xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision e0f1c0afa46cc84d4b1e40124032a9a87310386e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2018 Joyent, Inc.
31  * Copyright (c) 2017 Datto Inc.
32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33  */
34 
35 /*
36  * SPA: Storage Pool Allocator
37  *
38  * This file contains all the routines used when modifying on-disk SPA state.
39  * This includes opening, importing, destroying, exporting a pool, and syncing a
40  * pool.
41  */
42 
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/metaslab.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/mmp.h>
61 #include <sys/uberblock_impl.h>
62 #include <sys/txg.h>
63 #include <sys/avl.h>
64 #include <sys/bpobj.h>
65 #include <sys/dmu_traverse.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/unique.h>
68 #include <sys/dsl_pool.h>
69 #include <sys/dsl_dataset.h>
70 #include <sys/dsl_dir.h>
71 #include <sys/dsl_prop.h>
72 #include <sys/dsl_synctask.h>
73 #include <sys/fs/zfs.h>
74 #include <sys/arc.h>
75 #include <sys/callb.h>
76 #include <sys/systeminfo.h>
77 #include <sys/spa_boot.h>
78 #include <sys/zfs_ioctl.h>
79 #include <sys/dsl_scan.h>
80 #include <sys/zfeature.h>
81 #include <sys/dsl_destroy.h>
82 #include <sys/abd.h>
83 
84 #ifdef	_KERNEL
85 #include <sys/bootprops.h>
86 #include <sys/callb.h>
87 #include <sys/cpupart.h>
88 #include <sys/pool.h>
89 #include <sys/sysdc.h>
90 #include <sys/zone.h>
91 #endif	/* _KERNEL */
92 
93 #include "zfs_prop.h"
94 #include "zfs_comutil.h"
95 
96 /*
97  * The interval, in seconds, at which failed configuration cache file writes
98  * should be retried.
99  */
100 int zfs_ccw_retry_interval = 300;
101 
102 typedef enum zti_modes {
103 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
104 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
105 	ZTI_MODE_NULL,			/* don't create a taskq */
106 	ZTI_NMODES
107 } zti_modes_t;
108 
109 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
110 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
111 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
112 
113 #define	ZTI_N(n)	ZTI_P(n, 1)
114 #define	ZTI_ONE		ZTI_N(1)
115 
116 typedef struct zio_taskq_info {
117 	zti_modes_t zti_mode;
118 	uint_t zti_value;
119 	uint_t zti_count;
120 } zio_taskq_info_t;
121 
122 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
123 	"issue", "issue_high", "intr", "intr_high"
124 };
125 
126 /*
127  * This table defines the taskq settings for each ZFS I/O type. When
128  * initializing a pool, we use this table to create an appropriately sized
129  * taskq. Some operations are low volume and therefore have a small, static
130  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
131  * macros. Other operations process a large amount of data; the ZTI_BATCH
132  * macro causes us to create a taskq oriented for throughput. Some operations
133  * are so high frequency and short-lived that the taskq itself can become a a
134  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
135  * additional degree of parallelism specified by the number of threads per-
136  * taskq and the number of taskqs; when dispatching an event in this case, the
137  * particular taskq is chosen at random.
138  *
139  * The different taskq priorities are to handle the different contexts (issue
140  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
141  * need to be handled with minimum delay.
142  */
143 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
144 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
145 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
146 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
147 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
148 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
149 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
150 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
151 };
152 
153 static void spa_sync_version(void *arg, dmu_tx_t *tx);
154 static void spa_sync_props(void *arg, dmu_tx_t *tx);
155 static boolean_t spa_has_active_shared_spare(spa_t *spa);
156 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
157 static void spa_vdev_resilver_done(spa_t *spa);
158 
159 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
160 id_t		zio_taskq_psrset_bind = PS_NONE;
161 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
163 
164 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
165 extern int	zfs_sync_pass_deferred_free;
166 
167 /*
168  * Report any spa_load_verify errors found, but do not fail spa_load.
169  * This is used by zdb to analyze non-idle pools.
170  */
171 boolean_t	spa_load_verify_dryrun = B_FALSE;
172 
173 /*
174  * This (illegal) pool name is used when temporarily importing a spa_t in order
175  * to get the vdev stats associated with the imported devices.
176  */
177 #define	TRYIMPORT_NAME	"$import"
178 
179 /*
180  * For debugging purposes: print out vdev tree during pool import.
181  */
182 boolean_t	spa_load_print_vdev_tree = B_FALSE;
183 
184 /*
185  * A non-zero value for zfs_max_missing_tvds means that we allow importing
186  * pools with missing top-level vdevs. This is strictly intended for advanced
187  * pool recovery cases since missing data is almost inevitable. Pools with
188  * missing devices can only be imported read-only for safety reasons, and their
189  * fail-mode will be automatically set to "continue".
190  *
191  * With 1 missing vdev we should be able to import the pool and mount all
192  * datasets. User data that was not modified after the missing device has been
193  * added should be recoverable. This means that snapshots created prior to the
194  * addition of that device should be completely intact.
195  *
196  * With 2 missing vdevs, some datasets may fail to mount since there are
197  * dataset statistics that are stored as regular metadata. Some data might be
198  * recoverable if those vdevs were added recently.
199  *
200  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
201  * may be missing entirely. Chances of data recovery are very low. Note that
202  * there are also risks of performing an inadvertent rewind as we might be
203  * missing all the vdevs with the latest uberblocks.
204  */
205 uint64_t	zfs_max_missing_tvds = 0;
206 
207 /*
208  * The parameters below are similar to zfs_max_missing_tvds but are only
209  * intended for a preliminary open of the pool with an untrusted config which
210  * might be incomplete or out-dated.
211  *
212  * We are more tolerant for pools opened from a cachefile since we could have
213  * an out-dated cachefile where a device removal was not registered.
214  * We could have set the limit arbitrarily high but in the case where devices
215  * are really missing we would want to return the proper error codes; we chose
216  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
217  * and we get a chance to retrieve the trusted config.
218  */
219 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
220 
221 /*
222  * In the case where config was assembled by scanning device paths (/dev/dsks
223  * by default) we are less tolerant since all the existing devices should have
224  * been detected and we want spa_load to return the right error codes.
225  */
226 uint64_t	zfs_max_missing_tvds_scan = 0;
227 
228 /*
229  * Debugging aid that pauses spa_sync() towards the end.
230  */
231 boolean_t	zfs_pause_spa_sync = B_FALSE;
232 
233 /*
234  * ==========================================================================
235  * SPA properties routines
236  * ==========================================================================
237  */
238 
239 /*
240  * Add a (source=src, propname=propval) list to an nvlist.
241  */
242 static void
243 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
244     uint64_t intval, zprop_source_t src)
245 {
246 	const char *propname = zpool_prop_to_name(prop);
247 	nvlist_t *propval;
248 
249 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
250 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
251 
252 	if (strval != NULL)
253 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
254 	else
255 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
256 
257 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
258 	nvlist_free(propval);
259 }
260 
261 /*
262  * Get property values from the spa configuration.
263  */
264 static void
265 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
266 {
267 	vdev_t *rvd = spa->spa_root_vdev;
268 	dsl_pool_t *pool = spa->spa_dsl_pool;
269 	uint64_t size, alloc, cap, version;
270 	zprop_source_t src = ZPROP_SRC_NONE;
271 	spa_config_dirent_t *dp;
272 	metaslab_class_t *mc = spa_normal_class(spa);
273 
274 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
275 
276 	if (rvd != NULL) {
277 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
278 		size = metaslab_class_get_space(spa_normal_class(spa));
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
280 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
281 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
282 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
283 		    size - alloc, src);
284 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
285 		    spa->spa_checkpoint_info.sci_dspace, src);
286 
287 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
288 		    metaslab_class_fragmentation(mc), src);
289 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
290 		    metaslab_class_expandable_space(mc), src);
291 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
292 		    (spa_mode(spa) == FREAD), src);
293 
294 		cap = (size == 0) ? 0 : (alloc * 100 / size);
295 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
296 
297 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
298 		    ddt_get_pool_dedup_ratio(spa), src);
299 
300 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
301 		    rvd->vdev_state, src);
302 
303 		version = spa_version(spa);
304 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
305 			src = ZPROP_SRC_DEFAULT;
306 		else
307 			src = ZPROP_SRC_LOCAL;
308 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
309 	}
310 
311 	if (pool != NULL) {
312 		/*
313 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
314 		 * when opening pools before this version freedir will be NULL.
315 		 */
316 		if (pool->dp_free_dir != NULL) {
317 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
318 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
319 			    src);
320 		} else {
321 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
322 			    NULL, 0, src);
323 		}
324 
325 		if (pool->dp_leak_dir != NULL) {
326 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
327 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
328 			    src);
329 		} else {
330 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
331 			    NULL, 0, src);
332 		}
333 	}
334 
335 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
336 
337 	if (spa->spa_comment != NULL) {
338 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
339 		    0, ZPROP_SRC_LOCAL);
340 	}
341 
342 	if (spa->spa_root != NULL)
343 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
344 		    0, ZPROP_SRC_LOCAL);
345 
346 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
347 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
348 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
349 	} else {
350 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
351 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
352 	}
353 
354 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
355 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
356 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
357 	} else {
358 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
359 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
360 	}
361 
362 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
363 		if (dp->scd_path == NULL) {
364 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
365 			    "none", 0, ZPROP_SRC_LOCAL);
366 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
367 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
368 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
369 		}
370 	}
371 }
372 
373 /*
374  * Get zpool property values.
375  */
376 int
377 spa_prop_get(spa_t *spa, nvlist_t **nvp)
378 {
379 	objset_t *mos = spa->spa_meta_objset;
380 	zap_cursor_t zc;
381 	zap_attribute_t za;
382 	int err;
383 
384 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
385 
386 	mutex_enter(&spa->spa_props_lock);
387 
388 	/*
389 	 * Get properties from the spa config.
390 	 */
391 	spa_prop_get_config(spa, nvp);
392 
393 	/* If no pool property object, no more prop to get. */
394 	if (mos == NULL || spa->spa_pool_props_object == 0) {
395 		mutex_exit(&spa->spa_props_lock);
396 		return (0);
397 	}
398 
399 	/*
400 	 * Get properties from the MOS pool property object.
401 	 */
402 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
403 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
404 	    zap_cursor_advance(&zc)) {
405 		uint64_t intval = 0;
406 		char *strval = NULL;
407 		zprop_source_t src = ZPROP_SRC_DEFAULT;
408 		zpool_prop_t prop;
409 
410 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
411 			continue;
412 
413 		switch (za.za_integer_length) {
414 		case 8:
415 			/* integer property */
416 			if (za.za_first_integer !=
417 			    zpool_prop_default_numeric(prop))
418 				src = ZPROP_SRC_LOCAL;
419 
420 			if (prop == ZPOOL_PROP_BOOTFS) {
421 				dsl_pool_t *dp;
422 				dsl_dataset_t *ds = NULL;
423 
424 				dp = spa_get_dsl(spa);
425 				dsl_pool_config_enter(dp, FTAG);
426 				err = dsl_dataset_hold_obj(dp,
427 				    za.za_first_integer, FTAG, &ds);
428 				if (err != 0) {
429 					dsl_pool_config_exit(dp, FTAG);
430 					break;
431 				}
432 
433 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
434 				    KM_SLEEP);
435 				dsl_dataset_name(ds, strval);
436 				dsl_dataset_rele(ds, FTAG);
437 				dsl_pool_config_exit(dp, FTAG);
438 			} else {
439 				strval = NULL;
440 				intval = za.za_first_integer;
441 			}
442 
443 			spa_prop_add_list(*nvp, prop, strval, intval, src);
444 
445 			if (strval != NULL)
446 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
447 
448 			break;
449 
450 		case 1:
451 			/* string property */
452 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
453 			err = zap_lookup(mos, spa->spa_pool_props_object,
454 			    za.za_name, 1, za.za_num_integers, strval);
455 			if (err) {
456 				kmem_free(strval, za.za_num_integers);
457 				break;
458 			}
459 			spa_prop_add_list(*nvp, prop, strval, 0, src);
460 			kmem_free(strval, za.za_num_integers);
461 			break;
462 
463 		default:
464 			break;
465 		}
466 	}
467 	zap_cursor_fini(&zc);
468 	mutex_exit(&spa->spa_props_lock);
469 out:
470 	if (err && err != ENOENT) {
471 		nvlist_free(*nvp);
472 		*nvp = NULL;
473 		return (err);
474 	}
475 
476 	return (0);
477 }
478 
479 /*
480  * Validate the given pool properties nvlist and modify the list
481  * for the property values to be set.
482  */
483 static int
484 spa_prop_validate(spa_t *spa, nvlist_t *props)
485 {
486 	nvpair_t *elem;
487 	int error = 0, reset_bootfs = 0;
488 	uint64_t objnum = 0;
489 	boolean_t has_feature = B_FALSE;
490 
491 	elem = NULL;
492 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
493 		uint64_t intval;
494 		char *strval, *slash, *check, *fname;
495 		const char *propname = nvpair_name(elem);
496 		zpool_prop_t prop = zpool_name_to_prop(propname);
497 
498 		switch (prop) {
499 		case ZPOOL_PROP_INVAL:
500 			if (!zpool_prop_feature(propname)) {
501 				error = SET_ERROR(EINVAL);
502 				break;
503 			}
504 
505 			/*
506 			 * Sanitize the input.
507 			 */
508 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
509 				error = SET_ERROR(EINVAL);
510 				break;
511 			}
512 
513 			if (nvpair_value_uint64(elem, &intval) != 0) {
514 				error = SET_ERROR(EINVAL);
515 				break;
516 			}
517 
518 			if (intval != 0) {
519 				error = SET_ERROR(EINVAL);
520 				break;
521 			}
522 
523 			fname = strchr(propname, '@') + 1;
524 			if (zfeature_lookup_name(fname, NULL) != 0) {
525 				error = SET_ERROR(EINVAL);
526 				break;
527 			}
528 
529 			has_feature = B_TRUE;
530 			break;
531 
532 		case ZPOOL_PROP_VERSION:
533 			error = nvpair_value_uint64(elem, &intval);
534 			if (!error &&
535 			    (intval < spa_version(spa) ||
536 			    intval > SPA_VERSION_BEFORE_FEATURES ||
537 			    has_feature))
538 				error = SET_ERROR(EINVAL);
539 			break;
540 
541 		case ZPOOL_PROP_DELEGATION:
542 		case ZPOOL_PROP_AUTOREPLACE:
543 		case ZPOOL_PROP_LISTSNAPS:
544 		case ZPOOL_PROP_AUTOEXPAND:
545 			error = nvpair_value_uint64(elem, &intval);
546 			if (!error && intval > 1)
547 				error = SET_ERROR(EINVAL);
548 			break;
549 
550 		case ZPOOL_PROP_MULTIHOST:
551 			error = nvpair_value_uint64(elem, &intval);
552 			if (!error && intval > 1)
553 				error = SET_ERROR(EINVAL);
554 
555 			if (!error && !spa_get_hostid())
556 				error = SET_ERROR(ENOTSUP);
557 
558 			break;
559 
560 		case ZPOOL_PROP_BOOTFS:
561 			/*
562 			 * If the pool version is less than SPA_VERSION_BOOTFS,
563 			 * or the pool is still being created (version == 0),
564 			 * the bootfs property cannot be set.
565 			 */
566 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
567 				error = SET_ERROR(ENOTSUP);
568 				break;
569 			}
570 
571 			/*
572 			 * Make sure the vdev config is bootable
573 			 */
574 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
575 				error = SET_ERROR(ENOTSUP);
576 				break;
577 			}
578 
579 			reset_bootfs = 1;
580 
581 			error = nvpair_value_string(elem, &strval);
582 
583 			if (!error) {
584 				objset_t *os;
585 				uint64_t propval;
586 
587 				if (strval == NULL || strval[0] == '\0') {
588 					objnum = zpool_prop_default_numeric(
589 					    ZPOOL_PROP_BOOTFS);
590 					break;
591 				}
592 
593 				error = dmu_objset_hold(strval, FTAG, &os);
594 				if (error != 0)
595 					break;
596 
597 				/*
598 				 * Must be ZPL, and its property settings
599 				 * must be supported.
600 				 */
601 
602 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
603 					error = SET_ERROR(ENOTSUP);
604 				} else if ((error =
605 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
606 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
607 				    &propval)) == 0 &&
608 				    !BOOTFS_COMPRESS_VALID(propval)) {
609 					error = SET_ERROR(ENOTSUP);
610 				} else {
611 					objnum = dmu_objset_id(os);
612 				}
613 				dmu_objset_rele(os, FTAG);
614 			}
615 			break;
616 
617 		case ZPOOL_PROP_FAILUREMODE:
618 			error = nvpair_value_uint64(elem, &intval);
619 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
620 			    intval > ZIO_FAILURE_MODE_PANIC))
621 				error = SET_ERROR(EINVAL);
622 
623 			/*
624 			 * This is a special case which only occurs when
625 			 * the pool has completely failed. This allows
626 			 * the user to change the in-core failmode property
627 			 * without syncing it out to disk (I/Os might
628 			 * currently be blocked). We do this by returning
629 			 * EIO to the caller (spa_prop_set) to trick it
630 			 * into thinking we encountered a property validation
631 			 * error.
632 			 */
633 			if (!error && spa_suspended(spa)) {
634 				spa->spa_failmode = intval;
635 				error = SET_ERROR(EIO);
636 			}
637 			break;
638 
639 		case ZPOOL_PROP_CACHEFILE:
640 			if ((error = nvpair_value_string(elem, &strval)) != 0)
641 				break;
642 
643 			if (strval[0] == '\0')
644 				break;
645 
646 			if (strcmp(strval, "none") == 0)
647 				break;
648 
649 			if (strval[0] != '/') {
650 				error = SET_ERROR(EINVAL);
651 				break;
652 			}
653 
654 			slash = strrchr(strval, '/');
655 			ASSERT(slash != NULL);
656 
657 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
658 			    strcmp(slash, "/..") == 0)
659 				error = SET_ERROR(EINVAL);
660 			break;
661 
662 		case ZPOOL_PROP_COMMENT:
663 			if ((error = nvpair_value_string(elem, &strval)) != 0)
664 				break;
665 			for (check = strval; *check != '\0'; check++) {
666 				/*
667 				 * The kernel doesn't have an easy isprint()
668 				 * check.  For this kernel check, we merely
669 				 * check ASCII apart from DEL.  Fix this if
670 				 * there is an easy-to-use kernel isprint().
671 				 */
672 				if (*check >= 0x7f) {
673 					error = SET_ERROR(EINVAL);
674 					break;
675 				}
676 			}
677 			if (strlen(strval) > ZPROP_MAX_COMMENT)
678 				error = E2BIG;
679 			break;
680 
681 		case ZPOOL_PROP_DEDUPDITTO:
682 			if (spa_version(spa) < SPA_VERSION_DEDUP)
683 				error = SET_ERROR(ENOTSUP);
684 			else
685 				error = nvpair_value_uint64(elem, &intval);
686 			if (error == 0 &&
687 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
688 				error = SET_ERROR(EINVAL);
689 			break;
690 		}
691 
692 		if (error)
693 			break;
694 	}
695 
696 	if (!error && reset_bootfs) {
697 		error = nvlist_remove(props,
698 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
699 
700 		if (!error) {
701 			error = nvlist_add_uint64(props,
702 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
703 		}
704 	}
705 
706 	return (error);
707 }
708 
709 void
710 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
711 {
712 	char *cachefile;
713 	spa_config_dirent_t *dp;
714 
715 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
716 	    &cachefile) != 0)
717 		return;
718 
719 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
720 	    KM_SLEEP);
721 
722 	if (cachefile[0] == '\0')
723 		dp->scd_path = spa_strdup(spa_config_path);
724 	else if (strcmp(cachefile, "none") == 0)
725 		dp->scd_path = NULL;
726 	else
727 		dp->scd_path = spa_strdup(cachefile);
728 
729 	list_insert_head(&spa->spa_config_list, dp);
730 	if (need_sync)
731 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
732 }
733 
734 int
735 spa_prop_set(spa_t *spa, nvlist_t *nvp)
736 {
737 	int error;
738 	nvpair_t *elem = NULL;
739 	boolean_t need_sync = B_FALSE;
740 
741 	if ((error = spa_prop_validate(spa, nvp)) != 0)
742 		return (error);
743 
744 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
745 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
746 
747 		if (prop == ZPOOL_PROP_CACHEFILE ||
748 		    prop == ZPOOL_PROP_ALTROOT ||
749 		    prop == ZPOOL_PROP_READONLY)
750 			continue;
751 
752 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
753 			uint64_t ver;
754 
755 			if (prop == ZPOOL_PROP_VERSION) {
756 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
757 			} else {
758 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
759 				ver = SPA_VERSION_FEATURES;
760 				need_sync = B_TRUE;
761 			}
762 
763 			/* Save time if the version is already set. */
764 			if (ver == spa_version(spa))
765 				continue;
766 
767 			/*
768 			 * In addition to the pool directory object, we might
769 			 * create the pool properties object, the features for
770 			 * read object, the features for write object, or the
771 			 * feature descriptions object.
772 			 */
773 			error = dsl_sync_task(spa->spa_name, NULL,
774 			    spa_sync_version, &ver,
775 			    6, ZFS_SPACE_CHECK_RESERVED);
776 			if (error)
777 				return (error);
778 			continue;
779 		}
780 
781 		need_sync = B_TRUE;
782 		break;
783 	}
784 
785 	if (need_sync) {
786 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
787 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
788 	}
789 
790 	return (0);
791 }
792 
793 /*
794  * If the bootfs property value is dsobj, clear it.
795  */
796 void
797 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
798 {
799 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
800 		VERIFY(zap_remove(spa->spa_meta_objset,
801 		    spa->spa_pool_props_object,
802 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
803 		spa->spa_bootfs = 0;
804 	}
805 }
806 
807 /*ARGSUSED*/
808 static int
809 spa_change_guid_check(void *arg, dmu_tx_t *tx)
810 {
811 	uint64_t *newguid = arg;
812 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
813 	vdev_t *rvd = spa->spa_root_vdev;
814 	uint64_t vdev_state;
815 
816 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
817 		int error = (spa_has_checkpoint(spa)) ?
818 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
819 		return (SET_ERROR(error));
820 	}
821 
822 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
823 	vdev_state = rvd->vdev_state;
824 	spa_config_exit(spa, SCL_STATE, FTAG);
825 
826 	if (vdev_state != VDEV_STATE_HEALTHY)
827 		return (SET_ERROR(ENXIO));
828 
829 	ASSERT3U(spa_guid(spa), !=, *newguid);
830 
831 	return (0);
832 }
833 
834 static void
835 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
836 {
837 	uint64_t *newguid = arg;
838 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
839 	uint64_t oldguid;
840 	vdev_t *rvd = spa->spa_root_vdev;
841 
842 	oldguid = spa_guid(spa);
843 
844 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
845 	rvd->vdev_guid = *newguid;
846 	rvd->vdev_guid_sum += (*newguid - oldguid);
847 	vdev_config_dirty(rvd);
848 	spa_config_exit(spa, SCL_STATE, FTAG);
849 
850 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
851 	    oldguid, *newguid);
852 }
853 
854 /*
855  * Change the GUID for the pool.  This is done so that we can later
856  * re-import a pool built from a clone of our own vdevs.  We will modify
857  * the root vdev's guid, our own pool guid, and then mark all of our
858  * vdevs dirty.  Note that we must make sure that all our vdevs are
859  * online when we do this, or else any vdevs that weren't present
860  * would be orphaned from our pool.  We are also going to issue a
861  * sysevent to update any watchers.
862  */
863 int
864 spa_change_guid(spa_t *spa)
865 {
866 	int error;
867 	uint64_t guid;
868 
869 	mutex_enter(&spa->spa_vdev_top_lock);
870 	mutex_enter(&spa_namespace_lock);
871 	guid = spa_generate_guid(NULL);
872 
873 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
874 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
875 
876 	if (error == 0) {
877 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
878 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
879 	}
880 
881 	mutex_exit(&spa_namespace_lock);
882 	mutex_exit(&spa->spa_vdev_top_lock);
883 
884 	return (error);
885 }
886 
887 /*
888  * ==========================================================================
889  * SPA state manipulation (open/create/destroy/import/export)
890  * ==========================================================================
891  */
892 
893 static int
894 spa_error_entry_compare(const void *a, const void *b)
895 {
896 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
897 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
898 	int ret;
899 
900 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
901 	    sizeof (zbookmark_phys_t));
902 
903 	if (ret < 0)
904 		return (-1);
905 	else if (ret > 0)
906 		return (1);
907 	else
908 		return (0);
909 }
910 
911 /*
912  * Utility function which retrieves copies of the current logs and
913  * re-initializes them in the process.
914  */
915 void
916 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
917 {
918 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
919 
920 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
921 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
922 
923 	avl_create(&spa->spa_errlist_scrub,
924 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
925 	    offsetof(spa_error_entry_t, se_avl));
926 	avl_create(&spa->spa_errlist_last,
927 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
928 	    offsetof(spa_error_entry_t, se_avl));
929 }
930 
931 static void
932 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
933 {
934 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
935 	enum zti_modes mode = ztip->zti_mode;
936 	uint_t value = ztip->zti_value;
937 	uint_t count = ztip->zti_count;
938 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
939 	char name[32];
940 	uint_t flags = 0;
941 	boolean_t batch = B_FALSE;
942 
943 	if (mode == ZTI_MODE_NULL) {
944 		tqs->stqs_count = 0;
945 		tqs->stqs_taskq = NULL;
946 		return;
947 	}
948 
949 	ASSERT3U(count, >, 0);
950 
951 	tqs->stqs_count = count;
952 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
953 
954 	switch (mode) {
955 	case ZTI_MODE_FIXED:
956 		ASSERT3U(value, >=, 1);
957 		value = MAX(value, 1);
958 		break;
959 
960 	case ZTI_MODE_BATCH:
961 		batch = B_TRUE;
962 		flags |= TASKQ_THREADS_CPU_PCT;
963 		value = zio_taskq_batch_pct;
964 		break;
965 
966 	default:
967 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
968 		    "spa_activate()",
969 		    zio_type_name[t], zio_taskq_types[q], mode, value);
970 		break;
971 	}
972 
973 	for (uint_t i = 0; i < count; i++) {
974 		taskq_t *tq;
975 
976 		if (count > 1) {
977 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
978 			    zio_type_name[t], zio_taskq_types[q], i);
979 		} else {
980 			(void) snprintf(name, sizeof (name), "%s_%s",
981 			    zio_type_name[t], zio_taskq_types[q]);
982 		}
983 
984 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
985 			if (batch)
986 				flags |= TASKQ_DC_BATCH;
987 
988 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
989 			    spa->spa_proc, zio_taskq_basedc, flags);
990 		} else {
991 			pri_t pri = maxclsyspri;
992 			/*
993 			 * The write issue taskq can be extremely CPU
994 			 * intensive.  Run it at slightly lower priority
995 			 * than the other taskqs.
996 			 */
997 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
998 				pri--;
999 
1000 			tq = taskq_create_proc(name, value, pri, 50,
1001 			    INT_MAX, spa->spa_proc, flags);
1002 		}
1003 
1004 		tqs->stqs_taskq[i] = tq;
1005 	}
1006 }
1007 
1008 static void
1009 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1010 {
1011 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1012 
1013 	if (tqs->stqs_taskq == NULL) {
1014 		ASSERT0(tqs->stqs_count);
1015 		return;
1016 	}
1017 
1018 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1019 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1020 		taskq_destroy(tqs->stqs_taskq[i]);
1021 	}
1022 
1023 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1024 	tqs->stqs_taskq = NULL;
1025 }
1026 
1027 /*
1028  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1029  * Note that a type may have multiple discrete taskqs to avoid lock contention
1030  * on the taskq itself. In that case we choose which taskq at random by using
1031  * the low bits of gethrtime().
1032  */
1033 void
1034 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1035     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1036 {
1037 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1038 	taskq_t *tq;
1039 
1040 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1041 	ASSERT3U(tqs->stqs_count, !=, 0);
1042 
1043 	if (tqs->stqs_count == 1) {
1044 		tq = tqs->stqs_taskq[0];
1045 	} else {
1046 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1047 	}
1048 
1049 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1050 }
1051 
1052 static void
1053 spa_create_zio_taskqs(spa_t *spa)
1054 {
1055 	for (int t = 0; t < ZIO_TYPES; t++) {
1056 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1057 			spa_taskqs_init(spa, t, q);
1058 		}
1059 	}
1060 }
1061 
1062 #ifdef _KERNEL
1063 static void
1064 spa_thread(void *arg)
1065 {
1066 	callb_cpr_t cprinfo;
1067 
1068 	spa_t *spa = arg;
1069 	user_t *pu = PTOU(curproc);
1070 
1071 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1072 	    spa->spa_name);
1073 
1074 	ASSERT(curproc != &p0);
1075 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1076 	    "zpool-%s", spa->spa_name);
1077 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1078 
1079 	/* bind this thread to the requested psrset */
1080 	if (zio_taskq_psrset_bind != PS_NONE) {
1081 		pool_lock();
1082 		mutex_enter(&cpu_lock);
1083 		mutex_enter(&pidlock);
1084 		mutex_enter(&curproc->p_lock);
1085 
1086 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1087 		    0, NULL, NULL) == 0)  {
1088 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1089 		} else {
1090 			cmn_err(CE_WARN,
1091 			    "Couldn't bind process for zfs pool \"%s\" to "
1092 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1093 		}
1094 
1095 		mutex_exit(&curproc->p_lock);
1096 		mutex_exit(&pidlock);
1097 		mutex_exit(&cpu_lock);
1098 		pool_unlock();
1099 	}
1100 
1101 	if (zio_taskq_sysdc) {
1102 		sysdc_thread_enter(curthread, 100, 0);
1103 	}
1104 
1105 	spa->spa_proc = curproc;
1106 	spa->spa_did = curthread->t_did;
1107 
1108 	spa_create_zio_taskqs(spa);
1109 
1110 	mutex_enter(&spa->spa_proc_lock);
1111 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1112 
1113 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1114 	cv_broadcast(&spa->spa_proc_cv);
1115 
1116 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1117 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1118 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1119 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1120 
1121 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1122 	spa->spa_proc_state = SPA_PROC_GONE;
1123 	spa->spa_proc = &p0;
1124 	cv_broadcast(&spa->spa_proc_cv);
1125 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1126 
1127 	mutex_enter(&curproc->p_lock);
1128 	lwp_exit();
1129 }
1130 #endif
1131 
1132 /*
1133  * Activate an uninitialized pool.
1134  */
1135 static void
1136 spa_activate(spa_t *spa, int mode)
1137 {
1138 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1139 
1140 	spa->spa_state = POOL_STATE_ACTIVE;
1141 	spa->spa_mode = mode;
1142 
1143 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1144 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1145 
1146 	/* Try to create a covering process */
1147 	mutex_enter(&spa->spa_proc_lock);
1148 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1149 	ASSERT(spa->spa_proc == &p0);
1150 	spa->spa_did = 0;
1151 
1152 	/* Only create a process if we're going to be around a while. */
1153 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1154 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1155 		    NULL, 0) == 0) {
1156 			spa->spa_proc_state = SPA_PROC_CREATED;
1157 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1158 				cv_wait(&spa->spa_proc_cv,
1159 				    &spa->spa_proc_lock);
1160 			}
1161 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1162 			ASSERT(spa->spa_proc != &p0);
1163 			ASSERT(spa->spa_did != 0);
1164 		} else {
1165 #ifdef _KERNEL
1166 			cmn_err(CE_WARN,
1167 			    "Couldn't create process for zfs pool \"%s\"\n",
1168 			    spa->spa_name);
1169 #endif
1170 		}
1171 	}
1172 	mutex_exit(&spa->spa_proc_lock);
1173 
1174 	/* If we didn't create a process, we need to create our taskqs. */
1175 	if (spa->spa_proc == &p0) {
1176 		spa_create_zio_taskqs(spa);
1177 	}
1178 
1179 	for (size_t i = 0; i < TXG_SIZE; i++) {
1180 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1181 		    ZIO_FLAG_CANFAIL);
1182 	}
1183 
1184 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1185 	    offsetof(vdev_t, vdev_config_dirty_node));
1186 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1187 	    offsetof(objset_t, os_evicting_node));
1188 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1189 	    offsetof(vdev_t, vdev_state_dirty_node));
1190 
1191 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1192 	    offsetof(struct vdev, vdev_txg_node));
1193 
1194 	avl_create(&spa->spa_errlist_scrub,
1195 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1196 	    offsetof(spa_error_entry_t, se_avl));
1197 	avl_create(&spa->spa_errlist_last,
1198 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1199 	    offsetof(spa_error_entry_t, se_avl));
1200 }
1201 
1202 /*
1203  * Opposite of spa_activate().
1204  */
1205 static void
1206 spa_deactivate(spa_t *spa)
1207 {
1208 	ASSERT(spa->spa_sync_on == B_FALSE);
1209 	ASSERT(spa->spa_dsl_pool == NULL);
1210 	ASSERT(spa->spa_root_vdev == NULL);
1211 	ASSERT(spa->spa_async_zio_root == NULL);
1212 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1213 
1214 	spa_evicting_os_wait(spa);
1215 
1216 	txg_list_destroy(&spa->spa_vdev_txg_list);
1217 
1218 	list_destroy(&spa->spa_config_dirty_list);
1219 	list_destroy(&spa->spa_evicting_os_list);
1220 	list_destroy(&spa->spa_state_dirty_list);
1221 
1222 	for (int t = 0; t < ZIO_TYPES; t++) {
1223 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1224 			spa_taskqs_fini(spa, t, q);
1225 		}
1226 	}
1227 
1228 	for (size_t i = 0; i < TXG_SIZE; i++) {
1229 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1230 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1231 		spa->spa_txg_zio[i] = NULL;
1232 	}
1233 
1234 	metaslab_class_destroy(spa->spa_normal_class);
1235 	spa->spa_normal_class = NULL;
1236 
1237 	metaslab_class_destroy(spa->spa_log_class);
1238 	spa->spa_log_class = NULL;
1239 
1240 	/*
1241 	 * If this was part of an import or the open otherwise failed, we may
1242 	 * still have errors left in the queues.  Empty them just in case.
1243 	 */
1244 	spa_errlog_drain(spa);
1245 
1246 	avl_destroy(&spa->spa_errlist_scrub);
1247 	avl_destroy(&spa->spa_errlist_last);
1248 
1249 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1250 
1251 	mutex_enter(&spa->spa_proc_lock);
1252 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1253 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1254 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1255 		cv_broadcast(&spa->spa_proc_cv);
1256 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1257 			ASSERT(spa->spa_proc != &p0);
1258 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1259 		}
1260 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1261 		spa->spa_proc_state = SPA_PROC_NONE;
1262 	}
1263 	ASSERT(spa->spa_proc == &p0);
1264 	mutex_exit(&spa->spa_proc_lock);
1265 
1266 	/*
1267 	 * We want to make sure spa_thread() has actually exited the ZFS
1268 	 * module, so that the module can't be unloaded out from underneath
1269 	 * it.
1270 	 */
1271 	if (spa->spa_did != 0) {
1272 		thread_join(spa->spa_did);
1273 		spa->spa_did = 0;
1274 	}
1275 }
1276 
1277 /*
1278  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1279  * will create all the necessary vdevs in the appropriate layout, with each vdev
1280  * in the CLOSED state.  This will prep the pool before open/creation/import.
1281  * All vdev validation is done by the vdev_alloc() routine.
1282  */
1283 static int
1284 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1285     uint_t id, int atype)
1286 {
1287 	nvlist_t **child;
1288 	uint_t children;
1289 	int error;
1290 
1291 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1292 		return (error);
1293 
1294 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1295 		return (0);
1296 
1297 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1298 	    &child, &children);
1299 
1300 	if (error == ENOENT)
1301 		return (0);
1302 
1303 	if (error) {
1304 		vdev_free(*vdp);
1305 		*vdp = NULL;
1306 		return (SET_ERROR(EINVAL));
1307 	}
1308 
1309 	for (int c = 0; c < children; c++) {
1310 		vdev_t *vd;
1311 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1312 		    atype)) != 0) {
1313 			vdev_free(*vdp);
1314 			*vdp = NULL;
1315 			return (error);
1316 		}
1317 	}
1318 
1319 	ASSERT(*vdp != NULL);
1320 
1321 	return (0);
1322 }
1323 
1324 /*
1325  * Opposite of spa_load().
1326  */
1327 static void
1328 spa_unload(spa_t *spa)
1329 {
1330 	int i;
1331 
1332 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1333 
1334 	spa_load_note(spa, "UNLOADING");
1335 
1336 	/*
1337 	 * Stop async tasks.
1338 	 */
1339 	spa_async_suspend(spa);
1340 
1341 	if (spa->spa_root_vdev) {
1342 		vdev_initialize_stop_all(spa->spa_root_vdev,
1343 		    VDEV_INITIALIZE_ACTIVE);
1344 	}
1345 
1346 	/*
1347 	 * Stop syncing.
1348 	 */
1349 	if (spa->spa_sync_on) {
1350 		txg_sync_stop(spa->spa_dsl_pool);
1351 		spa->spa_sync_on = B_FALSE;
1352 	}
1353 
1354 	/*
1355 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1356 	 * to call it earlier, before we wait for async i/o to complete.
1357 	 * This ensures that there is no async metaslab prefetching, by
1358 	 * calling taskq_wait(mg_taskq).
1359 	 */
1360 	if (spa->spa_root_vdev != NULL) {
1361 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1362 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1363 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1364 		spa_config_exit(spa, SCL_ALL, spa);
1365 	}
1366 
1367 	if (spa->spa_mmp.mmp_thread)
1368 		mmp_thread_stop(spa);
1369 
1370 	/*
1371 	 * Wait for any outstanding async I/O to complete.
1372 	 */
1373 	if (spa->spa_async_zio_root != NULL) {
1374 		for (int i = 0; i < max_ncpus; i++)
1375 			(void) zio_wait(spa->spa_async_zio_root[i]);
1376 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1377 		spa->spa_async_zio_root = NULL;
1378 	}
1379 
1380 	if (spa->spa_vdev_removal != NULL) {
1381 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1382 		spa->spa_vdev_removal = NULL;
1383 	}
1384 
1385 	if (spa->spa_condense_zthr != NULL) {
1386 		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1387 		zthr_destroy(spa->spa_condense_zthr);
1388 		spa->spa_condense_zthr = NULL;
1389 	}
1390 
1391 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1392 		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1393 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1394 		spa->spa_checkpoint_discard_zthr = NULL;
1395 	}
1396 
1397 	spa_condense_fini(spa);
1398 
1399 	bpobj_close(&spa->spa_deferred_bpobj);
1400 
1401 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1402 
1403 	/*
1404 	 * Close all vdevs.
1405 	 */
1406 	if (spa->spa_root_vdev)
1407 		vdev_free(spa->spa_root_vdev);
1408 	ASSERT(spa->spa_root_vdev == NULL);
1409 
1410 	/*
1411 	 * Close the dsl pool.
1412 	 */
1413 	if (spa->spa_dsl_pool) {
1414 		dsl_pool_close(spa->spa_dsl_pool);
1415 		spa->spa_dsl_pool = NULL;
1416 		spa->spa_meta_objset = NULL;
1417 	}
1418 
1419 	ddt_unload(spa);
1420 
1421 	/*
1422 	 * Drop and purge level 2 cache
1423 	 */
1424 	spa_l2cache_drop(spa);
1425 
1426 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1427 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1428 	if (spa->spa_spares.sav_vdevs) {
1429 		kmem_free(spa->spa_spares.sav_vdevs,
1430 		    spa->spa_spares.sav_count * sizeof (void *));
1431 		spa->spa_spares.sav_vdevs = NULL;
1432 	}
1433 	if (spa->spa_spares.sav_config) {
1434 		nvlist_free(spa->spa_spares.sav_config);
1435 		spa->spa_spares.sav_config = NULL;
1436 	}
1437 	spa->spa_spares.sav_count = 0;
1438 
1439 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1440 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1441 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1442 	}
1443 	if (spa->spa_l2cache.sav_vdevs) {
1444 		kmem_free(spa->spa_l2cache.sav_vdevs,
1445 		    spa->spa_l2cache.sav_count * sizeof (void *));
1446 		spa->spa_l2cache.sav_vdevs = NULL;
1447 	}
1448 	if (spa->spa_l2cache.sav_config) {
1449 		nvlist_free(spa->spa_l2cache.sav_config);
1450 		spa->spa_l2cache.sav_config = NULL;
1451 	}
1452 	spa->spa_l2cache.sav_count = 0;
1453 
1454 	spa->spa_async_suspended = 0;
1455 
1456 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1457 
1458 	if (spa->spa_comment != NULL) {
1459 		spa_strfree(spa->spa_comment);
1460 		spa->spa_comment = NULL;
1461 	}
1462 
1463 	spa_config_exit(spa, SCL_ALL, spa);
1464 }
1465 
1466 /*
1467  * Load (or re-load) the current list of vdevs describing the active spares for
1468  * this pool.  When this is called, we have some form of basic information in
1469  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1470  * then re-generate a more complete list including status information.
1471  */
1472 void
1473 spa_load_spares(spa_t *spa)
1474 {
1475 	nvlist_t **spares;
1476 	uint_t nspares;
1477 	int i;
1478 	vdev_t *vd, *tvd;
1479 
1480 #ifndef _KERNEL
1481 	/*
1482 	 * zdb opens both the current state of the pool and the
1483 	 * checkpointed state (if present), with a different spa_t.
1484 	 *
1485 	 * As spare vdevs are shared among open pools, we skip loading
1486 	 * them when we load the checkpointed state of the pool.
1487 	 */
1488 	if (!spa_writeable(spa))
1489 		return;
1490 #endif
1491 
1492 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1493 
1494 	/*
1495 	 * First, close and free any existing spare vdevs.
1496 	 */
1497 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1498 		vd = spa->spa_spares.sav_vdevs[i];
1499 
1500 		/* Undo the call to spa_activate() below */
1501 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1502 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1503 			spa_spare_remove(tvd);
1504 		vdev_close(vd);
1505 		vdev_free(vd);
1506 	}
1507 
1508 	if (spa->spa_spares.sav_vdevs)
1509 		kmem_free(spa->spa_spares.sav_vdevs,
1510 		    spa->spa_spares.sav_count * sizeof (void *));
1511 
1512 	if (spa->spa_spares.sav_config == NULL)
1513 		nspares = 0;
1514 	else
1515 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1516 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1517 
1518 	spa->spa_spares.sav_count = (int)nspares;
1519 	spa->spa_spares.sav_vdevs = NULL;
1520 
1521 	if (nspares == 0)
1522 		return;
1523 
1524 	/*
1525 	 * Construct the array of vdevs, opening them to get status in the
1526 	 * process.   For each spare, there is potentially two different vdev_t
1527 	 * structures associated with it: one in the list of spares (used only
1528 	 * for basic validation purposes) and one in the active vdev
1529 	 * configuration (if it's spared in).  During this phase we open and
1530 	 * validate each vdev on the spare list.  If the vdev also exists in the
1531 	 * active configuration, then we also mark this vdev as an active spare.
1532 	 */
1533 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1534 	    KM_SLEEP);
1535 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1536 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1537 		    VDEV_ALLOC_SPARE) == 0);
1538 		ASSERT(vd != NULL);
1539 
1540 		spa->spa_spares.sav_vdevs[i] = vd;
1541 
1542 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1543 		    B_FALSE)) != NULL) {
1544 			if (!tvd->vdev_isspare)
1545 				spa_spare_add(tvd);
1546 
1547 			/*
1548 			 * We only mark the spare active if we were successfully
1549 			 * able to load the vdev.  Otherwise, importing a pool
1550 			 * with a bad active spare would result in strange
1551 			 * behavior, because multiple pool would think the spare
1552 			 * is actively in use.
1553 			 *
1554 			 * There is a vulnerability here to an equally bizarre
1555 			 * circumstance, where a dead active spare is later
1556 			 * brought back to life (onlined or otherwise).  Given
1557 			 * the rarity of this scenario, and the extra complexity
1558 			 * it adds, we ignore the possibility.
1559 			 */
1560 			if (!vdev_is_dead(tvd))
1561 				spa_spare_activate(tvd);
1562 		}
1563 
1564 		vd->vdev_top = vd;
1565 		vd->vdev_aux = &spa->spa_spares;
1566 
1567 		if (vdev_open(vd) != 0)
1568 			continue;
1569 
1570 		if (vdev_validate_aux(vd) == 0)
1571 			spa_spare_add(vd);
1572 	}
1573 
1574 	/*
1575 	 * Recompute the stashed list of spares, with status information
1576 	 * this time.
1577 	 */
1578 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1579 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1580 
1581 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1582 	    KM_SLEEP);
1583 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1584 		spares[i] = vdev_config_generate(spa,
1585 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1586 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1587 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1588 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1589 		nvlist_free(spares[i]);
1590 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1591 }
1592 
1593 /*
1594  * Load (or re-load) the current list of vdevs describing the active l2cache for
1595  * this pool.  When this is called, we have some form of basic information in
1596  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1597  * then re-generate a more complete list including status information.
1598  * Devices which are already active have their details maintained, and are
1599  * not re-opened.
1600  */
1601 void
1602 spa_load_l2cache(spa_t *spa)
1603 {
1604 	nvlist_t **l2cache;
1605 	uint_t nl2cache;
1606 	int i, j, oldnvdevs;
1607 	uint64_t guid;
1608 	vdev_t *vd, **oldvdevs, **newvdevs;
1609 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1610 
1611 #ifndef _KERNEL
1612 	/*
1613 	 * zdb opens both the current state of the pool and the
1614 	 * checkpointed state (if present), with a different spa_t.
1615 	 *
1616 	 * As L2 caches are part of the ARC which is shared among open
1617 	 * pools, we skip loading them when we load the checkpointed
1618 	 * state of the pool.
1619 	 */
1620 	if (!spa_writeable(spa))
1621 		return;
1622 #endif
1623 
1624 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1625 
1626 	if (sav->sav_config != NULL) {
1627 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1628 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1629 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1630 	} else {
1631 		nl2cache = 0;
1632 		newvdevs = NULL;
1633 	}
1634 
1635 	oldvdevs = sav->sav_vdevs;
1636 	oldnvdevs = sav->sav_count;
1637 	sav->sav_vdevs = NULL;
1638 	sav->sav_count = 0;
1639 
1640 	/*
1641 	 * Process new nvlist of vdevs.
1642 	 */
1643 	for (i = 0; i < nl2cache; i++) {
1644 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1645 		    &guid) == 0);
1646 
1647 		newvdevs[i] = NULL;
1648 		for (j = 0; j < oldnvdevs; j++) {
1649 			vd = oldvdevs[j];
1650 			if (vd != NULL && guid == vd->vdev_guid) {
1651 				/*
1652 				 * Retain previous vdev for add/remove ops.
1653 				 */
1654 				newvdevs[i] = vd;
1655 				oldvdevs[j] = NULL;
1656 				break;
1657 			}
1658 		}
1659 
1660 		if (newvdevs[i] == NULL) {
1661 			/*
1662 			 * Create new vdev
1663 			 */
1664 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1665 			    VDEV_ALLOC_L2CACHE) == 0);
1666 			ASSERT(vd != NULL);
1667 			newvdevs[i] = vd;
1668 
1669 			/*
1670 			 * Commit this vdev as an l2cache device,
1671 			 * even if it fails to open.
1672 			 */
1673 			spa_l2cache_add(vd);
1674 
1675 			vd->vdev_top = vd;
1676 			vd->vdev_aux = sav;
1677 
1678 			spa_l2cache_activate(vd);
1679 
1680 			if (vdev_open(vd) != 0)
1681 				continue;
1682 
1683 			(void) vdev_validate_aux(vd);
1684 
1685 			if (!vdev_is_dead(vd))
1686 				l2arc_add_vdev(spa, vd);
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * Purge vdevs that were dropped
1692 	 */
1693 	for (i = 0; i < oldnvdevs; i++) {
1694 		uint64_t pool;
1695 
1696 		vd = oldvdevs[i];
1697 		if (vd != NULL) {
1698 			ASSERT(vd->vdev_isl2cache);
1699 
1700 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1701 			    pool != 0ULL && l2arc_vdev_present(vd))
1702 				l2arc_remove_vdev(vd);
1703 			vdev_clear_stats(vd);
1704 			vdev_free(vd);
1705 		}
1706 	}
1707 
1708 	if (oldvdevs)
1709 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1710 
1711 	if (sav->sav_config == NULL)
1712 		goto out;
1713 
1714 	sav->sav_vdevs = newvdevs;
1715 	sav->sav_count = (int)nl2cache;
1716 
1717 	/*
1718 	 * Recompute the stashed list of l2cache devices, with status
1719 	 * information this time.
1720 	 */
1721 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1722 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1723 
1724 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1725 	for (i = 0; i < sav->sav_count; i++)
1726 		l2cache[i] = vdev_config_generate(spa,
1727 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1728 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1729 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1730 out:
1731 	for (i = 0; i < sav->sav_count; i++)
1732 		nvlist_free(l2cache[i]);
1733 	if (sav->sav_count)
1734 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1735 }
1736 
1737 static int
1738 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1739 {
1740 	dmu_buf_t *db;
1741 	char *packed = NULL;
1742 	size_t nvsize = 0;
1743 	int error;
1744 	*value = NULL;
1745 
1746 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1747 	if (error != 0)
1748 		return (error);
1749 
1750 	nvsize = *(uint64_t *)db->db_data;
1751 	dmu_buf_rele(db, FTAG);
1752 
1753 	packed = kmem_alloc(nvsize, KM_SLEEP);
1754 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1755 	    DMU_READ_PREFETCH);
1756 	if (error == 0)
1757 		error = nvlist_unpack(packed, nvsize, value, 0);
1758 	kmem_free(packed, nvsize);
1759 
1760 	return (error);
1761 }
1762 
1763 /*
1764  * Concrete top-level vdevs that are not missing and are not logs. At every
1765  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1766  */
1767 static uint64_t
1768 spa_healthy_core_tvds(spa_t *spa)
1769 {
1770 	vdev_t *rvd = spa->spa_root_vdev;
1771 	uint64_t tvds = 0;
1772 
1773 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1774 		vdev_t *vd = rvd->vdev_child[i];
1775 		if (vd->vdev_islog)
1776 			continue;
1777 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1778 			tvds++;
1779 	}
1780 
1781 	return (tvds);
1782 }
1783 
1784 /*
1785  * Checks to see if the given vdev could not be opened, in which case we post a
1786  * sysevent to notify the autoreplace code that the device has been removed.
1787  */
1788 static void
1789 spa_check_removed(vdev_t *vd)
1790 {
1791 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1792 		spa_check_removed(vd->vdev_child[c]);
1793 
1794 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1795 	    vdev_is_concrete(vd)) {
1796 		zfs_post_autoreplace(vd->vdev_spa, vd);
1797 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1798 	}
1799 }
1800 
1801 static int
1802 spa_check_for_missing_logs(spa_t *spa)
1803 {
1804 	vdev_t *rvd = spa->spa_root_vdev;
1805 
1806 	/*
1807 	 * If we're doing a normal import, then build up any additional
1808 	 * diagnostic information about missing log devices.
1809 	 * We'll pass this up to the user for further processing.
1810 	 */
1811 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1812 		nvlist_t **child, *nv;
1813 		uint64_t idx = 0;
1814 
1815 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1816 		    KM_SLEEP);
1817 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1818 
1819 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1820 			vdev_t *tvd = rvd->vdev_child[c];
1821 
1822 			/*
1823 			 * We consider a device as missing only if it failed
1824 			 * to open (i.e. offline or faulted is not considered
1825 			 * as missing).
1826 			 */
1827 			if (tvd->vdev_islog &&
1828 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1829 				child[idx++] = vdev_config_generate(spa, tvd,
1830 				    B_FALSE, VDEV_CONFIG_MISSING);
1831 			}
1832 		}
1833 
1834 		if (idx > 0) {
1835 			fnvlist_add_nvlist_array(nv,
1836 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1837 			fnvlist_add_nvlist(spa->spa_load_info,
1838 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1839 
1840 			for (uint64_t i = 0; i < idx; i++)
1841 				nvlist_free(child[i]);
1842 		}
1843 		nvlist_free(nv);
1844 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1845 
1846 		if (idx > 0) {
1847 			spa_load_failed(spa, "some log devices are missing");
1848 			vdev_dbgmsg_print_tree(rvd, 2);
1849 			return (SET_ERROR(ENXIO));
1850 		}
1851 	} else {
1852 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1853 			vdev_t *tvd = rvd->vdev_child[c];
1854 
1855 			if (tvd->vdev_islog &&
1856 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1857 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1858 				spa_load_note(spa, "some log devices are "
1859 				    "missing, ZIL is dropped.");
1860 				vdev_dbgmsg_print_tree(rvd, 2);
1861 				break;
1862 			}
1863 		}
1864 	}
1865 
1866 	return (0);
1867 }
1868 
1869 /*
1870  * Check for missing log devices
1871  */
1872 static boolean_t
1873 spa_check_logs(spa_t *spa)
1874 {
1875 	boolean_t rv = B_FALSE;
1876 	dsl_pool_t *dp = spa_get_dsl(spa);
1877 
1878 	switch (spa->spa_log_state) {
1879 	case SPA_LOG_MISSING:
1880 		/* need to recheck in case slog has been restored */
1881 	case SPA_LOG_UNKNOWN:
1882 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1883 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1884 		if (rv)
1885 			spa_set_log_state(spa, SPA_LOG_MISSING);
1886 		break;
1887 	}
1888 	return (rv);
1889 }
1890 
1891 static boolean_t
1892 spa_passivate_log(spa_t *spa)
1893 {
1894 	vdev_t *rvd = spa->spa_root_vdev;
1895 	boolean_t slog_found = B_FALSE;
1896 
1897 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1898 
1899 	if (!spa_has_slogs(spa))
1900 		return (B_FALSE);
1901 
1902 	for (int c = 0; c < rvd->vdev_children; c++) {
1903 		vdev_t *tvd = rvd->vdev_child[c];
1904 		metaslab_group_t *mg = tvd->vdev_mg;
1905 
1906 		if (tvd->vdev_islog) {
1907 			metaslab_group_passivate(mg);
1908 			slog_found = B_TRUE;
1909 		}
1910 	}
1911 
1912 	return (slog_found);
1913 }
1914 
1915 static void
1916 spa_activate_log(spa_t *spa)
1917 {
1918 	vdev_t *rvd = spa->spa_root_vdev;
1919 
1920 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1921 
1922 	for (int c = 0; c < rvd->vdev_children; c++) {
1923 		vdev_t *tvd = rvd->vdev_child[c];
1924 		metaslab_group_t *mg = tvd->vdev_mg;
1925 
1926 		if (tvd->vdev_islog)
1927 			metaslab_group_activate(mg);
1928 	}
1929 }
1930 
1931 int
1932 spa_reset_logs(spa_t *spa)
1933 {
1934 	int error;
1935 
1936 	error = dmu_objset_find(spa_name(spa), zil_reset,
1937 	    NULL, DS_FIND_CHILDREN);
1938 	if (error == 0) {
1939 		/*
1940 		 * We successfully offlined the log device, sync out the
1941 		 * current txg so that the "stubby" block can be removed
1942 		 * by zil_sync().
1943 		 */
1944 		txg_wait_synced(spa->spa_dsl_pool, 0);
1945 	}
1946 	return (error);
1947 }
1948 
1949 static void
1950 spa_aux_check_removed(spa_aux_vdev_t *sav)
1951 {
1952 	for (int i = 0; i < sav->sav_count; i++)
1953 		spa_check_removed(sav->sav_vdevs[i]);
1954 }
1955 
1956 void
1957 spa_claim_notify(zio_t *zio)
1958 {
1959 	spa_t *spa = zio->io_spa;
1960 
1961 	if (zio->io_error)
1962 		return;
1963 
1964 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1965 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1966 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1967 	mutex_exit(&spa->spa_props_lock);
1968 }
1969 
1970 typedef struct spa_load_error {
1971 	uint64_t	sle_meta_count;
1972 	uint64_t	sle_data_count;
1973 } spa_load_error_t;
1974 
1975 static void
1976 spa_load_verify_done(zio_t *zio)
1977 {
1978 	blkptr_t *bp = zio->io_bp;
1979 	spa_load_error_t *sle = zio->io_private;
1980 	dmu_object_type_t type = BP_GET_TYPE(bp);
1981 	int error = zio->io_error;
1982 	spa_t *spa = zio->io_spa;
1983 
1984 	abd_free(zio->io_abd);
1985 	if (error) {
1986 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1987 		    type != DMU_OT_INTENT_LOG)
1988 			atomic_inc_64(&sle->sle_meta_count);
1989 		else
1990 			atomic_inc_64(&sle->sle_data_count);
1991 	}
1992 
1993 	mutex_enter(&spa->spa_scrub_lock);
1994 	spa->spa_scrub_inflight--;
1995 	cv_broadcast(&spa->spa_scrub_io_cv);
1996 	mutex_exit(&spa->spa_scrub_lock);
1997 }
1998 
1999 /*
2000  * Maximum number of concurrent scrub i/os to create while verifying
2001  * a pool while importing it.
2002  */
2003 int spa_load_verify_maxinflight = 10000;
2004 boolean_t spa_load_verify_metadata = B_TRUE;
2005 boolean_t spa_load_verify_data = B_TRUE;
2006 
2007 /*ARGSUSED*/
2008 static int
2009 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2010     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2011 {
2012 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2013 		return (0);
2014 	/*
2015 	 * Note: normally this routine will not be called if
2016 	 * spa_load_verify_metadata is not set.  However, it may be useful
2017 	 * to manually set the flag after the traversal has begun.
2018 	 */
2019 	if (!spa_load_verify_metadata)
2020 		return (0);
2021 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2022 		return (0);
2023 
2024 	zio_t *rio = arg;
2025 	size_t size = BP_GET_PSIZE(bp);
2026 
2027 	mutex_enter(&spa->spa_scrub_lock);
2028 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2029 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2030 	spa->spa_scrub_inflight++;
2031 	mutex_exit(&spa->spa_scrub_lock);
2032 
2033 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2034 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2035 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2036 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2037 	return (0);
2038 }
2039 
2040 /* ARGSUSED */
2041 int
2042 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2043 {
2044 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2045 		return (SET_ERROR(ENAMETOOLONG));
2046 
2047 	return (0);
2048 }
2049 
2050 static int
2051 spa_load_verify(spa_t *spa)
2052 {
2053 	zio_t *rio;
2054 	spa_load_error_t sle = { 0 };
2055 	zpool_load_policy_t policy;
2056 	boolean_t verify_ok = B_FALSE;
2057 	int error = 0;
2058 
2059 	zpool_get_load_policy(spa->spa_config, &policy);
2060 
2061 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2062 		return (0);
2063 
2064 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2065 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2066 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2067 	    DS_FIND_CHILDREN);
2068 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2069 	if (error != 0)
2070 		return (error);
2071 
2072 	rio = zio_root(spa, NULL, &sle,
2073 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2074 
2075 	if (spa_load_verify_metadata) {
2076 		if (spa->spa_extreme_rewind) {
2077 			spa_load_note(spa, "performing a complete scan of the "
2078 			    "pool since extreme rewind is on. This may take "
2079 			    "a very long time.\n  (spa_load_verify_data=%u, "
2080 			    "spa_load_verify_metadata=%u)",
2081 			    spa_load_verify_data, spa_load_verify_metadata);
2082 		}
2083 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2084 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2085 		    spa_load_verify_cb, rio);
2086 	}
2087 
2088 	(void) zio_wait(rio);
2089 
2090 	spa->spa_load_meta_errors = sle.sle_meta_count;
2091 	spa->spa_load_data_errors = sle.sle_data_count;
2092 
2093 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2094 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2095 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2096 		    (u_longlong_t)sle.sle_data_count);
2097 	}
2098 
2099 	if (spa_load_verify_dryrun ||
2100 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2101 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2102 		int64_t loss = 0;
2103 
2104 		verify_ok = B_TRUE;
2105 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2106 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2107 
2108 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2109 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2110 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2111 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2112 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2113 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2114 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2115 	} else {
2116 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2117 	}
2118 
2119 	if (spa_load_verify_dryrun)
2120 		return (0);
2121 
2122 	if (error) {
2123 		if (error != ENXIO && error != EIO)
2124 			error = SET_ERROR(EIO);
2125 		return (error);
2126 	}
2127 
2128 	return (verify_ok ? 0 : EIO);
2129 }
2130 
2131 /*
2132  * Find a value in the pool props object.
2133  */
2134 static void
2135 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2136 {
2137 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2138 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2139 }
2140 
2141 /*
2142  * Find a value in the pool directory object.
2143  */
2144 static int
2145 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2146 {
2147 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2148 	    name, sizeof (uint64_t), 1, val);
2149 
2150 	if (error != 0 && (error != ENOENT || log_enoent)) {
2151 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2152 		    "[error=%d]", name, error);
2153 	}
2154 
2155 	return (error);
2156 }
2157 
2158 static int
2159 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2160 {
2161 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2162 	return (SET_ERROR(err));
2163 }
2164 
2165 static void
2166 spa_spawn_aux_threads(spa_t *spa)
2167 {
2168 	ASSERT(spa_writeable(spa));
2169 
2170 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2171 
2172 	spa_start_indirect_condensing_thread(spa);
2173 
2174 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2175 	spa->spa_checkpoint_discard_zthr =
2176 	    zthr_create(spa_checkpoint_discard_thread_check,
2177 	    spa_checkpoint_discard_thread, spa);
2178 }
2179 
2180 /*
2181  * Fix up config after a partly-completed split.  This is done with the
2182  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2183  * pool have that entry in their config, but only the splitting one contains
2184  * a list of all the guids of the vdevs that are being split off.
2185  *
2186  * This function determines what to do with that list: either rejoin
2187  * all the disks to the pool, or complete the splitting process.  To attempt
2188  * the rejoin, each disk that is offlined is marked online again, and
2189  * we do a reopen() call.  If the vdev label for every disk that was
2190  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2191  * then we call vdev_split() on each disk, and complete the split.
2192  *
2193  * Otherwise we leave the config alone, with all the vdevs in place in
2194  * the original pool.
2195  */
2196 static void
2197 spa_try_repair(spa_t *spa, nvlist_t *config)
2198 {
2199 	uint_t extracted;
2200 	uint64_t *glist;
2201 	uint_t i, gcount;
2202 	nvlist_t *nvl;
2203 	vdev_t **vd;
2204 	boolean_t attempt_reopen;
2205 
2206 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2207 		return;
2208 
2209 	/* check that the config is complete */
2210 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2211 	    &glist, &gcount) != 0)
2212 		return;
2213 
2214 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2215 
2216 	/* attempt to online all the vdevs & validate */
2217 	attempt_reopen = B_TRUE;
2218 	for (i = 0; i < gcount; i++) {
2219 		if (glist[i] == 0)	/* vdev is hole */
2220 			continue;
2221 
2222 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2223 		if (vd[i] == NULL) {
2224 			/*
2225 			 * Don't bother attempting to reopen the disks;
2226 			 * just do the split.
2227 			 */
2228 			attempt_reopen = B_FALSE;
2229 		} else {
2230 			/* attempt to re-online it */
2231 			vd[i]->vdev_offline = B_FALSE;
2232 		}
2233 	}
2234 
2235 	if (attempt_reopen) {
2236 		vdev_reopen(spa->spa_root_vdev);
2237 
2238 		/* check each device to see what state it's in */
2239 		for (extracted = 0, i = 0; i < gcount; i++) {
2240 			if (vd[i] != NULL &&
2241 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2242 				break;
2243 			++extracted;
2244 		}
2245 	}
2246 
2247 	/*
2248 	 * If every disk has been moved to the new pool, or if we never
2249 	 * even attempted to look at them, then we split them off for
2250 	 * good.
2251 	 */
2252 	if (!attempt_reopen || gcount == extracted) {
2253 		for (i = 0; i < gcount; i++)
2254 			if (vd[i] != NULL)
2255 				vdev_split(vd[i]);
2256 		vdev_reopen(spa->spa_root_vdev);
2257 	}
2258 
2259 	kmem_free(vd, gcount * sizeof (vdev_t *));
2260 }
2261 
2262 static int
2263 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2264 {
2265 	char *ereport = FM_EREPORT_ZFS_POOL;
2266 	int error;
2267 
2268 	spa->spa_load_state = state;
2269 
2270 	gethrestime(&spa->spa_loaded_ts);
2271 	error = spa_load_impl(spa, type, &ereport);
2272 
2273 	/*
2274 	 * Don't count references from objsets that are already closed
2275 	 * and are making their way through the eviction process.
2276 	 */
2277 	spa_evicting_os_wait(spa);
2278 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2279 	if (error) {
2280 		if (error != EEXIST) {
2281 			spa->spa_loaded_ts.tv_sec = 0;
2282 			spa->spa_loaded_ts.tv_nsec = 0;
2283 		}
2284 		if (error != EBADF) {
2285 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2286 		}
2287 	}
2288 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2289 	spa->spa_ena = 0;
2290 
2291 	return (error);
2292 }
2293 
2294 /*
2295  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2296  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2297  * spa's per-vdev ZAP list.
2298  */
2299 static uint64_t
2300 vdev_count_verify_zaps(vdev_t *vd)
2301 {
2302 	spa_t *spa = vd->vdev_spa;
2303 	uint64_t total = 0;
2304 	if (vd->vdev_top_zap != 0) {
2305 		total++;
2306 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2307 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2308 	}
2309 	if (vd->vdev_leaf_zap != 0) {
2310 		total++;
2311 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2312 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2313 	}
2314 
2315 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2316 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2317 	}
2318 
2319 	return (total);
2320 }
2321 
2322 /*
2323  * Determine whether the activity check is required.
2324  */
2325 static boolean_t
2326 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2327     nvlist_t *config)
2328 {
2329 	uint64_t state = 0;
2330 	uint64_t hostid = 0;
2331 	uint64_t tryconfig_txg = 0;
2332 	uint64_t tryconfig_timestamp = 0;
2333 	nvlist_t *nvinfo;
2334 
2335 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2336 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2337 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2338 		    &tryconfig_txg);
2339 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2340 		    &tryconfig_timestamp);
2341 	}
2342 
2343 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2344 
2345 	/*
2346 	 * Disable the MMP activity check - This is used by zdb which
2347 	 * is intended to be used on potentially active pools.
2348 	 */
2349 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2350 		return (B_FALSE);
2351 
2352 	/*
2353 	 * Skip the activity check when the MMP feature is disabled.
2354 	 */
2355 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2356 		return (B_FALSE);
2357 	/*
2358 	 * If the tryconfig_* values are nonzero, they are the results of an
2359 	 * earlier tryimport.  If they match the uberblock we just found, then
2360 	 * the pool has not changed and we return false so we do not test a
2361 	 * second time.
2362 	 */
2363 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2364 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2365 		return (B_FALSE);
2366 
2367 	/*
2368 	 * Allow the activity check to be skipped when importing the pool
2369 	 * on the same host which last imported it.  Since the hostid from
2370 	 * configuration may be stale use the one read from the label.
2371 	 */
2372 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2373 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2374 
2375 	if (hostid == spa_get_hostid())
2376 		return (B_FALSE);
2377 
2378 	/*
2379 	 * Skip the activity test when the pool was cleanly exported.
2380 	 */
2381 	if (state != POOL_STATE_ACTIVE)
2382 		return (B_FALSE);
2383 
2384 	return (B_TRUE);
2385 }
2386 
2387 /*
2388  * Perform the import activity check.  If the user canceled the import or
2389  * we detected activity then fail.
2390  */
2391 static int
2392 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2393 {
2394 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2395 	uint64_t txg = ub->ub_txg;
2396 	uint64_t timestamp = ub->ub_timestamp;
2397 	uint64_t import_delay = NANOSEC;
2398 	hrtime_t import_expire;
2399 	nvlist_t *mmp_label = NULL;
2400 	vdev_t *rvd = spa->spa_root_vdev;
2401 	kcondvar_t cv;
2402 	kmutex_t mtx;
2403 	int error = 0;
2404 
2405 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2406 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2407 	mutex_enter(&mtx);
2408 
2409 	/*
2410 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2411 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2412 	 * the pool is known to be active on another host.
2413 	 *
2414 	 * Otherwise, the pool might be in use on another node.  Check for
2415 	 * changes in the uberblocks on disk if necessary.
2416 	 */
2417 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2418 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2419 		    ZPOOL_CONFIG_LOAD_INFO);
2420 
2421 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2422 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2423 			vdev_uberblock_load(rvd, ub, &mmp_label);
2424 			error = SET_ERROR(EREMOTEIO);
2425 			goto out;
2426 		}
2427 	}
2428 
2429 	/*
2430 	 * Preferentially use the zfs_multihost_interval from the node which
2431 	 * last imported the pool.  This value is stored in an MMP uberblock as.
2432 	 *
2433 	 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2434 	 */
2435 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2436 		import_delay = MAX(import_delay, import_intervals *
2437 		    ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2438 
2439 	/* Apply a floor using the local default values. */
2440 	import_delay = MAX(import_delay, import_intervals *
2441 	    MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2442 
2443 	zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
2444 	    "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
2445 	    vdev_count_leaves(spa));
2446 
2447 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2448 	import_expire = gethrtime() + import_delay +
2449 	    (import_delay * spa_get_random(250) / 1000);
2450 
2451 	while (gethrtime() < import_expire) {
2452 		vdev_uberblock_load(rvd, ub, &mmp_label);
2453 
2454 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2455 			error = SET_ERROR(EREMOTEIO);
2456 			break;
2457 		}
2458 
2459 		if (mmp_label) {
2460 			nvlist_free(mmp_label);
2461 			mmp_label = NULL;
2462 		}
2463 
2464 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2465 		if (error != -1) {
2466 			error = SET_ERROR(EINTR);
2467 			break;
2468 		}
2469 		error = 0;
2470 	}
2471 
2472 out:
2473 	mutex_exit(&mtx);
2474 	mutex_destroy(&mtx);
2475 	cv_destroy(&cv);
2476 
2477 	/*
2478 	 * If the pool is determined to be active store the status in the
2479 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2480 	 * available from configuration read from disk store them as well.
2481 	 * This allows 'zpool import' to generate a more useful message.
2482 	 *
2483 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2484 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2485 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2486 	 */
2487 	if (error == EREMOTEIO) {
2488 		char *hostname = "<unknown>";
2489 		uint64_t hostid = 0;
2490 
2491 		if (mmp_label) {
2492 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2493 				hostname = fnvlist_lookup_string(mmp_label,
2494 				    ZPOOL_CONFIG_HOSTNAME);
2495 				fnvlist_add_string(spa->spa_load_info,
2496 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2497 			}
2498 
2499 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2500 				hostid = fnvlist_lookup_uint64(mmp_label,
2501 				    ZPOOL_CONFIG_HOSTID);
2502 				fnvlist_add_uint64(spa->spa_load_info,
2503 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2504 			}
2505 		}
2506 
2507 		fnvlist_add_uint64(spa->spa_load_info,
2508 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2509 		fnvlist_add_uint64(spa->spa_load_info,
2510 		    ZPOOL_CONFIG_MMP_TXG, 0);
2511 
2512 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2513 	}
2514 
2515 	if (mmp_label)
2516 		nvlist_free(mmp_label);
2517 
2518 	return (error);
2519 }
2520 
2521 static int
2522 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2523 {
2524 	uint64_t hostid;
2525 	char *hostname;
2526 	uint64_t myhostid = 0;
2527 
2528 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2529 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2530 		hostname = fnvlist_lookup_string(mos_config,
2531 		    ZPOOL_CONFIG_HOSTNAME);
2532 
2533 		myhostid = zone_get_hostid(NULL);
2534 
2535 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2536 			cmn_err(CE_WARN, "pool '%s' could not be "
2537 			    "loaded as it was last accessed by "
2538 			    "another system (host: %s hostid: 0x%llx). "
2539 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2540 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2541 			spa_load_failed(spa, "hostid verification failed: pool "
2542 			    "last accessed by host: %s (hostid: 0x%llx)",
2543 			    hostname, (u_longlong_t)hostid);
2544 			return (SET_ERROR(EBADF));
2545 		}
2546 	}
2547 
2548 	return (0);
2549 }
2550 
2551 static int
2552 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2553 {
2554 	int error = 0;
2555 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2556 	int parse;
2557 	vdev_t *rvd;
2558 	uint64_t pool_guid;
2559 	char *comment;
2560 
2561 	/*
2562 	 * Versioning wasn't explicitly added to the label until later, so if
2563 	 * it's not present treat it as the initial version.
2564 	 */
2565 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2566 	    &spa->spa_ubsync.ub_version) != 0)
2567 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2568 
2569 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2570 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2571 		    ZPOOL_CONFIG_POOL_GUID);
2572 		return (SET_ERROR(EINVAL));
2573 	}
2574 
2575 	/*
2576 	 * If we are doing an import, ensure that the pool is not already
2577 	 * imported by checking if its pool guid already exists in the
2578 	 * spa namespace.
2579 	 *
2580 	 * The only case that we allow an already imported pool to be
2581 	 * imported again, is when the pool is checkpointed and we want to
2582 	 * look at its checkpointed state from userland tools like zdb.
2583 	 */
2584 #ifdef _KERNEL
2585 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2586 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2587 	    spa_guid_exists(pool_guid, 0)) {
2588 #else
2589 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2590 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2591 	    spa_guid_exists(pool_guid, 0) &&
2592 	    !spa_importing_readonly_checkpoint(spa)) {
2593 #endif
2594 		spa_load_failed(spa, "a pool with guid %llu is already open",
2595 		    (u_longlong_t)pool_guid);
2596 		return (SET_ERROR(EEXIST));
2597 	}
2598 
2599 	spa->spa_config_guid = pool_guid;
2600 
2601 	nvlist_free(spa->spa_load_info);
2602 	spa->spa_load_info = fnvlist_alloc();
2603 
2604 	ASSERT(spa->spa_comment == NULL);
2605 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2606 		spa->spa_comment = spa_strdup(comment);
2607 
2608 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2609 	    &spa->spa_config_txg);
2610 
2611 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2612 		spa->spa_config_splitting = fnvlist_dup(nvl);
2613 
2614 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2615 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2616 		    ZPOOL_CONFIG_VDEV_TREE);
2617 		return (SET_ERROR(EINVAL));
2618 	}
2619 
2620 	/*
2621 	 * Create "The Godfather" zio to hold all async IOs
2622 	 */
2623 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2624 	    KM_SLEEP);
2625 	for (int i = 0; i < max_ncpus; i++) {
2626 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2627 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2628 		    ZIO_FLAG_GODFATHER);
2629 	}
2630 
2631 	/*
2632 	 * Parse the configuration into a vdev tree.  We explicitly set the
2633 	 * value that will be returned by spa_version() since parsing the
2634 	 * configuration requires knowing the version number.
2635 	 */
2636 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2637 	parse = (type == SPA_IMPORT_EXISTING ?
2638 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2639 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2640 	spa_config_exit(spa, SCL_ALL, FTAG);
2641 
2642 	if (error != 0) {
2643 		spa_load_failed(spa, "unable to parse config [error=%d]",
2644 		    error);
2645 		return (error);
2646 	}
2647 
2648 	ASSERT(spa->spa_root_vdev == rvd);
2649 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2650 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2651 
2652 	if (type != SPA_IMPORT_ASSEMBLE) {
2653 		ASSERT(spa_guid(spa) == pool_guid);
2654 	}
2655 
2656 	return (0);
2657 }
2658 
2659 /*
2660  * Recursively open all vdevs in the vdev tree. This function is called twice:
2661  * first with the untrusted config, then with the trusted config.
2662  */
2663 static int
2664 spa_ld_open_vdevs(spa_t *spa)
2665 {
2666 	int error = 0;
2667 
2668 	/*
2669 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2670 	 * missing/unopenable for the root vdev to be still considered openable.
2671 	 */
2672 	if (spa->spa_trust_config) {
2673 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2674 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2675 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2676 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2677 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2678 	} else {
2679 		spa->spa_missing_tvds_allowed = 0;
2680 	}
2681 
2682 	spa->spa_missing_tvds_allowed =
2683 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2684 
2685 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2686 	error = vdev_open(spa->spa_root_vdev);
2687 	spa_config_exit(spa, SCL_ALL, FTAG);
2688 
2689 	if (spa->spa_missing_tvds != 0) {
2690 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2691 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2692 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2693 			/*
2694 			 * Although theoretically we could allow users to open
2695 			 * incomplete pools in RW mode, we'd need to add a lot
2696 			 * of extra logic (e.g. adjust pool space to account
2697 			 * for missing vdevs).
2698 			 * This limitation also prevents users from accidentally
2699 			 * opening the pool in RW mode during data recovery and
2700 			 * damaging it further.
2701 			 */
2702 			spa_load_note(spa, "pools with missing top-level "
2703 			    "vdevs can only be opened in read-only mode.");
2704 			error = SET_ERROR(ENXIO);
2705 		} else {
2706 			spa_load_note(spa, "current settings allow for maximum "
2707 			    "%lld missing top-level vdevs at this stage.",
2708 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2709 		}
2710 	}
2711 	if (error != 0) {
2712 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2713 		    error);
2714 	}
2715 	if (spa->spa_missing_tvds != 0 || error != 0)
2716 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2717 
2718 	return (error);
2719 }
2720 
2721 /*
2722  * We need to validate the vdev labels against the configuration that
2723  * we have in hand. This function is called twice: first with an untrusted
2724  * config, then with a trusted config. The validation is more strict when the
2725  * config is trusted.
2726  */
2727 static int
2728 spa_ld_validate_vdevs(spa_t *spa)
2729 {
2730 	int error = 0;
2731 	vdev_t *rvd = spa->spa_root_vdev;
2732 
2733 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2734 	error = vdev_validate(rvd);
2735 	spa_config_exit(spa, SCL_ALL, FTAG);
2736 
2737 	if (error != 0) {
2738 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2739 		return (error);
2740 	}
2741 
2742 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2743 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2744 		    "some vdevs");
2745 		vdev_dbgmsg_print_tree(rvd, 2);
2746 		return (SET_ERROR(ENXIO));
2747 	}
2748 
2749 	return (0);
2750 }
2751 
2752 static void
2753 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2754 {
2755 	spa->spa_state = POOL_STATE_ACTIVE;
2756 	spa->spa_ubsync = spa->spa_uberblock;
2757 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2758 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2759 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2760 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2761 	spa->spa_claim_max_txg = spa->spa_first_txg;
2762 	spa->spa_prev_software_version = ub->ub_software_version;
2763 }
2764 
2765 static int
2766 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2767 {
2768 	vdev_t *rvd = spa->spa_root_vdev;
2769 	nvlist_t *label;
2770 	uberblock_t *ub = &spa->spa_uberblock;
2771 	boolean_t activity_check = B_FALSE;
2772 
2773 	/*
2774 	 * If we are opening the checkpointed state of the pool by
2775 	 * rewinding to it, at this point we will have written the
2776 	 * checkpointed uberblock to the vdev labels, so searching
2777 	 * the labels will find the right uberblock.  However, if
2778 	 * we are opening the checkpointed state read-only, we have
2779 	 * not modified the labels. Therefore, we must ignore the
2780 	 * labels and continue using the spa_uberblock that was set
2781 	 * by spa_ld_checkpoint_rewind.
2782 	 *
2783 	 * Note that it would be fine to ignore the labels when
2784 	 * rewinding (opening writeable) as well. However, if we
2785 	 * crash just after writing the labels, we will end up
2786 	 * searching the labels. Doing so in the common case means
2787 	 * that this code path gets exercised normally, rather than
2788 	 * just in the edge case.
2789 	 */
2790 	if (ub->ub_checkpoint_txg != 0 &&
2791 	    spa_importing_readonly_checkpoint(spa)) {
2792 		spa_ld_select_uberblock_done(spa, ub);
2793 		return (0);
2794 	}
2795 
2796 	/*
2797 	 * Find the best uberblock.
2798 	 */
2799 	vdev_uberblock_load(rvd, ub, &label);
2800 
2801 	/*
2802 	 * If we weren't able to find a single valid uberblock, return failure.
2803 	 */
2804 	if (ub->ub_txg == 0) {
2805 		nvlist_free(label);
2806 		spa_load_failed(spa, "no valid uberblock found");
2807 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2808 	}
2809 
2810 	spa_load_note(spa, "using uberblock with txg=%llu",
2811 	    (u_longlong_t)ub->ub_txg);
2812 
2813 	/*
2814 	 * For pools which have the multihost property on determine if the
2815 	 * pool is truly inactive and can be safely imported.  Prevent
2816 	 * hosts which don't have a hostid set from importing the pool.
2817 	 */
2818 	activity_check = spa_activity_check_required(spa, ub, label,
2819 	    spa->spa_config);
2820 	if (activity_check) {
2821 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2822 		    spa_get_hostid() == 0) {
2823 			nvlist_free(label);
2824 			fnvlist_add_uint64(spa->spa_load_info,
2825 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2826 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2827 		}
2828 
2829 		int error = spa_activity_check(spa, ub, spa->spa_config);
2830 		if (error) {
2831 			nvlist_free(label);
2832 			return (error);
2833 		}
2834 
2835 		fnvlist_add_uint64(spa->spa_load_info,
2836 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2837 		fnvlist_add_uint64(spa->spa_load_info,
2838 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2839 	}
2840 
2841 	/*
2842 	 * If the pool has an unsupported version we can't open it.
2843 	 */
2844 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2845 		nvlist_free(label);
2846 		spa_load_failed(spa, "version %llu is not supported",
2847 		    (u_longlong_t)ub->ub_version);
2848 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2849 	}
2850 
2851 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2852 		nvlist_t *features;
2853 
2854 		/*
2855 		 * If we weren't able to find what's necessary for reading the
2856 		 * MOS in the label, return failure.
2857 		 */
2858 		if (label == NULL) {
2859 			spa_load_failed(spa, "label config unavailable");
2860 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2861 			    ENXIO));
2862 		}
2863 
2864 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2865 		    &features) != 0) {
2866 			nvlist_free(label);
2867 			spa_load_failed(spa, "invalid label: '%s' missing",
2868 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2869 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2870 			    ENXIO));
2871 		}
2872 
2873 		/*
2874 		 * Update our in-core representation with the definitive values
2875 		 * from the label.
2876 		 */
2877 		nvlist_free(spa->spa_label_features);
2878 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2879 	}
2880 
2881 	nvlist_free(label);
2882 
2883 	/*
2884 	 * Look through entries in the label nvlist's features_for_read. If
2885 	 * there is a feature listed there which we don't understand then we
2886 	 * cannot open a pool.
2887 	 */
2888 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2889 		nvlist_t *unsup_feat;
2890 
2891 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2892 		    0);
2893 
2894 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2895 		    NULL); nvp != NULL;
2896 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2897 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2898 				VERIFY(nvlist_add_string(unsup_feat,
2899 				    nvpair_name(nvp), "") == 0);
2900 			}
2901 		}
2902 
2903 		if (!nvlist_empty(unsup_feat)) {
2904 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2905 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2906 			nvlist_free(unsup_feat);
2907 			spa_load_failed(spa, "some features are unsupported");
2908 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2909 			    ENOTSUP));
2910 		}
2911 
2912 		nvlist_free(unsup_feat);
2913 	}
2914 
2915 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2916 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2917 		spa_try_repair(spa, spa->spa_config);
2918 		spa_config_exit(spa, SCL_ALL, FTAG);
2919 		nvlist_free(spa->spa_config_splitting);
2920 		spa->spa_config_splitting = NULL;
2921 	}
2922 
2923 	/*
2924 	 * Initialize internal SPA structures.
2925 	 */
2926 	spa_ld_select_uberblock_done(spa, ub);
2927 
2928 	return (0);
2929 }
2930 
2931 static int
2932 spa_ld_open_rootbp(spa_t *spa)
2933 {
2934 	int error = 0;
2935 	vdev_t *rvd = spa->spa_root_vdev;
2936 
2937 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2938 	if (error != 0) {
2939 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2940 		    "[error=%d]", error);
2941 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2942 	}
2943 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2944 
2945 	return (0);
2946 }
2947 
2948 static int
2949 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2950     boolean_t reloading)
2951 {
2952 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2953 	nvlist_t *nv, *mos_config, *policy;
2954 	int error = 0, copy_error;
2955 	uint64_t healthy_tvds, healthy_tvds_mos;
2956 	uint64_t mos_config_txg;
2957 
2958 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2959 	    != 0)
2960 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2961 
2962 	/*
2963 	 * If we're assembling a pool from a split, the config provided is
2964 	 * already trusted so there is nothing to do.
2965 	 */
2966 	if (type == SPA_IMPORT_ASSEMBLE)
2967 		return (0);
2968 
2969 	healthy_tvds = spa_healthy_core_tvds(spa);
2970 
2971 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2972 	    != 0) {
2973 		spa_load_failed(spa, "unable to retrieve MOS config");
2974 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2975 	}
2976 
2977 	/*
2978 	 * If we are doing an open, pool owner wasn't verified yet, thus do
2979 	 * the verification here.
2980 	 */
2981 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2982 		error = spa_verify_host(spa, mos_config);
2983 		if (error != 0) {
2984 			nvlist_free(mos_config);
2985 			return (error);
2986 		}
2987 	}
2988 
2989 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2990 
2991 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2992 
2993 	/*
2994 	 * Build a new vdev tree from the trusted config
2995 	 */
2996 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2997 
2998 	/*
2999 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3000 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3001 	 * paths. We update the trusted MOS config with this information.
3002 	 * We first try to copy the paths with vdev_copy_path_strict, which
3003 	 * succeeds only when both configs have exactly the same vdev tree.
3004 	 * If that fails, we fall back to a more flexible method that has a
3005 	 * best effort policy.
3006 	 */
3007 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3008 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3009 		spa_load_note(spa, "provided vdev tree:");
3010 		vdev_dbgmsg_print_tree(rvd, 2);
3011 		spa_load_note(spa, "MOS vdev tree:");
3012 		vdev_dbgmsg_print_tree(mrvd, 2);
3013 	}
3014 	if (copy_error != 0) {
3015 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3016 		    "back to vdev_copy_path_relaxed");
3017 		vdev_copy_path_relaxed(rvd, mrvd);
3018 	}
3019 
3020 	vdev_close(rvd);
3021 	vdev_free(rvd);
3022 	spa->spa_root_vdev = mrvd;
3023 	rvd = mrvd;
3024 	spa_config_exit(spa, SCL_ALL, FTAG);
3025 
3026 	/*
3027 	 * We will use spa_config if we decide to reload the spa or if spa_load
3028 	 * fails and we rewind. We must thus regenerate the config using the
3029 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3030 	 * pass settings on how to load the pool and is not stored in the MOS.
3031 	 * We copy it over to our new, trusted config.
3032 	 */
3033 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3034 	    ZPOOL_CONFIG_POOL_TXG);
3035 	nvlist_free(mos_config);
3036 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3037 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3038 	    &policy) == 0)
3039 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3040 	spa_config_set(spa, mos_config);
3041 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3042 
3043 	/*
3044 	 * Now that we got the config from the MOS, we should be more strict
3045 	 * in checking blkptrs and can make assumptions about the consistency
3046 	 * of the vdev tree. spa_trust_config must be set to true before opening
3047 	 * vdevs in order for them to be writeable.
3048 	 */
3049 	spa->spa_trust_config = B_TRUE;
3050 
3051 	/*
3052 	 * Open and validate the new vdev tree
3053 	 */
3054 	error = spa_ld_open_vdevs(spa);
3055 	if (error != 0)
3056 		return (error);
3057 
3058 	error = spa_ld_validate_vdevs(spa);
3059 	if (error != 0)
3060 		return (error);
3061 
3062 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3063 		spa_load_note(spa, "final vdev tree:");
3064 		vdev_dbgmsg_print_tree(rvd, 2);
3065 	}
3066 
3067 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3068 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3069 		/*
3070 		 * Sanity check to make sure that we are indeed loading the
3071 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3072 		 * in the config provided and they happened to be the only ones
3073 		 * to have the latest uberblock, we could involuntarily perform
3074 		 * an extreme rewind.
3075 		 */
3076 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3077 		if (healthy_tvds_mos - healthy_tvds >=
3078 		    SPA_SYNC_MIN_VDEVS) {
3079 			spa_load_note(spa, "config provided misses too many "
3080 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3081 			    (u_longlong_t)healthy_tvds,
3082 			    (u_longlong_t)healthy_tvds_mos);
3083 			spa_load_note(spa, "vdev tree:");
3084 			vdev_dbgmsg_print_tree(rvd, 2);
3085 			if (reloading) {
3086 				spa_load_failed(spa, "config was already "
3087 				    "provided from MOS. Aborting.");
3088 				return (spa_vdev_err(rvd,
3089 				    VDEV_AUX_CORRUPT_DATA, EIO));
3090 			}
3091 			spa_load_note(spa, "spa must be reloaded using MOS "
3092 			    "config");
3093 			return (SET_ERROR(EAGAIN));
3094 		}
3095 	}
3096 
3097 	error = spa_check_for_missing_logs(spa);
3098 	if (error != 0)
3099 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3100 
3101 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3102 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3103 		    "guid sum (%llu != %llu)",
3104 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3105 		    (u_longlong_t)rvd->vdev_guid_sum);
3106 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3107 		    ENXIO));
3108 	}
3109 
3110 	return (0);
3111 }
3112 
3113 static int
3114 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3115 {
3116 	int error = 0;
3117 	vdev_t *rvd = spa->spa_root_vdev;
3118 
3119 	/*
3120 	 * Everything that we read before spa_remove_init() must be stored
3121 	 * on concreted vdevs.  Therefore we do this as early as possible.
3122 	 */
3123 	error = spa_remove_init(spa);
3124 	if (error != 0) {
3125 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3126 		    error);
3127 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3128 	}
3129 
3130 	/*
3131 	 * Retrieve information needed to condense indirect vdev mappings.
3132 	 */
3133 	error = spa_condense_init(spa);
3134 	if (error != 0) {
3135 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3136 		    error);
3137 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3138 	}
3139 
3140 	return (0);
3141 }
3142 
3143 static int
3144 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3145 {
3146 	int error = 0;
3147 	vdev_t *rvd = spa->spa_root_vdev;
3148 
3149 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3150 		boolean_t missing_feat_read = B_FALSE;
3151 		nvlist_t *unsup_feat, *enabled_feat;
3152 
3153 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3154 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3155 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3156 		}
3157 
3158 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3159 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3160 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3161 		}
3162 
3163 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3164 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3165 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3166 		}
3167 
3168 		enabled_feat = fnvlist_alloc();
3169 		unsup_feat = fnvlist_alloc();
3170 
3171 		if (!spa_features_check(spa, B_FALSE,
3172 		    unsup_feat, enabled_feat))
3173 			missing_feat_read = B_TRUE;
3174 
3175 		if (spa_writeable(spa) ||
3176 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3177 			if (!spa_features_check(spa, B_TRUE,
3178 			    unsup_feat, enabled_feat)) {
3179 				*missing_feat_writep = B_TRUE;
3180 			}
3181 		}
3182 
3183 		fnvlist_add_nvlist(spa->spa_load_info,
3184 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3185 
3186 		if (!nvlist_empty(unsup_feat)) {
3187 			fnvlist_add_nvlist(spa->spa_load_info,
3188 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3189 		}
3190 
3191 		fnvlist_free(enabled_feat);
3192 		fnvlist_free(unsup_feat);
3193 
3194 		if (!missing_feat_read) {
3195 			fnvlist_add_boolean(spa->spa_load_info,
3196 			    ZPOOL_CONFIG_CAN_RDONLY);
3197 		}
3198 
3199 		/*
3200 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3201 		 * twofold: to determine whether the pool is available for
3202 		 * import in read-write mode and (if it is not) whether the
3203 		 * pool is available for import in read-only mode. If the pool
3204 		 * is available for import in read-write mode, it is displayed
3205 		 * as available in userland; if it is not available for import
3206 		 * in read-only mode, it is displayed as unavailable in
3207 		 * userland. If the pool is available for import in read-only
3208 		 * mode but not read-write mode, it is displayed as unavailable
3209 		 * in userland with a special note that the pool is actually
3210 		 * available for open in read-only mode.
3211 		 *
3212 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3213 		 * missing a feature for write, we must first determine whether
3214 		 * the pool can be opened read-only before returning to
3215 		 * userland in order to know whether to display the
3216 		 * abovementioned note.
3217 		 */
3218 		if (missing_feat_read || (*missing_feat_writep &&
3219 		    spa_writeable(spa))) {
3220 			spa_load_failed(spa, "pool uses unsupported features");
3221 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3222 			    ENOTSUP));
3223 		}
3224 
3225 		/*
3226 		 * Load refcounts for ZFS features from disk into an in-memory
3227 		 * cache during SPA initialization.
3228 		 */
3229 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3230 			uint64_t refcount;
3231 
3232 			error = feature_get_refcount_from_disk(spa,
3233 			    &spa_feature_table[i], &refcount);
3234 			if (error == 0) {
3235 				spa->spa_feat_refcount_cache[i] = refcount;
3236 			} else if (error == ENOTSUP) {
3237 				spa->spa_feat_refcount_cache[i] =
3238 				    SPA_FEATURE_DISABLED;
3239 			} else {
3240 				spa_load_failed(spa, "error getting refcount "
3241 				    "for feature %s [error=%d]",
3242 				    spa_feature_table[i].fi_guid, error);
3243 				return (spa_vdev_err(rvd,
3244 				    VDEV_AUX_CORRUPT_DATA, EIO));
3245 			}
3246 		}
3247 	}
3248 
3249 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3250 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3251 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3252 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3253 	}
3254 
3255 	return (0);
3256 }
3257 
3258 static int
3259 spa_ld_load_special_directories(spa_t *spa)
3260 {
3261 	int error = 0;
3262 	vdev_t *rvd = spa->spa_root_vdev;
3263 
3264 	spa->spa_is_initializing = B_TRUE;
3265 	error = dsl_pool_open(spa->spa_dsl_pool);
3266 	spa->spa_is_initializing = B_FALSE;
3267 	if (error != 0) {
3268 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3269 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3270 	}
3271 
3272 	return (0);
3273 }
3274 
3275 static int
3276 spa_ld_get_props(spa_t *spa)
3277 {
3278 	int error = 0;
3279 	uint64_t obj;
3280 	vdev_t *rvd = spa->spa_root_vdev;
3281 
3282 	/* Grab the secret checksum salt from the MOS. */
3283 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3284 	    DMU_POOL_CHECKSUM_SALT, 1,
3285 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3286 	    spa->spa_cksum_salt.zcs_bytes);
3287 	if (error == ENOENT) {
3288 		/* Generate a new salt for subsequent use */
3289 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3290 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3291 	} else if (error != 0) {
3292 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3293 		    "MOS [error=%d]", error);
3294 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3295 	}
3296 
3297 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3298 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3299 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3300 	if (error != 0) {
3301 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3302 		    "[error=%d]", error);
3303 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3304 	}
3305 
3306 	/*
3307 	 * Load the bit that tells us to use the new accounting function
3308 	 * (raid-z deflation).  If we have an older pool, this will not
3309 	 * be present.
3310 	 */
3311 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3312 	if (error != 0 && error != ENOENT)
3313 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3314 
3315 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3316 	    &spa->spa_creation_version, B_FALSE);
3317 	if (error != 0 && error != ENOENT)
3318 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3319 
3320 	/*
3321 	 * Load the persistent error log.  If we have an older pool, this will
3322 	 * not be present.
3323 	 */
3324 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3325 	    B_FALSE);
3326 	if (error != 0 && error != ENOENT)
3327 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3328 
3329 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3330 	    &spa->spa_errlog_scrub, B_FALSE);
3331 	if (error != 0 && error != ENOENT)
3332 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3333 
3334 	/*
3335 	 * Load the history object.  If we have an older pool, this
3336 	 * will not be present.
3337 	 */
3338 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3339 	if (error != 0 && error != ENOENT)
3340 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3341 
3342 	/*
3343 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3344 	 * be present; in this case, defer its creation to a later time to
3345 	 * avoid dirtying the MOS this early / out of sync context. See
3346 	 * spa_sync_config_object.
3347 	 */
3348 
3349 	/* The sentinel is only available in the MOS config. */
3350 	nvlist_t *mos_config;
3351 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3352 		spa_load_failed(spa, "unable to retrieve MOS config");
3353 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3354 	}
3355 
3356 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3357 	    &spa->spa_all_vdev_zaps, B_FALSE);
3358 
3359 	if (error == ENOENT) {
3360 		VERIFY(!nvlist_exists(mos_config,
3361 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3362 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3363 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3364 	} else if (error != 0) {
3365 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3366 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3367 		/*
3368 		 * An older version of ZFS overwrote the sentinel value, so
3369 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3370 		 * destruction to later; see spa_sync_config_object.
3371 		 */
3372 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3373 		/*
3374 		 * We're assuming that no vdevs have had their ZAPs created
3375 		 * before this. Better be sure of it.
3376 		 */
3377 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3378 	}
3379 	nvlist_free(mos_config);
3380 
3381 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3382 
3383 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3384 	    B_FALSE);
3385 	if (error && error != ENOENT)
3386 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3387 
3388 	if (error == 0) {
3389 		uint64_t autoreplace;
3390 
3391 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3392 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3393 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3394 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3395 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3396 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3397 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3398 		    &spa->spa_dedup_ditto);
3399 
3400 		spa->spa_autoreplace = (autoreplace != 0);
3401 	}
3402 
3403 	/*
3404 	 * If we are importing a pool with missing top-level vdevs,
3405 	 * we enforce that the pool doesn't panic or get suspended on
3406 	 * error since the likelihood of missing data is extremely high.
3407 	 */
3408 	if (spa->spa_missing_tvds > 0 &&
3409 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3410 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3411 		spa_load_note(spa, "forcing failmode to 'continue' "
3412 		    "as some top level vdevs are missing");
3413 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3414 	}
3415 
3416 	return (0);
3417 }
3418 
3419 static int
3420 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3421 {
3422 	int error = 0;
3423 	vdev_t *rvd = spa->spa_root_vdev;
3424 
3425 	/*
3426 	 * If we're assembling the pool from the split-off vdevs of
3427 	 * an existing pool, we don't want to attach the spares & cache
3428 	 * devices.
3429 	 */
3430 
3431 	/*
3432 	 * Load any hot spares for this pool.
3433 	 */
3434 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3435 	    B_FALSE);
3436 	if (error != 0 && error != ENOENT)
3437 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3438 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3439 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3440 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3441 		    &spa->spa_spares.sav_config) != 0) {
3442 			spa_load_failed(spa, "error loading spares nvlist");
3443 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3444 		}
3445 
3446 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3447 		spa_load_spares(spa);
3448 		spa_config_exit(spa, SCL_ALL, FTAG);
3449 	} else if (error == 0) {
3450 		spa->spa_spares.sav_sync = B_TRUE;
3451 	}
3452 
3453 	/*
3454 	 * Load any level 2 ARC devices for this pool.
3455 	 */
3456 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3457 	    &spa->spa_l2cache.sav_object, B_FALSE);
3458 	if (error != 0 && error != ENOENT)
3459 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3460 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3461 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3462 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3463 		    &spa->spa_l2cache.sav_config) != 0) {
3464 			spa_load_failed(spa, "error loading l2cache nvlist");
3465 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3466 		}
3467 
3468 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3469 		spa_load_l2cache(spa);
3470 		spa_config_exit(spa, SCL_ALL, FTAG);
3471 	} else if (error == 0) {
3472 		spa->spa_l2cache.sav_sync = B_TRUE;
3473 	}
3474 
3475 	return (0);
3476 }
3477 
3478 static int
3479 spa_ld_load_vdev_metadata(spa_t *spa)
3480 {
3481 	int error = 0;
3482 	vdev_t *rvd = spa->spa_root_vdev;
3483 
3484 	/*
3485 	 * If the 'multihost' property is set, then never allow a pool to
3486 	 * be imported when the system hostid is zero.  The exception to
3487 	 * this rule is zdb which is always allowed to access pools.
3488 	 */
3489 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3490 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3491 		fnvlist_add_uint64(spa->spa_load_info,
3492 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3493 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3494 	}
3495 
3496 	/*
3497 	 * If the 'autoreplace' property is set, then post a resource notifying
3498 	 * the ZFS DE that it should not issue any faults for unopenable
3499 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3500 	 * unopenable vdevs so that the normal autoreplace handler can take
3501 	 * over.
3502 	 */
3503 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3504 		spa_check_removed(spa->spa_root_vdev);
3505 		/*
3506 		 * For the import case, this is done in spa_import(), because
3507 		 * at this point we're using the spare definitions from
3508 		 * the MOS config, not necessarily from the userland config.
3509 		 */
3510 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3511 			spa_aux_check_removed(&spa->spa_spares);
3512 			spa_aux_check_removed(&spa->spa_l2cache);
3513 		}
3514 	}
3515 
3516 	/*
3517 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3518 	 */
3519 	error = vdev_load(rvd);
3520 	if (error != 0) {
3521 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3522 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3523 	}
3524 
3525 	/*
3526 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3527 	 */
3528 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3529 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3530 	spa_config_exit(spa, SCL_ALL, FTAG);
3531 
3532 	return (0);
3533 }
3534 
3535 static int
3536 spa_ld_load_dedup_tables(spa_t *spa)
3537 {
3538 	int error = 0;
3539 	vdev_t *rvd = spa->spa_root_vdev;
3540 
3541 	error = ddt_load(spa);
3542 	if (error != 0) {
3543 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3544 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3545 	}
3546 
3547 	return (0);
3548 }
3549 
3550 static int
3551 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3552 {
3553 	vdev_t *rvd = spa->spa_root_vdev;
3554 
3555 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3556 		boolean_t missing = spa_check_logs(spa);
3557 		if (missing) {
3558 			if (spa->spa_missing_tvds != 0) {
3559 				spa_load_note(spa, "spa_check_logs failed "
3560 				    "so dropping the logs");
3561 			} else {
3562 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3563 				spa_load_failed(spa, "spa_check_logs failed");
3564 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3565 				    ENXIO));
3566 			}
3567 		}
3568 	}
3569 
3570 	return (0);
3571 }
3572 
3573 static int
3574 spa_ld_verify_pool_data(spa_t *spa)
3575 {
3576 	int error = 0;
3577 	vdev_t *rvd = spa->spa_root_vdev;
3578 
3579 	/*
3580 	 * We've successfully opened the pool, verify that we're ready
3581 	 * to start pushing transactions.
3582 	 */
3583 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3584 		error = spa_load_verify(spa);
3585 		if (error != 0) {
3586 			spa_load_failed(spa, "spa_load_verify failed "
3587 			    "[error=%d]", error);
3588 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3589 			    error));
3590 		}
3591 	}
3592 
3593 	return (0);
3594 }
3595 
3596 static void
3597 spa_ld_claim_log_blocks(spa_t *spa)
3598 {
3599 	dmu_tx_t *tx;
3600 	dsl_pool_t *dp = spa_get_dsl(spa);
3601 
3602 	/*
3603 	 * Claim log blocks that haven't been committed yet.
3604 	 * This must all happen in a single txg.
3605 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3606 	 * invoked from zil_claim_log_block()'s i/o done callback.
3607 	 * Price of rollback is that we abandon the log.
3608 	 */
3609 	spa->spa_claiming = B_TRUE;
3610 
3611 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3612 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3613 	    zil_claim, tx, DS_FIND_CHILDREN);
3614 	dmu_tx_commit(tx);
3615 
3616 	spa->spa_claiming = B_FALSE;
3617 
3618 	spa_set_log_state(spa, SPA_LOG_GOOD);
3619 }
3620 
3621 static void
3622 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3623     boolean_t update_config_cache)
3624 {
3625 	vdev_t *rvd = spa->spa_root_vdev;
3626 	int need_update = B_FALSE;
3627 
3628 	/*
3629 	 * If the config cache is stale, or we have uninitialized
3630 	 * metaslabs (see spa_vdev_add()), then update the config.
3631 	 *
3632 	 * If this is a verbatim import, trust the current
3633 	 * in-core spa_config and update the disk labels.
3634 	 */
3635 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3636 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3637 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3638 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3639 		need_update = B_TRUE;
3640 
3641 	for (int c = 0; c < rvd->vdev_children; c++)
3642 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3643 			need_update = B_TRUE;
3644 
3645 	/*
3646 	 * Update the config cache asychronously in case we're the
3647 	 * root pool, in which case the config cache isn't writable yet.
3648 	 */
3649 	if (need_update)
3650 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3651 }
3652 
3653 static void
3654 spa_ld_prepare_for_reload(spa_t *spa)
3655 {
3656 	int mode = spa->spa_mode;
3657 	int async_suspended = spa->spa_async_suspended;
3658 
3659 	spa_unload(spa);
3660 	spa_deactivate(spa);
3661 	spa_activate(spa, mode);
3662 
3663 	/*
3664 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3665 	 * spa_unload(). We want to restore it back to the original value before
3666 	 * returning as we might be calling spa_async_resume() later.
3667 	 */
3668 	spa->spa_async_suspended = async_suspended;
3669 }
3670 
3671 static int
3672 spa_ld_read_checkpoint_txg(spa_t *spa)
3673 {
3674 	uberblock_t checkpoint;
3675 	int error = 0;
3676 
3677 	ASSERT0(spa->spa_checkpoint_txg);
3678 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3679 
3680 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3681 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3682 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3683 
3684 	if (error == ENOENT)
3685 		return (0);
3686 
3687 	if (error != 0)
3688 		return (error);
3689 
3690 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3691 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3692 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3693 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3694 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3695 
3696 	return (0);
3697 }
3698 
3699 static int
3700 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3701 {
3702 	int error = 0;
3703 
3704 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3705 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3706 
3707 	/*
3708 	 * Never trust the config that is provided unless we are assembling
3709 	 * a pool following a split.
3710 	 * This means don't trust blkptrs and the vdev tree in general. This
3711 	 * also effectively puts the spa in read-only mode since
3712 	 * spa_writeable() checks for spa_trust_config to be true.
3713 	 * We will later load a trusted config from the MOS.
3714 	 */
3715 	if (type != SPA_IMPORT_ASSEMBLE)
3716 		spa->spa_trust_config = B_FALSE;
3717 
3718 	/*
3719 	 * Parse the config provided to create a vdev tree.
3720 	 */
3721 	error = spa_ld_parse_config(spa, type);
3722 	if (error != 0)
3723 		return (error);
3724 
3725 	/*
3726 	 * Now that we have the vdev tree, try to open each vdev. This involves
3727 	 * opening the underlying physical device, retrieving its geometry and
3728 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3729 	 * based on the success of those operations. After this we'll be ready
3730 	 * to read from the vdevs.
3731 	 */
3732 	error = spa_ld_open_vdevs(spa);
3733 	if (error != 0)
3734 		return (error);
3735 
3736 	/*
3737 	 * Read the label of each vdev and make sure that the GUIDs stored
3738 	 * there match the GUIDs in the config provided.
3739 	 * If we're assembling a new pool that's been split off from an
3740 	 * existing pool, the labels haven't yet been updated so we skip
3741 	 * validation for now.
3742 	 */
3743 	if (type != SPA_IMPORT_ASSEMBLE) {
3744 		error = spa_ld_validate_vdevs(spa);
3745 		if (error != 0)
3746 			return (error);
3747 	}
3748 
3749 	/*
3750 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3751 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3752 	 * get the list of features required to read blkptrs in the MOS from
3753 	 * the vdev label with the best uberblock and verify that our version
3754 	 * of zfs supports them all.
3755 	 */
3756 	error = spa_ld_select_uberblock(spa, type);
3757 	if (error != 0)
3758 		return (error);
3759 
3760 	/*
3761 	 * Pass that uberblock to the dsl_pool layer which will open the root
3762 	 * blkptr. This blkptr points to the latest version of the MOS and will
3763 	 * allow us to read its contents.
3764 	 */
3765 	error = spa_ld_open_rootbp(spa);
3766 	if (error != 0)
3767 		return (error);
3768 
3769 	return (0);
3770 }
3771 
3772 static int
3773 spa_ld_checkpoint_rewind(spa_t *spa)
3774 {
3775 	uberblock_t checkpoint;
3776 	int error = 0;
3777 
3778 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3779 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3780 
3781 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3782 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3783 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3784 
3785 	if (error != 0) {
3786 		spa_load_failed(spa, "unable to retrieve checkpointed "
3787 		    "uberblock from the MOS config [error=%d]", error);
3788 
3789 		if (error == ENOENT)
3790 			error = ZFS_ERR_NO_CHECKPOINT;
3791 
3792 		return (error);
3793 	}
3794 
3795 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3796 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3797 
3798 	/*
3799 	 * We need to update the txg and timestamp of the checkpointed
3800 	 * uberblock to be higher than the latest one. This ensures that
3801 	 * the checkpointed uberblock is selected if we were to close and
3802 	 * reopen the pool right after we've written it in the vdev labels.
3803 	 * (also see block comment in vdev_uberblock_compare)
3804 	 */
3805 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3806 	checkpoint.ub_timestamp = gethrestime_sec();
3807 
3808 	/*
3809 	 * Set current uberblock to be the checkpointed uberblock.
3810 	 */
3811 	spa->spa_uberblock = checkpoint;
3812 
3813 	/*
3814 	 * If we are doing a normal rewind, then the pool is open for
3815 	 * writing and we sync the "updated" checkpointed uberblock to
3816 	 * disk. Once this is done, we've basically rewound the whole
3817 	 * pool and there is no way back.
3818 	 *
3819 	 * There are cases when we don't want to attempt and sync the
3820 	 * checkpointed uberblock to disk because we are opening a
3821 	 * pool as read-only. Specifically, verifying the checkpointed
3822 	 * state with zdb, and importing the checkpointed state to get
3823 	 * a "preview" of its content.
3824 	 */
3825 	if (spa_writeable(spa)) {
3826 		vdev_t *rvd = spa->spa_root_vdev;
3827 
3828 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3829 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3830 		int svdcount = 0;
3831 		int children = rvd->vdev_children;
3832 		int c0 = spa_get_random(children);
3833 
3834 		for (int c = 0; c < children; c++) {
3835 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3836 
3837 			/* Stop when revisiting the first vdev */
3838 			if (c > 0 && svd[0] == vd)
3839 				break;
3840 
3841 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3842 			    !vdev_is_concrete(vd))
3843 				continue;
3844 
3845 			svd[svdcount++] = vd;
3846 			if (svdcount == SPA_SYNC_MIN_VDEVS)
3847 				break;
3848 		}
3849 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3850 		if (error == 0)
3851 			spa->spa_last_synced_guid = rvd->vdev_guid;
3852 		spa_config_exit(spa, SCL_ALL, FTAG);
3853 
3854 		if (error != 0) {
3855 			spa_load_failed(spa, "failed to write checkpointed "
3856 			    "uberblock to the vdev labels [error=%d]", error);
3857 			return (error);
3858 		}
3859 	}
3860 
3861 	return (0);
3862 }
3863 
3864 static int
3865 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3866     boolean_t *update_config_cache)
3867 {
3868 	int error;
3869 
3870 	/*
3871 	 * Parse the config for pool, open and validate vdevs,
3872 	 * select an uberblock, and use that uberblock to open
3873 	 * the MOS.
3874 	 */
3875 	error = spa_ld_mos_init(spa, type);
3876 	if (error != 0)
3877 		return (error);
3878 
3879 	/*
3880 	 * Retrieve the trusted config stored in the MOS and use it to create
3881 	 * a new, exact version of the vdev tree, then reopen all vdevs.
3882 	 */
3883 	error = spa_ld_trusted_config(spa, type, B_FALSE);
3884 	if (error == EAGAIN) {
3885 		if (update_config_cache != NULL)
3886 			*update_config_cache = B_TRUE;
3887 
3888 		/*
3889 		 * Redo the loading process with the trusted config if it is
3890 		 * too different from the untrusted config.
3891 		 */
3892 		spa_ld_prepare_for_reload(spa);
3893 		spa_load_note(spa, "RELOADING");
3894 		error = spa_ld_mos_init(spa, type);
3895 		if (error != 0)
3896 			return (error);
3897 
3898 		error = spa_ld_trusted_config(spa, type, B_TRUE);
3899 		if (error != 0)
3900 			return (error);
3901 
3902 	} else if (error != 0) {
3903 		return (error);
3904 	}
3905 
3906 	return (0);
3907 }
3908 
3909 /*
3910  * Load an existing storage pool, using the config provided. This config
3911  * describes which vdevs are part of the pool and is later validated against
3912  * partial configs present in each vdev's label and an entire copy of the
3913  * config stored in the MOS.
3914  */
3915 static int
3916 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3917 {
3918 	int error = 0;
3919 	boolean_t missing_feat_write = B_FALSE;
3920 	boolean_t checkpoint_rewind =
3921 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3922 	boolean_t update_config_cache = B_FALSE;
3923 
3924 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3925 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3926 
3927 	spa_load_note(spa, "LOADING");
3928 
3929 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3930 	if (error != 0)
3931 		return (error);
3932 
3933 	/*
3934 	 * If we are rewinding to the checkpoint then we need to repeat
3935 	 * everything we've done so far in this function but this time
3936 	 * selecting the checkpointed uberblock and using that to open
3937 	 * the MOS.
3938 	 */
3939 	if (checkpoint_rewind) {
3940 		/*
3941 		 * If we are rewinding to the checkpoint update config cache
3942 		 * anyway.
3943 		 */
3944 		update_config_cache = B_TRUE;
3945 
3946 		/*
3947 		 * Extract the checkpointed uberblock from the current MOS
3948 		 * and use this as the pool's uberblock from now on. If the
3949 		 * pool is imported as writeable we also write the checkpoint
3950 		 * uberblock to the labels, making the rewind permanent.
3951 		 */
3952 		error = spa_ld_checkpoint_rewind(spa);
3953 		if (error != 0)
3954 			return (error);
3955 
3956 		/*
3957 		 * Redo the loading process process again with the
3958 		 * checkpointed uberblock.
3959 		 */
3960 		spa_ld_prepare_for_reload(spa);
3961 		spa_load_note(spa, "LOADING checkpointed uberblock");
3962 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3963 		if (error != 0)
3964 			return (error);
3965 	}
3966 
3967 	/*
3968 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3969 	 */
3970 	error = spa_ld_read_checkpoint_txg(spa);
3971 	if (error != 0)
3972 		return (error);
3973 
3974 	/*
3975 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3976 	 * from the pool and their contents were re-mapped to other vdevs. Note
3977 	 * that everything that we read before this step must have been
3978 	 * rewritten on concrete vdevs after the last device removal was
3979 	 * initiated. Otherwise we could be reading from indirect vdevs before
3980 	 * we have loaded their mappings.
3981 	 */
3982 	error = spa_ld_open_indirect_vdev_metadata(spa);
3983 	if (error != 0)
3984 		return (error);
3985 
3986 	/*
3987 	 * Retrieve the full list of active features from the MOS and check if
3988 	 * they are all supported.
3989 	 */
3990 	error = spa_ld_check_features(spa, &missing_feat_write);
3991 	if (error != 0)
3992 		return (error);
3993 
3994 	/*
3995 	 * Load several special directories from the MOS needed by the dsl_pool
3996 	 * layer.
3997 	 */
3998 	error = spa_ld_load_special_directories(spa);
3999 	if (error != 0)
4000 		return (error);
4001 
4002 	/*
4003 	 * Retrieve pool properties from the MOS.
4004 	 */
4005 	error = spa_ld_get_props(spa);
4006 	if (error != 0)
4007 		return (error);
4008 
4009 	/*
4010 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4011 	 * and open them.
4012 	 */
4013 	error = spa_ld_open_aux_vdevs(spa, type);
4014 	if (error != 0)
4015 		return (error);
4016 
4017 	/*
4018 	 * Load the metadata for all vdevs. Also check if unopenable devices
4019 	 * should be autoreplaced.
4020 	 */
4021 	error = spa_ld_load_vdev_metadata(spa);
4022 	if (error != 0)
4023 		return (error);
4024 
4025 	error = spa_ld_load_dedup_tables(spa);
4026 	if (error != 0)
4027 		return (error);
4028 
4029 	/*
4030 	 * Verify the logs now to make sure we don't have any unexpected errors
4031 	 * when we claim log blocks later.
4032 	 */
4033 	error = spa_ld_verify_logs(spa, type, ereport);
4034 	if (error != 0)
4035 		return (error);
4036 
4037 	if (missing_feat_write) {
4038 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4039 
4040 		/*
4041 		 * At this point, we know that we can open the pool in
4042 		 * read-only mode but not read-write mode. We now have enough
4043 		 * information and can return to userland.
4044 		 */
4045 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4046 		    ENOTSUP));
4047 	}
4048 
4049 	/*
4050 	 * Traverse the last txgs to make sure the pool was left off in a safe
4051 	 * state. When performing an extreme rewind, we verify the whole pool,
4052 	 * which can take a very long time.
4053 	 */
4054 	error = spa_ld_verify_pool_data(spa);
4055 	if (error != 0)
4056 		return (error);
4057 
4058 	/*
4059 	 * Calculate the deflated space for the pool. This must be done before
4060 	 * we write anything to the pool because we'd need to update the space
4061 	 * accounting using the deflated sizes.
4062 	 */
4063 	spa_update_dspace(spa);
4064 
4065 	/*
4066 	 * We have now retrieved all the information we needed to open the
4067 	 * pool. If we are importing the pool in read-write mode, a few
4068 	 * additional steps must be performed to finish the import.
4069 	 */
4070 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4071 	    spa->spa_load_max_txg == UINT64_MAX)) {
4072 		uint64_t config_cache_txg = spa->spa_config_txg;
4073 
4074 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4075 
4076 		/*
4077 		 * In case of a checkpoint rewind, log the original txg
4078 		 * of the checkpointed uberblock.
4079 		 */
4080 		if (checkpoint_rewind) {
4081 			spa_history_log_internal(spa, "checkpoint rewind",
4082 			    NULL, "rewound state to txg=%llu",
4083 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4084 		}
4085 
4086 		/*
4087 		 * Traverse the ZIL and claim all blocks.
4088 		 */
4089 		spa_ld_claim_log_blocks(spa);
4090 
4091 		/*
4092 		 * Kick-off the syncing thread.
4093 		 */
4094 		spa->spa_sync_on = B_TRUE;
4095 		txg_sync_start(spa->spa_dsl_pool);
4096 		mmp_thread_start(spa);
4097 
4098 		/*
4099 		 * Wait for all claims to sync.  We sync up to the highest
4100 		 * claimed log block birth time so that claimed log blocks
4101 		 * don't appear to be from the future.  spa_claim_max_txg
4102 		 * will have been set for us by ZIL traversal operations
4103 		 * performed above.
4104 		 */
4105 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4106 
4107 		/*
4108 		 * Check if we need to request an update of the config. On the
4109 		 * next sync, we would update the config stored in vdev labels
4110 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4111 		 */
4112 		spa_ld_check_for_config_update(spa, config_cache_txg,
4113 		    update_config_cache);
4114 
4115 		/*
4116 		 * Check all DTLs to see if anything needs resilvering.
4117 		 */
4118 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4119 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4120 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4121 
4122 		/*
4123 		 * Log the fact that we booted up (so that we can detect if
4124 		 * we rebooted in the middle of an operation).
4125 		 */
4126 		spa_history_log_version(spa, "open");
4127 
4128 		spa_restart_removal(spa);
4129 		spa_spawn_aux_threads(spa);
4130 
4131 		/*
4132 		 * Delete any inconsistent datasets.
4133 		 *
4134 		 * Note:
4135 		 * Since we may be issuing deletes for clones here,
4136 		 * we make sure to do so after we've spawned all the
4137 		 * auxiliary threads above (from which the livelist
4138 		 * deletion zthr is part of).
4139 		 */
4140 		(void) dmu_objset_find(spa_name(spa),
4141 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4142 
4143 		/*
4144 		 * Clean up any stale temporary dataset userrefs.
4145 		 */
4146 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4147 
4148 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4149 		vdev_initialize_restart(spa->spa_root_vdev);
4150 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4151 	}
4152 
4153 	spa_load_note(spa, "LOADED");
4154 
4155 	return (0);
4156 }
4157 
4158 static int
4159 spa_load_retry(spa_t *spa, spa_load_state_t state)
4160 {
4161 	int mode = spa->spa_mode;
4162 
4163 	spa_unload(spa);
4164 	spa_deactivate(spa);
4165 
4166 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4167 
4168 	spa_activate(spa, mode);
4169 	spa_async_suspend(spa);
4170 
4171 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4172 	    (u_longlong_t)spa->spa_load_max_txg);
4173 
4174 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4175 }
4176 
4177 /*
4178  * If spa_load() fails this function will try loading prior txg's. If
4179  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4180  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4181  * function will not rewind the pool and will return the same error as
4182  * spa_load().
4183  */
4184 static int
4185 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4186     int rewind_flags)
4187 {
4188 	nvlist_t *loadinfo = NULL;
4189 	nvlist_t *config = NULL;
4190 	int load_error, rewind_error;
4191 	uint64_t safe_rewind_txg;
4192 	uint64_t min_txg;
4193 
4194 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4195 		spa->spa_load_max_txg = spa->spa_load_txg;
4196 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4197 	} else {
4198 		spa->spa_load_max_txg = max_request;
4199 		if (max_request != UINT64_MAX)
4200 			spa->spa_extreme_rewind = B_TRUE;
4201 	}
4202 
4203 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4204 	if (load_error == 0)
4205 		return (0);
4206 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4207 		/*
4208 		 * When attempting checkpoint-rewind on a pool with no
4209 		 * checkpoint, we should not attempt to load uberblocks
4210 		 * from previous txgs when spa_load fails.
4211 		 */
4212 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4213 		return (load_error);
4214 	}
4215 
4216 	if (spa->spa_root_vdev != NULL)
4217 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4218 
4219 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4220 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4221 
4222 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4223 		nvlist_free(config);
4224 		return (load_error);
4225 	}
4226 
4227 	if (state == SPA_LOAD_RECOVER) {
4228 		/* Price of rolling back is discarding txgs, including log */
4229 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4230 	} else {
4231 		/*
4232 		 * If we aren't rolling back save the load info from our first
4233 		 * import attempt so that we can restore it after attempting
4234 		 * to rewind.
4235 		 */
4236 		loadinfo = spa->spa_load_info;
4237 		spa->spa_load_info = fnvlist_alloc();
4238 	}
4239 
4240 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4241 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4242 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4243 	    TXG_INITIAL : safe_rewind_txg;
4244 
4245 	/*
4246 	 * Continue as long as we're finding errors, we're still within
4247 	 * the acceptable rewind range, and we're still finding uberblocks
4248 	 */
4249 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4250 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4251 		if (spa->spa_load_max_txg < safe_rewind_txg)
4252 			spa->spa_extreme_rewind = B_TRUE;
4253 		rewind_error = spa_load_retry(spa, state);
4254 	}
4255 
4256 	spa->spa_extreme_rewind = B_FALSE;
4257 	spa->spa_load_max_txg = UINT64_MAX;
4258 
4259 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4260 		spa_config_set(spa, config);
4261 	else
4262 		nvlist_free(config);
4263 
4264 	if (state == SPA_LOAD_RECOVER) {
4265 		ASSERT3P(loadinfo, ==, NULL);
4266 		return (rewind_error);
4267 	} else {
4268 		/* Store the rewind info as part of the initial load info */
4269 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4270 		    spa->spa_load_info);
4271 
4272 		/* Restore the initial load info */
4273 		fnvlist_free(spa->spa_load_info);
4274 		spa->spa_load_info = loadinfo;
4275 
4276 		return (load_error);
4277 	}
4278 }
4279 
4280 /*
4281  * Pool Open/Import
4282  *
4283  * The import case is identical to an open except that the configuration is sent
4284  * down from userland, instead of grabbed from the configuration cache.  For the
4285  * case of an open, the pool configuration will exist in the
4286  * POOL_STATE_UNINITIALIZED state.
4287  *
4288  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4289  * the same time open the pool, without having to keep around the spa_t in some
4290  * ambiguous state.
4291  */
4292 static int
4293 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4294     nvlist_t **config)
4295 {
4296 	spa_t *spa;
4297 	spa_load_state_t state = SPA_LOAD_OPEN;
4298 	int error;
4299 	int locked = B_FALSE;
4300 
4301 	*spapp = NULL;
4302 
4303 	/*
4304 	 * As disgusting as this is, we need to support recursive calls to this
4305 	 * function because dsl_dir_open() is called during spa_load(), and ends
4306 	 * up calling spa_open() again.  The real fix is to figure out how to
4307 	 * avoid dsl_dir_open() calling this in the first place.
4308 	 */
4309 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4310 		mutex_enter(&spa_namespace_lock);
4311 		locked = B_TRUE;
4312 	}
4313 
4314 	if ((spa = spa_lookup(pool)) == NULL) {
4315 		if (locked)
4316 			mutex_exit(&spa_namespace_lock);
4317 		return (SET_ERROR(ENOENT));
4318 	}
4319 
4320 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4321 		zpool_load_policy_t policy;
4322 
4323 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4324 		    &policy);
4325 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4326 			state = SPA_LOAD_RECOVER;
4327 
4328 		spa_activate(spa, spa_mode_global);
4329 
4330 		if (state != SPA_LOAD_RECOVER)
4331 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4332 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4333 
4334 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4335 		error = spa_load_best(spa, state, policy.zlp_txg,
4336 		    policy.zlp_rewind);
4337 
4338 		if (error == EBADF) {
4339 			/*
4340 			 * If vdev_validate() returns failure (indicated by
4341 			 * EBADF), it indicates that one of the vdevs indicates
4342 			 * that the pool has been exported or destroyed.  If
4343 			 * this is the case, the config cache is out of sync and
4344 			 * we should remove the pool from the namespace.
4345 			 */
4346 			spa_unload(spa);
4347 			spa_deactivate(spa);
4348 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4349 			spa_remove(spa);
4350 			if (locked)
4351 				mutex_exit(&spa_namespace_lock);
4352 			return (SET_ERROR(ENOENT));
4353 		}
4354 
4355 		if (error) {
4356 			/*
4357 			 * We can't open the pool, but we still have useful
4358 			 * information: the state of each vdev after the
4359 			 * attempted vdev_open().  Return this to the user.
4360 			 */
4361 			if (config != NULL && spa->spa_config) {
4362 				VERIFY(nvlist_dup(spa->spa_config, config,
4363 				    KM_SLEEP) == 0);
4364 				VERIFY(nvlist_add_nvlist(*config,
4365 				    ZPOOL_CONFIG_LOAD_INFO,
4366 				    spa->spa_load_info) == 0);
4367 			}
4368 			spa_unload(spa);
4369 			spa_deactivate(spa);
4370 			spa->spa_last_open_failed = error;
4371 			if (locked)
4372 				mutex_exit(&spa_namespace_lock);
4373 			*spapp = NULL;
4374 			return (error);
4375 		}
4376 	}
4377 
4378 	spa_open_ref(spa, tag);
4379 
4380 	if (config != NULL)
4381 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4382 
4383 	/*
4384 	 * If we've recovered the pool, pass back any information we
4385 	 * gathered while doing the load.
4386 	 */
4387 	if (state == SPA_LOAD_RECOVER) {
4388 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4389 		    spa->spa_load_info) == 0);
4390 	}
4391 
4392 	if (locked) {
4393 		spa->spa_last_open_failed = 0;
4394 		spa->spa_last_ubsync_txg = 0;
4395 		spa->spa_load_txg = 0;
4396 		mutex_exit(&spa_namespace_lock);
4397 	}
4398 
4399 	*spapp = spa;
4400 
4401 	return (0);
4402 }
4403 
4404 int
4405 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4406     nvlist_t **config)
4407 {
4408 	return (spa_open_common(name, spapp, tag, policy, config));
4409 }
4410 
4411 int
4412 spa_open(const char *name, spa_t **spapp, void *tag)
4413 {
4414 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4415 }
4416 
4417 /*
4418  * Lookup the given spa_t, incrementing the inject count in the process,
4419  * preventing it from being exported or destroyed.
4420  */
4421 spa_t *
4422 spa_inject_addref(char *name)
4423 {
4424 	spa_t *spa;
4425 
4426 	mutex_enter(&spa_namespace_lock);
4427 	if ((spa = spa_lookup(name)) == NULL) {
4428 		mutex_exit(&spa_namespace_lock);
4429 		return (NULL);
4430 	}
4431 	spa->spa_inject_ref++;
4432 	mutex_exit(&spa_namespace_lock);
4433 
4434 	return (spa);
4435 }
4436 
4437 void
4438 spa_inject_delref(spa_t *spa)
4439 {
4440 	mutex_enter(&spa_namespace_lock);
4441 	spa->spa_inject_ref--;
4442 	mutex_exit(&spa_namespace_lock);
4443 }
4444 
4445 /*
4446  * Add spares device information to the nvlist.
4447  */
4448 static void
4449 spa_add_spares(spa_t *spa, nvlist_t *config)
4450 {
4451 	nvlist_t **spares;
4452 	uint_t i, nspares;
4453 	nvlist_t *nvroot;
4454 	uint64_t guid;
4455 	vdev_stat_t *vs;
4456 	uint_t vsc;
4457 	uint64_t pool;
4458 
4459 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4460 
4461 	if (spa->spa_spares.sav_count == 0)
4462 		return;
4463 
4464 	VERIFY(nvlist_lookup_nvlist(config,
4465 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4466 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4467 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4468 	if (nspares != 0) {
4469 		VERIFY(nvlist_add_nvlist_array(nvroot,
4470 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4471 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4472 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4473 
4474 		/*
4475 		 * Go through and find any spares which have since been
4476 		 * repurposed as an active spare.  If this is the case, update
4477 		 * their status appropriately.
4478 		 */
4479 		for (i = 0; i < nspares; i++) {
4480 			VERIFY(nvlist_lookup_uint64(spares[i],
4481 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4482 			if (spa_spare_exists(guid, &pool, NULL) &&
4483 			    pool != 0ULL) {
4484 				VERIFY(nvlist_lookup_uint64_array(
4485 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4486 				    (uint64_t **)&vs, &vsc) == 0);
4487 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4488 				vs->vs_aux = VDEV_AUX_SPARED;
4489 			}
4490 		}
4491 	}
4492 }
4493 
4494 /*
4495  * Add l2cache device information to the nvlist, including vdev stats.
4496  */
4497 static void
4498 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4499 {
4500 	nvlist_t **l2cache;
4501 	uint_t i, j, nl2cache;
4502 	nvlist_t *nvroot;
4503 	uint64_t guid;
4504 	vdev_t *vd;
4505 	vdev_stat_t *vs;
4506 	uint_t vsc;
4507 
4508 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4509 
4510 	if (spa->spa_l2cache.sav_count == 0)
4511 		return;
4512 
4513 	VERIFY(nvlist_lookup_nvlist(config,
4514 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4515 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4516 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4517 	if (nl2cache != 0) {
4518 		VERIFY(nvlist_add_nvlist_array(nvroot,
4519 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4520 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4521 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4522 
4523 		/*
4524 		 * Update level 2 cache device stats.
4525 		 */
4526 
4527 		for (i = 0; i < nl2cache; i++) {
4528 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4529 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4530 
4531 			vd = NULL;
4532 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4533 				if (guid ==
4534 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4535 					vd = spa->spa_l2cache.sav_vdevs[j];
4536 					break;
4537 				}
4538 			}
4539 			ASSERT(vd != NULL);
4540 
4541 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4542 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4543 			    == 0);
4544 			vdev_get_stats(vd, vs);
4545 		}
4546 	}
4547 }
4548 
4549 static void
4550 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4551 {
4552 	nvlist_t *features;
4553 	zap_cursor_t zc;
4554 	zap_attribute_t za;
4555 
4556 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4557 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4558 
4559 	if (spa->spa_feat_for_read_obj != 0) {
4560 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4561 		    spa->spa_feat_for_read_obj);
4562 		    zap_cursor_retrieve(&zc, &za) == 0;
4563 		    zap_cursor_advance(&zc)) {
4564 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4565 			    za.za_num_integers == 1);
4566 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4567 			    za.za_first_integer));
4568 		}
4569 		zap_cursor_fini(&zc);
4570 	}
4571 
4572 	if (spa->spa_feat_for_write_obj != 0) {
4573 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4574 		    spa->spa_feat_for_write_obj);
4575 		    zap_cursor_retrieve(&zc, &za) == 0;
4576 		    zap_cursor_advance(&zc)) {
4577 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4578 			    za.za_num_integers == 1);
4579 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4580 			    za.za_first_integer));
4581 		}
4582 		zap_cursor_fini(&zc);
4583 	}
4584 
4585 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4586 	    features) == 0);
4587 	nvlist_free(features);
4588 }
4589 
4590 int
4591 spa_get_stats(const char *name, nvlist_t **config,
4592     char *altroot, size_t buflen)
4593 {
4594 	int error;
4595 	spa_t *spa;
4596 
4597 	*config = NULL;
4598 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4599 
4600 	if (spa != NULL) {
4601 		/*
4602 		 * This still leaves a window of inconsistency where the spares
4603 		 * or l2cache devices could change and the config would be
4604 		 * self-inconsistent.
4605 		 */
4606 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4607 
4608 		if (*config != NULL) {
4609 			uint64_t loadtimes[2];
4610 
4611 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4612 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4613 			VERIFY(nvlist_add_uint64_array(*config,
4614 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4615 
4616 			VERIFY(nvlist_add_uint64(*config,
4617 			    ZPOOL_CONFIG_ERRCOUNT,
4618 			    spa_get_errlog_size(spa)) == 0);
4619 
4620 			if (spa_suspended(spa)) {
4621 				VERIFY(nvlist_add_uint64(*config,
4622 				    ZPOOL_CONFIG_SUSPENDED,
4623 				    spa->spa_failmode) == 0);
4624 				VERIFY(nvlist_add_uint64(*config,
4625 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4626 				    spa->spa_suspended) == 0);
4627 			}
4628 
4629 			spa_add_spares(spa, *config);
4630 			spa_add_l2cache(spa, *config);
4631 			spa_add_feature_stats(spa, *config);
4632 		}
4633 	}
4634 
4635 	/*
4636 	 * We want to get the alternate root even for faulted pools, so we cheat
4637 	 * and call spa_lookup() directly.
4638 	 */
4639 	if (altroot) {
4640 		if (spa == NULL) {
4641 			mutex_enter(&spa_namespace_lock);
4642 			spa = spa_lookup(name);
4643 			if (spa)
4644 				spa_altroot(spa, altroot, buflen);
4645 			else
4646 				altroot[0] = '\0';
4647 			spa = NULL;
4648 			mutex_exit(&spa_namespace_lock);
4649 		} else {
4650 			spa_altroot(spa, altroot, buflen);
4651 		}
4652 	}
4653 
4654 	if (spa != NULL) {
4655 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4656 		spa_close(spa, FTAG);
4657 	}
4658 
4659 	return (error);
4660 }
4661 
4662 /*
4663  * Validate that the auxiliary device array is well formed.  We must have an
4664  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4665  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4666  * specified, as long as they are well-formed.
4667  */
4668 static int
4669 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4670     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4671     vdev_labeltype_t label)
4672 {
4673 	nvlist_t **dev;
4674 	uint_t i, ndev;
4675 	vdev_t *vd;
4676 	int error;
4677 
4678 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4679 
4680 	/*
4681 	 * It's acceptable to have no devs specified.
4682 	 */
4683 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4684 		return (0);
4685 
4686 	if (ndev == 0)
4687 		return (SET_ERROR(EINVAL));
4688 
4689 	/*
4690 	 * Make sure the pool is formatted with a version that supports this
4691 	 * device type.
4692 	 */
4693 	if (spa_version(spa) < version)
4694 		return (SET_ERROR(ENOTSUP));
4695 
4696 	/*
4697 	 * Set the pending device list so we correctly handle device in-use
4698 	 * checking.
4699 	 */
4700 	sav->sav_pending = dev;
4701 	sav->sav_npending = ndev;
4702 
4703 	for (i = 0; i < ndev; i++) {
4704 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4705 		    mode)) != 0)
4706 			goto out;
4707 
4708 		if (!vd->vdev_ops->vdev_op_leaf) {
4709 			vdev_free(vd);
4710 			error = SET_ERROR(EINVAL);
4711 			goto out;
4712 		}
4713 
4714 		vd->vdev_top = vd;
4715 
4716 		if ((error = vdev_open(vd)) == 0 &&
4717 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4718 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4719 			    vd->vdev_guid) == 0);
4720 		}
4721 
4722 		vdev_free(vd);
4723 
4724 		if (error &&
4725 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4726 			goto out;
4727 		else
4728 			error = 0;
4729 	}
4730 
4731 out:
4732 	sav->sav_pending = NULL;
4733 	sav->sav_npending = 0;
4734 	return (error);
4735 }
4736 
4737 static int
4738 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4739 {
4740 	int error;
4741 
4742 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4743 
4744 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4745 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4746 	    VDEV_LABEL_SPARE)) != 0) {
4747 		return (error);
4748 	}
4749 
4750 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4751 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4752 	    VDEV_LABEL_L2CACHE));
4753 }
4754 
4755 static void
4756 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4757     const char *config)
4758 {
4759 	int i;
4760 
4761 	if (sav->sav_config != NULL) {
4762 		nvlist_t **olddevs;
4763 		uint_t oldndevs;
4764 		nvlist_t **newdevs;
4765 
4766 		/*
4767 		 * Generate new dev list by concatentating with the
4768 		 * current dev list.
4769 		 */
4770 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4771 		    &olddevs, &oldndevs) == 0);
4772 
4773 		newdevs = kmem_alloc(sizeof (void *) *
4774 		    (ndevs + oldndevs), KM_SLEEP);
4775 		for (i = 0; i < oldndevs; i++)
4776 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4777 			    KM_SLEEP) == 0);
4778 		for (i = 0; i < ndevs; i++)
4779 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4780 			    KM_SLEEP) == 0);
4781 
4782 		VERIFY(nvlist_remove(sav->sav_config, config,
4783 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4784 
4785 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4786 		    config, newdevs, ndevs + oldndevs) == 0);
4787 		for (i = 0; i < oldndevs + ndevs; i++)
4788 			nvlist_free(newdevs[i]);
4789 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4790 	} else {
4791 		/*
4792 		 * Generate a new dev list.
4793 		 */
4794 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4795 		    KM_SLEEP) == 0);
4796 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4797 		    devs, ndevs) == 0);
4798 	}
4799 }
4800 
4801 /*
4802  * Stop and drop level 2 ARC devices
4803  */
4804 void
4805 spa_l2cache_drop(spa_t *spa)
4806 {
4807 	vdev_t *vd;
4808 	int i;
4809 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4810 
4811 	for (i = 0; i < sav->sav_count; i++) {
4812 		uint64_t pool;
4813 
4814 		vd = sav->sav_vdevs[i];
4815 		ASSERT(vd != NULL);
4816 
4817 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4818 		    pool != 0ULL && l2arc_vdev_present(vd))
4819 			l2arc_remove_vdev(vd);
4820 	}
4821 }
4822 
4823 /*
4824  * Pool Creation
4825  */
4826 int
4827 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4828     nvlist_t *zplprops)
4829 {
4830 	spa_t *spa;
4831 	char *altroot = NULL;
4832 	vdev_t *rvd;
4833 	dsl_pool_t *dp;
4834 	dmu_tx_t *tx;
4835 	int error = 0;
4836 	uint64_t txg = TXG_INITIAL;
4837 	nvlist_t **spares, **l2cache;
4838 	uint_t nspares, nl2cache;
4839 	uint64_t version, obj;
4840 	boolean_t has_features;
4841 	char *poolname;
4842 	nvlist_t *nvl;
4843 
4844 	if (nvlist_lookup_string(props,
4845 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
4846 		poolname = (char *)pool;
4847 
4848 	/*
4849 	 * If this pool already exists, return failure.
4850 	 */
4851 	mutex_enter(&spa_namespace_lock);
4852 	if (spa_lookup(poolname) != NULL) {
4853 		mutex_exit(&spa_namespace_lock);
4854 		return (SET_ERROR(EEXIST));
4855 	}
4856 
4857 	/*
4858 	 * Allocate a new spa_t structure.
4859 	 */
4860 	nvl = fnvlist_alloc();
4861 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4862 	(void) nvlist_lookup_string(props,
4863 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4864 	spa = spa_add(poolname, nvl, altroot);
4865 	fnvlist_free(nvl);
4866 	spa_activate(spa, spa_mode_global);
4867 
4868 	if (props && (error = spa_prop_validate(spa, props))) {
4869 		spa_deactivate(spa);
4870 		spa_remove(spa);
4871 		mutex_exit(&spa_namespace_lock);
4872 		return (error);
4873 	}
4874 
4875 	/*
4876 	 * Temporary pool names should never be written to disk.
4877 	 */
4878 	if (poolname != pool)
4879 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4880 
4881 	has_features = B_FALSE;
4882 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4883 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4884 		if (zpool_prop_feature(nvpair_name(elem)))
4885 			has_features = B_TRUE;
4886 	}
4887 
4888 	if (has_features || nvlist_lookup_uint64(props,
4889 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4890 		version = SPA_VERSION;
4891 	}
4892 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4893 
4894 	spa->spa_first_txg = txg;
4895 	spa->spa_uberblock.ub_txg = txg - 1;
4896 	spa->spa_uberblock.ub_version = version;
4897 	spa->spa_ubsync = spa->spa_uberblock;
4898 	spa->spa_load_state = SPA_LOAD_CREATE;
4899 	spa->spa_removing_phys.sr_state = DSS_NONE;
4900 	spa->spa_removing_phys.sr_removing_vdev = -1;
4901 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4902 
4903 	/*
4904 	 * Create "The Godfather" zio to hold all async IOs
4905 	 */
4906 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4907 	    KM_SLEEP);
4908 	for (int i = 0; i < max_ncpus; i++) {
4909 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4910 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4911 		    ZIO_FLAG_GODFATHER);
4912 	}
4913 
4914 	/*
4915 	 * Create the root vdev.
4916 	 */
4917 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4918 
4919 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4920 
4921 	ASSERT(error != 0 || rvd != NULL);
4922 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4923 
4924 	if (error == 0 && !zfs_allocatable_devs(nvroot))
4925 		error = SET_ERROR(EINVAL);
4926 
4927 	if (error == 0 &&
4928 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4929 	    (error = spa_validate_aux(spa, nvroot, txg,
4930 	    VDEV_ALLOC_ADD)) == 0) {
4931 		for (int c = 0; c < rvd->vdev_children; c++) {
4932 			vdev_metaslab_set_size(rvd->vdev_child[c]);
4933 			vdev_expand(rvd->vdev_child[c], txg);
4934 		}
4935 	}
4936 
4937 	spa_config_exit(spa, SCL_ALL, FTAG);
4938 
4939 	if (error != 0) {
4940 		spa_unload(spa);
4941 		spa_deactivate(spa);
4942 		spa_remove(spa);
4943 		mutex_exit(&spa_namespace_lock);
4944 		return (error);
4945 	}
4946 
4947 	/*
4948 	 * Get the list of spares, if specified.
4949 	 */
4950 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4951 	    &spares, &nspares) == 0) {
4952 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4953 		    KM_SLEEP) == 0);
4954 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4955 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4956 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4957 		spa_load_spares(spa);
4958 		spa_config_exit(spa, SCL_ALL, FTAG);
4959 		spa->spa_spares.sav_sync = B_TRUE;
4960 	}
4961 
4962 	/*
4963 	 * Get the list of level 2 cache devices, if specified.
4964 	 */
4965 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4966 	    &l2cache, &nl2cache) == 0) {
4967 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4968 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4969 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4970 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4971 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4972 		spa_load_l2cache(spa);
4973 		spa_config_exit(spa, SCL_ALL, FTAG);
4974 		spa->spa_l2cache.sav_sync = B_TRUE;
4975 	}
4976 
4977 	spa->spa_is_initializing = B_TRUE;
4978 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4979 	spa->spa_meta_objset = dp->dp_meta_objset;
4980 	spa->spa_is_initializing = B_FALSE;
4981 
4982 	/*
4983 	 * Create DDTs (dedup tables).
4984 	 */
4985 	ddt_create(spa);
4986 
4987 	spa_update_dspace(spa);
4988 
4989 	tx = dmu_tx_create_assigned(dp, txg);
4990 
4991 	/*
4992 	 * Create the pool config object.
4993 	 */
4994 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4995 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4996 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4997 
4998 	if (zap_add(spa->spa_meta_objset,
4999 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5000 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5001 		cmn_err(CE_PANIC, "failed to add pool config");
5002 	}
5003 
5004 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
5005 		spa_feature_create_zap_objects(spa, tx);
5006 
5007 	if (zap_add(spa->spa_meta_objset,
5008 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5009 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5010 		cmn_err(CE_PANIC, "failed to add pool version");
5011 	}
5012 
5013 	/* Newly created pools with the right version are always deflated. */
5014 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5015 		spa->spa_deflate = TRUE;
5016 		if (zap_add(spa->spa_meta_objset,
5017 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5018 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5019 			cmn_err(CE_PANIC, "failed to add deflate");
5020 		}
5021 	}
5022 
5023 	/*
5024 	 * Create the deferred-free bpobj.  Turn off compression
5025 	 * because sync-to-convergence takes longer if the blocksize
5026 	 * keeps changing.
5027 	 */
5028 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5029 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5030 	    ZIO_COMPRESS_OFF, tx);
5031 	if (zap_add(spa->spa_meta_objset,
5032 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5033 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5034 		cmn_err(CE_PANIC, "failed to add bpobj");
5035 	}
5036 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5037 	    spa->spa_meta_objset, obj));
5038 
5039 	/*
5040 	 * Create the pool's history object.
5041 	 */
5042 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5043 		spa_history_create_obj(spa, tx);
5044 
5045 	/*
5046 	 * Generate some random noise for salted checksums to operate on.
5047 	 */
5048 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5049 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5050 
5051 	/*
5052 	 * Set pool properties.
5053 	 */
5054 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5055 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5056 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5057 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5058 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5059 
5060 	if (props != NULL) {
5061 		spa_configfile_set(spa, props, B_FALSE);
5062 		spa_sync_props(props, tx);
5063 	}
5064 
5065 	dmu_tx_commit(tx);
5066 
5067 	spa->spa_sync_on = B_TRUE;
5068 	txg_sync_start(spa->spa_dsl_pool);
5069 	mmp_thread_start(spa);
5070 
5071 	/*
5072 	 * We explicitly wait for the first transaction to complete so that our
5073 	 * bean counters are appropriately updated.
5074 	 */
5075 	txg_wait_synced(spa->spa_dsl_pool, txg);
5076 
5077 	spa_spawn_aux_threads(spa);
5078 
5079 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5080 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5081 
5082 	spa_history_log_version(spa, "create");
5083 
5084 	/*
5085 	 * Don't count references from objsets that are already closed
5086 	 * and are making their way through the eviction process.
5087 	 */
5088 	spa_evicting_os_wait(spa);
5089 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5090 	spa->spa_load_state = SPA_LOAD_NONE;
5091 
5092 	mutex_exit(&spa_namespace_lock);
5093 
5094 	return (0);
5095 }
5096 
5097 #ifdef _KERNEL
5098 /*
5099  * Get the root pool information from the root disk, then import the root pool
5100  * during the system boot up time.
5101  */
5102 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
5103 
5104 static nvlist_t *
5105 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
5106 {
5107 	nvlist_t *config;
5108 	nvlist_t *nvtop, *nvroot;
5109 	uint64_t pgid;
5110 
5111 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5112 		return (NULL);
5113 
5114 	/*
5115 	 * Add this top-level vdev to the child array.
5116 	 */
5117 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5118 	    &nvtop) == 0);
5119 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5120 	    &pgid) == 0);
5121 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5122 
5123 	/*
5124 	 * Put this pool's top-level vdevs into a root vdev.
5125 	 */
5126 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5127 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5128 	    VDEV_TYPE_ROOT) == 0);
5129 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5130 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5131 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5132 	    &nvtop, 1) == 0);
5133 
5134 	/*
5135 	 * Replace the existing vdev_tree with the new root vdev in
5136 	 * this pool's configuration (remove the old, add the new).
5137 	 */
5138 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5139 	nvlist_free(nvroot);
5140 	return (config);
5141 }
5142 
5143 /*
5144  * Walk the vdev tree and see if we can find a device with "better"
5145  * configuration. A configuration is "better" if the label on that
5146  * device has a more recent txg.
5147  */
5148 static void
5149 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5150 {
5151 	for (int c = 0; c < vd->vdev_children; c++)
5152 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5153 
5154 	if (vd->vdev_ops->vdev_op_leaf) {
5155 		nvlist_t *label;
5156 		uint64_t label_txg;
5157 
5158 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5159 		    &label) != 0)
5160 			return;
5161 
5162 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5163 		    &label_txg) == 0);
5164 
5165 		/*
5166 		 * Do we have a better boot device?
5167 		 */
5168 		if (label_txg > *txg) {
5169 			*txg = label_txg;
5170 			*avd = vd;
5171 		}
5172 		nvlist_free(label);
5173 	}
5174 }
5175 
5176 /*
5177  * Import a root pool.
5178  *
5179  * For x86. devpath_list will consist of devid and/or physpath name of
5180  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5181  * The GRUB "findroot" command will return the vdev we should boot.
5182  *
5183  * For Sparc, devpath_list consists the physpath name of the booting device
5184  * no matter the rootpool is a single device pool or a mirrored pool.
5185  * e.g.
5186  *	"/pci@1f,0/ide@d/disk@0,0:a"
5187  */
5188 int
5189 spa_import_rootpool(char *devpath, char *devid)
5190 {
5191 	spa_t *spa;
5192 	vdev_t *rvd, *bvd, *avd = NULL;
5193 	nvlist_t *config, *nvtop;
5194 	uint64_t guid, txg;
5195 	char *pname;
5196 	int error;
5197 
5198 	/*
5199 	 * Read the label from the boot device and generate a configuration.
5200 	 */
5201 	config = spa_generate_rootconf(devpath, devid, &guid);
5202 #if defined(_OBP) && defined(_KERNEL)
5203 	if (config == NULL) {
5204 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5205 			/* iscsi boot */
5206 			get_iscsi_bootpath_phy(devpath);
5207 			config = spa_generate_rootconf(devpath, devid, &guid);
5208 		}
5209 	}
5210 #endif
5211 	if (config == NULL) {
5212 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5213 		    devpath);
5214 		return (SET_ERROR(EIO));
5215 	}
5216 
5217 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5218 	    &pname) == 0);
5219 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5220 
5221 	mutex_enter(&spa_namespace_lock);
5222 	if ((spa = spa_lookup(pname)) != NULL) {
5223 		/*
5224 		 * Remove the existing root pool from the namespace so that we
5225 		 * can replace it with the correct config we just read in.
5226 		 */
5227 		spa_remove(spa);
5228 	}
5229 
5230 	spa = spa_add(pname, config, NULL);
5231 	spa->spa_is_root = B_TRUE;
5232 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5233 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5234 	    &spa->spa_ubsync.ub_version) != 0)
5235 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5236 
5237 	/*
5238 	 * Build up a vdev tree based on the boot device's label config.
5239 	 */
5240 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5241 	    &nvtop) == 0);
5242 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5243 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5244 	    VDEV_ALLOC_ROOTPOOL);
5245 	spa_config_exit(spa, SCL_ALL, FTAG);
5246 	if (error) {
5247 		mutex_exit(&spa_namespace_lock);
5248 		nvlist_free(config);
5249 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5250 		    pname);
5251 		return (error);
5252 	}
5253 
5254 	/*
5255 	 * Get the boot vdev.
5256 	 */
5257 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5258 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5259 		    (u_longlong_t)guid);
5260 		error = SET_ERROR(ENOENT);
5261 		goto out;
5262 	}
5263 
5264 	/*
5265 	 * Determine if there is a better boot device.
5266 	 */
5267 	avd = bvd;
5268 	spa_alt_rootvdev(rvd, &avd, &txg);
5269 	if (avd != bvd) {
5270 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5271 		    "try booting from '%s'", avd->vdev_path);
5272 		error = SET_ERROR(EINVAL);
5273 		goto out;
5274 	}
5275 
5276 	/*
5277 	 * If the boot device is part of a spare vdev then ensure that
5278 	 * we're booting off the active spare.
5279 	 */
5280 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5281 	    !bvd->vdev_isspare) {
5282 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5283 		    "try booting from '%s'",
5284 		    bvd->vdev_parent->
5285 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5286 		error = SET_ERROR(EINVAL);
5287 		goto out;
5288 	}
5289 
5290 	error = 0;
5291 out:
5292 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5293 	vdev_free(rvd);
5294 	spa_config_exit(spa, SCL_ALL, FTAG);
5295 	mutex_exit(&spa_namespace_lock);
5296 
5297 	nvlist_free(config);
5298 	return (error);
5299 }
5300 
5301 #endif
5302 
5303 /*
5304  * Import a non-root pool into the system.
5305  */
5306 int
5307 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5308 {
5309 	spa_t *spa;
5310 	char *altroot = NULL;
5311 	spa_load_state_t state = SPA_LOAD_IMPORT;
5312 	zpool_load_policy_t policy;
5313 	uint64_t mode = spa_mode_global;
5314 	uint64_t readonly = B_FALSE;
5315 	int error;
5316 	nvlist_t *nvroot;
5317 	nvlist_t **spares, **l2cache;
5318 	uint_t nspares, nl2cache;
5319 
5320 	/*
5321 	 * If a pool with this name exists, return failure.
5322 	 */
5323 	mutex_enter(&spa_namespace_lock);
5324 	if (spa_lookup(pool) != NULL) {
5325 		mutex_exit(&spa_namespace_lock);
5326 		return (SET_ERROR(EEXIST));
5327 	}
5328 
5329 	/*
5330 	 * Create and initialize the spa structure.
5331 	 */
5332 	(void) nvlist_lookup_string(props,
5333 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5334 	(void) nvlist_lookup_uint64(props,
5335 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5336 	if (readonly)
5337 		mode = FREAD;
5338 	spa = spa_add(pool, config, altroot);
5339 	spa->spa_import_flags = flags;
5340 
5341 	/*
5342 	 * Verbatim import - Take a pool and insert it into the namespace
5343 	 * as if it had been loaded at boot.
5344 	 */
5345 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5346 		if (props != NULL)
5347 			spa_configfile_set(spa, props, B_FALSE);
5348 
5349 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5350 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5351 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5352 		mutex_exit(&spa_namespace_lock);
5353 		return (0);
5354 	}
5355 
5356 	spa_activate(spa, mode);
5357 
5358 	/*
5359 	 * Don't start async tasks until we know everything is healthy.
5360 	 */
5361 	spa_async_suspend(spa);
5362 
5363 	zpool_get_load_policy(config, &policy);
5364 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5365 		state = SPA_LOAD_RECOVER;
5366 
5367 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5368 
5369 	if (state != SPA_LOAD_RECOVER) {
5370 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5371 		zfs_dbgmsg("spa_import: importing %s", pool);
5372 	} else {
5373 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5374 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5375 	}
5376 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5377 
5378 	/*
5379 	 * Propagate anything learned while loading the pool and pass it
5380 	 * back to caller (i.e. rewind info, missing devices, etc).
5381 	 */
5382 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5383 	    spa->spa_load_info) == 0);
5384 
5385 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5386 	/*
5387 	 * Toss any existing sparelist, as it doesn't have any validity
5388 	 * anymore, and conflicts with spa_has_spare().
5389 	 */
5390 	if (spa->spa_spares.sav_config) {
5391 		nvlist_free(spa->spa_spares.sav_config);
5392 		spa->spa_spares.sav_config = NULL;
5393 		spa_load_spares(spa);
5394 	}
5395 	if (spa->spa_l2cache.sav_config) {
5396 		nvlist_free(spa->spa_l2cache.sav_config);
5397 		spa->spa_l2cache.sav_config = NULL;
5398 		spa_load_l2cache(spa);
5399 	}
5400 
5401 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5402 	    &nvroot) == 0);
5403 	if (error == 0)
5404 		error = spa_validate_aux(spa, nvroot, -1ULL,
5405 		    VDEV_ALLOC_SPARE);
5406 	if (error == 0)
5407 		error = spa_validate_aux(spa, nvroot, -1ULL,
5408 		    VDEV_ALLOC_L2CACHE);
5409 	spa_config_exit(spa, SCL_ALL, FTAG);
5410 
5411 	if (props != NULL)
5412 		spa_configfile_set(spa, props, B_FALSE);
5413 
5414 	if (error != 0 || (props && spa_writeable(spa) &&
5415 	    (error = spa_prop_set(spa, props)))) {
5416 		spa_unload(spa);
5417 		spa_deactivate(spa);
5418 		spa_remove(spa);
5419 		mutex_exit(&spa_namespace_lock);
5420 		return (error);
5421 	}
5422 
5423 	spa_async_resume(spa);
5424 
5425 	/*
5426 	 * Override any spares and level 2 cache devices as specified by
5427 	 * the user, as these may have correct device names/devids, etc.
5428 	 */
5429 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5430 	    &spares, &nspares) == 0) {
5431 		if (spa->spa_spares.sav_config)
5432 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5433 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5434 		else
5435 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5436 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5437 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5438 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5439 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5440 		spa_load_spares(spa);
5441 		spa_config_exit(spa, SCL_ALL, FTAG);
5442 		spa->spa_spares.sav_sync = B_TRUE;
5443 	}
5444 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5445 	    &l2cache, &nl2cache) == 0) {
5446 		if (spa->spa_l2cache.sav_config)
5447 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5448 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5449 		else
5450 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5451 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5452 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5453 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5454 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5455 		spa_load_l2cache(spa);
5456 		spa_config_exit(spa, SCL_ALL, FTAG);
5457 		spa->spa_l2cache.sav_sync = B_TRUE;
5458 	}
5459 
5460 	/*
5461 	 * Check for any removed devices.
5462 	 */
5463 	if (spa->spa_autoreplace) {
5464 		spa_aux_check_removed(&spa->spa_spares);
5465 		spa_aux_check_removed(&spa->spa_l2cache);
5466 	}
5467 
5468 	if (spa_writeable(spa)) {
5469 		/*
5470 		 * Update the config cache to include the newly-imported pool.
5471 		 */
5472 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5473 	}
5474 
5475 	/*
5476 	 * It's possible that the pool was expanded while it was exported.
5477 	 * We kick off an async task to handle this for us.
5478 	 */
5479 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5480 
5481 	spa_history_log_version(spa, "import");
5482 
5483 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5484 
5485 	mutex_exit(&spa_namespace_lock);
5486 
5487 	return (0);
5488 }
5489 
5490 nvlist_t *
5491 spa_tryimport(nvlist_t *tryconfig)
5492 {
5493 	nvlist_t *config = NULL;
5494 	char *poolname, *cachefile;
5495 	spa_t *spa;
5496 	uint64_t state;
5497 	int error;
5498 	zpool_load_policy_t policy;
5499 
5500 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5501 		return (NULL);
5502 
5503 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5504 		return (NULL);
5505 
5506 	/*
5507 	 * Create and initialize the spa structure.
5508 	 */
5509 	mutex_enter(&spa_namespace_lock);
5510 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5511 	spa_activate(spa, FREAD);
5512 
5513 	/*
5514 	 * Rewind pool if a max txg was provided.
5515 	 */
5516 	zpool_get_load_policy(spa->spa_config, &policy);
5517 	if (policy.zlp_txg != UINT64_MAX) {
5518 		spa->spa_load_max_txg = policy.zlp_txg;
5519 		spa->spa_extreme_rewind = B_TRUE;
5520 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5521 		    poolname, (longlong_t)policy.zlp_txg);
5522 	} else {
5523 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5524 	}
5525 
5526 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5527 	    == 0) {
5528 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5529 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5530 	} else {
5531 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5532 	}
5533 
5534 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5535 
5536 	/*
5537 	 * If 'tryconfig' was at least parsable, return the current config.
5538 	 */
5539 	if (spa->spa_root_vdev != NULL) {
5540 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5541 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5542 		    poolname) == 0);
5543 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5544 		    state) == 0);
5545 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5546 		    spa->spa_uberblock.ub_timestamp) == 0);
5547 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5548 		    spa->spa_load_info) == 0);
5549 
5550 		/*
5551 		 * If the bootfs property exists on this pool then we
5552 		 * copy it out so that external consumers can tell which
5553 		 * pools are bootable.
5554 		 */
5555 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5556 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5557 
5558 			/*
5559 			 * We have to play games with the name since the
5560 			 * pool was opened as TRYIMPORT_NAME.
5561 			 */
5562 			if (dsl_dsobj_to_dsname(spa_name(spa),
5563 			    spa->spa_bootfs, tmpname) == 0) {
5564 				char *cp;
5565 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5566 
5567 				cp = strchr(tmpname, '/');
5568 				if (cp == NULL) {
5569 					(void) strlcpy(dsname, tmpname,
5570 					    MAXPATHLEN);
5571 				} else {
5572 					(void) snprintf(dsname, MAXPATHLEN,
5573 					    "%s/%s", poolname, ++cp);
5574 				}
5575 				VERIFY(nvlist_add_string(config,
5576 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5577 				kmem_free(dsname, MAXPATHLEN);
5578 			}
5579 			kmem_free(tmpname, MAXPATHLEN);
5580 		}
5581 
5582 		/*
5583 		 * Add the list of hot spares and level 2 cache devices.
5584 		 */
5585 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5586 		spa_add_spares(spa, config);
5587 		spa_add_l2cache(spa, config);
5588 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5589 	}
5590 
5591 	spa_unload(spa);
5592 	spa_deactivate(spa);
5593 	spa_remove(spa);
5594 	mutex_exit(&spa_namespace_lock);
5595 
5596 	return (config);
5597 }
5598 
5599 /*
5600  * Pool export/destroy
5601  *
5602  * The act of destroying or exporting a pool is very simple.  We make sure there
5603  * is no more pending I/O and any references to the pool are gone.  Then, we
5604  * update the pool state and sync all the labels to disk, removing the
5605  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5606  * we don't sync the labels or remove the configuration cache.
5607  */
5608 static int
5609 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5610     boolean_t force, boolean_t hardforce)
5611 {
5612 	spa_t *spa;
5613 
5614 	if (oldconfig)
5615 		*oldconfig = NULL;
5616 
5617 	if (!(spa_mode_global & FWRITE))
5618 		return (SET_ERROR(EROFS));
5619 
5620 	mutex_enter(&spa_namespace_lock);
5621 	if ((spa = spa_lookup(pool)) == NULL) {
5622 		mutex_exit(&spa_namespace_lock);
5623 		return (SET_ERROR(ENOENT));
5624 	}
5625 
5626 	/*
5627 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5628 	 * reacquire the namespace lock, and see if we can export.
5629 	 */
5630 	spa_open_ref(spa, FTAG);
5631 	mutex_exit(&spa_namespace_lock);
5632 	spa_async_suspend(spa);
5633 	mutex_enter(&spa_namespace_lock);
5634 	spa_close(spa, FTAG);
5635 
5636 	/*
5637 	 * The pool will be in core if it's openable,
5638 	 * in which case we can modify its state.
5639 	 */
5640 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5641 
5642 		/*
5643 		 * Objsets may be open only because they're dirty, so we
5644 		 * have to force it to sync before checking spa_refcnt.
5645 		 */
5646 		txg_wait_synced(spa->spa_dsl_pool, 0);
5647 		spa_evicting_os_wait(spa);
5648 
5649 		/*
5650 		 * A pool cannot be exported or destroyed if there are active
5651 		 * references.  If we are resetting a pool, allow references by
5652 		 * fault injection handlers.
5653 		 */
5654 		if (!spa_refcount_zero(spa) ||
5655 		    (spa->spa_inject_ref != 0 &&
5656 		    new_state != POOL_STATE_UNINITIALIZED)) {
5657 			spa_async_resume(spa);
5658 			mutex_exit(&spa_namespace_lock);
5659 			return (SET_ERROR(EBUSY));
5660 		}
5661 
5662 		/*
5663 		 * A pool cannot be exported if it has an active shared spare.
5664 		 * This is to prevent other pools stealing the active spare
5665 		 * from an exported pool. At user's own will, such pool can
5666 		 * be forcedly exported.
5667 		 */
5668 		if (!force && new_state == POOL_STATE_EXPORTED &&
5669 		    spa_has_active_shared_spare(spa)) {
5670 			spa_async_resume(spa);
5671 			mutex_exit(&spa_namespace_lock);
5672 			return (SET_ERROR(EXDEV));
5673 		}
5674 
5675 		/*
5676 		 * We're about to export or destroy this pool. Make sure
5677 		 * we stop all initializtion activity here before we
5678 		 * set the spa_final_txg. This will ensure that all
5679 		 * dirty data resulting from the initialization is
5680 		 * committed to disk before we unload the pool.
5681 		 */
5682 		if (spa->spa_root_vdev != NULL) {
5683 			vdev_initialize_stop_all(spa->spa_root_vdev,
5684 			    VDEV_INITIALIZE_ACTIVE);
5685 		}
5686 
5687 		/*
5688 		 * We want this to be reflected on every label,
5689 		 * so mark them all dirty.  spa_unload() will do the
5690 		 * final sync that pushes these changes out.
5691 		 */
5692 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5693 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5694 			spa->spa_state = new_state;
5695 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5696 			    TXG_DEFER_SIZE + 1;
5697 			vdev_config_dirty(spa->spa_root_vdev);
5698 			spa_config_exit(spa, SCL_ALL, FTAG);
5699 		}
5700 	}
5701 
5702 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5703 
5704 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5705 		spa_unload(spa);
5706 		spa_deactivate(spa);
5707 	}
5708 
5709 	if (oldconfig && spa->spa_config)
5710 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5711 
5712 	if (new_state != POOL_STATE_UNINITIALIZED) {
5713 		if (!hardforce)
5714 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5715 		spa_remove(spa);
5716 	}
5717 	mutex_exit(&spa_namespace_lock);
5718 
5719 	return (0);
5720 }
5721 
5722 /*
5723  * Destroy a storage pool.
5724  */
5725 int
5726 spa_destroy(char *pool)
5727 {
5728 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5729 	    B_FALSE, B_FALSE));
5730 }
5731 
5732 /*
5733  * Export a storage pool.
5734  */
5735 int
5736 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5737     boolean_t hardforce)
5738 {
5739 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5740 	    force, hardforce));
5741 }
5742 
5743 /*
5744  * Similar to spa_export(), this unloads the spa_t without actually removing it
5745  * from the namespace in any way.
5746  */
5747 int
5748 spa_reset(char *pool)
5749 {
5750 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5751 	    B_FALSE, B_FALSE));
5752 }
5753 
5754 /*
5755  * ==========================================================================
5756  * Device manipulation
5757  * ==========================================================================
5758  */
5759 
5760 /*
5761  * Add a device to a storage pool.
5762  */
5763 int
5764 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5765 {
5766 	uint64_t txg, id;
5767 	int error;
5768 	vdev_t *rvd = spa->spa_root_vdev;
5769 	vdev_t *vd, *tvd;
5770 	nvlist_t **spares, **l2cache;
5771 	uint_t nspares, nl2cache;
5772 
5773 	ASSERT(spa_writeable(spa));
5774 
5775 	txg = spa_vdev_enter(spa);
5776 
5777 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5778 	    VDEV_ALLOC_ADD)) != 0)
5779 		return (spa_vdev_exit(spa, NULL, txg, error));
5780 
5781 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5782 
5783 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5784 	    &nspares) != 0)
5785 		nspares = 0;
5786 
5787 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5788 	    &nl2cache) != 0)
5789 		nl2cache = 0;
5790 
5791 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5792 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5793 
5794 	if (vd->vdev_children != 0 &&
5795 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5796 		return (spa_vdev_exit(spa, vd, txg, error));
5797 
5798 	/*
5799 	 * We must validate the spares and l2cache devices after checking the
5800 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5801 	 */
5802 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5803 		return (spa_vdev_exit(spa, vd, txg, error));
5804 
5805 	/*
5806 	 * If we are in the middle of a device removal, we can only add
5807 	 * devices which match the existing devices in the pool.
5808 	 * If we are in the middle of a removal, or have some indirect
5809 	 * vdevs, we can not add raidz toplevels.
5810 	 */
5811 	if (spa->spa_vdev_removal != NULL ||
5812 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5813 		for (int c = 0; c < vd->vdev_children; c++) {
5814 			tvd = vd->vdev_child[c];
5815 			if (spa->spa_vdev_removal != NULL &&
5816 			    tvd->vdev_ashift != spa->spa_max_ashift) {
5817 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5818 			}
5819 			/* Fail if top level vdev is raidz */
5820 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5821 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5822 			}
5823 			/*
5824 			 * Need the top level mirror to be
5825 			 * a mirror of leaf vdevs only
5826 			 */
5827 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5828 				for (uint64_t cid = 0;
5829 				    cid < tvd->vdev_children; cid++) {
5830 					vdev_t *cvd = tvd->vdev_child[cid];
5831 					if (!cvd->vdev_ops->vdev_op_leaf) {
5832 						return (spa_vdev_exit(spa, vd,
5833 						    txg, EINVAL));
5834 					}
5835 				}
5836 			}
5837 		}
5838 	}
5839 
5840 	for (int c = 0; c < vd->vdev_children; c++) {
5841 
5842 		/*
5843 		 * Set the vdev id to the first hole, if one exists.
5844 		 */
5845 		for (id = 0; id < rvd->vdev_children; id++) {
5846 			if (rvd->vdev_child[id]->vdev_ishole) {
5847 				vdev_free(rvd->vdev_child[id]);
5848 				break;
5849 			}
5850 		}
5851 		tvd = vd->vdev_child[c];
5852 		vdev_remove_child(vd, tvd);
5853 		tvd->vdev_id = id;
5854 		vdev_add_child(rvd, tvd);
5855 		vdev_config_dirty(tvd);
5856 	}
5857 
5858 	if (nspares != 0) {
5859 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5860 		    ZPOOL_CONFIG_SPARES);
5861 		spa_load_spares(spa);
5862 		spa->spa_spares.sav_sync = B_TRUE;
5863 	}
5864 
5865 	if (nl2cache != 0) {
5866 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5867 		    ZPOOL_CONFIG_L2CACHE);
5868 		spa_load_l2cache(spa);
5869 		spa->spa_l2cache.sav_sync = B_TRUE;
5870 	}
5871 
5872 	/*
5873 	 * We have to be careful when adding new vdevs to an existing pool.
5874 	 * If other threads start allocating from these vdevs before we
5875 	 * sync the config cache, and we lose power, then upon reboot we may
5876 	 * fail to open the pool because there are DVAs that the config cache
5877 	 * can't translate.  Therefore, we first add the vdevs without
5878 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5879 	 * and then let spa_config_update() initialize the new metaslabs.
5880 	 *
5881 	 * spa_load() checks for added-but-not-initialized vdevs, so that
5882 	 * if we lose power at any point in this sequence, the remaining
5883 	 * steps will be completed the next time we load the pool.
5884 	 */
5885 	(void) spa_vdev_exit(spa, vd, txg, 0);
5886 
5887 	mutex_enter(&spa_namespace_lock);
5888 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5889 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5890 	mutex_exit(&spa_namespace_lock);
5891 
5892 	return (0);
5893 }
5894 
5895 /*
5896  * Attach a device to a mirror.  The arguments are the path to any device
5897  * in the mirror, and the nvroot for the new device.  If the path specifies
5898  * a device that is not mirrored, we automatically insert the mirror vdev.
5899  *
5900  * If 'replacing' is specified, the new device is intended to replace the
5901  * existing device; in this case the two devices are made into their own
5902  * mirror using the 'replacing' vdev, which is functionally identical to
5903  * the mirror vdev (it actually reuses all the same ops) but has a few
5904  * extra rules: you can't attach to it after it's been created, and upon
5905  * completion of resilvering, the first disk (the one being replaced)
5906  * is automatically detached.
5907  */
5908 int
5909 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5910 {
5911 	uint64_t txg, dtl_max_txg;
5912 	vdev_t *rvd = spa->spa_root_vdev;
5913 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5914 	vdev_ops_t *pvops;
5915 	char *oldvdpath, *newvdpath;
5916 	int newvd_isspare;
5917 	int error;
5918 
5919 	ASSERT(spa_writeable(spa));
5920 
5921 	txg = spa_vdev_enter(spa);
5922 
5923 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5924 
5925 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5926 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5927 		error = (spa_has_checkpoint(spa)) ?
5928 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5929 		return (spa_vdev_exit(spa, NULL, txg, error));
5930 	}
5931 
5932 	if (spa->spa_vdev_removal != NULL)
5933 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5934 
5935 	if (oldvd == NULL)
5936 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5937 
5938 	if (!oldvd->vdev_ops->vdev_op_leaf)
5939 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5940 
5941 	pvd = oldvd->vdev_parent;
5942 
5943 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5944 	    VDEV_ALLOC_ATTACH)) != 0)
5945 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5946 
5947 	if (newrootvd->vdev_children != 1)
5948 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5949 
5950 	newvd = newrootvd->vdev_child[0];
5951 
5952 	if (!newvd->vdev_ops->vdev_op_leaf)
5953 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5954 
5955 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5956 		return (spa_vdev_exit(spa, newrootvd, txg, error));
5957 
5958 	/*
5959 	 * Spares can't replace logs
5960 	 */
5961 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5962 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5963 
5964 	if (!replacing) {
5965 		/*
5966 		 * For attach, the only allowable parent is a mirror or the root
5967 		 * vdev.
5968 		 */
5969 		if (pvd->vdev_ops != &vdev_mirror_ops &&
5970 		    pvd->vdev_ops != &vdev_root_ops)
5971 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5972 
5973 		pvops = &vdev_mirror_ops;
5974 	} else {
5975 		/*
5976 		 * Active hot spares can only be replaced by inactive hot
5977 		 * spares.
5978 		 */
5979 		if (pvd->vdev_ops == &vdev_spare_ops &&
5980 		    oldvd->vdev_isspare &&
5981 		    !spa_has_spare(spa, newvd->vdev_guid))
5982 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5983 
5984 		/*
5985 		 * If the source is a hot spare, and the parent isn't already a
5986 		 * spare, then we want to create a new hot spare.  Otherwise, we
5987 		 * want to create a replacing vdev.  The user is not allowed to
5988 		 * attach to a spared vdev child unless the 'isspare' state is
5989 		 * the same (spare replaces spare, non-spare replaces
5990 		 * non-spare).
5991 		 */
5992 		if (pvd->vdev_ops == &vdev_replacing_ops &&
5993 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5994 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5995 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
5996 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
5997 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5998 		}
5999 
6000 		if (newvd->vdev_isspare)
6001 			pvops = &vdev_spare_ops;
6002 		else
6003 			pvops = &vdev_replacing_ops;
6004 	}
6005 
6006 	/*
6007 	 * Make sure the new device is big enough.
6008 	 */
6009 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6010 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6011 
6012 	/*
6013 	 * The new device cannot have a higher alignment requirement
6014 	 * than the top-level vdev.
6015 	 */
6016 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6017 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6018 
6019 	/*
6020 	 * If this is an in-place replacement, update oldvd's path and devid
6021 	 * to make it distinguishable from newvd, and unopenable from now on.
6022 	 */
6023 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6024 		spa_strfree(oldvd->vdev_path);
6025 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6026 		    KM_SLEEP);
6027 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6028 		    newvd->vdev_path, "old");
6029 		if (oldvd->vdev_devid != NULL) {
6030 			spa_strfree(oldvd->vdev_devid);
6031 			oldvd->vdev_devid = NULL;
6032 		}
6033 	}
6034 
6035 	/* mark the device being resilvered */
6036 	newvd->vdev_resilver_txg = txg;
6037 
6038 	/*
6039 	 * If the parent is not a mirror, or if we're replacing, insert the new
6040 	 * mirror/replacing/spare vdev above oldvd.
6041 	 */
6042 	if (pvd->vdev_ops != pvops)
6043 		pvd = vdev_add_parent(oldvd, pvops);
6044 
6045 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6046 	ASSERT(pvd->vdev_ops == pvops);
6047 	ASSERT(oldvd->vdev_parent == pvd);
6048 
6049 	/*
6050 	 * Extract the new device from its root and add it to pvd.
6051 	 */
6052 	vdev_remove_child(newrootvd, newvd);
6053 	newvd->vdev_id = pvd->vdev_children;
6054 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6055 	vdev_add_child(pvd, newvd);
6056 
6057 	tvd = newvd->vdev_top;
6058 	ASSERT(pvd->vdev_top == tvd);
6059 	ASSERT(tvd->vdev_parent == rvd);
6060 
6061 	vdev_config_dirty(tvd);
6062 
6063 	/*
6064 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6065 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6066 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6067 	 */
6068 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6069 
6070 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6071 	    dtl_max_txg - TXG_INITIAL);
6072 
6073 	if (newvd->vdev_isspare) {
6074 		spa_spare_activate(newvd);
6075 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6076 	}
6077 
6078 	oldvdpath = spa_strdup(oldvd->vdev_path);
6079 	newvdpath = spa_strdup(newvd->vdev_path);
6080 	newvd_isspare = newvd->vdev_isspare;
6081 
6082 	/*
6083 	 * Mark newvd's DTL dirty in this txg.
6084 	 */
6085 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6086 
6087 	/*
6088 	 * Schedule the resilver to restart in the future. We do this to
6089 	 * ensure that dmu_sync-ed blocks have been stitched into the
6090 	 * respective datasets.
6091 	 */
6092 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6093 
6094 	if (spa->spa_bootfs)
6095 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6096 
6097 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6098 
6099 	/*
6100 	 * Commit the config
6101 	 */
6102 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6103 
6104 	spa_history_log_internal(spa, "vdev attach", NULL,
6105 	    "%s vdev=%s %s vdev=%s",
6106 	    replacing && newvd_isspare ? "spare in" :
6107 	    replacing ? "replace" : "attach", newvdpath,
6108 	    replacing ? "for" : "to", oldvdpath);
6109 
6110 	spa_strfree(oldvdpath);
6111 	spa_strfree(newvdpath);
6112 
6113 	return (0);
6114 }
6115 
6116 /*
6117  * Detach a device from a mirror or replacing vdev.
6118  *
6119  * If 'replace_done' is specified, only detach if the parent
6120  * is a replacing vdev.
6121  */
6122 int
6123 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6124 {
6125 	uint64_t txg;
6126 	int error;
6127 	vdev_t *rvd = spa->spa_root_vdev;
6128 	vdev_t *vd, *pvd, *cvd, *tvd;
6129 	boolean_t unspare = B_FALSE;
6130 	uint64_t unspare_guid = 0;
6131 	char *vdpath;
6132 
6133 	ASSERT(spa_writeable(spa));
6134 
6135 	txg = spa_vdev_enter(spa);
6136 
6137 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6138 
6139 	/*
6140 	 * Besides being called directly from the userland through the
6141 	 * ioctl interface, spa_vdev_detach() can be potentially called
6142 	 * at the end of spa_vdev_resilver_done().
6143 	 *
6144 	 * In the regular case, when we have a checkpoint this shouldn't
6145 	 * happen as we never empty the DTLs of a vdev during the scrub
6146 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6147 	 * should never get here when we have a checkpoint.
6148 	 *
6149 	 * That said, even in a case when we checkpoint the pool exactly
6150 	 * as spa_vdev_resilver_done() calls this function everything
6151 	 * should be fine as the resilver will return right away.
6152 	 */
6153 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6154 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6155 		error = (spa_has_checkpoint(spa)) ?
6156 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6157 		return (spa_vdev_exit(spa, NULL, txg, error));
6158 	}
6159 
6160 	if (vd == NULL)
6161 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6162 
6163 	if (!vd->vdev_ops->vdev_op_leaf)
6164 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6165 
6166 	pvd = vd->vdev_parent;
6167 
6168 	/*
6169 	 * If the parent/child relationship is not as expected, don't do it.
6170 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6171 	 * vdev that's replacing B with C.  The user's intent in replacing
6172 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6173 	 * the replace by detaching C, the expected behavior is to end up
6174 	 * M(A,B).  But suppose that right after deciding to detach C,
6175 	 * the replacement of B completes.  We would have M(A,C), and then
6176 	 * ask to detach C, which would leave us with just A -- not what
6177 	 * the user wanted.  To prevent this, we make sure that the
6178 	 * parent/child relationship hasn't changed -- in this example,
6179 	 * that C's parent is still the replacing vdev R.
6180 	 */
6181 	if (pvd->vdev_guid != pguid && pguid != 0)
6182 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6183 
6184 	/*
6185 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6186 	 */
6187 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6188 	    pvd->vdev_ops != &vdev_spare_ops)
6189 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6190 
6191 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6192 	    spa_version(spa) >= SPA_VERSION_SPARES);
6193 
6194 	/*
6195 	 * Only mirror, replacing, and spare vdevs support detach.
6196 	 */
6197 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6198 	    pvd->vdev_ops != &vdev_mirror_ops &&
6199 	    pvd->vdev_ops != &vdev_spare_ops)
6200 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6201 
6202 	/*
6203 	 * If this device has the only valid copy of some data,
6204 	 * we cannot safely detach it.
6205 	 */
6206 	if (vdev_dtl_required(vd))
6207 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6208 
6209 	ASSERT(pvd->vdev_children >= 2);
6210 
6211 	/*
6212 	 * If we are detaching the second disk from a replacing vdev, then
6213 	 * check to see if we changed the original vdev's path to have "/old"
6214 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6215 	 */
6216 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6217 	    vd->vdev_path != NULL) {
6218 		size_t len = strlen(vd->vdev_path);
6219 
6220 		for (int c = 0; c < pvd->vdev_children; c++) {
6221 			cvd = pvd->vdev_child[c];
6222 
6223 			if (cvd == vd || cvd->vdev_path == NULL)
6224 				continue;
6225 
6226 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6227 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6228 				spa_strfree(cvd->vdev_path);
6229 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6230 				break;
6231 			}
6232 		}
6233 	}
6234 
6235 	/*
6236 	 * If we are detaching the original disk from a spare, then it implies
6237 	 * that the spare should become a real disk, and be removed from the
6238 	 * active spare list for the pool.
6239 	 */
6240 	if (pvd->vdev_ops == &vdev_spare_ops &&
6241 	    vd->vdev_id == 0 &&
6242 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6243 		unspare = B_TRUE;
6244 
6245 	/*
6246 	 * Erase the disk labels so the disk can be used for other things.
6247 	 * This must be done after all other error cases are handled,
6248 	 * but before we disembowel vd (so we can still do I/O to it).
6249 	 * But if we can't do it, don't treat the error as fatal --
6250 	 * it may be that the unwritability of the disk is the reason
6251 	 * it's being detached!
6252 	 */
6253 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6254 
6255 	/*
6256 	 * Remove vd from its parent and compact the parent's children.
6257 	 */
6258 	vdev_remove_child(pvd, vd);
6259 	vdev_compact_children(pvd);
6260 
6261 	/*
6262 	 * Remember one of the remaining children so we can get tvd below.
6263 	 */
6264 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6265 
6266 	/*
6267 	 * If we need to remove the remaining child from the list of hot spares,
6268 	 * do it now, marking the vdev as no longer a spare in the process.
6269 	 * We must do this before vdev_remove_parent(), because that can
6270 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6271 	 * reason, we must remove the spare now, in the same txg as the detach;
6272 	 * otherwise someone could attach a new sibling, change the GUID, and
6273 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6274 	 */
6275 	if (unspare) {
6276 		ASSERT(cvd->vdev_isspare);
6277 		spa_spare_remove(cvd);
6278 		unspare_guid = cvd->vdev_guid;
6279 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6280 		cvd->vdev_unspare = B_TRUE;
6281 	}
6282 
6283 	/*
6284 	 * If the parent mirror/replacing vdev only has one child,
6285 	 * the parent is no longer needed.  Remove it from the tree.
6286 	 */
6287 	if (pvd->vdev_children == 1) {
6288 		if (pvd->vdev_ops == &vdev_spare_ops)
6289 			cvd->vdev_unspare = B_FALSE;
6290 		vdev_remove_parent(cvd);
6291 	}
6292 
6293 
6294 	/*
6295 	 * We don't set tvd until now because the parent we just removed
6296 	 * may have been the previous top-level vdev.
6297 	 */
6298 	tvd = cvd->vdev_top;
6299 	ASSERT(tvd->vdev_parent == rvd);
6300 
6301 	/*
6302 	 * Reevaluate the parent vdev state.
6303 	 */
6304 	vdev_propagate_state(cvd);
6305 
6306 	/*
6307 	 * If the 'autoexpand' property is set on the pool then automatically
6308 	 * try to expand the size of the pool. For example if the device we
6309 	 * just detached was smaller than the others, it may be possible to
6310 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6311 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6312 	 */
6313 	if (spa->spa_autoexpand) {
6314 		vdev_reopen(tvd);
6315 		vdev_expand(tvd, txg);
6316 	}
6317 
6318 	vdev_config_dirty(tvd);
6319 
6320 	/*
6321 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6322 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6323 	 * But first make sure we're not on any *other* txg's DTL list, to
6324 	 * prevent vd from being accessed after it's freed.
6325 	 */
6326 	vdpath = spa_strdup(vd->vdev_path);
6327 	for (int t = 0; t < TXG_SIZE; t++)
6328 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6329 	vd->vdev_detached = B_TRUE;
6330 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6331 
6332 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6333 
6334 	/* hang on to the spa before we release the lock */
6335 	spa_open_ref(spa, FTAG);
6336 
6337 	error = spa_vdev_exit(spa, vd, txg, 0);
6338 
6339 	spa_history_log_internal(spa, "detach", NULL,
6340 	    "vdev=%s", vdpath);
6341 	spa_strfree(vdpath);
6342 
6343 	/*
6344 	 * If this was the removal of the original device in a hot spare vdev,
6345 	 * then we want to go through and remove the device from the hot spare
6346 	 * list of every other pool.
6347 	 */
6348 	if (unspare) {
6349 		spa_t *altspa = NULL;
6350 
6351 		mutex_enter(&spa_namespace_lock);
6352 		while ((altspa = spa_next(altspa)) != NULL) {
6353 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6354 			    altspa == spa)
6355 				continue;
6356 
6357 			spa_open_ref(altspa, FTAG);
6358 			mutex_exit(&spa_namespace_lock);
6359 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6360 			mutex_enter(&spa_namespace_lock);
6361 			spa_close(altspa, FTAG);
6362 		}
6363 		mutex_exit(&spa_namespace_lock);
6364 
6365 		/* search the rest of the vdevs for spares to remove */
6366 		spa_vdev_resilver_done(spa);
6367 	}
6368 
6369 	/* all done with the spa; OK to release */
6370 	mutex_enter(&spa_namespace_lock);
6371 	spa_close(spa, FTAG);
6372 	mutex_exit(&spa_namespace_lock);
6373 
6374 	return (error);
6375 }
6376 
6377 int
6378 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6379 {
6380 	/*
6381 	 * We hold the namespace lock through the whole function
6382 	 * to prevent any changes to the pool while we're starting or
6383 	 * stopping initialization. The config and state locks are held so that
6384 	 * we can properly assess the vdev state before we commit to
6385 	 * the initializing operation.
6386 	 */
6387 	mutex_enter(&spa_namespace_lock);
6388 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6389 
6390 	/* Look up vdev and ensure it's a leaf. */
6391 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6392 	if (vd == NULL || vd->vdev_detached) {
6393 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6394 		mutex_exit(&spa_namespace_lock);
6395 		return (SET_ERROR(ENODEV));
6396 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6397 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6398 		mutex_exit(&spa_namespace_lock);
6399 		return (SET_ERROR(EINVAL));
6400 	} else if (!vdev_writeable(vd)) {
6401 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6402 		mutex_exit(&spa_namespace_lock);
6403 		return (SET_ERROR(EROFS));
6404 	}
6405 	mutex_enter(&vd->vdev_initialize_lock);
6406 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6407 
6408 	/*
6409 	 * When we activate an initialize action we check to see
6410 	 * if the vdev_initialize_thread is NULL. We do this instead
6411 	 * of using the vdev_initialize_state since there might be
6412 	 * a previous initialization process which has completed but
6413 	 * the thread is not exited.
6414 	 */
6415 	if (cmd_type == POOL_INITIALIZE_DO &&
6416 	    (vd->vdev_initialize_thread != NULL ||
6417 	    vd->vdev_top->vdev_removing)) {
6418 		mutex_exit(&vd->vdev_initialize_lock);
6419 		mutex_exit(&spa_namespace_lock);
6420 		return (SET_ERROR(EBUSY));
6421 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6422 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6423 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6424 		mutex_exit(&vd->vdev_initialize_lock);
6425 		mutex_exit(&spa_namespace_lock);
6426 		return (SET_ERROR(ESRCH));
6427 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6428 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6429 		mutex_exit(&vd->vdev_initialize_lock);
6430 		mutex_exit(&spa_namespace_lock);
6431 		return (SET_ERROR(ESRCH));
6432 	}
6433 
6434 	switch (cmd_type) {
6435 	case POOL_INITIALIZE_DO:
6436 		vdev_initialize(vd);
6437 		break;
6438 	case POOL_INITIALIZE_CANCEL:
6439 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6440 		break;
6441 	case POOL_INITIALIZE_SUSPEND:
6442 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6443 		break;
6444 	default:
6445 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6446 	}
6447 	mutex_exit(&vd->vdev_initialize_lock);
6448 
6449 	/* Sync out the initializing state */
6450 	txg_wait_synced(spa->spa_dsl_pool, 0);
6451 	mutex_exit(&spa_namespace_lock);
6452 
6453 	return (0);
6454 }
6455 
6456 
6457 /*
6458  * Split a set of devices from their mirrors, and create a new pool from them.
6459  */
6460 int
6461 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6462     nvlist_t *props, boolean_t exp)
6463 {
6464 	int error = 0;
6465 	uint64_t txg, *glist;
6466 	spa_t *newspa;
6467 	uint_t c, children, lastlog;
6468 	nvlist_t **child, *nvl, *tmp;
6469 	dmu_tx_t *tx;
6470 	char *altroot = NULL;
6471 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6472 	boolean_t activate_slog;
6473 
6474 	ASSERT(spa_writeable(spa));
6475 
6476 	txg = spa_vdev_enter(spa);
6477 
6478 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6479 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6480 		error = (spa_has_checkpoint(spa)) ?
6481 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6482 		return (spa_vdev_exit(spa, NULL, txg, error));
6483 	}
6484 
6485 	/* clear the log and flush everything up to now */
6486 	activate_slog = spa_passivate_log(spa);
6487 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6488 	error = spa_reset_logs(spa);
6489 	txg = spa_vdev_config_enter(spa);
6490 
6491 	if (activate_slog)
6492 		spa_activate_log(spa);
6493 
6494 	if (error != 0)
6495 		return (spa_vdev_exit(spa, NULL, txg, error));
6496 
6497 	/* check new spa name before going any further */
6498 	if (spa_lookup(newname) != NULL)
6499 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6500 
6501 	/*
6502 	 * scan through all the children to ensure they're all mirrors
6503 	 */
6504 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6505 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6506 	    &children) != 0)
6507 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6508 
6509 	/* first, check to ensure we've got the right child count */
6510 	rvd = spa->spa_root_vdev;
6511 	lastlog = 0;
6512 	for (c = 0; c < rvd->vdev_children; c++) {
6513 		vdev_t *vd = rvd->vdev_child[c];
6514 
6515 		/* don't count the holes & logs as children */
6516 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6517 			if (lastlog == 0)
6518 				lastlog = c;
6519 			continue;
6520 		}
6521 
6522 		lastlog = 0;
6523 	}
6524 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6525 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6526 
6527 	/* next, ensure no spare or cache devices are part of the split */
6528 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6529 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6530 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6531 
6532 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6533 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6534 
6535 	/* then, loop over each vdev and validate it */
6536 	for (c = 0; c < children; c++) {
6537 		uint64_t is_hole = 0;
6538 
6539 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6540 		    &is_hole);
6541 
6542 		if (is_hole != 0) {
6543 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6544 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6545 				continue;
6546 			} else {
6547 				error = SET_ERROR(EINVAL);
6548 				break;
6549 			}
6550 		}
6551 
6552 		/* which disk is going to be split? */
6553 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6554 		    &glist[c]) != 0) {
6555 			error = SET_ERROR(EINVAL);
6556 			break;
6557 		}
6558 
6559 		/* look it up in the spa */
6560 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6561 		if (vml[c] == NULL) {
6562 			error = SET_ERROR(ENODEV);
6563 			break;
6564 		}
6565 
6566 		/* make sure there's nothing stopping the split */
6567 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6568 		    vml[c]->vdev_islog ||
6569 		    !vdev_is_concrete(vml[c]) ||
6570 		    vml[c]->vdev_isspare ||
6571 		    vml[c]->vdev_isl2cache ||
6572 		    !vdev_writeable(vml[c]) ||
6573 		    vml[c]->vdev_children != 0 ||
6574 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6575 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6576 			error = SET_ERROR(EINVAL);
6577 			break;
6578 		}
6579 
6580 		if (vdev_dtl_required(vml[c])) {
6581 			error = SET_ERROR(EBUSY);
6582 			break;
6583 		}
6584 
6585 		/* we need certain info from the top level */
6586 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6587 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6588 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6589 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6590 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6591 		    vml[c]->vdev_top->vdev_asize) == 0);
6592 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6593 		    vml[c]->vdev_top->vdev_ashift) == 0);
6594 
6595 		/* transfer per-vdev ZAPs */
6596 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6597 		VERIFY0(nvlist_add_uint64(child[c],
6598 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6599 
6600 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6601 		VERIFY0(nvlist_add_uint64(child[c],
6602 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6603 		    vml[c]->vdev_parent->vdev_top_zap));
6604 	}
6605 
6606 	if (error != 0) {
6607 		kmem_free(vml, children * sizeof (vdev_t *));
6608 		kmem_free(glist, children * sizeof (uint64_t));
6609 		return (spa_vdev_exit(spa, NULL, txg, error));
6610 	}
6611 
6612 	/* stop writers from using the disks */
6613 	for (c = 0; c < children; c++) {
6614 		if (vml[c] != NULL)
6615 			vml[c]->vdev_offline = B_TRUE;
6616 	}
6617 	vdev_reopen(spa->spa_root_vdev);
6618 
6619 	/*
6620 	 * Temporarily record the splitting vdevs in the spa config.  This
6621 	 * will disappear once the config is regenerated.
6622 	 */
6623 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6624 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6625 	    glist, children) == 0);
6626 	kmem_free(glist, children * sizeof (uint64_t));
6627 
6628 	mutex_enter(&spa->spa_props_lock);
6629 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6630 	    nvl) == 0);
6631 	mutex_exit(&spa->spa_props_lock);
6632 	spa->spa_config_splitting = nvl;
6633 	vdev_config_dirty(spa->spa_root_vdev);
6634 
6635 	/* configure and create the new pool */
6636 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6637 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6638 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6639 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6640 	    spa_version(spa)) == 0);
6641 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6642 	    spa->spa_config_txg) == 0);
6643 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6644 	    spa_generate_guid(NULL)) == 0);
6645 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6646 	(void) nvlist_lookup_string(props,
6647 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6648 
6649 	/* add the new pool to the namespace */
6650 	newspa = spa_add(newname, config, altroot);
6651 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6652 	newspa->spa_config_txg = spa->spa_config_txg;
6653 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6654 
6655 	/* release the spa config lock, retaining the namespace lock */
6656 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6657 
6658 	if (zio_injection_enabled)
6659 		zio_handle_panic_injection(spa, FTAG, 1);
6660 
6661 	spa_activate(newspa, spa_mode_global);
6662 	spa_async_suspend(newspa);
6663 
6664 	for (c = 0; c < children; c++) {
6665 		if (vml[c] != NULL) {
6666 			/*
6667 			 * Temporarily stop the initializing activity. We set
6668 			 * the state to ACTIVE so that we know to resume
6669 			 * the initializing once the split has completed.
6670 			 */
6671 			mutex_enter(&vml[c]->vdev_initialize_lock);
6672 			vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6673 			mutex_exit(&vml[c]->vdev_initialize_lock);
6674 		}
6675 	}
6676 
6677 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6678 
6679 	/* create the new pool from the disks of the original pool */
6680 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6681 	if (error)
6682 		goto out;
6683 
6684 	/* if that worked, generate a real config for the new pool */
6685 	if (newspa->spa_root_vdev != NULL) {
6686 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6687 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6688 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6689 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6690 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6691 		    B_TRUE));
6692 	}
6693 
6694 	/* set the props */
6695 	if (props != NULL) {
6696 		spa_configfile_set(newspa, props, B_FALSE);
6697 		error = spa_prop_set(newspa, props);
6698 		if (error)
6699 			goto out;
6700 	}
6701 
6702 	/* flush everything */
6703 	txg = spa_vdev_config_enter(newspa);
6704 	vdev_config_dirty(newspa->spa_root_vdev);
6705 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6706 
6707 	if (zio_injection_enabled)
6708 		zio_handle_panic_injection(spa, FTAG, 2);
6709 
6710 	spa_async_resume(newspa);
6711 
6712 	/* finally, update the original pool's config */
6713 	txg = spa_vdev_config_enter(spa);
6714 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6715 	error = dmu_tx_assign(tx, TXG_WAIT);
6716 	if (error != 0)
6717 		dmu_tx_abort(tx);
6718 	for (c = 0; c < children; c++) {
6719 		if (vml[c] != NULL) {
6720 			vdev_split(vml[c]);
6721 			if (error == 0)
6722 				spa_history_log_internal(spa, "detach", tx,
6723 				    "vdev=%s", vml[c]->vdev_path);
6724 
6725 			vdev_free(vml[c]);
6726 		}
6727 	}
6728 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6729 	vdev_config_dirty(spa->spa_root_vdev);
6730 	spa->spa_config_splitting = NULL;
6731 	nvlist_free(nvl);
6732 	if (error == 0)
6733 		dmu_tx_commit(tx);
6734 	(void) spa_vdev_exit(spa, NULL, txg, 0);
6735 
6736 	if (zio_injection_enabled)
6737 		zio_handle_panic_injection(spa, FTAG, 3);
6738 
6739 	/* split is complete; log a history record */
6740 	spa_history_log_internal(newspa, "split", NULL,
6741 	    "from pool %s", spa_name(spa));
6742 
6743 	kmem_free(vml, children * sizeof (vdev_t *));
6744 
6745 	/* if we're not going to mount the filesystems in userland, export */
6746 	if (exp)
6747 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6748 		    B_FALSE, B_FALSE);
6749 
6750 	return (error);
6751 
6752 out:
6753 	spa_unload(newspa);
6754 	spa_deactivate(newspa);
6755 	spa_remove(newspa);
6756 
6757 	txg = spa_vdev_config_enter(spa);
6758 
6759 	/* re-online all offlined disks */
6760 	for (c = 0; c < children; c++) {
6761 		if (vml[c] != NULL)
6762 			vml[c]->vdev_offline = B_FALSE;
6763 	}
6764 
6765 	/* restart initializing disks as necessary */
6766 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6767 
6768 	vdev_reopen(spa->spa_root_vdev);
6769 
6770 	nvlist_free(spa->spa_config_splitting);
6771 	spa->spa_config_splitting = NULL;
6772 	(void) spa_vdev_exit(spa, NULL, txg, error);
6773 
6774 	kmem_free(vml, children * sizeof (vdev_t *));
6775 	return (error);
6776 }
6777 
6778 /*
6779  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6780  * currently spared, so we can detach it.
6781  */
6782 static vdev_t *
6783 spa_vdev_resilver_done_hunt(vdev_t *vd)
6784 {
6785 	vdev_t *newvd, *oldvd;
6786 
6787 	for (int c = 0; c < vd->vdev_children; c++) {
6788 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6789 		if (oldvd != NULL)
6790 			return (oldvd);
6791 	}
6792 
6793 	/*
6794 	 * Check for a completed replacement.  We always consider the first
6795 	 * vdev in the list to be the oldest vdev, and the last one to be
6796 	 * the newest (see spa_vdev_attach() for how that works).  In
6797 	 * the case where the newest vdev is faulted, we will not automatically
6798 	 * remove it after a resilver completes.  This is OK as it will require
6799 	 * user intervention to determine which disk the admin wishes to keep.
6800 	 */
6801 	if (vd->vdev_ops == &vdev_replacing_ops) {
6802 		ASSERT(vd->vdev_children > 1);
6803 
6804 		newvd = vd->vdev_child[vd->vdev_children - 1];
6805 		oldvd = vd->vdev_child[0];
6806 
6807 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6808 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6809 		    !vdev_dtl_required(oldvd))
6810 			return (oldvd);
6811 	}
6812 
6813 	/*
6814 	 * Check for a completed resilver with the 'unspare' flag set.
6815 	 * Also potentially update faulted state.
6816 	 */
6817 	if (vd->vdev_ops == &vdev_spare_ops) {
6818 		vdev_t *first = vd->vdev_child[0];
6819 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6820 
6821 		if (last->vdev_unspare) {
6822 			oldvd = first;
6823 			newvd = last;
6824 		} else if (first->vdev_unspare) {
6825 			oldvd = last;
6826 			newvd = first;
6827 		} else {
6828 			oldvd = NULL;
6829 		}
6830 
6831 		if (oldvd != NULL &&
6832 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6833 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6834 		    !vdev_dtl_required(oldvd))
6835 			return (oldvd);
6836 
6837 		vdev_propagate_state(vd);
6838 
6839 		/*
6840 		 * If there are more than two spares attached to a disk,
6841 		 * and those spares are not required, then we want to
6842 		 * attempt to free them up now so that they can be used
6843 		 * by other pools.  Once we're back down to a single
6844 		 * disk+spare, we stop removing them.
6845 		 */
6846 		if (vd->vdev_children > 2) {
6847 			newvd = vd->vdev_child[1];
6848 
6849 			if (newvd->vdev_isspare && last->vdev_isspare &&
6850 			    vdev_dtl_empty(last, DTL_MISSING) &&
6851 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6852 			    !vdev_dtl_required(newvd))
6853 				return (newvd);
6854 		}
6855 	}
6856 
6857 	return (NULL);
6858 }
6859 
6860 static void
6861 spa_vdev_resilver_done(spa_t *spa)
6862 {
6863 	vdev_t *vd, *pvd, *ppvd;
6864 	uint64_t guid, sguid, pguid, ppguid;
6865 
6866 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6867 
6868 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6869 		pvd = vd->vdev_parent;
6870 		ppvd = pvd->vdev_parent;
6871 		guid = vd->vdev_guid;
6872 		pguid = pvd->vdev_guid;
6873 		ppguid = ppvd->vdev_guid;
6874 		sguid = 0;
6875 		/*
6876 		 * If we have just finished replacing a hot spared device, then
6877 		 * we need to detach the parent's first child (the original hot
6878 		 * spare) as well.
6879 		 */
6880 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6881 		    ppvd->vdev_children == 2) {
6882 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6883 			sguid = ppvd->vdev_child[1]->vdev_guid;
6884 		}
6885 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6886 
6887 		spa_config_exit(spa, SCL_ALL, FTAG);
6888 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6889 			return;
6890 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6891 			return;
6892 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6893 	}
6894 
6895 	spa_config_exit(spa, SCL_ALL, FTAG);
6896 }
6897 
6898 /*
6899  * Update the stored path or FRU for this vdev.
6900  */
6901 int
6902 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6903     boolean_t ispath)
6904 {
6905 	vdev_t *vd;
6906 	boolean_t sync = B_FALSE;
6907 
6908 	ASSERT(spa_writeable(spa));
6909 
6910 	spa_vdev_state_enter(spa, SCL_ALL);
6911 
6912 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6913 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6914 
6915 	if (!vd->vdev_ops->vdev_op_leaf)
6916 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6917 
6918 	if (ispath) {
6919 		if (strcmp(value, vd->vdev_path) != 0) {
6920 			spa_strfree(vd->vdev_path);
6921 			vd->vdev_path = spa_strdup(value);
6922 			sync = B_TRUE;
6923 		}
6924 	} else {
6925 		if (vd->vdev_fru == NULL) {
6926 			vd->vdev_fru = spa_strdup(value);
6927 			sync = B_TRUE;
6928 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6929 			spa_strfree(vd->vdev_fru);
6930 			vd->vdev_fru = spa_strdup(value);
6931 			sync = B_TRUE;
6932 		}
6933 	}
6934 
6935 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6936 }
6937 
6938 int
6939 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6940 {
6941 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6942 }
6943 
6944 int
6945 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6946 {
6947 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6948 }
6949 
6950 /*
6951  * ==========================================================================
6952  * SPA Scanning
6953  * ==========================================================================
6954  */
6955 int
6956 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6957 {
6958 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6959 
6960 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6961 		return (SET_ERROR(EBUSY));
6962 
6963 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6964 }
6965 
6966 int
6967 spa_scan_stop(spa_t *spa)
6968 {
6969 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6970 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6971 		return (SET_ERROR(EBUSY));
6972 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6973 }
6974 
6975 int
6976 spa_scan(spa_t *spa, pool_scan_func_t func)
6977 {
6978 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6979 
6980 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6981 		return (SET_ERROR(ENOTSUP));
6982 
6983 	/*
6984 	 * If a resilver was requested, but there is no DTL on a
6985 	 * writeable leaf device, we have nothing to do.
6986 	 */
6987 	if (func == POOL_SCAN_RESILVER &&
6988 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6989 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6990 		return (0);
6991 	}
6992 
6993 	return (dsl_scan(spa->spa_dsl_pool, func));
6994 }
6995 
6996 /*
6997  * ==========================================================================
6998  * SPA async task processing
6999  * ==========================================================================
7000  */
7001 
7002 static void
7003 spa_async_remove(spa_t *spa, vdev_t *vd)
7004 {
7005 	if (vd->vdev_remove_wanted) {
7006 		vd->vdev_remove_wanted = B_FALSE;
7007 		vd->vdev_delayed_close = B_FALSE;
7008 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7009 
7010 		/*
7011 		 * We want to clear the stats, but we don't want to do a full
7012 		 * vdev_clear() as that will cause us to throw away
7013 		 * degraded/faulted state as well as attempt to reopen the
7014 		 * device, all of which is a waste.
7015 		 */
7016 		vd->vdev_stat.vs_read_errors = 0;
7017 		vd->vdev_stat.vs_write_errors = 0;
7018 		vd->vdev_stat.vs_checksum_errors = 0;
7019 
7020 		vdev_state_dirty(vd->vdev_top);
7021 	}
7022 
7023 	for (int c = 0; c < vd->vdev_children; c++)
7024 		spa_async_remove(spa, vd->vdev_child[c]);
7025 }
7026 
7027 static void
7028 spa_async_probe(spa_t *spa, vdev_t *vd)
7029 {
7030 	if (vd->vdev_probe_wanted) {
7031 		vd->vdev_probe_wanted = B_FALSE;
7032 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7033 	}
7034 
7035 	for (int c = 0; c < vd->vdev_children; c++)
7036 		spa_async_probe(spa, vd->vdev_child[c]);
7037 }
7038 
7039 static void
7040 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7041 {
7042 	sysevent_id_t eid;
7043 	nvlist_t *attr;
7044 	char *physpath;
7045 
7046 	if (!spa->spa_autoexpand)
7047 		return;
7048 
7049 	for (int c = 0; c < vd->vdev_children; c++) {
7050 		vdev_t *cvd = vd->vdev_child[c];
7051 		spa_async_autoexpand(spa, cvd);
7052 	}
7053 
7054 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7055 		return;
7056 
7057 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7058 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7059 
7060 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7061 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7062 
7063 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7064 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7065 
7066 	nvlist_free(attr);
7067 	kmem_free(physpath, MAXPATHLEN);
7068 }
7069 
7070 static void
7071 spa_async_thread(void *arg)
7072 {
7073 	spa_t *spa = (spa_t *)arg;
7074 	int tasks;
7075 
7076 	ASSERT(spa->spa_sync_on);
7077 
7078 	mutex_enter(&spa->spa_async_lock);
7079 	tasks = spa->spa_async_tasks;
7080 	spa->spa_async_tasks = 0;
7081 	mutex_exit(&spa->spa_async_lock);
7082 
7083 	/*
7084 	 * See if the config needs to be updated.
7085 	 */
7086 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7087 		uint64_t old_space, new_space;
7088 
7089 		mutex_enter(&spa_namespace_lock);
7090 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7091 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7092 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7093 		mutex_exit(&spa_namespace_lock);
7094 
7095 		/*
7096 		 * If the pool grew as a result of the config update,
7097 		 * then log an internal history event.
7098 		 */
7099 		if (new_space != old_space) {
7100 			spa_history_log_internal(spa, "vdev online", NULL,
7101 			    "pool '%s' size: %llu(+%llu)",
7102 			    spa_name(spa), new_space, new_space - old_space);
7103 		}
7104 	}
7105 
7106 	/*
7107 	 * See if any devices need to be marked REMOVED.
7108 	 */
7109 	if (tasks & SPA_ASYNC_REMOVE) {
7110 		spa_vdev_state_enter(spa, SCL_NONE);
7111 		spa_async_remove(spa, spa->spa_root_vdev);
7112 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7113 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7114 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7115 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7116 		(void) spa_vdev_state_exit(spa, NULL, 0);
7117 	}
7118 
7119 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7120 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7121 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7122 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7123 	}
7124 
7125 	/*
7126 	 * See if any devices need to be probed.
7127 	 */
7128 	if (tasks & SPA_ASYNC_PROBE) {
7129 		spa_vdev_state_enter(spa, SCL_NONE);
7130 		spa_async_probe(spa, spa->spa_root_vdev);
7131 		(void) spa_vdev_state_exit(spa, NULL, 0);
7132 	}
7133 
7134 	/*
7135 	 * If any devices are done replacing, detach them.
7136 	 */
7137 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7138 		spa_vdev_resilver_done(spa);
7139 
7140 	/*
7141 	 * Kick off a resilver.
7142 	 */
7143 	if (tasks & SPA_ASYNC_RESILVER)
7144 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
7145 
7146 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7147 		mutex_enter(&spa_namespace_lock);
7148 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7149 		vdev_initialize_restart(spa->spa_root_vdev);
7150 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7151 		mutex_exit(&spa_namespace_lock);
7152 	}
7153 
7154 	/*
7155 	 * Let the world know that we're done.
7156 	 */
7157 	mutex_enter(&spa->spa_async_lock);
7158 	spa->spa_async_thread = NULL;
7159 	cv_broadcast(&spa->spa_async_cv);
7160 	mutex_exit(&spa->spa_async_lock);
7161 	thread_exit();
7162 }
7163 
7164 void
7165 spa_async_suspend(spa_t *spa)
7166 {
7167 	mutex_enter(&spa->spa_async_lock);
7168 	spa->spa_async_suspended++;
7169 	while (spa->spa_async_thread != NULL)
7170 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7171 	mutex_exit(&spa->spa_async_lock);
7172 
7173 	spa_vdev_remove_suspend(spa);
7174 
7175 	zthr_t *condense_thread = spa->spa_condense_zthr;
7176 	if (condense_thread != NULL && zthr_isrunning(condense_thread))
7177 		VERIFY0(zthr_cancel(condense_thread));
7178 
7179 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7180 	if (discard_thread != NULL && zthr_isrunning(discard_thread))
7181 		VERIFY0(zthr_cancel(discard_thread));
7182 }
7183 
7184 void
7185 spa_async_resume(spa_t *spa)
7186 {
7187 	mutex_enter(&spa->spa_async_lock);
7188 	ASSERT(spa->spa_async_suspended != 0);
7189 	spa->spa_async_suspended--;
7190 	mutex_exit(&spa->spa_async_lock);
7191 	spa_restart_removal(spa);
7192 
7193 	zthr_t *condense_thread = spa->spa_condense_zthr;
7194 	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
7195 		zthr_resume(condense_thread);
7196 
7197 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7198 	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
7199 		zthr_resume(discard_thread);
7200 }
7201 
7202 static boolean_t
7203 spa_async_tasks_pending(spa_t *spa)
7204 {
7205 	uint_t non_config_tasks;
7206 	uint_t config_task;
7207 	boolean_t config_task_suspended;
7208 
7209 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7210 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7211 	if (spa->spa_ccw_fail_time == 0) {
7212 		config_task_suspended = B_FALSE;
7213 	} else {
7214 		config_task_suspended =
7215 		    (gethrtime() - spa->spa_ccw_fail_time) <
7216 		    (zfs_ccw_retry_interval * NANOSEC);
7217 	}
7218 
7219 	return (non_config_tasks || (config_task && !config_task_suspended));
7220 }
7221 
7222 static void
7223 spa_async_dispatch(spa_t *spa)
7224 {
7225 	mutex_enter(&spa->spa_async_lock);
7226 	if (spa_async_tasks_pending(spa) &&
7227 	    !spa->spa_async_suspended &&
7228 	    spa->spa_async_thread == NULL &&
7229 	    rootdir != NULL)
7230 		spa->spa_async_thread = thread_create(NULL, 0,
7231 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7232 	mutex_exit(&spa->spa_async_lock);
7233 }
7234 
7235 void
7236 spa_async_request(spa_t *spa, int task)
7237 {
7238 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7239 	mutex_enter(&spa->spa_async_lock);
7240 	spa->spa_async_tasks |= task;
7241 	mutex_exit(&spa->spa_async_lock);
7242 }
7243 
7244 /*
7245  * ==========================================================================
7246  * SPA syncing routines
7247  * ==========================================================================
7248  */
7249 
7250 static int
7251 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7252 {
7253 	bpobj_t *bpo = arg;
7254 	bpobj_enqueue(bpo, bp, tx);
7255 	return (0);
7256 }
7257 
7258 static int
7259 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7260 {
7261 	zio_t *zio = arg;
7262 
7263 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7264 	    zio->io_flags));
7265 	return (0);
7266 }
7267 
7268 /*
7269  * Note: this simple function is not inlined to make it easier to dtrace the
7270  * amount of time spent syncing frees.
7271  */
7272 static void
7273 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7274 {
7275 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7276 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7277 	VERIFY(zio_wait(zio) == 0);
7278 }
7279 
7280 /*
7281  * Note: this simple function is not inlined to make it easier to dtrace the
7282  * amount of time spent syncing deferred frees.
7283  */
7284 static void
7285 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7286 {
7287 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7288 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7289 	    spa_free_sync_cb, zio, tx), ==, 0);
7290 	VERIFY0(zio_wait(zio));
7291 }
7292 
7293 
7294 static void
7295 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7296 {
7297 	char *packed = NULL;
7298 	size_t bufsize;
7299 	size_t nvsize = 0;
7300 	dmu_buf_t *db;
7301 
7302 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7303 
7304 	/*
7305 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7306 	 * information.  This avoids the dmu_buf_will_dirty() path and
7307 	 * saves us a pre-read to get data we don't actually care about.
7308 	 */
7309 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7310 	packed = kmem_alloc(bufsize, KM_SLEEP);
7311 
7312 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7313 	    KM_SLEEP) == 0);
7314 	bzero(packed + nvsize, bufsize - nvsize);
7315 
7316 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7317 
7318 	kmem_free(packed, bufsize);
7319 
7320 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7321 	dmu_buf_will_dirty(db, tx);
7322 	*(uint64_t *)db->db_data = nvsize;
7323 	dmu_buf_rele(db, FTAG);
7324 }
7325 
7326 static void
7327 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7328     const char *config, const char *entry)
7329 {
7330 	nvlist_t *nvroot;
7331 	nvlist_t **list;
7332 	int i;
7333 
7334 	if (!sav->sav_sync)
7335 		return;
7336 
7337 	/*
7338 	 * Update the MOS nvlist describing the list of available devices.
7339 	 * spa_validate_aux() will have already made sure this nvlist is
7340 	 * valid and the vdevs are labeled appropriately.
7341 	 */
7342 	if (sav->sav_object == 0) {
7343 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7344 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7345 		    sizeof (uint64_t), tx);
7346 		VERIFY(zap_update(spa->spa_meta_objset,
7347 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7348 		    &sav->sav_object, tx) == 0);
7349 	}
7350 
7351 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7352 	if (sav->sav_count == 0) {
7353 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7354 	} else {
7355 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7356 		for (i = 0; i < sav->sav_count; i++)
7357 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7358 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7359 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7360 		    sav->sav_count) == 0);
7361 		for (i = 0; i < sav->sav_count; i++)
7362 			nvlist_free(list[i]);
7363 		kmem_free(list, sav->sav_count * sizeof (void *));
7364 	}
7365 
7366 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7367 	nvlist_free(nvroot);
7368 
7369 	sav->sav_sync = B_FALSE;
7370 }
7371 
7372 /*
7373  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7374  * The all-vdev ZAP must be empty.
7375  */
7376 static void
7377 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7378 {
7379 	spa_t *spa = vd->vdev_spa;
7380 	if (vd->vdev_top_zap != 0) {
7381 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7382 		    vd->vdev_top_zap, tx));
7383 	}
7384 	if (vd->vdev_leaf_zap != 0) {
7385 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7386 		    vd->vdev_leaf_zap, tx));
7387 	}
7388 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7389 		spa_avz_build(vd->vdev_child[i], avz, tx);
7390 	}
7391 }
7392 
7393 static void
7394 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7395 {
7396 	nvlist_t *config;
7397 
7398 	/*
7399 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7400 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7401 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7402 	 * need to rebuild the AVZ although the config may not be dirty.
7403 	 */
7404 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7405 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7406 		return;
7407 
7408 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7409 
7410 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7411 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7412 	    spa->spa_all_vdev_zaps != 0);
7413 
7414 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7415 		/* Make and build the new AVZ */
7416 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7417 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7418 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7419 
7420 		/* Diff old AVZ with new one */
7421 		zap_cursor_t zc;
7422 		zap_attribute_t za;
7423 
7424 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7425 		    spa->spa_all_vdev_zaps);
7426 		    zap_cursor_retrieve(&zc, &za) == 0;
7427 		    zap_cursor_advance(&zc)) {
7428 			uint64_t vdzap = za.za_first_integer;
7429 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7430 			    vdzap) == ENOENT) {
7431 				/*
7432 				 * ZAP is listed in old AVZ but not in new one;
7433 				 * destroy it
7434 				 */
7435 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7436 				    tx));
7437 			}
7438 		}
7439 
7440 		zap_cursor_fini(&zc);
7441 
7442 		/* Destroy the old AVZ */
7443 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7444 		    spa->spa_all_vdev_zaps, tx));
7445 
7446 		/* Replace the old AVZ in the dir obj with the new one */
7447 		VERIFY0(zap_update(spa->spa_meta_objset,
7448 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7449 		    sizeof (new_avz), 1, &new_avz, tx));
7450 
7451 		spa->spa_all_vdev_zaps = new_avz;
7452 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7453 		zap_cursor_t zc;
7454 		zap_attribute_t za;
7455 
7456 		/* Walk through the AVZ and destroy all listed ZAPs */
7457 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7458 		    spa->spa_all_vdev_zaps);
7459 		    zap_cursor_retrieve(&zc, &za) == 0;
7460 		    zap_cursor_advance(&zc)) {
7461 			uint64_t zap = za.za_first_integer;
7462 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7463 		}
7464 
7465 		zap_cursor_fini(&zc);
7466 
7467 		/* Destroy and unlink the AVZ itself */
7468 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7469 		    spa->spa_all_vdev_zaps, tx));
7470 		VERIFY0(zap_remove(spa->spa_meta_objset,
7471 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7472 		spa->spa_all_vdev_zaps = 0;
7473 	}
7474 
7475 	if (spa->spa_all_vdev_zaps == 0) {
7476 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7477 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7478 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7479 	}
7480 	spa->spa_avz_action = AVZ_ACTION_NONE;
7481 
7482 	/* Create ZAPs for vdevs that don't have them. */
7483 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7484 
7485 	config = spa_config_generate(spa, spa->spa_root_vdev,
7486 	    dmu_tx_get_txg(tx), B_FALSE);
7487 
7488 	/*
7489 	 * If we're upgrading the spa version then make sure that
7490 	 * the config object gets updated with the correct version.
7491 	 */
7492 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7493 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7494 		    spa->spa_uberblock.ub_version);
7495 
7496 	spa_config_exit(spa, SCL_STATE, FTAG);
7497 
7498 	nvlist_free(spa->spa_config_syncing);
7499 	spa->spa_config_syncing = config;
7500 
7501 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7502 }
7503 
7504 static void
7505 spa_sync_version(void *arg, dmu_tx_t *tx)
7506 {
7507 	uint64_t *versionp = arg;
7508 	uint64_t version = *versionp;
7509 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7510 
7511 	/*
7512 	 * Setting the version is special cased when first creating the pool.
7513 	 */
7514 	ASSERT(tx->tx_txg != TXG_INITIAL);
7515 
7516 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7517 	ASSERT(version >= spa_version(spa));
7518 
7519 	spa->spa_uberblock.ub_version = version;
7520 	vdev_config_dirty(spa->spa_root_vdev);
7521 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7522 }
7523 
7524 /*
7525  * Set zpool properties.
7526  */
7527 static void
7528 spa_sync_props(void *arg, dmu_tx_t *tx)
7529 {
7530 	nvlist_t *nvp = arg;
7531 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7532 	objset_t *mos = spa->spa_meta_objset;
7533 	nvpair_t *elem = NULL;
7534 
7535 	mutex_enter(&spa->spa_props_lock);
7536 
7537 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7538 		uint64_t intval;
7539 		char *strval, *fname;
7540 		zpool_prop_t prop;
7541 		const char *propname;
7542 		zprop_type_t proptype;
7543 		spa_feature_t fid;
7544 
7545 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7546 		case ZPOOL_PROP_INVAL:
7547 			/*
7548 			 * We checked this earlier in spa_prop_validate().
7549 			 */
7550 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7551 
7552 			fname = strchr(nvpair_name(elem), '@') + 1;
7553 			VERIFY0(zfeature_lookup_name(fname, &fid));
7554 
7555 			spa_feature_enable(spa, fid, tx);
7556 			spa_history_log_internal(spa, "set", tx,
7557 			    "%s=enabled", nvpair_name(elem));
7558 			break;
7559 
7560 		case ZPOOL_PROP_VERSION:
7561 			intval = fnvpair_value_uint64(elem);
7562 			/*
7563 			 * The version is synced seperatly before other
7564 			 * properties and should be correct by now.
7565 			 */
7566 			ASSERT3U(spa_version(spa), >=, intval);
7567 			break;
7568 
7569 		case ZPOOL_PROP_ALTROOT:
7570 			/*
7571 			 * 'altroot' is a non-persistent property. It should
7572 			 * have been set temporarily at creation or import time.
7573 			 */
7574 			ASSERT(spa->spa_root != NULL);
7575 			break;
7576 
7577 		case ZPOOL_PROP_READONLY:
7578 		case ZPOOL_PROP_CACHEFILE:
7579 			/*
7580 			 * 'readonly' and 'cachefile' are also non-persisitent
7581 			 * properties.
7582 			 */
7583 			break;
7584 		case ZPOOL_PROP_COMMENT:
7585 			strval = fnvpair_value_string(elem);
7586 			if (spa->spa_comment != NULL)
7587 				spa_strfree(spa->spa_comment);
7588 			spa->spa_comment = spa_strdup(strval);
7589 			/*
7590 			 * We need to dirty the configuration on all the vdevs
7591 			 * so that their labels get updated.  It's unnecessary
7592 			 * to do this for pool creation since the vdev's
7593 			 * configuratoin has already been dirtied.
7594 			 */
7595 			if (tx->tx_txg != TXG_INITIAL)
7596 				vdev_config_dirty(spa->spa_root_vdev);
7597 			spa_history_log_internal(spa, "set", tx,
7598 			    "%s=%s", nvpair_name(elem), strval);
7599 			break;
7600 		default:
7601 			/*
7602 			 * Set pool property values in the poolprops mos object.
7603 			 */
7604 			if (spa->spa_pool_props_object == 0) {
7605 				spa->spa_pool_props_object =
7606 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7607 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7608 				    tx);
7609 			}
7610 
7611 			/* normalize the property name */
7612 			propname = zpool_prop_to_name(prop);
7613 			proptype = zpool_prop_get_type(prop);
7614 
7615 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7616 				ASSERT(proptype == PROP_TYPE_STRING);
7617 				strval = fnvpair_value_string(elem);
7618 				VERIFY0(zap_update(mos,
7619 				    spa->spa_pool_props_object, propname,
7620 				    1, strlen(strval) + 1, strval, tx));
7621 				spa_history_log_internal(spa, "set", tx,
7622 				    "%s=%s", nvpair_name(elem), strval);
7623 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7624 				intval = fnvpair_value_uint64(elem);
7625 
7626 				if (proptype == PROP_TYPE_INDEX) {
7627 					const char *unused;
7628 					VERIFY0(zpool_prop_index_to_string(
7629 					    prop, intval, &unused));
7630 				}
7631 				VERIFY0(zap_update(mos,
7632 				    spa->spa_pool_props_object, propname,
7633 				    8, 1, &intval, tx));
7634 				spa_history_log_internal(spa, "set", tx,
7635 				    "%s=%lld", nvpair_name(elem), intval);
7636 			} else {
7637 				ASSERT(0); /* not allowed */
7638 			}
7639 
7640 			switch (prop) {
7641 			case ZPOOL_PROP_DELEGATION:
7642 				spa->spa_delegation = intval;
7643 				break;
7644 			case ZPOOL_PROP_BOOTFS:
7645 				spa->spa_bootfs = intval;
7646 				break;
7647 			case ZPOOL_PROP_FAILUREMODE:
7648 				spa->spa_failmode = intval;
7649 				break;
7650 			case ZPOOL_PROP_AUTOEXPAND:
7651 				spa->spa_autoexpand = intval;
7652 				if (tx->tx_txg != TXG_INITIAL)
7653 					spa_async_request(spa,
7654 					    SPA_ASYNC_AUTOEXPAND);
7655 				break;
7656 			case ZPOOL_PROP_MULTIHOST:
7657 				spa->spa_multihost = intval;
7658 				break;
7659 			case ZPOOL_PROP_DEDUPDITTO:
7660 				spa->spa_dedup_ditto = intval;
7661 				break;
7662 			default:
7663 				break;
7664 			}
7665 		}
7666 
7667 	}
7668 
7669 	mutex_exit(&spa->spa_props_lock);
7670 }
7671 
7672 /*
7673  * Perform one-time upgrade on-disk changes.  spa_version() does not
7674  * reflect the new version this txg, so there must be no changes this
7675  * txg to anything that the upgrade code depends on after it executes.
7676  * Therefore this must be called after dsl_pool_sync() does the sync
7677  * tasks.
7678  */
7679 static void
7680 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7681 {
7682 	dsl_pool_t *dp = spa->spa_dsl_pool;
7683 
7684 	ASSERT(spa->spa_sync_pass == 1);
7685 
7686 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7687 
7688 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7689 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7690 		dsl_pool_create_origin(dp, tx);
7691 
7692 		/* Keeping the origin open increases spa_minref */
7693 		spa->spa_minref += 3;
7694 	}
7695 
7696 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7697 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7698 		dsl_pool_upgrade_clones(dp, tx);
7699 	}
7700 
7701 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7702 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7703 		dsl_pool_upgrade_dir_clones(dp, tx);
7704 
7705 		/* Keeping the freedir open increases spa_minref */
7706 		spa->spa_minref += 3;
7707 	}
7708 
7709 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7710 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7711 		spa_feature_create_zap_objects(spa, tx);
7712 	}
7713 
7714 	/*
7715 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7716 	 * when possibility to use lz4 compression for metadata was added
7717 	 * Old pools that have this feature enabled must be upgraded to have
7718 	 * this feature active
7719 	 */
7720 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7721 		boolean_t lz4_en = spa_feature_is_enabled(spa,
7722 		    SPA_FEATURE_LZ4_COMPRESS);
7723 		boolean_t lz4_ac = spa_feature_is_active(spa,
7724 		    SPA_FEATURE_LZ4_COMPRESS);
7725 
7726 		if (lz4_en && !lz4_ac)
7727 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7728 	}
7729 
7730 	/*
7731 	 * If we haven't written the salt, do so now.  Note that the
7732 	 * feature may not be activated yet, but that's fine since
7733 	 * the presence of this ZAP entry is backwards compatible.
7734 	 */
7735 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7736 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7737 		VERIFY0(zap_add(spa->spa_meta_objset,
7738 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7739 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7740 		    spa->spa_cksum_salt.zcs_bytes, tx));
7741 	}
7742 
7743 	rrw_exit(&dp->dp_config_rwlock, FTAG);
7744 }
7745 
7746 static void
7747 vdev_indirect_state_sync_verify(vdev_t *vd)
7748 {
7749 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7750 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7751 
7752 	if (vd->vdev_ops == &vdev_indirect_ops) {
7753 		ASSERT(vim != NULL);
7754 		ASSERT(vib != NULL);
7755 	}
7756 
7757 	if (vdev_obsolete_sm_object(vd) != 0) {
7758 		ASSERT(vd->vdev_obsolete_sm != NULL);
7759 		ASSERT(vd->vdev_removing ||
7760 		    vd->vdev_ops == &vdev_indirect_ops);
7761 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7762 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7763 
7764 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7765 		    space_map_object(vd->vdev_obsolete_sm));
7766 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7767 		    space_map_allocated(vd->vdev_obsolete_sm));
7768 	}
7769 	ASSERT(vd->vdev_obsolete_segments != NULL);
7770 
7771 	/*
7772 	 * Since frees / remaps to an indirect vdev can only
7773 	 * happen in syncing context, the obsolete segments
7774 	 * tree must be empty when we start syncing.
7775 	 */
7776 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7777 }
7778 
7779 /*
7780  * Sync the specified transaction group.  New blocks may be dirtied as
7781  * part of the process, so we iterate until it converges.
7782  */
7783 void
7784 spa_sync(spa_t *spa, uint64_t txg)
7785 {
7786 	dsl_pool_t *dp = spa->spa_dsl_pool;
7787 	objset_t *mos = spa->spa_meta_objset;
7788 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7789 	vdev_t *rvd = spa->spa_root_vdev;
7790 	vdev_t *vd;
7791 	dmu_tx_t *tx;
7792 	int error;
7793 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7794 	    zfs_vdev_queue_depth_pct / 100;
7795 
7796 	VERIFY(spa_writeable(spa));
7797 
7798 	/*
7799 	 * Wait for i/os issued in open context that need to complete
7800 	 * before this txg syncs.
7801 	 */
7802 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7803 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7804 	    ZIO_FLAG_CANFAIL);
7805 
7806 	/*
7807 	 * Lock out configuration changes.
7808 	 */
7809 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7810 
7811 	spa->spa_syncing_txg = txg;
7812 	spa->spa_sync_pass = 0;
7813 
7814 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7815 		mutex_enter(&spa->spa_alloc_locks[i]);
7816 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7817 		mutex_exit(&spa->spa_alloc_locks[i]);
7818 	}
7819 
7820 	/*
7821 	 * If there are any pending vdev state changes, convert them
7822 	 * into config changes that go out with this transaction group.
7823 	 */
7824 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7825 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7826 		/*
7827 		 * We need the write lock here because, for aux vdevs,
7828 		 * calling vdev_config_dirty() modifies sav_config.
7829 		 * This is ugly and will become unnecessary when we
7830 		 * eliminate the aux vdev wart by integrating all vdevs
7831 		 * into the root vdev tree.
7832 		 */
7833 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7834 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7835 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7836 			vdev_state_clean(vd);
7837 			vdev_config_dirty(vd);
7838 		}
7839 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7840 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7841 	}
7842 	spa_config_exit(spa, SCL_STATE, FTAG);
7843 
7844 	tx = dmu_tx_create_assigned(dp, txg);
7845 
7846 	spa->spa_sync_starttime = gethrtime();
7847 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7848 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7849 
7850 	/*
7851 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7852 	 * set spa_deflate if we have no raid-z vdevs.
7853 	 */
7854 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7855 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7856 		int i;
7857 
7858 		for (i = 0; i < rvd->vdev_children; i++) {
7859 			vd = rvd->vdev_child[i];
7860 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7861 				break;
7862 		}
7863 		if (i == rvd->vdev_children) {
7864 			spa->spa_deflate = TRUE;
7865 			VERIFY(0 == zap_add(spa->spa_meta_objset,
7866 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7867 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7868 		}
7869 	}
7870 
7871 	/*
7872 	 * Set the top-level vdev's max queue depth. Evaluate each
7873 	 * top-level's async write queue depth in case it changed.
7874 	 * The max queue depth will not change in the middle of syncing
7875 	 * out this txg.
7876 	 */
7877 	uint64_t slots_per_allocator = 0;
7878 	for (int c = 0; c < rvd->vdev_children; c++) {
7879 		vdev_t *tvd = rvd->vdev_child[c];
7880 		metaslab_group_t *mg = tvd->vdev_mg;
7881 
7882 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7883 		    !metaslab_group_initialized(mg))
7884 			continue;
7885 
7886 		/*
7887 		 * It is safe to do a lock-free check here because only async
7888 		 * allocations look at mg_max_alloc_queue_depth, and async
7889 		 * allocations all happen from spa_sync().
7890 		 */
7891 		for (int i = 0; i < spa->spa_alloc_count; i++)
7892 			ASSERT0(zfs_refcount_count(
7893 			    &(mg->mg_alloc_queue_depth[i])));
7894 		mg->mg_max_alloc_queue_depth = max_queue_depth;
7895 
7896 		for (int i = 0; i < spa->spa_alloc_count; i++) {
7897 			mg->mg_cur_max_alloc_queue_depth[i] =
7898 			    zfs_vdev_def_queue_depth;
7899 		}
7900 		slots_per_allocator += zfs_vdev_def_queue_depth;
7901 	}
7902 	metaslab_class_t *mc = spa_normal_class(spa);
7903 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7904 		ASSERT0(zfs_refcount_count(&mc->mc_alloc_slots[i]));
7905 		mc->mc_alloc_max_slots[i] = slots_per_allocator;
7906 	}
7907 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7908 
7909 	for (int c = 0; c < rvd->vdev_children; c++) {
7910 		vdev_t *vd = rvd->vdev_child[c];
7911 		vdev_indirect_state_sync_verify(vd);
7912 
7913 		if (vdev_indirect_should_condense(vd)) {
7914 			spa_condense_indirect_start_sync(vd, tx);
7915 			break;
7916 		}
7917 	}
7918 
7919 	/*
7920 	 * Iterate to convergence.
7921 	 */
7922 	do {
7923 		int pass = ++spa->spa_sync_pass;
7924 
7925 		spa_sync_config_object(spa, tx);
7926 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7927 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7928 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7929 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7930 		spa_errlog_sync(spa, txg);
7931 		dsl_pool_sync(dp, txg);
7932 
7933 		if (pass < zfs_sync_pass_deferred_free) {
7934 			spa_sync_frees(spa, free_bpl, tx);
7935 		} else {
7936 			/*
7937 			 * We can not defer frees in pass 1, because
7938 			 * we sync the deferred frees later in pass 1.
7939 			 */
7940 			ASSERT3U(pass, >, 1);
7941 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
7942 			    &spa->spa_deferred_bpobj, tx);
7943 		}
7944 
7945 		ddt_sync(spa, txg);
7946 		dsl_scan_sync(dp, tx);
7947 
7948 		if (spa->spa_vdev_removal != NULL)
7949 			svr_sync(spa, tx);
7950 
7951 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7952 		    != NULL)
7953 			vdev_sync(vd, txg);
7954 
7955 		if (pass == 1) {
7956 			spa_sync_upgrades(spa, tx);
7957 			ASSERT3U(txg, >=,
7958 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7959 			/*
7960 			 * Note: We need to check if the MOS is dirty
7961 			 * because we could have marked the MOS dirty
7962 			 * without updating the uberblock (e.g. if we
7963 			 * have sync tasks but no dirty user data).  We
7964 			 * need to check the uberblock's rootbp because
7965 			 * it is updated if we have synced out dirty
7966 			 * data (though in this case the MOS will most
7967 			 * likely also be dirty due to second order
7968 			 * effects, we don't want to rely on that here).
7969 			 */
7970 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7971 			    !dmu_objset_is_dirty(mos, txg)) {
7972 				/*
7973 				 * Nothing changed on the first pass,
7974 				 * therefore this TXG is a no-op.  Avoid
7975 				 * syncing deferred frees, so that we
7976 				 * can keep this TXG as a no-op.
7977 				 */
7978 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7979 				    txg));
7980 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7981 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7982 				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7983 				    txg));
7984 				break;
7985 			}
7986 			spa_sync_deferred_frees(spa, tx);
7987 		}
7988 
7989 	} while (dmu_objset_is_dirty(mos, txg));
7990 
7991 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7992 		/*
7993 		 * Make sure that the number of ZAPs for all the vdevs matches
7994 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7995 		 * called if the config is dirty; otherwise there may be
7996 		 * outstanding AVZ operations that weren't completed in
7997 		 * spa_sync_config_object.
7998 		 */
7999 		uint64_t all_vdev_zap_entry_count;
8000 		ASSERT0(zap_count(spa->spa_meta_objset,
8001 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8002 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8003 		    all_vdev_zap_entry_count);
8004 	}
8005 
8006 	if (spa->spa_vdev_removal != NULL) {
8007 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8008 	}
8009 
8010 	/*
8011 	 * Rewrite the vdev configuration (which includes the uberblock)
8012 	 * to commit the transaction group.
8013 	 *
8014 	 * If there are no dirty vdevs, we sync the uberblock to a few
8015 	 * random top-level vdevs that are known to be visible in the
8016 	 * config cache (see spa_vdev_add() for a complete description).
8017 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
8018 	 */
8019 	for (;;) {
8020 		/*
8021 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8022 		 * while we're attempting to write the vdev labels.
8023 		 */
8024 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8025 
8026 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8027 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8028 			int svdcount = 0;
8029 			int children = rvd->vdev_children;
8030 			int c0 = spa_get_random(children);
8031 
8032 			for (int c = 0; c < children; c++) {
8033 				vd = rvd->vdev_child[(c0 + c) % children];
8034 
8035 				/* Stop when revisiting the first vdev */
8036 				if (c > 0 && svd[0] == vd)
8037 					break;
8038 
8039 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
8040 				    !vdev_is_concrete(vd))
8041 					continue;
8042 
8043 				svd[svdcount++] = vd;
8044 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8045 					break;
8046 			}
8047 			error = vdev_config_sync(svd, svdcount, txg);
8048 		} else {
8049 			error = vdev_config_sync(rvd->vdev_child,
8050 			    rvd->vdev_children, txg);
8051 		}
8052 
8053 		if (error == 0)
8054 			spa->spa_last_synced_guid = rvd->vdev_guid;
8055 
8056 		spa_config_exit(spa, SCL_STATE, FTAG);
8057 
8058 		if (error == 0)
8059 			break;
8060 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8061 		zio_resume_wait(spa);
8062 	}
8063 	dmu_tx_commit(tx);
8064 
8065 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8066 
8067 	/*
8068 	 * Clear the dirty config list.
8069 	 */
8070 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8071 		vdev_config_clean(vd);
8072 
8073 	/*
8074 	 * Now that the new config has synced transactionally,
8075 	 * let it become visible to the config cache.
8076 	 */
8077 	if (spa->spa_config_syncing != NULL) {
8078 		spa_config_set(spa, spa->spa_config_syncing);
8079 		spa->spa_config_txg = txg;
8080 		spa->spa_config_syncing = NULL;
8081 	}
8082 
8083 	dsl_pool_sync_done(dp, txg);
8084 
8085 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8086 		mutex_enter(&spa->spa_alloc_locks[i]);
8087 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8088 		mutex_exit(&spa->spa_alloc_locks[i]);
8089 	}
8090 
8091 	/*
8092 	 * Update usable space statistics.
8093 	 */
8094 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8095 	    != NULL)
8096 		vdev_sync_done(vd, txg);
8097 
8098 	spa_update_dspace(spa);
8099 
8100 	/*
8101 	 * It had better be the case that we didn't dirty anything
8102 	 * since vdev_config_sync().
8103 	 */
8104 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8105 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8106 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8107 
8108 	while (zfs_pause_spa_sync)
8109 		delay(1);
8110 
8111 	spa->spa_sync_pass = 0;
8112 
8113 	/*
8114 	 * Update the last synced uberblock here. We want to do this at
8115 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8116 	 * will be guaranteed that all the processing associated with
8117 	 * that txg has been completed.
8118 	 */
8119 	spa->spa_ubsync = spa->spa_uberblock;
8120 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8121 
8122 	spa_handle_ignored_writes(spa);
8123 
8124 	/*
8125 	 * If any async tasks have been requested, kick them off.
8126 	 */
8127 	spa_async_dispatch(spa);
8128 }
8129 
8130 /*
8131  * Sync all pools.  We don't want to hold the namespace lock across these
8132  * operations, so we take a reference on the spa_t and drop the lock during the
8133  * sync.
8134  */
8135 void
8136 spa_sync_allpools(void)
8137 {
8138 	spa_t *spa = NULL;
8139 	mutex_enter(&spa_namespace_lock);
8140 	while ((spa = spa_next(spa)) != NULL) {
8141 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8142 		    !spa_writeable(spa) || spa_suspended(spa))
8143 			continue;
8144 		spa_open_ref(spa, FTAG);
8145 		mutex_exit(&spa_namespace_lock);
8146 		txg_wait_synced(spa_get_dsl(spa), 0);
8147 		mutex_enter(&spa_namespace_lock);
8148 		spa_close(spa, FTAG);
8149 	}
8150 	mutex_exit(&spa_namespace_lock);
8151 }
8152 
8153 /*
8154  * ==========================================================================
8155  * Miscellaneous routines
8156  * ==========================================================================
8157  */
8158 
8159 /*
8160  * Remove all pools in the system.
8161  */
8162 void
8163 spa_evict_all(void)
8164 {
8165 	spa_t *spa;
8166 
8167 	/*
8168 	 * Remove all cached state.  All pools should be closed now,
8169 	 * so every spa in the AVL tree should be unreferenced.
8170 	 */
8171 	mutex_enter(&spa_namespace_lock);
8172 	while ((spa = spa_next(NULL)) != NULL) {
8173 		/*
8174 		 * Stop async tasks.  The async thread may need to detach
8175 		 * a device that's been replaced, which requires grabbing
8176 		 * spa_namespace_lock, so we must drop it here.
8177 		 */
8178 		spa_open_ref(spa, FTAG);
8179 		mutex_exit(&spa_namespace_lock);
8180 		spa_async_suspend(spa);
8181 		mutex_enter(&spa_namespace_lock);
8182 		spa_close(spa, FTAG);
8183 
8184 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8185 			spa_unload(spa);
8186 			spa_deactivate(spa);
8187 		}
8188 		spa_remove(spa);
8189 	}
8190 	mutex_exit(&spa_namespace_lock);
8191 }
8192 
8193 vdev_t *
8194 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8195 {
8196 	vdev_t *vd;
8197 	int i;
8198 
8199 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8200 		return (vd);
8201 
8202 	if (aux) {
8203 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8204 			vd = spa->spa_l2cache.sav_vdevs[i];
8205 			if (vd->vdev_guid == guid)
8206 				return (vd);
8207 		}
8208 
8209 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8210 			vd = spa->spa_spares.sav_vdevs[i];
8211 			if (vd->vdev_guid == guid)
8212 				return (vd);
8213 		}
8214 	}
8215 
8216 	return (NULL);
8217 }
8218 
8219 void
8220 spa_upgrade(spa_t *spa, uint64_t version)
8221 {
8222 	ASSERT(spa_writeable(spa));
8223 
8224 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8225 
8226 	/*
8227 	 * This should only be called for a non-faulted pool, and since a
8228 	 * future version would result in an unopenable pool, this shouldn't be
8229 	 * possible.
8230 	 */
8231 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8232 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8233 
8234 	spa->spa_uberblock.ub_version = version;
8235 	vdev_config_dirty(spa->spa_root_vdev);
8236 
8237 	spa_config_exit(spa, SCL_ALL, FTAG);
8238 
8239 	txg_wait_synced(spa_get_dsl(spa), 0);
8240 }
8241 
8242 boolean_t
8243 spa_has_spare(spa_t *spa, uint64_t guid)
8244 {
8245 	int i;
8246 	uint64_t spareguid;
8247 	spa_aux_vdev_t *sav = &spa->spa_spares;
8248 
8249 	for (i = 0; i < sav->sav_count; i++)
8250 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8251 			return (B_TRUE);
8252 
8253 	for (i = 0; i < sav->sav_npending; i++) {
8254 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8255 		    &spareguid) == 0 && spareguid == guid)
8256 			return (B_TRUE);
8257 	}
8258 
8259 	return (B_FALSE);
8260 }
8261 
8262 /*
8263  * Check if a pool has an active shared spare device.
8264  * Note: reference count of an active spare is 2, as a spare and as a replace
8265  */
8266 static boolean_t
8267 spa_has_active_shared_spare(spa_t *spa)
8268 {
8269 	int i, refcnt;
8270 	uint64_t pool;
8271 	spa_aux_vdev_t *sav = &spa->spa_spares;
8272 
8273 	for (i = 0; i < sav->sav_count; i++) {
8274 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8275 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8276 		    refcnt > 2)
8277 			return (B_TRUE);
8278 	}
8279 
8280 	return (B_FALSE);
8281 }
8282 
8283 sysevent_t *
8284 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8285 {
8286 	sysevent_t		*ev = NULL;
8287 #ifdef _KERNEL
8288 	sysevent_attr_list_t	*attr = NULL;
8289 	sysevent_value_t	value;
8290 
8291 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8292 	    SE_SLEEP);
8293 	ASSERT(ev != NULL);
8294 
8295 	value.value_type = SE_DATA_TYPE_STRING;
8296 	value.value.sv_string = spa_name(spa);
8297 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8298 		goto done;
8299 
8300 	value.value_type = SE_DATA_TYPE_UINT64;
8301 	value.value.sv_uint64 = spa_guid(spa);
8302 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8303 		goto done;
8304 
8305 	if (vd) {
8306 		value.value_type = SE_DATA_TYPE_UINT64;
8307 		value.value.sv_uint64 = vd->vdev_guid;
8308 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8309 		    SE_SLEEP) != 0)
8310 			goto done;
8311 
8312 		if (vd->vdev_path) {
8313 			value.value_type = SE_DATA_TYPE_STRING;
8314 			value.value.sv_string = vd->vdev_path;
8315 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8316 			    &value, SE_SLEEP) != 0)
8317 				goto done;
8318 		}
8319 	}
8320 
8321 	if (hist_nvl != NULL) {
8322 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8323 	}
8324 
8325 	if (sysevent_attach_attributes(ev, attr) != 0)
8326 		goto done;
8327 	attr = NULL;
8328 
8329 done:
8330 	if (attr)
8331 		sysevent_free_attr(attr);
8332 
8333 #endif
8334 	return (ev);
8335 }
8336 
8337 void
8338 spa_event_post(sysevent_t *ev)
8339 {
8340 #ifdef _KERNEL
8341 	sysevent_id_t		eid;
8342 
8343 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8344 	sysevent_free(ev);
8345 #endif
8346 }
8347 
8348 void
8349 spa_event_discard(sysevent_t *ev)
8350 {
8351 #ifdef _KERNEL
8352 	sysevent_free(ev);
8353 #endif
8354 }
8355 
8356 /*
8357  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8358  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8359  * filled in from the spa and (optionally) the vdev and history nvl.  This
8360  * doesn't do anything in the userland libzpool, as we don't want consumers to
8361  * misinterpret ztest or zdb as real changes.
8362  */
8363 void
8364 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8365 {
8366 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8367 }
8368