xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision e144c4e6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2017 Joyent, Inc.
31  * Copyright (c) 2017 Datto Inc.
32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33  */
34 
35 /*
36  * SPA: Storage Pool Allocator
37  *
38  * This file contains all the routines used when modifying on-disk SPA state.
39  * This includes opening, importing, destroying, exporting a pool, and syncing a
40  * pool.
41  */
42 
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/metaslab.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/bpobj.h>
63 #include <sys/dmu_traverse.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/unique.h>
66 #include <sys/dsl_pool.h>
67 #include <sys/dsl_dataset.h>
68 #include <sys/dsl_dir.h>
69 #include <sys/dsl_prop.h>
70 #include <sys/dsl_synctask.h>
71 #include <sys/fs/zfs.h>
72 #include <sys/arc.h>
73 #include <sys/callb.h>
74 #include <sys/systeminfo.h>
75 #include <sys/spa_boot.h>
76 #include <sys/zfs_ioctl.h>
77 #include <sys/dsl_scan.h>
78 #include <sys/zfeature.h>
79 #include <sys/dsl_destroy.h>
80 #include <sys/abd.h>
81 
82 #ifdef	_KERNEL
83 #include <sys/bootprops.h>
84 #include <sys/callb.h>
85 #include <sys/cpupart.h>
86 #include <sys/pool.h>
87 #include <sys/sysdc.h>
88 #include <sys/zone.h>
89 #endif	/* _KERNEL */
90 
91 #include "zfs_prop.h"
92 #include "zfs_comutil.h"
93 
94 /*
95  * The interval, in seconds, at which failed configuration cache file writes
96  * should be retried.
97  */
98 int zfs_ccw_retry_interval = 300;
99 
100 typedef enum zti_modes {
101 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
102 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
103 	ZTI_MODE_NULL,			/* don't create a taskq */
104 	ZTI_NMODES
105 } zti_modes_t;
106 
107 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
108 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
109 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
110 
111 #define	ZTI_N(n)	ZTI_P(n, 1)
112 #define	ZTI_ONE		ZTI_N(1)
113 
114 typedef struct zio_taskq_info {
115 	zti_modes_t zti_mode;
116 	uint_t zti_value;
117 	uint_t zti_count;
118 } zio_taskq_info_t;
119 
120 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
121 	"issue", "issue_high", "intr", "intr_high"
122 };
123 
124 /*
125  * This table defines the taskq settings for each ZFS I/O type. When
126  * initializing a pool, we use this table to create an appropriately sized
127  * taskq. Some operations are low volume and therefore have a small, static
128  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
129  * macros. Other operations process a large amount of data; the ZTI_BATCH
130  * macro causes us to create a taskq oriented for throughput. Some operations
131  * are so high frequency and short-lived that the taskq itself can become a a
132  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
133  * additional degree of parallelism specified by the number of threads per-
134  * taskq and the number of taskqs; when dispatching an event in this case, the
135  * particular taskq is chosen at random.
136  *
137  * The different taskq priorities are to handle the different contexts (issue
138  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
139  * need to be handled with minimum delay.
140  */
141 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
142 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
143 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
144 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
145 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
146 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
149 };
150 
151 static void spa_sync_version(void *arg, dmu_tx_t *tx);
152 static void spa_sync_props(void *arg, dmu_tx_t *tx);
153 static boolean_t spa_has_active_shared_spare(spa_t *spa);
154 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
155     spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
156     char **ereport);
157 static void spa_vdev_resilver_done(spa_t *spa);
158 
159 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
160 id_t		zio_taskq_psrset_bind = PS_NONE;
161 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
163 
164 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
165 extern int	zfs_sync_pass_deferred_free;
166 
167 /*
168  * Report any spa_load_verify errors found, but do not fail spa_load.
169  * This is used by zdb to analyze non-idle pools.
170  */
171 boolean_t	spa_load_verify_dryrun = B_FALSE;
172 
173 /*
174  * This (illegal) pool name is used when temporarily importing a spa_t in order
175  * to get the vdev stats associated with the imported devices.
176  */
177 #define	TRYIMPORT_NAME	"$import"
178 
179 /*
180  * ==========================================================================
181  * SPA properties routines
182  * ==========================================================================
183  */
184 
185 /*
186  * Add a (source=src, propname=propval) list to an nvlist.
187  */
188 static void
189 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
190     uint64_t intval, zprop_source_t src)
191 {
192 	const char *propname = zpool_prop_to_name(prop);
193 	nvlist_t *propval;
194 
195 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
197 
198 	if (strval != NULL)
199 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
200 	else
201 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
202 
203 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
204 	nvlist_free(propval);
205 }
206 
207 /*
208  * Get property values from the spa configuration.
209  */
210 static void
211 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
212 {
213 	vdev_t *rvd = spa->spa_root_vdev;
214 	dsl_pool_t *pool = spa->spa_dsl_pool;
215 	uint64_t size, alloc, cap, version;
216 	zprop_source_t src = ZPROP_SRC_NONE;
217 	spa_config_dirent_t *dp;
218 	metaslab_class_t *mc = spa_normal_class(spa);
219 
220 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
221 
222 	if (rvd != NULL) {
223 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
224 		size = metaslab_class_get_space(spa_normal_class(spa));
225 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
228 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
229 		    size - alloc, src);
230 
231 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
232 		    metaslab_class_fragmentation(mc), src);
233 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
234 		    metaslab_class_expandable_space(mc), src);
235 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
236 		    (spa_mode(spa) == FREAD), src);
237 
238 		cap = (size == 0) ? 0 : (alloc * 100 / size);
239 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
240 
241 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
242 		    ddt_get_pool_dedup_ratio(spa), src);
243 
244 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
245 		    rvd->vdev_state, src);
246 
247 		version = spa_version(spa);
248 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
249 			src = ZPROP_SRC_DEFAULT;
250 		else
251 			src = ZPROP_SRC_LOCAL;
252 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
253 	}
254 
255 	if (pool != NULL) {
256 		/*
257 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
258 		 * when opening pools before this version freedir will be NULL.
259 		 */
260 		if (pool->dp_free_dir != NULL) {
261 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
262 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
263 			    src);
264 		} else {
265 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
266 			    NULL, 0, src);
267 		}
268 
269 		if (pool->dp_leak_dir != NULL) {
270 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
271 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
272 			    src);
273 		} else {
274 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
275 			    NULL, 0, src);
276 		}
277 	}
278 
279 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
280 
281 	if (spa->spa_comment != NULL) {
282 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
283 		    0, ZPROP_SRC_LOCAL);
284 	}
285 
286 	if (spa->spa_root != NULL)
287 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
288 		    0, ZPROP_SRC_LOCAL);
289 
290 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
291 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
292 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
293 	} else {
294 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
295 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
296 	}
297 
298 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
299 		if (dp->scd_path == NULL) {
300 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
301 			    "none", 0, ZPROP_SRC_LOCAL);
302 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
303 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
304 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
305 		}
306 	}
307 }
308 
309 /*
310  * Get zpool property values.
311  */
312 int
313 spa_prop_get(spa_t *spa, nvlist_t **nvp)
314 {
315 	objset_t *mos = spa->spa_meta_objset;
316 	zap_cursor_t zc;
317 	zap_attribute_t za;
318 	int err;
319 
320 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
321 
322 	mutex_enter(&spa->spa_props_lock);
323 
324 	/*
325 	 * Get properties from the spa config.
326 	 */
327 	spa_prop_get_config(spa, nvp);
328 
329 	/* If no pool property object, no more prop to get. */
330 	if (mos == NULL || spa->spa_pool_props_object == 0) {
331 		mutex_exit(&spa->spa_props_lock);
332 		return (0);
333 	}
334 
335 	/*
336 	 * Get properties from the MOS pool property object.
337 	 */
338 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
339 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
340 	    zap_cursor_advance(&zc)) {
341 		uint64_t intval = 0;
342 		char *strval = NULL;
343 		zprop_source_t src = ZPROP_SRC_DEFAULT;
344 		zpool_prop_t prop;
345 
346 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
347 			continue;
348 
349 		switch (za.za_integer_length) {
350 		case 8:
351 			/* integer property */
352 			if (za.za_first_integer !=
353 			    zpool_prop_default_numeric(prop))
354 				src = ZPROP_SRC_LOCAL;
355 
356 			if (prop == ZPOOL_PROP_BOOTFS) {
357 				dsl_pool_t *dp;
358 				dsl_dataset_t *ds = NULL;
359 
360 				dp = spa_get_dsl(spa);
361 				dsl_pool_config_enter(dp, FTAG);
362 				if (err = dsl_dataset_hold_obj(dp,
363 				    za.za_first_integer, FTAG, &ds)) {
364 					dsl_pool_config_exit(dp, FTAG);
365 					break;
366 				}
367 
368 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
369 				    KM_SLEEP);
370 				dsl_dataset_name(ds, strval);
371 				dsl_dataset_rele(ds, FTAG);
372 				dsl_pool_config_exit(dp, FTAG);
373 			} else {
374 				strval = NULL;
375 				intval = za.za_first_integer;
376 			}
377 
378 			spa_prop_add_list(*nvp, prop, strval, intval, src);
379 
380 			if (strval != NULL)
381 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
382 
383 			break;
384 
385 		case 1:
386 			/* string property */
387 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
388 			err = zap_lookup(mos, spa->spa_pool_props_object,
389 			    za.za_name, 1, za.za_num_integers, strval);
390 			if (err) {
391 				kmem_free(strval, za.za_num_integers);
392 				break;
393 			}
394 			spa_prop_add_list(*nvp, prop, strval, 0, src);
395 			kmem_free(strval, za.za_num_integers);
396 			break;
397 
398 		default:
399 			break;
400 		}
401 	}
402 	zap_cursor_fini(&zc);
403 	mutex_exit(&spa->spa_props_lock);
404 out:
405 	if (err && err != ENOENT) {
406 		nvlist_free(*nvp);
407 		*nvp = NULL;
408 		return (err);
409 	}
410 
411 	return (0);
412 }
413 
414 /*
415  * Validate the given pool properties nvlist and modify the list
416  * for the property values to be set.
417  */
418 static int
419 spa_prop_validate(spa_t *spa, nvlist_t *props)
420 {
421 	nvpair_t *elem;
422 	int error = 0, reset_bootfs = 0;
423 	uint64_t objnum = 0;
424 	boolean_t has_feature = B_FALSE;
425 
426 	elem = NULL;
427 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
428 		uint64_t intval;
429 		char *strval, *slash, *check, *fname;
430 		const char *propname = nvpair_name(elem);
431 		zpool_prop_t prop = zpool_name_to_prop(propname);
432 
433 		switch (prop) {
434 		case ZPOOL_PROP_INVAL:
435 			if (!zpool_prop_feature(propname)) {
436 				error = SET_ERROR(EINVAL);
437 				break;
438 			}
439 
440 			/*
441 			 * Sanitize the input.
442 			 */
443 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
444 				error = SET_ERROR(EINVAL);
445 				break;
446 			}
447 
448 			if (nvpair_value_uint64(elem, &intval) != 0) {
449 				error = SET_ERROR(EINVAL);
450 				break;
451 			}
452 
453 			if (intval != 0) {
454 				error = SET_ERROR(EINVAL);
455 				break;
456 			}
457 
458 			fname = strchr(propname, '@') + 1;
459 			if (zfeature_lookup_name(fname, NULL) != 0) {
460 				error = SET_ERROR(EINVAL);
461 				break;
462 			}
463 
464 			has_feature = B_TRUE;
465 			break;
466 
467 		case ZPOOL_PROP_VERSION:
468 			error = nvpair_value_uint64(elem, &intval);
469 			if (!error &&
470 			    (intval < spa_version(spa) ||
471 			    intval > SPA_VERSION_BEFORE_FEATURES ||
472 			    has_feature))
473 				error = SET_ERROR(EINVAL);
474 			break;
475 
476 		case ZPOOL_PROP_DELEGATION:
477 		case ZPOOL_PROP_AUTOREPLACE:
478 		case ZPOOL_PROP_LISTSNAPS:
479 		case ZPOOL_PROP_AUTOEXPAND:
480 			error = nvpair_value_uint64(elem, &intval);
481 			if (!error && intval > 1)
482 				error = SET_ERROR(EINVAL);
483 			break;
484 
485 		case ZPOOL_PROP_BOOTFS:
486 			/*
487 			 * If the pool version is less than SPA_VERSION_BOOTFS,
488 			 * or the pool is still being created (version == 0),
489 			 * the bootfs property cannot be set.
490 			 */
491 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
492 				error = SET_ERROR(ENOTSUP);
493 				break;
494 			}
495 
496 			/*
497 			 * Make sure the vdev config is bootable
498 			 */
499 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
500 				error = SET_ERROR(ENOTSUP);
501 				break;
502 			}
503 
504 			reset_bootfs = 1;
505 
506 			error = nvpair_value_string(elem, &strval);
507 
508 			if (!error) {
509 				objset_t *os;
510 				uint64_t propval;
511 
512 				if (strval == NULL || strval[0] == '\0') {
513 					objnum = zpool_prop_default_numeric(
514 					    ZPOOL_PROP_BOOTFS);
515 					break;
516 				}
517 
518 				if (error = dmu_objset_hold(strval, FTAG, &os))
519 					break;
520 
521 				/*
522 				 * Must be ZPL, and its property settings
523 				 * must be supported by GRUB (compression
524 				 * is not gzip, and large blocks are not used).
525 				 */
526 
527 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
528 					error = SET_ERROR(ENOTSUP);
529 				} else if ((error =
530 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
531 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
532 				    &propval)) == 0 &&
533 				    !BOOTFS_COMPRESS_VALID(propval)) {
534 					error = SET_ERROR(ENOTSUP);
535 				} else {
536 					objnum = dmu_objset_id(os);
537 				}
538 				dmu_objset_rele(os, FTAG);
539 			}
540 			break;
541 
542 		case ZPOOL_PROP_FAILUREMODE:
543 			error = nvpair_value_uint64(elem, &intval);
544 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
545 			    intval > ZIO_FAILURE_MODE_PANIC))
546 				error = SET_ERROR(EINVAL);
547 
548 			/*
549 			 * This is a special case which only occurs when
550 			 * the pool has completely failed. This allows
551 			 * the user to change the in-core failmode property
552 			 * without syncing it out to disk (I/Os might
553 			 * currently be blocked). We do this by returning
554 			 * EIO to the caller (spa_prop_set) to trick it
555 			 * into thinking we encountered a property validation
556 			 * error.
557 			 */
558 			if (!error && spa_suspended(spa)) {
559 				spa->spa_failmode = intval;
560 				error = SET_ERROR(EIO);
561 			}
562 			break;
563 
564 		case ZPOOL_PROP_CACHEFILE:
565 			if ((error = nvpair_value_string(elem, &strval)) != 0)
566 				break;
567 
568 			if (strval[0] == '\0')
569 				break;
570 
571 			if (strcmp(strval, "none") == 0)
572 				break;
573 
574 			if (strval[0] != '/') {
575 				error = SET_ERROR(EINVAL);
576 				break;
577 			}
578 
579 			slash = strrchr(strval, '/');
580 			ASSERT(slash != NULL);
581 
582 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
583 			    strcmp(slash, "/..") == 0)
584 				error = SET_ERROR(EINVAL);
585 			break;
586 
587 		case ZPOOL_PROP_COMMENT:
588 			if ((error = nvpair_value_string(elem, &strval)) != 0)
589 				break;
590 			for (check = strval; *check != '\0'; check++) {
591 				/*
592 				 * The kernel doesn't have an easy isprint()
593 				 * check.  For this kernel check, we merely
594 				 * check ASCII apart from DEL.  Fix this if
595 				 * there is an easy-to-use kernel isprint().
596 				 */
597 				if (*check >= 0x7f) {
598 					error = SET_ERROR(EINVAL);
599 					break;
600 				}
601 			}
602 			if (strlen(strval) > ZPROP_MAX_COMMENT)
603 				error = E2BIG;
604 			break;
605 
606 		case ZPOOL_PROP_DEDUPDITTO:
607 			if (spa_version(spa) < SPA_VERSION_DEDUP)
608 				error = SET_ERROR(ENOTSUP);
609 			else
610 				error = nvpair_value_uint64(elem, &intval);
611 			if (error == 0 &&
612 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
613 				error = SET_ERROR(EINVAL);
614 			break;
615 		}
616 
617 		if (error)
618 			break;
619 	}
620 
621 	if (!error && reset_bootfs) {
622 		error = nvlist_remove(props,
623 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
624 
625 		if (!error) {
626 			error = nvlist_add_uint64(props,
627 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
628 		}
629 	}
630 
631 	return (error);
632 }
633 
634 void
635 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
636 {
637 	char *cachefile;
638 	spa_config_dirent_t *dp;
639 
640 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
641 	    &cachefile) != 0)
642 		return;
643 
644 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
645 	    KM_SLEEP);
646 
647 	if (cachefile[0] == '\0')
648 		dp->scd_path = spa_strdup(spa_config_path);
649 	else if (strcmp(cachefile, "none") == 0)
650 		dp->scd_path = NULL;
651 	else
652 		dp->scd_path = spa_strdup(cachefile);
653 
654 	list_insert_head(&spa->spa_config_list, dp);
655 	if (need_sync)
656 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
657 }
658 
659 int
660 spa_prop_set(spa_t *spa, nvlist_t *nvp)
661 {
662 	int error;
663 	nvpair_t *elem = NULL;
664 	boolean_t need_sync = B_FALSE;
665 
666 	if ((error = spa_prop_validate(spa, nvp)) != 0)
667 		return (error);
668 
669 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
670 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
671 
672 		if (prop == ZPOOL_PROP_CACHEFILE ||
673 		    prop == ZPOOL_PROP_ALTROOT ||
674 		    prop == ZPOOL_PROP_READONLY)
675 			continue;
676 
677 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
678 			uint64_t ver;
679 
680 			if (prop == ZPOOL_PROP_VERSION) {
681 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
682 			} else {
683 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
684 				ver = SPA_VERSION_FEATURES;
685 				need_sync = B_TRUE;
686 			}
687 
688 			/* Save time if the version is already set. */
689 			if (ver == spa_version(spa))
690 				continue;
691 
692 			/*
693 			 * In addition to the pool directory object, we might
694 			 * create the pool properties object, the features for
695 			 * read object, the features for write object, or the
696 			 * feature descriptions object.
697 			 */
698 			error = dsl_sync_task(spa->spa_name, NULL,
699 			    spa_sync_version, &ver,
700 			    6, ZFS_SPACE_CHECK_RESERVED);
701 			if (error)
702 				return (error);
703 			continue;
704 		}
705 
706 		need_sync = B_TRUE;
707 		break;
708 	}
709 
710 	if (need_sync) {
711 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
712 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
713 	}
714 
715 	return (0);
716 }
717 
718 /*
719  * If the bootfs property value is dsobj, clear it.
720  */
721 void
722 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
723 {
724 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
725 		VERIFY(zap_remove(spa->spa_meta_objset,
726 		    spa->spa_pool_props_object,
727 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
728 		spa->spa_bootfs = 0;
729 	}
730 }
731 
732 /*ARGSUSED*/
733 static int
734 spa_change_guid_check(void *arg, dmu_tx_t *tx)
735 {
736 	uint64_t *newguid = arg;
737 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
738 	vdev_t *rvd = spa->spa_root_vdev;
739 	uint64_t vdev_state;
740 
741 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
742 	vdev_state = rvd->vdev_state;
743 	spa_config_exit(spa, SCL_STATE, FTAG);
744 
745 	if (vdev_state != VDEV_STATE_HEALTHY)
746 		return (SET_ERROR(ENXIO));
747 
748 	ASSERT3U(spa_guid(spa), !=, *newguid);
749 
750 	return (0);
751 }
752 
753 static void
754 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
755 {
756 	uint64_t *newguid = arg;
757 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
758 	uint64_t oldguid;
759 	vdev_t *rvd = spa->spa_root_vdev;
760 
761 	oldguid = spa_guid(spa);
762 
763 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
764 	rvd->vdev_guid = *newguid;
765 	rvd->vdev_guid_sum += (*newguid - oldguid);
766 	vdev_config_dirty(rvd);
767 	spa_config_exit(spa, SCL_STATE, FTAG);
768 
769 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
770 	    oldguid, *newguid);
771 }
772 
773 /*
774  * Change the GUID for the pool.  This is done so that we can later
775  * re-import a pool built from a clone of our own vdevs.  We will modify
776  * the root vdev's guid, our own pool guid, and then mark all of our
777  * vdevs dirty.  Note that we must make sure that all our vdevs are
778  * online when we do this, or else any vdevs that weren't present
779  * would be orphaned from our pool.  We are also going to issue a
780  * sysevent to update any watchers.
781  */
782 int
783 spa_change_guid(spa_t *spa)
784 {
785 	int error;
786 	uint64_t guid;
787 
788 	mutex_enter(&spa->spa_vdev_top_lock);
789 	mutex_enter(&spa_namespace_lock);
790 	guid = spa_generate_guid(NULL);
791 
792 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
793 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
794 
795 	if (error == 0) {
796 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
797 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
798 	}
799 
800 	mutex_exit(&spa_namespace_lock);
801 	mutex_exit(&spa->spa_vdev_top_lock);
802 
803 	return (error);
804 }
805 
806 /*
807  * ==========================================================================
808  * SPA state manipulation (open/create/destroy/import/export)
809  * ==========================================================================
810  */
811 
812 static int
813 spa_error_entry_compare(const void *a, const void *b)
814 {
815 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
816 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
817 	int ret;
818 
819 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
820 	    sizeof (zbookmark_phys_t));
821 
822 	if (ret < 0)
823 		return (-1);
824 	else if (ret > 0)
825 		return (1);
826 	else
827 		return (0);
828 }
829 
830 /*
831  * Utility function which retrieves copies of the current logs and
832  * re-initializes them in the process.
833  */
834 void
835 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
836 {
837 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
838 
839 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
840 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
841 
842 	avl_create(&spa->spa_errlist_scrub,
843 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
844 	    offsetof(spa_error_entry_t, se_avl));
845 	avl_create(&spa->spa_errlist_last,
846 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
847 	    offsetof(spa_error_entry_t, se_avl));
848 }
849 
850 static void
851 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
852 {
853 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
854 	enum zti_modes mode = ztip->zti_mode;
855 	uint_t value = ztip->zti_value;
856 	uint_t count = ztip->zti_count;
857 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
858 	char name[32];
859 	uint_t flags = 0;
860 	boolean_t batch = B_FALSE;
861 
862 	if (mode == ZTI_MODE_NULL) {
863 		tqs->stqs_count = 0;
864 		tqs->stqs_taskq = NULL;
865 		return;
866 	}
867 
868 	ASSERT3U(count, >, 0);
869 
870 	tqs->stqs_count = count;
871 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
872 
873 	switch (mode) {
874 	case ZTI_MODE_FIXED:
875 		ASSERT3U(value, >=, 1);
876 		value = MAX(value, 1);
877 		break;
878 
879 	case ZTI_MODE_BATCH:
880 		batch = B_TRUE;
881 		flags |= TASKQ_THREADS_CPU_PCT;
882 		value = zio_taskq_batch_pct;
883 		break;
884 
885 	default:
886 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
887 		    "spa_activate()",
888 		    zio_type_name[t], zio_taskq_types[q], mode, value);
889 		break;
890 	}
891 
892 	for (uint_t i = 0; i < count; i++) {
893 		taskq_t *tq;
894 
895 		if (count > 1) {
896 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
897 			    zio_type_name[t], zio_taskq_types[q], i);
898 		} else {
899 			(void) snprintf(name, sizeof (name), "%s_%s",
900 			    zio_type_name[t], zio_taskq_types[q]);
901 		}
902 
903 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
904 			if (batch)
905 				flags |= TASKQ_DC_BATCH;
906 
907 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
908 			    spa->spa_proc, zio_taskq_basedc, flags);
909 		} else {
910 			pri_t pri = maxclsyspri;
911 			/*
912 			 * The write issue taskq can be extremely CPU
913 			 * intensive.  Run it at slightly lower priority
914 			 * than the other taskqs.
915 			 */
916 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
917 				pri--;
918 
919 			tq = taskq_create_proc(name, value, pri, 50,
920 			    INT_MAX, spa->spa_proc, flags);
921 		}
922 
923 		tqs->stqs_taskq[i] = tq;
924 	}
925 }
926 
927 static void
928 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
929 {
930 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
931 
932 	if (tqs->stqs_taskq == NULL) {
933 		ASSERT0(tqs->stqs_count);
934 		return;
935 	}
936 
937 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
938 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
939 		taskq_destroy(tqs->stqs_taskq[i]);
940 	}
941 
942 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
943 	tqs->stqs_taskq = NULL;
944 }
945 
946 /*
947  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
948  * Note that a type may have multiple discrete taskqs to avoid lock contention
949  * on the taskq itself. In that case we choose which taskq at random by using
950  * the low bits of gethrtime().
951  */
952 void
953 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
954     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
955 {
956 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
957 	taskq_t *tq;
958 
959 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
960 	ASSERT3U(tqs->stqs_count, !=, 0);
961 
962 	if (tqs->stqs_count == 1) {
963 		tq = tqs->stqs_taskq[0];
964 	} else {
965 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
966 	}
967 
968 	taskq_dispatch_ent(tq, func, arg, flags, ent);
969 }
970 
971 static void
972 spa_create_zio_taskqs(spa_t *spa)
973 {
974 	for (int t = 0; t < ZIO_TYPES; t++) {
975 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
976 			spa_taskqs_init(spa, t, q);
977 		}
978 	}
979 }
980 
981 #ifdef _KERNEL
982 static void
983 spa_thread(void *arg)
984 {
985 	callb_cpr_t cprinfo;
986 
987 	spa_t *spa = arg;
988 	user_t *pu = PTOU(curproc);
989 
990 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
991 	    spa->spa_name);
992 
993 	ASSERT(curproc != &p0);
994 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
995 	    "zpool-%s", spa->spa_name);
996 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
997 
998 	/* bind this thread to the requested psrset */
999 	if (zio_taskq_psrset_bind != PS_NONE) {
1000 		pool_lock();
1001 		mutex_enter(&cpu_lock);
1002 		mutex_enter(&pidlock);
1003 		mutex_enter(&curproc->p_lock);
1004 
1005 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1006 		    0, NULL, NULL) == 0)  {
1007 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1008 		} else {
1009 			cmn_err(CE_WARN,
1010 			    "Couldn't bind process for zfs pool \"%s\" to "
1011 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1012 		}
1013 
1014 		mutex_exit(&curproc->p_lock);
1015 		mutex_exit(&pidlock);
1016 		mutex_exit(&cpu_lock);
1017 		pool_unlock();
1018 	}
1019 
1020 	if (zio_taskq_sysdc) {
1021 		sysdc_thread_enter(curthread, 100, 0);
1022 	}
1023 
1024 	spa->spa_proc = curproc;
1025 	spa->spa_did = curthread->t_did;
1026 
1027 	spa_create_zio_taskqs(spa);
1028 
1029 	mutex_enter(&spa->spa_proc_lock);
1030 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1031 
1032 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1033 	cv_broadcast(&spa->spa_proc_cv);
1034 
1035 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1036 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1037 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1038 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1039 
1040 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1041 	spa->spa_proc_state = SPA_PROC_GONE;
1042 	spa->spa_proc = &p0;
1043 	cv_broadcast(&spa->spa_proc_cv);
1044 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1045 
1046 	mutex_enter(&curproc->p_lock);
1047 	lwp_exit();
1048 }
1049 #endif
1050 
1051 /*
1052  * Activate an uninitialized pool.
1053  */
1054 static void
1055 spa_activate(spa_t *spa, int mode)
1056 {
1057 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1058 
1059 	spa->spa_state = POOL_STATE_ACTIVE;
1060 	spa->spa_mode = mode;
1061 
1062 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1063 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1064 
1065 	/* Try to create a covering process */
1066 	mutex_enter(&spa->spa_proc_lock);
1067 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1068 	ASSERT(spa->spa_proc == &p0);
1069 	spa->spa_did = 0;
1070 
1071 	/* Only create a process if we're going to be around a while. */
1072 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1073 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1074 		    NULL, 0) == 0) {
1075 			spa->spa_proc_state = SPA_PROC_CREATED;
1076 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1077 				cv_wait(&spa->spa_proc_cv,
1078 				    &spa->spa_proc_lock);
1079 			}
1080 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1081 			ASSERT(spa->spa_proc != &p0);
1082 			ASSERT(spa->spa_did != 0);
1083 		} else {
1084 #ifdef _KERNEL
1085 			cmn_err(CE_WARN,
1086 			    "Couldn't create process for zfs pool \"%s\"\n",
1087 			    spa->spa_name);
1088 #endif
1089 		}
1090 	}
1091 	mutex_exit(&spa->spa_proc_lock);
1092 
1093 	/* If we didn't create a process, we need to create our taskqs. */
1094 	if (spa->spa_proc == &p0) {
1095 		spa_create_zio_taskqs(spa);
1096 	}
1097 
1098 	for (size_t i = 0; i < TXG_SIZE; i++)
1099 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1100 
1101 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1102 	    offsetof(vdev_t, vdev_config_dirty_node));
1103 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1104 	    offsetof(objset_t, os_evicting_node));
1105 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1106 	    offsetof(vdev_t, vdev_state_dirty_node));
1107 
1108 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1109 	    offsetof(struct vdev, vdev_txg_node));
1110 
1111 	avl_create(&spa->spa_errlist_scrub,
1112 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1113 	    offsetof(spa_error_entry_t, se_avl));
1114 	avl_create(&spa->spa_errlist_last,
1115 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1116 	    offsetof(spa_error_entry_t, se_avl));
1117 }
1118 
1119 /*
1120  * Opposite of spa_activate().
1121  */
1122 static void
1123 spa_deactivate(spa_t *spa)
1124 {
1125 	ASSERT(spa->spa_sync_on == B_FALSE);
1126 	ASSERT(spa->spa_dsl_pool == NULL);
1127 	ASSERT(spa->spa_root_vdev == NULL);
1128 	ASSERT(spa->spa_async_zio_root == NULL);
1129 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1130 
1131 	spa_evicting_os_wait(spa);
1132 
1133 	txg_list_destroy(&spa->spa_vdev_txg_list);
1134 
1135 	list_destroy(&spa->spa_config_dirty_list);
1136 	list_destroy(&spa->spa_evicting_os_list);
1137 	list_destroy(&spa->spa_state_dirty_list);
1138 
1139 	for (int t = 0; t < ZIO_TYPES; t++) {
1140 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1141 			spa_taskqs_fini(spa, t, q);
1142 		}
1143 	}
1144 
1145 	for (size_t i = 0; i < TXG_SIZE; i++) {
1146 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1147 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1148 		spa->spa_txg_zio[i] = NULL;
1149 	}
1150 
1151 	metaslab_class_destroy(spa->spa_normal_class);
1152 	spa->spa_normal_class = NULL;
1153 
1154 	metaslab_class_destroy(spa->spa_log_class);
1155 	spa->spa_log_class = NULL;
1156 
1157 	/*
1158 	 * If this was part of an import or the open otherwise failed, we may
1159 	 * still have errors left in the queues.  Empty them just in case.
1160 	 */
1161 	spa_errlog_drain(spa);
1162 
1163 	avl_destroy(&spa->spa_errlist_scrub);
1164 	avl_destroy(&spa->spa_errlist_last);
1165 
1166 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1167 
1168 	mutex_enter(&spa->spa_proc_lock);
1169 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1170 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1171 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1172 		cv_broadcast(&spa->spa_proc_cv);
1173 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1174 			ASSERT(spa->spa_proc != &p0);
1175 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1176 		}
1177 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1178 		spa->spa_proc_state = SPA_PROC_NONE;
1179 	}
1180 	ASSERT(spa->spa_proc == &p0);
1181 	mutex_exit(&spa->spa_proc_lock);
1182 
1183 	/*
1184 	 * We want to make sure spa_thread() has actually exited the ZFS
1185 	 * module, so that the module can't be unloaded out from underneath
1186 	 * it.
1187 	 */
1188 	if (spa->spa_did != 0) {
1189 		thread_join(spa->spa_did);
1190 		spa->spa_did = 0;
1191 	}
1192 }
1193 
1194 /*
1195  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1196  * will create all the necessary vdevs in the appropriate layout, with each vdev
1197  * in the CLOSED state.  This will prep the pool before open/creation/import.
1198  * All vdev validation is done by the vdev_alloc() routine.
1199  */
1200 static int
1201 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1202     uint_t id, int atype)
1203 {
1204 	nvlist_t **child;
1205 	uint_t children;
1206 	int error;
1207 
1208 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1209 		return (error);
1210 
1211 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1212 		return (0);
1213 
1214 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1215 	    &child, &children);
1216 
1217 	if (error == ENOENT)
1218 		return (0);
1219 
1220 	if (error) {
1221 		vdev_free(*vdp);
1222 		*vdp = NULL;
1223 		return (SET_ERROR(EINVAL));
1224 	}
1225 
1226 	for (int c = 0; c < children; c++) {
1227 		vdev_t *vd;
1228 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1229 		    atype)) != 0) {
1230 			vdev_free(*vdp);
1231 			*vdp = NULL;
1232 			return (error);
1233 		}
1234 	}
1235 
1236 	ASSERT(*vdp != NULL);
1237 
1238 	return (0);
1239 }
1240 
1241 /*
1242  * Opposite of spa_load().
1243  */
1244 static void
1245 spa_unload(spa_t *spa)
1246 {
1247 	int i;
1248 
1249 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1250 
1251 	spa_load_note(spa, "UNLOADING");
1252 
1253 	/*
1254 	 * Stop async tasks.
1255 	 */
1256 	spa_async_suspend(spa);
1257 
1258 	/*
1259 	 * Stop syncing.
1260 	 */
1261 	if (spa->spa_sync_on) {
1262 		txg_sync_stop(spa->spa_dsl_pool);
1263 		spa->spa_sync_on = B_FALSE;
1264 	}
1265 
1266 	/*
1267 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1268 	 * to call it earlier, before we wait for async i/o to complete.
1269 	 * This ensures that there is no async metaslab prefetching, by
1270 	 * calling taskq_wait(mg_taskq).
1271 	 */
1272 	if (spa->spa_root_vdev != NULL) {
1273 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1274 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1275 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1276 		spa_config_exit(spa, SCL_ALL, FTAG);
1277 	}
1278 
1279 	/*
1280 	 * Wait for any outstanding async I/O to complete.
1281 	 */
1282 	if (spa->spa_async_zio_root != NULL) {
1283 		for (int i = 0; i < max_ncpus; i++)
1284 			(void) zio_wait(spa->spa_async_zio_root[i]);
1285 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1286 		spa->spa_async_zio_root = NULL;
1287 	}
1288 
1289 	if (spa->spa_vdev_removal != NULL) {
1290 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1291 		spa->spa_vdev_removal = NULL;
1292 	}
1293 
1294 	spa_condense_fini(spa);
1295 
1296 	bpobj_close(&spa->spa_deferred_bpobj);
1297 
1298 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1299 
1300 	/*
1301 	 * Close all vdevs.
1302 	 */
1303 	if (spa->spa_root_vdev)
1304 		vdev_free(spa->spa_root_vdev);
1305 	ASSERT(spa->spa_root_vdev == NULL);
1306 
1307 	/*
1308 	 * Close the dsl pool.
1309 	 */
1310 	if (spa->spa_dsl_pool) {
1311 		dsl_pool_close(spa->spa_dsl_pool);
1312 		spa->spa_dsl_pool = NULL;
1313 		spa->spa_meta_objset = NULL;
1314 	}
1315 
1316 	ddt_unload(spa);
1317 
1318 	/*
1319 	 * Drop and purge level 2 cache
1320 	 */
1321 	spa_l2cache_drop(spa);
1322 
1323 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1324 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1325 	if (spa->spa_spares.sav_vdevs) {
1326 		kmem_free(spa->spa_spares.sav_vdevs,
1327 		    spa->spa_spares.sav_count * sizeof (void *));
1328 		spa->spa_spares.sav_vdevs = NULL;
1329 	}
1330 	if (spa->spa_spares.sav_config) {
1331 		nvlist_free(spa->spa_spares.sav_config);
1332 		spa->spa_spares.sav_config = NULL;
1333 	}
1334 	spa->spa_spares.sav_count = 0;
1335 
1336 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1337 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1338 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1339 	}
1340 	if (spa->spa_l2cache.sav_vdevs) {
1341 		kmem_free(spa->spa_l2cache.sav_vdevs,
1342 		    spa->spa_l2cache.sav_count * sizeof (void *));
1343 		spa->spa_l2cache.sav_vdevs = NULL;
1344 	}
1345 	if (spa->spa_l2cache.sav_config) {
1346 		nvlist_free(spa->spa_l2cache.sav_config);
1347 		spa->spa_l2cache.sav_config = NULL;
1348 	}
1349 	spa->spa_l2cache.sav_count = 0;
1350 
1351 	spa->spa_async_suspended = 0;
1352 
1353 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1354 
1355 	if (spa->spa_comment != NULL) {
1356 		spa_strfree(spa->spa_comment);
1357 		spa->spa_comment = NULL;
1358 	}
1359 
1360 	spa_config_exit(spa, SCL_ALL, FTAG);
1361 }
1362 
1363 /*
1364  * Load (or re-load) the current list of vdevs describing the active spares for
1365  * this pool.  When this is called, we have some form of basic information in
1366  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1367  * then re-generate a more complete list including status information.
1368  */
1369 void
1370 spa_load_spares(spa_t *spa)
1371 {
1372 	nvlist_t **spares;
1373 	uint_t nspares;
1374 	int i;
1375 	vdev_t *vd, *tvd;
1376 
1377 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1378 
1379 	/*
1380 	 * First, close and free any existing spare vdevs.
1381 	 */
1382 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1383 		vd = spa->spa_spares.sav_vdevs[i];
1384 
1385 		/* Undo the call to spa_activate() below */
1386 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1387 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1388 			spa_spare_remove(tvd);
1389 		vdev_close(vd);
1390 		vdev_free(vd);
1391 	}
1392 
1393 	if (spa->spa_spares.sav_vdevs)
1394 		kmem_free(spa->spa_spares.sav_vdevs,
1395 		    spa->spa_spares.sav_count * sizeof (void *));
1396 
1397 	if (spa->spa_spares.sav_config == NULL)
1398 		nspares = 0;
1399 	else
1400 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1401 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1402 
1403 	spa->spa_spares.sav_count = (int)nspares;
1404 	spa->spa_spares.sav_vdevs = NULL;
1405 
1406 	if (nspares == 0)
1407 		return;
1408 
1409 	/*
1410 	 * Construct the array of vdevs, opening them to get status in the
1411 	 * process.   For each spare, there is potentially two different vdev_t
1412 	 * structures associated with it: one in the list of spares (used only
1413 	 * for basic validation purposes) and one in the active vdev
1414 	 * configuration (if it's spared in).  During this phase we open and
1415 	 * validate each vdev on the spare list.  If the vdev also exists in the
1416 	 * active configuration, then we also mark this vdev as an active spare.
1417 	 */
1418 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1419 	    KM_SLEEP);
1420 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1421 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1422 		    VDEV_ALLOC_SPARE) == 0);
1423 		ASSERT(vd != NULL);
1424 
1425 		spa->spa_spares.sav_vdevs[i] = vd;
1426 
1427 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1428 		    B_FALSE)) != NULL) {
1429 			if (!tvd->vdev_isspare)
1430 				spa_spare_add(tvd);
1431 
1432 			/*
1433 			 * We only mark the spare active if we were successfully
1434 			 * able to load the vdev.  Otherwise, importing a pool
1435 			 * with a bad active spare would result in strange
1436 			 * behavior, because multiple pool would think the spare
1437 			 * is actively in use.
1438 			 *
1439 			 * There is a vulnerability here to an equally bizarre
1440 			 * circumstance, where a dead active spare is later
1441 			 * brought back to life (onlined or otherwise).  Given
1442 			 * the rarity of this scenario, and the extra complexity
1443 			 * it adds, we ignore the possibility.
1444 			 */
1445 			if (!vdev_is_dead(tvd))
1446 				spa_spare_activate(tvd);
1447 		}
1448 
1449 		vd->vdev_top = vd;
1450 		vd->vdev_aux = &spa->spa_spares;
1451 
1452 		if (vdev_open(vd) != 0)
1453 			continue;
1454 
1455 		if (vdev_validate_aux(vd) == 0)
1456 			spa_spare_add(vd);
1457 	}
1458 
1459 	/*
1460 	 * Recompute the stashed list of spares, with status information
1461 	 * this time.
1462 	 */
1463 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1464 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1465 
1466 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1467 	    KM_SLEEP);
1468 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1469 		spares[i] = vdev_config_generate(spa,
1470 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1471 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1472 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1473 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1474 		nvlist_free(spares[i]);
1475 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1476 }
1477 
1478 /*
1479  * Load (or re-load) the current list of vdevs describing the active l2cache for
1480  * this pool.  When this is called, we have some form of basic information in
1481  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1482  * then re-generate a more complete list including status information.
1483  * Devices which are already active have their details maintained, and are
1484  * not re-opened.
1485  */
1486 void
1487 spa_load_l2cache(spa_t *spa)
1488 {
1489 	nvlist_t **l2cache;
1490 	uint_t nl2cache;
1491 	int i, j, oldnvdevs;
1492 	uint64_t guid;
1493 	vdev_t *vd, **oldvdevs, **newvdevs;
1494 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1495 
1496 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1497 
1498 	if (sav->sav_config != NULL) {
1499 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1500 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1501 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1502 	} else {
1503 		nl2cache = 0;
1504 		newvdevs = NULL;
1505 	}
1506 
1507 	oldvdevs = sav->sav_vdevs;
1508 	oldnvdevs = sav->sav_count;
1509 	sav->sav_vdevs = NULL;
1510 	sav->sav_count = 0;
1511 
1512 	/*
1513 	 * Process new nvlist of vdevs.
1514 	 */
1515 	for (i = 0; i < nl2cache; i++) {
1516 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1517 		    &guid) == 0);
1518 
1519 		newvdevs[i] = NULL;
1520 		for (j = 0; j < oldnvdevs; j++) {
1521 			vd = oldvdevs[j];
1522 			if (vd != NULL && guid == vd->vdev_guid) {
1523 				/*
1524 				 * Retain previous vdev for add/remove ops.
1525 				 */
1526 				newvdevs[i] = vd;
1527 				oldvdevs[j] = NULL;
1528 				break;
1529 			}
1530 		}
1531 
1532 		if (newvdevs[i] == NULL) {
1533 			/*
1534 			 * Create new vdev
1535 			 */
1536 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1537 			    VDEV_ALLOC_L2CACHE) == 0);
1538 			ASSERT(vd != NULL);
1539 			newvdevs[i] = vd;
1540 
1541 			/*
1542 			 * Commit this vdev as an l2cache device,
1543 			 * even if it fails to open.
1544 			 */
1545 			spa_l2cache_add(vd);
1546 
1547 			vd->vdev_top = vd;
1548 			vd->vdev_aux = sav;
1549 
1550 			spa_l2cache_activate(vd);
1551 
1552 			if (vdev_open(vd) != 0)
1553 				continue;
1554 
1555 			(void) vdev_validate_aux(vd);
1556 
1557 			if (!vdev_is_dead(vd))
1558 				l2arc_add_vdev(spa, vd);
1559 		}
1560 	}
1561 
1562 	/*
1563 	 * Purge vdevs that were dropped
1564 	 */
1565 	for (i = 0; i < oldnvdevs; i++) {
1566 		uint64_t pool;
1567 
1568 		vd = oldvdevs[i];
1569 		if (vd != NULL) {
1570 			ASSERT(vd->vdev_isl2cache);
1571 
1572 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1573 			    pool != 0ULL && l2arc_vdev_present(vd))
1574 				l2arc_remove_vdev(vd);
1575 			vdev_clear_stats(vd);
1576 			vdev_free(vd);
1577 		}
1578 	}
1579 
1580 	if (oldvdevs)
1581 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1582 
1583 	if (sav->sav_config == NULL)
1584 		goto out;
1585 
1586 	sav->sav_vdevs = newvdevs;
1587 	sav->sav_count = (int)nl2cache;
1588 
1589 	/*
1590 	 * Recompute the stashed list of l2cache devices, with status
1591 	 * information this time.
1592 	 */
1593 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1594 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1595 
1596 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1597 	for (i = 0; i < sav->sav_count; i++)
1598 		l2cache[i] = vdev_config_generate(spa,
1599 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1600 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1601 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1602 out:
1603 	for (i = 0; i < sav->sav_count; i++)
1604 		nvlist_free(l2cache[i]);
1605 	if (sav->sav_count)
1606 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1607 }
1608 
1609 static int
1610 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1611 {
1612 	dmu_buf_t *db;
1613 	char *packed = NULL;
1614 	size_t nvsize = 0;
1615 	int error;
1616 	*value = NULL;
1617 
1618 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1619 	if (error != 0)
1620 		return (error);
1621 
1622 	nvsize = *(uint64_t *)db->db_data;
1623 	dmu_buf_rele(db, FTAG);
1624 
1625 	packed = kmem_alloc(nvsize, KM_SLEEP);
1626 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1627 	    DMU_READ_PREFETCH);
1628 	if (error == 0)
1629 		error = nvlist_unpack(packed, nvsize, value, 0);
1630 	kmem_free(packed, nvsize);
1631 
1632 	return (error);
1633 }
1634 
1635 /*
1636  * Checks to see if the given vdev could not be opened, in which case we post a
1637  * sysevent to notify the autoreplace code that the device has been removed.
1638  */
1639 static void
1640 spa_check_removed(vdev_t *vd)
1641 {
1642 	for (int c = 0; c < vd->vdev_children; c++)
1643 		spa_check_removed(vd->vdev_child[c]);
1644 
1645 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1646 	    vdev_is_concrete(vd)) {
1647 		zfs_post_autoreplace(vd->vdev_spa, vd);
1648 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1649 	}
1650 }
1651 
1652 static void
1653 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1654 {
1655 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1656 
1657 	vd->vdev_top_zap = mvd->vdev_top_zap;
1658 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1659 
1660 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1661 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1662 	}
1663 }
1664 
1665 /*
1666  * Validate the current config against the MOS config
1667  */
1668 static boolean_t
1669 spa_config_valid(spa_t *spa, nvlist_t *config)
1670 {
1671 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1672 	nvlist_t *nv;
1673 
1674 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1675 
1676 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1677 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1678 
1679 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1680 
1681 	/*
1682 	 * If we're doing a normal import, then build up any additional
1683 	 * diagnostic information about missing devices in this config.
1684 	 * We'll pass this up to the user for further processing.
1685 	 */
1686 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1687 		nvlist_t **child, *nv;
1688 		uint64_t idx = 0;
1689 
1690 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1691 		    KM_SLEEP);
1692 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1693 
1694 		for (int c = 0; c < rvd->vdev_children; c++) {
1695 			vdev_t *tvd = rvd->vdev_child[c];
1696 			vdev_t *mtvd  = mrvd->vdev_child[c];
1697 
1698 			if (tvd->vdev_ops == &vdev_missing_ops &&
1699 			    mtvd->vdev_ops != &vdev_missing_ops &&
1700 			    mtvd->vdev_islog)
1701 				child[idx++] = vdev_config_generate(spa, mtvd,
1702 				    B_FALSE, 0);
1703 		}
1704 
1705 		if (idx) {
1706 			VERIFY(nvlist_add_nvlist_array(nv,
1707 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1708 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1709 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1710 
1711 			for (int i = 0; i < idx; i++)
1712 				nvlist_free(child[i]);
1713 		}
1714 		nvlist_free(nv);
1715 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1716 	}
1717 
1718 	/*
1719 	 * Compare the root vdev tree with the information we have
1720 	 * from the MOS config (mrvd). Check each top-level vdev
1721 	 * with the corresponding MOS config top-level (mtvd).
1722 	 */
1723 	for (int c = 0; c < rvd->vdev_children; c++) {
1724 		vdev_t *tvd = rvd->vdev_child[c];
1725 		vdev_t *mtvd  = mrvd->vdev_child[c];
1726 
1727 		/*
1728 		 * Resolve any "missing" vdevs in the current configuration.
1729 		 * Also trust the MOS config about any "indirect" vdevs.
1730 		 * If we find that the MOS config has more accurate information
1731 		 * about the top-level vdev then use that vdev instead.
1732 		 */
1733 		if ((tvd->vdev_ops == &vdev_missing_ops &&
1734 		    mtvd->vdev_ops != &vdev_missing_ops) ||
1735 		    (mtvd->vdev_ops == &vdev_indirect_ops &&
1736 		    tvd->vdev_ops != &vdev_indirect_ops)) {
1737 
1738 			/*
1739 			 * Device specific actions.
1740 			 */
1741 			if (mtvd->vdev_islog) {
1742 				if (!(spa->spa_import_flags &
1743 				    ZFS_IMPORT_MISSING_LOG)) {
1744 					continue;
1745 				}
1746 
1747 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1748 			} else if (mtvd->vdev_ops != &vdev_indirect_ops) {
1749 				continue;
1750 			}
1751 
1752 			/*
1753 			 * Swap the missing vdev with the data we were
1754 			 * able to obtain from the MOS config.
1755 			 */
1756 			vdev_remove_child(rvd, tvd);
1757 			vdev_remove_child(mrvd, mtvd);
1758 
1759 			vdev_add_child(rvd, mtvd);
1760 			vdev_add_child(mrvd, tvd);
1761 
1762 			vdev_reopen(rvd);
1763 		} else {
1764 			if (mtvd->vdev_islog) {
1765 				/*
1766 				 * Load the slog device's state from the MOS
1767 				 * config since it's possible that the label
1768 				 * does not contain the most up-to-date
1769 				 * information.
1770 				 */
1771 				vdev_load_log_state(tvd, mtvd);
1772 				vdev_reopen(tvd);
1773 			}
1774 
1775 			/*
1776 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1777 			 */
1778 			spa_config_valid_zaps(tvd, mtvd);
1779 		}
1780 
1781 		/*
1782 		 * Never trust this info from userland; always use what's
1783 		 * in the MOS.  This prevents it from getting out of sync
1784 		 * with the rest of the info in the MOS.
1785 		 */
1786 		tvd->vdev_removing = mtvd->vdev_removing;
1787 		tvd->vdev_indirect_config = mtvd->vdev_indirect_config;
1788 	}
1789 
1790 	vdev_free(mrvd);
1791 	spa_config_exit(spa, SCL_ALL, FTAG);
1792 
1793 	/*
1794 	 * Ensure we were able to validate the config.
1795 	 */
1796 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1797 }
1798 
1799 /*
1800  * Check for missing log devices
1801  */
1802 static boolean_t
1803 spa_check_logs(spa_t *spa)
1804 {
1805 	boolean_t rv = B_FALSE;
1806 	dsl_pool_t *dp = spa_get_dsl(spa);
1807 
1808 	switch (spa->spa_log_state) {
1809 	case SPA_LOG_MISSING:
1810 		/* need to recheck in case slog has been restored */
1811 	case SPA_LOG_UNKNOWN:
1812 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1813 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1814 		if (rv)
1815 			spa_set_log_state(spa, SPA_LOG_MISSING);
1816 		break;
1817 	}
1818 	return (rv);
1819 }
1820 
1821 static boolean_t
1822 spa_passivate_log(spa_t *spa)
1823 {
1824 	vdev_t *rvd = spa->spa_root_vdev;
1825 	boolean_t slog_found = B_FALSE;
1826 
1827 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1828 
1829 	if (!spa_has_slogs(spa))
1830 		return (B_FALSE);
1831 
1832 	for (int c = 0; c < rvd->vdev_children; c++) {
1833 		vdev_t *tvd = rvd->vdev_child[c];
1834 		metaslab_group_t *mg = tvd->vdev_mg;
1835 
1836 		if (tvd->vdev_islog) {
1837 			metaslab_group_passivate(mg);
1838 			slog_found = B_TRUE;
1839 		}
1840 	}
1841 
1842 	return (slog_found);
1843 }
1844 
1845 static void
1846 spa_activate_log(spa_t *spa)
1847 {
1848 	vdev_t *rvd = spa->spa_root_vdev;
1849 
1850 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1851 
1852 	for (int c = 0; c < rvd->vdev_children; c++) {
1853 		vdev_t *tvd = rvd->vdev_child[c];
1854 		metaslab_group_t *mg = tvd->vdev_mg;
1855 
1856 		if (tvd->vdev_islog)
1857 			metaslab_group_activate(mg);
1858 	}
1859 }
1860 
1861 int
1862 spa_reset_logs(spa_t *spa)
1863 {
1864 	int error;
1865 
1866 	error = dmu_objset_find(spa_name(spa), zil_reset,
1867 	    NULL, DS_FIND_CHILDREN);
1868 	if (error == 0) {
1869 		/*
1870 		 * We successfully offlined the log device, sync out the
1871 		 * current txg so that the "stubby" block can be removed
1872 		 * by zil_sync().
1873 		 */
1874 		txg_wait_synced(spa->spa_dsl_pool, 0);
1875 	}
1876 	return (error);
1877 }
1878 
1879 static void
1880 spa_aux_check_removed(spa_aux_vdev_t *sav)
1881 {
1882 	for (int i = 0; i < sav->sav_count; i++)
1883 		spa_check_removed(sav->sav_vdevs[i]);
1884 }
1885 
1886 void
1887 spa_claim_notify(zio_t *zio)
1888 {
1889 	spa_t *spa = zio->io_spa;
1890 
1891 	if (zio->io_error)
1892 		return;
1893 
1894 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1895 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1896 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1897 	mutex_exit(&spa->spa_props_lock);
1898 }
1899 
1900 typedef struct spa_load_error {
1901 	uint64_t	sle_meta_count;
1902 	uint64_t	sle_data_count;
1903 } spa_load_error_t;
1904 
1905 static void
1906 spa_load_verify_done(zio_t *zio)
1907 {
1908 	blkptr_t *bp = zio->io_bp;
1909 	spa_load_error_t *sle = zio->io_private;
1910 	dmu_object_type_t type = BP_GET_TYPE(bp);
1911 	int error = zio->io_error;
1912 	spa_t *spa = zio->io_spa;
1913 
1914 	abd_free(zio->io_abd);
1915 	if (error) {
1916 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1917 		    type != DMU_OT_INTENT_LOG)
1918 			atomic_inc_64(&sle->sle_meta_count);
1919 		else
1920 			atomic_inc_64(&sle->sle_data_count);
1921 	}
1922 
1923 	mutex_enter(&spa->spa_scrub_lock);
1924 	spa->spa_scrub_inflight--;
1925 	cv_broadcast(&spa->spa_scrub_io_cv);
1926 	mutex_exit(&spa->spa_scrub_lock);
1927 }
1928 
1929 /*
1930  * Maximum number of concurrent scrub i/os to create while verifying
1931  * a pool while importing it.
1932  */
1933 int spa_load_verify_maxinflight = 10000;
1934 boolean_t spa_load_verify_metadata = B_TRUE;
1935 boolean_t spa_load_verify_data = B_TRUE;
1936 
1937 /*ARGSUSED*/
1938 static int
1939 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1940     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1941 {
1942 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1943 		return (0);
1944 	/*
1945 	 * Note: normally this routine will not be called if
1946 	 * spa_load_verify_metadata is not set.  However, it may be useful
1947 	 * to manually set the flag after the traversal has begun.
1948 	 */
1949 	if (!spa_load_verify_metadata)
1950 		return (0);
1951 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1952 		return (0);
1953 
1954 	zio_t *rio = arg;
1955 	size_t size = BP_GET_PSIZE(bp);
1956 
1957 	mutex_enter(&spa->spa_scrub_lock);
1958 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1959 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1960 	spa->spa_scrub_inflight++;
1961 	mutex_exit(&spa->spa_scrub_lock);
1962 
1963 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1964 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1965 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1966 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1967 	return (0);
1968 }
1969 
1970 /* ARGSUSED */
1971 int
1972 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1973 {
1974 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1975 		return (SET_ERROR(ENAMETOOLONG));
1976 
1977 	return (0);
1978 }
1979 
1980 static int
1981 spa_load_verify(spa_t *spa)
1982 {
1983 	zio_t *rio;
1984 	spa_load_error_t sle = { 0 };
1985 	zpool_rewind_policy_t policy;
1986 	boolean_t verify_ok = B_FALSE;
1987 	int error = 0;
1988 
1989 	zpool_get_rewind_policy(spa->spa_config, &policy);
1990 
1991 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1992 		return (0);
1993 
1994 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1995 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1996 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1997 	    DS_FIND_CHILDREN);
1998 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1999 	if (error != 0)
2000 		return (error);
2001 
2002 	rio = zio_root(spa, NULL, &sle,
2003 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2004 
2005 	if (spa_load_verify_metadata) {
2006 		if (spa->spa_extreme_rewind) {
2007 			spa_load_note(spa, "performing a complete scan of the "
2008 			    "pool since extreme rewind is on. This may take "
2009 			    "a very long time.\n  (spa_load_verify_data=%u, "
2010 			    "spa_load_verify_metadata=%u)",
2011 			    spa_load_verify_data, spa_load_verify_metadata);
2012 		}
2013 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2014 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2015 		    spa_load_verify_cb, rio);
2016 	}
2017 
2018 	(void) zio_wait(rio);
2019 
2020 	spa->spa_load_meta_errors = sle.sle_meta_count;
2021 	spa->spa_load_data_errors = sle.sle_data_count;
2022 
2023 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2024 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2025 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2026 		    (u_longlong_t)sle.sle_data_count);
2027 	}
2028 
2029 	if (spa_load_verify_dryrun ||
2030 	    (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2031 	    sle.sle_data_count <= policy.zrp_maxdata)) {
2032 		int64_t loss = 0;
2033 
2034 		verify_ok = B_TRUE;
2035 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2036 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2037 
2038 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2039 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2040 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2041 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2042 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2043 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2044 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2045 	} else {
2046 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2047 	}
2048 
2049 	if (spa_load_verify_dryrun)
2050 		return (0);
2051 
2052 	if (error) {
2053 		if (error != ENXIO && error != EIO)
2054 			error = SET_ERROR(EIO);
2055 		return (error);
2056 	}
2057 
2058 	return (verify_ok ? 0 : EIO);
2059 }
2060 
2061 /*
2062  * Find a value in the pool props object.
2063  */
2064 static void
2065 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2066 {
2067 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2068 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2069 }
2070 
2071 /*
2072  * Find a value in the pool directory object.
2073  */
2074 static int
2075 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2076 {
2077 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2078 	    name, sizeof (uint64_t), 1, val);
2079 
2080 	if (error != 0 && (error != ENOENT || log_enoent)) {
2081 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2082 		    "[error=%d]", name, error);
2083 	}
2084 
2085 	return (error);
2086 }
2087 
2088 static int
2089 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2090 {
2091 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2092 	return (SET_ERROR(err));
2093 }
2094 
2095 /*
2096  * Fix up config after a partly-completed split.  This is done with the
2097  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2098  * pool have that entry in their config, but only the splitting one contains
2099  * a list of all the guids of the vdevs that are being split off.
2100  *
2101  * This function determines what to do with that list: either rejoin
2102  * all the disks to the pool, or complete the splitting process.  To attempt
2103  * the rejoin, each disk that is offlined is marked online again, and
2104  * we do a reopen() call.  If the vdev label for every disk that was
2105  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2106  * then we call vdev_split() on each disk, and complete the split.
2107  *
2108  * Otherwise we leave the config alone, with all the vdevs in place in
2109  * the original pool.
2110  */
2111 static void
2112 spa_try_repair(spa_t *spa, nvlist_t *config)
2113 {
2114 	uint_t extracted;
2115 	uint64_t *glist;
2116 	uint_t i, gcount;
2117 	nvlist_t *nvl;
2118 	vdev_t **vd;
2119 	boolean_t attempt_reopen;
2120 
2121 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2122 		return;
2123 
2124 	/* check that the config is complete */
2125 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2126 	    &glist, &gcount) != 0)
2127 		return;
2128 
2129 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2130 
2131 	/* attempt to online all the vdevs & validate */
2132 	attempt_reopen = B_TRUE;
2133 	for (i = 0; i < gcount; i++) {
2134 		if (glist[i] == 0)	/* vdev is hole */
2135 			continue;
2136 
2137 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2138 		if (vd[i] == NULL) {
2139 			/*
2140 			 * Don't bother attempting to reopen the disks;
2141 			 * just do the split.
2142 			 */
2143 			attempt_reopen = B_FALSE;
2144 		} else {
2145 			/* attempt to re-online it */
2146 			vd[i]->vdev_offline = B_FALSE;
2147 		}
2148 	}
2149 
2150 	if (attempt_reopen) {
2151 		vdev_reopen(spa->spa_root_vdev);
2152 
2153 		/* check each device to see what state it's in */
2154 		for (extracted = 0, i = 0; i < gcount; i++) {
2155 			if (vd[i] != NULL &&
2156 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2157 				break;
2158 			++extracted;
2159 		}
2160 	}
2161 
2162 	/*
2163 	 * If every disk has been moved to the new pool, or if we never
2164 	 * even attempted to look at them, then we split them off for
2165 	 * good.
2166 	 */
2167 	if (!attempt_reopen || gcount == extracted) {
2168 		for (i = 0; i < gcount; i++)
2169 			if (vd[i] != NULL)
2170 				vdev_split(vd[i]);
2171 		vdev_reopen(spa->spa_root_vdev);
2172 	}
2173 
2174 	kmem_free(vd, gcount * sizeof (vdev_t *));
2175 }
2176 
2177 static int
2178 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2179     boolean_t trust_config)
2180 {
2181 	nvlist_t *config = spa->spa_config;
2182 	char *ereport = FM_EREPORT_ZFS_POOL;
2183 	char *comment;
2184 	int error;
2185 	uint64_t pool_guid;
2186 	nvlist_t *nvl;
2187 
2188 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2189 		return (SET_ERROR(EINVAL));
2190 
2191 	ASSERT(spa->spa_comment == NULL);
2192 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2193 		spa->spa_comment = spa_strdup(comment);
2194 
2195 	/*
2196 	 * Versioning wasn't explicitly added to the label until later, so if
2197 	 * it's not present treat it as the initial version.
2198 	 */
2199 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2200 	    &spa->spa_ubsync.ub_version) != 0)
2201 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2202 
2203 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2204 	    &spa->spa_config_txg);
2205 
2206 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2207 	    spa_guid_exists(pool_guid, 0)) {
2208 		error = SET_ERROR(EEXIST);
2209 	} else {
2210 		spa->spa_config_guid = pool_guid;
2211 
2212 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2213 		    &nvl) == 0) {
2214 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2215 			    KM_SLEEP) == 0);
2216 		}
2217 
2218 		nvlist_free(spa->spa_load_info);
2219 		spa->spa_load_info = fnvlist_alloc();
2220 
2221 		gethrestime(&spa->spa_loaded_ts);
2222 		error = spa_load_impl(spa, pool_guid, config, state, type,
2223 		    trust_config, &ereport);
2224 	}
2225 
2226 	/*
2227 	 * Don't count references from objsets that are already closed
2228 	 * and are making their way through the eviction process.
2229 	 */
2230 	spa_evicting_os_wait(spa);
2231 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2232 	if (error) {
2233 		if (error != EEXIST) {
2234 			spa->spa_loaded_ts.tv_sec = 0;
2235 			spa->spa_loaded_ts.tv_nsec = 0;
2236 		}
2237 		if (error != EBADF) {
2238 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2239 		}
2240 	}
2241 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2242 	spa->spa_ena = 0;
2243 
2244 	return (error);
2245 }
2246 
2247 /*
2248  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2249  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2250  * spa's per-vdev ZAP list.
2251  */
2252 static uint64_t
2253 vdev_count_verify_zaps(vdev_t *vd)
2254 {
2255 	spa_t *spa = vd->vdev_spa;
2256 	uint64_t total = 0;
2257 	if (vd->vdev_top_zap != 0) {
2258 		total++;
2259 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2260 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2261 	}
2262 	if (vd->vdev_leaf_zap != 0) {
2263 		total++;
2264 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2265 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2266 	}
2267 
2268 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2269 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2270 	}
2271 
2272 	return (total);
2273 }
2274 
2275 static int
2276 spa_ld_parse_config(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2277     spa_import_type_t type)
2278 {
2279 	int error = 0;
2280 	nvlist_t *nvtree = NULL;
2281 	int parse;
2282 	vdev_t *rvd;
2283 
2284 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2285 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2286 		    ZPOOL_CONFIG_VDEV_TREE);
2287 		return (SET_ERROR(EINVAL));
2288 	}
2289 
2290 	parse = (type == SPA_IMPORT_EXISTING ?
2291 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2292 
2293 	/*
2294 	 * Create "The Godfather" zio to hold all async IOs
2295 	 */
2296 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2297 	    KM_SLEEP);
2298 	for (int i = 0; i < max_ncpus; i++) {
2299 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2300 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2301 		    ZIO_FLAG_GODFATHER);
2302 	}
2303 
2304 	/*
2305 	 * Parse the configuration into a vdev tree.  We explicitly set the
2306 	 * value that will be returned by spa_version() since parsing the
2307 	 * configuration requires knowing the version number.
2308 	 */
2309 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2310 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2311 	spa_config_exit(spa, SCL_ALL, FTAG);
2312 
2313 	if (error != 0) {
2314 		spa_load_failed(spa, "unable to parse config [error=%d]",
2315 		    error);
2316 		return (error);
2317 	}
2318 
2319 	ASSERT(spa->spa_root_vdev == rvd);
2320 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2321 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2322 
2323 	if (type != SPA_IMPORT_ASSEMBLE) {
2324 		ASSERT(spa_guid(spa) == pool_guid);
2325 	}
2326 
2327 	return (0);
2328 }
2329 
2330 static int
2331 spa_ld_open_vdevs(spa_t *spa)
2332 {
2333 	int error = 0;
2334 
2335 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2336 	error = vdev_open(spa->spa_root_vdev);
2337 	spa_config_exit(spa, SCL_ALL, FTAG);
2338 	if (error != 0) {
2339 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2340 		    error);
2341 	}
2342 
2343 	return (error);
2344 }
2345 
2346 static int
2347 spa_ld_validate_vdevs(spa_t *spa, spa_import_type_t type,
2348     boolean_t trust_config)
2349 {
2350 	int error = 0;
2351 	vdev_t *rvd = spa->spa_root_vdev;
2352 
2353 	/*
2354 	 * We need to validate the vdev labels against the configuration that
2355 	 * we have in hand, which is dependent on the setting of trust_config.
2356 	 * If trust_config is true then we're validating the vdev labels based
2357 	 * on that config.  Otherwise, we're validating against the cached
2358 	 * config (zpool.cache) that was read when we loaded the zfs module, and
2359 	 * then later we will recursively call spa_load() and validate against
2360 	 * the vdev config.
2361 	 *
2362 	 * If we're assembling a new pool that's been split off from an
2363 	 * existing pool, the labels haven't yet been updated so we skip
2364 	 * validation for now.
2365 	 */
2366 	if (type != SPA_IMPORT_ASSEMBLE) {
2367 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2368 		error = vdev_validate(rvd, trust_config);
2369 		spa_config_exit(spa, SCL_ALL, FTAG);
2370 
2371 		if (error != 0) {
2372 			spa_load_failed(spa, "vdev_validate failed [error=%d]",
2373 			    error);
2374 			return (error);
2375 		}
2376 
2377 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2378 			spa_load_failed(spa, "cannot open vdev tree after "
2379 			    "invalidating some vdevs");
2380 			return (SET_ERROR(ENXIO));
2381 		}
2382 	}
2383 
2384 	return (0);
2385 }
2386 
2387 static int
2388 spa_ld_select_uberblock(spa_t *spa, nvlist_t *config, spa_import_type_t type,
2389     boolean_t trust_config)
2390 {
2391 	vdev_t *rvd = spa->spa_root_vdev;
2392 	nvlist_t *label;
2393 	uberblock_t *ub = &spa->spa_uberblock;
2394 	uint64_t children;
2395 
2396 	/*
2397 	 * Find the best uberblock.
2398 	 */
2399 	vdev_uberblock_load(rvd, ub, &label);
2400 
2401 	/*
2402 	 * If we weren't able to find a single valid uberblock, return failure.
2403 	 */
2404 	if (ub->ub_txg == 0) {
2405 		nvlist_free(label);
2406 		spa_load_failed(spa, "no valid uberblock found");
2407 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2408 	}
2409 
2410 	spa_load_note(spa, "using uberblock with txg=%llu",
2411 	    (u_longlong_t)ub->ub_txg);
2412 
2413 	/*
2414 	 * If the pool has an unsupported version we can't open it.
2415 	 */
2416 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2417 		nvlist_free(label);
2418 		spa_load_failed(spa, "version %llu is not supported",
2419 		    (u_longlong_t)ub->ub_version);
2420 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2421 	}
2422 
2423 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2424 		nvlist_t *features;
2425 
2426 		/*
2427 		 * If we weren't able to find what's necessary for reading the
2428 		 * MOS in the label, return failure.
2429 		 */
2430 		if (label == NULL) {
2431 			spa_load_failed(spa, "label config unavailable");
2432 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2433 			    ENXIO));
2434 		}
2435 
2436 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2437 		    &features) != 0) {
2438 			nvlist_free(label);
2439 			spa_load_failed(spa, "invalid label: '%s' missing",
2440 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2441 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2442 			    ENXIO));
2443 		}
2444 
2445 		/*
2446 		 * Update our in-core representation with the definitive values
2447 		 * from the label.
2448 		 */
2449 		nvlist_free(spa->spa_label_features);
2450 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2451 	}
2452 
2453 	nvlist_free(label);
2454 
2455 	/*
2456 	 * Look through entries in the label nvlist's features_for_read. If
2457 	 * there is a feature listed there which we don't understand then we
2458 	 * cannot open a pool.
2459 	 */
2460 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2461 		nvlist_t *unsup_feat;
2462 
2463 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2464 		    0);
2465 
2466 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2467 		    NULL); nvp != NULL;
2468 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2469 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2470 				VERIFY(nvlist_add_string(unsup_feat,
2471 				    nvpair_name(nvp), "") == 0);
2472 			}
2473 		}
2474 
2475 		if (!nvlist_empty(unsup_feat)) {
2476 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2477 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2478 			nvlist_free(unsup_feat);
2479 			spa_load_failed(spa, "some features are unsupported");
2480 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2481 			    ENOTSUP));
2482 		}
2483 
2484 		nvlist_free(unsup_feat);
2485 	}
2486 
2487 	/*
2488 	 * If the vdev guid sum doesn't match the uberblock, we have an
2489 	 * incomplete configuration.  We first check to see if the pool
2490 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2491 	 * If it is, defer the vdev_guid_sum check till later so we
2492 	 * can handle missing vdevs.
2493 	 */
2494 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2495 	    &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE &&
2496 	    rvd->vdev_guid_sum != ub->ub_guid_sum) {
2497 		spa_load_failed(spa, "guid sum in config doesn't match guid "
2498 		    "sum in uberblock (%llu != %llu)",
2499 		    (u_longlong_t)rvd->vdev_guid_sum,
2500 		    (u_longlong_t)ub->ub_guid_sum);
2501 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2502 	}
2503 
2504 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2505 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2506 		spa_try_repair(spa, config);
2507 		spa_config_exit(spa, SCL_ALL, FTAG);
2508 		nvlist_free(spa->spa_config_splitting);
2509 		spa->spa_config_splitting = NULL;
2510 	}
2511 
2512 	/*
2513 	 * Initialize internal SPA structures.
2514 	 */
2515 	spa->spa_state = POOL_STATE_ACTIVE;
2516 	spa->spa_ubsync = spa->spa_uberblock;
2517 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2518 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2519 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2520 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2521 	spa->spa_claim_max_txg = spa->spa_first_txg;
2522 	spa->spa_prev_software_version = ub->ub_software_version;
2523 
2524 	return (0);
2525 }
2526 
2527 static int
2528 spa_ld_open_rootbp(spa_t *spa)
2529 {
2530 	int error = 0;
2531 	vdev_t *rvd = spa->spa_root_vdev;
2532 
2533 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2534 	if (error != 0) {
2535 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2536 		    "[error=%d]", error);
2537 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538 	}
2539 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2540 
2541 	return (0);
2542 }
2543 
2544 static int
2545 spa_ld_validate_config(spa_t *spa, spa_import_type_t type)
2546 {
2547 	vdev_t *rvd = spa->spa_root_vdev;
2548 
2549 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2550 	    != 0)
2551 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552 
2553 	/*
2554 	 * Validate the config, using the MOS config to fill in any
2555 	 * information which might be missing.  If we fail to validate
2556 	 * the config then declare the pool unfit for use. If we're
2557 	 * assembling a pool from a split, the log is not transferred
2558 	 * over.
2559 	 */
2560 	if (type != SPA_IMPORT_ASSEMBLE) {
2561 		nvlist_t *mos_config;
2562 		if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2563 		    != 0) {
2564 			spa_load_failed(spa, "unable to retrieve MOS config");
2565 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2566 		}
2567 
2568 		if (!spa_config_valid(spa, mos_config)) {
2569 			nvlist_free(mos_config);
2570 			spa_load_failed(spa, "mismatch between config provided "
2571 			    "and config stored in MOS");
2572 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2573 			    ENXIO));
2574 		}
2575 		nvlist_free(mos_config);
2576 
2577 		/*
2578 		 * Now that we've validated the config, check the state of the
2579 		 * root vdev.  If it can't be opened, it indicates one or
2580 		 * more toplevel vdevs are faulted.
2581 		 */
2582 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2583 			spa_load_failed(spa, "some top vdevs are unavailable");
2584 			return (SET_ERROR(ENXIO));
2585 		}
2586 	}
2587 
2588 	return (0);
2589 }
2590 
2591 static int
2592 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2593 {
2594 	int error = 0;
2595 	vdev_t *rvd = spa->spa_root_vdev;
2596 
2597 	/*
2598 	 * Everything that we read before spa_remove_init() must be stored
2599 	 * on concreted vdevs.  Therefore we do this as early as possible.
2600 	 */
2601 	error = spa_remove_init(spa);
2602 	if (error != 0) {
2603 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2604 		    error);
2605 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2606 	}
2607 
2608 	/*
2609 	 * Retrieve information needed to condense indirect vdev mappings.
2610 	 */
2611 	error = spa_condense_init(spa);
2612 	if (error != 0) {
2613 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2614 		    error);
2615 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2616 	}
2617 
2618 	return (0);
2619 }
2620 
2621 static int
2622 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2623 {
2624 	int error = 0;
2625 	vdev_t *rvd = spa->spa_root_vdev;
2626 
2627 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2628 		boolean_t missing_feat_read = B_FALSE;
2629 		nvlist_t *unsup_feat, *enabled_feat;
2630 
2631 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2632 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2633 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2634 		}
2635 
2636 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2637 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2638 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2639 		}
2640 
2641 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2642 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2643 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2644 		}
2645 
2646 		enabled_feat = fnvlist_alloc();
2647 		unsup_feat = fnvlist_alloc();
2648 
2649 		if (!spa_features_check(spa, B_FALSE,
2650 		    unsup_feat, enabled_feat))
2651 			missing_feat_read = B_TRUE;
2652 
2653 		if (spa_writeable(spa) ||
2654 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2655 			if (!spa_features_check(spa, B_TRUE,
2656 			    unsup_feat, enabled_feat)) {
2657 				*missing_feat_writep = B_TRUE;
2658 			}
2659 		}
2660 
2661 		fnvlist_add_nvlist(spa->spa_load_info,
2662 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2663 
2664 		if (!nvlist_empty(unsup_feat)) {
2665 			fnvlist_add_nvlist(spa->spa_load_info,
2666 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2667 		}
2668 
2669 		fnvlist_free(enabled_feat);
2670 		fnvlist_free(unsup_feat);
2671 
2672 		if (!missing_feat_read) {
2673 			fnvlist_add_boolean(spa->spa_load_info,
2674 			    ZPOOL_CONFIG_CAN_RDONLY);
2675 		}
2676 
2677 		/*
2678 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2679 		 * twofold: to determine whether the pool is available for
2680 		 * import in read-write mode and (if it is not) whether the
2681 		 * pool is available for import in read-only mode. If the pool
2682 		 * is available for import in read-write mode, it is displayed
2683 		 * as available in userland; if it is not available for import
2684 		 * in read-only mode, it is displayed as unavailable in
2685 		 * userland. If the pool is available for import in read-only
2686 		 * mode but not read-write mode, it is displayed as unavailable
2687 		 * in userland with a special note that the pool is actually
2688 		 * available for open in read-only mode.
2689 		 *
2690 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2691 		 * missing a feature for write, we must first determine whether
2692 		 * the pool can be opened read-only before returning to
2693 		 * userland in order to know whether to display the
2694 		 * abovementioned note.
2695 		 */
2696 		if (missing_feat_read || (*missing_feat_writep &&
2697 		    spa_writeable(spa))) {
2698 			spa_load_failed(spa, "pool uses unsupported features");
2699 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2700 			    ENOTSUP));
2701 		}
2702 
2703 		/*
2704 		 * Load refcounts for ZFS features from disk into an in-memory
2705 		 * cache during SPA initialization.
2706 		 */
2707 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2708 			uint64_t refcount;
2709 
2710 			error = feature_get_refcount_from_disk(spa,
2711 			    &spa_feature_table[i], &refcount);
2712 			if (error == 0) {
2713 				spa->spa_feat_refcount_cache[i] = refcount;
2714 			} else if (error == ENOTSUP) {
2715 				spa->spa_feat_refcount_cache[i] =
2716 				    SPA_FEATURE_DISABLED;
2717 			} else {
2718 				spa_load_failed(spa, "error getting refcount "
2719 				    "for feature %s [error=%d]",
2720 				    spa_feature_table[i].fi_guid, error);
2721 				return (spa_vdev_err(rvd,
2722 				    VDEV_AUX_CORRUPT_DATA, EIO));
2723 			}
2724 		}
2725 	}
2726 
2727 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2728 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2729 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
2730 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2731 	}
2732 
2733 	return (0);
2734 }
2735 
2736 static int
2737 spa_ld_load_special_directories(spa_t *spa)
2738 {
2739 	int error = 0;
2740 	vdev_t *rvd = spa->spa_root_vdev;
2741 
2742 	spa->spa_is_initializing = B_TRUE;
2743 	error = dsl_pool_open(spa->spa_dsl_pool);
2744 	spa->spa_is_initializing = B_FALSE;
2745 	if (error != 0) {
2746 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
2747 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2748 	}
2749 
2750 	return (0);
2751 }
2752 
2753 static int
2754 spa_ld_prepare_for_reload(spa_t *spa, int orig_mode)
2755 {
2756 	vdev_t *rvd = spa->spa_root_vdev;
2757 
2758 	uint64_t hostid;
2759 	nvlist_t *policy = NULL;
2760 	nvlist_t *mos_config;
2761 
2762 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2763 		spa_load_failed(spa, "unable to retrieve MOS config");
2764 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2765 	}
2766 
2767 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2768 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2769 		char *hostname;
2770 		unsigned long myhostid = 0;
2771 
2772 		VERIFY(nvlist_lookup_string(mos_config,
2773 		    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2774 
2775 #ifdef	_KERNEL
2776 		myhostid = zone_get_hostid(NULL);
2777 #else	/* _KERNEL */
2778 		/*
2779 		 * We're emulating the system's hostid in userland, so
2780 		 * we can't use zone_get_hostid().
2781 		 */
2782 		(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2783 #endif	/* _KERNEL */
2784 		if (hostid != 0 && myhostid != 0 &&
2785 		    hostid != myhostid) {
2786 			nvlist_free(mos_config);
2787 			cmn_err(CE_WARN, "pool '%s' could not be "
2788 			    "loaded as it was last accessed by "
2789 			    "another system (host: %s hostid: 0x%lx). "
2790 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2791 			    spa_name(spa), hostname,
2792 			    (unsigned long)hostid);
2793 			return (SET_ERROR(EBADF));
2794 		}
2795 	}
2796 	if (nvlist_lookup_nvlist(spa->spa_config,
2797 	    ZPOOL_REWIND_POLICY, &policy) == 0)
2798 		VERIFY(nvlist_add_nvlist(mos_config,
2799 		    ZPOOL_REWIND_POLICY, policy) == 0);
2800 
2801 	spa_config_set(spa, mos_config);
2802 	spa_unload(spa);
2803 	spa_deactivate(spa);
2804 	spa_activate(spa, orig_mode);
2805 
2806 	return (0);
2807 }
2808 
2809 static int
2810 spa_ld_get_props(spa_t *spa)
2811 {
2812 	int error = 0;
2813 	uint64_t obj;
2814 	vdev_t *rvd = spa->spa_root_vdev;
2815 
2816 	/* Grab the secret checksum salt from the MOS. */
2817 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2818 	    DMU_POOL_CHECKSUM_SALT, 1,
2819 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2820 	    spa->spa_cksum_salt.zcs_bytes);
2821 	if (error == ENOENT) {
2822 		/* Generate a new salt for subsequent use */
2823 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2824 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2825 	} else if (error != 0) {
2826 		spa_load_failed(spa, "unable to retrieve checksum salt from "
2827 		    "MOS [error=%d]", error);
2828 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2829 	}
2830 
2831 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
2832 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2833 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2834 	if (error != 0) {
2835 		spa_load_failed(spa, "error opening deferred-frees bpobj "
2836 		    "[error=%d]", error);
2837 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2838 	}
2839 
2840 	/*
2841 	 * Load the bit that tells us to use the new accounting function
2842 	 * (raid-z deflation).  If we have an older pool, this will not
2843 	 * be present.
2844 	 */
2845 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
2846 	if (error != 0 && error != ENOENT)
2847 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2848 
2849 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2850 	    &spa->spa_creation_version, B_FALSE);
2851 	if (error != 0 && error != ENOENT)
2852 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2853 
2854 	/*
2855 	 * Load the persistent error log.  If we have an older pool, this will
2856 	 * not be present.
2857 	 */
2858 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
2859 	    B_FALSE);
2860 	if (error != 0 && error != ENOENT)
2861 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2862 
2863 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2864 	    &spa->spa_errlog_scrub, B_FALSE);
2865 	if (error != 0 && error != ENOENT)
2866 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2867 
2868 	/*
2869 	 * Load the history object.  If we have an older pool, this
2870 	 * will not be present.
2871 	 */
2872 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
2873 	if (error != 0 && error != ENOENT)
2874 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2875 
2876 	/*
2877 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2878 	 * be present; in this case, defer its creation to a later time to
2879 	 * avoid dirtying the MOS this early / out of sync context. See
2880 	 * spa_sync_config_object.
2881 	 */
2882 
2883 	/* The sentinel is only available in the MOS config. */
2884 	nvlist_t *mos_config;
2885 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2886 		spa_load_failed(spa, "unable to retrieve MOS config");
2887 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2888 	}
2889 
2890 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2891 	    &spa->spa_all_vdev_zaps, B_FALSE);
2892 
2893 	if (error == ENOENT) {
2894 		VERIFY(!nvlist_exists(mos_config,
2895 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2896 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2897 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2898 	} else if (error != 0) {
2899 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2900 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2901 		/*
2902 		 * An older version of ZFS overwrote the sentinel value, so
2903 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2904 		 * destruction to later; see spa_sync_config_object.
2905 		 */
2906 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2907 		/*
2908 		 * We're assuming that no vdevs have had their ZAPs created
2909 		 * before this. Better be sure of it.
2910 		 */
2911 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2912 	}
2913 	nvlist_free(mos_config);
2914 
2915 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2916 
2917 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
2918 	    B_FALSE);
2919 	if (error && error != ENOENT)
2920 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2921 
2922 	if (error == 0) {
2923 		uint64_t autoreplace;
2924 
2925 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2926 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2927 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2928 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2929 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2930 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2931 		    &spa->spa_dedup_ditto);
2932 
2933 		spa->spa_autoreplace = (autoreplace != 0);
2934 	}
2935 
2936 	return (0);
2937 }
2938 
2939 static int
2940 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
2941 {
2942 	int error = 0;
2943 	vdev_t *rvd = spa->spa_root_vdev;
2944 
2945 	/*
2946 	 * If we're assembling the pool from the split-off vdevs of
2947 	 * an existing pool, we don't want to attach the spares & cache
2948 	 * devices.
2949 	 */
2950 
2951 	/*
2952 	 * Load any hot spares for this pool.
2953 	 */
2954 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
2955 	    B_FALSE);
2956 	if (error != 0 && error != ENOENT)
2957 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2958 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2959 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2960 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2961 		    &spa->spa_spares.sav_config) != 0) {
2962 			spa_load_failed(spa, "error loading spares nvlist");
2963 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2964 		}
2965 
2966 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2967 		spa_load_spares(spa);
2968 		spa_config_exit(spa, SCL_ALL, FTAG);
2969 	} else if (error == 0) {
2970 		spa->spa_spares.sav_sync = B_TRUE;
2971 	}
2972 
2973 	/*
2974 	 * Load any level 2 ARC devices for this pool.
2975 	 */
2976 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2977 	    &spa->spa_l2cache.sav_object, B_FALSE);
2978 	if (error != 0 && error != ENOENT)
2979 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2980 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2981 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2982 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2983 		    &spa->spa_l2cache.sav_config) != 0) {
2984 			spa_load_failed(spa, "error loading l2cache nvlist");
2985 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2986 		}
2987 
2988 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2989 		spa_load_l2cache(spa);
2990 		spa_config_exit(spa, SCL_ALL, FTAG);
2991 	} else if (error == 0) {
2992 		spa->spa_l2cache.sav_sync = B_TRUE;
2993 	}
2994 
2995 	return (0);
2996 }
2997 
2998 static int
2999 spa_ld_load_vdev_metadata(spa_t *spa)
3000 {
3001 	int error = 0;
3002 	vdev_t *rvd = spa->spa_root_vdev;
3003 
3004 	/*
3005 	 * If the 'autoreplace' property is set, then post a resource notifying
3006 	 * the ZFS DE that it should not issue any faults for unopenable
3007 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3008 	 * unopenable vdevs so that the normal autoreplace handler can take
3009 	 * over.
3010 	 */
3011 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3012 		spa_check_removed(spa->spa_root_vdev);
3013 		/*
3014 		 * For the import case, this is done in spa_import(), because
3015 		 * at this point we're using the spare definitions from
3016 		 * the MOS config, not necessarily from the userland config.
3017 		 */
3018 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3019 			spa_aux_check_removed(&spa->spa_spares);
3020 			spa_aux_check_removed(&spa->spa_l2cache);
3021 		}
3022 	}
3023 
3024 	/*
3025 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3026 	 */
3027 	error = vdev_load(rvd);
3028 	if (error != 0) {
3029 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3030 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3031 	}
3032 
3033 	/*
3034 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3035 	 */
3036 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3037 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3038 	spa_config_exit(spa, SCL_ALL, FTAG);
3039 
3040 	return (0);
3041 }
3042 
3043 static int
3044 spa_ld_load_dedup_tables(spa_t *spa)
3045 {
3046 	int error = 0;
3047 	vdev_t *rvd = spa->spa_root_vdev;
3048 
3049 	error = ddt_load(spa);
3050 	if (error != 0) {
3051 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3052 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3053 	}
3054 
3055 	return (0);
3056 }
3057 
3058 static int
3059 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3060 {
3061 	vdev_t *rvd = spa->spa_root_vdev;
3062 
3063 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3064 		boolean_t missing = spa_check_logs(spa);
3065 		if (missing) {
3066 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3067 			spa_load_failed(spa, "spa_check_logs failed");
3068 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3069 		}
3070 	}
3071 
3072 	return (0);
3073 }
3074 
3075 static int
3076 spa_ld_verify_pool_data(spa_t *spa)
3077 {
3078 	int error = 0;
3079 	vdev_t *rvd = spa->spa_root_vdev;
3080 
3081 	/*
3082 	 * We've successfully opened the pool, verify that we're ready
3083 	 * to start pushing transactions.
3084 	 */
3085 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3086 		error = spa_load_verify(spa);
3087 		if (error != 0) {
3088 			spa_load_failed(spa, "spa_load_verify failed "
3089 			    "[error=%d]", error);
3090 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3091 			    error));
3092 		}
3093 	}
3094 
3095 	return (0);
3096 }
3097 
3098 static void
3099 spa_ld_claim_log_blocks(spa_t *spa)
3100 {
3101 	dmu_tx_t *tx;
3102 	dsl_pool_t *dp = spa_get_dsl(spa);
3103 
3104 	/*
3105 	 * Claim log blocks that haven't been committed yet.
3106 	 * This must all happen in a single txg.
3107 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3108 	 * invoked from zil_claim_log_block()'s i/o done callback.
3109 	 * Price of rollback is that we abandon the log.
3110 	 */
3111 	spa->spa_claiming = B_TRUE;
3112 
3113 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3114 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3115 	    zil_claim, tx, DS_FIND_CHILDREN);
3116 	dmu_tx_commit(tx);
3117 
3118 	spa->spa_claiming = B_FALSE;
3119 
3120 	spa_set_log_state(spa, SPA_LOG_GOOD);
3121 }
3122 
3123 static void
3124 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg)
3125 {
3126 	vdev_t *rvd = spa->spa_root_vdev;
3127 	int need_update = B_FALSE;
3128 
3129 	/*
3130 	 * If the config cache is stale, or we have uninitialized
3131 	 * metaslabs (see spa_vdev_add()), then update the config.
3132 	 *
3133 	 * If this is a verbatim import, trust the current
3134 	 * in-core spa_config and update the disk labels.
3135 	 */
3136 	if (config_cache_txg != spa->spa_config_txg ||
3137 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3138 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3139 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3140 		need_update = B_TRUE;
3141 
3142 	for (int c = 0; c < rvd->vdev_children; c++)
3143 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3144 			need_update = B_TRUE;
3145 
3146 	/*
3147 	 * Update the config cache asychronously in case we're the
3148 	 * root pool, in which case the config cache isn't writable yet.
3149 	 */
3150 	if (need_update)
3151 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3152 }
3153 
3154 /*
3155  * Load an existing storage pool, using the config provided. This config
3156  * describes which vdevs are part of the pool and is later validated against
3157  * partial configs present in each vdev's label and an entire copy of the
3158  * config stored in the MOS.
3159  */
3160 static int
3161 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
3162     spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
3163     char **ereport)
3164 {
3165 	int error = 0;
3166 	uint64_t config_cache_txg = spa->spa_config_txg;
3167 	int orig_mode = spa->spa_mode;
3168 	boolean_t missing_feat_write = B_FALSE;
3169 
3170 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3171 
3172 	spa->spa_load_state = state;
3173 	spa_load_note(spa, "LOADING");
3174 
3175 	/*
3176 	 * If this is an untrusted config, first access the pool in read-only
3177 	 * mode. We will then retrieve a trusted copy of the config from the MOS
3178 	 * and use it to reopen the pool in read-write mode.
3179 	 */
3180 	if (!trust_config)
3181 		spa->spa_mode = FREAD;
3182 
3183 	/*
3184 	 * Parse the config provided to create a vdev tree.
3185 	 */
3186 	error = spa_ld_parse_config(spa, pool_guid, config, type);
3187 	if (error != 0)
3188 		return (error);
3189 
3190 	/*
3191 	 * Now that we have the vdev tree, try to open each vdev. This involves
3192 	 * opening the underlying physical device, retrieving its geometry and
3193 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3194 	 * based on the success of those operations. After this we'll be ready
3195 	 * to read from the vdevs.
3196 	 */
3197 	error = spa_ld_open_vdevs(spa);
3198 	if (error != 0)
3199 		return (error);
3200 
3201 	/*
3202 	 * Read the label of each vdev and make sure that the GUIDs stored
3203 	 * there match the GUIDs in the config provided.
3204 	 */
3205 	error = spa_ld_validate_vdevs(spa, type, trust_config);
3206 	if (error != 0)
3207 		return (error);
3208 
3209 	/*
3210 	 * Read vdev labels to find the best uberblock (i.e. latest, unless
3211 	 * spa_load_max_txg is set) and store it in spa_uberblock. We get the
3212 	 * list of features required to read blkptrs in the MOS from the vdev
3213 	 * label with the best uberblock and verify that our version of zfs
3214 	 * supports them all.
3215 	 */
3216 	error = spa_ld_select_uberblock(spa, config, type, trust_config);
3217 	if (error != 0)
3218 		return (error);
3219 
3220 	/*
3221 	 * Pass that uberblock to the dsl_pool layer which will open the root
3222 	 * blkptr. This blkptr points to the latest version of the MOS and will
3223 	 * allow us to read its contents.
3224 	 */
3225 	error = spa_ld_open_rootbp(spa);
3226 	if (error != 0)
3227 		return (error);
3228 
3229 	/*
3230 	 * Retrieve the config stored in the MOS and use it to validate the
3231 	 * config provided. Also extract some information from the MOS config
3232 	 * to update our vdev tree.
3233 	 */
3234 	error = spa_ld_validate_config(spa, type);
3235 	if (error != 0)
3236 		return (error);
3237 
3238 	/*
3239 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3240 	 * from the pool and their contents were re-mapped to other vdevs. Note
3241 	 * that everything that we read before this step must have been
3242 	 * rewritten on concrete vdevs after the last device removal was
3243 	 * initiated. Otherwise we could be reading from indirect vdevs before
3244 	 * we have loaded their mappings.
3245 	 */
3246 	error = spa_ld_open_indirect_vdev_metadata(spa);
3247 	if (error != 0)
3248 		return (error);
3249 
3250 	/*
3251 	 * Retrieve the full list of active features from the MOS and check if
3252 	 * they are all supported.
3253 	 */
3254 	error = spa_ld_check_features(spa, &missing_feat_write);
3255 	if (error != 0)
3256 		return (error);
3257 
3258 	/*
3259 	 * Load several special directories from the MOS needed by the dsl_pool
3260 	 * layer.
3261 	 */
3262 	error = spa_ld_load_special_directories(spa);
3263 	if (error != 0)
3264 		return (error);
3265 
3266 	/*
3267 	 * If the config provided is not trusted, discard it and use the config
3268 	 * from the MOS to reload the pool.
3269 	 */
3270 	if (!trust_config) {
3271 		error = spa_ld_prepare_for_reload(spa, orig_mode);
3272 		if (error != 0)
3273 			return (error);
3274 
3275 		spa_load_note(spa, "RELOADING");
3276 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
3277 	}
3278 
3279 	/*
3280 	 * Retrieve pool properties from the MOS.
3281 	 */
3282 	error = spa_ld_get_props(spa);
3283 	if (error != 0)
3284 		return (error);
3285 
3286 	/*
3287 	 * Retrieve the list of auxiliary devices - cache devices and spares -
3288 	 * and open them.
3289 	 */
3290 	error = spa_ld_open_aux_vdevs(spa, type);
3291 	if (error != 0)
3292 		return (error);
3293 
3294 	/*
3295 	 * Load the metadata for all vdevs. Also check if unopenable devices
3296 	 * should be autoreplaced.
3297 	 */
3298 	error = spa_ld_load_vdev_metadata(spa);
3299 	if (error != 0)
3300 		return (error);
3301 
3302 	error = spa_ld_load_dedup_tables(spa);
3303 	if (error != 0)
3304 		return (error);
3305 
3306 	/*
3307 	 * Verify the logs now to make sure we don't have any unexpected errors
3308 	 * when we claim log blocks later.
3309 	 */
3310 	error = spa_ld_verify_logs(spa, type, ereport);
3311 	if (error != 0)
3312 		return (error);
3313 
3314 	if (missing_feat_write) {
3315 		ASSERT(state == SPA_LOAD_TRYIMPORT);
3316 
3317 		/*
3318 		 * At this point, we know that we can open the pool in
3319 		 * read-only mode but not read-write mode. We now have enough
3320 		 * information and can return to userland.
3321 		 */
3322 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3323 		    ENOTSUP));
3324 	}
3325 
3326 	/*
3327 	 * Traverse the last txgs to make sure the pool was left off in a safe
3328 	 * state. When performing an extreme rewind, we verify the whole pool,
3329 	 * which can take a very long time.
3330 	 */
3331 	error = spa_ld_verify_pool_data(spa);
3332 	if (error != 0)
3333 		return (error);
3334 
3335 	/*
3336 	 * Calculate the deflated space for the pool. This must be done before
3337 	 * we write anything to the pool because we'd need to update the space
3338 	 * accounting using the deflated sizes.
3339 	 */
3340 	spa_update_dspace(spa);
3341 
3342 	/*
3343 	 * We have now retrieved all the information we needed to open the
3344 	 * pool. If we are importing the pool in read-write mode, a few
3345 	 * additional steps must be performed to finish the import.
3346 	 */
3347 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3348 	    spa->spa_load_max_txg == UINT64_MAX)) {
3349 		ASSERT(state != SPA_LOAD_TRYIMPORT);
3350 
3351 		/*
3352 		 * We must check this before we start the sync thread, because
3353 		 * we only want to start a condense thread for condense
3354 		 * operations that were in progress when the pool was
3355 		 * imported.  Once we start syncing, spa_sync() could
3356 		 * initiate a condense (and start a thread for it).  In
3357 		 * that case it would be wrong to start a second
3358 		 * condense thread.
3359 		 */
3360 		boolean_t condense_in_progress =
3361 		    (spa->spa_condensing_indirect != NULL);
3362 
3363 		/*
3364 		 * Traverse the ZIL and claim all blocks.
3365 		 */
3366 		spa_ld_claim_log_blocks(spa);
3367 
3368 		/*
3369 		 * Kick-off the syncing thread.
3370 		 */
3371 		spa->spa_sync_on = B_TRUE;
3372 		txg_sync_start(spa->spa_dsl_pool);
3373 
3374 		/*
3375 		 * Wait for all claims to sync.  We sync up to the highest
3376 		 * claimed log block birth time so that claimed log blocks
3377 		 * don't appear to be from the future.  spa_claim_max_txg
3378 		 * will have been set for us by ZIL traversal operations
3379 		 * performed above.
3380 		 */
3381 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3382 
3383 		/*
3384 		 * Check if we need to request an update of the config. On the
3385 		 * next sync, we would update the config stored in vdev labels
3386 		 * and the cachefile (by default /etc/zfs/zpool.cache).
3387 		 */
3388 		spa_ld_check_for_config_update(spa, config_cache_txg);
3389 
3390 		/*
3391 		 * Check all DTLs to see if anything needs resilvering.
3392 		 */
3393 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3394 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3395 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3396 
3397 		/*
3398 		 * Log the fact that we booted up (so that we can detect if
3399 		 * we rebooted in the middle of an operation).
3400 		 */
3401 		spa_history_log_version(spa, "open");
3402 
3403 		/*
3404 		 * Delete any inconsistent datasets.
3405 		 */
3406 		(void) dmu_objset_find(spa_name(spa),
3407 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3408 
3409 		/*
3410 		 * Clean up any stale temporary dataset userrefs.
3411 		 */
3412 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3413 
3414 		/*
3415 		 * Note: unlike condensing, we don't need an analogous
3416 		 * "removal_in_progress" dance because no other thread
3417 		 * can start a removal while we hold the spa_namespace_lock.
3418 		 */
3419 		spa_restart_removal(spa);
3420 
3421 		if (condense_in_progress)
3422 			spa_condense_indirect_restart(spa);
3423 	}
3424 
3425 	spa_load_note(spa, "LOADED");
3426 
3427 	return (0);
3428 }
3429 
3430 static int
3431 spa_load_retry(spa_t *spa, spa_load_state_t state, int trust_config)
3432 {
3433 	int mode = spa->spa_mode;
3434 
3435 	spa_unload(spa);
3436 	spa_deactivate(spa);
3437 
3438 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3439 
3440 	spa_activate(spa, mode);
3441 	spa_async_suspend(spa);
3442 
3443 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3444 	    (u_longlong_t)spa->spa_load_max_txg);
3445 
3446 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, trust_config));
3447 }
3448 
3449 /*
3450  * If spa_load() fails this function will try loading prior txg's. If
3451  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3452  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3453  * function will not rewind the pool and will return the same error as
3454  * spa_load().
3455  */
3456 static int
3457 spa_load_best(spa_t *spa, spa_load_state_t state, int trust_config,
3458     uint64_t max_request, int rewind_flags)
3459 {
3460 	nvlist_t *loadinfo = NULL;
3461 	nvlist_t *config = NULL;
3462 	int load_error, rewind_error;
3463 	uint64_t safe_rewind_txg;
3464 	uint64_t min_txg;
3465 
3466 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3467 		spa->spa_load_max_txg = spa->spa_load_txg;
3468 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3469 	} else {
3470 		spa->spa_load_max_txg = max_request;
3471 		if (max_request != UINT64_MAX)
3472 			spa->spa_extreme_rewind = B_TRUE;
3473 	}
3474 
3475 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3476 	    trust_config);
3477 	if (load_error == 0)
3478 		return (0);
3479 
3480 	if (spa->spa_root_vdev != NULL)
3481 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3482 
3483 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3484 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3485 
3486 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3487 		nvlist_free(config);
3488 		return (load_error);
3489 	}
3490 
3491 	if (state == SPA_LOAD_RECOVER) {
3492 		/* Price of rolling back is discarding txgs, including log */
3493 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3494 	} else {
3495 		/*
3496 		 * If we aren't rolling back save the load info from our first
3497 		 * import attempt so that we can restore it after attempting
3498 		 * to rewind.
3499 		 */
3500 		loadinfo = spa->spa_load_info;
3501 		spa->spa_load_info = fnvlist_alloc();
3502 	}
3503 
3504 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3505 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3506 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3507 	    TXG_INITIAL : safe_rewind_txg;
3508 
3509 	/*
3510 	 * Continue as long as we're finding errors, we're still within
3511 	 * the acceptable rewind range, and we're still finding uberblocks
3512 	 */
3513 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3514 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3515 		if (spa->spa_load_max_txg < safe_rewind_txg)
3516 			spa->spa_extreme_rewind = B_TRUE;
3517 		rewind_error = spa_load_retry(spa, state, trust_config);
3518 	}
3519 
3520 	spa->spa_extreme_rewind = B_FALSE;
3521 	spa->spa_load_max_txg = UINT64_MAX;
3522 
3523 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3524 		spa_config_set(spa, config);
3525 	else
3526 		nvlist_free(config);
3527 
3528 	if (state == SPA_LOAD_RECOVER) {
3529 		ASSERT3P(loadinfo, ==, NULL);
3530 		return (rewind_error);
3531 	} else {
3532 		/* Store the rewind info as part of the initial load info */
3533 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3534 		    spa->spa_load_info);
3535 
3536 		/* Restore the initial load info */
3537 		fnvlist_free(spa->spa_load_info);
3538 		spa->spa_load_info = loadinfo;
3539 
3540 		return (load_error);
3541 	}
3542 }
3543 
3544 /*
3545  * Pool Open/Import
3546  *
3547  * The import case is identical to an open except that the configuration is sent
3548  * down from userland, instead of grabbed from the configuration cache.  For the
3549  * case of an open, the pool configuration will exist in the
3550  * POOL_STATE_UNINITIALIZED state.
3551  *
3552  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3553  * the same time open the pool, without having to keep around the spa_t in some
3554  * ambiguous state.
3555  */
3556 static int
3557 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3558     nvlist_t **config)
3559 {
3560 	spa_t *spa;
3561 	spa_load_state_t state = SPA_LOAD_OPEN;
3562 	int error;
3563 	int locked = B_FALSE;
3564 
3565 	*spapp = NULL;
3566 
3567 	/*
3568 	 * As disgusting as this is, we need to support recursive calls to this
3569 	 * function because dsl_dir_open() is called during spa_load(), and ends
3570 	 * up calling spa_open() again.  The real fix is to figure out how to
3571 	 * avoid dsl_dir_open() calling this in the first place.
3572 	 */
3573 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3574 		mutex_enter(&spa_namespace_lock);
3575 		locked = B_TRUE;
3576 	}
3577 
3578 	if ((spa = spa_lookup(pool)) == NULL) {
3579 		if (locked)
3580 			mutex_exit(&spa_namespace_lock);
3581 		return (SET_ERROR(ENOENT));
3582 	}
3583 
3584 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3585 		zpool_rewind_policy_t policy;
3586 
3587 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3588 		    &policy);
3589 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3590 			state = SPA_LOAD_RECOVER;
3591 
3592 		spa_activate(spa, spa_mode_global);
3593 
3594 		if (state != SPA_LOAD_RECOVER)
3595 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3596 
3597 		zfs_dbgmsg("spa_open_common: opening %s", pool);
3598 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3599 		    policy.zrp_request);
3600 
3601 		if (error == EBADF) {
3602 			/*
3603 			 * If vdev_validate() returns failure (indicated by
3604 			 * EBADF), it indicates that one of the vdevs indicates
3605 			 * that the pool has been exported or destroyed.  If
3606 			 * this is the case, the config cache is out of sync and
3607 			 * we should remove the pool from the namespace.
3608 			 */
3609 			spa_unload(spa);
3610 			spa_deactivate(spa);
3611 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
3612 			spa_remove(spa);
3613 			if (locked)
3614 				mutex_exit(&spa_namespace_lock);
3615 			return (SET_ERROR(ENOENT));
3616 		}
3617 
3618 		if (error) {
3619 			/*
3620 			 * We can't open the pool, but we still have useful
3621 			 * information: the state of each vdev after the
3622 			 * attempted vdev_open().  Return this to the user.
3623 			 */
3624 			if (config != NULL && spa->spa_config) {
3625 				VERIFY(nvlist_dup(spa->spa_config, config,
3626 				    KM_SLEEP) == 0);
3627 				VERIFY(nvlist_add_nvlist(*config,
3628 				    ZPOOL_CONFIG_LOAD_INFO,
3629 				    spa->spa_load_info) == 0);
3630 			}
3631 			spa_unload(spa);
3632 			spa_deactivate(spa);
3633 			spa->spa_last_open_failed = error;
3634 			if (locked)
3635 				mutex_exit(&spa_namespace_lock);
3636 			*spapp = NULL;
3637 			return (error);
3638 		}
3639 	}
3640 
3641 	spa_open_ref(spa, tag);
3642 
3643 	if (config != NULL)
3644 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3645 
3646 	/*
3647 	 * If we've recovered the pool, pass back any information we
3648 	 * gathered while doing the load.
3649 	 */
3650 	if (state == SPA_LOAD_RECOVER) {
3651 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3652 		    spa->spa_load_info) == 0);
3653 	}
3654 
3655 	if (locked) {
3656 		spa->spa_last_open_failed = 0;
3657 		spa->spa_last_ubsync_txg = 0;
3658 		spa->spa_load_txg = 0;
3659 		mutex_exit(&spa_namespace_lock);
3660 	}
3661 
3662 	*spapp = spa;
3663 
3664 	return (0);
3665 }
3666 
3667 int
3668 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3669     nvlist_t **config)
3670 {
3671 	return (spa_open_common(name, spapp, tag, policy, config));
3672 }
3673 
3674 int
3675 spa_open(const char *name, spa_t **spapp, void *tag)
3676 {
3677 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3678 }
3679 
3680 /*
3681  * Lookup the given spa_t, incrementing the inject count in the process,
3682  * preventing it from being exported or destroyed.
3683  */
3684 spa_t *
3685 spa_inject_addref(char *name)
3686 {
3687 	spa_t *spa;
3688 
3689 	mutex_enter(&spa_namespace_lock);
3690 	if ((spa = spa_lookup(name)) == NULL) {
3691 		mutex_exit(&spa_namespace_lock);
3692 		return (NULL);
3693 	}
3694 	spa->spa_inject_ref++;
3695 	mutex_exit(&spa_namespace_lock);
3696 
3697 	return (spa);
3698 }
3699 
3700 void
3701 spa_inject_delref(spa_t *spa)
3702 {
3703 	mutex_enter(&spa_namespace_lock);
3704 	spa->spa_inject_ref--;
3705 	mutex_exit(&spa_namespace_lock);
3706 }
3707 
3708 /*
3709  * Add spares device information to the nvlist.
3710  */
3711 static void
3712 spa_add_spares(spa_t *spa, nvlist_t *config)
3713 {
3714 	nvlist_t **spares;
3715 	uint_t i, nspares;
3716 	nvlist_t *nvroot;
3717 	uint64_t guid;
3718 	vdev_stat_t *vs;
3719 	uint_t vsc;
3720 	uint64_t pool;
3721 
3722 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3723 
3724 	if (spa->spa_spares.sav_count == 0)
3725 		return;
3726 
3727 	VERIFY(nvlist_lookup_nvlist(config,
3728 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3729 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3730 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3731 	if (nspares != 0) {
3732 		VERIFY(nvlist_add_nvlist_array(nvroot,
3733 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3734 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3735 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3736 
3737 		/*
3738 		 * Go through and find any spares which have since been
3739 		 * repurposed as an active spare.  If this is the case, update
3740 		 * their status appropriately.
3741 		 */
3742 		for (i = 0; i < nspares; i++) {
3743 			VERIFY(nvlist_lookup_uint64(spares[i],
3744 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3745 			if (spa_spare_exists(guid, &pool, NULL) &&
3746 			    pool != 0ULL) {
3747 				VERIFY(nvlist_lookup_uint64_array(
3748 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3749 				    (uint64_t **)&vs, &vsc) == 0);
3750 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3751 				vs->vs_aux = VDEV_AUX_SPARED;
3752 			}
3753 		}
3754 	}
3755 }
3756 
3757 /*
3758  * Add l2cache device information to the nvlist, including vdev stats.
3759  */
3760 static void
3761 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3762 {
3763 	nvlist_t **l2cache;
3764 	uint_t i, j, nl2cache;
3765 	nvlist_t *nvroot;
3766 	uint64_t guid;
3767 	vdev_t *vd;
3768 	vdev_stat_t *vs;
3769 	uint_t vsc;
3770 
3771 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3772 
3773 	if (spa->spa_l2cache.sav_count == 0)
3774 		return;
3775 
3776 	VERIFY(nvlist_lookup_nvlist(config,
3777 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3778 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3779 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3780 	if (nl2cache != 0) {
3781 		VERIFY(nvlist_add_nvlist_array(nvroot,
3782 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3783 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3784 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3785 
3786 		/*
3787 		 * Update level 2 cache device stats.
3788 		 */
3789 
3790 		for (i = 0; i < nl2cache; i++) {
3791 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3792 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3793 
3794 			vd = NULL;
3795 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3796 				if (guid ==
3797 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3798 					vd = spa->spa_l2cache.sav_vdevs[j];
3799 					break;
3800 				}
3801 			}
3802 			ASSERT(vd != NULL);
3803 
3804 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3805 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3806 			    == 0);
3807 			vdev_get_stats(vd, vs);
3808 		}
3809 	}
3810 }
3811 
3812 static void
3813 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3814 {
3815 	nvlist_t *features;
3816 	zap_cursor_t zc;
3817 	zap_attribute_t za;
3818 
3819 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3820 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3821 
3822 	if (spa->spa_feat_for_read_obj != 0) {
3823 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3824 		    spa->spa_feat_for_read_obj);
3825 		    zap_cursor_retrieve(&zc, &za) == 0;
3826 		    zap_cursor_advance(&zc)) {
3827 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3828 			    za.za_num_integers == 1);
3829 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3830 			    za.za_first_integer));
3831 		}
3832 		zap_cursor_fini(&zc);
3833 	}
3834 
3835 	if (spa->spa_feat_for_write_obj != 0) {
3836 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3837 		    spa->spa_feat_for_write_obj);
3838 		    zap_cursor_retrieve(&zc, &za) == 0;
3839 		    zap_cursor_advance(&zc)) {
3840 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3841 			    za.za_num_integers == 1);
3842 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3843 			    za.za_first_integer));
3844 		}
3845 		zap_cursor_fini(&zc);
3846 	}
3847 
3848 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3849 	    features) == 0);
3850 	nvlist_free(features);
3851 }
3852 
3853 int
3854 spa_get_stats(const char *name, nvlist_t **config,
3855     char *altroot, size_t buflen)
3856 {
3857 	int error;
3858 	spa_t *spa;
3859 
3860 	*config = NULL;
3861 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3862 
3863 	if (spa != NULL) {
3864 		/*
3865 		 * This still leaves a window of inconsistency where the spares
3866 		 * or l2cache devices could change and the config would be
3867 		 * self-inconsistent.
3868 		 */
3869 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3870 
3871 		if (*config != NULL) {
3872 			uint64_t loadtimes[2];
3873 
3874 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3875 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3876 			VERIFY(nvlist_add_uint64_array(*config,
3877 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3878 
3879 			VERIFY(nvlist_add_uint64(*config,
3880 			    ZPOOL_CONFIG_ERRCOUNT,
3881 			    spa_get_errlog_size(spa)) == 0);
3882 
3883 			if (spa_suspended(spa))
3884 				VERIFY(nvlist_add_uint64(*config,
3885 				    ZPOOL_CONFIG_SUSPENDED,
3886 				    spa->spa_failmode) == 0);
3887 
3888 			spa_add_spares(spa, *config);
3889 			spa_add_l2cache(spa, *config);
3890 			spa_add_feature_stats(spa, *config);
3891 		}
3892 	}
3893 
3894 	/*
3895 	 * We want to get the alternate root even for faulted pools, so we cheat
3896 	 * and call spa_lookup() directly.
3897 	 */
3898 	if (altroot) {
3899 		if (spa == NULL) {
3900 			mutex_enter(&spa_namespace_lock);
3901 			spa = spa_lookup(name);
3902 			if (spa)
3903 				spa_altroot(spa, altroot, buflen);
3904 			else
3905 				altroot[0] = '\0';
3906 			spa = NULL;
3907 			mutex_exit(&spa_namespace_lock);
3908 		} else {
3909 			spa_altroot(spa, altroot, buflen);
3910 		}
3911 	}
3912 
3913 	if (spa != NULL) {
3914 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3915 		spa_close(spa, FTAG);
3916 	}
3917 
3918 	return (error);
3919 }
3920 
3921 /*
3922  * Validate that the auxiliary device array is well formed.  We must have an
3923  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3924  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3925  * specified, as long as they are well-formed.
3926  */
3927 static int
3928 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3929     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3930     vdev_labeltype_t label)
3931 {
3932 	nvlist_t **dev;
3933 	uint_t i, ndev;
3934 	vdev_t *vd;
3935 	int error;
3936 
3937 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3938 
3939 	/*
3940 	 * It's acceptable to have no devs specified.
3941 	 */
3942 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3943 		return (0);
3944 
3945 	if (ndev == 0)
3946 		return (SET_ERROR(EINVAL));
3947 
3948 	/*
3949 	 * Make sure the pool is formatted with a version that supports this
3950 	 * device type.
3951 	 */
3952 	if (spa_version(spa) < version)
3953 		return (SET_ERROR(ENOTSUP));
3954 
3955 	/*
3956 	 * Set the pending device list so we correctly handle device in-use
3957 	 * checking.
3958 	 */
3959 	sav->sav_pending = dev;
3960 	sav->sav_npending = ndev;
3961 
3962 	for (i = 0; i < ndev; i++) {
3963 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3964 		    mode)) != 0)
3965 			goto out;
3966 
3967 		if (!vd->vdev_ops->vdev_op_leaf) {
3968 			vdev_free(vd);
3969 			error = SET_ERROR(EINVAL);
3970 			goto out;
3971 		}
3972 
3973 		/*
3974 		 * The L2ARC currently only supports disk devices in
3975 		 * kernel context.  For user-level testing, we allow it.
3976 		 */
3977 #ifdef _KERNEL
3978 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3979 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3980 			error = SET_ERROR(ENOTBLK);
3981 			vdev_free(vd);
3982 			goto out;
3983 		}
3984 #endif
3985 		vd->vdev_top = vd;
3986 
3987 		if ((error = vdev_open(vd)) == 0 &&
3988 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3989 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3990 			    vd->vdev_guid) == 0);
3991 		}
3992 
3993 		vdev_free(vd);
3994 
3995 		if (error &&
3996 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3997 			goto out;
3998 		else
3999 			error = 0;
4000 	}
4001 
4002 out:
4003 	sav->sav_pending = NULL;
4004 	sav->sav_npending = 0;
4005 	return (error);
4006 }
4007 
4008 static int
4009 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4010 {
4011 	int error;
4012 
4013 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4014 
4015 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4016 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4017 	    VDEV_LABEL_SPARE)) != 0) {
4018 		return (error);
4019 	}
4020 
4021 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4022 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4023 	    VDEV_LABEL_L2CACHE));
4024 }
4025 
4026 static void
4027 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4028     const char *config)
4029 {
4030 	int i;
4031 
4032 	if (sav->sav_config != NULL) {
4033 		nvlist_t **olddevs;
4034 		uint_t oldndevs;
4035 		nvlist_t **newdevs;
4036 
4037 		/*
4038 		 * Generate new dev list by concatentating with the
4039 		 * current dev list.
4040 		 */
4041 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4042 		    &olddevs, &oldndevs) == 0);
4043 
4044 		newdevs = kmem_alloc(sizeof (void *) *
4045 		    (ndevs + oldndevs), KM_SLEEP);
4046 		for (i = 0; i < oldndevs; i++)
4047 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4048 			    KM_SLEEP) == 0);
4049 		for (i = 0; i < ndevs; i++)
4050 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4051 			    KM_SLEEP) == 0);
4052 
4053 		VERIFY(nvlist_remove(sav->sav_config, config,
4054 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4055 
4056 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4057 		    config, newdevs, ndevs + oldndevs) == 0);
4058 		for (i = 0; i < oldndevs + ndevs; i++)
4059 			nvlist_free(newdevs[i]);
4060 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4061 	} else {
4062 		/*
4063 		 * Generate a new dev list.
4064 		 */
4065 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4066 		    KM_SLEEP) == 0);
4067 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4068 		    devs, ndevs) == 0);
4069 	}
4070 }
4071 
4072 /*
4073  * Stop and drop level 2 ARC devices
4074  */
4075 void
4076 spa_l2cache_drop(spa_t *spa)
4077 {
4078 	vdev_t *vd;
4079 	int i;
4080 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4081 
4082 	for (i = 0; i < sav->sav_count; i++) {
4083 		uint64_t pool;
4084 
4085 		vd = sav->sav_vdevs[i];
4086 		ASSERT(vd != NULL);
4087 
4088 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4089 		    pool != 0ULL && l2arc_vdev_present(vd))
4090 			l2arc_remove_vdev(vd);
4091 	}
4092 }
4093 
4094 /*
4095  * Pool Creation
4096  */
4097 int
4098 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4099     nvlist_t *zplprops)
4100 {
4101 	spa_t *spa;
4102 	char *altroot = NULL;
4103 	vdev_t *rvd;
4104 	dsl_pool_t *dp;
4105 	dmu_tx_t *tx;
4106 	int error = 0;
4107 	uint64_t txg = TXG_INITIAL;
4108 	nvlist_t **spares, **l2cache;
4109 	uint_t nspares, nl2cache;
4110 	uint64_t version, obj;
4111 	boolean_t has_features;
4112 
4113 	/*
4114 	 * If this pool already exists, return failure.
4115 	 */
4116 	mutex_enter(&spa_namespace_lock);
4117 	if (spa_lookup(pool) != NULL) {
4118 		mutex_exit(&spa_namespace_lock);
4119 		return (SET_ERROR(EEXIST));
4120 	}
4121 
4122 	/*
4123 	 * Allocate a new spa_t structure.
4124 	 */
4125 	(void) nvlist_lookup_string(props,
4126 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4127 	spa = spa_add(pool, NULL, altroot);
4128 	spa_activate(spa, spa_mode_global);
4129 
4130 	if (props && (error = spa_prop_validate(spa, props))) {
4131 		spa_deactivate(spa);
4132 		spa_remove(spa);
4133 		mutex_exit(&spa_namespace_lock);
4134 		return (error);
4135 	}
4136 
4137 	has_features = B_FALSE;
4138 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4139 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4140 		if (zpool_prop_feature(nvpair_name(elem)))
4141 			has_features = B_TRUE;
4142 	}
4143 
4144 	if (has_features || nvlist_lookup_uint64(props,
4145 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4146 		version = SPA_VERSION;
4147 	}
4148 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4149 
4150 	spa->spa_first_txg = txg;
4151 	spa->spa_uberblock.ub_txg = txg - 1;
4152 	spa->spa_uberblock.ub_version = version;
4153 	spa->spa_ubsync = spa->spa_uberblock;
4154 	spa->spa_load_state = SPA_LOAD_CREATE;
4155 	spa->spa_removing_phys.sr_state = DSS_NONE;
4156 	spa->spa_removing_phys.sr_removing_vdev = -1;
4157 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4158 
4159 	/*
4160 	 * Create "The Godfather" zio to hold all async IOs
4161 	 */
4162 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4163 	    KM_SLEEP);
4164 	for (int i = 0; i < max_ncpus; i++) {
4165 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4166 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4167 		    ZIO_FLAG_GODFATHER);
4168 	}
4169 
4170 	/*
4171 	 * Create the root vdev.
4172 	 */
4173 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4174 
4175 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4176 
4177 	ASSERT(error != 0 || rvd != NULL);
4178 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4179 
4180 	if (error == 0 && !zfs_allocatable_devs(nvroot))
4181 		error = SET_ERROR(EINVAL);
4182 
4183 	if (error == 0 &&
4184 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4185 	    (error = spa_validate_aux(spa, nvroot, txg,
4186 	    VDEV_ALLOC_ADD)) == 0) {
4187 		for (int c = 0; c < rvd->vdev_children; c++) {
4188 			vdev_metaslab_set_size(rvd->vdev_child[c]);
4189 			vdev_expand(rvd->vdev_child[c], txg);
4190 		}
4191 	}
4192 
4193 	spa_config_exit(spa, SCL_ALL, FTAG);
4194 
4195 	if (error != 0) {
4196 		spa_unload(spa);
4197 		spa_deactivate(spa);
4198 		spa_remove(spa);
4199 		mutex_exit(&spa_namespace_lock);
4200 		return (error);
4201 	}
4202 
4203 	/*
4204 	 * Get the list of spares, if specified.
4205 	 */
4206 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4207 	    &spares, &nspares) == 0) {
4208 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4209 		    KM_SLEEP) == 0);
4210 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4211 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4212 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4213 		spa_load_spares(spa);
4214 		spa_config_exit(spa, SCL_ALL, FTAG);
4215 		spa->spa_spares.sav_sync = B_TRUE;
4216 	}
4217 
4218 	/*
4219 	 * Get the list of level 2 cache devices, if specified.
4220 	 */
4221 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4222 	    &l2cache, &nl2cache) == 0) {
4223 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4224 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4225 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4226 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4227 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4228 		spa_load_l2cache(spa);
4229 		spa_config_exit(spa, SCL_ALL, FTAG);
4230 		spa->spa_l2cache.sav_sync = B_TRUE;
4231 	}
4232 
4233 	spa->spa_is_initializing = B_TRUE;
4234 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4235 	spa->spa_meta_objset = dp->dp_meta_objset;
4236 	spa->spa_is_initializing = B_FALSE;
4237 
4238 	/*
4239 	 * Create DDTs (dedup tables).
4240 	 */
4241 	ddt_create(spa);
4242 
4243 	spa_update_dspace(spa);
4244 
4245 	tx = dmu_tx_create_assigned(dp, txg);
4246 
4247 	/*
4248 	 * Create the pool config object.
4249 	 */
4250 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4251 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4252 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4253 
4254 	if (zap_add(spa->spa_meta_objset,
4255 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4256 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4257 		cmn_err(CE_PANIC, "failed to add pool config");
4258 	}
4259 
4260 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4261 		spa_feature_create_zap_objects(spa, tx);
4262 
4263 	if (zap_add(spa->spa_meta_objset,
4264 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4265 	    sizeof (uint64_t), 1, &version, tx) != 0) {
4266 		cmn_err(CE_PANIC, "failed to add pool version");
4267 	}
4268 
4269 	/* Newly created pools with the right version are always deflated. */
4270 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4271 		spa->spa_deflate = TRUE;
4272 		if (zap_add(spa->spa_meta_objset,
4273 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4274 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4275 			cmn_err(CE_PANIC, "failed to add deflate");
4276 		}
4277 	}
4278 
4279 	/*
4280 	 * Create the deferred-free bpobj.  Turn off compression
4281 	 * because sync-to-convergence takes longer if the blocksize
4282 	 * keeps changing.
4283 	 */
4284 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4285 	dmu_object_set_compress(spa->spa_meta_objset, obj,
4286 	    ZIO_COMPRESS_OFF, tx);
4287 	if (zap_add(spa->spa_meta_objset,
4288 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4289 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4290 		cmn_err(CE_PANIC, "failed to add bpobj");
4291 	}
4292 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4293 	    spa->spa_meta_objset, obj));
4294 
4295 	/*
4296 	 * Create the pool's history object.
4297 	 */
4298 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4299 		spa_history_create_obj(spa, tx);
4300 
4301 	/*
4302 	 * Generate some random noise for salted checksums to operate on.
4303 	 */
4304 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4305 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4306 
4307 	/*
4308 	 * Set pool properties.
4309 	 */
4310 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4311 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4312 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4313 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4314 
4315 	if (props != NULL) {
4316 		spa_configfile_set(spa, props, B_FALSE);
4317 		spa_sync_props(props, tx);
4318 	}
4319 
4320 	dmu_tx_commit(tx);
4321 
4322 	spa->spa_sync_on = B_TRUE;
4323 	txg_sync_start(spa->spa_dsl_pool);
4324 
4325 	/*
4326 	 * We explicitly wait for the first transaction to complete so that our
4327 	 * bean counters are appropriately updated.
4328 	 */
4329 	txg_wait_synced(spa->spa_dsl_pool, txg);
4330 
4331 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4332 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4333 
4334 	spa_history_log_version(spa, "create");
4335 
4336 	/*
4337 	 * Don't count references from objsets that are already closed
4338 	 * and are making their way through the eviction process.
4339 	 */
4340 	spa_evicting_os_wait(spa);
4341 	spa->spa_minref = refcount_count(&spa->spa_refcount);
4342 	spa->spa_load_state = SPA_LOAD_NONE;
4343 
4344 	mutex_exit(&spa_namespace_lock);
4345 
4346 	return (0);
4347 }
4348 
4349 #ifdef _KERNEL
4350 /*
4351  * Get the root pool information from the root disk, then import the root pool
4352  * during the system boot up time.
4353  */
4354 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4355 
4356 static nvlist_t *
4357 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4358 {
4359 	nvlist_t *config;
4360 	nvlist_t *nvtop, *nvroot;
4361 	uint64_t pgid;
4362 
4363 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4364 		return (NULL);
4365 
4366 	/*
4367 	 * Add this top-level vdev to the child array.
4368 	 */
4369 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4370 	    &nvtop) == 0);
4371 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4372 	    &pgid) == 0);
4373 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4374 
4375 	/*
4376 	 * Put this pool's top-level vdevs into a root vdev.
4377 	 */
4378 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4379 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4380 	    VDEV_TYPE_ROOT) == 0);
4381 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4382 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4383 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4384 	    &nvtop, 1) == 0);
4385 
4386 	/*
4387 	 * Replace the existing vdev_tree with the new root vdev in
4388 	 * this pool's configuration (remove the old, add the new).
4389 	 */
4390 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4391 	nvlist_free(nvroot);
4392 	return (config);
4393 }
4394 
4395 /*
4396  * Walk the vdev tree and see if we can find a device with "better"
4397  * configuration. A configuration is "better" if the label on that
4398  * device has a more recent txg.
4399  */
4400 static void
4401 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4402 {
4403 	for (int c = 0; c < vd->vdev_children; c++)
4404 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4405 
4406 	if (vd->vdev_ops->vdev_op_leaf) {
4407 		nvlist_t *label;
4408 		uint64_t label_txg;
4409 
4410 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4411 		    &label) != 0)
4412 			return;
4413 
4414 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4415 		    &label_txg) == 0);
4416 
4417 		/*
4418 		 * Do we have a better boot device?
4419 		 */
4420 		if (label_txg > *txg) {
4421 			*txg = label_txg;
4422 			*avd = vd;
4423 		}
4424 		nvlist_free(label);
4425 	}
4426 }
4427 
4428 /*
4429  * Import a root pool.
4430  *
4431  * For x86. devpath_list will consist of devid and/or physpath name of
4432  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4433  * The GRUB "findroot" command will return the vdev we should boot.
4434  *
4435  * For Sparc, devpath_list consists the physpath name of the booting device
4436  * no matter the rootpool is a single device pool or a mirrored pool.
4437  * e.g.
4438  *	"/pci@1f,0/ide@d/disk@0,0:a"
4439  */
4440 int
4441 spa_import_rootpool(char *devpath, char *devid)
4442 {
4443 	spa_t *spa;
4444 	vdev_t *rvd, *bvd, *avd = NULL;
4445 	nvlist_t *config, *nvtop;
4446 	uint64_t guid, txg;
4447 	char *pname;
4448 	int error;
4449 
4450 	/*
4451 	 * Read the label from the boot device and generate a configuration.
4452 	 */
4453 	config = spa_generate_rootconf(devpath, devid, &guid);
4454 #if defined(_OBP) && defined(_KERNEL)
4455 	if (config == NULL) {
4456 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4457 			/* iscsi boot */
4458 			get_iscsi_bootpath_phy(devpath);
4459 			config = spa_generate_rootconf(devpath, devid, &guid);
4460 		}
4461 	}
4462 #endif
4463 	if (config == NULL) {
4464 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4465 		    devpath);
4466 		return (SET_ERROR(EIO));
4467 	}
4468 
4469 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4470 	    &pname) == 0);
4471 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4472 
4473 	mutex_enter(&spa_namespace_lock);
4474 	if ((spa = spa_lookup(pname)) != NULL) {
4475 		/*
4476 		 * Remove the existing root pool from the namespace so that we
4477 		 * can replace it with the correct config we just read in.
4478 		 */
4479 		spa_remove(spa);
4480 	}
4481 
4482 	spa = spa_add(pname, config, NULL);
4483 	spa->spa_is_root = B_TRUE;
4484 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4485 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4486 	    &spa->spa_ubsync.ub_version) != 0)
4487 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4488 
4489 	/*
4490 	 * Build up a vdev tree based on the boot device's label config.
4491 	 */
4492 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4493 	    &nvtop) == 0);
4494 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4495 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4496 	    VDEV_ALLOC_ROOTPOOL);
4497 	spa_config_exit(spa, SCL_ALL, FTAG);
4498 	if (error) {
4499 		mutex_exit(&spa_namespace_lock);
4500 		nvlist_free(config);
4501 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4502 		    pname);
4503 		return (error);
4504 	}
4505 
4506 	/*
4507 	 * Get the boot vdev.
4508 	 */
4509 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4510 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4511 		    (u_longlong_t)guid);
4512 		error = SET_ERROR(ENOENT);
4513 		goto out;
4514 	}
4515 
4516 	/*
4517 	 * Determine if there is a better boot device.
4518 	 */
4519 	avd = bvd;
4520 	spa_alt_rootvdev(rvd, &avd, &txg);
4521 	if (avd != bvd) {
4522 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4523 		    "try booting from '%s'", avd->vdev_path);
4524 		error = SET_ERROR(EINVAL);
4525 		goto out;
4526 	}
4527 
4528 	/*
4529 	 * If the boot device is part of a spare vdev then ensure that
4530 	 * we're booting off the active spare.
4531 	 */
4532 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4533 	    !bvd->vdev_isspare) {
4534 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4535 		    "try booting from '%s'",
4536 		    bvd->vdev_parent->
4537 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4538 		error = SET_ERROR(EINVAL);
4539 		goto out;
4540 	}
4541 
4542 	error = 0;
4543 out:
4544 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4545 	vdev_free(rvd);
4546 	spa_config_exit(spa, SCL_ALL, FTAG);
4547 	mutex_exit(&spa_namespace_lock);
4548 
4549 	nvlist_free(config);
4550 	return (error);
4551 }
4552 
4553 #endif
4554 
4555 /*
4556  * Import a non-root pool into the system.
4557  */
4558 int
4559 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4560 {
4561 	spa_t *spa;
4562 	char *altroot = NULL;
4563 	spa_load_state_t state = SPA_LOAD_IMPORT;
4564 	zpool_rewind_policy_t policy;
4565 	uint64_t mode = spa_mode_global;
4566 	uint64_t readonly = B_FALSE;
4567 	int error;
4568 	nvlist_t *nvroot;
4569 	nvlist_t **spares, **l2cache;
4570 	uint_t nspares, nl2cache;
4571 
4572 	/*
4573 	 * If a pool with this name exists, return failure.
4574 	 */
4575 	mutex_enter(&spa_namespace_lock);
4576 	if (spa_lookup(pool) != NULL) {
4577 		mutex_exit(&spa_namespace_lock);
4578 		return (SET_ERROR(EEXIST));
4579 	}
4580 
4581 	/*
4582 	 * Create and initialize the spa structure.
4583 	 */
4584 	(void) nvlist_lookup_string(props,
4585 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4586 	(void) nvlist_lookup_uint64(props,
4587 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4588 	if (readonly)
4589 		mode = FREAD;
4590 	spa = spa_add(pool, config, altroot);
4591 	spa->spa_import_flags = flags;
4592 
4593 	/*
4594 	 * Verbatim import - Take a pool and insert it into the namespace
4595 	 * as if it had been loaded at boot.
4596 	 */
4597 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4598 		if (props != NULL)
4599 			spa_configfile_set(spa, props, B_FALSE);
4600 
4601 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
4602 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4603 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
4604 		mutex_exit(&spa_namespace_lock);
4605 		return (0);
4606 	}
4607 
4608 	spa_activate(spa, mode);
4609 
4610 	/*
4611 	 * Don't start async tasks until we know everything is healthy.
4612 	 */
4613 	spa_async_suspend(spa);
4614 
4615 	zpool_get_rewind_policy(config, &policy);
4616 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4617 		state = SPA_LOAD_RECOVER;
4618 
4619 	/*
4620 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for trust_config
4621 	 * because the user-supplied config is actually the one to trust when
4622 	 * doing an import.
4623 	 */
4624 	if (state != SPA_LOAD_RECOVER)
4625 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4626 
4627 	zfs_dbgmsg("spa_import: importing %s%s", pool,
4628 	    (state == SPA_LOAD_RECOVER) ? " (RECOVERY MODE)" : "");
4629 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4630 	    policy.zrp_request);
4631 
4632 	/*
4633 	 * Propagate anything learned while loading the pool and pass it
4634 	 * back to caller (i.e. rewind info, missing devices, etc).
4635 	 */
4636 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4637 	    spa->spa_load_info) == 0);
4638 
4639 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4640 	/*
4641 	 * Toss any existing sparelist, as it doesn't have any validity
4642 	 * anymore, and conflicts with spa_has_spare().
4643 	 */
4644 	if (spa->spa_spares.sav_config) {
4645 		nvlist_free(spa->spa_spares.sav_config);
4646 		spa->spa_spares.sav_config = NULL;
4647 		spa_load_spares(spa);
4648 	}
4649 	if (spa->spa_l2cache.sav_config) {
4650 		nvlist_free(spa->spa_l2cache.sav_config);
4651 		spa->spa_l2cache.sav_config = NULL;
4652 		spa_load_l2cache(spa);
4653 	}
4654 
4655 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4656 	    &nvroot) == 0);
4657 	if (error == 0)
4658 		error = spa_validate_aux(spa, nvroot, -1ULL,
4659 		    VDEV_ALLOC_SPARE);
4660 	if (error == 0)
4661 		error = spa_validate_aux(spa, nvroot, -1ULL,
4662 		    VDEV_ALLOC_L2CACHE);
4663 	spa_config_exit(spa, SCL_ALL, FTAG);
4664 
4665 	if (props != NULL)
4666 		spa_configfile_set(spa, props, B_FALSE);
4667 
4668 	if (error != 0 || (props && spa_writeable(spa) &&
4669 	    (error = spa_prop_set(spa, props)))) {
4670 		spa_unload(spa);
4671 		spa_deactivate(spa);
4672 		spa_remove(spa);
4673 		mutex_exit(&spa_namespace_lock);
4674 		return (error);
4675 	}
4676 
4677 	spa_async_resume(spa);
4678 
4679 	/*
4680 	 * Override any spares and level 2 cache devices as specified by
4681 	 * the user, as these may have correct device names/devids, etc.
4682 	 */
4683 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4684 	    &spares, &nspares) == 0) {
4685 		if (spa->spa_spares.sav_config)
4686 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4687 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4688 		else
4689 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4690 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4691 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4692 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4693 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4694 		spa_load_spares(spa);
4695 		spa_config_exit(spa, SCL_ALL, FTAG);
4696 		spa->spa_spares.sav_sync = B_TRUE;
4697 	}
4698 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4699 	    &l2cache, &nl2cache) == 0) {
4700 		if (spa->spa_l2cache.sav_config)
4701 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4702 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4703 		else
4704 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4705 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4706 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4707 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4708 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4709 		spa_load_l2cache(spa);
4710 		spa_config_exit(spa, SCL_ALL, FTAG);
4711 		spa->spa_l2cache.sav_sync = B_TRUE;
4712 	}
4713 
4714 	/*
4715 	 * Check for any removed devices.
4716 	 */
4717 	if (spa->spa_autoreplace) {
4718 		spa_aux_check_removed(&spa->spa_spares);
4719 		spa_aux_check_removed(&spa->spa_l2cache);
4720 	}
4721 
4722 	if (spa_writeable(spa)) {
4723 		/*
4724 		 * Update the config cache to include the newly-imported pool.
4725 		 */
4726 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4727 	}
4728 
4729 	/*
4730 	 * It's possible that the pool was expanded while it was exported.
4731 	 * We kick off an async task to handle this for us.
4732 	 */
4733 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4734 
4735 	spa_history_log_version(spa, "import");
4736 
4737 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4738 
4739 	mutex_exit(&spa_namespace_lock);
4740 
4741 	return (0);
4742 }
4743 
4744 nvlist_t *
4745 spa_tryimport(nvlist_t *tryconfig)
4746 {
4747 	nvlist_t *config = NULL;
4748 	char *poolname;
4749 	spa_t *spa;
4750 	uint64_t state;
4751 	int error;
4752 
4753 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4754 		return (NULL);
4755 
4756 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4757 		return (NULL);
4758 
4759 	/*
4760 	 * Create and initialize the spa structure.
4761 	 */
4762 	mutex_enter(&spa_namespace_lock);
4763 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4764 	spa_activate(spa, FREAD);
4765 
4766 	zfs_dbgmsg("spa_tryimport: importing %s", poolname);
4767 
4768 	/*
4769 	 * Pass off the heavy lifting to spa_load().
4770 	 * Pass TRUE for trust_config because the user-supplied config
4771 	 * is actually the one to trust when doing an import.
4772 	 */
4773 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4774 
4775 	/*
4776 	 * If 'tryconfig' was at least parsable, return the current config.
4777 	 */
4778 	if (spa->spa_root_vdev != NULL) {
4779 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4780 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4781 		    poolname) == 0);
4782 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4783 		    state) == 0);
4784 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4785 		    spa->spa_uberblock.ub_timestamp) == 0);
4786 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4787 		    spa->spa_load_info) == 0);
4788 
4789 		/*
4790 		 * If the bootfs property exists on this pool then we
4791 		 * copy it out so that external consumers can tell which
4792 		 * pools are bootable.
4793 		 */
4794 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4795 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4796 
4797 			/*
4798 			 * We have to play games with the name since the
4799 			 * pool was opened as TRYIMPORT_NAME.
4800 			 */
4801 			if (dsl_dsobj_to_dsname(spa_name(spa),
4802 			    spa->spa_bootfs, tmpname) == 0) {
4803 				char *cp;
4804 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4805 
4806 				cp = strchr(tmpname, '/');
4807 				if (cp == NULL) {
4808 					(void) strlcpy(dsname, tmpname,
4809 					    MAXPATHLEN);
4810 				} else {
4811 					(void) snprintf(dsname, MAXPATHLEN,
4812 					    "%s/%s", poolname, ++cp);
4813 				}
4814 				VERIFY(nvlist_add_string(config,
4815 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4816 				kmem_free(dsname, MAXPATHLEN);
4817 			}
4818 			kmem_free(tmpname, MAXPATHLEN);
4819 		}
4820 
4821 		/*
4822 		 * Add the list of hot spares and level 2 cache devices.
4823 		 */
4824 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4825 		spa_add_spares(spa, config);
4826 		spa_add_l2cache(spa, config);
4827 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4828 	}
4829 
4830 	spa_unload(spa);
4831 	spa_deactivate(spa);
4832 	spa_remove(spa);
4833 	mutex_exit(&spa_namespace_lock);
4834 
4835 	return (config);
4836 }
4837 
4838 /*
4839  * Pool export/destroy
4840  *
4841  * The act of destroying or exporting a pool is very simple.  We make sure there
4842  * is no more pending I/O and any references to the pool are gone.  Then, we
4843  * update the pool state and sync all the labels to disk, removing the
4844  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4845  * we don't sync the labels or remove the configuration cache.
4846  */
4847 static int
4848 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4849     boolean_t force, boolean_t hardforce)
4850 {
4851 	spa_t *spa;
4852 
4853 	if (oldconfig)
4854 		*oldconfig = NULL;
4855 
4856 	if (!(spa_mode_global & FWRITE))
4857 		return (SET_ERROR(EROFS));
4858 
4859 	mutex_enter(&spa_namespace_lock);
4860 	if ((spa = spa_lookup(pool)) == NULL) {
4861 		mutex_exit(&spa_namespace_lock);
4862 		return (SET_ERROR(ENOENT));
4863 	}
4864 
4865 	/*
4866 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4867 	 * reacquire the namespace lock, and see if we can export.
4868 	 */
4869 	spa_open_ref(spa, FTAG);
4870 	mutex_exit(&spa_namespace_lock);
4871 	spa_async_suspend(spa);
4872 	mutex_enter(&spa_namespace_lock);
4873 	spa_close(spa, FTAG);
4874 
4875 	/*
4876 	 * The pool will be in core if it's openable,
4877 	 * in which case we can modify its state.
4878 	 */
4879 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4880 		/*
4881 		 * Objsets may be open only because they're dirty, so we
4882 		 * have to force it to sync before checking spa_refcnt.
4883 		 */
4884 		txg_wait_synced(spa->spa_dsl_pool, 0);
4885 		spa_evicting_os_wait(spa);
4886 
4887 		/*
4888 		 * A pool cannot be exported or destroyed if there are active
4889 		 * references.  If we are resetting a pool, allow references by
4890 		 * fault injection handlers.
4891 		 */
4892 		if (!spa_refcount_zero(spa) ||
4893 		    (spa->spa_inject_ref != 0 &&
4894 		    new_state != POOL_STATE_UNINITIALIZED)) {
4895 			spa_async_resume(spa);
4896 			mutex_exit(&spa_namespace_lock);
4897 			return (SET_ERROR(EBUSY));
4898 		}
4899 
4900 		/*
4901 		 * A pool cannot be exported if it has an active shared spare.
4902 		 * This is to prevent other pools stealing the active spare
4903 		 * from an exported pool. At user's own will, such pool can
4904 		 * be forcedly exported.
4905 		 */
4906 		if (!force && new_state == POOL_STATE_EXPORTED &&
4907 		    spa_has_active_shared_spare(spa)) {
4908 			spa_async_resume(spa);
4909 			mutex_exit(&spa_namespace_lock);
4910 			return (SET_ERROR(EXDEV));
4911 		}
4912 
4913 		/*
4914 		 * We want this to be reflected on every label,
4915 		 * so mark them all dirty.  spa_unload() will do the
4916 		 * final sync that pushes these changes out.
4917 		 */
4918 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4919 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4920 			spa->spa_state = new_state;
4921 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4922 			    TXG_DEFER_SIZE + 1;
4923 			vdev_config_dirty(spa->spa_root_vdev);
4924 			spa_config_exit(spa, SCL_ALL, FTAG);
4925 		}
4926 	}
4927 
4928 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4929 
4930 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4931 		spa_unload(spa);
4932 		spa_deactivate(spa);
4933 	}
4934 
4935 	if (oldconfig && spa->spa_config)
4936 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4937 
4938 	if (new_state != POOL_STATE_UNINITIALIZED) {
4939 		if (!hardforce)
4940 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4941 		spa_remove(spa);
4942 	}
4943 	mutex_exit(&spa_namespace_lock);
4944 
4945 	return (0);
4946 }
4947 
4948 /*
4949  * Destroy a storage pool.
4950  */
4951 int
4952 spa_destroy(char *pool)
4953 {
4954 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4955 	    B_FALSE, B_FALSE));
4956 }
4957 
4958 /*
4959  * Export a storage pool.
4960  */
4961 int
4962 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4963     boolean_t hardforce)
4964 {
4965 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4966 	    force, hardforce));
4967 }
4968 
4969 /*
4970  * Similar to spa_export(), this unloads the spa_t without actually removing it
4971  * from the namespace in any way.
4972  */
4973 int
4974 spa_reset(char *pool)
4975 {
4976 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4977 	    B_FALSE, B_FALSE));
4978 }
4979 
4980 /*
4981  * ==========================================================================
4982  * Device manipulation
4983  * ==========================================================================
4984  */
4985 
4986 /*
4987  * Add a device to a storage pool.
4988  */
4989 int
4990 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4991 {
4992 	uint64_t txg, id;
4993 	int error;
4994 	vdev_t *rvd = spa->spa_root_vdev;
4995 	vdev_t *vd, *tvd;
4996 	nvlist_t **spares, **l2cache;
4997 	uint_t nspares, nl2cache;
4998 
4999 	ASSERT(spa_writeable(spa));
5000 
5001 	txg = spa_vdev_enter(spa);
5002 
5003 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5004 	    VDEV_ALLOC_ADD)) != 0)
5005 		return (spa_vdev_exit(spa, NULL, txg, error));
5006 
5007 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5008 
5009 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5010 	    &nspares) != 0)
5011 		nspares = 0;
5012 
5013 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5014 	    &nl2cache) != 0)
5015 		nl2cache = 0;
5016 
5017 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5018 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5019 
5020 	if (vd->vdev_children != 0 &&
5021 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5022 		return (spa_vdev_exit(spa, vd, txg, error));
5023 
5024 	/*
5025 	 * We must validate the spares and l2cache devices after checking the
5026 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5027 	 */
5028 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5029 		return (spa_vdev_exit(spa, vd, txg, error));
5030 
5031 	/*
5032 	 * If we are in the middle of a device removal, we can only add
5033 	 * devices which match the existing devices in the pool.
5034 	 * If we are in the middle of a removal, or have some indirect
5035 	 * vdevs, we can not add raidz toplevels.
5036 	 */
5037 	if (spa->spa_vdev_removal != NULL ||
5038 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5039 		for (int c = 0; c < vd->vdev_children; c++) {
5040 			tvd = vd->vdev_child[c];
5041 			if (spa->spa_vdev_removal != NULL &&
5042 			    tvd->vdev_ashift !=
5043 			    spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5044 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5045 			}
5046 			/* Fail if top level vdev is raidz */
5047 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5048 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5049 			}
5050 			/*
5051 			 * Need the top level mirror to be
5052 			 * a mirror of leaf vdevs only
5053 			 */
5054 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5055 				for (uint64_t cid = 0;
5056 				    cid < tvd->vdev_children; cid++) {
5057 					vdev_t *cvd = tvd->vdev_child[cid];
5058 					if (!cvd->vdev_ops->vdev_op_leaf) {
5059 						return (spa_vdev_exit(spa, vd,
5060 						    txg, EINVAL));
5061 					}
5062 				}
5063 			}
5064 		}
5065 	}
5066 
5067 	for (int c = 0; c < vd->vdev_children; c++) {
5068 
5069 		/*
5070 		 * Set the vdev id to the first hole, if one exists.
5071 		 */
5072 		for (id = 0; id < rvd->vdev_children; id++) {
5073 			if (rvd->vdev_child[id]->vdev_ishole) {
5074 				vdev_free(rvd->vdev_child[id]);
5075 				break;
5076 			}
5077 		}
5078 		tvd = vd->vdev_child[c];
5079 		vdev_remove_child(vd, tvd);
5080 		tvd->vdev_id = id;
5081 		vdev_add_child(rvd, tvd);
5082 		vdev_config_dirty(tvd);
5083 	}
5084 
5085 	if (nspares != 0) {
5086 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5087 		    ZPOOL_CONFIG_SPARES);
5088 		spa_load_spares(spa);
5089 		spa->spa_spares.sav_sync = B_TRUE;
5090 	}
5091 
5092 	if (nl2cache != 0) {
5093 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5094 		    ZPOOL_CONFIG_L2CACHE);
5095 		spa_load_l2cache(spa);
5096 		spa->spa_l2cache.sav_sync = B_TRUE;
5097 	}
5098 
5099 	/*
5100 	 * We have to be careful when adding new vdevs to an existing pool.
5101 	 * If other threads start allocating from these vdevs before we
5102 	 * sync the config cache, and we lose power, then upon reboot we may
5103 	 * fail to open the pool because there are DVAs that the config cache
5104 	 * can't translate.  Therefore, we first add the vdevs without
5105 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5106 	 * and then let spa_config_update() initialize the new metaslabs.
5107 	 *
5108 	 * spa_load() checks for added-but-not-initialized vdevs, so that
5109 	 * if we lose power at any point in this sequence, the remaining
5110 	 * steps will be completed the next time we load the pool.
5111 	 */
5112 	(void) spa_vdev_exit(spa, vd, txg, 0);
5113 
5114 	mutex_enter(&spa_namespace_lock);
5115 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5116 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5117 	mutex_exit(&spa_namespace_lock);
5118 
5119 	return (0);
5120 }
5121 
5122 /*
5123  * Attach a device to a mirror.  The arguments are the path to any device
5124  * in the mirror, and the nvroot for the new device.  If the path specifies
5125  * a device that is not mirrored, we automatically insert the mirror vdev.
5126  *
5127  * If 'replacing' is specified, the new device is intended to replace the
5128  * existing device; in this case the two devices are made into their own
5129  * mirror using the 'replacing' vdev, which is functionally identical to
5130  * the mirror vdev (it actually reuses all the same ops) but has a few
5131  * extra rules: you can't attach to it after it's been created, and upon
5132  * completion of resilvering, the first disk (the one being replaced)
5133  * is automatically detached.
5134  */
5135 int
5136 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5137 {
5138 	uint64_t txg, dtl_max_txg;
5139 	vdev_t *rvd = spa->spa_root_vdev;
5140 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5141 	vdev_ops_t *pvops;
5142 	char *oldvdpath, *newvdpath;
5143 	int newvd_isspare;
5144 	int error;
5145 
5146 	ASSERT(spa_writeable(spa));
5147 
5148 	txg = spa_vdev_enter(spa);
5149 
5150 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5151 
5152 	if (spa->spa_vdev_removal != NULL ||
5153 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5154 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5155 	}
5156 
5157 	if (oldvd == NULL)
5158 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5159 
5160 	if (!oldvd->vdev_ops->vdev_op_leaf)
5161 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5162 
5163 	pvd = oldvd->vdev_parent;
5164 
5165 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5166 	    VDEV_ALLOC_ATTACH)) != 0)
5167 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5168 
5169 	if (newrootvd->vdev_children != 1)
5170 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5171 
5172 	newvd = newrootvd->vdev_child[0];
5173 
5174 	if (!newvd->vdev_ops->vdev_op_leaf)
5175 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5176 
5177 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5178 		return (spa_vdev_exit(spa, newrootvd, txg, error));
5179 
5180 	/*
5181 	 * Spares can't replace logs
5182 	 */
5183 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5184 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5185 
5186 	if (!replacing) {
5187 		/*
5188 		 * For attach, the only allowable parent is a mirror or the root
5189 		 * vdev.
5190 		 */
5191 		if (pvd->vdev_ops != &vdev_mirror_ops &&
5192 		    pvd->vdev_ops != &vdev_root_ops)
5193 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5194 
5195 		pvops = &vdev_mirror_ops;
5196 	} else {
5197 		/*
5198 		 * Active hot spares can only be replaced by inactive hot
5199 		 * spares.
5200 		 */
5201 		if (pvd->vdev_ops == &vdev_spare_ops &&
5202 		    oldvd->vdev_isspare &&
5203 		    !spa_has_spare(spa, newvd->vdev_guid))
5204 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5205 
5206 		/*
5207 		 * If the source is a hot spare, and the parent isn't already a
5208 		 * spare, then we want to create a new hot spare.  Otherwise, we
5209 		 * want to create a replacing vdev.  The user is not allowed to
5210 		 * attach to a spared vdev child unless the 'isspare' state is
5211 		 * the same (spare replaces spare, non-spare replaces
5212 		 * non-spare).
5213 		 */
5214 		if (pvd->vdev_ops == &vdev_replacing_ops &&
5215 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5216 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5217 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
5218 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
5219 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5220 		}
5221 
5222 		if (newvd->vdev_isspare)
5223 			pvops = &vdev_spare_ops;
5224 		else
5225 			pvops = &vdev_replacing_ops;
5226 	}
5227 
5228 	/*
5229 	 * Make sure the new device is big enough.
5230 	 */
5231 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5232 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5233 
5234 	/*
5235 	 * The new device cannot have a higher alignment requirement
5236 	 * than the top-level vdev.
5237 	 */
5238 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5239 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5240 
5241 	/*
5242 	 * If this is an in-place replacement, update oldvd's path and devid
5243 	 * to make it distinguishable from newvd, and unopenable from now on.
5244 	 */
5245 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5246 		spa_strfree(oldvd->vdev_path);
5247 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5248 		    KM_SLEEP);
5249 		(void) sprintf(oldvd->vdev_path, "%s/%s",
5250 		    newvd->vdev_path, "old");
5251 		if (oldvd->vdev_devid != NULL) {
5252 			spa_strfree(oldvd->vdev_devid);
5253 			oldvd->vdev_devid = NULL;
5254 		}
5255 	}
5256 
5257 	/* mark the device being resilvered */
5258 	newvd->vdev_resilver_txg = txg;
5259 
5260 	/*
5261 	 * If the parent is not a mirror, or if we're replacing, insert the new
5262 	 * mirror/replacing/spare vdev above oldvd.
5263 	 */
5264 	if (pvd->vdev_ops != pvops)
5265 		pvd = vdev_add_parent(oldvd, pvops);
5266 
5267 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
5268 	ASSERT(pvd->vdev_ops == pvops);
5269 	ASSERT(oldvd->vdev_parent == pvd);
5270 
5271 	/*
5272 	 * Extract the new device from its root and add it to pvd.
5273 	 */
5274 	vdev_remove_child(newrootvd, newvd);
5275 	newvd->vdev_id = pvd->vdev_children;
5276 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
5277 	vdev_add_child(pvd, newvd);
5278 
5279 	tvd = newvd->vdev_top;
5280 	ASSERT(pvd->vdev_top == tvd);
5281 	ASSERT(tvd->vdev_parent == rvd);
5282 
5283 	vdev_config_dirty(tvd);
5284 
5285 	/*
5286 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5287 	 * for any dmu_sync-ed blocks.  It will propagate upward when
5288 	 * spa_vdev_exit() calls vdev_dtl_reassess().
5289 	 */
5290 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5291 
5292 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5293 	    dtl_max_txg - TXG_INITIAL);
5294 
5295 	if (newvd->vdev_isspare) {
5296 		spa_spare_activate(newvd);
5297 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5298 	}
5299 
5300 	oldvdpath = spa_strdup(oldvd->vdev_path);
5301 	newvdpath = spa_strdup(newvd->vdev_path);
5302 	newvd_isspare = newvd->vdev_isspare;
5303 
5304 	/*
5305 	 * Mark newvd's DTL dirty in this txg.
5306 	 */
5307 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5308 
5309 	/*
5310 	 * Schedule the resilver to restart in the future. We do this to
5311 	 * ensure that dmu_sync-ed blocks have been stitched into the
5312 	 * respective datasets.
5313 	 */
5314 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5315 
5316 	if (spa->spa_bootfs)
5317 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5318 
5319 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5320 
5321 	/*
5322 	 * Commit the config
5323 	 */
5324 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5325 
5326 	spa_history_log_internal(spa, "vdev attach", NULL,
5327 	    "%s vdev=%s %s vdev=%s",
5328 	    replacing && newvd_isspare ? "spare in" :
5329 	    replacing ? "replace" : "attach", newvdpath,
5330 	    replacing ? "for" : "to", oldvdpath);
5331 
5332 	spa_strfree(oldvdpath);
5333 	spa_strfree(newvdpath);
5334 
5335 	return (0);
5336 }
5337 
5338 /*
5339  * Detach a device from a mirror or replacing vdev.
5340  *
5341  * If 'replace_done' is specified, only detach if the parent
5342  * is a replacing vdev.
5343  */
5344 int
5345 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5346 {
5347 	uint64_t txg;
5348 	int error;
5349 	vdev_t *rvd = spa->spa_root_vdev;
5350 	vdev_t *vd, *pvd, *cvd, *tvd;
5351 	boolean_t unspare = B_FALSE;
5352 	uint64_t unspare_guid = 0;
5353 	char *vdpath;
5354 
5355 	ASSERT(spa_writeable(spa));
5356 
5357 	txg = spa_vdev_enter(spa);
5358 
5359 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5360 
5361 	if (vd == NULL)
5362 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5363 
5364 	if (!vd->vdev_ops->vdev_op_leaf)
5365 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5366 
5367 	pvd = vd->vdev_parent;
5368 
5369 	/*
5370 	 * If the parent/child relationship is not as expected, don't do it.
5371 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5372 	 * vdev that's replacing B with C.  The user's intent in replacing
5373 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5374 	 * the replace by detaching C, the expected behavior is to end up
5375 	 * M(A,B).  But suppose that right after deciding to detach C,
5376 	 * the replacement of B completes.  We would have M(A,C), and then
5377 	 * ask to detach C, which would leave us with just A -- not what
5378 	 * the user wanted.  To prevent this, we make sure that the
5379 	 * parent/child relationship hasn't changed -- in this example,
5380 	 * that C's parent is still the replacing vdev R.
5381 	 */
5382 	if (pvd->vdev_guid != pguid && pguid != 0)
5383 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5384 
5385 	/*
5386 	 * Only 'replacing' or 'spare' vdevs can be replaced.
5387 	 */
5388 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5389 	    pvd->vdev_ops != &vdev_spare_ops)
5390 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5391 
5392 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5393 	    spa_version(spa) >= SPA_VERSION_SPARES);
5394 
5395 	/*
5396 	 * Only mirror, replacing, and spare vdevs support detach.
5397 	 */
5398 	if (pvd->vdev_ops != &vdev_replacing_ops &&
5399 	    pvd->vdev_ops != &vdev_mirror_ops &&
5400 	    pvd->vdev_ops != &vdev_spare_ops)
5401 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5402 
5403 	/*
5404 	 * If this device has the only valid copy of some data,
5405 	 * we cannot safely detach it.
5406 	 */
5407 	if (vdev_dtl_required(vd))
5408 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5409 
5410 	ASSERT(pvd->vdev_children >= 2);
5411 
5412 	/*
5413 	 * If we are detaching the second disk from a replacing vdev, then
5414 	 * check to see if we changed the original vdev's path to have "/old"
5415 	 * at the end in spa_vdev_attach().  If so, undo that change now.
5416 	 */
5417 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5418 	    vd->vdev_path != NULL) {
5419 		size_t len = strlen(vd->vdev_path);
5420 
5421 		for (int c = 0; c < pvd->vdev_children; c++) {
5422 			cvd = pvd->vdev_child[c];
5423 
5424 			if (cvd == vd || cvd->vdev_path == NULL)
5425 				continue;
5426 
5427 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5428 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5429 				spa_strfree(cvd->vdev_path);
5430 				cvd->vdev_path = spa_strdup(vd->vdev_path);
5431 				break;
5432 			}
5433 		}
5434 	}
5435 
5436 	/*
5437 	 * If we are detaching the original disk from a spare, then it implies
5438 	 * that the spare should become a real disk, and be removed from the
5439 	 * active spare list for the pool.
5440 	 */
5441 	if (pvd->vdev_ops == &vdev_spare_ops &&
5442 	    vd->vdev_id == 0 &&
5443 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5444 		unspare = B_TRUE;
5445 
5446 	/*
5447 	 * Erase the disk labels so the disk can be used for other things.
5448 	 * This must be done after all other error cases are handled,
5449 	 * but before we disembowel vd (so we can still do I/O to it).
5450 	 * But if we can't do it, don't treat the error as fatal --
5451 	 * it may be that the unwritability of the disk is the reason
5452 	 * it's being detached!
5453 	 */
5454 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5455 
5456 	/*
5457 	 * Remove vd from its parent and compact the parent's children.
5458 	 */
5459 	vdev_remove_child(pvd, vd);
5460 	vdev_compact_children(pvd);
5461 
5462 	/*
5463 	 * Remember one of the remaining children so we can get tvd below.
5464 	 */
5465 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5466 
5467 	/*
5468 	 * If we need to remove the remaining child from the list of hot spares,
5469 	 * do it now, marking the vdev as no longer a spare in the process.
5470 	 * We must do this before vdev_remove_parent(), because that can
5471 	 * change the GUID if it creates a new toplevel GUID.  For a similar
5472 	 * reason, we must remove the spare now, in the same txg as the detach;
5473 	 * otherwise someone could attach a new sibling, change the GUID, and
5474 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5475 	 */
5476 	if (unspare) {
5477 		ASSERT(cvd->vdev_isspare);
5478 		spa_spare_remove(cvd);
5479 		unspare_guid = cvd->vdev_guid;
5480 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5481 		cvd->vdev_unspare = B_TRUE;
5482 	}
5483 
5484 	/*
5485 	 * If the parent mirror/replacing vdev only has one child,
5486 	 * the parent is no longer needed.  Remove it from the tree.
5487 	 */
5488 	if (pvd->vdev_children == 1) {
5489 		if (pvd->vdev_ops == &vdev_spare_ops)
5490 			cvd->vdev_unspare = B_FALSE;
5491 		vdev_remove_parent(cvd);
5492 	}
5493 
5494 
5495 	/*
5496 	 * We don't set tvd until now because the parent we just removed
5497 	 * may have been the previous top-level vdev.
5498 	 */
5499 	tvd = cvd->vdev_top;
5500 	ASSERT(tvd->vdev_parent == rvd);
5501 
5502 	/*
5503 	 * Reevaluate the parent vdev state.
5504 	 */
5505 	vdev_propagate_state(cvd);
5506 
5507 	/*
5508 	 * If the 'autoexpand' property is set on the pool then automatically
5509 	 * try to expand the size of the pool. For example if the device we
5510 	 * just detached was smaller than the others, it may be possible to
5511 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5512 	 * first so that we can obtain the updated sizes of the leaf vdevs.
5513 	 */
5514 	if (spa->spa_autoexpand) {
5515 		vdev_reopen(tvd);
5516 		vdev_expand(tvd, txg);
5517 	}
5518 
5519 	vdev_config_dirty(tvd);
5520 
5521 	/*
5522 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5523 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5524 	 * But first make sure we're not on any *other* txg's DTL list, to
5525 	 * prevent vd from being accessed after it's freed.
5526 	 */
5527 	vdpath = spa_strdup(vd->vdev_path);
5528 	for (int t = 0; t < TXG_SIZE; t++)
5529 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5530 	vd->vdev_detached = B_TRUE;
5531 	vdev_dirty(tvd, VDD_DTL, vd, txg);
5532 
5533 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5534 
5535 	/* hang on to the spa before we release the lock */
5536 	spa_open_ref(spa, FTAG);
5537 
5538 	error = spa_vdev_exit(spa, vd, txg, 0);
5539 
5540 	spa_history_log_internal(spa, "detach", NULL,
5541 	    "vdev=%s", vdpath);
5542 	spa_strfree(vdpath);
5543 
5544 	/*
5545 	 * If this was the removal of the original device in a hot spare vdev,
5546 	 * then we want to go through and remove the device from the hot spare
5547 	 * list of every other pool.
5548 	 */
5549 	if (unspare) {
5550 		spa_t *altspa = NULL;
5551 
5552 		mutex_enter(&spa_namespace_lock);
5553 		while ((altspa = spa_next(altspa)) != NULL) {
5554 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5555 			    altspa == spa)
5556 				continue;
5557 
5558 			spa_open_ref(altspa, FTAG);
5559 			mutex_exit(&spa_namespace_lock);
5560 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5561 			mutex_enter(&spa_namespace_lock);
5562 			spa_close(altspa, FTAG);
5563 		}
5564 		mutex_exit(&spa_namespace_lock);
5565 
5566 		/* search the rest of the vdevs for spares to remove */
5567 		spa_vdev_resilver_done(spa);
5568 	}
5569 
5570 	/* all done with the spa; OK to release */
5571 	mutex_enter(&spa_namespace_lock);
5572 	spa_close(spa, FTAG);
5573 	mutex_exit(&spa_namespace_lock);
5574 
5575 	return (error);
5576 }
5577 
5578 /*
5579  * Split a set of devices from their mirrors, and create a new pool from them.
5580  */
5581 int
5582 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5583     nvlist_t *props, boolean_t exp)
5584 {
5585 	int error = 0;
5586 	uint64_t txg, *glist;
5587 	spa_t *newspa;
5588 	uint_t c, children, lastlog;
5589 	nvlist_t **child, *nvl, *tmp;
5590 	dmu_tx_t *tx;
5591 	char *altroot = NULL;
5592 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5593 	boolean_t activate_slog;
5594 
5595 	ASSERT(spa_writeable(spa));
5596 
5597 	txg = spa_vdev_enter(spa);
5598 
5599 	/* clear the log and flush everything up to now */
5600 	activate_slog = spa_passivate_log(spa);
5601 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5602 	error = spa_reset_logs(spa);
5603 	txg = spa_vdev_config_enter(spa);
5604 
5605 	if (activate_slog)
5606 		spa_activate_log(spa);
5607 
5608 	if (error != 0)
5609 		return (spa_vdev_exit(spa, NULL, txg, error));
5610 
5611 	/* check new spa name before going any further */
5612 	if (spa_lookup(newname) != NULL)
5613 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5614 
5615 	/*
5616 	 * scan through all the children to ensure they're all mirrors
5617 	 */
5618 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5619 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5620 	    &children) != 0)
5621 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5622 
5623 	/* first, check to ensure we've got the right child count */
5624 	rvd = spa->spa_root_vdev;
5625 	lastlog = 0;
5626 	for (c = 0; c < rvd->vdev_children; c++) {
5627 		vdev_t *vd = rvd->vdev_child[c];
5628 
5629 		/* don't count the holes & logs as children */
5630 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
5631 			if (lastlog == 0)
5632 				lastlog = c;
5633 			continue;
5634 		}
5635 
5636 		lastlog = 0;
5637 	}
5638 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5639 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5640 
5641 	/* next, ensure no spare or cache devices are part of the split */
5642 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5643 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5644 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5645 
5646 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5647 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5648 
5649 	/* then, loop over each vdev and validate it */
5650 	for (c = 0; c < children; c++) {
5651 		uint64_t is_hole = 0;
5652 
5653 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5654 		    &is_hole);
5655 
5656 		if (is_hole != 0) {
5657 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5658 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5659 				continue;
5660 			} else {
5661 				error = SET_ERROR(EINVAL);
5662 				break;
5663 			}
5664 		}
5665 
5666 		/* which disk is going to be split? */
5667 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5668 		    &glist[c]) != 0) {
5669 			error = SET_ERROR(EINVAL);
5670 			break;
5671 		}
5672 
5673 		/* look it up in the spa */
5674 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5675 		if (vml[c] == NULL) {
5676 			error = SET_ERROR(ENODEV);
5677 			break;
5678 		}
5679 
5680 		/* make sure there's nothing stopping the split */
5681 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5682 		    vml[c]->vdev_islog ||
5683 		    !vdev_is_concrete(vml[c]) ||
5684 		    vml[c]->vdev_isspare ||
5685 		    vml[c]->vdev_isl2cache ||
5686 		    !vdev_writeable(vml[c]) ||
5687 		    vml[c]->vdev_children != 0 ||
5688 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5689 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5690 			error = SET_ERROR(EINVAL);
5691 			break;
5692 		}
5693 
5694 		if (vdev_dtl_required(vml[c])) {
5695 			error = SET_ERROR(EBUSY);
5696 			break;
5697 		}
5698 
5699 		/* we need certain info from the top level */
5700 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5701 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5702 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5703 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5704 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5705 		    vml[c]->vdev_top->vdev_asize) == 0);
5706 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5707 		    vml[c]->vdev_top->vdev_ashift) == 0);
5708 
5709 		/* transfer per-vdev ZAPs */
5710 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5711 		VERIFY0(nvlist_add_uint64(child[c],
5712 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5713 
5714 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5715 		VERIFY0(nvlist_add_uint64(child[c],
5716 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5717 		    vml[c]->vdev_parent->vdev_top_zap));
5718 	}
5719 
5720 	if (error != 0) {
5721 		kmem_free(vml, children * sizeof (vdev_t *));
5722 		kmem_free(glist, children * sizeof (uint64_t));
5723 		return (spa_vdev_exit(spa, NULL, txg, error));
5724 	}
5725 
5726 	/* stop writers from using the disks */
5727 	for (c = 0; c < children; c++) {
5728 		if (vml[c] != NULL)
5729 			vml[c]->vdev_offline = B_TRUE;
5730 	}
5731 	vdev_reopen(spa->spa_root_vdev);
5732 
5733 	/*
5734 	 * Temporarily record the splitting vdevs in the spa config.  This
5735 	 * will disappear once the config is regenerated.
5736 	 */
5737 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5738 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5739 	    glist, children) == 0);
5740 	kmem_free(glist, children * sizeof (uint64_t));
5741 
5742 	mutex_enter(&spa->spa_props_lock);
5743 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5744 	    nvl) == 0);
5745 	mutex_exit(&spa->spa_props_lock);
5746 	spa->spa_config_splitting = nvl;
5747 	vdev_config_dirty(spa->spa_root_vdev);
5748 
5749 	/* configure and create the new pool */
5750 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5751 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5752 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5753 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5754 	    spa_version(spa)) == 0);
5755 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5756 	    spa->spa_config_txg) == 0);
5757 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5758 	    spa_generate_guid(NULL)) == 0);
5759 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5760 	(void) nvlist_lookup_string(props,
5761 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5762 
5763 	/* add the new pool to the namespace */
5764 	newspa = spa_add(newname, config, altroot);
5765 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5766 	newspa->spa_config_txg = spa->spa_config_txg;
5767 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5768 
5769 	/* release the spa config lock, retaining the namespace lock */
5770 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5771 
5772 	if (zio_injection_enabled)
5773 		zio_handle_panic_injection(spa, FTAG, 1);
5774 
5775 	spa_activate(newspa, spa_mode_global);
5776 	spa_async_suspend(newspa);
5777 
5778 	/* create the new pool from the disks of the original pool */
5779 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5780 	if (error)
5781 		goto out;
5782 
5783 	/* if that worked, generate a real config for the new pool */
5784 	if (newspa->spa_root_vdev != NULL) {
5785 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5786 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5787 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5788 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5789 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5790 		    B_TRUE));
5791 	}
5792 
5793 	/* set the props */
5794 	if (props != NULL) {
5795 		spa_configfile_set(newspa, props, B_FALSE);
5796 		error = spa_prop_set(newspa, props);
5797 		if (error)
5798 			goto out;
5799 	}
5800 
5801 	/* flush everything */
5802 	txg = spa_vdev_config_enter(newspa);
5803 	vdev_config_dirty(newspa->spa_root_vdev);
5804 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5805 
5806 	if (zio_injection_enabled)
5807 		zio_handle_panic_injection(spa, FTAG, 2);
5808 
5809 	spa_async_resume(newspa);
5810 
5811 	/* finally, update the original pool's config */
5812 	txg = spa_vdev_config_enter(spa);
5813 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5814 	error = dmu_tx_assign(tx, TXG_WAIT);
5815 	if (error != 0)
5816 		dmu_tx_abort(tx);
5817 	for (c = 0; c < children; c++) {
5818 		if (vml[c] != NULL) {
5819 			vdev_split(vml[c]);
5820 			if (error == 0)
5821 				spa_history_log_internal(spa, "detach", tx,
5822 				    "vdev=%s", vml[c]->vdev_path);
5823 
5824 			vdev_free(vml[c]);
5825 		}
5826 	}
5827 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5828 	vdev_config_dirty(spa->spa_root_vdev);
5829 	spa->spa_config_splitting = NULL;
5830 	nvlist_free(nvl);
5831 	if (error == 0)
5832 		dmu_tx_commit(tx);
5833 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5834 
5835 	if (zio_injection_enabled)
5836 		zio_handle_panic_injection(spa, FTAG, 3);
5837 
5838 	/* split is complete; log a history record */
5839 	spa_history_log_internal(newspa, "split", NULL,
5840 	    "from pool %s", spa_name(spa));
5841 
5842 	kmem_free(vml, children * sizeof (vdev_t *));
5843 
5844 	/* if we're not going to mount the filesystems in userland, export */
5845 	if (exp)
5846 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5847 		    B_FALSE, B_FALSE);
5848 
5849 	return (error);
5850 
5851 out:
5852 	spa_unload(newspa);
5853 	spa_deactivate(newspa);
5854 	spa_remove(newspa);
5855 
5856 	txg = spa_vdev_config_enter(spa);
5857 
5858 	/* re-online all offlined disks */
5859 	for (c = 0; c < children; c++) {
5860 		if (vml[c] != NULL)
5861 			vml[c]->vdev_offline = B_FALSE;
5862 	}
5863 	vdev_reopen(spa->spa_root_vdev);
5864 
5865 	nvlist_free(spa->spa_config_splitting);
5866 	spa->spa_config_splitting = NULL;
5867 	(void) spa_vdev_exit(spa, NULL, txg, error);
5868 
5869 	kmem_free(vml, children * sizeof (vdev_t *));
5870 	return (error);
5871 }
5872 
5873 /*
5874  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5875  * currently spared, so we can detach it.
5876  */
5877 static vdev_t *
5878 spa_vdev_resilver_done_hunt(vdev_t *vd)
5879 {
5880 	vdev_t *newvd, *oldvd;
5881 
5882 	for (int c = 0; c < vd->vdev_children; c++) {
5883 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5884 		if (oldvd != NULL)
5885 			return (oldvd);
5886 	}
5887 
5888 	/*
5889 	 * Check for a completed replacement.  We always consider the first
5890 	 * vdev in the list to be the oldest vdev, and the last one to be
5891 	 * the newest (see spa_vdev_attach() for how that works).  In
5892 	 * the case where the newest vdev is faulted, we will not automatically
5893 	 * remove it after a resilver completes.  This is OK as it will require
5894 	 * user intervention to determine which disk the admin wishes to keep.
5895 	 */
5896 	if (vd->vdev_ops == &vdev_replacing_ops) {
5897 		ASSERT(vd->vdev_children > 1);
5898 
5899 		newvd = vd->vdev_child[vd->vdev_children - 1];
5900 		oldvd = vd->vdev_child[0];
5901 
5902 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5903 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5904 		    !vdev_dtl_required(oldvd))
5905 			return (oldvd);
5906 	}
5907 
5908 	/*
5909 	 * Check for a completed resilver with the 'unspare' flag set.
5910 	 */
5911 	if (vd->vdev_ops == &vdev_spare_ops) {
5912 		vdev_t *first = vd->vdev_child[0];
5913 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5914 
5915 		if (last->vdev_unspare) {
5916 			oldvd = first;
5917 			newvd = last;
5918 		} else if (first->vdev_unspare) {
5919 			oldvd = last;
5920 			newvd = first;
5921 		} else {
5922 			oldvd = NULL;
5923 		}
5924 
5925 		if (oldvd != NULL &&
5926 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5927 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5928 		    !vdev_dtl_required(oldvd))
5929 			return (oldvd);
5930 
5931 		/*
5932 		 * If there are more than two spares attached to a disk,
5933 		 * and those spares are not required, then we want to
5934 		 * attempt to free them up now so that they can be used
5935 		 * by other pools.  Once we're back down to a single
5936 		 * disk+spare, we stop removing them.
5937 		 */
5938 		if (vd->vdev_children > 2) {
5939 			newvd = vd->vdev_child[1];
5940 
5941 			if (newvd->vdev_isspare && last->vdev_isspare &&
5942 			    vdev_dtl_empty(last, DTL_MISSING) &&
5943 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5944 			    !vdev_dtl_required(newvd))
5945 				return (newvd);
5946 		}
5947 	}
5948 
5949 	return (NULL);
5950 }
5951 
5952 static void
5953 spa_vdev_resilver_done(spa_t *spa)
5954 {
5955 	vdev_t *vd, *pvd, *ppvd;
5956 	uint64_t guid, sguid, pguid, ppguid;
5957 
5958 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5959 
5960 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5961 		pvd = vd->vdev_parent;
5962 		ppvd = pvd->vdev_parent;
5963 		guid = vd->vdev_guid;
5964 		pguid = pvd->vdev_guid;
5965 		ppguid = ppvd->vdev_guid;
5966 		sguid = 0;
5967 		/*
5968 		 * If we have just finished replacing a hot spared device, then
5969 		 * we need to detach the parent's first child (the original hot
5970 		 * spare) as well.
5971 		 */
5972 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5973 		    ppvd->vdev_children == 2) {
5974 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5975 			sguid = ppvd->vdev_child[1]->vdev_guid;
5976 		}
5977 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5978 
5979 		spa_config_exit(spa, SCL_ALL, FTAG);
5980 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5981 			return;
5982 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5983 			return;
5984 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5985 	}
5986 
5987 	spa_config_exit(spa, SCL_ALL, FTAG);
5988 }
5989 
5990 /*
5991  * Update the stored path or FRU for this vdev.
5992  */
5993 int
5994 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5995     boolean_t ispath)
5996 {
5997 	vdev_t *vd;
5998 	boolean_t sync = B_FALSE;
5999 
6000 	ASSERT(spa_writeable(spa));
6001 
6002 	spa_vdev_state_enter(spa, SCL_ALL);
6003 
6004 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6005 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6006 
6007 	if (!vd->vdev_ops->vdev_op_leaf)
6008 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6009 
6010 	if (ispath) {
6011 		if (strcmp(value, vd->vdev_path) != 0) {
6012 			spa_strfree(vd->vdev_path);
6013 			vd->vdev_path = spa_strdup(value);
6014 			sync = B_TRUE;
6015 		}
6016 	} else {
6017 		if (vd->vdev_fru == NULL) {
6018 			vd->vdev_fru = spa_strdup(value);
6019 			sync = B_TRUE;
6020 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6021 			spa_strfree(vd->vdev_fru);
6022 			vd->vdev_fru = spa_strdup(value);
6023 			sync = B_TRUE;
6024 		}
6025 	}
6026 
6027 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6028 }
6029 
6030 int
6031 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6032 {
6033 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6034 }
6035 
6036 int
6037 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6038 {
6039 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6040 }
6041 
6042 /*
6043  * ==========================================================================
6044  * SPA Scanning
6045  * ==========================================================================
6046  */
6047 int
6048 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6049 {
6050 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6051 
6052 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6053 		return (SET_ERROR(EBUSY));
6054 
6055 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6056 }
6057 
6058 int
6059 spa_scan_stop(spa_t *spa)
6060 {
6061 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6062 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6063 		return (SET_ERROR(EBUSY));
6064 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6065 }
6066 
6067 int
6068 spa_scan(spa_t *spa, pool_scan_func_t func)
6069 {
6070 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6071 
6072 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6073 		return (SET_ERROR(ENOTSUP));
6074 
6075 	/*
6076 	 * If a resilver was requested, but there is no DTL on a
6077 	 * writeable leaf device, we have nothing to do.
6078 	 */
6079 	if (func == POOL_SCAN_RESILVER &&
6080 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6081 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6082 		return (0);
6083 	}
6084 
6085 	return (dsl_scan(spa->spa_dsl_pool, func));
6086 }
6087 
6088 /*
6089  * ==========================================================================
6090  * SPA async task processing
6091  * ==========================================================================
6092  */
6093 
6094 static void
6095 spa_async_remove(spa_t *spa, vdev_t *vd)
6096 {
6097 	if (vd->vdev_remove_wanted) {
6098 		vd->vdev_remove_wanted = B_FALSE;
6099 		vd->vdev_delayed_close = B_FALSE;
6100 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6101 
6102 		/*
6103 		 * We want to clear the stats, but we don't want to do a full
6104 		 * vdev_clear() as that will cause us to throw away
6105 		 * degraded/faulted state as well as attempt to reopen the
6106 		 * device, all of which is a waste.
6107 		 */
6108 		vd->vdev_stat.vs_read_errors = 0;
6109 		vd->vdev_stat.vs_write_errors = 0;
6110 		vd->vdev_stat.vs_checksum_errors = 0;
6111 
6112 		vdev_state_dirty(vd->vdev_top);
6113 	}
6114 
6115 	for (int c = 0; c < vd->vdev_children; c++)
6116 		spa_async_remove(spa, vd->vdev_child[c]);
6117 }
6118 
6119 static void
6120 spa_async_probe(spa_t *spa, vdev_t *vd)
6121 {
6122 	if (vd->vdev_probe_wanted) {
6123 		vd->vdev_probe_wanted = B_FALSE;
6124 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6125 	}
6126 
6127 	for (int c = 0; c < vd->vdev_children; c++)
6128 		spa_async_probe(spa, vd->vdev_child[c]);
6129 }
6130 
6131 static void
6132 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6133 {
6134 	sysevent_id_t eid;
6135 	nvlist_t *attr;
6136 	char *physpath;
6137 
6138 	if (!spa->spa_autoexpand)
6139 		return;
6140 
6141 	for (int c = 0; c < vd->vdev_children; c++) {
6142 		vdev_t *cvd = vd->vdev_child[c];
6143 		spa_async_autoexpand(spa, cvd);
6144 	}
6145 
6146 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6147 		return;
6148 
6149 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6150 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6151 
6152 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6153 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6154 
6155 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6156 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6157 
6158 	nvlist_free(attr);
6159 	kmem_free(physpath, MAXPATHLEN);
6160 }
6161 
6162 static void
6163 spa_async_thread(void *arg)
6164 {
6165 	spa_t *spa = (spa_t *)arg;
6166 	int tasks;
6167 
6168 	ASSERT(spa->spa_sync_on);
6169 
6170 	mutex_enter(&spa->spa_async_lock);
6171 	tasks = spa->spa_async_tasks;
6172 	spa->spa_async_tasks = 0;
6173 	mutex_exit(&spa->spa_async_lock);
6174 
6175 	/*
6176 	 * See if the config needs to be updated.
6177 	 */
6178 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6179 		uint64_t old_space, new_space;
6180 
6181 		mutex_enter(&spa_namespace_lock);
6182 		old_space = metaslab_class_get_space(spa_normal_class(spa));
6183 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6184 		new_space = metaslab_class_get_space(spa_normal_class(spa));
6185 		mutex_exit(&spa_namespace_lock);
6186 
6187 		/*
6188 		 * If the pool grew as a result of the config update,
6189 		 * then log an internal history event.
6190 		 */
6191 		if (new_space != old_space) {
6192 			spa_history_log_internal(spa, "vdev online", NULL,
6193 			    "pool '%s' size: %llu(+%llu)",
6194 			    spa_name(spa), new_space, new_space - old_space);
6195 		}
6196 	}
6197 
6198 	/*
6199 	 * See if any devices need to be marked REMOVED.
6200 	 */
6201 	if (tasks & SPA_ASYNC_REMOVE) {
6202 		spa_vdev_state_enter(spa, SCL_NONE);
6203 		spa_async_remove(spa, spa->spa_root_vdev);
6204 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6205 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6206 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6207 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6208 		(void) spa_vdev_state_exit(spa, NULL, 0);
6209 	}
6210 
6211 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6212 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6213 		spa_async_autoexpand(spa, spa->spa_root_vdev);
6214 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6215 	}
6216 
6217 	/*
6218 	 * See if any devices need to be probed.
6219 	 */
6220 	if (tasks & SPA_ASYNC_PROBE) {
6221 		spa_vdev_state_enter(spa, SCL_NONE);
6222 		spa_async_probe(spa, spa->spa_root_vdev);
6223 		(void) spa_vdev_state_exit(spa, NULL, 0);
6224 	}
6225 
6226 	/*
6227 	 * If any devices are done replacing, detach them.
6228 	 */
6229 	if (tasks & SPA_ASYNC_RESILVER_DONE)
6230 		spa_vdev_resilver_done(spa);
6231 
6232 	/*
6233 	 * Kick off a resilver.
6234 	 */
6235 	if (tasks & SPA_ASYNC_RESILVER)
6236 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6237 
6238 	/*
6239 	 * Let the world know that we're done.
6240 	 */
6241 	mutex_enter(&spa->spa_async_lock);
6242 	spa->spa_async_thread = NULL;
6243 	cv_broadcast(&spa->spa_async_cv);
6244 	mutex_exit(&spa->spa_async_lock);
6245 	thread_exit();
6246 }
6247 
6248 void
6249 spa_async_suspend(spa_t *spa)
6250 {
6251 	mutex_enter(&spa->spa_async_lock);
6252 	spa->spa_async_suspended++;
6253 	while (spa->spa_async_thread != NULL ||
6254 	    spa->spa_condense_thread != NULL)
6255 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6256 	mutex_exit(&spa->spa_async_lock);
6257 
6258 	spa_vdev_remove_suspend(spa);
6259 }
6260 
6261 void
6262 spa_async_resume(spa_t *spa)
6263 {
6264 	mutex_enter(&spa->spa_async_lock);
6265 	ASSERT(spa->spa_async_suspended != 0);
6266 	spa->spa_async_suspended--;
6267 	mutex_exit(&spa->spa_async_lock);
6268 	spa_restart_removal(spa);
6269 }
6270 
6271 static boolean_t
6272 spa_async_tasks_pending(spa_t *spa)
6273 {
6274 	uint_t non_config_tasks;
6275 	uint_t config_task;
6276 	boolean_t config_task_suspended;
6277 
6278 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6279 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6280 	if (spa->spa_ccw_fail_time == 0) {
6281 		config_task_suspended = B_FALSE;
6282 	} else {
6283 		config_task_suspended =
6284 		    (gethrtime() - spa->spa_ccw_fail_time) <
6285 		    (zfs_ccw_retry_interval * NANOSEC);
6286 	}
6287 
6288 	return (non_config_tasks || (config_task && !config_task_suspended));
6289 }
6290 
6291 static void
6292 spa_async_dispatch(spa_t *spa)
6293 {
6294 	mutex_enter(&spa->spa_async_lock);
6295 	if (spa_async_tasks_pending(spa) &&
6296 	    !spa->spa_async_suspended &&
6297 	    spa->spa_async_thread == NULL &&
6298 	    rootdir != NULL)
6299 		spa->spa_async_thread = thread_create(NULL, 0,
6300 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6301 	mutex_exit(&spa->spa_async_lock);
6302 }
6303 
6304 void
6305 spa_async_request(spa_t *spa, int task)
6306 {
6307 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6308 	mutex_enter(&spa->spa_async_lock);
6309 	spa->spa_async_tasks |= task;
6310 	mutex_exit(&spa->spa_async_lock);
6311 }
6312 
6313 /*
6314  * ==========================================================================
6315  * SPA syncing routines
6316  * ==========================================================================
6317  */
6318 
6319 static int
6320 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6321 {
6322 	bpobj_t *bpo = arg;
6323 	bpobj_enqueue(bpo, bp, tx);
6324 	return (0);
6325 }
6326 
6327 static int
6328 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6329 {
6330 	zio_t *zio = arg;
6331 
6332 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6333 	    zio->io_flags));
6334 	return (0);
6335 }
6336 
6337 /*
6338  * Note: this simple function is not inlined to make it easier to dtrace the
6339  * amount of time spent syncing frees.
6340  */
6341 static void
6342 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6343 {
6344 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6345 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6346 	VERIFY(zio_wait(zio) == 0);
6347 }
6348 
6349 /*
6350  * Note: this simple function is not inlined to make it easier to dtrace the
6351  * amount of time spent syncing deferred frees.
6352  */
6353 static void
6354 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6355 {
6356 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6357 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6358 	    spa_free_sync_cb, zio, tx), ==, 0);
6359 	VERIFY0(zio_wait(zio));
6360 }
6361 
6362 
6363 static void
6364 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6365 {
6366 	char *packed = NULL;
6367 	size_t bufsize;
6368 	size_t nvsize = 0;
6369 	dmu_buf_t *db;
6370 
6371 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6372 
6373 	/*
6374 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6375 	 * information.  This avoids the dmu_buf_will_dirty() path and
6376 	 * saves us a pre-read to get data we don't actually care about.
6377 	 */
6378 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6379 	packed = kmem_alloc(bufsize, KM_SLEEP);
6380 
6381 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6382 	    KM_SLEEP) == 0);
6383 	bzero(packed + nvsize, bufsize - nvsize);
6384 
6385 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6386 
6387 	kmem_free(packed, bufsize);
6388 
6389 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6390 	dmu_buf_will_dirty(db, tx);
6391 	*(uint64_t *)db->db_data = nvsize;
6392 	dmu_buf_rele(db, FTAG);
6393 }
6394 
6395 static void
6396 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6397     const char *config, const char *entry)
6398 {
6399 	nvlist_t *nvroot;
6400 	nvlist_t **list;
6401 	int i;
6402 
6403 	if (!sav->sav_sync)
6404 		return;
6405 
6406 	/*
6407 	 * Update the MOS nvlist describing the list of available devices.
6408 	 * spa_validate_aux() will have already made sure this nvlist is
6409 	 * valid and the vdevs are labeled appropriately.
6410 	 */
6411 	if (sav->sav_object == 0) {
6412 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6413 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6414 		    sizeof (uint64_t), tx);
6415 		VERIFY(zap_update(spa->spa_meta_objset,
6416 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6417 		    &sav->sav_object, tx) == 0);
6418 	}
6419 
6420 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6421 	if (sav->sav_count == 0) {
6422 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6423 	} else {
6424 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6425 		for (i = 0; i < sav->sav_count; i++)
6426 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6427 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6428 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6429 		    sav->sav_count) == 0);
6430 		for (i = 0; i < sav->sav_count; i++)
6431 			nvlist_free(list[i]);
6432 		kmem_free(list, sav->sav_count * sizeof (void *));
6433 	}
6434 
6435 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6436 	nvlist_free(nvroot);
6437 
6438 	sav->sav_sync = B_FALSE;
6439 }
6440 
6441 /*
6442  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6443  * The all-vdev ZAP must be empty.
6444  */
6445 static void
6446 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6447 {
6448 	spa_t *spa = vd->vdev_spa;
6449 	if (vd->vdev_top_zap != 0) {
6450 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6451 		    vd->vdev_top_zap, tx));
6452 	}
6453 	if (vd->vdev_leaf_zap != 0) {
6454 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6455 		    vd->vdev_leaf_zap, tx));
6456 	}
6457 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6458 		spa_avz_build(vd->vdev_child[i], avz, tx);
6459 	}
6460 }
6461 
6462 static void
6463 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6464 {
6465 	nvlist_t *config;
6466 
6467 	/*
6468 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6469 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6470 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6471 	 * need to rebuild the AVZ although the config may not be dirty.
6472 	 */
6473 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6474 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6475 		return;
6476 
6477 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6478 
6479 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6480 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6481 	    spa->spa_all_vdev_zaps != 0);
6482 
6483 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6484 		/* Make and build the new AVZ */
6485 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6486 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6487 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6488 
6489 		/* Diff old AVZ with new one */
6490 		zap_cursor_t zc;
6491 		zap_attribute_t za;
6492 
6493 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6494 		    spa->spa_all_vdev_zaps);
6495 		    zap_cursor_retrieve(&zc, &za) == 0;
6496 		    zap_cursor_advance(&zc)) {
6497 			uint64_t vdzap = za.za_first_integer;
6498 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6499 			    vdzap) == ENOENT) {
6500 				/*
6501 				 * ZAP is listed in old AVZ but not in new one;
6502 				 * destroy it
6503 				 */
6504 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6505 				    tx));
6506 			}
6507 		}
6508 
6509 		zap_cursor_fini(&zc);
6510 
6511 		/* Destroy the old AVZ */
6512 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6513 		    spa->spa_all_vdev_zaps, tx));
6514 
6515 		/* Replace the old AVZ in the dir obj with the new one */
6516 		VERIFY0(zap_update(spa->spa_meta_objset,
6517 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6518 		    sizeof (new_avz), 1, &new_avz, tx));
6519 
6520 		spa->spa_all_vdev_zaps = new_avz;
6521 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6522 		zap_cursor_t zc;
6523 		zap_attribute_t za;
6524 
6525 		/* Walk through the AVZ and destroy all listed ZAPs */
6526 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6527 		    spa->spa_all_vdev_zaps);
6528 		    zap_cursor_retrieve(&zc, &za) == 0;
6529 		    zap_cursor_advance(&zc)) {
6530 			uint64_t zap = za.za_first_integer;
6531 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6532 		}
6533 
6534 		zap_cursor_fini(&zc);
6535 
6536 		/* Destroy and unlink the AVZ itself */
6537 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6538 		    spa->spa_all_vdev_zaps, tx));
6539 		VERIFY0(zap_remove(spa->spa_meta_objset,
6540 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6541 		spa->spa_all_vdev_zaps = 0;
6542 	}
6543 
6544 	if (spa->spa_all_vdev_zaps == 0) {
6545 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6546 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6547 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6548 	}
6549 	spa->spa_avz_action = AVZ_ACTION_NONE;
6550 
6551 	/* Create ZAPs for vdevs that don't have them. */
6552 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6553 
6554 	config = spa_config_generate(spa, spa->spa_root_vdev,
6555 	    dmu_tx_get_txg(tx), B_FALSE);
6556 
6557 	/*
6558 	 * If we're upgrading the spa version then make sure that
6559 	 * the config object gets updated with the correct version.
6560 	 */
6561 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6562 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6563 		    spa->spa_uberblock.ub_version);
6564 
6565 	spa_config_exit(spa, SCL_STATE, FTAG);
6566 
6567 	nvlist_free(spa->spa_config_syncing);
6568 	spa->spa_config_syncing = config;
6569 
6570 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6571 }
6572 
6573 static void
6574 spa_sync_version(void *arg, dmu_tx_t *tx)
6575 {
6576 	uint64_t *versionp = arg;
6577 	uint64_t version = *versionp;
6578 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6579 
6580 	/*
6581 	 * Setting the version is special cased when first creating the pool.
6582 	 */
6583 	ASSERT(tx->tx_txg != TXG_INITIAL);
6584 
6585 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6586 	ASSERT(version >= spa_version(spa));
6587 
6588 	spa->spa_uberblock.ub_version = version;
6589 	vdev_config_dirty(spa->spa_root_vdev);
6590 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6591 }
6592 
6593 /*
6594  * Set zpool properties.
6595  */
6596 static void
6597 spa_sync_props(void *arg, dmu_tx_t *tx)
6598 {
6599 	nvlist_t *nvp = arg;
6600 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6601 	objset_t *mos = spa->spa_meta_objset;
6602 	nvpair_t *elem = NULL;
6603 
6604 	mutex_enter(&spa->spa_props_lock);
6605 
6606 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6607 		uint64_t intval;
6608 		char *strval, *fname;
6609 		zpool_prop_t prop;
6610 		const char *propname;
6611 		zprop_type_t proptype;
6612 		spa_feature_t fid;
6613 
6614 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6615 		case ZPOOL_PROP_INVAL:
6616 			/*
6617 			 * We checked this earlier in spa_prop_validate().
6618 			 */
6619 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6620 
6621 			fname = strchr(nvpair_name(elem), '@') + 1;
6622 			VERIFY0(zfeature_lookup_name(fname, &fid));
6623 
6624 			spa_feature_enable(spa, fid, tx);
6625 			spa_history_log_internal(spa, "set", tx,
6626 			    "%s=enabled", nvpair_name(elem));
6627 			break;
6628 
6629 		case ZPOOL_PROP_VERSION:
6630 			intval = fnvpair_value_uint64(elem);
6631 			/*
6632 			 * The version is synced seperatly before other
6633 			 * properties and should be correct by now.
6634 			 */
6635 			ASSERT3U(spa_version(spa), >=, intval);
6636 			break;
6637 
6638 		case ZPOOL_PROP_ALTROOT:
6639 			/*
6640 			 * 'altroot' is a non-persistent property. It should
6641 			 * have been set temporarily at creation or import time.
6642 			 */
6643 			ASSERT(spa->spa_root != NULL);
6644 			break;
6645 
6646 		case ZPOOL_PROP_READONLY:
6647 		case ZPOOL_PROP_CACHEFILE:
6648 			/*
6649 			 * 'readonly' and 'cachefile' are also non-persisitent
6650 			 * properties.
6651 			 */
6652 			break;
6653 		case ZPOOL_PROP_COMMENT:
6654 			strval = fnvpair_value_string(elem);
6655 			if (spa->spa_comment != NULL)
6656 				spa_strfree(spa->spa_comment);
6657 			spa->spa_comment = spa_strdup(strval);
6658 			/*
6659 			 * We need to dirty the configuration on all the vdevs
6660 			 * so that their labels get updated.  It's unnecessary
6661 			 * to do this for pool creation since the vdev's
6662 			 * configuratoin has already been dirtied.
6663 			 */
6664 			if (tx->tx_txg != TXG_INITIAL)
6665 				vdev_config_dirty(spa->spa_root_vdev);
6666 			spa_history_log_internal(spa, "set", tx,
6667 			    "%s=%s", nvpair_name(elem), strval);
6668 			break;
6669 		default:
6670 			/*
6671 			 * Set pool property values in the poolprops mos object.
6672 			 */
6673 			if (spa->spa_pool_props_object == 0) {
6674 				spa->spa_pool_props_object =
6675 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6676 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6677 				    tx);
6678 			}
6679 
6680 			/* normalize the property name */
6681 			propname = zpool_prop_to_name(prop);
6682 			proptype = zpool_prop_get_type(prop);
6683 
6684 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6685 				ASSERT(proptype == PROP_TYPE_STRING);
6686 				strval = fnvpair_value_string(elem);
6687 				VERIFY0(zap_update(mos,
6688 				    spa->spa_pool_props_object, propname,
6689 				    1, strlen(strval) + 1, strval, tx));
6690 				spa_history_log_internal(spa, "set", tx,
6691 				    "%s=%s", nvpair_name(elem), strval);
6692 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6693 				intval = fnvpair_value_uint64(elem);
6694 
6695 				if (proptype == PROP_TYPE_INDEX) {
6696 					const char *unused;
6697 					VERIFY0(zpool_prop_index_to_string(
6698 					    prop, intval, &unused));
6699 				}
6700 				VERIFY0(zap_update(mos,
6701 				    spa->spa_pool_props_object, propname,
6702 				    8, 1, &intval, tx));
6703 				spa_history_log_internal(spa, "set", tx,
6704 				    "%s=%lld", nvpair_name(elem), intval);
6705 			} else {
6706 				ASSERT(0); /* not allowed */
6707 			}
6708 
6709 			switch (prop) {
6710 			case ZPOOL_PROP_DELEGATION:
6711 				spa->spa_delegation = intval;
6712 				break;
6713 			case ZPOOL_PROP_BOOTFS:
6714 				spa->spa_bootfs = intval;
6715 				break;
6716 			case ZPOOL_PROP_FAILUREMODE:
6717 				spa->spa_failmode = intval;
6718 				break;
6719 			case ZPOOL_PROP_AUTOEXPAND:
6720 				spa->spa_autoexpand = intval;
6721 				if (tx->tx_txg != TXG_INITIAL)
6722 					spa_async_request(spa,
6723 					    SPA_ASYNC_AUTOEXPAND);
6724 				break;
6725 			case ZPOOL_PROP_DEDUPDITTO:
6726 				spa->spa_dedup_ditto = intval;
6727 				break;
6728 			default:
6729 				break;
6730 			}
6731 		}
6732 
6733 	}
6734 
6735 	mutex_exit(&spa->spa_props_lock);
6736 }
6737 
6738 /*
6739  * Perform one-time upgrade on-disk changes.  spa_version() does not
6740  * reflect the new version this txg, so there must be no changes this
6741  * txg to anything that the upgrade code depends on after it executes.
6742  * Therefore this must be called after dsl_pool_sync() does the sync
6743  * tasks.
6744  */
6745 static void
6746 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6747 {
6748 	dsl_pool_t *dp = spa->spa_dsl_pool;
6749 
6750 	ASSERT(spa->spa_sync_pass == 1);
6751 
6752 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6753 
6754 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6755 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6756 		dsl_pool_create_origin(dp, tx);
6757 
6758 		/* Keeping the origin open increases spa_minref */
6759 		spa->spa_minref += 3;
6760 	}
6761 
6762 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6763 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6764 		dsl_pool_upgrade_clones(dp, tx);
6765 	}
6766 
6767 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6768 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6769 		dsl_pool_upgrade_dir_clones(dp, tx);
6770 
6771 		/* Keeping the freedir open increases spa_minref */
6772 		spa->spa_minref += 3;
6773 	}
6774 
6775 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6776 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6777 		spa_feature_create_zap_objects(spa, tx);
6778 	}
6779 
6780 	/*
6781 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6782 	 * when possibility to use lz4 compression for metadata was added
6783 	 * Old pools that have this feature enabled must be upgraded to have
6784 	 * this feature active
6785 	 */
6786 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6787 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6788 		    SPA_FEATURE_LZ4_COMPRESS);
6789 		boolean_t lz4_ac = spa_feature_is_active(spa,
6790 		    SPA_FEATURE_LZ4_COMPRESS);
6791 
6792 		if (lz4_en && !lz4_ac)
6793 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6794 	}
6795 
6796 	/*
6797 	 * If we haven't written the salt, do so now.  Note that the
6798 	 * feature may not be activated yet, but that's fine since
6799 	 * the presence of this ZAP entry is backwards compatible.
6800 	 */
6801 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6802 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6803 		VERIFY0(zap_add(spa->spa_meta_objset,
6804 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6805 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6806 		    spa->spa_cksum_salt.zcs_bytes, tx));
6807 	}
6808 
6809 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6810 }
6811 
6812 static void
6813 vdev_indirect_state_sync_verify(vdev_t *vd)
6814 {
6815 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6816 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
6817 
6818 	if (vd->vdev_ops == &vdev_indirect_ops) {
6819 		ASSERT(vim != NULL);
6820 		ASSERT(vib != NULL);
6821 	}
6822 
6823 	if (vdev_obsolete_sm_object(vd) != 0) {
6824 		ASSERT(vd->vdev_obsolete_sm != NULL);
6825 		ASSERT(vd->vdev_removing ||
6826 		    vd->vdev_ops == &vdev_indirect_ops);
6827 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
6828 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
6829 
6830 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
6831 		    space_map_object(vd->vdev_obsolete_sm));
6832 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
6833 		    space_map_allocated(vd->vdev_obsolete_sm));
6834 	}
6835 	ASSERT(vd->vdev_obsolete_segments != NULL);
6836 
6837 	/*
6838 	 * Since frees / remaps to an indirect vdev can only
6839 	 * happen in syncing context, the obsolete segments
6840 	 * tree must be empty when we start syncing.
6841 	 */
6842 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
6843 }
6844 
6845 /*
6846  * Sync the specified transaction group.  New blocks may be dirtied as
6847  * part of the process, so we iterate until it converges.
6848  */
6849 void
6850 spa_sync(spa_t *spa, uint64_t txg)
6851 {
6852 	dsl_pool_t *dp = spa->spa_dsl_pool;
6853 	objset_t *mos = spa->spa_meta_objset;
6854 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6855 	vdev_t *rvd = spa->spa_root_vdev;
6856 	vdev_t *vd;
6857 	dmu_tx_t *tx;
6858 	int error;
6859 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6860 	    zfs_vdev_queue_depth_pct / 100;
6861 
6862 	VERIFY(spa_writeable(spa));
6863 
6864 	/*
6865 	 * Wait for i/os issued in open context that need to complete
6866 	 * before this txg syncs.
6867 	 */
6868 	VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
6869 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
6870 
6871 	/*
6872 	 * Lock out configuration changes.
6873 	 */
6874 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6875 
6876 	spa->spa_syncing_txg = txg;
6877 	spa->spa_sync_pass = 0;
6878 
6879 	mutex_enter(&spa->spa_alloc_lock);
6880 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6881 	mutex_exit(&spa->spa_alloc_lock);
6882 
6883 	/*
6884 	 * If there are any pending vdev state changes, convert them
6885 	 * into config changes that go out with this transaction group.
6886 	 */
6887 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6888 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6889 		/*
6890 		 * We need the write lock here because, for aux vdevs,
6891 		 * calling vdev_config_dirty() modifies sav_config.
6892 		 * This is ugly and will become unnecessary when we
6893 		 * eliminate the aux vdev wart by integrating all vdevs
6894 		 * into the root vdev tree.
6895 		 */
6896 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6897 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6898 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6899 			vdev_state_clean(vd);
6900 			vdev_config_dirty(vd);
6901 		}
6902 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6903 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6904 	}
6905 	spa_config_exit(spa, SCL_STATE, FTAG);
6906 
6907 	tx = dmu_tx_create_assigned(dp, txg);
6908 
6909 	spa->spa_sync_starttime = gethrtime();
6910 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6911 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6912 
6913 	/*
6914 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6915 	 * set spa_deflate if we have no raid-z vdevs.
6916 	 */
6917 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6918 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6919 		int i;
6920 
6921 		for (i = 0; i < rvd->vdev_children; i++) {
6922 			vd = rvd->vdev_child[i];
6923 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6924 				break;
6925 		}
6926 		if (i == rvd->vdev_children) {
6927 			spa->spa_deflate = TRUE;
6928 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6929 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6930 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6931 		}
6932 	}
6933 
6934 	/*
6935 	 * Set the top-level vdev's max queue depth. Evaluate each
6936 	 * top-level's async write queue depth in case it changed.
6937 	 * The max queue depth will not change in the middle of syncing
6938 	 * out this txg.
6939 	 */
6940 	uint64_t queue_depth_total = 0;
6941 	for (int c = 0; c < rvd->vdev_children; c++) {
6942 		vdev_t *tvd = rvd->vdev_child[c];
6943 		metaslab_group_t *mg = tvd->vdev_mg;
6944 
6945 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6946 		    !metaslab_group_initialized(mg))
6947 			continue;
6948 
6949 		/*
6950 		 * It is safe to do a lock-free check here because only async
6951 		 * allocations look at mg_max_alloc_queue_depth, and async
6952 		 * allocations all happen from spa_sync().
6953 		 */
6954 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6955 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6956 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6957 	}
6958 	metaslab_class_t *mc = spa_normal_class(spa);
6959 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6960 	mc->mc_alloc_max_slots = queue_depth_total;
6961 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6962 
6963 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6964 	    max_queue_depth * rvd->vdev_children);
6965 
6966 	for (int c = 0; c < rvd->vdev_children; c++) {
6967 		vdev_t *vd = rvd->vdev_child[c];
6968 		vdev_indirect_state_sync_verify(vd);
6969 
6970 		if (vdev_indirect_should_condense(vd)) {
6971 			spa_condense_indirect_start_sync(vd, tx);
6972 			break;
6973 		}
6974 	}
6975 
6976 	/*
6977 	 * Iterate to convergence.
6978 	 */
6979 	do {
6980 		int pass = ++spa->spa_sync_pass;
6981 
6982 		spa_sync_config_object(spa, tx);
6983 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6984 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6985 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6986 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6987 		spa_errlog_sync(spa, txg);
6988 		dsl_pool_sync(dp, txg);
6989 
6990 		if (pass < zfs_sync_pass_deferred_free) {
6991 			spa_sync_frees(spa, free_bpl, tx);
6992 		} else {
6993 			/*
6994 			 * We can not defer frees in pass 1, because
6995 			 * we sync the deferred frees later in pass 1.
6996 			 */
6997 			ASSERT3U(pass, >, 1);
6998 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6999 			    &spa->spa_deferred_bpobj, tx);
7000 		}
7001 
7002 		ddt_sync(spa, txg);
7003 		dsl_scan_sync(dp, tx);
7004 
7005 		if (spa->spa_vdev_removal != NULL)
7006 			svr_sync(spa, tx);
7007 
7008 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7009 		    != NULL)
7010 			vdev_sync(vd, txg);
7011 
7012 		if (pass == 1) {
7013 			spa_sync_upgrades(spa, tx);
7014 			ASSERT3U(txg, >=,
7015 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7016 			/*
7017 			 * Note: We need to check if the MOS is dirty
7018 			 * because we could have marked the MOS dirty
7019 			 * without updating the uberblock (e.g. if we
7020 			 * have sync tasks but no dirty user data).  We
7021 			 * need to check the uberblock's rootbp because
7022 			 * it is updated if we have synced out dirty
7023 			 * data (though in this case the MOS will most
7024 			 * likely also be dirty due to second order
7025 			 * effects, we don't want to rely on that here).
7026 			 */
7027 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7028 			    !dmu_objset_is_dirty(mos, txg)) {
7029 				/*
7030 				 * Nothing changed on the first pass,
7031 				 * therefore this TXG is a no-op.  Avoid
7032 				 * syncing deferred frees, so that we
7033 				 * can keep this TXG as a no-op.
7034 				 */
7035 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7036 				    txg));
7037 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7038 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7039 				break;
7040 			}
7041 			spa_sync_deferred_frees(spa, tx);
7042 		}
7043 
7044 	} while (dmu_objset_is_dirty(mos, txg));
7045 
7046 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7047 		/*
7048 		 * Make sure that the number of ZAPs for all the vdevs matches
7049 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7050 		 * called if the config is dirty; otherwise there may be
7051 		 * outstanding AVZ operations that weren't completed in
7052 		 * spa_sync_config_object.
7053 		 */
7054 		uint64_t all_vdev_zap_entry_count;
7055 		ASSERT0(zap_count(spa->spa_meta_objset,
7056 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7057 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7058 		    all_vdev_zap_entry_count);
7059 	}
7060 
7061 	if (spa->spa_vdev_removal != NULL) {
7062 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7063 	}
7064 
7065 	/*
7066 	 * Rewrite the vdev configuration (which includes the uberblock)
7067 	 * to commit the transaction group.
7068 	 *
7069 	 * If there are no dirty vdevs, we sync the uberblock to a few
7070 	 * random top-level vdevs that are known to be visible in the
7071 	 * config cache (see spa_vdev_add() for a complete description).
7072 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7073 	 */
7074 	for (;;) {
7075 		/*
7076 		 * We hold SCL_STATE to prevent vdev open/close/etc.
7077 		 * while we're attempting to write the vdev labels.
7078 		 */
7079 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7080 
7081 		if (list_is_empty(&spa->spa_config_dirty_list)) {
7082 			vdev_t *svd[SPA_DVAS_PER_BP];
7083 			int svdcount = 0;
7084 			int children = rvd->vdev_children;
7085 			int c0 = spa_get_random(children);
7086 
7087 			for (int c = 0; c < children; c++) {
7088 				vd = rvd->vdev_child[(c0 + c) % children];
7089 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7090 				    !vdev_is_concrete(vd))
7091 					continue;
7092 				svd[svdcount++] = vd;
7093 				if (svdcount == SPA_DVAS_PER_BP)
7094 					break;
7095 			}
7096 			error = vdev_config_sync(svd, svdcount, txg);
7097 		} else {
7098 			error = vdev_config_sync(rvd->vdev_child,
7099 			    rvd->vdev_children, txg);
7100 		}
7101 
7102 		if (error == 0)
7103 			spa->spa_last_synced_guid = rvd->vdev_guid;
7104 
7105 		spa_config_exit(spa, SCL_STATE, FTAG);
7106 
7107 		if (error == 0)
7108 			break;
7109 		zio_suspend(spa, NULL);
7110 		zio_resume_wait(spa);
7111 	}
7112 	dmu_tx_commit(tx);
7113 
7114 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7115 
7116 	/*
7117 	 * Clear the dirty config list.
7118 	 */
7119 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7120 		vdev_config_clean(vd);
7121 
7122 	/*
7123 	 * Now that the new config has synced transactionally,
7124 	 * let it become visible to the config cache.
7125 	 */
7126 	if (spa->spa_config_syncing != NULL) {
7127 		spa_config_set(spa, spa->spa_config_syncing);
7128 		spa->spa_config_txg = txg;
7129 		spa->spa_config_syncing = NULL;
7130 	}
7131 
7132 	dsl_pool_sync_done(dp, txg);
7133 
7134 	mutex_enter(&spa->spa_alloc_lock);
7135 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7136 	mutex_exit(&spa->spa_alloc_lock);
7137 
7138 	/*
7139 	 * Update usable space statistics.
7140 	 */
7141 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7142 		vdev_sync_done(vd, txg);
7143 
7144 	spa_update_dspace(spa);
7145 
7146 	/*
7147 	 * It had better be the case that we didn't dirty anything
7148 	 * since vdev_config_sync().
7149 	 */
7150 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7151 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7152 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7153 
7154 	spa->spa_sync_pass = 0;
7155 
7156 	/*
7157 	 * Update the last synced uberblock here. We want to do this at
7158 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7159 	 * will be guaranteed that all the processing associated with
7160 	 * that txg has been completed.
7161 	 */
7162 	spa->spa_ubsync = spa->spa_uberblock;
7163 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7164 
7165 	spa_handle_ignored_writes(spa);
7166 
7167 	/*
7168 	 * If any async tasks have been requested, kick them off.
7169 	 */
7170 	spa_async_dispatch(spa);
7171 }
7172 
7173 /*
7174  * Sync all pools.  We don't want to hold the namespace lock across these
7175  * operations, so we take a reference on the spa_t and drop the lock during the
7176  * sync.
7177  */
7178 void
7179 spa_sync_allpools(void)
7180 {
7181 	spa_t *spa = NULL;
7182 	mutex_enter(&spa_namespace_lock);
7183 	while ((spa = spa_next(spa)) != NULL) {
7184 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7185 		    !spa_writeable(spa) || spa_suspended(spa))
7186 			continue;
7187 		spa_open_ref(spa, FTAG);
7188 		mutex_exit(&spa_namespace_lock);
7189 		txg_wait_synced(spa_get_dsl(spa), 0);
7190 		mutex_enter(&spa_namespace_lock);
7191 		spa_close(spa, FTAG);
7192 	}
7193 	mutex_exit(&spa_namespace_lock);
7194 }
7195 
7196 /*
7197  * ==========================================================================
7198  * Miscellaneous routines
7199  * ==========================================================================
7200  */
7201 
7202 /*
7203  * Remove all pools in the system.
7204  */
7205 void
7206 spa_evict_all(void)
7207 {
7208 	spa_t *spa;
7209 
7210 	/*
7211 	 * Remove all cached state.  All pools should be closed now,
7212 	 * so every spa in the AVL tree should be unreferenced.
7213 	 */
7214 	mutex_enter(&spa_namespace_lock);
7215 	while ((spa = spa_next(NULL)) != NULL) {
7216 		/*
7217 		 * Stop async tasks.  The async thread may need to detach
7218 		 * a device that's been replaced, which requires grabbing
7219 		 * spa_namespace_lock, so we must drop it here.
7220 		 */
7221 		spa_open_ref(spa, FTAG);
7222 		mutex_exit(&spa_namespace_lock);
7223 		spa_async_suspend(spa);
7224 		mutex_enter(&spa_namespace_lock);
7225 		spa_close(spa, FTAG);
7226 
7227 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7228 			spa_unload(spa);
7229 			spa_deactivate(spa);
7230 		}
7231 		spa_remove(spa);
7232 	}
7233 	mutex_exit(&spa_namespace_lock);
7234 }
7235 
7236 vdev_t *
7237 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7238 {
7239 	vdev_t *vd;
7240 	int i;
7241 
7242 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7243 		return (vd);
7244 
7245 	if (aux) {
7246 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7247 			vd = spa->spa_l2cache.sav_vdevs[i];
7248 			if (vd->vdev_guid == guid)
7249 				return (vd);
7250 		}
7251 
7252 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7253 			vd = spa->spa_spares.sav_vdevs[i];
7254 			if (vd->vdev_guid == guid)
7255 				return (vd);
7256 		}
7257 	}
7258 
7259 	return (NULL);
7260 }
7261 
7262 void
7263 spa_upgrade(spa_t *spa, uint64_t version)
7264 {
7265 	ASSERT(spa_writeable(spa));
7266 
7267 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7268 
7269 	/*
7270 	 * This should only be called for a non-faulted pool, and since a
7271 	 * future version would result in an unopenable pool, this shouldn't be
7272 	 * possible.
7273 	 */
7274 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7275 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7276 
7277 	spa->spa_uberblock.ub_version = version;
7278 	vdev_config_dirty(spa->spa_root_vdev);
7279 
7280 	spa_config_exit(spa, SCL_ALL, FTAG);
7281 
7282 	txg_wait_synced(spa_get_dsl(spa), 0);
7283 }
7284 
7285 boolean_t
7286 spa_has_spare(spa_t *spa, uint64_t guid)
7287 {
7288 	int i;
7289 	uint64_t spareguid;
7290 	spa_aux_vdev_t *sav = &spa->spa_spares;
7291 
7292 	for (i = 0; i < sav->sav_count; i++)
7293 		if (sav->sav_vdevs[i]->vdev_guid == guid)
7294 			return (B_TRUE);
7295 
7296 	for (i = 0; i < sav->sav_npending; i++) {
7297 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7298 		    &spareguid) == 0 && spareguid == guid)
7299 			return (B_TRUE);
7300 	}
7301 
7302 	return (B_FALSE);
7303 }
7304 
7305 /*
7306  * Check if a pool has an active shared spare device.
7307  * Note: reference count of an active spare is 2, as a spare and as a replace
7308  */
7309 static boolean_t
7310 spa_has_active_shared_spare(spa_t *spa)
7311 {
7312 	int i, refcnt;
7313 	uint64_t pool;
7314 	spa_aux_vdev_t *sav = &spa->spa_spares;
7315 
7316 	for (i = 0; i < sav->sav_count; i++) {
7317 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7318 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7319 		    refcnt > 2)
7320 			return (B_TRUE);
7321 	}
7322 
7323 	return (B_FALSE);
7324 }
7325 
7326 sysevent_t *
7327 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7328 {
7329 	sysevent_t		*ev = NULL;
7330 #ifdef _KERNEL
7331 	sysevent_attr_list_t	*attr = NULL;
7332 	sysevent_value_t	value;
7333 
7334 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7335 	    SE_SLEEP);
7336 	ASSERT(ev != NULL);
7337 
7338 	value.value_type = SE_DATA_TYPE_STRING;
7339 	value.value.sv_string = spa_name(spa);
7340 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7341 		goto done;
7342 
7343 	value.value_type = SE_DATA_TYPE_UINT64;
7344 	value.value.sv_uint64 = spa_guid(spa);
7345 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7346 		goto done;
7347 
7348 	if (vd) {
7349 		value.value_type = SE_DATA_TYPE_UINT64;
7350 		value.value.sv_uint64 = vd->vdev_guid;
7351 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7352 		    SE_SLEEP) != 0)
7353 			goto done;
7354 
7355 		if (vd->vdev_path) {
7356 			value.value_type = SE_DATA_TYPE_STRING;
7357 			value.value.sv_string = vd->vdev_path;
7358 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7359 			    &value, SE_SLEEP) != 0)
7360 				goto done;
7361 		}
7362 	}
7363 
7364 	if (hist_nvl != NULL) {
7365 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
7366 	}
7367 
7368 	if (sysevent_attach_attributes(ev, attr) != 0)
7369 		goto done;
7370 	attr = NULL;
7371 
7372 done:
7373 	if (attr)
7374 		sysevent_free_attr(attr);
7375 
7376 #endif
7377 	return (ev);
7378 }
7379 
7380 void
7381 spa_event_post(sysevent_t *ev)
7382 {
7383 #ifdef _KERNEL
7384 	sysevent_id_t		eid;
7385 
7386 	(void) log_sysevent(ev, SE_SLEEP, &eid);
7387 	sysevent_free(ev);
7388 #endif
7389 }
7390 
7391 void
7392 spa_event_discard(sysevent_t *ev)
7393 {
7394 #ifdef _KERNEL
7395 	sysevent_free(ev);
7396 #endif
7397 }
7398 
7399 /*
7400  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7401  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7402  * filled in from the spa and (optionally) the vdev and history nvl.  This
7403  * doesn't do anything in the userland libzpool, as we don't want consumers to
7404  * misinterpret ztest or zdb as real changes.
7405  */
7406 void
7407 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7408 {
7409 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7410 }
7411