing_feat_write &&
2390 		    spa_writeable(spa))) {
2391 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2392 			    ENOTSUP));
2393 		}
2394 
2395 		/*
2396 		 * Load refcounts for ZFS features from disk into an in-memory
2397 		 * cache during SPA initialization.
2398 		 */
2399 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2400 			uint64_t refcount;
2401 
2402 			error = feature_get_refcount_from_disk(spa,
2403 			    &spa_feature_table[i], &refcount);
2404 			if (error == 0) {
2405 				spa->spa_feat_refcount_cache[i] = refcount;
2406 			} else if (error == ENOTSUP) {
2407 				spa->spa_feat_refcount_cache[i] =
2408 				    SPA_FEATURE_DISABLED;
2409 			} else {
2410 				return (spa_vdev_err(rvd,
2411 				    VDEV_AUX_CORRUPT_DATA, EIO));
2412 			}
2413 		}
2414 	}
2415 
2416 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2417 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2418 		    &spa->spa_feat_enabled_txg_obj) != 0)
2419 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2420 	}
2421 
2422 	spa->spa_is_initializing = B_TRUE;
2423 	error = dsl_pool_open(spa->spa_dsl_pool);
2424 	spa->spa_is_initializing = B_FALSE;
2425 	if (error != 0)
2426 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427 
2428 	if (!mosconfig) {
2429 		uint64_t hostid;
2430 		nvlist_t *policy = NULL, *nvconfig;
2431 
2432 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2433 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2434 
2435 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2436 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2437 			char *hostname;
2438 			unsigned long myhostid = 0;
2439 
2440 			VERIFY(nvlist_lookup_string(nvconfig,
2441 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2442 
2443 #ifdef	_KERNEL
2444 			myhostid = zone_get_hostid(NULL);
2445 #else	/* _KERNEL */
2446 			/*
2447 			 * We're emulating the system's hostid in userland, so
2448 			 * we can't use zone_get_hostid().
2449 			 */
2450 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2451 #endif	/* _KERNEL */
2452 			if (hostid != 0 && myhostid != 0 &&
2453 			    hostid != myhostid) {
2454 				nvlist_free(nvconfig);
2455 				cmn_err(CE_WARN, "pool '%s' could not be "
2456 				    "loaded as it was last accessed by "
2457 				    "another system (host: %s hostid: 0x%lx). "
2458 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2459 				    spa_name(spa), hostname,
2460 				    (unsigned long)hostid);
2461 				return (SET_ERROR(EBADF));
2462 			}
2463 		}
2464 		if (nvlist_lookup_nvlist(spa->spa_config,
2465 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2466 			VERIFY(nvlist_add_nvlist(nvconfig,
2467 			    ZPOOL_REWIND_POLICY, policy) == 0);
2468 
2469 		spa_config_set(spa, nvconfig);
2470 		spa_unload(spa);
2471 		spa_deactivate(spa);
2472 		spa_activate(spa, orig_mode);
2473 
2474 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2475 	}
2476 
2477 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2478 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2479 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2480 	if (error != 0)
2481 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2482 
2483 	/*
2484 	 * Load the bit that tells us to use the new accounting function
2485 	 * (raid-z deflation).  If we have an older pool, this will not
2486 	 * be present.
2487 	 */
2488 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2489 	if (error != 0 && error != ENOENT)
2490 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491 
2492 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2493 	    &spa->spa_creation_version);
2494 	if (error != 0 && error != ENOENT)
2495 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 
2497 	/*
2498 	 * Load the persistent error log.  If we have an older pool, this will
2499 	 * not be present.
2500 	 */
2501 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2502 	if (error != 0 && error != ENOENT)
2503 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504 
2505 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2506 	    &spa->spa_errlog_scrub);
2507 	if (error != 0 && error != ENOENT)
2508 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2509 
2510 	/*
2511 	 * Load the history object.  If we have an older pool, this
2512 	 * will not be present.
2513 	 */
2514 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2515 	if (error != 0 && error != ENOENT)
2516 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517 
2518 	/*
2519 	 * If we're assembling the pool from the split-off vdevs of
2520 	 * an existing pool, we don't want to attach the spares & cache
2521 	 * devices.
2522 	 */
2523 
2524 	/*
2525 	 * Load any hot spares for this pool.
2526 	 */
2527 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2528 	if (error != 0 && error != ENOENT)
2529 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2531 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2532 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2533 		    &spa->spa_spares.sav_config) != 0)
2534 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535 
2536 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2537 		spa_load_spares(spa);
2538 		spa_config_exit(spa, SCL_ALL, FTAG);
2539 	} else if (error == 0) {
2540 		spa->spa_spares.sav_sync = B_TRUE;
2541 	}
2542 
2543 	/*
2544 	 * Load any level 2 ARC devices for this pool.
2545 	 */
2546 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2547 	    &spa->spa_l2cache.sav_object);
2548 	if (error != 0 && error != ENOENT)
2549 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2550 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2551 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2552 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2553 		    &spa->spa_l2cache.sav_config) != 0)
2554 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2555 
2556 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2557 		spa_load_l2cache(spa);
2558 		spa_config_exit(spa, SCL_ALL, FTAG);
2559 	} else if (error == 0) {
2560 		spa->spa_l2cache.sav_sync = B_TRUE;
2561 	}
2562 
2563 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2564 
2565 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2566 	if (error && error != ENOENT)
2567 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2568 
2569 	if (error == 0) {
2570 		uint64_t autoreplace;
2571 
2572 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2573 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2574 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2575 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2576 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2577 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2578 		    &spa->spa_dedup_ditto);
2579 
2580 		spa->spa_autoreplace = (autoreplace != 0);
2581 	}
2582 
2583 	/*
2584 	 * If the 'autoreplace' property is set, then post a resource notifying
2585 	 * the ZFS DE that it should not issue any faults for unopenable
2586 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2587 	 * unopenable vdevs so that the normal autoreplace handler can take
2588 	 * over.
2589 	 */
2590 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2591 		spa_check_removed(spa->spa_root_vdev);
2592 		/*
2593 		 * For the import case, this is done in spa_import(), because
2594 		 * at this point we're using the spare definitions from
2595 		 * the MOS config, not necessarily from the userland config.
2596 		 */
2597 		if (state != SPA_LOAD_IMPORT) {
2598 			spa_aux_check_removed(&spa->spa_spares);
2599 			spa_aux_check_removed(&spa->spa_l2cache);
2600 		}
2601 	}
2602 
2603 	/*
2604 	 * Load the vdev state for all toplevel vdevs.
2605 	 */
2606 	vdev_load(rvd);
2607 
2608 	/*
2609 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2610 	 */
2611 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2612 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2613 	spa_config_exit(spa, SCL_ALL, FTAG);
2614 
2615 	/*
2616 	 * Load the DDTs (dedup tables).
2617 	 */
2618 	error = ddt_load(spa);
2619 	if (error != 0)
2620 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2621 
2622 	spa_update_dspace(spa);
2623 
2624 	/*
2625 	 * Validate the config, using the MOS config to fill in any
2626 	 * information which might be missing.  If we fail to validate
2627 	 * the config then declare the pool unfit for use. If we're
2628 	 * assembling a pool from a split, the log is not transferred
2629 	 * over.
2630 	 */
2631 	if (type != SPA_IMPORT_ASSEMBLE) {
2632 		nvlist_t *nvconfig;
2633 
2634 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2635 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2636 
2637 		if (!spa_config_valid(spa, nvconfig)) {
2638 			nvlist_free(nvconfig);
2639 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2640 			    ENXIO));
2641 		}
2642 		nvlist_free(nvconfig);
2643 
2644 		/*
2645 		 * Now that we've validated the config, check the state of the
2646 		 * root vdev.  If it can't be opened, it indicates one or
2647 		 * more toplevel vdevs are faulted.
2648 		 */
2649 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2650 			return (SET_ERROR(ENXIO));
2651 
2652 		if (spa_check_logs(spa)) {
2653 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2654 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2655 		}
2656 	}
2657 
2658 	if (missing_feat_write) {
2659 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2660 
2661 		/*
2662 		 * At this point, we know that we can open the pool in
2663 		 * read-only mode but not read-write mode. We now have enough
2664 		 * information and can return to userland.
2665 		 */
2666 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2667 	}
2668 
2669 	/*
2670 	 * We've successfully opened the pool, verify that we're ready
2671 	 * to start pushing transactions.
2672 	 */
2673 	if (state != SPA_LOAD_TRYIMPORT) {
2674 		if (error = spa_load_verify(spa))
2675 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2676 			    error));
2677 	}
2678 
2679 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2680 	    spa->spa_load_max_txg == UINT64_MAX)) {
2681 		dmu_tx_t *tx;
2682 		int need_update = B_FALSE;
2683 
2684 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2685 
2686 		/*
2687 		 * Claim log blocks that haven't been committed yet.
2688 		 * This must all happen in a single txg.
2689 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2690 		 * invoked from zil_claim_log_block()'s i/o done callback.
2691 		 * Price of rollback is that we abandon the log.
2692 		 */
2693 		spa->spa_claiming = B_TRUE;
2694 
2695 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2696 		    spa_first_txg(spa));
2697 		(void) dmu_objset_find(spa_name(spa),
2698 		    zil_claim, tx, DS_FIND_CHILDREN);
2699 		dmu_tx_commit(tx);
2700 
2701 		spa->spa_claiming = B_FALSE;
2702 
2703 		spa_set_log_state(spa, SPA_LOG_GOOD);
2704 		spa->spa_sync_on = B_TRUE;
2705 		txg_sync_start(spa->spa_dsl_pool);
2706 
2707 		/*
2708 		 * Wait for all claims to sync.  We sync up to the highest
2709 		 * claimed log block birth time so that claimed log blocks
2710 		 * don't appear to be from the future.  spa_claim_max_txg
2711 		 * will have been set for us by either zil_check_log_chain()
2712 		 * (invoked from spa_check_logs()) or zil_claim() above.
2713 		 */
2714 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2715 
2716 		/*
2717 		 * If the config cache is stale, or we have uninitialized
2718 		 * metaslabs (see spa_vdev_add()), then update the config.
2719 		 *
2720 		 * If this is a verbatim import, trust the current
2721 		 * in-core spa_config and update the disk labels.
2722 		 */
2723 		if (config_cache_txg != spa->spa_config_txg ||
2724 		    state == SPA_LOAD_IMPORT ||
2725 		    state == SPA_LOAD_RECOVER ||
2726 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2727 			need_update = B_TRUE;
2728 
2729 		for (int c = 0; c < rvd->vdev_children; c++)
2730 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2731 				need_update = B_TRUE;
2732 
2733 		/*
2734 		 * Update the config cache asychronously in case we're the
2735 		 * root pool, in which case the config cache isn't writable yet.
2736 		 */
2737 		if (need_update)
2738 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2739 
2740 		/*
2741 		 * Check all DTLs to see if anything needs resilvering.
2742 		 */
2743 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2744 		    vdev_resilver_needed(rvd, NULL, NULL))
2745 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2746 
2747 		/*
2748 		 * Log the fact that we booted up (so that we can detect if
2749 		 * we rebooted in the middle of an operation).
2750 		 */
2751 		spa_history_log_version(spa, "open");
2752 
2753 		/*
2754 		 * Delete any inconsistent datasets.
2755 		 */
2756 		(void) dmu_objset_find(spa_name(spa),
2757 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2758 
2759 		/*
2760 		 * Clean up any stale temporary dataset userrefs.
2761 		 */
2762 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2763 	}
2764 
2765 	return (0);
2766 }
2767 
2768 static int
2769 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2770 {
2771 	int mode = spa->spa_mode;
2772 
2773 	spa_unload(spa);
2774 	spa_deactivate(spa);
2775 
2776 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2777 
2778 	spa_activate(spa, mode);
2779 	spa_async_suspend(spa);
2780 
2781 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2782 }
2783 
2784 /*
2785  * If spa_load() fails this function will try loading prior txg's. If
2786  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2787  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2788  * function will not rewind the pool and will return the same error as
2789  * spa_load().
2790  */
2791 static int
2792 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2793     uint64_t max_request, int rewind_flags)
2794 {
2795 	nvlist_t *loadinfo = NULL;
2796 	nvlist_t *config = NULL;
2797 	int load_error, rewind_error;
2798 	uint64_t safe_rewind_txg;
2799 	uint64_t min_txg;
2800 
2801 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2802 		spa->spa_load_max_txg = spa->spa_load_txg;
2803 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2804 	} else {
2805 		spa->spa_load_max_txg = max_request;
2806 		if (max_request != UINT64_MAX)
2807 			spa->spa_extreme_rewind = B_TRUE;
2808 	}
2809 
2810 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2811 	    mosconfig);
2812 	if (load_error == 0)
2813 		return (0);
2814 
2815 	if (spa->spa_root_vdev != NULL)
2816 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2817 
2818 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2819 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2820 
2821 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2822 		nvlist_free(config);
2823 		return (load_error);
2824 	}
2825 
2826 	if (state == SPA_LOAD_RECOVER) {
2827 		/* Price of rolling back is discarding txgs, including log */
2828 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2829 	} else {
2830 		/*
2831 		 * If we aren't rolling back save the load info from our first
2832 		 * import attempt so that we can restore it after attempting
2833 		 * to rewind.
2834 		 */
2835 		loadinfo = spa->spa_load_info;
2836 		spa->spa_load_info = fnvlist_alloc();
2837 	}
2838 
2839 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2840 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2841 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2842 	    TXG_INITIAL : safe_rewind_txg;
2843 
2844 	/*
2845 	 * Continue as long as we're finding errors, we're still within
2846 	 * the acceptable rewind range, and we're still finding uberblocks
2847 	 */
2848 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2849 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2850 		if (spa->spa_load_max_txg < safe_rewind_txg)
2851 			spa->spa_extreme_rewind = B_TRUE;
2852 		rewind_error = spa_load_retry(spa, state, mosconfig);
2853 	}
2854 
2855 	spa->spa_extreme_rewind = B_FALSE;
2856 	spa->spa_load_max_txg = UINT64_MAX;
2857 
2858 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2859 		spa_config_set(spa, config);
2860 
2861 	if (state == SPA_LOAD_RECOVER) {
2862 		ASSERT3P(loadinfo, ==, NULL);
2863 		return (rewind_error);
2864 	} else {
2865 		/* Store the rewind info as part of the initial load info */
2866 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2867 		    spa->spa_load_info);
2868 
2869 		/* Restore the initial load info */
2870 		fnvlist_free(spa->spa_load_info);
2871 		spa->spa_load_info = loadinfo;
2872 
2873 		return (load_error);
2874 	}
2875 }
2876 
2877 /*
2878  * Pool Open/Import
2879  *
2880  * The import case is identical to an open except that the configuration is sent
2881  * down from userland, instead of grabbed from the configuration cache.  For the
2882  * case of an open, the pool configuration will exist in the
2883  * POOL_STATE_UNINITIALIZED state.
2884  *
2885  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2886  * the same time open the pool, without having to keep around the spa_t in some
2887  * ambiguous state.
2888  */
2889 static int
2890 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2891     nvlist_t **config)
2892 {
2893 	spa_t *spa;
2894 	spa_load_state_t state = SPA_LOAD_OPEN;
2895 	int error;
2896 	int locked = B_FALSE;
2897 
2898 	*spapp = NULL;
2899 
2900 	/*
2901 	 * As disgusting as this is, we need to support recursive calls to this
2902 	 * function because dsl_dir_open() is called during spa_load(), and ends
2903 	 * up calling spa_open() again.  The real fix is to figure out how to
2904 	 * avoid dsl_dir_open() calling this in the first place.
2905 	 */
2906 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2907 		mutex_enter(&spa_namespace_lock);
2908 		locked = B_TRUE;
2909 	}
2910 
2911 	if ((spa = spa_lookup(pool)) == NULL) {
2912 		if (locked)
2913 			mutex_exit(&spa_namespace_lock);
2914 		return (SET_ERROR(ENOENT));
2915 	}
2916 
2917 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2918 		zpool_rewind_policy_t policy;
2919 
2920 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2921 		    &policy);
2922 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2923 			state = SPA_LOAD_RECOVER;
2924 
2925 		spa_activate(spa, spa_mode_global);
2926 
2927 		if (state != SPA_LOAD_RECOVER)
2928 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2929 
2930 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2931 		    policy.zrp_request);
2932 
2933 		if (error == EBADF) {
2934 			/*
2935 			 * If vdev_validate() returns failure (indicated by
2936 			 * EBADF), it indicates that one of the vdevs indicates
2937 			 * that the pool has been exported or destroyed.  If
2938 			 * this is the case, the config cache is out of sync and
2939 			 * we should remove the pool from the namespace.
2940 			 */
2941 			spa_unload(spa);
2942 			spa_deactivate(spa);
2943 			spa_config_sync(spa, B_TRUE, B_TRUE);
2944 			spa_remove(spa);
2945 			if (locked)
2946 				mutex_exit(&spa_namespace_lock);
2947 			return (SET_ERROR(ENOENT));
2948 		}
2949 
2950 		if (error) {
2951 			/*
2952 			 * We can't open the pool, but we still have useful
2953 			 * information: the state of each vdev after the
2954 			 * attempted vdev_open().  Return this to the user.
2955 			 */
2956 			if (config != NULL && spa->spa_config) {
2957 				VERIFY(nvlist_dup(spa->spa_config, config,
2958 				    KM_SLEEP) == 0);
2959 				VERIFY(nvlist_add_nvlist(*config,
2960 				    ZPOOL_CONFIG_LOAD_INFO,
2961 				    spa->spa_load_info) == 0);
2962 			}
2963 			spa_unload(spa);
2964 			spa_deactivate(spa);
2965 			spa->spa_last_open_failed = error;
2966 			if (locked)
2967 				mutex_exit(&spa_namespace_lock);
2968 			*spapp = NULL;
2969 			return (error);
2970 		}
2971 	}
2972 
2973 	spa_open_ref(spa, tag);
2974 
2975 	if (config != NULL)
2976 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2977 
2978 	/*
2979 	 * If we've recovered the pool, pass back any information we
2980 	 * gathered while doing the load.
2981 	 */
2982 	if (state == SPA_LOAD_RECOVER) {
2983 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2984 		    spa->spa_load_info) == 0);
2985 	}
2986 
2987 	if (locked) {
2988 		spa->spa_last_open_failed = 0;
2989 		spa->spa_last_ubsync_txg = 0;
2990 		spa->spa_load_txg = 0;
2991 		mutex_exit(&spa_namespace_lock);
2992 	}
2993 
2994 	*spapp = spa;
2995 
2996 	return (0);
2997 }
2998 
2999 int
3000 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3001     nvlist_t **config)
3002 {
3003 	return (spa_open_common(name, spapp, tag, policy, config));
3004 }
3005 
3006 int
3007 spa_open(const char *name, spa_t **spapp, void *tag)
3008 {
3009 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3010 }
3011 
3012 /*
3013  * Lookup the given spa_t, incrementing the inject count in the process,
3014  * preventing it from being exported or destroyed.
3015  */
3016 spa_t *
3017 spa_inject_addref(char *name)
3018 {
3019 	spa_t *spa;
3020 
3021 	mutex_enter(&spa_namespace_lock);
3022 	if ((spa = spa_lookup(name)) == NULL) {
3023 		mutex_exit(&spa_namespace_lock);
3024 		return (NULL);
3025 	}
3026 	spa->spa_inject_ref++;
3027 	mutex_exit(&spa_namespace_lock);
3028 
3029 	return (spa);
3030 }
3031 
3032 void
3033 spa_inject_delref(spa_t *spa)
3034 {
3035 	mutex_enter(&spa_namespace_lock);
3036 	spa->spa_inject_ref--;
3037 	mutex_exit(&spa_namespace_lock);
3038 }
3039 
3040 /*
3041  * Add spares device information to the nvlist.
3042  */
3043 static void
3044 spa_add_spares(spa_t *spa, nvlist_t *config)
3045 {
3046 	nvlist_t **spares;
3047 	uint_t i, nspares;
3048 	nvlist_t *nvroot;
3049 	uint64_t guid;
3050 	vdev_stat_t *vs;
3051 	uint_t vsc;
3052 	uint64_t pool;
3053 
3054 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3055 
3056 	if (spa->spa_spares.sav_count == 0)
3057 		return;
3058 
3059 	VERIFY(nvlist_lookup_nvlist(config,
3060 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3061 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3062 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3063 	if (nspares != 0) {
3064 		VERIFY(nvlist_add_nvlist_array(nvroot,
3065 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3066 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3067 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3068 
3069 		/*
3070 		 * Go through and find any spares which have since been
3071 		 * repurposed as an active spare.  If this is the case, update
3072 		 * their status appropriately.
3073 		 */
3074 		for (i = 0; i < nspares; i++) {
3075 			VERIFY(nvlist_lookup_uint64(spares[i],
3076 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3077 			if (spa_spare_exists(guid, &pool, NULL) &&
3078 			    pool != 0ULL) {
3079 				VERIFY(nvlist_lookup_uint64_array(
3080 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3081 				    (uint64_t **)&vs, &vsc) == 0);
3082 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3083 				vs->vs_aux = VDEV_AUX_SPARED;
3084 			}
3085 		}
3086 	}
3087 }
3088 
3089 /*
3090  * Add l2cache device information to the nvlist, including vdev stats.
3091  */
3092 static void
3093 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3094 {
3095 	nvlist_t **l2cache;
3096 	uint_t i, j, nl2cache;
3097 	nvlist_t *nvroot;
3098 	uint64_t guid;
3099 	vdev_t *vd;
3100 	vdev_stat_t *vs;
3101 	uint_t vsc;
3102 
3103 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3104 
3105 	if (spa->spa_l2cache.sav_count == 0)
3106 		return;
3107 
3108 	VERIFY(nvlist_lookup_nvlist(config,
3109 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3110 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3111 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3112 	if (nl2cache != 0) {
3113 		VERIFY(nvlist_add_nvlist_array(nvroot,
3114 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3115 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3116 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3117 
3118 		/*
3119 		 * Update level 2 cache device stats.
3120 		 */
3121 
3122 		for (i = 0; i < nl2cache; i++) {
3123 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3124 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3125 
3126 			vd = NULL;
3127 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3128 				if (guid ==
3129 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3130 					vd = spa->spa_l2cache.sav_vdevs[j];
3131 					break;
3132 				}
3133 			}
3134 			ASSERT(vd != NULL);
3135 
3136 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3137 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3138 			    == 0);
3139 			vdev_get_stats(vd, vs);
3140 		}
3141 	}
3142 }
3143 
3144 static void
3145 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3146 {
3147 	nvlist_t *features;
3148 	zap_cursor_t zc;
3149 	zap_attribute_t za;
3150 
3151 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3152 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3153 
3154 	if (spa->spa_feat_for_read_obj != 0) {
3155 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3156 		    spa->spa_feat_for_read_obj);
3157 		    zap_cursor_retrieve(&zc, &za) == 0;
3158 		    zap_cursor_advance(&zc)) {
3159 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3160 			    za.za_num_integers == 1);
3161 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3162 			    za.za_first_integer));
3163 		}
3164 		zap_cursor_fini(&zc);
3165 	}
3166 
3167 	if (spa->spa_feat_for_write_obj != 0) {
3168 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3169 		    spa->spa_feat_for_write_obj);
3170 		    zap_cursor_retrieve(&zc, &za) == 0;
3171 		    zap_cursor_advance(&zc)) {
3172 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3173 			    za.za_num_integers == 1);
3174 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3175 			    za.za_first_integer));
3176 		}
3177 		zap_cursor_fini(&zc);
3178 	}
3179 
3180 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3181 	    features) == 0);
3182 	nvlist_free(features);
3183 }
3184 
3185 int
3186 spa_get_stats(const char *name, nvlist_t **config,
3187     char *altroot, size_t buflen)
3188 {
3189 	int error;
3190 	spa_t *spa;
3191 
3192 	*config = NULL;
3193 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3194 
3195 	if (spa != NULL) {
3196 		/*
3197 		 * This still leaves a window of inconsistency where the spares
3198 		 * or l2cache devices could change and the config would be
3199 		 * self-inconsistent.
3200 		 */
3201 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3202 
3203 		if (*config != NULL) {
3204 			uint64_t loadtimes[2];
3205 
3206 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3207 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3208 			VERIFY(nvlist_add_uint64_array(*config,
3209 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3210 
3211 			VERIFY(nvlist_add_uint64(*config,
3212 			    ZPOOL_CONFIG_ERRCOUNT,
3213 			    spa_get_errlog_size(spa)) == 0);
3214 
3215 			if (spa_suspended(spa))
3216 				VERIFY(nvlist_add_uint64(*config,
3217 				    ZPOOL_CONFIG_SUSPENDED,
3218 				    spa->spa_failmode) == 0);
3219 
3220 			spa_add_spares(spa, *config);
3221 			spa_add_l2cache(spa, *config);
3222 			spa_add_feature_stats(spa, *config);
3223 		}
3224 	}
3225 
3226 	/*
3227 	 * We want to get the alternate root even for faulted pools, so we cheat
3228 	 * and call spa_lookup() directly.
3229 	 */
3230 	if (altroot) {
3231 		if (spa == NULL) {
3232 			mutex_enter(&spa_namespace_lock);
3233 			spa = spa_lookup(name);
3234 			if (spa)
3235 				spa_altroot(spa, altroot, buflen);
3236 			else
3237 				altroot[0] = '\0';
3238 			spa = NULL;
3239 			mutex_exit(&spa_namespace_lock);
3240 		} else {
3241 			spa_altroot(spa, altroot, buflen);
3242 		}
3243 	}
3244 
3245 	if (spa != NULL) {
3246 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3247 		spa_close(spa, FTAG);
3248 	}
3249 
3250 	return (error);
3251 }
3252 
3253 /*
3254  * Validate that the auxiliary device array is well formed.  We must have an
3255  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3256  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3257  * specified, as long as they are well-formed.
3258  */
3259 static int
3260 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3261     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3262     vdev_labeltype_t label)
3263 {
3264 	nvlist_t **dev;
3265 	uint_t i, ndev;
3266 	vdev_t *vd;
3267 	int error;
3268 
3269 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3270 
3271 	/*
3272 	 * It's acceptable to have no devs specified.
3273 	 */
3274 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3275 		return (0);
3276 
3277 	if (ndev == 0)
3278 		return (SET_ERROR(EINVAL));
3279 
3280 	/*
3281 	 * Make sure the pool is formatted with a version that supports this
3282 	 * device type.
3283 	 */
3284 	if (spa_version(spa) < version)
3285 		return (SET_ERROR(ENOTSUP));
3286 
3287 	/*
3288 	 * Set the pending device list so we correctly handle device in-use
3289 	 * checking.
3290 	 */
3291 	sav->sav_pending = dev;
3292 	sav->sav_npending = ndev;
3293 
3294 	for (i = 0; i < ndev; i++) {
3295 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3296 		    mode)) != 0)
3297 			goto out;
3298 
3299 		if (!vd->vdev_ops->vdev_op_leaf) {
3300 			vdev_free(vd);
3301 			error = SET_ERROR(EINVAL);
3302 			goto out;
3303 		}
3304 
3305 		/*
3306 		 * The L2ARC currently only supports disk devices in
3307 		 * kernel context.  For user-level testing, we allow it.
3308 		 */
3309 #ifdef _KERNEL
3310 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3311 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3312 			error = SET_ERROR(ENOTBLK);
3313 			vdev_free(vd);
3314 			goto out;
3315 		}
3316 #endif
3317 		vd->vdev_top = vd;
3318 
3319 		if ((error = vdev_open(vd)) == 0 &&
3320 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3321 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3322 			    vd->vdev_guid) == 0);
3323 		}
3324 
3325 		vdev_free(vd);
3326 
3327 		if (error &&
3328 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3329 			goto out;
3330 		else
3331 			error = 0;
3332 	}
3333 
3334 out:
3335 	sav->sav_pending = NULL;
3336 	sav->sav_npending = 0;
3337 	return (error);
3338 }
3339 
3340 static int
3341 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3342 {
3343 	int error;
3344 
3345 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3346 
3347 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3348 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3349 	    VDEV_LABEL_SPARE)) != 0) {
3350 		return (error);
3351 	}
3352 
3353 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3354 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3355 	    VDEV_LABEL_L2CACHE));
3356 }
3357 
3358 static void
3359 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3360     const char *config)
3361 {
3362 	int i;
3363 
3364 	if (sav->sav_config != NULL) {
3365 		nvlist_t **olddevs;
3366 		uint_t oldndevs;
3367 		nvlist_t **newdevs;
3368 
3369 		/*
3370 		 * Generate new dev list by concatentating with the
3371 		 * current dev list.
3372 		 */
3373 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3374 		    &olddevs, &oldndevs) == 0);
3375 
3376 		newdevs = kmem_alloc(sizeof (void *) *
3377 		    (ndevs + oldndevs), KM_SLEEP);
3378 		for (i = 0; i < oldndevs; i++)
3379 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3380 			    KM_SLEEP) == 0);
3381 		for (i = 0; i < ndevs; i++)
3382 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3383 			    KM_SLEEP) == 0);
3384 
3385 		VERIFY(nvlist_remove(sav->sav_config, config,
3386 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3387 
3388 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3389 		    config, newdevs, ndevs + oldndevs) == 0);
3390 		for (i = 0; i < oldndevs + ndevs; i++)
3391 			nvlist_free(newdevs[i]);
3392 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3393 	} else {
3394 		/*
3395 		 * Generate a new dev list.
3396 		 */
3397 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3398 		    KM_SLEEP) == 0);
3399 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3400 		    devs, ndevs) == 0);
3401 	}
3402 }
3403 
3404 /*
3405  * Stop and drop level 2 ARC devices
3406  */
3407 void
3408 spa_l2cache_drop(spa_t *spa)
3409 {
3410 	vdev_t *vd;
3411 	int i;
3412 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3413 
3414 	for (i = 0; i < sav->sav_count; i++) {
3415 		uint64_t pool;
3416 
3417 		vd = sav->sav_vdevs[i];
3418 		ASSERT(vd != NULL);
3419 
3420 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3421 		    pool != 0ULL && l2arc_vdev_present(vd))
3422 			l2arc_remove_vdev(vd);
3423 	}
3424 }
3425 
3426 /*
3427  * Pool Creation
3428  */
3429 int
3430 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3431     nvlist_t *zplprops)
3432 {
3433 	spa_t *spa;
3434 	char *altroot = NULL;
3435 	vdev_t *rvd;
3436 	dsl_pool_t *dp;
3437 	dmu_tx_t *tx;
3438 	int error = 0;
3439 	uint64_t txg = TXG_INITIAL;
3440 	nvlist_t **spares, **l2cache;
3441 	uint_t nspares, nl2cache;
3442 	uint64_t version, obj;
3443 	boolean_t has_features;
3444 
3445 	/*
3446 	 * If this pool already exists, return failure.
3447 	 */
3448 	mutex_enter(&spa_namespace_lock);
3449 	if (spa_lookup(pool) != NULL) {
3450 		mutex_exit(&spa_namespace_lock);
3451 		return (SET_ERROR(EEXIST));
3452 	}
3453 
3454 	/*
3455 	 * Allocate a new spa_t structure.
3456 	 */
3457 	(void) nvlist_lookup_string(props,
3458 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3459 	spa = spa_add(pool, NULL, altroot);
3460 	spa_activate(spa, spa_mode_global);
3461 
3462 	if (props && (error = spa_prop_validate(spa, props))) {
3463 		spa_deactivate(spa);
3464 		spa_remove(spa);
3465 		mutex_exit(&spa_namespace_lock);
3466 		return (error);
3467 	}
3468 
3469 	has_features = B_FALSE;
3470 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3471 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3472 		if (zpool_prop_feature(nvpair_name(elem)))
3473 			has_features = B_TRUE;
3474 	}
3475 
3476 	if (has_features || nvlist_lookup_uint64(props,
3477 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3478 		version = SPA_VERSION;
3479 	}
3480 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3481 
3482 	spa->spa_first_txg = txg;
3483 	spa->spa_uberblock.ub_txg = txg - 1;
3484 	spa->spa_uberblock.ub_version = version;
3485 	spa->spa_ubsync = spa->spa_uberblock;
3486 
3487 	/*
3488 	 * Create "The Godfather" zio to hold all async IOs
3489 	 */
3490 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3491 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3492 
3493 	/*
3494 	 * Create the root vdev.
3495 	 */
3496 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3497 
3498 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3499 
3500 	ASSERT(error != 0 || rvd != NULL);
3501 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3502 
3503 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3504 		error = SET_ERROR(EINVAL);
3505 
3506 	if (error == 0 &&
3507 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3508 	    (error = spa_validate_aux(spa, nvroot, txg,
3509 	    VDEV_ALLOC_ADD)) == 0) {
3510 		for (int c = 0; c < rvd->vdev_children; c++) {
3511 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3512 			vdev_expand(rvd->vdev_child[c], txg);
3513 		}
3514 	}
3515 
3516 	spa_config_exit(spa, SCL_ALL, FTAG);
3517 
3518 	if (error != 0) {
3519 		spa_unload(spa);
3520 		spa_deactivate(spa);
3521 		spa_remove(spa);
3522 		mutex_exit(&spa_namespace_lock);
3523 		return (error);
3524 	}
3525 
3526 	/*
3527 	 * Get the list of spares, if specified.
3528 	 */
3529 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3530 	    &spares, &nspares) == 0) {
3531 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3532 		    KM_SLEEP) == 0);
3533 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3534 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3535 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3536 		spa_load_spares(spa);
3537 		spa_config_exit(spa, SCL_ALL, FTAG);
3538 		spa->spa_spares.sav_sync = B_TRUE;
3539 	}
3540 
3541 	/*
3542 	 * Get the list of level 2 cache devices, if specified.
3543 	 */
3544 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3545 	    &l2cache, &nl2cache) == 0) {
3546 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3547 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3548 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3549 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3550 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3551 		spa_load_l2cache(spa);
3552 		spa_config_exit(spa, SCL_ALL, FTAG);
3553 		spa->spa_l2cache.sav_sync = B_TRUE;
3554 	}
3555 
3556 	spa->spa_is_initializing = B_TRUE;
3557 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3558 	spa->spa_meta_objset = dp->dp_meta_objset;
3559 	spa->spa_is_initializing = B_FALSE;
3560 
3561 	/*
3562 	 * Create DDTs (dedup tables).
3563 	 */
3564 	ddt_create(spa);
3565 
3566 	spa_update_dspace(spa);
3567 
3568 	tx = dmu_tx_create_assigned(dp, txg);
3569 
3570 	/*
3571 	 * Create the pool config object.
3572 	 */
3573 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3574 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3575 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3576 
3577 	if (zap_add(spa->spa_meta_objset,
3578 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3579 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3580 		cmn_err(CE_PANIC, "failed to add pool config");
3581 	}
3582 
3583 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3584 		spa_feature_create_zap_objects(spa, tx);
3585 
3586 	if (zap_add(spa->spa_meta_objset,
3587 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3588 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3589 		cmn_err(CE_PANIC, "failed to add pool version");
3590 	}
3591 
3592 	/* Newly created pools with the right version are always deflated. */
3593 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3594 		spa->spa_deflate = TRUE;
3595 		if (zap_add(spa->spa_meta_objset,
3596 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3597 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3598 			cmn_err(CE_PANIC, "failed to add deflate");
3599 		}
3600 	}
3601 
3602 	/*
3603 	 * Create the deferred-free bpobj.  Turn off compression
3604 	 * because sync-to-convergence takes longer if the blocksize
3605 	 * keeps changing.
3606 	 */
3607 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3608 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3609 	    ZIO_COMPRESS_OFF, tx);
3610 	if (zap_add(spa->spa_meta_objset,
3611 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3612 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3613 		cmn_err(CE_PANIC, "failed to add bpobj");
3614 	}
3615 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3616 	    spa->spa_meta_objset, obj));
3617 
3618 	/*
3619 	 * Create the pool's history object.
3620 	 */
3621 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3622 		spa_history_create_obj(spa, tx);
3623 
3624 	/*
3625 	 * Set pool properties.
3626 	 */
3627 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3628 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3629 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3630 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3631 
3632 	if (props != NULL) {
3633 		spa_configfile_set(spa, props, B_FALSE);
3634 		spa_sync_props(props, tx);
3635 	}
3636 
3637 	dmu_tx_commit(tx);
3638 
3639 	spa->spa_sync_on = B_TRUE;
3640 	txg_sync_start(spa->spa_dsl_pool);
3641 
3642 	/*
3643 	 * We explicitly wait for the first transaction to complete so that our
3644 	 * bean counters are appropriately updated.
3645 	 */
3646 	txg_wait_synced(spa->spa_dsl_pool, txg);
3647 
3648 	spa_config_sync(spa, B_FALSE, B_TRUE);
3649 
3650 	spa_history_log_version(spa, "create");
3651 
3652 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3653 
3654 	mutex_exit(&spa_namespace_lock);
3655 
3656 	return (0);
3657 }
3658 
3659 #ifdef _KERNEL
3660 /*
3661  * Get the root pool information from the root disk, then import the root pool
3662  * during the system boot up time.
3663  */
3664 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3665 
3666 static nvlist_t *
3667 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3668 {
3669 	nvlist_t *config;
3670 	nvlist_t *nvtop, *nvroot;
3671 	uint64_t pgid;
3672 
3673 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3674 		return (NULL);
3675 
3676 	/*
3677 	 * Add this top-level vdev to the child array.
3678 	 */
3679 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3680 	    &nvtop) == 0);
3681 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3682 	    &pgid) == 0);
3683 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3684 
3685 	/*
3686 	 * Put this pool's top-level vdevs into a root vdev.
3687 	 */
3688 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3689 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3690 	    VDEV_TYPE_ROOT) == 0);
3691 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3692 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3693 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3694 	    &nvtop, 1) == 0);
3695 
3696 	/*
3697 	 * Replace the existing vdev_tree with the new root vdev in
3698 	 * this pool's configuration (remove the old, add the new).
3699 	 */
3700 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3701 	nvlist_free(nvroot);
3702 	return (config);
3703 }
3704 
3705 /*
3706  * Walk the vdev tree and see if we can find a device with "better"
3707  * configuration. A configuration is "better" if the label on that
3708  * device has a more recent txg.
3709  */
3710 static void
3711 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3712 {
3713 	for (int c = 0; c < vd->vdev_children; c++)
3714 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3715 
3716 	if (vd->vdev_ops->vdev_op_leaf) {
3717 		nvlist_t *label;
3718 		uint64_t label_txg;
3719 
3720 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3721 		    &label) != 0)
3722 			return;
3723 
3724 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3725 		    &label_txg) == 0);
3726 
3727 		/*
3728 		 * Do we have a better boot device?
3729 		 */
3730 		if (label_txg > *txg) {
3731 			*txg = label_txg;
3732 			*avd = vd;
3733 		}
3734 		nvlist_free(label);
3735 	}
3736 }
3737 
3738 /*
3739  * Import a root pool.
3740  *
3741  * For x86. devpath_list will consist of devid and/or physpath name of
3742  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3743  * The GRUB "findroot" command will return the vdev we should boot.
3744  *
3745  * For Sparc, devpath_list consists the physpath name of the booting device
3746  * no matter the rootpool is a single device pool or a mirrored pool.
3747  * e.g.
3748  *	"/pci@1f,0/ide@d/disk@0,0:a"
3749  */
3750 int
3751 spa_import_rootpool(char *devpath, char *devid)
3752 {
3753 	spa_t *spa;
3754 	vdev_t *rvd, *bvd, *avd = NULL;
3755 	nvlist_t *config, *nvtop;
3756 	uint64_t guid, txg;
3757 	char *pname;
3758 	int error;
3759 
3760 	/*
3761 	 * Read the label from the boot device and generate a configuration.
3762 	 */
3763 	config = spa_generate_rootconf(devpath, devid, &guid);
3764 #if defined(_OBP) && defined(_KERNEL)
3765 	if (config == NULL) {
3766 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3767 			/* iscsi boot */
3768 			get_iscsi_bootpath_phy(devpath);
3769 			config = spa_generate_rootconf(devpath, devid, &guid);
3770 		}
3771 	}
3772 #endif
3773 	if (config == NULL) {
3774 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3775 		    devpath);
3776 		return (SET_ERROR(EIO));
3777 	}
3778 
3779 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3780 	    &pname) == 0);
3781 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3782 
3783 	mutex_enter(&spa_namespace_lock);
3784 	if ((spa = spa_lookup(pname)) != NULL) {
3785 		/*
3786 		 * Remove the existing root pool from the namespace so that we
3787 		 * can replace it with the correct config we just read in.
3788 		 */
3789 		spa_remove(spa);
3790 	}
3791 
3792 	spa = spa_add(pname, config, NULL);
3793 	spa->spa_is_root = B_TRUE;
3794 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3795 
3796 	/*
3797 	 * Build up a vdev tree based on the boot device's label config.
3798 	 */
3799 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3800 	    &nvtop) == 0);
3801 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3802 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3803 	    VDEV_ALLOC_ROOTPOOL);
3804 	spa_config_exit(spa, SCL_ALL, FTAG);
3805 	if (error) {
3806 		mutex_exit(&spa_namespace_lock);
3807 		nvlist_free(config);
3808 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3809 		    pname);
3810 		return (error);
3811 	}
3812 
3813 	/*
3814 	 * Get the boot vdev.
3815 	 */
3816 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3817 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3818 		    (u_longlong_t)guid);
3819 		error = SET_ERROR(ENOENT);
3820 		goto out;
3821 	}
3822 
3823 	/*
3824 	 * Determine if there is a better boot device.
3825 	 */
3826 	avd = bvd;
3827 	spa_alt_rootvdev(rvd, &avd, &txg);
3828 	if (avd != bvd) {
3829 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3830 		    "try booting from '%s'", avd->vdev_path);
3831 		error = SET_ERROR(EINVAL);
3832 		goto out;
3833 	}
3834 
3835 	/*
3836 	 * If the boot device is part of a spare vdev then ensure that
3837 	 * we're booting off the active spare.
3838 	 */
3839 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3840 	    !bvd->vdev_isspare) {
3841 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3842 		    "try booting from '%s'",
3843 		    bvd->vdev_parent->
3844 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3845 		error = SET_ERROR(EINVAL);
3846 		goto out;
3847 	}
3848 
3849 	error = 0;
3850 out:
3851 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3852 	vdev_free(rvd);
3853 	spa_config_exit(spa, SCL_ALL, FTAG);
3854 	mutex_exit(&spa_namespace_lock);
3855 
3856 	nvlist_free(config);
3857 	return (error);
3858 }
3859 
3860 #endif
3861 
3862 /*
3863  * Import a non-root pool into the system.
3864  */
3865 int
3866 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3867 {
3868 	spa_t *spa;
3869 	char *altroot = NULL;
3870 	spa_load_state_t state = SPA_LOAD_IMPORT;
3871 	zpool_rewind_policy_t policy;
3872 	uint64_t mode = spa_mode_global;
3873 	uint64_t readonly = B_FALSE;
3874 	int error;
3875 	nvlist_t *nvroot;
3876 	nvlist_t **spares, **l2cache;
3877 	uint_t nspares, nl2cache;
3878 
3879 	/*
3880 	 * If a pool with this name exists, return failure.
3881 	 */
3882 	mutex_enter(&spa_namespace_lock);
3883 	if (spa_lookup(pool) != NULL) {
3884 		mutex_exit(&spa_namespace_lock);
3885 		return (SET_ERROR(EEXIST));
3886 	}
3887 
3888 	/*
3889 	 * Create and initialize the spa structure.
3890 	 */
3891 	(void) nvlist_lookup_string(props,
3892 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3893 	(void) nvlist_lookup_uint64(props,
3894 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3895 	if (readonly)
3896 		mode = FREAD;
3897 	spa = spa_add(pool, config, altroot);
3898 	spa->spa_import_flags = flags;
3899 
3900 	/*
3901 	 * Verbatim import - Take a pool and insert it into the namespace
3902 	 * as if it had been loaded at boot.
3903 	 */
3904 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3905 		if (props != NULL)
3906 			spa_configfile_set(spa, props, B_FALSE);
3907 
3908 		spa_config_sync(spa, B_FALSE, B_TRUE);
3909 
3910 		mutex_exit(&spa_namespace_lock);
3911 		return (0);
3912 	}
3913 
3914 	spa_activate(spa, mode);
3915 
3916 	/*
3917 	 * Don't start async tasks until we know everything is healthy.
3918 	 */
3919 	spa_async_suspend(spa);
3920 
3921 	zpool_get_rewind_policy(config, &policy);
3922 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3923 		state = SPA_LOAD_RECOVER;
3924 
3925 	/*
3926 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3927 	 * because the user-supplied config is actually the one to trust when
3928 	 * doing an import.
3929 	 */
3930 	if (state != SPA_LOAD_RECOVER)
3931 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3932 
3933 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3934 	    policy.zrp_request);
3935 
3936 	/*
3937 	 * Propagate anything learned while loading the pool and pass it
3938 	 * back to caller (i.e. rewind info, missing devices, etc).
3939 	 */
3940 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3941 	    spa->spa_load_info) == 0);
3942 
3943 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3944 	/*
3945 	 * Toss any existing sparelist, as it doesn't have any validity
3946 	 * anymore, and conflicts with spa_has_spare().
3947 	 */
3948 	if (spa->spa_spares.sav_config) {
3949 		nvlist_free(spa->spa_spares.sav_config);
3950 		spa->spa_spares.sav_config = NULL;
3951 		spa_load_spares(spa);
3952 	}
3953 	if (spa->spa_l2cache.sav_config) {
3954 		nvlist_free(spa->spa_l2cache.sav_config);
3955 		spa->spa_l2cache.sav_config = NULL;
3956 		spa_load_l2cache(spa);
3957 	}
3958 
3959 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3960 	    &nvroot) == 0);
3961 	if (error == 0)
3962 		error = spa_validate_aux(spa, nvroot, -1ULL,
3963 		    VDEV_ALLOC_SPARE);
3964 	if (error == 0)
3965 		error = spa_validate_aux(spa, nvroot, -1ULL,
3966 		    VDEV_ALLOC_L2CACHE);
3967 	spa_config_exit(spa, SCL_ALL, FTAG);
3968 
3969 	if (props != NULL)
3970 		spa_configfile_set(spa, props, B_FALSE);
3971 
3972 	if (error != 0 || (props && spa_writeable(spa) &&
3973 	    (error = spa_prop_set(spa, props)))) {
3974 		spa_unload(spa);
3975 		spa_deactivate(spa);
3976 		spa_remove(spa);
3977 		mutex_exit(&spa_namespace_lock);
3978 		return (error);
3979 	}
3980 
3981 	spa_async_resume(spa);
3982 
3983 	/*
3984 	 * Override any spares and level 2 cache devices as specified by
3985 	 * the user, as these may have correct device names/devids, etc.
3986 	 */
3987 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3988 	    &spares, &nspares) == 0) {
3989 		if (spa->spa_spares.sav_config)
3990 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3991 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3992 		else
3993 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3994 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3995 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3996 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3997 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3998 		spa_load_spares(spa);
3999 		spa_config_exit(spa, SCL_ALL, FTAG);
4000 		spa->spa_spares.sav_sync = B_TRUE;
4001 	}
4002 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4003 	    &l2cache, &nl2cache) == 0) {
4004 		if (spa->spa_l2cache.sav_config)
4005 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4006 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4007 		else
4008 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4009 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4010 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4011 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4012 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4013 		spa_load_l2cache(spa);
4014 		spa_config_exit(spa, SCL_ALL, FTAG);
4015 		spa->spa_l2cache.sav_sync = B_TRUE;
4016 	}
4017 
4018 	/*
4019 	 * Check for any removed devices.
4020 	 */
4021 	if (spa->spa_autoreplace) {
4022 		spa_aux_check_removed(&spa->spa_spares);
4023 		spa_aux_check_removed(&spa->spa_l2cache);
4024 	}
4025 
4026 	if (spa_writeable(spa)) {
4027 		/*
4028 		 * Update the config cache to include the newly-imported pool.
4029 		 */
4030 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4031 	}
4032 
4033 	/*
4034 	 * It's possible that the pool was expanded while it was exported.
4035 	 * We kick off an async task to handle this for us.
4036 	 */
4037 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4038 
4039 	mutex_exit(&spa_namespace_lock);
4040 	spa_history_log_version(spa, "import");
4041 
4042 	return (0);
4043 }
4044 
4045 nvlist_t *
4046 spa_tryimport(nvlist_t *tryconfig)
4047 {
4048 	nvlist_t *config = NULL;
4049 	char *poolname;
4050 	spa_t *spa;
4051 	uint64_t state;
4052 	int error;
4053 
4054 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4055 		return (NULL);
4056 
4057 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4058 		return (NULL);
4059 
4060 	/*
4061 	 * Create and initialize the spa structure.
4062 	 */
4063 	mutex_enter(&spa_namespace_lock);
4064 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4065 	spa_activate(spa, FREAD);
4066 
4067 	/*
4068 	 * Pass off the heavy lifting to spa_load().
4069 	 * Pass TRUE for mosconfig because the user-supplied config
4070 	 * is actually the one to trust when doing an import.
4071 	 */
4072 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4073 
4074 	/*
4075 	 * If 'tryconfig' was at least parsable, return the current config.
4076 	 */
4077 	if (spa->spa_root_vdev != NULL) {
4078 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4079 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4080 		    poolname) == 0);
4081 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4082 		    state) == 0);
4083 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4084 		    spa->spa_uberblock.ub_timestamp) == 0);
4085 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4086 		    spa->spa_load_info) == 0);
4087 
4088 		/*
4089 		 * If the bootfs property exists on this pool then we
4090 		 * copy it out so that external consumers can tell which
4091 		 * pools are bootable.
4092 		 */
4093 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4094 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4095 
4096 			/*
4097 			 * We have to play games with the name since the
4098 			 * pool was opened as TRYIMPORT_NAME.
4099 			 */
4100 			if (dsl_dsobj_to_dsname(spa_name(spa),
4101 			    spa->spa_bootfs, tmpname) == 0) {
4102 				char *cp;
4103 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4104 
4105 				cp = strchr(tmpname, '/');
4106 				if (cp == NULL) {
4107 					(void) strlcpy(dsname, tmpname,
4108 					    MAXPATHLEN);
4109 				} else {
4110 					(void) snprintf(dsname, MAXPATHLEN,
4111 					    "%s/%s", poolname, ++cp);
4112 				}
4113 				VERIFY(nvlist_add_string(config,
4114 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4115 				kmem_free(dsname, MAXPATHLEN);
4116 			}
4117 			kmem_free(tmpname, MAXPATHLEN);
4118 		}
4119 
4120 		/*
4121 		 * Add the list of hot spares and level 2 cache devices.
4122 		 */
4123 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4124 		spa_add_spares(spa, config);
4125 		spa_add_l2cache(spa, config);
4126 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4127 	}
4128 
4129 	spa_unload(spa);
4130 	spa_deactivate(spa);
4131 	spa_remove(spa);
4132 	mutex_exit(&spa_namespace_lock);
4133 
4134 	return (config);
4135 }
4136 
4137 /*
4138  * Pool export/destroy
4139  *
4140  * The act of destroying or exporting a pool is very simple.  We make sure there
4141  * is no more pending I/O and any references to the pool are gone.  Then, we
4142  * update the pool state and sync all the labels to disk, removing the
4143  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4144  * we don't sync the labels or remove the configuration cache.
4145  */
4146 static int
4147 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4148     boolean_t force, boolean_t hardforce)
4149 {
4150 	spa_t *spa;
4151 
4152 	if (oldconfig)
4153 		*oldconfig = NULL;
4154 
4155 	if (!(spa_mode_global & FWRITE))
4156 		return (SET_ERROR(EROFS));
4157 
4158 	mutex_enter(&spa_namespace_lock);
4159 	if ((spa = spa_lookup(pool)) == NULL) {
4160 		mutex_exit(&spa_namespace_lock);
4161 		return (SET_ERROR(ENOENT));
4162 	}
4163 
4164 	/*
4165 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4166 	 * reacquire the namespace lock, and see if we can export.
4167 	 */
4168 	spa_open_ref(spa, FTAG);
4169 	mutex_exit(&spa_namespace_lock);
4170 	spa_async_suspend(spa);
4171 	mutex_enter(&spa_namespace_lock);
4172 	spa_close(spa, FTAG);
4173 
4174 	/*
4175 	 * The pool will be in core if it's openable,
4176 	 * in which case we can modify its state.
4177 	 */
4178 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4179 		/*
4180 		 * Objsets may be open only because they're dirty, so we
4181 		 * have to force it to sync before checking spa_refcnt.
4182 		 */
4183 		txg_wait_synced(spa->spa_dsl_pool, 0);
4184 
4185 		/*
4186 		 * A pool cannot be exported or destroyed if there are active
4187 		 * references.  If we are resetting a pool, allow references by
4188 		 * fault injection handlers.
4189 		 */
4190 		if (!spa_refcount_zero(spa) ||
4191 		    (spa->spa_inject_ref != 0 &&
4192 		    new_state != POOL_STATE_UNINITIALIZED)) {
4193 			spa_async_resume(spa);
4194 			mutex_exit(&spa_namespace_lock);
4195 			return (SET_ERROR(EBUSY));
4196 		}
4197 
4198 		/*
4199 		 * A pool cannot be exported if it has an active shared spare.
4200 		 * This is to prevent other pools stealing the active spare
4201 		 * from an exported pool. At user's own will, such pool can
4202 		 * be forcedly exported.
4203 		 */
4204 		if (!force && new_state == POOL_STATE_EXPORTED &&
4205 		    spa_has_active_shared_spare(spa)) {
4206 			spa_async_resume(spa);
4207 			mutex_exit(&spa_namespace_lock);
4208 			return (SET_ERROR(EXDEV));
4209 		}
4210 
4211 		/*
4212 		 * We want this to be reflected on every label,
4213 		 * so mark them all dirty.  spa_unload() will do the
4214 		 * final sync that pushes these changes out.
4215 		 */
4216 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4217 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4218 			spa->spa_state = new_state;
4219 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4220 			    TXG_DEFER_SIZE + 1;
4221 			vdev_config_dirty(spa->spa_root_vdev);
4222 			spa_config_exit(spa, SCL_ALL, FTAG);
4223 		}
4224 	}
4225 
4226 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4227 
4228 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4229 		spa_unload(spa);
4230 		spa_deactivate(spa);
4231 	}
4232 
4233 	if (oldconfig && spa->spa_config)
4234 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4235 
4236 	if (new_state != POOL_STATE_UNINITIALIZED) {
4237 		if (!hardforce)
4238 			spa_config_sync(spa, B_TRUE, B_TRUE);
4239 		spa_remove(spa);
4240 	}
4241 	mutex_exit(&spa_namespace_lock);
4242 
4243 	return (0);
4244 }
4245 
4246 /*
4247  * Destroy a storage pool.
4248  */
4249 int
4250 spa_destroy(char *pool)
4251 {
4252 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4253 	    B_FALSE, B_FALSE));
4254 }
4255 
4256 /*
4257  * Export a storage pool.
4258  */
4259 int
4260 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4261     boolean_t hardforce)
4262 {
4263 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4264 	    force, hardforce));
4265 }
4266 
4267 /*
4268  * Similar to spa_export(), this unloads the spa_t without actually removing it
4269  * from the namespace in any way.
4270  */
4271 int
4272 spa_reset(char *pool)
4273 {
4274 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4275 	    B_FALSE, B_FALSE));
4276 }
4277 
4278 /*
4279  * ==========================================================================
4280  * Device manipulation
4281  * ==========================================================================
4282  */
4283 
4284 /*
4285  * Add a device to a storage pool.
4286  */
4287 int
4288 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4289 {
4290 	uint64_t txg, id;
4291 	int error;
4292 	vdev_t *rvd = spa->spa_root_vdev;
4293 	vdev_t *vd, *tvd;
4294 	nvlist_t **spares, **l2cache;
4295 	uint_t nspares, nl2cache;
4296 
4297 	ASSERT(spa_writeable(spa));
4298 
4299 	txg = spa_vdev_enter(spa);
4300 
4301 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4302 	    VDEV_ALLOC_ADD)) != 0)
4303 		return (spa_vdev_exit(spa, NULL, txg, error));
4304 
4305 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4306 
4307 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4308 	    &nspares) != 0)
4309 		nspares = 0;
4310 
4311 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4312 	    &nl2cache) != 0)
4313 		nl2cache = 0;
4314 
4315 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4316 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4317 
4318 	if (vd->vdev_children != 0 &&
4319 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4320 		return (spa_vdev_exit(spa, vd, txg, error));
4321 
4322 	/*
4323 	 * We must validate the spares and l2cache devices after checking the
4324 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4325 	 */
4326 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4327 		return (spa_vdev_exit(spa, vd, txg, error));
4328 
4329 	/*
4330 	 * Transfer each new top-level vdev from vd to rvd.
4331 	 */
4332 	for (int c = 0; c < vd->vdev_children; c++) {
4333 
4334 		/*
4335 		 * Set the vdev id to the first hole, if one exists.
4336 		 */
4337 		for (id = 0; id < rvd->vdev_children; id++) {
4338 			if (rvd->vdev_child[id]->vdev_ishole) {
4339 				vdev_free(rvd->vdev_child[id]);
4340 				break;
4341 			}
4342 		}
4343 		tvd = vd->vdev_child[c];
4344 		vdev_remove_child(vd, tvd);
4345 		tvd->vdev_id = id;
4346 		vdev_add_child(rvd, tvd);
4347 		vdev_config_dirty(tvd);
4348 	}
4349 
4350 	if (nspares != 0) {
4351 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4352 		    ZPOOL_CONFIG_SPARES);
4353 		spa_load_spares(spa);
4354 		spa->spa_spares.sav_sync = B_TRUE;
4355 	}
4356 
4357 	if (nl2cache != 0) {
4358 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4359 		    ZPOOL_CONFIG_L2CACHE);
4360 		spa_load_l2cache(spa);
4361 		spa->spa_l2cache.sav_sync = B_TRUE;
4362 	}
4363 
4364 	/*
4365 	 * We have to be careful when adding new vdevs to an existing pool.
4366 	 * If other threads start allocating from these vdevs before we
4367 	 * sync the config cache, and we lose power, then upon reboot we may
4368 	 * fail to open the pool because there are DVAs that the config cache
4369 	 * can't translate.  Therefore, we first add the vdevs without
4370 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4371 	 * and then let spa_config_update() initialize the new metaslabs.
4372 	 *
4373 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4374 	 * if we lose power at any point in this sequence, the remaining
4375 	 * steps will be completed the next time we load the pool.
4376 	 */
4377 	(void) spa_vdev_exit(spa, vd, txg, 0);
4378 
4379 	mutex_enter(&spa_namespace_lock);
4380 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4381 	mutex_exit(&spa_namespace_lock);
4382 
4383 	return (0);
4384 }
4385 
4386 /*
4387  * Attach a device to a mirror.  The arguments are the path to any device
4388  * in the mirror, and the nvroot for the new device.  If the path specifies
4389  * a device that is not mirrored, we automatically insert the mirror vdev.
4390  *
4391  * If 'replacing' is specified, the new device is intended to replace the
4392  * existing device; in this case the two devices are made into their own
4393  * mirror using the 'replacing' vdev, which is functionally identical to
4394  * the mirror vdev (it actually reuses all the same ops) but has a few
4395  * extra rules: you can't attach to it after it's been created, and upon
4396  * completion of resilvering, the first disk (the one being replaced)
4397  * is automatically detached.
4398  */
4399 int
4400 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4401 {
4402 	uint64_t txg, dtl_max_txg;
4403 	vdev_t *rvd = spa->spa_root_vdev;
4404 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4405 	vdev_ops_t *pvops;
4406 	char *oldvdpath, *newvdpath;
4407 	int newvd_isspare;
4408 	int error;
4409 
4410 	ASSERT(spa_writeable(spa));
4411 
4412 	txg = spa_vdev_enter(spa);
4413 
4414 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4415 
4416 	if (oldvd == NULL)
4417 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4418 
4419 	if (!oldvd->vdev_ops->vdev_op_leaf)
4420 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4421 
4422 	pvd = oldvd->vdev_parent;
4423 
4424 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4425 	    VDEV_ALLOC_ATTACH)) != 0)
4426 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4427 
4428 	if (newrootvd->vdev_children != 1)
4429 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4430 
4431 	newvd = newrootvd->vdev_child[0];
4432 
4433 	if (!newvd->vdev_ops->vdev_op_leaf)
4434 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4435 
4436 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4437 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4438 
4439 	/*
4440 	 * Spares can't replace logs
4441 	 */
4442 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4443 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4444 
4445 	if (!replacing) {
4446 		/*
4447 		 * For attach, the only allowable parent is a mirror or the root
4448 		 * vdev.
4449 		 */
4450 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4451 		    pvd->vdev_ops != &vdev_root_ops)
4452 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4453 
4454 		pvops = &vdev_mirror_ops;
4455 	} else {
4456 		/*
4457 		 * Active hot spares can only be replaced by inactive hot
4458 		 * spares.
4459 		 */
4460 		if (pvd->vdev_ops == &vdev_spare_ops &&
4461 		    oldvd->vdev_isspare &&
4462 		    !spa_has_spare(spa, newvd->vdev_guid))
4463 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4464 
4465 		/*
4466 		 * If the source is a hot spare, and the parent isn't already a
4467 		 * spare, then we want to create a new hot spare.  Otherwise, we
4468 		 * want to create a replacing vdev.  The user is not allowed to
4469 		 * attach to a spared vdev child unless the 'isspare' state is
4470 		 * the same (spare replaces spare, non-spare replaces
4471 		 * non-spare).
4472 		 */
4473 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4474 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4475 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4476 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4477 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4478 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4479 		}
4480 
4481 		if (newvd->vdev_isspare)
4482 			pvops = &vdev_spare_ops;
4483 		else
4484 			pvops = &vdev_replacing_ops;
4485 	}
4486 
4487 	/*
4488 	 * Make sure the new device is big enough.
4489 	 */
4490 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4491 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4492 
4493 	/*
4494 	 * The new device cannot have a higher alignment requirement
4495 	 * than the top-level vdev.
4496 	 */
4497 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4498 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4499 
4500 	/*
4501 	 * If this is an in-place replacement, update oldvd's path and devid
4502 	 * to make it distinguishable from newvd, and unopenable from now on.
4503 	 */
4504 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4505 		spa_strfree(oldvd->vdev_path);
4506 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4507 		    KM_SLEEP);
4508 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4509 		    newvd->vdev_path, "old");
4510 		if (oldvd->vdev_devid != NULL) {
4511 			spa_strfree(oldvd->vdev_devid);
4512 			oldvd->vdev_devid = NULL;
4513 		}
4514 	}
4515 
4516 	/* mark the device being resilvered */
4517 	newvd->vdev_resilver_txg = txg;
4518 
4519 	/*
4520 	 * If the parent is not a mirror, or if we're replacing, insert the new
4521 	 * mirror/replacing/spare vdev above oldvd.
4522 	 */
4523 	if (pvd->vdev_ops != pvops)
4524 		pvd = vdev_add_parent(oldvd, pvops);
4525 
4526 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4527 	ASSERT(pvd->vdev_ops == pvops);
4528 	ASSERT(oldvd->vdev_parent == pvd);
4529 
4530 	/*
4531 	 * Extract the new device from its root and add it to pvd.
4532 	 */
4533 	vdev_remove_child(newrootvd, newvd);
4534 	newvd->vdev_id = pvd->vdev_children;
4535 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4536 	vdev_add_child(pvd, newvd);
4537 
4538 	tvd = newvd->vdev_top;
4539 	ASSERT(pvd->vdev_top == tvd);
4540 	ASSERT(tvd->vdev_parent == rvd);
4541 
4542 	vdev_config_dirty(tvd);
4543 
4544 	/*
4545 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4546 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4547 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4548 	 */
4549 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4550 
4551 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4552 	    dtl_max_txg - TXG_INITIAL);
4553 
4554 	if (newvd->vdev_isspare) {
4555 		spa_spare_activate(newvd);
4556 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4557 	}
4558 
4559 	oldvdpath = spa_strdup(oldvd->vdev_path);
4560 	newvdpath = spa_strdup(newvd->vdev_path);
4561 	newvd_isspare = newvd->vdev_isspare;
4562 
4563 	/*
4564 	 * Mark newvd's DTL dirty in this txg.
4565 	 */
4566 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4567 
4568 	/*
4569 	 * Schedule the resilver to restart in the future. We do this to
4570 	 * ensure that dmu_sync-ed blocks have been stitched into the
4571 	 * respective datasets.
4572 	 */
4573 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4574 
4575 	/*
4576 	 * Commit the config
4577 	 */
4578 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4579 
4580 	spa_history_log_internal(spa, "vdev attach", NULL,
4581 	    "%s vdev=%s %s vdev=%s",
4582 	    replacing && newvd_isspare ? "spare in" :
4583 	    replacing ? "replace" : "attach", newvdpath,
4584 	    replacing ? "for" : "to", oldvdpath);
4585 
4586 	spa_strfree(oldvdpath);
4587 	spa_strfree(newvdpath);
4588 
4589 	if (spa->spa_bootfs)
4590 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4591 
4592 	return (0);
4593 }
4594 
4595 /*
4596  * Detach a device from a mirror or replacing vdev.
4597  *
4598  * If 'replace_done' is specified, only detach if the parent
4599  * is a replacing vdev.
4600  */
4601 int
4602 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4603 {
4604 	uint64_t txg;
4605 	int error;
4606 	vdev_t *rvd = spa->spa_root_vdev;
4607 	vdev_t *vd, *pvd, *cvd, *tvd;
4608 	boolean_t unspare = B_FALSE;
4609 	uint64_t unspare_guid = 0;
4610 	char *vdpath;
4611 
4612 	ASSERT(spa_writeable(spa));
4613 
4614 	txg = spa_vdev_enter(spa);
4615 
4616 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4617 
4618 	if (vd == NULL)
4619 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4620 
4621 	if (!vd->vdev_ops->vdev_op_leaf)
4622 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4623 
4624 	pvd = vd->vdev_parent;
4625 
4626 	/*
4627 	 * If the parent/child relationship is not as expected, don't do it.
4628 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4629 	 * vdev that's replacing B with C.  The user's intent in replacing
4630 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4631 	 * the replace by detaching C, the expected behavior is to end up
4632 	 * M(A,B).  But suppose that right after deciding to detach C,
4633 	 * the replacement of B completes.  We would have M(A,C), and then
4634 	 * ask to detach C, which would leave us with just A -- not what
4635 	 * the user wanted.  To prevent this, we make sure that the
4636 	 * parent/child relationship hasn't changed -- in this example,
4637 	 * that C's parent is still the replacing vdev R.
4638 	 */
4639 	if (pvd->vdev_guid != pguid && pguid != 0)
4640 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4641 
4642 	/*
4643 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4644 	 */
4645 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4646 	    pvd->vdev_ops != &vdev_spare_ops)
4647 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4648 
4649 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4650 	    spa_version(spa) >= SPA_VERSION_SPARES);
4651 
4652 	/*
4653 	 * Only mirror, replacing, and spare vdevs support detach.
4654 	 */
4655 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4656 	    pvd->vdev_ops != &vdev_mirror_ops &&
4657 	    pvd->vdev_ops != &vdev_spare_ops)
4658 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4659 
4660 	/*
4661 	 * If this device has the only valid copy of some data,
4662 	 * we cannot safely detach it.
4663 	 */
4664 	if (vdev_dtl_required(vd))
4665 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4666 
4667 	ASSERT(pvd->vdev_children >= 2);
4668 
4669 	/*
4670 	 * If we are detaching the second disk from a replacing vdev, then
4671 	 * check to see if we changed the original vdev's path to have "/old"
4672 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4673 	 */
4674 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4675 	    vd->vdev_path != NULL) {
4676 		size_t len = strlen(vd->vdev_path);
4677 
4678 		for (int c = 0; c < pvd->vdev_children; c++) {
4679 			cvd = pvd->vdev_child[c];
4680 
4681 			if (cvd == vd || cvd->vdev_path == NULL)
4682 				continue;
4683 
4684 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4685 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4686 				spa_strfree(cvd->vdev_path);
4687 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4688 				break;
4689 			}
4690 		}
4691 	}
4692 
4693 	/*
4694 	 * If we are detaching the original disk from a spare, then it implies
4695 	 * that the spare should become a real disk, and be removed from the
4696 	 * active spare list for the pool.
4697 	 */
4698 	if (pvd->vdev_ops == &vdev_spare_ops &&
4699 	    vd->vdev_id == 0 &&
4700 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4701 		unspare = B_TRUE;
4702 
4703 	/*
4704 	 * Erase the disk labels so the disk can be used for other things.
4705 	 * This must be done after all other error cases are handled,
4706 	 * but before we disembowel vd (so we can still do I/O to it).
4707 	 * But if we can't do it, don't treat the error as fatal --
4708 	 * it may be that the unwritability of the disk is the reason
4709 	 * it's being detached!
4710 	 */
4711 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4712 
4713 	/*
4714 	 * Remove vd from its parent and compact the parent's children.
4715 	 */
4716 	vdev_remove_child(pvd, vd);
4717 	vdev_compact_children(pvd);
4718 
4719 	/*
4720 	 * Remember one of the remaining children so we can get tvd below.
4721 	 */
4722 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4723 
4724 	/*
4725 	 * If we need to remove the remaining child from the list of hot spares,
4726 	 * do it now, marking the vdev as no longer a spare in the process.
4727 	 * We must do this before vdev_remove_parent(), because that can
4728 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4729 	 * reason, we must remove the spare now, in the same txg as the detach;
4730 	 * otherwise someone could attach a new sibling, change the GUID, and
4731 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4732 	 */
4733 	if (unspare) {
4734 		ASSERT(cvd->vdev_isspare);
4735 		spa_spare_remove(cvd);
4736 		unspare_guid = cvd->vdev_guid;
4737 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4738 		cvd->vdev_unspare = B_TRUE;
4739 	}
4740 
4741 	/*
4742 	 * If the parent mirror/replacing vdev only has one child,
4743 	 * the parent is no longer needed.  Remove it from the tree.
4744 	 */
4745 	if (pvd->vdev_children == 1) {
4746 		if (pvd->vdev_ops == &vdev_spare_ops)
4747 			cvd->vdev_unspare = B_FALSE;
4748 		vdev_remove_parent(cvd);
4749 	}
4750 
4751 
4752 	/*
4753 	 * We don't set tvd until now because the parent we just removed
4754 	 * may have been the previous top-level vdev.
4755 	 */
4756 	tvd = cvd->vdev_top;
4757 	ASSERT(tvd->vdev_parent == rvd);
4758 
4759 	/*
4760 	 * Reevaluate the parent vdev state.
4761 	 */
4762 	vdev_propagate_state(cvd);
4763 
4764 	/*
4765 	 * If the 'autoexpand' property is set on the pool then automatically
4766 	 * try to expand the size of the pool. For example if the device we
4767 	 * just detached was smaller than the others, it may be possible to
4768 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4769 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4770 	 */
4771 	if (spa->spa_autoexpand) {
4772 		vdev_reopen(tvd);
4773 		vdev_expand(tvd, txg);
4774 	}
4775 
4776 	vdev_config_dirty(tvd);
4777 
4778 	/*
4779 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4780 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4781 	 * But first make sure we're not on any *other* txg's DTL list, to
4782 	 * prevent vd from being accessed after it's freed.
4783 	 */
4784 	vdpath = spa_strdup(vd->vdev_path);
4785 	for (int t = 0; t < TXG_SIZE; t++)
4786 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4787 	vd->vdev_detached = B_TRUE;
4788 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4789 
4790 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4791 
4792 	/* hang on to the spa before we release the lock */
4793 	spa_open_ref(spa, FTAG);
4794 
4795 	error = spa_vdev_exit(spa, vd, txg, 0);
4796 
4797 	spa_history_log_internal(spa, "detach", NULL,
4798 	    "vdev=%s", vdpath);
4799 	spa_strfree(vdpath);
4800 
4801 	/*
4802 	 * If this was the removal of the original device in a hot spare vdev,
4803 	 * then we want to go through and remove the device from the hot spare
4804 	 * list of every other pool.
4805 	 */
4806 	if (unspare) {
4807 		spa_t *altspa = NULL;
4808 
4809 		mutex_enter(&spa_namespace_lock);
4810 		while ((altspa = spa_next(altspa)) != NULL) {
4811 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4812 			    altspa == spa)
4813 				continue;
4814 
4815 			spa_open_ref(altspa, FTAG);
4816 			mutex_exit(&spa_namespace_lock);
4817 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4818 			mutex_enter(&spa_namespace_lock);
4819 			spa_close(altspa, FTAG);
4820 		}
4821 		mutex_exit(&spa_namespace_lock);
4822 
4823 		/* search the rest of the vdevs for spares to remove */
4824 		spa_vdev_resilver_done(spa);
4825 	}
4826 
4827 	/* all done with the spa; OK to release */
4828 	mutex_enter(&spa_namespace_lock);
4829 	spa_close(spa, FTAG);
4830 	mutex_exit(&spa_namespace_lock);
4831 
4832 	return (error);
4833 }
4834 
4835 /*
4836  * Split a set of devices from their mirrors, and create a new pool from them.
4837  */
4838 int
4839 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4840     nvlist_t *props, boolean_t exp)
4841 {
4842 	int error = 0;
4843 	uint64_t txg, *glist;
4844 	spa_t *newspa;
4845 	uint_t c, children, lastlog;
4846 	nvlist_t **child, *nvl, *tmp;
4847 	dmu_tx_t *tx;
4848 	char *altroot = NULL;
4849 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4850 	boolean_t activate_slog;
4851 
4852 	ASSERT(spa_writeable(spa));
4853 
4854 	txg = spa_vdev_enter(spa);
4855 
4856 	/* clear the log and flush everything up to now */
4857 	activate_slog = spa_passivate_log(spa);
4858 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4859 	error = spa_offline_log(spa);
4860 	txg = spa_vdev_config_enter(spa);
4861 
4862 	if (activate_slog)
4863 		spa_activate_log(spa);
4864 
4865 	if (error != 0)
4866 		return (spa_vdev_exit(spa, NULL, txg, error));
4867 
4868 	/* check new spa name before going any further */
4869 	if (spa_lookup(newname) != NULL)
4870 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4871 
4872 	/*
4873 	 * scan through all the children to ensure they're all mirrors
4874 	 */
4875 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4876 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4877 	    &children) != 0)
4878 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4879 
4880 	/* first, check to ensure we've got the right child count */
4881 	rvd = spa->spa_root_vdev;
4882 	lastlog = 0;
4883 	for (c = 0; c < rvd->vdev_children; c++) {
4884 		vdev_t *vd = rvd->vdev_child[c];
4885 
4886 		/* don't count the holes & logs as children */
4887 		if (vd->vdev_islog || vd->vdev_ishole) {
4888 			if (lastlog == 0)
4889 				lastlog = c;
4890 			continue;
4891 		}
4892 
4893 		lastlog = 0;
4894 	}
4895 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4896 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4897 
4898 	/* next, ensure no spare or cache devices are part of the split */
4899 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4900 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4901 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4902 
4903 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4904 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4905 
4906 	/* then, loop over each vdev and validate it */
4907 	for (c = 0; c < children; c++) {
4908 		uint64_t is_hole = 0;
4909 
4910 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4911 		    &is_hole);
4912 
4913 		if (is_hole != 0) {
4914 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4915 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4916 				continue;
4917 			} else {
4918 				error = SET_ERROR(EINVAL);
4919 				break;
4920 			}
4921 		}
4922 
4923 		/* which disk is going to be split? */
4924 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4925 		    &glist[c]) != 0) {
4926 			error = SET_ERROR(EINVAL);
4927 			break;
4928 		}
4929 
4930 		/* look it up in the spa */
4931 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4932 		if (vml[c] == NULL) {
4933 			error = SET_ERROR(ENODEV);
4934 			break;
4935 		}
4936 
4937 		/* make sure there's nothing stopping the split */
4938 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4939 		    vml[c]->vdev_islog ||
4940 		    vml[c]->vdev_ishole ||
4941 		    vml[c]->vdev_isspare ||
4942 		    vml[c]->vdev_isl2cache ||
4943 		    !vdev_writeable(vml[c]) ||
4944 		    vml[c]->vdev_children != 0 ||
4945 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4946 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4947 			error = SET_ERROR(EINVAL);
4948 			break;
4949 		}
4950 
4951 		if (vdev_dtl_required(vml[c])) {
4952 			error = SET_ERROR(EBUSY);
4953 			break;
4954 		}
4955 
4956 		/* we need certain info from the top level */
4957 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4958 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4959 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4960 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4961 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4962 		    vml[c]->vdev_top->vdev_asize) == 0);
4963 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4964 		    vml[c]->vdev_top->vdev_ashift) == 0);
4965 	}
4966 
4967 	if (error != 0) {
4968 		kmem_free(vml, children * sizeof (vdev_t *));
4969 		kmem_free(glist, children * sizeof (uint64_t));
4970 		return (spa_vdev_exit(spa, NULL, txg, error));
4971 	}
4972 
4973 	/* stop writers from using the disks */
4974 	for (c = 0; c < children; c++) {
4975 		if (vml[c] != NULL)
4976 			vml[c]->vdev_offline = B_TRUE;
4977 	}
4978 	vdev_reopen(spa->spa_root_vdev);
4979 
4980 	/*
4981 	 * Temporarily record the splitting vdevs in the spa config.  This
4982 	 * will disappear once the config is regenerated.
4983 	 */
4984 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4985 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4986 	    glist, children) == 0);
4987 	kmem_free(glist, children * sizeof (uint64_t));
4988 
4989 	mutex_enter(&spa->spa_props_lock);
4990 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4991 	    nvl) == 0);
4992 	mutex_exit(&spa->spa_props_lock);
4993 	spa->spa_config_splitting = nvl;
4994 	vdev_config_dirty(spa->spa_root_vdev);
4995 
4996 	/* configure and create the new pool */
4997 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4998 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4999 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5000 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5001 	    spa_version(spa)) == 0);
5002 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5003 	    spa->spa_config_txg) == 0);
5004 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5005 	    spa_generate_guid(NULL)) == 0);
5006 	(void) nvlist_lookup_string(props,
5007 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5008 
5009 	/* add the new pool to the namespace */
5010 	newspa = spa_add(newname, config, altroot);
5011 	newspa->spa_config_txg = spa->spa_config_txg;
5012 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5013 
5014 	/* release the spa config lock, retaining the namespace lock */
5015 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5016 
5017 	if (zio_injection_enabled)
5018 		zio_handle_panic_injection(spa, FTAG, 1);
5019 
5020 	spa_activate(newspa, spa_mode_global);
5021 	spa_async_suspend(newspa);
5022 
5023 	/* create the new pool from the disks of the original pool */
5024 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5025 	if (error)
5026 		goto out;
5027 
5028 	/* if that worked, generate a real config for the new pool */
5029 	if (newspa->spa_root_vdev != NULL) {
5030 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5031 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5032 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5033 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5034 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5035 		    B_TRUE));
5036 	}
5037 
5038 	/* set the props */
5039 	if (props != NULL) {
5040 		spa_configfile_set(newspa, props, B_FALSE);
5041 		error = spa_prop_set(newspa, props);
5042 		if (error)
5043 			goto out;
5044 	}
5045 
5046 	/* flush everything */
5047 	txg = spa_vdev_config_enter(newspa);
5048 	vdev_config_dirty(newspa->spa_root_vdev);
5049 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5050 
5051 	if (zio_injection_enabled)
5052 		zio_handle_panic_injection(spa, FTAG, 2);
5053 
5054 	spa_async_resume(newspa);
5055 
5056 	/* finally, update the original pool's config */
5057 	txg = spa_vdev_config_enter(spa);
5058 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5059 	error = dmu_tx_assign(tx, TXG_WAIT);
5060 	if (error != 0)
5061 		dmu_tx_abort(tx);
5062 	for (c = 0; c < children; c++) {
5063 		if (vml[c] != NULL) {
5064 			vdev_split(vml[c]);
5065 			if (error == 0)
5066 				spa_history_log_internal(spa, "detach", tx,
5067 				    "vdev=%s", vml[c]->vdev_path);
5068 			vdev_free(vml[c]);
5069 		}
5070 	}
5071 	vdev_config_dirty(spa->spa_root_vdev);
5072 	spa->spa_config_splitting = NULL;
5073 	nvlist_free(nvl);
5074 	if (error == 0)
5075 		dmu_tx_commit(tx);
5076 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5077 
5078 	if (zio_injection_enabled)
5079 		zio_handle_panic_injection(spa, FTAG, 3);
5080 
5081 	/* split is complete; log a history record */
5082 	spa_history_log_internal(newspa, "split", NULL,
5083 	    "from pool %s", spa_name(spa));
5084 
5085 	kmem_free(vml, children * sizeof (vdev_t *));
5086 
5087 	/* if we're not going to mount the filesystems in userland, export */
5088 	if (exp)
5089 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5090 		    B_FALSE, B_FALSE);
5091 
5092 	return (error);
5093 
5094 out:
5095 	spa_unload(newspa);
5096 	spa_deactivate(newspa);
5097 	spa_remove(newspa);
5098 
5099 	txg = spa_vdev_config_enter(spa);
5100 
5101 	/* re-online all offlined disks */
5102 	for (c = 0; c < children; c++) {
5103 		if (vml[c] != NULL)
5104 			vml[c]->vdev_offline = B_FALSE;
5105 	}
5106 	vdev_reopen(spa->spa_root_vdev);
5107 
5108 	nvlist_free(spa->spa_config_splitting);
5109 	spa->spa_config_splitting = NULL;
5110 	(void) spa_vdev_exit(spa, NULL, txg, error);
5111 
5112 	kmem_free(vml, children * sizeof (vdev_t *));
5113 	return (error);
5114 }
5115 
5116 static nvlist_t *
5117 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5118 {
5119 	for (int i = 0; i < count; i++) {
5120 		uint64_t guid;
5121 
5122 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5123 		    &guid) == 0);
5124 
5125 		if (guid == target_guid)
5126 			return (nvpp[i]);
5127 	}
5128 
5129 	return (NULL);
5130 }
5131 
5132 static void
5133 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5134 	nvlist_t *dev_to_remove)
5135 {
5136 	nvlist_t **newdev = NULL;
5137 
5138 	if (count > 1)
5139 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5140 
5141 	for (int i = 0, j = 0; i < count; i++) {
5142 		if (dev[i] == dev_to_remove)
5143 			continue;
5144 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5145 	}
5146 
5147 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5148 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5149 
5150 	for (int i = 0; i < count - 1; i++)
5151 		nvlist_free(newdev[i]);
5152 
5153 	if (count > 1)
5154 		kmem_free(newdev, (count - 1) * sizeof (void *));
5155 }
5156 
5157 /*
5158  * Evacuate the device.
5159  */
5160 static int
5161 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5162 {
5163 	uint64_t txg;
5164 	int error = 0;
5165 
5166 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5167 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5168 	ASSERT(vd == vd->vdev_top);
5169 
5170 	/*
5171 	 * Evacuate the device.  We don't hold the config lock as writer
5172 	 * since we need to do I/O but we do keep the
5173 	 * spa_namespace_lock held.  Once this completes the device
5174 	 * should no longer have any blocks allocated on it.
5175 	 */
5176 	if (vd->vdev_islog) {
5177 		if (vd->vdev_stat.vs_alloc != 0)
5178 			error = spa_offline_log(spa);
5179 	} else {
5180 		error = SET_ERROR(ENOTSUP);
5181 	}
5182 
5183 	if (error)
5184 		return (error);
5185 
5186 	/*
5187 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5188 	 * associated with this vdev, and wait for these changes to sync.
5189 	 */
5190 	ASSERT0(vd->vdev_stat.vs_alloc);
5191 	txg = spa_vdev_config_enter(spa);
5192 	vd->vdev_removing = B_TRUE;
5193 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5194 	vdev_config_dirty(vd);
5195 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5196 
5197 	return (0);
5198 }
5199 
5200 /*
5201  * Complete the removal by cleaning up the namespace.
5202  */
5203 static void
5204 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5205 {
5206 	vdev_t *rvd = spa->spa_root_vdev;
5207 	uint64_t id = vd->vdev_id;
5208 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5209 
5210 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5211 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5212 	ASSERT(vd == vd->vdev_top);
5213 
5214 	/*
5215 	 * Only remove any devices which are empty.
5216 	 */
5217 	if (vd->vdev_stat.vs_alloc != 0)
5218 		return;
5219 
5220 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5221 
5222 	if (list_link_active(&vd->vdev_state_dirty_node))
5223 		vdev_state_clean(vd);
5224 	if (list_link_active(&vd->vdev_config_dirty_node))
5225 		vdev_config_clean(vd);
5226 
5227 	vdev_free(vd);
5228 
5229 	if (last_vdev) {
5230 		vdev_compact_children(rvd);
5231 	} else {
5232 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5233 		vdev_add_child(rvd, vd);
5234 	}
5235 	vdev_config_dirty(rvd);
5236 
5237 	/*
5238 	 * Reassess the health of our root vdev.
5239 	 */
5240 	vdev_reopen(rvd);
5241 }
5242 
5243 /*
5244  * Remove a device from the pool -
5245  *
5246  * Removing a device from the vdev namespace requires several steps
5247  * and can take a significant amount of time.  As a result we use
5248  * the spa_vdev_config_[enter/exit] functions which allow us to
5249  * grab and release the spa_config_lock while still holding the namespace
5250  * lock.  During each step the configuration is synced out.
5251  *
5252  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5253  * devices.
5254  */
5255 int
5256 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5257 {
5258 	vdev_t *vd;
5259 	metaslab_group_t *mg;
5260 	nvlist_t **spares, **l2cache, *nv;
5261 	uint64_t txg = 0;
5262 	uint_t nspares, nl2cache;
5263 	int error = 0;
5264 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5265 
5266 	ASSERT(spa_writeable(spa));
5267 
5268 	if (!locked)
5269 		txg = spa_vdev_enter(spa);
5270 
5271 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5272 
5273 	if (spa->spa_spares.sav_vdevs != NULL &&
5274 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5275 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5276 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5277 		/*
5278 		 * Only remove the hot spare if it's not currently in use
5279 		 * in this pool.
5280 		 */
5281 		if (vd == NULL || unspare) {
5282 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5283 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5284 			spa_load_spares(spa);
5285 			spa->spa_spares.sav_sync = B_TRUE;
5286 		} else {
5287 			error = SET_ERROR(EBUSY);
5288 		}
5289 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5290 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5291 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5292 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5293 		/*
5294 		 * Cache devices can always be removed.
5295 		 */
5296 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5297 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5298 		spa_load_l2cache(spa);
5299 		spa->spa_l2cache.sav_sync = B_TRUE;
5300 	} else if (vd != NULL && vd->vdev_islog) {
5301 		ASSERT(!locked);
5302 		ASSERT(vd == vd->vdev_top);
5303 
5304 		mg = vd->vdev_mg;
5305 
5306 		/*
5307 		 * Stop allocating from this vdev.
5308 		 */
5309 		metaslab_group_passivate(mg);
5310 
5311 		/*
5312 		 * Wait for the youngest allocations and frees to sync,
5313 		 * and then wait for the deferral of those frees to finish.
5314 		 */
5315 		spa_vdev_config_exit(spa, NULL,
5316 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5317 
5318 		/*
5319 		 * Attempt to evacuate the vdev.
5320 		 */
5321 		error = spa_vdev_remove_evacuate(spa, vd);
5322 
5323 		txg = spa_vdev_config_enter(spa);
5324 
5325 		/*
5326 		 * If we couldn't evacuate the vdev, unwind.
5327 		 */
5328 		if (error) {
5329 			metaslab_group_activate(mg);
5330 			return (spa_vdev_exit(spa, NULL, txg, error));
5331 		}
5332 
5333 		/*
5334 		 * Clean up the vdev namespace.
5335 		 */
5336 		spa_vdev_remove_from_namespace(spa, vd);
5337 
5338 	} else if (vd != NULL) {
5339 		/*
5340 		 * Normal vdevs cannot be removed (yet).
5341 		 */
5342 		error = SET_ERROR(ENOTSUP);
5343 	} else {
5344 		/*
5345 		 * There is no vdev of any kind with the specified guid.
5346 		 */
5347 		error = SET_ERROR(ENOENT);
5348 	}
5349 
5350 	if (!locked)
5351 		return (spa_vdev_exit(spa, NULL, txg, error));
5352 
5353 	return (error);
5354 }
5355 
5356 /*
5357  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5358  * currently spared, so we can detach it.
5359  */
5360 static vdev_t *
5361 spa_vdev_resilver_done_hunt(vdev_t *vd)
5362 {
5363 	vdev_t *newvd, *oldvd;
5364 
5365 	for (int c = 0; c < vd->vdev_children; c++) {
5366 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5367 		if (oldvd != NULL)
5368 			return (oldvd);
5369 	}
5370 
5371 	/*
5372 	 * Check for a completed replacement.  We always consider the first
5373 	 * vdev in the list to be the oldest vdev, and the last one to be
5374 	 * the newest (see spa_vdev_attach() for how that works).  In
5375 	 * the case where the newest vdev is faulted, we will not automatically
5376 	 * remove it after a resilver completes.  This is OK as it will require
5377 	 * user intervention to determine which disk the admin wishes to keep.
5378 	 */
5379 	if (vd->vdev_ops == &vdev_replacing_ops) {
5380 		ASSERT(vd->vdev_children > 1);
5381 
5382 		newvd = vd->vdev_child[vd->vdev_children - 1];
5383 		oldvd = vd->vdev_child[0];
5384 
5385 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5386 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5387 		    !vdev_dtl_required(oldvd))
5388 			return (oldvd);
5389 	}
5390 
5391 	/*
5392 	 * Check for a completed resilver with the 'unspare' flag set.
5393 	 */
5394 	if (vd->vdev_ops == &vdev_spare_ops) {
5395 		vdev_t *first = vd->vdev_child[0];
5396 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5397 
5398 		if (last->vdev_unspare) {
5399 			oldvd = first;
5400 			newvd = last;
5401 		} else if (first->vdev_unspare) {
5402 			oldvd = last;
5403 			newvd = first;
5404 		} else {
5405 			oldvd = NULL;
5406 		}
5407 
5408 		if (oldvd != NULL &&
5409 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5410 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5411 		    !vdev_dtl_required(oldvd))
5412 			return (oldvd);
5413 
5414 		/*
5415 		 * If there are more than two spares attached to a disk,
5416 		 * and those spares are not required, then we want to
5417 		 * attempt to free them up now so that they can be used
5418 		 * by other pools.  Once we're back down to a single
5419 		 * disk+spare, we stop removing them.
5420 		 */
5421 		if (vd->vdev_children > 2) {
5422 			newvd = vd->vdev_child[1];
5423 
5424 			if (newvd->vdev_isspare && last->vdev_isspare &&
5425 			    vdev_dtl_empty(last, DTL_MISSING) &&
5426 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5427 			    !vdev_dtl_required(newvd))
5428 				return (newvd);
5429 		}
5430 	}
5431 
5432 	return (NULL);
5433 }
5434 
5435 static void
5436 spa_vdev_resilver_done(spa_t *spa)
5437 {
5438 	vdev_t *vd, *pvd, *ppvd;
5439 	uint64_t guid, sguid, pguid, ppguid;
5440 
5441 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5442 
5443 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5444 		pvd = vd->vdev_parent;
5445 		ppvd = pvd->vdev_parent;
5446 		guid = vd->vdev_guid;
5447 		pguid = pvd->vdev_guid;
5448 		ppguid = ppvd->vdev_guid;
5449 		sguid = 0;
5450 		/*
5451 		 * If we have just finished replacing a hot spared device, then
5452 		 * we need to detach the parent's first child (the original hot
5453 		 * spare) as well.
5454 		 */
5455 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5456 		    ppvd->vdev_children == 2) {
5457 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5458 			sguid = ppvd->vdev_child[1]->vdev_guid;
5459 		}
5460 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5461 
5462 		spa_config_exit(spa, SCL_ALL, FTAG);
5463 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5464 			return;
5465 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5466 			return;
5467 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5468 	}
5469 
5470 	spa_config_exit(spa, SCL_ALL, FTAG);
5471 }
5472 
5473 /*
5474  * Update the stored path or FRU for this vdev.
5475  */
5476 int
5477 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5478     boolean_t ispath)
5479 {
5480 	vdev_t *vd;
5481 	boolean_t sync = B_FALSE;
5482 
5483 	ASSERT(spa_writeable(spa));
5484 
5485 	spa_vdev_state_enter(spa, SCL_ALL);
5486 
5487 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5488 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5489 
5490 	if (!vd->vdev_ops->vdev_op_leaf)
5491 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5492 
5493 	if (ispath) {
5494 		if (strcmp(value, vd->vdev_path) != 0) {
5495 			spa_strfree(vd->vdev_path);
5496 			vd->vdev_path = spa_strdup(value);
5497 			sync = B_TRUE;
5498 		}
5499 	} else {
5500 		if (vd->vdev_fru == NULL) {
5501 			vd->vdev_fru = spa_strdup(value);
5502 			sync = B_TRUE;
5503 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5504 			spa_strfree(vd->vdev_fru);
5505 			vd->vdev_fru = spa_strdup(value);
5506 			sync = B_TRUE;
5507 		}
5508 	}
5509 
5510 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5511 }
5512 
5513 int
5514 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5515 {
5516 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5517 }
5518 
5519 int
5520 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5521 {
5522 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5523 }
5524 
5525 /*
5526  * ==========================================================================
5527  * SPA Scanning
5528  * ==========================================================================
5529  */
5530 
5531 int
5532 spa_scan_stop(spa_t *spa)
5533 {
5534 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5535 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5536 		return (SET_ERROR(EBUSY));
5537 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5538 }
5539 
5540 int
5541 spa_scan(spa_t *spa, pool_scan_func_t func)
5542 {
5543 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5544 
5545 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5546 		return (SET_ERROR(ENOTSUP));
5547 
5548 	/*
5549 	 * If a resilver was requested, but there is no DTL on a
5550 	 * writeable leaf device, we have nothing to do.
5551 	 */
5552 	if (func == POOL_SCAN_RESILVER &&
5553 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5554 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5555 		return (0);
5556 	}
5557 
5558 	return (dsl_scan(spa->spa_dsl_pool, func));
5559 }
5560 
5561 /*
5562  * ==========================================================================
5563  * SPA async task processing
5564  * ==========================================================================
5565  */
5566 
5567 static void
5568 spa_async_remove(spa_t *spa, vdev_t *vd)
5569 {
5570 	if (vd->vdev_remove_wanted) {
5571 		vd->vdev_remove_wanted = B_FALSE;
5572 		vd->vdev_delayed_close = B_FALSE;
5573 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5574 
5575 		/*
5576 		 * We want to clear the stats, but we don't want to do a full
5577 		 * vdev_clear() as that will cause us to throw away
5578 		 * degraded/faulted state as well as attempt to reopen the
5579 		 * device, all of which is a waste.
5580 		 */
5581 		vd->vdev_stat.vs_read_errors = 0;
5582 		vd->vdev_stat.vs_write_errors = 0;
5583 		vd->vdev_stat.vs_checksum_errors = 0;
5584 
5585 		vdev_state_dirty(vd->vdev_top);
5586 	}
5587 
5588 	for (int c = 0; c < vd->vdev_children; c++)
5589 		spa_async_remove(spa, vd->vdev_child[c]);
5590 }
5591 
5592 static void
5593 spa_async_probe(spa_t *spa, vdev_t *vd)
5594 {
5595 	if (vd->vdev_probe_wanted) {
5596 		vd->vdev_probe_wanted = B_FALSE;
5597 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5598 	}
5599 
5600 	for (int c = 0; c < vd->vdev_children; c++)
5601 		spa_async_probe(spa, vd->vdev_child[c]);
5602 }
5603 
5604 static void
5605 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5606 {
5607 	sysevent_id_t eid;
5608 	nvlist_t *attr;
5609 	char *physpath;
5610 
5611 	if (!spa->spa_autoexpand)
5612 		return;
5613 
5614 	for (int c = 0; c < vd->vdev_children; c++) {
5615 		vdev_t *cvd = vd->vdev_child[c];
5616 		spa_async_autoexpand(spa, cvd);
5617 	}
5618 
5619 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5620 		return;
5621 
5622 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5623 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5624 
5625 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5626 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5627 
5628 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5629 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5630 
5631 	nvlist_free(attr);
5632 	kmem_free(physpath, MAXPATHLEN);
5633 }
5634 
5635 static void
5636 spa_async_thread(spa_t *spa)
5637 {
5638 	int tasks;
5639 
5640 	ASSERT(spa->spa_sync_on);
5641 
5642 	mutex_enter(&spa->spa_async_lock);
5643 	tasks = spa->spa_async_tasks;
5644 	spa->spa_async_tasks = 0;
5645 	mutex_exit(&spa->spa_async_lock);
5646 
5647 	/*
5648 	 * See if the config needs to be updated.
5649 	 */
5650 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5651 		uint64_t old_space, new_space;
5652 
5653 		mutex_enter(&spa_namespace_lock);
5654 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5655 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5656 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5657 		mutex_exit(&spa_namespace_lock);
5658 
5659 		/*
5660 		 * If the pool grew as a result of the config update,
5661 		 * then log an internal history event.
5662 		 */
5663 		if (new_space != old_space) {
5664 			spa_history_log_internal(spa, "vdev online", NULL,
5665 			    "pool '%s' size: %llu(+%llu)",
5666 			    spa_name(spa), new_space, new_space - old_space);
5667 		}
5668 	}
5669 
5670 	/*
5671 	 * See if any devices need to be marked REMOVED.
5672 	 */
5673 	if (tasks & SPA_ASYNC_REMOVE) {
5674 		spa_vdev_state_enter(spa, SCL_NONE);
5675 		spa_async_remove(spa, spa->spa_root_vdev);
5676 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5677 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5678 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5679 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5680 		(void) spa_vdev_state_exit(spa, NULL, 0);
5681 	}
5682 
5683 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5684 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5685 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5686 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5687 	}
5688 
5689 	/*
5690 	 * See if any devices need to be probed.
5691 	 */
5692 	if (tasks & SPA_ASYNC_PROBE) {
5693 		spa_vdev_state_enter(spa, SCL_NONE);
5694 		spa_async_probe(spa, spa->spa_root_vdev);
5695 		(void) spa_vdev_state_exit(spa, NULL, 0);
5696 	}
5697 
5698 	/*
5699 	 * If any devices are done replacing, detach them.
5700 	 */
5701 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5702 		spa_vdev_resilver_done(spa);
5703 
5704 	/*
5705 	 * Kick off a resilver.
5706 	 */
5707 	if (tasks & SPA_ASYNC_RESILVER)
5708 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5709 
5710 	/*
5711 	 * Let the world know that we're done.
5712 	 */
5713 	mutex_enter(&spa->spa_async_lock);
5714 	spa->spa_async_thread = NULL;
5715 	cv_broadcast(&spa->spa_async_cv);
5716 	mutex_exit(&spa->spa_async_lock);
5717 	thread_exit();
5718 }
5719 
5720 void
5721 spa_async_suspend(spa_t *spa)
5722 {
5723 	mutex_enter(&spa->spa_async_lock);
5724 	spa->spa_async_suspended++;
5725 	while (spa->spa_async_thread != NULL)
5726 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5727 	mutex_exit(&spa->spa_async_lock);
5728 }
5729 
5730 void
5731 spa_async_resume(spa_t *spa)
5732 {
5733 	mutex_enter(&spa->spa_async_lock);
5734 	ASSERT(spa->spa_async_suspended != 0);
5735 	spa->spa_async_suspended--;
5736 	mutex_exit(&spa->spa_async_lock);
5737 }
5738 
5739 static boolean_t
5740 spa_async_tasks_pending(spa_t *spa)
5741 {
5742 	uint_t non_config_tasks;
5743 	uint_t config_task;
5744 	boolean_t config_task_suspended;
5745 
5746 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5747 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5748 	if (spa->spa_ccw_fail_time == 0) {
5749 		config_task_suspended = B_FALSE;
5750 	} else {
5751 		config_task_suspended =
5752 		    (gethrtime() - spa->spa_ccw_fail_time) <
5753 		    (zfs_ccw_retry_interval * NANOSEC);
5754 	}
5755 
5756 	return (non_config_tasks || (config_task && !config_task_suspended));
5757 }
5758 
5759 static void
5760 spa_async_dispatch(spa_t *spa)
5761 {
5762 	mutex_enter(&spa->spa_async_lock);
5763 	if (spa_async_tasks_pending(spa) &&
5764 	    !spa->spa_async_suspended &&
5765 	    spa->spa_async_thread == NULL &&
5766 	    rootdir != NULL)
5767 		spa->spa_async_thread = thread_create(NULL, 0,
5768 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5769 	mutex_exit(&spa->spa_async_lock);
5770 }
5771 
5772 void
5773 spa_async_request(spa_t *spa, int task)
5774 {
5775 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5776 	mutex_enter(&spa->spa_async_lock);
5777 	spa->spa_async_tasks |= task;
5778 	mutex_exit(&spa->spa_async_lock);
5779 }
5780 
5781 /*
5782  * ==========================================================================
5783  * SPA syncing routines
5784  * ==========================================================================
5785  */
5786 
5787 static int
5788 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5789 {
5790 	bpobj_t *bpo = arg;
5791 	bpobj_enqueue(bpo, bp, tx);
5792 	return (0);
5793 }
5794 
5795 static int
5796 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5797 {
5798 	zio_t *zio = arg;
5799 
5800 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5801 	    zio->io_flags));
5802 	return (0);
5803 }
5804 
5805 /*
5806  * Note: this simple function is not inlined to make it easier to dtrace the
5807  * amount of time spent syncing frees.
5808  */
5809 static void
5810 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5811 {
5812 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5813 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5814 	VERIFY(zio_wait(zio) == 0);
5815 }
5816 
5817 /*
5818  * Note: this simple function is not inlined to make it easier to dtrace the
5819  * amount of time spent syncing deferred frees.
5820  */
5821 static void
5822 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5823 {
5824 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5825 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5826 	    spa_free_sync_cb, zio, tx), ==, 0);
5827 	VERIFY0(zio_wait(zio));
5828 }
5829 
5830 
5831 static void
5832 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5833 {
5834 	char *packed = NULL;
5835 	size_t bufsize;
5836 	size_t nvsize = 0;
5837 	dmu_buf_t *db;
5838 
5839 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5840 
5841 	/*
5842 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5843 	 * information.  This avoids the dmu_buf_will_dirty() path and
5844 	 * saves us a pre-read to get data we don't actually care about.
5845 	 */
5846 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5847 	packed = kmem_alloc(bufsize, KM_SLEEP);
5848 
5849 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5850 	    KM_SLEEP) == 0);
5851 	bzero(packed + nvsize, bufsize - nvsize);
5852 
5853 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5854 
5855 	kmem_free(packed, bufsize);
5856 
5857 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5858 	dmu_buf_will_dirty(db, tx);
5859 	*(uint64_t *)db->db_data = nvsize;
5860 	dmu_buf_rele(db, FTAG);
5861 }
5862 
5863 static void
5864 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5865     const char *config, const char *entry)
5866 {
5867 	nvlist_t *nvroot;
5868 	nvlist_t **list;
5869 	int i;
5870 
5871 	if (!sav->sav_sync)
5872 		return;
5873 
5874 	/*
5875 	 * Update the MOS nvlist describing the list of available devices.
5876 	 * spa_validate_aux() will have already made sure this nvlist is
5877 	 * valid and the vdevs are labeled appropriately.
5878 	 */
5879 	if (sav->sav_object == 0) {
5880 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5881 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5882 		    sizeof (uint64_t), tx);
5883 		VERIFY(zap_update(spa->spa_meta_objset,
5884 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5885 		    &sav->sav_object, tx) == 0);
5886 	}
5887 
5888 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5889 	if (sav->sav_count == 0) {
5890 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5891 	} else {
5892 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5893 		for (i = 0; i < sav->sav_count; i++)
5894 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5895 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5896 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5897 		    sav->sav_count) == 0);
5898 		for (i = 0; i < sav->sav_count; i++)
5899 			nvlist_free(list[i]);
5900 		kmem_free(list, sav->sav_count * sizeof (void *));
5901 	}
5902 
5903 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5904 	nvlist_free(nvroot);
5905 
5906 	sav->sav_sync = B_FALSE;
5907 }
5908 
5909 static void
5910 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5911 {
5912 	nvlist_t *config;
5913 
5914 	if (list_is_empty(&spa->spa_config_dirty_list))
5915 		return;
5916 
5917 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5918 
5919 	config = spa_config_generate(spa, spa->spa_root_vdev,
5920 	    dmu_tx_get_txg(tx), B_FALSE);
5921 
5922 	/*
5923 	 * If we're upgrading the spa version then make sure that
5924 	 * the config object gets updated with the correct version.
5925 	 */
5926 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5927 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5928 		    spa->spa_uberblock.ub_version);
5929 
5930 	spa_config_exit(spa, SCL_STATE, FTAG);
5931 
5932 	if (spa->spa_config_syncing)
5933 		nvlist_free(spa->spa_config_syncing);
5934 	spa->spa_config_syncing = config;
5935 
5936 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5937 }
5938 
5939 static void
5940 spa_sync_version(void *arg, dmu_tx_t *tx)
5941 {
5942 	uint64_t *versionp = arg;
5943 	uint64_t version = *versionp;
5944 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5945 
5946 	/*
5947 	 * Setting the version is special cased when first creating the pool.
5948 	 */
5949 	ASSERT(tx->tx_txg != TXG_INITIAL);
5950 
5951 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5952 	ASSERT(version >= spa_version(spa));
5953 
5954 	spa->spa_uberblock.ub_version = version;
5955 	vdev_config_dirty(spa->spa_root_vdev);
5956 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5957 }
5958 
5959 /*
5960  * Set zpool properties.
5961  */
5962 static void
5963 spa_sync_props(void *arg, dmu_tx_t *tx)
5964 {
5965 	nvlist_t *nvp = arg;
5966 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5967 	objset_t *mos = spa->spa_meta_objset;
5968 	nvpair_t *elem = NULL;
5969 
5970 	mutex_enter(&spa->spa_props_lock);
5971 
5972 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5973 		uint64_t intval;
5974 		char *strval, *fname;
5975 		zpool_prop_t prop;
5976 		const char *propname;
5977 		zprop_type_t proptype;
5978 		spa_feature_t fid;
5979 
5980 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5981 		case ZPROP_INVAL:
5982 			/*
5983 			 * We checked this earlier in spa_prop_validate().
5984 			 */
5985 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5986 
5987 			fname = strchr(nvpair_name(elem), '@') + 1;
5988 			VERIFY0(zfeature_lookup_name(fname, &fid));
5989 
5990 			spa_feature_enable(spa, fid, tx);
5991 			spa_history_log_internal(spa, "set", tx,
5992 			    "%s=enabled", nvpair_name(elem));
5993 			break;
5994 
5995 		case ZPOOL_PROP_VERSION:
5996 			intval = fnvpair_value_uint64(elem);
5997 			/*
5998 			 * The version is synced seperatly before other
5999 			 * properties and should be correct by now.
6000 			 */
6001 			ASSERT3U(spa_version(spa), >=, intval);
6002 			break;
6003 
6004 		case ZPOOL_PROP_ALTROOT:
6005 			/*
6006 			 * 'altroot' is a non-persistent property. It should
6007 			 * have been set temporarily at creation or import time.
6008 			 */
6009 			ASSERT(spa->spa_root != NULL);
6010 			break;
6011 
6012 		case ZPOOL_PROP_READONLY:
6013 		case ZPOOL_PROP_CACHEFILE:
6014 			/*
6015 			 * 'readonly' and 'cachefile' are also non-persisitent
6016 			 * properties.
6017 			 */
6018 			break;
6019 		case ZPOOL_PROP_COMMENT:
6020 			strval = fnvpair_value_string(elem);
6021 			if (spa->spa_comment != NULL)
6022 				spa_strfree(spa->spa_comment);
6023 			spa->spa_comment = spa_strdup(strval);
6024 			/*
6025 			 * We need to dirty the configuration on all the vdevs
6026 			 * so that their labels get updated.  It's unnecessary
6027 			 * to do this for pool creation since the vdev's
6028 			 * configuratoin has already been dirtied.
6029 			 */
6030 			if (tx->tx_txg != TXG_INITIAL)
6031 				vdev_config_dirty(spa->spa_root_vdev);
6032 			spa_history_log_internal(spa, "set", tx,
6033 			    "%s=%s", nvpair_name(elem), strval);
6034 			break;
6035 		default:
6036 			/*
6037 			 * Set pool property values in the poolprops mos object.
6038 			 */
6039 			if (spa->spa_pool_props_object == 0) {
6040 				spa->spa_pool_props_object =
6041 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6042 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6043 				    tx);
6044 			}
6045 
6046 			/* normalize the property name */
6047 			propname = zpool_prop_to_name(prop);
6048 			proptype = zpool_prop_get_type(prop);
6049 
6050 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6051 				ASSERT(proptype == PROP_TYPE_STRING);
6052 				strval = fnvpair_value_string(elem);
6053 				VERIFY0(zap_update(mos,
6054 				    spa->spa_pool_props_object, propname,
6055 				    1, strlen(strval) + 1, strval, tx));
6056 				spa_history_log_internal(spa, "set", tx,
6057 				    "%s=%s", nvpair_name(elem), strval);
6058 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6059 				intval = fnvpair_value_uint64(elem);
6060 
6061 				if (proptype == PROP_TYPE_INDEX) {
6062 					const char *unused;
6063 					VERIFY0(zpool_prop_index_to_string(
6064 					    prop, intval, &unused));
6065 				}
6066 				VERIFY0(zap_update(mos,
6067 				    spa->spa_pool_props_object, propname,
6068 				    8, 1, &intval, tx));
6069 				spa_history_log_internal(spa, "set", tx,
6070 				    "%s=%lld", nvpair_name(elem), intval);
6071 			} else {
6072 				ASSERT(0); /* not allowed */
6073 			}
6074 
6075 			switch (prop) {
6076 			case ZPOOL_PROP_DELEGATION:
6077 				spa->spa_delegation = intval;
6078 				break;
6079 			case ZPOOL_PROP_BOOTFS:
6080 				spa->spa_bootfs = intval;
6081 				break;
6082 			case ZPOOL_PROP_FAILUREMODE:
6083 				spa->spa_failmode = intval;
6084 				break;
6085 			case ZPOOL_PROP_AUTOEXPAND:
6086 				spa->spa_autoexpand = intval;
6087 				if (tx->tx_txg != TXG_INITIAL)
6088 					spa_async_request(spa,
6089 					    SPA_ASYNC_AUTOEXPAND);
6090 				break;
6091 			case ZPOOL_PROP_DEDUPDITTO:
6092 				spa->spa_dedup_ditto = intval;
6093 				break;
6094 			default:
6095 				break;
6096 			}
6097 		}
6098 
6099 	}
6100 
6101 	mutex_exit(&spa->spa_props_lock);
6102 }
6103 
6104 /*
6105  * Perform one-time upgrade on-disk changes.  spa_version() does not
6106  * reflect the new version this txg, so there must be no changes this
6107  * txg to anything that the upgrade code depends on after it executes.
6108  * Therefore this must be called after dsl_pool_sync() does the sync
6109  * tasks.
6110  */
6111 static void
6112 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6113 {
6114 	dsl_pool_t *dp = spa->spa_dsl_pool;
6115 
6116 	ASSERT(spa->spa_sync_pass == 1);
6117 
6118 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6119 
6120 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6121 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6122 		dsl_pool_create_origin(dp, tx);
6123 
6124 		/* Keeping the origin open increases spa_minref */
6125 		spa->spa_minref += 3;
6126 	}
6127 
6128 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6129 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6130 		dsl_pool_upgrade_clones(dp, tx);
6131 	}
6132 
6133 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6134 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6135 		dsl_pool_upgrade_dir_clones(dp, tx);
6136 
6137 		/* Keeping the freedir open increases spa_minref */
6138 		spa->spa_minref += 3;
6139 	}
6140 
6141 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6142 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6143 		spa_feature_create_zap_objects(spa, tx);
6144 	}
6145 
6146 	/*
6147 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6148 	 * when possibility to use lz4 compression for metadata was added
6149 	 * Old pools that have this feature enabled must be upgraded to have
6150 	 * this feature active
6151 	 */
6152 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6153 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6154 		    SPA_FEATURE_LZ4_COMPRESS);
6155 		boolean_t lz4_ac = spa_feature_is_active(spa,
6156 		    SPA_FEATURE_LZ4_COMPRESS);
6157 
6158 		if (lz4_en && !lz4_ac)
6159 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6160 	}
6161 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6162 }
6163 
6164 /*
6165  * Sync the specified transaction group.  New blocks may be dirtied as
6166  * part of the process, so we iterate until it converges.
6167  */
6168 void
6169 spa_sync(spa_t *spa, uint64_t txg)
6170 {
6171 	dsl_pool_t *dp = spa->spa_dsl_pool;
6172 	objset_t *mos = spa->spa_meta_objset;
6173 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6174 	vdev_t *rvd = spa->spa_root_vdev;
6175 	vdev_t *vd;
6176 	dmu_tx_t *tx;
6177 	int error;
6178 
6179 	VERIFY(spa_writeable(spa));
6180 
6181 	/*
6182 	 * Lock out configuration changes.
6183 	 */
6184 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6185 
6186 	spa->spa_syncing_txg = txg;
6187 	spa->spa_sync_pass = 0;
6188 
6189 	/*
6190 	 * If there are any pending vdev state changes, convert them
6191 	 * into config changes that go out with this transaction group.
6192 	 */
6193 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6194 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6195 		/*
6196 		 * We need the write lock here because, for aux vdevs,
6197 		 * calling vdev_config_dirty() modifies sav_config.
6198 		 * This is ugly and will become unnecessary when we
6199 		 * eliminate the aux vdev wart by integrating all vdevs
6200 		 * into the root vdev tree.
6201 		 */
6202 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6203 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6204 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6205 			vdev_state_clean(vd);
6206 			vdev_config_dirty(vd);
6207 		}
6208 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6209 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6210 	}
6211 	spa_config_exit(spa, SCL_STATE, FTAG);
6212 
6213 	tx = dmu_tx_create_assigned(dp, txg);
6214 
6215 	spa->spa_sync_starttime = gethrtime();
6216 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6217 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6218 
6219 	/*
6220 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6221 	 * set spa_deflate if we have no raid-z vdevs.
6222 	 */
6223 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6224 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6225 		int i;
6226 
6227 		for (i = 0; i < rvd->vdev_children; i++) {
6228 			vd = rvd->vdev_child[i];
6229 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6230 				break;
6231 		}
6232 		if (i == rvd->vdev_children) {
6233 			spa->spa_deflate = TRUE;
6234 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6235 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6236 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6237 		}
6238 	}
6239 
6240 	/*
6241 	 * If anything has changed in this txg, or if someone is waiting
6242 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6243 	 * deferred frees from the previous txg.  If not, leave them
6244 	 * alone so that we don't generate work on an otherwise idle
6245 	 * system.
6246 	 */
6247 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6248 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6249 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6250 	    ((dsl_scan_active(dp->dp_scan) ||
6251 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6252 		spa_sync_deferred_frees(spa, tx);
6253 	}
6254 
6255 	/*
6256 	 * Iterate to convergence.
6257 	 */
6258 	do {
6259 		int pass = ++spa->spa_sync_pass;
6260 
6261 		spa_sync_config_object(spa, tx);
6262 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6263 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6264 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6265 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6266 		spa_errlog_sync(spa, txg);
6267 		dsl_pool_sync(dp, txg);
6268 
6269 		if (pass < zfs_sync_pass_deferred_free) {
6270 			spa_sync_frees(spa, free_bpl, tx);
6271 		} else {
6272 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6273 			    &spa->spa_deferred_bpobj, tx);
6274 		}
6275 
6276 		ddt_sync(spa, txg);
6277 		dsl_scan_sync(dp, tx);
6278 
6279 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6280 			vdev_sync(vd, txg);
6281 
6282 		if (pass == 1)
6283 			spa_sync_upgrades(spa, tx);
6284 
6285 	} while (dmu_objset_is_dirty(mos, txg));
6286 
6287 	/*
6288 	 * Rewrite the vdev configuration (which includes the uberblock)
6289 	 * to commit the transaction group.
6290 	 *
6291 	 * If there are no dirty vdevs, we sync the uberblock to a few
6292 	 * random top-level vdevs that are known to be visible in the
6293 	 * config cache (see spa_vdev_add() for a complete description).
6294 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6295 	 */
6296 	for (;;) {
6297 		/*
6298 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6299 		 * while we're attempting to write the vdev labels.
6300 		 */
6301 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6302 
6303 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6304 			vdev_t *svd[SPA_DVAS_PER_BP];
6305 			int svdcount = 0;
6306 			int children = rvd->vdev_children;
6307 			int c0 = spa_get_random(children);
6308 
6309 			for (int c = 0; c < children; c++) {
6310 				vd = rvd->vdev_child[(c0 + c) % children];
6311 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6312 					continue;
6313 				svd[svdcount++] = vd;
6314 				if (svdcount == SPA_DVAS_PER_BP)
6315 					break;
6316 			}
6317 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6318 			if (error != 0)
6319 				error = vdev_config_sync(svd, svdcount, txg,
6320 				    B_TRUE);
6321 		} else {
6322 			error = vdev_config_sync(rvd->vdev_child,
6323 			    rvd->vdev_children, txg, B_FALSE);
6324 			if (error != 0)
6325 				error = vdev_config_sync(rvd->vdev_child,
6326 				    rvd->vdev_children, txg, B_TRUE);
6327 		}
6328 
6329 		if (error == 0)
6330 			spa->spa_last_synced_guid = rvd->vdev_guid;
6331 
6332 		spa_config_exit(spa, SCL_STATE, FTAG);
6333 
6334 		if (error == 0)
6335 			break;
6336 		zio_suspend(spa, NULL);
6337 		zio_resume_wait(spa);
6338 	}
6339 	dmu_tx_commit(tx);
6340 
6341 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6342 
6343 	/*
6344 	 * Clear the dirty config list.
6345 	 */
6346 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6347 		vdev_config_clean(vd);
6348 
6349 	/*
6350 	 * Now that the new config has synced transactionally,
6351 	 * let it become visible to the config cache.
6352 	 */
6353 	if (spa->spa_config_syncing != NULL) {
6354 		spa_config_set(spa, spa->spa_config_syncing);
6355 		spa->spa_config_txg = txg;
6356 		spa->spa_config_syncing = NULL;
6357 	}
6358 
6359 	spa->spa_ubsync = spa->spa_uberblock;
6360 
6361 	dsl_pool_sync_done(dp, txg);
6362 
6363 	/*
6364 	 * Update usable space statistics.
6365 	 */
6366 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6367 		vdev_sync_done(vd, txg);
6368 
6369 	spa_update_dspace(spa);
6370 
6371 	/*
6372 	 * It had better be the case that we didn't dirty anything
6373 	 * since vdev_config_sync().
6374 	 */
6375 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6376 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6377 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6378 
6379 	spa->spa_sync_pass = 0;
6380 
6381 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6382 
6383 	spa_handle_ignored_writes(spa);
6384 
6385 	/*
6386 	 * If any async tasks have been requested, kick them off.
6387 	 */
6388 	spa_async_dispatch(spa);
6389 }
6390 
6391 /*
6392  * Sync all pools.  We don't want to hold the namespace lock across these
6393  * operations, so we take a reference on the spa_t and drop the lock during the
6394  * sync.
6395  */
6396 void
6397 spa_sync_allpools(void)
6398 {
6399 	spa_t *spa = NULL;
6400 	mutex_enter(&spa_namespace_lock);
6401 	while ((spa = spa_next(spa)) != NULL) {
6402 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6403 		    !spa_writeable(spa) || spa_suspended(spa))
6404 			continue;
6405 		spa_open_ref(spa, FTAG);
6406 		mutex_exit(&spa_namespace_lock);
6407 		txg_wait_synced(spa_get_dsl(spa), 0);
6408 		mutex_enter(&spa_namespace_lock);
6409 		spa_close(spa, FTAG);
6410 	}
6411 	mutex_exit(&spa_namespace_lock);
6412 }
6413 
6414 /*
6415  * ==========================================================================
6416  * Miscellaneous routines
6417  * ==========================================================================
6418  */
6419 
6420 /*
6421  * Remove all pools in the system.
6422  */
6423 void
6424 spa_evict_all(void)
6425 {
6426 	spa_t *spa;
6427 
6428 	/*
6429 	 * Remove all cached state.  All pools should be closed now,
6430 	 * so every spa in the AVL tree should be unreferenced.
6431 	 */
6432 	mutex_enter(&spa_namespace_lock);
6433 	while ((spa = spa_next(NULL)) != NULL) {
6434 		/*
6435 		 * Stop async tasks.  The async thread may need to detach
6436 		 * a device that's been replaced, which requires grabbing
6437 		 * spa_namespace_lock, so we must drop it here.
6438 		 */
6439 		spa_open_ref(spa, FTAG);
6440 		mutex_exit(&spa_namespace_lock);
6441 		spa_async_suspend(spa);
6442 		mutex_enter(&spa_namespace_lock);
6443 		spa_close(spa, FTAG);
6444 
6445 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6446 			spa_unload(spa);
6447 			spa_deactivate(spa);
6448 		}
6449 		spa_remove(spa);
6450 	}
6451 	mutex_exit(&spa_namespace_lock);
6452 }
6453 
6454 vdev_t *
6455 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6456 {
6457 	vdev_t *vd;
6458 	int i;
6459 
6460 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6461 		return (vd);
6462 
6463 	if (aux) {
6464 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6465 			vd = spa->spa_l2cache.sav_vdevs[i];
6466 			if (vd->vdev_guid == guid)
6467 				return (vd);
6468 		}
6469 
6470 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6471 			vd = spa->spa_spares.sav_vdevs[i];
6472 			if (vd->vdev_guid == guid)
6473 				return (vd);
6474 		}
6475 	}
6476 
6477 	return (NULL);
6478 }
6479 
6480 void
6481 spa_upgrade(spa_t *spa, uint64_t version)
6482 {
6483 	ASSERT(spa_writeable(spa));
6484 
6485 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6486 
6487 	/*
6488 	 * This should only be called for a non-faulted pool, and since a
6489 	 * future version would result in an unopenable pool, this shouldn't be
6490 	 * possible.
6491 	 */
6492 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6493 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6494 
6495 	spa->spa_uberblock.ub_version = version;
6496 	vdev_config_dirty(spa->spa_root_vdev);
6497 
6498 	spa_config_exit(spa, SCL_ALL, FTAG);
6499 
6500 	txg_wait_synced(spa_get_dsl(spa), 0);
6501 }
6502 
6503 boolean_t
6504 spa_has_spare(spa_t *spa, uint64_t guid)
6505 {
6506 	int i;
6507 	uint64_t spareguid;
6508 	spa_aux_vdev_t *sav = &spa->spa_spares;
6509 
6510 	for (i = 0; i < sav->sav_count; i++)
6511 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6512 			return (B_TRUE);
6513 
6514 	for (i = 0; i < sav->sav_npending; i++) {
6515 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6516 		    &spareguid) == 0 && spareguid == guid)
6517 			return (B_TRUE);
6518 	}
6519 
6520 	return (B_FALSE);
6521 }
6522 
6523 /*
6524  * Check if a pool has an active shared spare device.
6525  * Note: reference count of an active spare is 2, as a spare and as a replace
6526  */
6527 static boolean_t
6528 spa_has_active_shared_spare(spa_t *spa)
6529 {
6530 	int i, refcnt;
6531 	uint64_t pool;
6532 	spa_aux_vdev_t *sav = &spa->spa_spares;
6533 
6534 	for (i = 0; i < sav->sav_count; i++) {
6535 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6536 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6537 		    refcnt > 2)
6538 			return (B_TRUE);
6539 	}
6540 
6541 	return (B_FALSE);
6542 }
6543 
6544 /*
6545  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6546  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6547  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6548  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6549  * or zdb as real changes.
6550  */
6551 void
6552 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6553 {
6554 #ifdef _KERNEL
6555 	sysevent_t		*ev;
6556 	sysevent_attr_list_t	*attr = NULL;
6557 	sysevent_value_t	value;
6558 	sysevent_id_t		eid;
6559 
6560 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6561 	    SE_SLEEP);
6562 
6563 	value.value_type = SE_DATA_TYPE_STRING;
6564 	value.value.sv_string = spa_name(spa);
6565 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6566 		goto done;
6567 
6568 	value.value_type = SE_DATA_TYPE_UINT64;
6569 	value.value.sv_uint64 = spa_guid(spa);
6570 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6571 		goto done;
6572 
6573 	if (vd) {
6574 		value.value_type = SE_DATA_TYPE_UINT64;
6575 		value.value.sv_uint64 = vd->vdev_guid;
6576 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6577 		    SE_SLEEP) != 0)
6578 			goto done;
6579 
6580 		if (vd->vdev_path) {
6581 			value.value_type = SE_DATA_TYPE_STRING;
6582 			value.value.sv_string = vd->vdev_path;
6583 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6584 			    &value, SE_SLEEP) != 0)
6585 				goto done;
6586 		}
6587 	}
6588 
6589 	if (sysevent_attach_attributes(ev, attr) != 0)
6590 		goto done;
6591 	attr = NULL;
6592 
6593 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6594 
6595 done:
6596 	if (attr)
6597 		sysevent_free_attr(attr);
6598 	sysevent_free(ev);
6599 #endif
6600 }
6601