xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision d7f601ef8b0a2967964481b924713899dcc045bb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 
66 #ifdef	_KERNEL
67 #include <sys/bootprops.h>
68 #include <sys/callb.h>
69 #include <sys/cpupart.h>
70 #include <sys/pool.h>
71 #include <sys/sysdc.h>
72 #include <sys/zone.h>
73 #endif	/* _KERNEL */
74 
75 #include "zfs_prop.h"
76 #include "zfs_comutil.h"
77 
78 typedef enum zti_modes {
79 	zti_mode_fixed,			/* value is # of threads (min 1) */
80 	zti_mode_online_percent,	/* value is % of online CPUs */
81 	zti_mode_batch,			/* cpu-intensive; value is ignored */
82 	zti_mode_null,			/* don't create a taskq */
83 	zti_nmodes
84 } zti_modes_t;
85 
86 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
87 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
88 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
89 #define	ZTI_NULL	{ zti_mode_null, 0 }
90 
91 #define	ZTI_ONE		ZTI_FIX(1)
92 
93 typedef struct zio_taskq_info {
94 	enum zti_modes zti_mode;
95 	uint_t zti_value;
96 } zio_taskq_info_t;
97 
98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
99 	"issue", "issue_high", "intr", "intr_high"
100 };
101 
102 /*
103  * Define the taskq threads for the following I/O types:
104  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
105  */
106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
107 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
108 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
109 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
110 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
111 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 };
115 
116 static dsl_syncfunc_t spa_sync_props;
117 static boolean_t spa_has_active_shared_spare(spa_t *spa);
118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
119     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
120     char **ereport);
121 static void spa_vdev_resilver_done(spa_t *spa);
122 
123 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
124 id_t		zio_taskq_psrset_bind = PS_NONE;
125 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
126 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
127 
128 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
129 
130 /*
131  * This (illegal) pool name is used when temporarily importing a spa_t in order
132  * to get the vdev stats associated with the imported devices.
133  */
134 #define	TRYIMPORT_NAME	"$import"
135 
136 /*
137  * ==========================================================================
138  * SPA properties routines
139  * ==========================================================================
140  */
141 
142 /*
143  * Add a (source=src, propname=propval) list to an nvlist.
144  */
145 static void
146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
147     uint64_t intval, zprop_source_t src)
148 {
149 	const char *propname = zpool_prop_to_name(prop);
150 	nvlist_t *propval;
151 
152 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
153 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
154 
155 	if (strval != NULL)
156 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
157 	else
158 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
159 
160 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
161 	nvlist_free(propval);
162 }
163 
164 /*
165  * Get property values from the spa configuration.
166  */
167 static void
168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
169 {
170 	vdev_t *rvd = spa->spa_root_vdev;
171 	uint64_t size;
172 	uint64_t alloc;
173 	uint64_t space;
174 	uint64_t cap, version;
175 	zprop_source_t src = ZPROP_SRC_NONE;
176 	spa_config_dirent_t *dp;
177 
178 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
179 
180 	if (rvd != NULL) {
181 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
182 		size = metaslab_class_get_space(spa_normal_class(spa));
183 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
184 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
185 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
186 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
187 		    size - alloc, src);
188 
189 		space = 0;
190 		for (int c = 0; c < rvd->vdev_children; c++) {
191 			vdev_t *tvd = rvd->vdev_child[c];
192 			space += tvd->vdev_max_asize - tvd->vdev_asize;
193 		}
194 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
195 		    src);
196 
197 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
198 		    (spa_mode(spa) == FREAD), src);
199 
200 		cap = (size == 0) ? 0 : (alloc * 100 / size);
201 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
202 
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
204 		    ddt_get_pool_dedup_ratio(spa), src);
205 
206 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
207 		    rvd->vdev_state, src);
208 
209 		version = spa_version(spa);
210 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
211 			src = ZPROP_SRC_DEFAULT;
212 		else
213 			src = ZPROP_SRC_LOCAL;
214 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
215 	}
216 
217 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
218 
219 	if (spa->spa_comment != NULL) {
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
221 		    0, ZPROP_SRC_LOCAL);
222 	}
223 
224 	if (spa->spa_root != NULL)
225 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
226 		    0, ZPROP_SRC_LOCAL);
227 
228 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
229 		if (dp->scd_path == NULL) {
230 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
231 			    "none", 0, ZPROP_SRC_LOCAL);
232 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
233 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
234 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
235 		}
236 	}
237 }
238 
239 /*
240  * Get zpool property values.
241  */
242 int
243 spa_prop_get(spa_t *spa, nvlist_t **nvp)
244 {
245 	objset_t *mos = spa->spa_meta_objset;
246 	zap_cursor_t zc;
247 	zap_attribute_t za;
248 	int err;
249 
250 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
251 
252 	mutex_enter(&spa->spa_props_lock);
253 
254 	/*
255 	 * Get properties from the spa config.
256 	 */
257 	spa_prop_get_config(spa, nvp);
258 
259 	/* If no pool property object, no more prop to get. */
260 	if (mos == NULL || spa->spa_pool_props_object == 0) {
261 		mutex_exit(&spa->spa_props_lock);
262 		return (0);
263 	}
264 
265 	/*
266 	 * Get properties from the MOS pool property object.
267 	 */
268 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
269 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
270 	    zap_cursor_advance(&zc)) {
271 		uint64_t intval = 0;
272 		char *strval = NULL;
273 		zprop_source_t src = ZPROP_SRC_DEFAULT;
274 		zpool_prop_t prop;
275 
276 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
277 			continue;
278 
279 		switch (za.za_integer_length) {
280 		case 8:
281 			/* integer property */
282 			if (za.za_first_integer !=
283 			    zpool_prop_default_numeric(prop))
284 				src = ZPROP_SRC_LOCAL;
285 
286 			if (prop == ZPOOL_PROP_BOOTFS) {
287 				dsl_pool_t *dp;
288 				dsl_dataset_t *ds = NULL;
289 
290 				dp = spa_get_dsl(spa);
291 				rw_enter(&dp->dp_config_rwlock, RW_READER);
292 				if (err = dsl_dataset_hold_obj(dp,
293 				    za.za_first_integer, FTAG, &ds)) {
294 					rw_exit(&dp->dp_config_rwlock);
295 					break;
296 				}
297 
298 				strval = kmem_alloc(
299 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
300 				    KM_SLEEP);
301 				dsl_dataset_name(ds, strval);
302 				dsl_dataset_rele(ds, FTAG);
303 				rw_exit(&dp->dp_config_rwlock);
304 			} else {
305 				strval = NULL;
306 				intval = za.za_first_integer;
307 			}
308 
309 			spa_prop_add_list(*nvp, prop, strval, intval, src);
310 
311 			if (strval != NULL)
312 				kmem_free(strval,
313 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
314 
315 			break;
316 
317 		case 1:
318 			/* string property */
319 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
320 			err = zap_lookup(mos, spa->spa_pool_props_object,
321 			    za.za_name, 1, za.za_num_integers, strval);
322 			if (err) {
323 				kmem_free(strval, za.za_num_integers);
324 				break;
325 			}
326 			spa_prop_add_list(*nvp, prop, strval, 0, src);
327 			kmem_free(strval, za.za_num_integers);
328 			break;
329 
330 		default:
331 			break;
332 		}
333 	}
334 	zap_cursor_fini(&zc);
335 	mutex_exit(&spa->spa_props_lock);
336 out:
337 	if (err && err != ENOENT) {
338 		nvlist_free(*nvp);
339 		*nvp = NULL;
340 		return (err);
341 	}
342 
343 	return (0);
344 }
345 
346 /*
347  * Validate the given pool properties nvlist and modify the list
348  * for the property values to be set.
349  */
350 static int
351 spa_prop_validate(spa_t *spa, nvlist_t *props)
352 {
353 	nvpair_t *elem;
354 	int error = 0, reset_bootfs = 0;
355 	uint64_t objnum;
356 
357 	elem = NULL;
358 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
359 		zpool_prop_t prop;
360 		char *propname, *strval;
361 		uint64_t intval;
362 		objset_t *os;
363 		char *slash, *check;
364 
365 		propname = nvpair_name(elem);
366 
367 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
368 			return (EINVAL);
369 
370 		switch (prop) {
371 		case ZPOOL_PROP_VERSION:
372 			error = nvpair_value_uint64(elem, &intval);
373 			if (!error &&
374 			    (intval < spa_version(spa) || intval > SPA_VERSION))
375 				error = EINVAL;
376 			break;
377 
378 		case ZPOOL_PROP_DELEGATION:
379 		case ZPOOL_PROP_AUTOREPLACE:
380 		case ZPOOL_PROP_LISTSNAPS:
381 		case ZPOOL_PROP_AUTOEXPAND:
382 			error = nvpair_value_uint64(elem, &intval);
383 			if (!error && intval > 1)
384 				error = EINVAL;
385 			break;
386 
387 		case ZPOOL_PROP_BOOTFS:
388 			/*
389 			 * If the pool version is less than SPA_VERSION_BOOTFS,
390 			 * or the pool is still being created (version == 0),
391 			 * the bootfs property cannot be set.
392 			 */
393 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
394 				error = ENOTSUP;
395 				break;
396 			}
397 
398 			/*
399 			 * Make sure the vdev config is bootable
400 			 */
401 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
402 				error = ENOTSUP;
403 				break;
404 			}
405 
406 			reset_bootfs = 1;
407 
408 			error = nvpair_value_string(elem, &strval);
409 
410 			if (!error) {
411 				uint64_t compress;
412 
413 				if (strval == NULL || strval[0] == '\0') {
414 					objnum = zpool_prop_default_numeric(
415 					    ZPOOL_PROP_BOOTFS);
416 					break;
417 				}
418 
419 				if (error = dmu_objset_hold(strval, FTAG, &os))
420 					break;
421 
422 				/* Must be ZPL and not gzip compressed. */
423 
424 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
425 					error = ENOTSUP;
426 				} else if ((error = dsl_prop_get_integer(strval,
427 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
428 				    &compress, NULL)) == 0 &&
429 				    !BOOTFS_COMPRESS_VALID(compress)) {
430 					error = ENOTSUP;
431 				} else {
432 					objnum = dmu_objset_id(os);
433 				}
434 				dmu_objset_rele(os, FTAG);
435 			}
436 			break;
437 
438 		case ZPOOL_PROP_FAILUREMODE:
439 			error = nvpair_value_uint64(elem, &intval);
440 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
441 			    intval > ZIO_FAILURE_MODE_PANIC))
442 				error = EINVAL;
443 
444 			/*
445 			 * This is a special case which only occurs when
446 			 * the pool has completely failed. This allows
447 			 * the user to change the in-core failmode property
448 			 * without syncing it out to disk (I/Os might
449 			 * currently be blocked). We do this by returning
450 			 * EIO to the caller (spa_prop_set) to trick it
451 			 * into thinking we encountered a property validation
452 			 * error.
453 			 */
454 			if (!error && spa_suspended(spa)) {
455 				spa->spa_failmode = intval;
456 				error = EIO;
457 			}
458 			break;
459 
460 		case ZPOOL_PROP_CACHEFILE:
461 			if ((error = nvpair_value_string(elem, &strval)) != 0)
462 				break;
463 
464 			if (strval[0] == '\0')
465 				break;
466 
467 			if (strcmp(strval, "none") == 0)
468 				break;
469 
470 			if (strval[0] != '/') {
471 				error = EINVAL;
472 				break;
473 			}
474 
475 			slash = strrchr(strval, '/');
476 			ASSERT(slash != NULL);
477 
478 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
479 			    strcmp(slash, "/..") == 0)
480 				error = EINVAL;
481 			break;
482 
483 		case ZPOOL_PROP_COMMENT:
484 			if ((error = nvpair_value_string(elem, &strval)) != 0)
485 				break;
486 			for (check = strval; *check != '\0'; check++) {
487 				/*
488 				 * The kernel doesn't have an easy isprint()
489 				 * check.  For this kernel check, we merely
490 				 * check ASCII apart from DEL.  Fix this if
491 				 * there is an easy-to-use kernel isprint().
492 				 */
493 				if (*check >= 0x7f) {
494 					error = EINVAL;
495 					break;
496 				}
497 				check++;
498 			}
499 			if (strlen(strval) > ZPROP_MAX_COMMENT)
500 				error = E2BIG;
501 			break;
502 
503 		case ZPOOL_PROP_DEDUPDITTO:
504 			if (spa_version(spa) < SPA_VERSION_DEDUP)
505 				error = ENOTSUP;
506 			else
507 				error = nvpair_value_uint64(elem, &intval);
508 			if (error == 0 &&
509 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
510 				error = EINVAL;
511 			break;
512 		}
513 
514 		if (error)
515 			break;
516 	}
517 
518 	if (!error && reset_bootfs) {
519 		error = nvlist_remove(props,
520 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
521 
522 		if (!error) {
523 			error = nvlist_add_uint64(props,
524 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
525 		}
526 	}
527 
528 	return (error);
529 }
530 
531 void
532 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
533 {
534 	char *cachefile;
535 	spa_config_dirent_t *dp;
536 
537 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
538 	    &cachefile) != 0)
539 		return;
540 
541 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
542 	    KM_SLEEP);
543 
544 	if (cachefile[0] == '\0')
545 		dp->scd_path = spa_strdup(spa_config_path);
546 	else if (strcmp(cachefile, "none") == 0)
547 		dp->scd_path = NULL;
548 	else
549 		dp->scd_path = spa_strdup(cachefile);
550 
551 	list_insert_head(&spa->spa_config_list, dp);
552 	if (need_sync)
553 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
554 }
555 
556 int
557 spa_prop_set(spa_t *spa, nvlist_t *nvp)
558 {
559 	int error;
560 	nvpair_t *elem;
561 	boolean_t need_sync = B_FALSE;
562 	zpool_prop_t prop;
563 
564 	if ((error = spa_prop_validate(spa, nvp)) != 0)
565 		return (error);
566 
567 	elem = NULL;
568 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
569 		if ((prop = zpool_name_to_prop(
570 		    nvpair_name(elem))) == ZPROP_INVAL)
571 			return (EINVAL);
572 
573 		if (prop == ZPOOL_PROP_CACHEFILE ||
574 		    prop == ZPOOL_PROP_ALTROOT ||
575 		    prop == ZPOOL_PROP_READONLY)
576 			continue;
577 
578 		need_sync = B_TRUE;
579 		break;
580 	}
581 
582 	if (need_sync)
583 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
584 		    spa, nvp, 3));
585 	else
586 		return (0);
587 }
588 
589 /*
590  * If the bootfs property value is dsobj, clear it.
591  */
592 void
593 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
594 {
595 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
596 		VERIFY(zap_remove(spa->spa_meta_objset,
597 		    spa->spa_pool_props_object,
598 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
599 		spa->spa_bootfs = 0;
600 	}
601 }
602 
603 /*
604  * Change the GUID for the pool.  This is done so that we can later
605  * re-import a pool built from a clone of our own vdevs.  We will modify
606  * the root vdev's guid, our own pool guid, and then mark all of our
607  * vdevs dirty.  Note that we must make sure that all our vdevs are
608  * online when we do this, or else any vdevs that weren't present
609  * would be orphaned from our pool.  We are also going to issue a
610  * sysevent to update any watchers.
611  */
612 int
613 spa_change_guid(spa_t *spa)
614 {
615 	uint64_t	oldguid, newguid;
616 	uint64_t	txg;
617 
618 	if (!(spa_mode_global & FWRITE))
619 		return (EROFS);
620 
621 	txg = spa_vdev_enter(spa);
622 
623 	if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY)
624 		return (spa_vdev_exit(spa, NULL, txg, ENXIO));
625 
626 	oldguid = spa_guid(spa);
627 	newguid = spa_generate_guid(NULL);
628 	ASSERT3U(oldguid, !=, newguid);
629 
630 	spa->spa_root_vdev->vdev_guid = newguid;
631 	spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid);
632 
633 	vdev_config_dirty(spa->spa_root_vdev);
634 
635 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
636 
637 	return (spa_vdev_exit(spa, NULL, txg, 0));
638 }
639 
640 /*
641  * ==========================================================================
642  * SPA state manipulation (open/create/destroy/import/export)
643  * ==========================================================================
644  */
645 
646 static int
647 spa_error_entry_compare(const void *a, const void *b)
648 {
649 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
650 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
651 	int ret;
652 
653 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
654 	    sizeof (zbookmark_t));
655 
656 	if (ret < 0)
657 		return (-1);
658 	else if (ret > 0)
659 		return (1);
660 	else
661 		return (0);
662 }
663 
664 /*
665  * Utility function which retrieves copies of the current logs and
666  * re-initializes them in the process.
667  */
668 void
669 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
670 {
671 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
672 
673 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
674 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
675 
676 	avl_create(&spa->spa_errlist_scrub,
677 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
678 	    offsetof(spa_error_entry_t, se_avl));
679 	avl_create(&spa->spa_errlist_last,
680 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
681 	    offsetof(spa_error_entry_t, se_avl));
682 }
683 
684 static taskq_t *
685 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
686     uint_t value)
687 {
688 	uint_t flags = 0;
689 	boolean_t batch = B_FALSE;
690 
691 	switch (mode) {
692 	case zti_mode_null:
693 		return (NULL);		/* no taskq needed */
694 
695 	case zti_mode_fixed:
696 		ASSERT3U(value, >=, 1);
697 		value = MAX(value, 1);
698 		break;
699 
700 	case zti_mode_batch:
701 		batch = B_TRUE;
702 		flags |= TASKQ_THREADS_CPU_PCT;
703 		value = zio_taskq_batch_pct;
704 		break;
705 
706 	case zti_mode_online_percent:
707 		flags |= TASKQ_THREADS_CPU_PCT;
708 		break;
709 
710 	default:
711 		panic("unrecognized mode for %s taskq (%u:%u) in "
712 		    "spa_activate()",
713 		    name, mode, value);
714 		break;
715 	}
716 
717 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
718 		if (batch)
719 			flags |= TASKQ_DC_BATCH;
720 
721 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
722 		    spa->spa_proc, zio_taskq_basedc, flags));
723 	}
724 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
725 	    spa->spa_proc, flags));
726 }
727 
728 static void
729 spa_create_zio_taskqs(spa_t *spa)
730 {
731 	for (int t = 0; t < ZIO_TYPES; t++) {
732 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
733 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
734 			enum zti_modes mode = ztip->zti_mode;
735 			uint_t value = ztip->zti_value;
736 			char name[32];
737 
738 			(void) snprintf(name, sizeof (name),
739 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
740 
741 			spa->spa_zio_taskq[t][q] =
742 			    spa_taskq_create(spa, name, mode, value);
743 		}
744 	}
745 }
746 
747 #ifdef _KERNEL
748 static void
749 spa_thread(void *arg)
750 {
751 	callb_cpr_t cprinfo;
752 
753 	spa_t *spa = arg;
754 	user_t *pu = PTOU(curproc);
755 
756 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
757 	    spa->spa_name);
758 
759 	ASSERT(curproc != &p0);
760 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
761 	    "zpool-%s", spa->spa_name);
762 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
763 
764 	/* bind this thread to the requested psrset */
765 	if (zio_taskq_psrset_bind != PS_NONE) {
766 		pool_lock();
767 		mutex_enter(&cpu_lock);
768 		mutex_enter(&pidlock);
769 		mutex_enter(&curproc->p_lock);
770 
771 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
772 		    0, NULL, NULL) == 0)  {
773 			curthread->t_bind_pset = zio_taskq_psrset_bind;
774 		} else {
775 			cmn_err(CE_WARN,
776 			    "Couldn't bind process for zfs pool \"%s\" to "
777 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
778 		}
779 
780 		mutex_exit(&curproc->p_lock);
781 		mutex_exit(&pidlock);
782 		mutex_exit(&cpu_lock);
783 		pool_unlock();
784 	}
785 
786 	if (zio_taskq_sysdc) {
787 		sysdc_thread_enter(curthread, 100, 0);
788 	}
789 
790 	spa->spa_proc = curproc;
791 	spa->spa_did = curthread->t_did;
792 
793 	spa_create_zio_taskqs(spa);
794 
795 	mutex_enter(&spa->spa_proc_lock);
796 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
797 
798 	spa->spa_proc_state = SPA_PROC_ACTIVE;
799 	cv_broadcast(&spa->spa_proc_cv);
800 
801 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
802 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
803 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
804 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
805 
806 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
807 	spa->spa_proc_state = SPA_PROC_GONE;
808 	spa->spa_proc = &p0;
809 	cv_broadcast(&spa->spa_proc_cv);
810 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
811 
812 	mutex_enter(&curproc->p_lock);
813 	lwp_exit();
814 }
815 #endif
816 
817 /*
818  * Activate an uninitialized pool.
819  */
820 static void
821 spa_activate(spa_t *spa, int mode)
822 {
823 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
824 
825 	spa->spa_state = POOL_STATE_ACTIVE;
826 	spa->spa_mode = mode;
827 
828 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
829 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
830 
831 	/* Try to create a covering process */
832 	mutex_enter(&spa->spa_proc_lock);
833 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
834 	ASSERT(spa->spa_proc == &p0);
835 	spa->spa_did = 0;
836 
837 	/* Only create a process if we're going to be around a while. */
838 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
839 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
840 		    NULL, 0) == 0) {
841 			spa->spa_proc_state = SPA_PROC_CREATED;
842 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
843 				cv_wait(&spa->spa_proc_cv,
844 				    &spa->spa_proc_lock);
845 			}
846 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
847 			ASSERT(spa->spa_proc != &p0);
848 			ASSERT(spa->spa_did != 0);
849 		} else {
850 #ifdef _KERNEL
851 			cmn_err(CE_WARN,
852 			    "Couldn't create process for zfs pool \"%s\"\n",
853 			    spa->spa_name);
854 #endif
855 		}
856 	}
857 	mutex_exit(&spa->spa_proc_lock);
858 
859 	/* If we didn't create a process, we need to create our taskqs. */
860 	if (spa->spa_proc == &p0) {
861 		spa_create_zio_taskqs(spa);
862 	}
863 
864 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
865 	    offsetof(vdev_t, vdev_config_dirty_node));
866 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
867 	    offsetof(vdev_t, vdev_state_dirty_node));
868 
869 	txg_list_create(&spa->spa_vdev_txg_list,
870 	    offsetof(struct vdev, vdev_txg_node));
871 
872 	avl_create(&spa->spa_errlist_scrub,
873 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
874 	    offsetof(spa_error_entry_t, se_avl));
875 	avl_create(&spa->spa_errlist_last,
876 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
877 	    offsetof(spa_error_entry_t, se_avl));
878 }
879 
880 /*
881  * Opposite of spa_activate().
882  */
883 static void
884 spa_deactivate(spa_t *spa)
885 {
886 	ASSERT(spa->spa_sync_on == B_FALSE);
887 	ASSERT(spa->spa_dsl_pool == NULL);
888 	ASSERT(spa->spa_root_vdev == NULL);
889 	ASSERT(spa->spa_async_zio_root == NULL);
890 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
891 
892 	txg_list_destroy(&spa->spa_vdev_txg_list);
893 
894 	list_destroy(&spa->spa_config_dirty_list);
895 	list_destroy(&spa->spa_state_dirty_list);
896 
897 	for (int t = 0; t < ZIO_TYPES; t++) {
898 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
899 			if (spa->spa_zio_taskq[t][q] != NULL)
900 				taskq_destroy(spa->spa_zio_taskq[t][q]);
901 			spa->spa_zio_taskq[t][q] = NULL;
902 		}
903 	}
904 
905 	metaslab_class_destroy(spa->spa_normal_class);
906 	spa->spa_normal_class = NULL;
907 
908 	metaslab_class_destroy(spa->spa_log_class);
909 	spa->spa_log_class = NULL;
910 
911 	/*
912 	 * If this was part of an import or the open otherwise failed, we may
913 	 * still have errors left in the queues.  Empty them just in case.
914 	 */
915 	spa_errlog_drain(spa);
916 
917 	avl_destroy(&spa->spa_errlist_scrub);
918 	avl_destroy(&spa->spa_errlist_last);
919 
920 	spa->spa_state = POOL_STATE_UNINITIALIZED;
921 
922 	mutex_enter(&spa->spa_proc_lock);
923 	if (spa->spa_proc_state != SPA_PROC_NONE) {
924 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
925 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
926 		cv_broadcast(&spa->spa_proc_cv);
927 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
928 			ASSERT(spa->spa_proc != &p0);
929 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
930 		}
931 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
932 		spa->spa_proc_state = SPA_PROC_NONE;
933 	}
934 	ASSERT(spa->spa_proc == &p0);
935 	mutex_exit(&spa->spa_proc_lock);
936 
937 	/*
938 	 * We want to make sure spa_thread() has actually exited the ZFS
939 	 * module, so that the module can't be unloaded out from underneath
940 	 * it.
941 	 */
942 	if (spa->spa_did != 0) {
943 		thread_join(spa->spa_did);
944 		spa->spa_did = 0;
945 	}
946 }
947 
948 /*
949  * Verify a pool configuration, and construct the vdev tree appropriately.  This
950  * will create all the necessary vdevs in the appropriate layout, with each vdev
951  * in the CLOSED state.  This will prep the pool before open/creation/import.
952  * All vdev validation is done by the vdev_alloc() routine.
953  */
954 static int
955 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
956     uint_t id, int atype)
957 {
958 	nvlist_t **child;
959 	uint_t children;
960 	int error;
961 
962 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
963 		return (error);
964 
965 	if ((*vdp)->vdev_ops->vdev_op_leaf)
966 		return (0);
967 
968 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
969 	    &child, &children);
970 
971 	if (error == ENOENT)
972 		return (0);
973 
974 	if (error) {
975 		vdev_free(*vdp);
976 		*vdp = NULL;
977 		return (EINVAL);
978 	}
979 
980 	for (int c = 0; c < children; c++) {
981 		vdev_t *vd;
982 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
983 		    atype)) != 0) {
984 			vdev_free(*vdp);
985 			*vdp = NULL;
986 			return (error);
987 		}
988 	}
989 
990 	ASSERT(*vdp != NULL);
991 
992 	return (0);
993 }
994 
995 /*
996  * Opposite of spa_load().
997  */
998 static void
999 spa_unload(spa_t *spa)
1000 {
1001 	int i;
1002 
1003 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1004 
1005 	/*
1006 	 * Stop async tasks.
1007 	 */
1008 	spa_async_suspend(spa);
1009 
1010 	/*
1011 	 * Stop syncing.
1012 	 */
1013 	if (spa->spa_sync_on) {
1014 		txg_sync_stop(spa->spa_dsl_pool);
1015 		spa->spa_sync_on = B_FALSE;
1016 	}
1017 
1018 	/*
1019 	 * Wait for any outstanding async I/O to complete.
1020 	 */
1021 	if (spa->spa_async_zio_root != NULL) {
1022 		(void) zio_wait(spa->spa_async_zio_root);
1023 		spa->spa_async_zio_root = NULL;
1024 	}
1025 
1026 	bpobj_close(&spa->spa_deferred_bpobj);
1027 
1028 	/*
1029 	 * Close the dsl pool.
1030 	 */
1031 	if (spa->spa_dsl_pool) {
1032 		dsl_pool_close(spa->spa_dsl_pool);
1033 		spa->spa_dsl_pool = NULL;
1034 		spa->spa_meta_objset = NULL;
1035 	}
1036 
1037 	ddt_unload(spa);
1038 
1039 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1040 
1041 	/*
1042 	 * Drop and purge level 2 cache
1043 	 */
1044 	spa_l2cache_drop(spa);
1045 
1046 	/*
1047 	 * Close all vdevs.
1048 	 */
1049 	if (spa->spa_root_vdev)
1050 		vdev_free(spa->spa_root_vdev);
1051 	ASSERT(spa->spa_root_vdev == NULL);
1052 
1053 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1054 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1055 	if (spa->spa_spares.sav_vdevs) {
1056 		kmem_free(spa->spa_spares.sav_vdevs,
1057 		    spa->spa_spares.sav_count * sizeof (void *));
1058 		spa->spa_spares.sav_vdevs = NULL;
1059 	}
1060 	if (spa->spa_spares.sav_config) {
1061 		nvlist_free(spa->spa_spares.sav_config);
1062 		spa->spa_spares.sav_config = NULL;
1063 	}
1064 	spa->spa_spares.sav_count = 0;
1065 
1066 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
1067 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1068 	if (spa->spa_l2cache.sav_vdevs) {
1069 		kmem_free(spa->spa_l2cache.sav_vdevs,
1070 		    spa->spa_l2cache.sav_count * sizeof (void *));
1071 		spa->spa_l2cache.sav_vdevs = NULL;
1072 	}
1073 	if (spa->spa_l2cache.sav_config) {
1074 		nvlist_free(spa->spa_l2cache.sav_config);
1075 		spa->spa_l2cache.sav_config = NULL;
1076 	}
1077 	spa->spa_l2cache.sav_count = 0;
1078 
1079 	spa->spa_async_suspended = 0;
1080 
1081 	if (spa->spa_comment != NULL) {
1082 		spa_strfree(spa->spa_comment);
1083 		spa->spa_comment = NULL;
1084 	}
1085 
1086 	spa_config_exit(spa, SCL_ALL, FTAG);
1087 }
1088 
1089 /*
1090  * Load (or re-load) the current list of vdevs describing the active spares for
1091  * this pool.  When this is called, we have some form of basic information in
1092  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1093  * then re-generate a more complete list including status information.
1094  */
1095 static void
1096 spa_load_spares(spa_t *spa)
1097 {
1098 	nvlist_t **spares;
1099 	uint_t nspares;
1100 	int i;
1101 	vdev_t *vd, *tvd;
1102 
1103 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1104 
1105 	/*
1106 	 * First, close and free any existing spare vdevs.
1107 	 */
1108 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1109 		vd = spa->spa_spares.sav_vdevs[i];
1110 
1111 		/* Undo the call to spa_activate() below */
1112 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1113 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1114 			spa_spare_remove(tvd);
1115 		vdev_close(vd);
1116 		vdev_free(vd);
1117 	}
1118 
1119 	if (spa->spa_spares.sav_vdevs)
1120 		kmem_free(spa->spa_spares.sav_vdevs,
1121 		    spa->spa_spares.sav_count * sizeof (void *));
1122 
1123 	if (spa->spa_spares.sav_config == NULL)
1124 		nspares = 0;
1125 	else
1126 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1127 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1128 
1129 	spa->spa_spares.sav_count = (int)nspares;
1130 	spa->spa_spares.sav_vdevs = NULL;
1131 
1132 	if (nspares == 0)
1133 		return;
1134 
1135 	/*
1136 	 * Construct the array of vdevs, opening them to get status in the
1137 	 * process.   For each spare, there is potentially two different vdev_t
1138 	 * structures associated with it: one in the list of spares (used only
1139 	 * for basic validation purposes) and one in the active vdev
1140 	 * configuration (if it's spared in).  During this phase we open and
1141 	 * validate each vdev on the spare list.  If the vdev also exists in the
1142 	 * active configuration, then we also mark this vdev as an active spare.
1143 	 */
1144 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1145 	    KM_SLEEP);
1146 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1147 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1148 		    VDEV_ALLOC_SPARE) == 0);
1149 		ASSERT(vd != NULL);
1150 
1151 		spa->spa_spares.sav_vdevs[i] = vd;
1152 
1153 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1154 		    B_FALSE)) != NULL) {
1155 			if (!tvd->vdev_isspare)
1156 				spa_spare_add(tvd);
1157 
1158 			/*
1159 			 * We only mark the spare active if we were successfully
1160 			 * able to load the vdev.  Otherwise, importing a pool
1161 			 * with a bad active spare would result in strange
1162 			 * behavior, because multiple pool would think the spare
1163 			 * is actively in use.
1164 			 *
1165 			 * There is a vulnerability here to an equally bizarre
1166 			 * circumstance, where a dead active spare is later
1167 			 * brought back to life (onlined or otherwise).  Given
1168 			 * the rarity of this scenario, and the extra complexity
1169 			 * it adds, we ignore the possibility.
1170 			 */
1171 			if (!vdev_is_dead(tvd))
1172 				spa_spare_activate(tvd);
1173 		}
1174 
1175 		vd->vdev_top = vd;
1176 		vd->vdev_aux = &spa->spa_spares;
1177 
1178 		if (vdev_open(vd) != 0)
1179 			continue;
1180 
1181 		if (vdev_validate_aux(vd) == 0)
1182 			spa_spare_add(vd);
1183 	}
1184 
1185 	/*
1186 	 * Recompute the stashed list of spares, with status information
1187 	 * this time.
1188 	 */
1189 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1190 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1191 
1192 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1193 	    KM_SLEEP);
1194 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1195 		spares[i] = vdev_config_generate(spa,
1196 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1197 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1198 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1199 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1200 		nvlist_free(spares[i]);
1201 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1202 }
1203 
1204 /*
1205  * Load (or re-load) the current list of vdevs describing the active l2cache for
1206  * this pool.  When this is called, we have some form of basic information in
1207  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1208  * then re-generate a more complete list including status information.
1209  * Devices which are already active have their details maintained, and are
1210  * not re-opened.
1211  */
1212 static void
1213 spa_load_l2cache(spa_t *spa)
1214 {
1215 	nvlist_t **l2cache;
1216 	uint_t nl2cache;
1217 	int i, j, oldnvdevs;
1218 	uint64_t guid;
1219 	vdev_t *vd, **oldvdevs, **newvdevs;
1220 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1221 
1222 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1223 
1224 	if (sav->sav_config != NULL) {
1225 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1226 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1227 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1228 	} else {
1229 		nl2cache = 0;
1230 	}
1231 
1232 	oldvdevs = sav->sav_vdevs;
1233 	oldnvdevs = sav->sav_count;
1234 	sav->sav_vdevs = NULL;
1235 	sav->sav_count = 0;
1236 
1237 	/*
1238 	 * Process new nvlist of vdevs.
1239 	 */
1240 	for (i = 0; i < nl2cache; i++) {
1241 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1242 		    &guid) == 0);
1243 
1244 		newvdevs[i] = NULL;
1245 		for (j = 0; j < oldnvdevs; j++) {
1246 			vd = oldvdevs[j];
1247 			if (vd != NULL && guid == vd->vdev_guid) {
1248 				/*
1249 				 * Retain previous vdev for add/remove ops.
1250 				 */
1251 				newvdevs[i] = vd;
1252 				oldvdevs[j] = NULL;
1253 				break;
1254 			}
1255 		}
1256 
1257 		if (newvdevs[i] == NULL) {
1258 			/*
1259 			 * Create new vdev
1260 			 */
1261 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1262 			    VDEV_ALLOC_L2CACHE) == 0);
1263 			ASSERT(vd != NULL);
1264 			newvdevs[i] = vd;
1265 
1266 			/*
1267 			 * Commit this vdev as an l2cache device,
1268 			 * even if it fails to open.
1269 			 */
1270 			spa_l2cache_add(vd);
1271 
1272 			vd->vdev_top = vd;
1273 			vd->vdev_aux = sav;
1274 
1275 			spa_l2cache_activate(vd);
1276 
1277 			if (vdev_open(vd) != 0)
1278 				continue;
1279 
1280 			(void) vdev_validate_aux(vd);
1281 
1282 			if (!vdev_is_dead(vd))
1283 				l2arc_add_vdev(spa, vd);
1284 		}
1285 	}
1286 
1287 	/*
1288 	 * Purge vdevs that were dropped
1289 	 */
1290 	for (i = 0; i < oldnvdevs; i++) {
1291 		uint64_t pool;
1292 
1293 		vd = oldvdevs[i];
1294 		if (vd != NULL) {
1295 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1296 			    pool != 0ULL && l2arc_vdev_present(vd))
1297 				l2arc_remove_vdev(vd);
1298 			(void) vdev_close(vd);
1299 			spa_l2cache_remove(vd);
1300 		}
1301 	}
1302 
1303 	if (oldvdevs)
1304 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1305 
1306 	if (sav->sav_config == NULL)
1307 		goto out;
1308 
1309 	sav->sav_vdevs = newvdevs;
1310 	sav->sav_count = (int)nl2cache;
1311 
1312 	/*
1313 	 * Recompute the stashed list of l2cache devices, with status
1314 	 * information this time.
1315 	 */
1316 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1317 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1318 
1319 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1320 	for (i = 0; i < sav->sav_count; i++)
1321 		l2cache[i] = vdev_config_generate(spa,
1322 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1323 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1324 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1325 out:
1326 	for (i = 0; i < sav->sav_count; i++)
1327 		nvlist_free(l2cache[i]);
1328 	if (sav->sav_count)
1329 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1330 }
1331 
1332 static int
1333 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1334 {
1335 	dmu_buf_t *db;
1336 	char *packed = NULL;
1337 	size_t nvsize = 0;
1338 	int error;
1339 	*value = NULL;
1340 
1341 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1342 	nvsize = *(uint64_t *)db->db_data;
1343 	dmu_buf_rele(db, FTAG);
1344 
1345 	packed = kmem_alloc(nvsize, KM_SLEEP);
1346 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1347 	    DMU_READ_PREFETCH);
1348 	if (error == 0)
1349 		error = nvlist_unpack(packed, nvsize, value, 0);
1350 	kmem_free(packed, nvsize);
1351 
1352 	return (error);
1353 }
1354 
1355 /*
1356  * Checks to see if the given vdev could not be opened, in which case we post a
1357  * sysevent to notify the autoreplace code that the device has been removed.
1358  */
1359 static void
1360 spa_check_removed(vdev_t *vd)
1361 {
1362 	for (int c = 0; c < vd->vdev_children; c++)
1363 		spa_check_removed(vd->vdev_child[c]);
1364 
1365 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1366 		zfs_post_autoreplace(vd->vdev_spa, vd);
1367 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1368 	}
1369 }
1370 
1371 /*
1372  * Validate the current config against the MOS config
1373  */
1374 static boolean_t
1375 spa_config_valid(spa_t *spa, nvlist_t *config)
1376 {
1377 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1378 	nvlist_t *nv;
1379 
1380 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1381 
1382 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1383 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1384 
1385 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1386 
1387 	/*
1388 	 * If we're doing a normal import, then build up any additional
1389 	 * diagnostic information about missing devices in this config.
1390 	 * We'll pass this up to the user for further processing.
1391 	 */
1392 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1393 		nvlist_t **child, *nv;
1394 		uint64_t idx = 0;
1395 
1396 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1397 		    KM_SLEEP);
1398 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1399 
1400 		for (int c = 0; c < rvd->vdev_children; c++) {
1401 			vdev_t *tvd = rvd->vdev_child[c];
1402 			vdev_t *mtvd  = mrvd->vdev_child[c];
1403 
1404 			if (tvd->vdev_ops == &vdev_missing_ops &&
1405 			    mtvd->vdev_ops != &vdev_missing_ops &&
1406 			    mtvd->vdev_islog)
1407 				child[idx++] = vdev_config_generate(spa, mtvd,
1408 				    B_FALSE, 0);
1409 		}
1410 
1411 		if (idx) {
1412 			VERIFY(nvlist_add_nvlist_array(nv,
1413 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1414 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1415 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1416 
1417 			for (int i = 0; i < idx; i++)
1418 				nvlist_free(child[i]);
1419 		}
1420 		nvlist_free(nv);
1421 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1422 	}
1423 
1424 	/*
1425 	 * Compare the root vdev tree with the information we have
1426 	 * from the MOS config (mrvd). Check each top-level vdev
1427 	 * with the corresponding MOS config top-level (mtvd).
1428 	 */
1429 	for (int c = 0; c < rvd->vdev_children; c++) {
1430 		vdev_t *tvd = rvd->vdev_child[c];
1431 		vdev_t *mtvd  = mrvd->vdev_child[c];
1432 
1433 		/*
1434 		 * Resolve any "missing" vdevs in the current configuration.
1435 		 * If we find that the MOS config has more accurate information
1436 		 * about the top-level vdev then use that vdev instead.
1437 		 */
1438 		if (tvd->vdev_ops == &vdev_missing_ops &&
1439 		    mtvd->vdev_ops != &vdev_missing_ops) {
1440 
1441 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1442 				continue;
1443 
1444 			/*
1445 			 * Device specific actions.
1446 			 */
1447 			if (mtvd->vdev_islog) {
1448 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1449 			} else {
1450 				/*
1451 				 * XXX - once we have 'readonly' pool
1452 				 * support we should be able to handle
1453 				 * missing data devices by transitioning
1454 				 * the pool to readonly.
1455 				 */
1456 				continue;
1457 			}
1458 
1459 			/*
1460 			 * Swap the missing vdev with the data we were
1461 			 * able to obtain from the MOS config.
1462 			 */
1463 			vdev_remove_child(rvd, tvd);
1464 			vdev_remove_child(mrvd, mtvd);
1465 
1466 			vdev_add_child(rvd, mtvd);
1467 			vdev_add_child(mrvd, tvd);
1468 
1469 			spa_config_exit(spa, SCL_ALL, FTAG);
1470 			vdev_load(mtvd);
1471 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1472 
1473 			vdev_reopen(rvd);
1474 		} else if (mtvd->vdev_islog) {
1475 			/*
1476 			 * Load the slog device's state from the MOS config
1477 			 * since it's possible that the label does not
1478 			 * contain the most up-to-date information.
1479 			 */
1480 			vdev_load_log_state(tvd, mtvd);
1481 			vdev_reopen(tvd);
1482 		}
1483 	}
1484 	vdev_free(mrvd);
1485 	spa_config_exit(spa, SCL_ALL, FTAG);
1486 
1487 	/*
1488 	 * Ensure we were able to validate the config.
1489 	 */
1490 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1491 }
1492 
1493 /*
1494  * Check for missing log devices
1495  */
1496 static int
1497 spa_check_logs(spa_t *spa)
1498 {
1499 	switch (spa->spa_log_state) {
1500 	case SPA_LOG_MISSING:
1501 		/* need to recheck in case slog has been restored */
1502 	case SPA_LOG_UNKNOWN:
1503 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1504 		    DS_FIND_CHILDREN)) {
1505 			spa_set_log_state(spa, SPA_LOG_MISSING);
1506 			return (1);
1507 		}
1508 		break;
1509 	}
1510 	return (0);
1511 }
1512 
1513 static boolean_t
1514 spa_passivate_log(spa_t *spa)
1515 {
1516 	vdev_t *rvd = spa->spa_root_vdev;
1517 	boolean_t slog_found = B_FALSE;
1518 
1519 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1520 
1521 	if (!spa_has_slogs(spa))
1522 		return (B_FALSE);
1523 
1524 	for (int c = 0; c < rvd->vdev_children; c++) {
1525 		vdev_t *tvd = rvd->vdev_child[c];
1526 		metaslab_group_t *mg = tvd->vdev_mg;
1527 
1528 		if (tvd->vdev_islog) {
1529 			metaslab_group_passivate(mg);
1530 			slog_found = B_TRUE;
1531 		}
1532 	}
1533 
1534 	return (slog_found);
1535 }
1536 
1537 static void
1538 spa_activate_log(spa_t *spa)
1539 {
1540 	vdev_t *rvd = spa->spa_root_vdev;
1541 
1542 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1543 
1544 	for (int c = 0; c < rvd->vdev_children; c++) {
1545 		vdev_t *tvd = rvd->vdev_child[c];
1546 		metaslab_group_t *mg = tvd->vdev_mg;
1547 
1548 		if (tvd->vdev_islog)
1549 			metaslab_group_activate(mg);
1550 	}
1551 }
1552 
1553 int
1554 spa_offline_log(spa_t *spa)
1555 {
1556 	int error = 0;
1557 
1558 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1559 	    NULL, DS_FIND_CHILDREN)) == 0) {
1560 
1561 		/*
1562 		 * We successfully offlined the log device, sync out the
1563 		 * current txg so that the "stubby" block can be removed
1564 		 * by zil_sync().
1565 		 */
1566 		txg_wait_synced(spa->spa_dsl_pool, 0);
1567 	}
1568 	return (error);
1569 }
1570 
1571 static void
1572 spa_aux_check_removed(spa_aux_vdev_t *sav)
1573 {
1574 	for (int i = 0; i < sav->sav_count; i++)
1575 		spa_check_removed(sav->sav_vdevs[i]);
1576 }
1577 
1578 void
1579 spa_claim_notify(zio_t *zio)
1580 {
1581 	spa_t *spa = zio->io_spa;
1582 
1583 	if (zio->io_error)
1584 		return;
1585 
1586 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1587 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1588 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1589 	mutex_exit(&spa->spa_props_lock);
1590 }
1591 
1592 typedef struct spa_load_error {
1593 	uint64_t	sle_meta_count;
1594 	uint64_t	sle_data_count;
1595 } spa_load_error_t;
1596 
1597 static void
1598 spa_load_verify_done(zio_t *zio)
1599 {
1600 	blkptr_t *bp = zio->io_bp;
1601 	spa_load_error_t *sle = zio->io_private;
1602 	dmu_object_type_t type = BP_GET_TYPE(bp);
1603 	int error = zio->io_error;
1604 
1605 	if (error) {
1606 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1607 		    type != DMU_OT_INTENT_LOG)
1608 			atomic_add_64(&sle->sle_meta_count, 1);
1609 		else
1610 			atomic_add_64(&sle->sle_data_count, 1);
1611 	}
1612 	zio_data_buf_free(zio->io_data, zio->io_size);
1613 }
1614 
1615 /*ARGSUSED*/
1616 static int
1617 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1618     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1619 {
1620 	if (bp != NULL) {
1621 		zio_t *rio = arg;
1622 		size_t size = BP_GET_PSIZE(bp);
1623 		void *data = zio_data_buf_alloc(size);
1624 
1625 		zio_nowait(zio_read(rio, spa, bp, data, size,
1626 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1627 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1628 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1629 	}
1630 	return (0);
1631 }
1632 
1633 static int
1634 spa_load_verify(spa_t *spa)
1635 {
1636 	zio_t *rio;
1637 	spa_load_error_t sle = { 0 };
1638 	zpool_rewind_policy_t policy;
1639 	boolean_t verify_ok = B_FALSE;
1640 	int error;
1641 
1642 	zpool_get_rewind_policy(spa->spa_config, &policy);
1643 
1644 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1645 		return (0);
1646 
1647 	rio = zio_root(spa, NULL, &sle,
1648 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1649 
1650 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1651 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1652 
1653 	(void) zio_wait(rio);
1654 
1655 	spa->spa_load_meta_errors = sle.sle_meta_count;
1656 	spa->spa_load_data_errors = sle.sle_data_count;
1657 
1658 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1659 	    sle.sle_data_count <= policy.zrp_maxdata) {
1660 		int64_t loss = 0;
1661 
1662 		verify_ok = B_TRUE;
1663 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1664 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1665 
1666 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1667 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1668 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1669 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1670 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1671 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1672 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1673 	} else {
1674 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1675 	}
1676 
1677 	if (error) {
1678 		if (error != ENXIO && error != EIO)
1679 			error = EIO;
1680 		return (error);
1681 	}
1682 
1683 	return (verify_ok ? 0 : EIO);
1684 }
1685 
1686 /*
1687  * Find a value in the pool props object.
1688  */
1689 static void
1690 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1691 {
1692 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1693 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1694 }
1695 
1696 /*
1697  * Find a value in the pool directory object.
1698  */
1699 static int
1700 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1701 {
1702 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1703 	    name, sizeof (uint64_t), 1, val));
1704 }
1705 
1706 static int
1707 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1708 {
1709 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1710 	return (err);
1711 }
1712 
1713 /*
1714  * Fix up config after a partly-completed split.  This is done with the
1715  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1716  * pool have that entry in their config, but only the splitting one contains
1717  * a list of all the guids of the vdevs that are being split off.
1718  *
1719  * This function determines what to do with that list: either rejoin
1720  * all the disks to the pool, or complete the splitting process.  To attempt
1721  * the rejoin, each disk that is offlined is marked online again, and
1722  * we do a reopen() call.  If the vdev label for every disk that was
1723  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1724  * then we call vdev_split() on each disk, and complete the split.
1725  *
1726  * Otherwise we leave the config alone, with all the vdevs in place in
1727  * the original pool.
1728  */
1729 static void
1730 spa_try_repair(spa_t *spa, nvlist_t *config)
1731 {
1732 	uint_t extracted;
1733 	uint64_t *glist;
1734 	uint_t i, gcount;
1735 	nvlist_t *nvl;
1736 	vdev_t **vd;
1737 	boolean_t attempt_reopen;
1738 
1739 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1740 		return;
1741 
1742 	/* check that the config is complete */
1743 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1744 	    &glist, &gcount) != 0)
1745 		return;
1746 
1747 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1748 
1749 	/* attempt to online all the vdevs & validate */
1750 	attempt_reopen = B_TRUE;
1751 	for (i = 0; i < gcount; i++) {
1752 		if (glist[i] == 0)	/* vdev is hole */
1753 			continue;
1754 
1755 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1756 		if (vd[i] == NULL) {
1757 			/*
1758 			 * Don't bother attempting to reopen the disks;
1759 			 * just do the split.
1760 			 */
1761 			attempt_reopen = B_FALSE;
1762 		} else {
1763 			/* attempt to re-online it */
1764 			vd[i]->vdev_offline = B_FALSE;
1765 		}
1766 	}
1767 
1768 	if (attempt_reopen) {
1769 		vdev_reopen(spa->spa_root_vdev);
1770 
1771 		/* check each device to see what state it's in */
1772 		for (extracted = 0, i = 0; i < gcount; i++) {
1773 			if (vd[i] != NULL &&
1774 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1775 				break;
1776 			++extracted;
1777 		}
1778 	}
1779 
1780 	/*
1781 	 * If every disk has been moved to the new pool, or if we never
1782 	 * even attempted to look at them, then we split them off for
1783 	 * good.
1784 	 */
1785 	if (!attempt_reopen || gcount == extracted) {
1786 		for (i = 0; i < gcount; i++)
1787 			if (vd[i] != NULL)
1788 				vdev_split(vd[i]);
1789 		vdev_reopen(spa->spa_root_vdev);
1790 	}
1791 
1792 	kmem_free(vd, gcount * sizeof (vdev_t *));
1793 }
1794 
1795 static int
1796 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1797     boolean_t mosconfig)
1798 {
1799 	nvlist_t *config = spa->spa_config;
1800 	char *ereport = FM_EREPORT_ZFS_POOL;
1801 	char *comment;
1802 	int error;
1803 	uint64_t pool_guid;
1804 	nvlist_t *nvl;
1805 
1806 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1807 		return (EINVAL);
1808 
1809 	ASSERT(spa->spa_comment == NULL);
1810 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1811 		spa->spa_comment = spa_strdup(comment);
1812 
1813 	/*
1814 	 * Versioning wasn't explicitly added to the label until later, so if
1815 	 * it's not present treat it as the initial version.
1816 	 */
1817 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1818 	    &spa->spa_ubsync.ub_version) != 0)
1819 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1820 
1821 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1822 	    &spa->spa_config_txg);
1823 
1824 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1825 	    spa_guid_exists(pool_guid, 0)) {
1826 		error = EEXIST;
1827 	} else {
1828 		spa->spa_config_guid = pool_guid;
1829 
1830 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1831 		    &nvl) == 0) {
1832 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1833 			    KM_SLEEP) == 0);
1834 		}
1835 
1836 		gethrestime(&spa->spa_loaded_ts);
1837 		error = spa_load_impl(spa, pool_guid, config, state, type,
1838 		    mosconfig, &ereport);
1839 	}
1840 
1841 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1842 	if (error) {
1843 		if (error != EEXIST) {
1844 			spa->spa_loaded_ts.tv_sec = 0;
1845 			spa->spa_loaded_ts.tv_nsec = 0;
1846 		}
1847 		if (error != EBADF) {
1848 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1849 		}
1850 	}
1851 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1852 	spa->spa_ena = 0;
1853 
1854 	return (error);
1855 }
1856 
1857 /*
1858  * Load an existing storage pool, using the pool's builtin spa_config as a
1859  * source of configuration information.
1860  */
1861 static int
1862 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1863     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1864     char **ereport)
1865 {
1866 	int error = 0;
1867 	nvlist_t *nvroot = NULL;
1868 	vdev_t *rvd;
1869 	uberblock_t *ub = &spa->spa_uberblock;
1870 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1871 	int orig_mode = spa->spa_mode;
1872 	int parse;
1873 	uint64_t obj;
1874 
1875 	/*
1876 	 * If this is an untrusted config, access the pool in read-only mode.
1877 	 * This prevents things like resilvering recently removed devices.
1878 	 */
1879 	if (!mosconfig)
1880 		spa->spa_mode = FREAD;
1881 
1882 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1883 
1884 	spa->spa_load_state = state;
1885 
1886 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1887 		return (EINVAL);
1888 
1889 	parse = (type == SPA_IMPORT_EXISTING ?
1890 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1891 
1892 	/*
1893 	 * Create "The Godfather" zio to hold all async IOs
1894 	 */
1895 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1896 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1897 
1898 	/*
1899 	 * Parse the configuration into a vdev tree.  We explicitly set the
1900 	 * value that will be returned by spa_version() since parsing the
1901 	 * configuration requires knowing the version number.
1902 	 */
1903 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1904 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1905 	spa_config_exit(spa, SCL_ALL, FTAG);
1906 
1907 	if (error != 0)
1908 		return (error);
1909 
1910 	ASSERT(spa->spa_root_vdev == rvd);
1911 
1912 	if (type != SPA_IMPORT_ASSEMBLE) {
1913 		ASSERT(spa_guid(spa) == pool_guid);
1914 	}
1915 
1916 	/*
1917 	 * Try to open all vdevs, loading each label in the process.
1918 	 */
1919 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1920 	error = vdev_open(rvd);
1921 	spa_config_exit(spa, SCL_ALL, FTAG);
1922 	if (error != 0)
1923 		return (error);
1924 
1925 	/*
1926 	 * We need to validate the vdev labels against the configuration that
1927 	 * we have in hand, which is dependent on the setting of mosconfig. If
1928 	 * mosconfig is true then we're validating the vdev labels based on
1929 	 * that config.  Otherwise, we're validating against the cached config
1930 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1931 	 * later we will recursively call spa_load() and validate against
1932 	 * the vdev config.
1933 	 *
1934 	 * If we're assembling a new pool that's been split off from an
1935 	 * existing pool, the labels haven't yet been updated so we skip
1936 	 * validation for now.
1937 	 */
1938 	if (type != SPA_IMPORT_ASSEMBLE) {
1939 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1940 		error = vdev_validate(rvd, mosconfig);
1941 		spa_config_exit(spa, SCL_ALL, FTAG);
1942 
1943 		if (error != 0)
1944 			return (error);
1945 
1946 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1947 			return (ENXIO);
1948 	}
1949 
1950 	/*
1951 	 * Find the best uberblock.
1952 	 */
1953 	vdev_uberblock_load(NULL, rvd, ub);
1954 
1955 	/*
1956 	 * If we weren't able to find a single valid uberblock, return failure.
1957 	 */
1958 	if (ub->ub_txg == 0)
1959 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1960 
1961 	/*
1962 	 * If the pool is newer than the code, we can't open it.
1963 	 */
1964 	if (ub->ub_version > SPA_VERSION)
1965 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1966 
1967 	/*
1968 	 * If the vdev guid sum doesn't match the uberblock, we have an
1969 	 * incomplete configuration.  We first check to see if the pool
1970 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1971 	 * If it is, defer the vdev_guid_sum check till later so we
1972 	 * can handle missing vdevs.
1973 	 */
1974 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1975 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1976 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1977 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1978 
1979 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1980 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1981 		spa_try_repair(spa, config);
1982 		spa_config_exit(spa, SCL_ALL, FTAG);
1983 		nvlist_free(spa->spa_config_splitting);
1984 		spa->spa_config_splitting = NULL;
1985 	}
1986 
1987 	/*
1988 	 * Initialize internal SPA structures.
1989 	 */
1990 	spa->spa_state = POOL_STATE_ACTIVE;
1991 	spa->spa_ubsync = spa->spa_uberblock;
1992 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1993 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1994 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1995 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1996 	spa->spa_claim_max_txg = spa->spa_first_txg;
1997 	spa->spa_prev_software_version = ub->ub_software_version;
1998 
1999 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2000 	if (error)
2001 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2002 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2003 
2004 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2005 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2006 
2007 	if (!mosconfig) {
2008 		uint64_t hostid;
2009 		nvlist_t *policy = NULL, *nvconfig;
2010 
2011 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2012 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2013 
2014 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2015 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2016 			char *hostname;
2017 			unsigned long myhostid = 0;
2018 
2019 			VERIFY(nvlist_lookup_string(nvconfig,
2020 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2021 
2022 #ifdef	_KERNEL
2023 			myhostid = zone_get_hostid(NULL);
2024 #else	/* _KERNEL */
2025 			/*
2026 			 * We're emulating the system's hostid in userland, so
2027 			 * we can't use zone_get_hostid().
2028 			 */
2029 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2030 #endif	/* _KERNEL */
2031 			if (hostid != 0 && myhostid != 0 &&
2032 			    hostid != myhostid) {
2033 				nvlist_free(nvconfig);
2034 				cmn_err(CE_WARN, "pool '%s' could not be "
2035 				    "loaded as it was last accessed by "
2036 				    "another system (host: %s hostid: 0x%lx). "
2037 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
2038 				    spa_name(spa), hostname,
2039 				    (unsigned long)hostid);
2040 				return (EBADF);
2041 			}
2042 		}
2043 		if (nvlist_lookup_nvlist(spa->spa_config,
2044 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2045 			VERIFY(nvlist_add_nvlist(nvconfig,
2046 			    ZPOOL_REWIND_POLICY, policy) == 0);
2047 
2048 		spa_config_set(spa, nvconfig);
2049 		spa_unload(spa);
2050 		spa_deactivate(spa);
2051 		spa_activate(spa, orig_mode);
2052 
2053 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2054 	}
2055 
2056 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2057 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2058 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2059 	if (error != 0)
2060 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2061 
2062 	/*
2063 	 * Load the bit that tells us to use the new accounting function
2064 	 * (raid-z deflation).  If we have an older pool, this will not
2065 	 * be present.
2066 	 */
2067 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2068 	if (error != 0 && error != ENOENT)
2069 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2070 
2071 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2072 	    &spa->spa_creation_version);
2073 	if (error != 0 && error != ENOENT)
2074 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2075 
2076 	/*
2077 	 * Load the persistent error log.  If we have an older pool, this will
2078 	 * not be present.
2079 	 */
2080 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2081 	if (error != 0 && error != ENOENT)
2082 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2083 
2084 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2085 	    &spa->spa_errlog_scrub);
2086 	if (error != 0 && error != ENOENT)
2087 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2088 
2089 	/*
2090 	 * Load the history object.  If we have an older pool, this
2091 	 * will not be present.
2092 	 */
2093 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2094 	if (error != 0 && error != ENOENT)
2095 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2096 
2097 	/*
2098 	 * If we're assembling the pool from the split-off vdevs of
2099 	 * an existing pool, we don't want to attach the spares & cache
2100 	 * devices.
2101 	 */
2102 
2103 	/*
2104 	 * Load any hot spares for this pool.
2105 	 */
2106 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2107 	if (error != 0 && error != ENOENT)
2108 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2109 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2110 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2111 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2112 		    &spa->spa_spares.sav_config) != 0)
2113 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2114 
2115 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2116 		spa_load_spares(spa);
2117 		spa_config_exit(spa, SCL_ALL, FTAG);
2118 	} else if (error == 0) {
2119 		spa->spa_spares.sav_sync = B_TRUE;
2120 	}
2121 
2122 	/*
2123 	 * Load any level 2 ARC devices for this pool.
2124 	 */
2125 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2126 	    &spa->spa_l2cache.sav_object);
2127 	if (error != 0 && error != ENOENT)
2128 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2129 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2130 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2131 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2132 		    &spa->spa_l2cache.sav_config) != 0)
2133 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2134 
2135 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2136 		spa_load_l2cache(spa);
2137 		spa_config_exit(spa, SCL_ALL, FTAG);
2138 	} else if (error == 0) {
2139 		spa->spa_l2cache.sav_sync = B_TRUE;
2140 	}
2141 
2142 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2143 
2144 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2145 	if (error && error != ENOENT)
2146 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2147 
2148 	if (error == 0) {
2149 		uint64_t autoreplace;
2150 
2151 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2152 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2153 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2154 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2155 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2156 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2157 		    &spa->spa_dedup_ditto);
2158 
2159 		spa->spa_autoreplace = (autoreplace != 0);
2160 	}
2161 
2162 	/*
2163 	 * If the 'autoreplace' property is set, then post a resource notifying
2164 	 * the ZFS DE that it should not issue any faults for unopenable
2165 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2166 	 * unopenable vdevs so that the normal autoreplace handler can take
2167 	 * over.
2168 	 */
2169 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2170 		spa_check_removed(spa->spa_root_vdev);
2171 		/*
2172 		 * For the import case, this is done in spa_import(), because
2173 		 * at this point we're using the spare definitions from
2174 		 * the MOS config, not necessarily from the userland config.
2175 		 */
2176 		if (state != SPA_LOAD_IMPORT) {
2177 			spa_aux_check_removed(&spa->spa_spares);
2178 			spa_aux_check_removed(&spa->spa_l2cache);
2179 		}
2180 	}
2181 
2182 	/*
2183 	 * Load the vdev state for all toplevel vdevs.
2184 	 */
2185 	vdev_load(rvd);
2186 
2187 	/*
2188 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2189 	 */
2190 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2191 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2192 	spa_config_exit(spa, SCL_ALL, FTAG);
2193 
2194 	/*
2195 	 * Load the DDTs (dedup tables).
2196 	 */
2197 	error = ddt_load(spa);
2198 	if (error != 0)
2199 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2200 
2201 	spa_update_dspace(spa);
2202 
2203 	/*
2204 	 * Validate the config, using the MOS config to fill in any
2205 	 * information which might be missing.  If we fail to validate
2206 	 * the config then declare the pool unfit for use. If we're
2207 	 * assembling a pool from a split, the log is not transferred
2208 	 * over.
2209 	 */
2210 	if (type != SPA_IMPORT_ASSEMBLE) {
2211 		nvlist_t *nvconfig;
2212 
2213 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2214 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2215 
2216 		if (!spa_config_valid(spa, nvconfig)) {
2217 			nvlist_free(nvconfig);
2218 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2219 			    ENXIO));
2220 		}
2221 		nvlist_free(nvconfig);
2222 
2223 		/*
2224 		 * Now that we've validate the config, check the state of the
2225 		 * root vdev.  If it can't be opened, it indicates one or
2226 		 * more toplevel vdevs are faulted.
2227 		 */
2228 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2229 			return (ENXIO);
2230 
2231 		if (spa_check_logs(spa)) {
2232 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2233 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2234 		}
2235 	}
2236 
2237 	/*
2238 	 * We've successfully opened the pool, verify that we're ready
2239 	 * to start pushing transactions.
2240 	 */
2241 	if (state != SPA_LOAD_TRYIMPORT) {
2242 		if (error = spa_load_verify(spa))
2243 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2244 			    error));
2245 	}
2246 
2247 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2248 	    spa->spa_load_max_txg == UINT64_MAX)) {
2249 		dmu_tx_t *tx;
2250 		int need_update = B_FALSE;
2251 
2252 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2253 
2254 		/*
2255 		 * Claim log blocks that haven't been committed yet.
2256 		 * This must all happen in a single txg.
2257 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2258 		 * invoked from zil_claim_log_block()'s i/o done callback.
2259 		 * Price of rollback is that we abandon the log.
2260 		 */
2261 		spa->spa_claiming = B_TRUE;
2262 
2263 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2264 		    spa_first_txg(spa));
2265 		(void) dmu_objset_find(spa_name(spa),
2266 		    zil_claim, tx, DS_FIND_CHILDREN);
2267 		dmu_tx_commit(tx);
2268 
2269 		spa->spa_claiming = B_FALSE;
2270 
2271 		spa_set_log_state(spa, SPA_LOG_GOOD);
2272 		spa->spa_sync_on = B_TRUE;
2273 		txg_sync_start(spa->spa_dsl_pool);
2274 
2275 		/*
2276 		 * Wait for all claims to sync.  We sync up to the highest
2277 		 * claimed log block birth time so that claimed log blocks
2278 		 * don't appear to be from the future.  spa_claim_max_txg
2279 		 * will have been set for us by either zil_check_log_chain()
2280 		 * (invoked from spa_check_logs()) or zil_claim() above.
2281 		 */
2282 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2283 
2284 		/*
2285 		 * If the config cache is stale, or we have uninitialized
2286 		 * metaslabs (see spa_vdev_add()), then update the config.
2287 		 *
2288 		 * If this is a verbatim import, trust the current
2289 		 * in-core spa_config and update the disk labels.
2290 		 */
2291 		if (config_cache_txg != spa->spa_config_txg ||
2292 		    state == SPA_LOAD_IMPORT ||
2293 		    state == SPA_LOAD_RECOVER ||
2294 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2295 			need_update = B_TRUE;
2296 
2297 		for (int c = 0; c < rvd->vdev_children; c++)
2298 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2299 				need_update = B_TRUE;
2300 
2301 		/*
2302 		 * Update the config cache asychronously in case we're the
2303 		 * root pool, in which case the config cache isn't writable yet.
2304 		 */
2305 		if (need_update)
2306 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2307 
2308 		/*
2309 		 * Check all DTLs to see if anything needs resilvering.
2310 		 */
2311 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2312 		    vdev_resilver_needed(rvd, NULL, NULL))
2313 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2314 
2315 		/*
2316 		 * Delete any inconsistent datasets.
2317 		 */
2318 		(void) dmu_objset_find(spa_name(spa),
2319 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2320 
2321 		/*
2322 		 * Clean up any stale temporary dataset userrefs.
2323 		 */
2324 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2325 	}
2326 
2327 	return (0);
2328 }
2329 
2330 static int
2331 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2332 {
2333 	int mode = spa->spa_mode;
2334 
2335 	spa_unload(spa);
2336 	spa_deactivate(spa);
2337 
2338 	spa->spa_load_max_txg--;
2339 
2340 	spa_activate(spa, mode);
2341 	spa_async_suspend(spa);
2342 
2343 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2344 }
2345 
2346 static int
2347 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2348     uint64_t max_request, int rewind_flags)
2349 {
2350 	nvlist_t *config = NULL;
2351 	int load_error, rewind_error;
2352 	uint64_t safe_rewind_txg;
2353 	uint64_t min_txg;
2354 
2355 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2356 		spa->spa_load_max_txg = spa->spa_load_txg;
2357 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2358 	} else {
2359 		spa->spa_load_max_txg = max_request;
2360 	}
2361 
2362 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2363 	    mosconfig);
2364 	if (load_error == 0)
2365 		return (0);
2366 
2367 	if (spa->spa_root_vdev != NULL)
2368 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2369 
2370 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2371 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2372 
2373 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2374 		nvlist_free(config);
2375 		return (load_error);
2376 	}
2377 
2378 	/* Price of rolling back is discarding txgs, including log */
2379 	if (state == SPA_LOAD_RECOVER)
2380 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2381 
2382 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2383 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2384 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2385 	    TXG_INITIAL : safe_rewind_txg;
2386 
2387 	/*
2388 	 * Continue as long as we're finding errors, we're still within
2389 	 * the acceptable rewind range, and we're still finding uberblocks
2390 	 */
2391 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2392 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2393 		if (spa->spa_load_max_txg < safe_rewind_txg)
2394 			spa->spa_extreme_rewind = B_TRUE;
2395 		rewind_error = spa_load_retry(spa, state, mosconfig);
2396 	}
2397 
2398 	spa->spa_extreme_rewind = B_FALSE;
2399 	spa->spa_load_max_txg = UINT64_MAX;
2400 
2401 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2402 		spa_config_set(spa, config);
2403 
2404 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2405 }
2406 
2407 /*
2408  * Pool Open/Import
2409  *
2410  * The import case is identical to an open except that the configuration is sent
2411  * down from userland, instead of grabbed from the configuration cache.  For the
2412  * case of an open, the pool configuration will exist in the
2413  * POOL_STATE_UNINITIALIZED state.
2414  *
2415  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2416  * the same time open the pool, without having to keep around the spa_t in some
2417  * ambiguous state.
2418  */
2419 static int
2420 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2421     nvlist_t **config)
2422 {
2423 	spa_t *spa;
2424 	spa_load_state_t state = SPA_LOAD_OPEN;
2425 	int error;
2426 	int locked = B_FALSE;
2427 
2428 	*spapp = NULL;
2429 
2430 	/*
2431 	 * As disgusting as this is, we need to support recursive calls to this
2432 	 * function because dsl_dir_open() is called during spa_load(), and ends
2433 	 * up calling spa_open() again.  The real fix is to figure out how to
2434 	 * avoid dsl_dir_open() calling this in the first place.
2435 	 */
2436 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2437 		mutex_enter(&spa_namespace_lock);
2438 		locked = B_TRUE;
2439 	}
2440 
2441 	if ((spa = spa_lookup(pool)) == NULL) {
2442 		if (locked)
2443 			mutex_exit(&spa_namespace_lock);
2444 		return (ENOENT);
2445 	}
2446 
2447 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2448 		zpool_rewind_policy_t policy;
2449 
2450 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2451 		    &policy);
2452 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2453 			state = SPA_LOAD_RECOVER;
2454 
2455 		spa_activate(spa, spa_mode_global);
2456 
2457 		if (state != SPA_LOAD_RECOVER)
2458 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2459 
2460 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2461 		    policy.zrp_request);
2462 
2463 		if (error == EBADF) {
2464 			/*
2465 			 * If vdev_validate() returns failure (indicated by
2466 			 * EBADF), it indicates that one of the vdevs indicates
2467 			 * that the pool has been exported or destroyed.  If
2468 			 * this is the case, the config cache is out of sync and
2469 			 * we should remove the pool from the namespace.
2470 			 */
2471 			spa_unload(spa);
2472 			spa_deactivate(spa);
2473 			spa_config_sync(spa, B_TRUE, B_TRUE);
2474 			spa_remove(spa);
2475 			if (locked)
2476 				mutex_exit(&spa_namespace_lock);
2477 			return (ENOENT);
2478 		}
2479 
2480 		if (error) {
2481 			/*
2482 			 * We can't open the pool, but we still have useful
2483 			 * information: the state of each vdev after the
2484 			 * attempted vdev_open().  Return this to the user.
2485 			 */
2486 			if (config != NULL && spa->spa_config) {
2487 				VERIFY(nvlist_dup(spa->spa_config, config,
2488 				    KM_SLEEP) == 0);
2489 				VERIFY(nvlist_add_nvlist(*config,
2490 				    ZPOOL_CONFIG_LOAD_INFO,
2491 				    spa->spa_load_info) == 0);
2492 			}
2493 			spa_unload(spa);
2494 			spa_deactivate(spa);
2495 			spa->spa_last_open_failed = error;
2496 			if (locked)
2497 				mutex_exit(&spa_namespace_lock);
2498 			*spapp = NULL;
2499 			return (error);
2500 		}
2501 	}
2502 
2503 	spa_open_ref(spa, tag);
2504 
2505 	if (config != NULL)
2506 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2507 
2508 	/*
2509 	 * If we've recovered the pool, pass back any information we
2510 	 * gathered while doing the load.
2511 	 */
2512 	if (state == SPA_LOAD_RECOVER) {
2513 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2514 		    spa->spa_load_info) == 0);
2515 	}
2516 
2517 	if (locked) {
2518 		spa->spa_last_open_failed = 0;
2519 		spa->spa_last_ubsync_txg = 0;
2520 		spa->spa_load_txg = 0;
2521 		mutex_exit(&spa_namespace_lock);
2522 	}
2523 
2524 	*spapp = spa;
2525 
2526 	return (0);
2527 }
2528 
2529 int
2530 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2531     nvlist_t **config)
2532 {
2533 	return (spa_open_common(name, spapp, tag, policy, config));
2534 }
2535 
2536 int
2537 spa_open(const char *name, spa_t **spapp, void *tag)
2538 {
2539 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2540 }
2541 
2542 /*
2543  * Lookup the given spa_t, incrementing the inject count in the process,
2544  * preventing it from being exported or destroyed.
2545  */
2546 spa_t *
2547 spa_inject_addref(char *name)
2548 {
2549 	spa_t *spa;
2550 
2551 	mutex_enter(&spa_namespace_lock);
2552 	if ((spa = spa_lookup(name)) == NULL) {
2553 		mutex_exit(&spa_namespace_lock);
2554 		return (NULL);
2555 	}
2556 	spa->spa_inject_ref++;
2557 	mutex_exit(&spa_namespace_lock);
2558 
2559 	return (spa);
2560 }
2561 
2562 void
2563 spa_inject_delref(spa_t *spa)
2564 {
2565 	mutex_enter(&spa_namespace_lock);
2566 	spa->spa_inject_ref--;
2567 	mutex_exit(&spa_namespace_lock);
2568 }
2569 
2570 /*
2571  * Add spares device information to the nvlist.
2572  */
2573 static void
2574 spa_add_spares(spa_t *spa, nvlist_t *config)
2575 {
2576 	nvlist_t **spares;
2577 	uint_t i, nspares;
2578 	nvlist_t *nvroot;
2579 	uint64_t guid;
2580 	vdev_stat_t *vs;
2581 	uint_t vsc;
2582 	uint64_t pool;
2583 
2584 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2585 
2586 	if (spa->spa_spares.sav_count == 0)
2587 		return;
2588 
2589 	VERIFY(nvlist_lookup_nvlist(config,
2590 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2591 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2592 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2593 	if (nspares != 0) {
2594 		VERIFY(nvlist_add_nvlist_array(nvroot,
2595 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2596 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2597 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2598 
2599 		/*
2600 		 * Go through and find any spares which have since been
2601 		 * repurposed as an active spare.  If this is the case, update
2602 		 * their status appropriately.
2603 		 */
2604 		for (i = 0; i < nspares; i++) {
2605 			VERIFY(nvlist_lookup_uint64(spares[i],
2606 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2607 			if (spa_spare_exists(guid, &pool, NULL) &&
2608 			    pool != 0ULL) {
2609 				VERIFY(nvlist_lookup_uint64_array(
2610 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2611 				    (uint64_t **)&vs, &vsc) == 0);
2612 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2613 				vs->vs_aux = VDEV_AUX_SPARED;
2614 			}
2615 		}
2616 	}
2617 }
2618 
2619 /*
2620  * Add l2cache device information to the nvlist, including vdev stats.
2621  */
2622 static void
2623 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2624 {
2625 	nvlist_t **l2cache;
2626 	uint_t i, j, nl2cache;
2627 	nvlist_t *nvroot;
2628 	uint64_t guid;
2629 	vdev_t *vd;
2630 	vdev_stat_t *vs;
2631 	uint_t vsc;
2632 
2633 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2634 
2635 	if (spa->spa_l2cache.sav_count == 0)
2636 		return;
2637 
2638 	VERIFY(nvlist_lookup_nvlist(config,
2639 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2640 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2641 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2642 	if (nl2cache != 0) {
2643 		VERIFY(nvlist_add_nvlist_array(nvroot,
2644 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2645 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2646 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2647 
2648 		/*
2649 		 * Update level 2 cache device stats.
2650 		 */
2651 
2652 		for (i = 0; i < nl2cache; i++) {
2653 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2654 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2655 
2656 			vd = NULL;
2657 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2658 				if (guid ==
2659 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2660 					vd = spa->spa_l2cache.sav_vdevs[j];
2661 					break;
2662 				}
2663 			}
2664 			ASSERT(vd != NULL);
2665 
2666 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2667 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2668 			    == 0);
2669 			vdev_get_stats(vd, vs);
2670 		}
2671 	}
2672 }
2673 
2674 int
2675 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2676 {
2677 	int error;
2678 	spa_t *spa;
2679 
2680 	*config = NULL;
2681 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2682 
2683 	if (spa != NULL) {
2684 		/*
2685 		 * This still leaves a window of inconsistency where the spares
2686 		 * or l2cache devices could change and the config would be
2687 		 * self-inconsistent.
2688 		 */
2689 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2690 
2691 		if (*config != NULL) {
2692 			uint64_t loadtimes[2];
2693 
2694 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2695 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2696 			VERIFY(nvlist_add_uint64_array(*config,
2697 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2698 
2699 			VERIFY(nvlist_add_uint64(*config,
2700 			    ZPOOL_CONFIG_ERRCOUNT,
2701 			    spa_get_errlog_size(spa)) == 0);
2702 
2703 			if (spa_suspended(spa))
2704 				VERIFY(nvlist_add_uint64(*config,
2705 				    ZPOOL_CONFIG_SUSPENDED,
2706 				    spa->spa_failmode) == 0);
2707 
2708 			spa_add_spares(spa, *config);
2709 			spa_add_l2cache(spa, *config);
2710 		}
2711 	}
2712 
2713 	/*
2714 	 * We want to get the alternate root even for faulted pools, so we cheat
2715 	 * and call spa_lookup() directly.
2716 	 */
2717 	if (altroot) {
2718 		if (spa == NULL) {
2719 			mutex_enter(&spa_namespace_lock);
2720 			spa = spa_lookup(name);
2721 			if (spa)
2722 				spa_altroot(spa, altroot, buflen);
2723 			else
2724 				altroot[0] = '\0';
2725 			spa = NULL;
2726 			mutex_exit(&spa_namespace_lock);
2727 		} else {
2728 			spa_altroot(spa, altroot, buflen);
2729 		}
2730 	}
2731 
2732 	if (spa != NULL) {
2733 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2734 		spa_close(spa, FTAG);
2735 	}
2736 
2737 	return (error);
2738 }
2739 
2740 /*
2741  * Validate that the auxiliary device array is well formed.  We must have an
2742  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2743  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2744  * specified, as long as they are well-formed.
2745  */
2746 static int
2747 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2748     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2749     vdev_labeltype_t label)
2750 {
2751 	nvlist_t **dev;
2752 	uint_t i, ndev;
2753 	vdev_t *vd;
2754 	int error;
2755 
2756 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2757 
2758 	/*
2759 	 * It's acceptable to have no devs specified.
2760 	 */
2761 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2762 		return (0);
2763 
2764 	if (ndev == 0)
2765 		return (EINVAL);
2766 
2767 	/*
2768 	 * Make sure the pool is formatted with a version that supports this
2769 	 * device type.
2770 	 */
2771 	if (spa_version(spa) < version)
2772 		return (ENOTSUP);
2773 
2774 	/*
2775 	 * Set the pending device list so we correctly handle device in-use
2776 	 * checking.
2777 	 */
2778 	sav->sav_pending = dev;
2779 	sav->sav_npending = ndev;
2780 
2781 	for (i = 0; i < ndev; i++) {
2782 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2783 		    mode)) != 0)
2784 			goto out;
2785 
2786 		if (!vd->vdev_ops->vdev_op_leaf) {
2787 			vdev_free(vd);
2788 			error = EINVAL;
2789 			goto out;
2790 		}
2791 
2792 		/*
2793 		 * The L2ARC currently only supports disk devices in
2794 		 * kernel context.  For user-level testing, we allow it.
2795 		 */
2796 #ifdef _KERNEL
2797 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2798 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2799 			error = ENOTBLK;
2800 			goto out;
2801 		}
2802 #endif
2803 		vd->vdev_top = vd;
2804 
2805 		if ((error = vdev_open(vd)) == 0 &&
2806 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2807 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2808 			    vd->vdev_guid) == 0);
2809 		}
2810 
2811 		vdev_free(vd);
2812 
2813 		if (error &&
2814 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2815 			goto out;
2816 		else
2817 			error = 0;
2818 	}
2819 
2820 out:
2821 	sav->sav_pending = NULL;
2822 	sav->sav_npending = 0;
2823 	return (error);
2824 }
2825 
2826 static int
2827 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2828 {
2829 	int error;
2830 
2831 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2832 
2833 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2834 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2835 	    VDEV_LABEL_SPARE)) != 0) {
2836 		return (error);
2837 	}
2838 
2839 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2840 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2841 	    VDEV_LABEL_L2CACHE));
2842 }
2843 
2844 static void
2845 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2846     const char *config)
2847 {
2848 	int i;
2849 
2850 	if (sav->sav_config != NULL) {
2851 		nvlist_t **olddevs;
2852 		uint_t oldndevs;
2853 		nvlist_t **newdevs;
2854 
2855 		/*
2856 		 * Generate new dev list by concatentating with the
2857 		 * current dev list.
2858 		 */
2859 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2860 		    &olddevs, &oldndevs) == 0);
2861 
2862 		newdevs = kmem_alloc(sizeof (void *) *
2863 		    (ndevs + oldndevs), KM_SLEEP);
2864 		for (i = 0; i < oldndevs; i++)
2865 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2866 			    KM_SLEEP) == 0);
2867 		for (i = 0; i < ndevs; i++)
2868 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2869 			    KM_SLEEP) == 0);
2870 
2871 		VERIFY(nvlist_remove(sav->sav_config, config,
2872 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2873 
2874 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2875 		    config, newdevs, ndevs + oldndevs) == 0);
2876 		for (i = 0; i < oldndevs + ndevs; i++)
2877 			nvlist_free(newdevs[i]);
2878 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2879 	} else {
2880 		/*
2881 		 * Generate a new dev list.
2882 		 */
2883 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2884 		    KM_SLEEP) == 0);
2885 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2886 		    devs, ndevs) == 0);
2887 	}
2888 }
2889 
2890 /*
2891  * Stop and drop level 2 ARC devices
2892  */
2893 void
2894 spa_l2cache_drop(spa_t *spa)
2895 {
2896 	vdev_t *vd;
2897 	int i;
2898 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2899 
2900 	for (i = 0; i < sav->sav_count; i++) {
2901 		uint64_t pool;
2902 
2903 		vd = sav->sav_vdevs[i];
2904 		ASSERT(vd != NULL);
2905 
2906 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2907 		    pool != 0ULL && l2arc_vdev_present(vd))
2908 			l2arc_remove_vdev(vd);
2909 		if (vd->vdev_isl2cache)
2910 			spa_l2cache_remove(vd);
2911 		vdev_clear_stats(vd);
2912 		(void) vdev_close(vd);
2913 	}
2914 }
2915 
2916 /*
2917  * Pool Creation
2918  */
2919 int
2920 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2921     const char *history_str, nvlist_t *zplprops)
2922 {
2923 	spa_t *spa;
2924 	char *altroot = NULL;
2925 	vdev_t *rvd;
2926 	dsl_pool_t *dp;
2927 	dmu_tx_t *tx;
2928 	int error = 0;
2929 	uint64_t txg = TXG_INITIAL;
2930 	nvlist_t **spares, **l2cache;
2931 	uint_t nspares, nl2cache;
2932 	uint64_t version, obj;
2933 
2934 	/*
2935 	 * If this pool already exists, return failure.
2936 	 */
2937 	mutex_enter(&spa_namespace_lock);
2938 	if (spa_lookup(pool) != NULL) {
2939 		mutex_exit(&spa_namespace_lock);
2940 		return (EEXIST);
2941 	}
2942 
2943 	/*
2944 	 * Allocate a new spa_t structure.
2945 	 */
2946 	(void) nvlist_lookup_string(props,
2947 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2948 	spa = spa_add(pool, NULL, altroot);
2949 	spa_activate(spa, spa_mode_global);
2950 
2951 	if (props && (error = spa_prop_validate(spa, props))) {
2952 		spa_deactivate(spa);
2953 		spa_remove(spa);
2954 		mutex_exit(&spa_namespace_lock);
2955 		return (error);
2956 	}
2957 
2958 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2959 	    &version) != 0)
2960 		version = SPA_VERSION;
2961 	ASSERT(version <= SPA_VERSION);
2962 
2963 	spa->spa_first_txg = txg;
2964 	spa->spa_uberblock.ub_txg = txg - 1;
2965 	spa->spa_uberblock.ub_version = version;
2966 	spa->spa_ubsync = spa->spa_uberblock;
2967 
2968 	/*
2969 	 * Create "The Godfather" zio to hold all async IOs
2970 	 */
2971 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2972 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2973 
2974 	/*
2975 	 * Create the root vdev.
2976 	 */
2977 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2978 
2979 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2980 
2981 	ASSERT(error != 0 || rvd != NULL);
2982 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2983 
2984 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2985 		error = EINVAL;
2986 
2987 	if (error == 0 &&
2988 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2989 	    (error = spa_validate_aux(spa, nvroot, txg,
2990 	    VDEV_ALLOC_ADD)) == 0) {
2991 		for (int c = 0; c < rvd->vdev_children; c++) {
2992 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2993 			vdev_expand(rvd->vdev_child[c], txg);
2994 		}
2995 	}
2996 
2997 	spa_config_exit(spa, SCL_ALL, FTAG);
2998 
2999 	if (error != 0) {
3000 		spa_unload(spa);
3001 		spa_deactivate(spa);
3002 		spa_remove(spa);
3003 		mutex_exit(&spa_namespace_lock);
3004 		return (error);
3005 	}
3006 
3007 	/*
3008 	 * Get the list of spares, if specified.
3009 	 */
3010 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3011 	    &spares, &nspares) == 0) {
3012 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3013 		    KM_SLEEP) == 0);
3014 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3015 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3016 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3017 		spa_load_spares(spa);
3018 		spa_config_exit(spa, SCL_ALL, FTAG);
3019 		spa->spa_spares.sav_sync = B_TRUE;
3020 	}
3021 
3022 	/*
3023 	 * Get the list of level 2 cache devices, if specified.
3024 	 */
3025 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3026 	    &l2cache, &nl2cache) == 0) {
3027 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3028 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3029 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3030 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3031 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3032 		spa_load_l2cache(spa);
3033 		spa_config_exit(spa, SCL_ALL, FTAG);
3034 		spa->spa_l2cache.sav_sync = B_TRUE;
3035 	}
3036 
3037 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3038 	spa->spa_meta_objset = dp->dp_meta_objset;
3039 
3040 	/*
3041 	 * Create DDTs (dedup tables).
3042 	 */
3043 	ddt_create(spa);
3044 
3045 	spa_update_dspace(spa);
3046 
3047 	tx = dmu_tx_create_assigned(dp, txg);
3048 
3049 	/*
3050 	 * Create the pool config object.
3051 	 */
3052 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3053 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3054 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3055 
3056 	if (zap_add(spa->spa_meta_objset,
3057 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3058 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3059 		cmn_err(CE_PANIC, "failed to add pool config");
3060 	}
3061 
3062 	if (zap_add(spa->spa_meta_objset,
3063 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3064 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3065 		cmn_err(CE_PANIC, "failed to add pool version");
3066 	}
3067 
3068 	/* Newly created pools with the right version are always deflated. */
3069 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3070 		spa->spa_deflate = TRUE;
3071 		if (zap_add(spa->spa_meta_objset,
3072 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3073 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3074 			cmn_err(CE_PANIC, "failed to add deflate");
3075 		}
3076 	}
3077 
3078 	/*
3079 	 * Create the deferred-free bpobj.  Turn off compression
3080 	 * because sync-to-convergence takes longer if the blocksize
3081 	 * keeps changing.
3082 	 */
3083 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3084 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3085 	    ZIO_COMPRESS_OFF, tx);
3086 	if (zap_add(spa->spa_meta_objset,
3087 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3088 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3089 		cmn_err(CE_PANIC, "failed to add bpobj");
3090 	}
3091 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3092 	    spa->spa_meta_objset, obj));
3093 
3094 	/*
3095 	 * Create the pool's history object.
3096 	 */
3097 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3098 		spa_history_create_obj(spa, tx);
3099 
3100 	/*
3101 	 * Set pool properties.
3102 	 */
3103 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3104 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3105 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3106 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3107 
3108 	if (props != NULL) {
3109 		spa_configfile_set(spa, props, B_FALSE);
3110 		spa_sync_props(spa, props, tx);
3111 	}
3112 
3113 	dmu_tx_commit(tx);
3114 
3115 	spa->spa_sync_on = B_TRUE;
3116 	txg_sync_start(spa->spa_dsl_pool);
3117 
3118 	/*
3119 	 * We explicitly wait for the first transaction to complete so that our
3120 	 * bean counters are appropriately updated.
3121 	 */
3122 	txg_wait_synced(spa->spa_dsl_pool, txg);
3123 
3124 	spa_config_sync(spa, B_FALSE, B_TRUE);
3125 
3126 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3127 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3128 	spa_history_log_version(spa, LOG_POOL_CREATE);
3129 
3130 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3131 
3132 	mutex_exit(&spa_namespace_lock);
3133 
3134 	return (0);
3135 }
3136 
3137 #ifdef _KERNEL
3138 /*
3139  * Get the root pool information from the root disk, then import the root pool
3140  * during the system boot up time.
3141  */
3142 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3143 
3144 static nvlist_t *
3145 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3146 {
3147 	nvlist_t *config;
3148 	nvlist_t *nvtop, *nvroot;
3149 	uint64_t pgid;
3150 
3151 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3152 		return (NULL);
3153 
3154 	/*
3155 	 * Add this top-level vdev to the child array.
3156 	 */
3157 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3158 	    &nvtop) == 0);
3159 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3160 	    &pgid) == 0);
3161 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3162 
3163 	/*
3164 	 * Put this pool's top-level vdevs into a root vdev.
3165 	 */
3166 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3167 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3168 	    VDEV_TYPE_ROOT) == 0);
3169 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3170 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3171 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3172 	    &nvtop, 1) == 0);
3173 
3174 	/*
3175 	 * Replace the existing vdev_tree with the new root vdev in
3176 	 * this pool's configuration (remove the old, add the new).
3177 	 */
3178 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3179 	nvlist_free(nvroot);
3180 	return (config);
3181 }
3182 
3183 /*
3184  * Walk the vdev tree and see if we can find a device with "better"
3185  * configuration. A configuration is "better" if the label on that
3186  * device has a more recent txg.
3187  */
3188 static void
3189 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3190 {
3191 	for (int c = 0; c < vd->vdev_children; c++)
3192 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3193 
3194 	if (vd->vdev_ops->vdev_op_leaf) {
3195 		nvlist_t *label;
3196 		uint64_t label_txg;
3197 
3198 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3199 		    &label) != 0)
3200 			return;
3201 
3202 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3203 		    &label_txg) == 0);
3204 
3205 		/*
3206 		 * Do we have a better boot device?
3207 		 */
3208 		if (label_txg > *txg) {
3209 			*txg = label_txg;
3210 			*avd = vd;
3211 		}
3212 		nvlist_free(label);
3213 	}
3214 }
3215 
3216 /*
3217  * Import a root pool.
3218  *
3219  * For x86. devpath_list will consist of devid and/or physpath name of
3220  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3221  * The GRUB "findroot" command will return the vdev we should boot.
3222  *
3223  * For Sparc, devpath_list consists the physpath name of the booting device
3224  * no matter the rootpool is a single device pool or a mirrored pool.
3225  * e.g.
3226  *	"/pci@1f,0/ide@d/disk@0,0:a"
3227  */
3228 int
3229 spa_import_rootpool(char *devpath, char *devid)
3230 {
3231 	spa_t *spa;
3232 	vdev_t *rvd, *bvd, *avd = NULL;
3233 	nvlist_t *config, *nvtop;
3234 	uint64_t guid, txg;
3235 	char *pname;
3236 	int error;
3237 
3238 	/*
3239 	 * Read the label from the boot device and generate a configuration.
3240 	 */
3241 	config = spa_generate_rootconf(devpath, devid, &guid);
3242 #if defined(_OBP) && defined(_KERNEL)
3243 	if (config == NULL) {
3244 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3245 			/* iscsi boot */
3246 			get_iscsi_bootpath_phy(devpath);
3247 			config = spa_generate_rootconf(devpath, devid, &guid);
3248 		}
3249 	}
3250 #endif
3251 	if (config == NULL) {
3252 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3253 		    devpath);
3254 		return (EIO);
3255 	}
3256 
3257 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3258 	    &pname) == 0);
3259 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3260 
3261 	mutex_enter(&spa_namespace_lock);
3262 	if ((spa = spa_lookup(pname)) != NULL) {
3263 		/*
3264 		 * Remove the existing root pool from the namespace so that we
3265 		 * can replace it with the correct config we just read in.
3266 		 */
3267 		spa_remove(spa);
3268 	}
3269 
3270 	spa = spa_add(pname, config, NULL);
3271 	spa->spa_is_root = B_TRUE;
3272 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3273 
3274 	/*
3275 	 * Build up a vdev tree based on the boot device's label config.
3276 	 */
3277 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3278 	    &nvtop) == 0);
3279 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3280 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3281 	    VDEV_ALLOC_ROOTPOOL);
3282 	spa_config_exit(spa, SCL_ALL, FTAG);
3283 	if (error) {
3284 		mutex_exit(&spa_namespace_lock);
3285 		nvlist_free(config);
3286 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3287 		    pname);
3288 		return (error);
3289 	}
3290 
3291 	/*
3292 	 * Get the boot vdev.
3293 	 */
3294 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3295 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3296 		    (u_longlong_t)guid);
3297 		error = ENOENT;
3298 		goto out;
3299 	}
3300 
3301 	/*
3302 	 * Determine if there is a better boot device.
3303 	 */
3304 	avd = bvd;
3305 	spa_alt_rootvdev(rvd, &avd, &txg);
3306 	if (avd != bvd) {
3307 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3308 		    "try booting from '%s'", avd->vdev_path);
3309 		error = EINVAL;
3310 		goto out;
3311 	}
3312 
3313 	/*
3314 	 * If the boot device is part of a spare vdev then ensure that
3315 	 * we're booting off the active spare.
3316 	 */
3317 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3318 	    !bvd->vdev_isspare) {
3319 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3320 		    "try booting from '%s'",
3321 		    bvd->vdev_parent->
3322 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3323 		error = EINVAL;
3324 		goto out;
3325 	}
3326 
3327 	error = 0;
3328 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3329 out:
3330 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3331 	vdev_free(rvd);
3332 	spa_config_exit(spa, SCL_ALL, FTAG);
3333 	mutex_exit(&spa_namespace_lock);
3334 
3335 	nvlist_free(config);
3336 	return (error);
3337 }
3338 
3339 #endif
3340 
3341 /*
3342  * Import a non-root pool into the system.
3343  */
3344 int
3345 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3346 {
3347 	spa_t *spa;
3348 	char *altroot = NULL;
3349 	spa_load_state_t state = SPA_LOAD_IMPORT;
3350 	zpool_rewind_policy_t policy;
3351 	uint64_t mode = spa_mode_global;
3352 	uint64_t readonly = B_FALSE;
3353 	int error;
3354 	nvlist_t *nvroot;
3355 	nvlist_t **spares, **l2cache;
3356 	uint_t nspares, nl2cache;
3357 
3358 	/*
3359 	 * If a pool with this name exists, return failure.
3360 	 */
3361 	mutex_enter(&spa_namespace_lock);
3362 	if (spa_lookup(pool) != NULL) {
3363 		mutex_exit(&spa_namespace_lock);
3364 		return (EEXIST);
3365 	}
3366 
3367 	/*
3368 	 * Create and initialize the spa structure.
3369 	 */
3370 	(void) nvlist_lookup_string(props,
3371 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3372 	(void) nvlist_lookup_uint64(props,
3373 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3374 	if (readonly)
3375 		mode = FREAD;
3376 	spa = spa_add(pool, config, altroot);
3377 	spa->spa_import_flags = flags;
3378 
3379 	/*
3380 	 * Verbatim import - Take a pool and insert it into the namespace
3381 	 * as if it had been loaded at boot.
3382 	 */
3383 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3384 		if (props != NULL)
3385 			spa_configfile_set(spa, props, B_FALSE);
3386 
3387 		spa_config_sync(spa, B_FALSE, B_TRUE);
3388 
3389 		mutex_exit(&spa_namespace_lock);
3390 		spa_history_log_version(spa, LOG_POOL_IMPORT);
3391 
3392 		return (0);
3393 	}
3394 
3395 	spa_activate(spa, mode);
3396 
3397 	/*
3398 	 * Don't start async tasks until we know everything is healthy.
3399 	 */
3400 	spa_async_suspend(spa);
3401 
3402 	zpool_get_rewind_policy(config, &policy);
3403 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3404 		state = SPA_LOAD_RECOVER;
3405 
3406 	/*
3407 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3408 	 * because the user-supplied config is actually the one to trust when
3409 	 * doing an import.
3410 	 */
3411 	if (state != SPA_LOAD_RECOVER)
3412 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3413 
3414 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3415 	    policy.zrp_request);
3416 
3417 	/*
3418 	 * Propagate anything learned while loading the pool and pass it
3419 	 * back to caller (i.e. rewind info, missing devices, etc).
3420 	 */
3421 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3422 	    spa->spa_load_info) == 0);
3423 
3424 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3425 	/*
3426 	 * Toss any existing sparelist, as it doesn't have any validity
3427 	 * anymore, and conflicts with spa_has_spare().
3428 	 */
3429 	if (spa->spa_spares.sav_config) {
3430 		nvlist_free(spa->spa_spares.sav_config);
3431 		spa->spa_spares.sav_config = NULL;
3432 		spa_load_spares(spa);
3433 	}
3434 	if (spa->spa_l2cache.sav_config) {
3435 		nvlist_free(spa->spa_l2cache.sav_config);
3436 		spa->spa_l2cache.sav_config = NULL;
3437 		spa_load_l2cache(spa);
3438 	}
3439 
3440 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3441 	    &nvroot) == 0);
3442 	if (error == 0)
3443 		error = spa_validate_aux(spa, nvroot, -1ULL,
3444 		    VDEV_ALLOC_SPARE);
3445 	if (error == 0)
3446 		error = spa_validate_aux(spa, nvroot, -1ULL,
3447 		    VDEV_ALLOC_L2CACHE);
3448 	spa_config_exit(spa, SCL_ALL, FTAG);
3449 
3450 	if (props != NULL)
3451 		spa_configfile_set(spa, props, B_FALSE);
3452 
3453 	if (error != 0 || (props && spa_writeable(spa) &&
3454 	    (error = spa_prop_set(spa, props)))) {
3455 		spa_unload(spa);
3456 		spa_deactivate(spa);
3457 		spa_remove(spa);
3458 		mutex_exit(&spa_namespace_lock);
3459 		return (error);
3460 	}
3461 
3462 	spa_async_resume(spa);
3463 
3464 	/*
3465 	 * Override any spares and level 2 cache devices as specified by
3466 	 * the user, as these may have correct device names/devids, etc.
3467 	 */
3468 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3469 	    &spares, &nspares) == 0) {
3470 		if (spa->spa_spares.sav_config)
3471 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3472 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3473 		else
3474 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3475 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3476 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3477 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3478 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3479 		spa_load_spares(spa);
3480 		spa_config_exit(spa, SCL_ALL, FTAG);
3481 		spa->spa_spares.sav_sync = B_TRUE;
3482 	}
3483 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3484 	    &l2cache, &nl2cache) == 0) {
3485 		if (spa->spa_l2cache.sav_config)
3486 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3487 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3488 		else
3489 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3490 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3491 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3492 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3493 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3494 		spa_load_l2cache(spa);
3495 		spa_config_exit(spa, SCL_ALL, FTAG);
3496 		spa->spa_l2cache.sav_sync = B_TRUE;
3497 	}
3498 
3499 	/*
3500 	 * Check for any removed devices.
3501 	 */
3502 	if (spa->spa_autoreplace) {
3503 		spa_aux_check_removed(&spa->spa_spares);
3504 		spa_aux_check_removed(&spa->spa_l2cache);
3505 	}
3506 
3507 	if (spa_writeable(spa)) {
3508 		/*
3509 		 * Update the config cache to include the newly-imported pool.
3510 		 */
3511 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3512 	}
3513 
3514 	/*
3515 	 * It's possible that the pool was expanded while it was exported.
3516 	 * We kick off an async task to handle this for us.
3517 	 */
3518 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3519 
3520 	mutex_exit(&spa_namespace_lock);
3521 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3522 
3523 	return (0);
3524 }
3525 
3526 nvlist_t *
3527 spa_tryimport(nvlist_t *tryconfig)
3528 {
3529 	nvlist_t *config = NULL;
3530 	char *poolname;
3531 	spa_t *spa;
3532 	uint64_t state;
3533 	int error;
3534 
3535 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3536 		return (NULL);
3537 
3538 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3539 		return (NULL);
3540 
3541 	/*
3542 	 * Create and initialize the spa structure.
3543 	 */
3544 	mutex_enter(&spa_namespace_lock);
3545 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3546 	spa_activate(spa, FREAD);
3547 
3548 	/*
3549 	 * Pass off the heavy lifting to spa_load().
3550 	 * Pass TRUE for mosconfig because the user-supplied config
3551 	 * is actually the one to trust when doing an import.
3552 	 */
3553 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3554 
3555 	/*
3556 	 * If 'tryconfig' was at least parsable, return the current config.
3557 	 */
3558 	if (spa->spa_root_vdev != NULL) {
3559 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3560 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3561 		    poolname) == 0);
3562 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3563 		    state) == 0);
3564 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3565 		    spa->spa_uberblock.ub_timestamp) == 0);
3566 
3567 		/*
3568 		 * If the bootfs property exists on this pool then we
3569 		 * copy it out so that external consumers can tell which
3570 		 * pools are bootable.
3571 		 */
3572 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3573 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3574 
3575 			/*
3576 			 * We have to play games with the name since the
3577 			 * pool was opened as TRYIMPORT_NAME.
3578 			 */
3579 			if (dsl_dsobj_to_dsname(spa_name(spa),
3580 			    spa->spa_bootfs, tmpname) == 0) {
3581 				char *cp;
3582 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3583 
3584 				cp = strchr(tmpname, '/');
3585 				if (cp == NULL) {
3586 					(void) strlcpy(dsname, tmpname,
3587 					    MAXPATHLEN);
3588 				} else {
3589 					(void) snprintf(dsname, MAXPATHLEN,
3590 					    "%s/%s", poolname, ++cp);
3591 				}
3592 				VERIFY(nvlist_add_string(config,
3593 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3594 				kmem_free(dsname, MAXPATHLEN);
3595 			}
3596 			kmem_free(tmpname, MAXPATHLEN);
3597 		}
3598 
3599 		/*
3600 		 * Add the list of hot spares and level 2 cache devices.
3601 		 */
3602 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3603 		spa_add_spares(spa, config);
3604 		spa_add_l2cache(spa, config);
3605 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3606 	}
3607 
3608 	spa_unload(spa);
3609 	spa_deactivate(spa);
3610 	spa_remove(spa);
3611 	mutex_exit(&spa_namespace_lock);
3612 
3613 	return (config);
3614 }
3615 
3616 /*
3617  * Pool export/destroy
3618  *
3619  * The act of destroying or exporting a pool is very simple.  We make sure there
3620  * is no more pending I/O and any references to the pool are gone.  Then, we
3621  * update the pool state and sync all the labels to disk, removing the
3622  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3623  * we don't sync the labels or remove the configuration cache.
3624  */
3625 static int
3626 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3627     boolean_t force, boolean_t hardforce)
3628 {
3629 	spa_t *spa;
3630 
3631 	if (oldconfig)
3632 		*oldconfig = NULL;
3633 
3634 	if (!(spa_mode_global & FWRITE))
3635 		return (EROFS);
3636 
3637 	mutex_enter(&spa_namespace_lock);
3638 	if ((spa = spa_lookup(pool)) == NULL) {
3639 		mutex_exit(&spa_namespace_lock);
3640 		return (ENOENT);
3641 	}
3642 
3643 	/*
3644 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3645 	 * reacquire the namespace lock, and see if we can export.
3646 	 */
3647 	spa_open_ref(spa, FTAG);
3648 	mutex_exit(&spa_namespace_lock);
3649 	spa_async_suspend(spa);
3650 	mutex_enter(&spa_namespace_lock);
3651 	spa_close(spa, FTAG);
3652 
3653 	/*
3654 	 * The pool will be in core if it's openable,
3655 	 * in which case we can modify its state.
3656 	 */
3657 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3658 		/*
3659 		 * Objsets may be open only because they're dirty, so we
3660 		 * have to force it to sync before checking spa_refcnt.
3661 		 */
3662 		txg_wait_synced(spa->spa_dsl_pool, 0);
3663 
3664 		/*
3665 		 * A pool cannot be exported or destroyed if there are active
3666 		 * references.  If we are resetting a pool, allow references by
3667 		 * fault injection handlers.
3668 		 */
3669 		if (!spa_refcount_zero(spa) ||
3670 		    (spa->spa_inject_ref != 0 &&
3671 		    new_state != POOL_STATE_UNINITIALIZED)) {
3672 			spa_async_resume(spa);
3673 			mutex_exit(&spa_namespace_lock);
3674 			return (EBUSY);
3675 		}
3676 
3677 		/*
3678 		 * A pool cannot be exported if it has an active shared spare.
3679 		 * This is to prevent other pools stealing the active spare
3680 		 * from an exported pool. At user's own will, such pool can
3681 		 * be forcedly exported.
3682 		 */
3683 		if (!force && new_state == POOL_STATE_EXPORTED &&
3684 		    spa_has_active_shared_spare(spa)) {
3685 			spa_async_resume(spa);
3686 			mutex_exit(&spa_namespace_lock);
3687 			return (EXDEV);
3688 		}
3689 
3690 		/*
3691 		 * We want this to be reflected on every label,
3692 		 * so mark them all dirty.  spa_unload() will do the
3693 		 * final sync that pushes these changes out.
3694 		 */
3695 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3696 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697 			spa->spa_state = new_state;
3698 			spa->spa_final_txg = spa_last_synced_txg(spa) +
3699 			    TXG_DEFER_SIZE + 1;
3700 			vdev_config_dirty(spa->spa_root_vdev);
3701 			spa_config_exit(spa, SCL_ALL, FTAG);
3702 		}
3703 	}
3704 
3705 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3706 
3707 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3708 		spa_unload(spa);
3709 		spa_deactivate(spa);
3710 	}
3711 
3712 	if (oldconfig && spa->spa_config)
3713 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3714 
3715 	if (new_state != POOL_STATE_UNINITIALIZED) {
3716 		if (!hardforce)
3717 			spa_config_sync(spa, B_TRUE, B_TRUE);
3718 		spa_remove(spa);
3719 	}
3720 	mutex_exit(&spa_namespace_lock);
3721 
3722 	return (0);
3723 }
3724 
3725 /*
3726  * Destroy a storage pool.
3727  */
3728 int
3729 spa_destroy(char *pool)
3730 {
3731 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3732 	    B_FALSE, B_FALSE));
3733 }
3734 
3735 /*
3736  * Export a storage pool.
3737  */
3738 int
3739 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3740     boolean_t hardforce)
3741 {
3742 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3743 	    force, hardforce));
3744 }
3745 
3746 /*
3747  * Similar to spa_export(), this unloads the spa_t without actually removing it
3748  * from the namespace in any way.
3749  */
3750 int
3751 spa_reset(char *pool)
3752 {
3753 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3754 	    B_FALSE, B_FALSE));
3755 }
3756 
3757 /*
3758  * ==========================================================================
3759  * Device manipulation
3760  * ==========================================================================
3761  */
3762 
3763 /*
3764  * Add a device to a storage pool.
3765  */
3766 int
3767 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3768 {
3769 	uint64_t txg, id;
3770 	int error;
3771 	vdev_t *rvd = spa->spa_root_vdev;
3772 	vdev_t *vd, *tvd;
3773 	nvlist_t **spares, **l2cache;
3774 	uint_t nspares, nl2cache;
3775 
3776 	ASSERT(spa_writeable(spa));
3777 
3778 	txg = spa_vdev_enter(spa);
3779 
3780 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3781 	    VDEV_ALLOC_ADD)) != 0)
3782 		return (spa_vdev_exit(spa, NULL, txg, error));
3783 
3784 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3785 
3786 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3787 	    &nspares) != 0)
3788 		nspares = 0;
3789 
3790 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3791 	    &nl2cache) != 0)
3792 		nl2cache = 0;
3793 
3794 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3795 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3796 
3797 	if (vd->vdev_children != 0 &&
3798 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3799 		return (spa_vdev_exit(spa, vd, txg, error));
3800 
3801 	/*
3802 	 * We must validate the spares and l2cache devices after checking the
3803 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3804 	 */
3805 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3806 		return (spa_vdev_exit(spa, vd, txg, error));
3807 
3808 	/*
3809 	 * Transfer each new top-level vdev from vd to rvd.
3810 	 */
3811 	for (int c = 0; c < vd->vdev_children; c++) {
3812 
3813 		/*
3814 		 * Set the vdev id to the first hole, if one exists.
3815 		 */
3816 		for (id = 0; id < rvd->vdev_children; id++) {
3817 			if (rvd->vdev_child[id]->vdev_ishole) {
3818 				vdev_free(rvd->vdev_child[id]);
3819 				break;
3820 			}
3821 		}
3822 		tvd = vd->vdev_child[c];
3823 		vdev_remove_child(vd, tvd);
3824 		tvd->vdev_id = id;
3825 		vdev_add_child(rvd, tvd);
3826 		vdev_config_dirty(tvd);
3827 	}
3828 
3829 	if (nspares != 0) {
3830 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3831 		    ZPOOL_CONFIG_SPARES);
3832 		spa_load_spares(spa);
3833 		spa->spa_spares.sav_sync = B_TRUE;
3834 	}
3835 
3836 	if (nl2cache != 0) {
3837 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3838 		    ZPOOL_CONFIG_L2CACHE);
3839 		spa_load_l2cache(spa);
3840 		spa->spa_l2cache.sav_sync = B_TRUE;
3841 	}
3842 
3843 	/*
3844 	 * We have to be careful when adding new vdevs to an existing pool.
3845 	 * If other threads start allocating from these vdevs before we
3846 	 * sync the config cache, and we lose power, then upon reboot we may
3847 	 * fail to open the pool because there are DVAs that the config cache
3848 	 * can't translate.  Therefore, we first add the vdevs without
3849 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3850 	 * and then let spa_config_update() initialize the new metaslabs.
3851 	 *
3852 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3853 	 * if we lose power at any point in this sequence, the remaining
3854 	 * steps will be completed the next time we load the pool.
3855 	 */
3856 	(void) spa_vdev_exit(spa, vd, txg, 0);
3857 
3858 	mutex_enter(&spa_namespace_lock);
3859 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3860 	mutex_exit(&spa_namespace_lock);
3861 
3862 	return (0);
3863 }
3864 
3865 /*
3866  * Attach a device to a mirror.  The arguments are the path to any device
3867  * in the mirror, and the nvroot for the new device.  If the path specifies
3868  * a device that is not mirrored, we automatically insert the mirror vdev.
3869  *
3870  * If 'replacing' is specified, the new device is intended to replace the
3871  * existing device; in this case the two devices are made into their own
3872  * mirror using the 'replacing' vdev, which is functionally identical to
3873  * the mirror vdev (it actually reuses all the same ops) but has a few
3874  * extra rules: you can't attach to it after it's been created, and upon
3875  * completion of resilvering, the first disk (the one being replaced)
3876  * is automatically detached.
3877  */
3878 int
3879 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3880 {
3881 	uint64_t txg, dtl_max_txg;
3882 	vdev_t *rvd = spa->spa_root_vdev;
3883 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3884 	vdev_ops_t *pvops;
3885 	char *oldvdpath, *newvdpath;
3886 	int newvd_isspare;
3887 	int error;
3888 
3889 	ASSERT(spa_writeable(spa));
3890 
3891 	txg = spa_vdev_enter(spa);
3892 
3893 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3894 
3895 	if (oldvd == NULL)
3896 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3897 
3898 	if (!oldvd->vdev_ops->vdev_op_leaf)
3899 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3900 
3901 	pvd = oldvd->vdev_parent;
3902 
3903 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3904 	    VDEV_ALLOC_ADD)) != 0)
3905 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3906 
3907 	if (newrootvd->vdev_children != 1)
3908 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3909 
3910 	newvd = newrootvd->vdev_child[0];
3911 
3912 	if (!newvd->vdev_ops->vdev_op_leaf)
3913 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3914 
3915 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3916 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3917 
3918 	/*
3919 	 * Spares can't replace logs
3920 	 */
3921 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3922 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3923 
3924 	if (!replacing) {
3925 		/*
3926 		 * For attach, the only allowable parent is a mirror or the root
3927 		 * vdev.
3928 		 */
3929 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3930 		    pvd->vdev_ops != &vdev_root_ops)
3931 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3932 
3933 		pvops = &vdev_mirror_ops;
3934 	} else {
3935 		/*
3936 		 * Active hot spares can only be replaced by inactive hot
3937 		 * spares.
3938 		 */
3939 		if (pvd->vdev_ops == &vdev_spare_ops &&
3940 		    oldvd->vdev_isspare &&
3941 		    !spa_has_spare(spa, newvd->vdev_guid))
3942 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3943 
3944 		/*
3945 		 * If the source is a hot spare, and the parent isn't already a
3946 		 * spare, then we want to create a new hot spare.  Otherwise, we
3947 		 * want to create a replacing vdev.  The user is not allowed to
3948 		 * attach to a spared vdev child unless the 'isspare' state is
3949 		 * the same (spare replaces spare, non-spare replaces
3950 		 * non-spare).
3951 		 */
3952 		if (pvd->vdev_ops == &vdev_replacing_ops &&
3953 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3954 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3955 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
3956 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
3957 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3958 		}
3959 
3960 		if (newvd->vdev_isspare)
3961 			pvops = &vdev_spare_ops;
3962 		else
3963 			pvops = &vdev_replacing_ops;
3964 	}
3965 
3966 	/*
3967 	 * Make sure the new device is big enough.
3968 	 */
3969 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3970 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3971 
3972 	/*
3973 	 * The new device cannot have a higher alignment requirement
3974 	 * than the top-level vdev.
3975 	 */
3976 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3977 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3978 
3979 	/*
3980 	 * If this is an in-place replacement, update oldvd's path and devid
3981 	 * to make it distinguishable from newvd, and unopenable from now on.
3982 	 */
3983 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3984 		spa_strfree(oldvd->vdev_path);
3985 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3986 		    KM_SLEEP);
3987 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3988 		    newvd->vdev_path, "old");
3989 		if (oldvd->vdev_devid != NULL) {
3990 			spa_strfree(oldvd->vdev_devid);
3991 			oldvd->vdev_devid = NULL;
3992 		}
3993 	}
3994 
3995 	/* mark the device being resilvered */
3996 	newvd->vdev_resilvering = B_TRUE;
3997 
3998 	/*
3999 	 * If the parent is not a mirror, or if we're replacing, insert the new
4000 	 * mirror/replacing/spare vdev above oldvd.
4001 	 */
4002 	if (pvd->vdev_ops != pvops)
4003 		pvd = vdev_add_parent(oldvd, pvops);
4004 
4005 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4006 	ASSERT(pvd->vdev_ops == pvops);
4007 	ASSERT(oldvd->vdev_parent == pvd);
4008 
4009 	/*
4010 	 * Extract the new device from its root and add it to pvd.
4011 	 */
4012 	vdev_remove_child(newrootvd, newvd);
4013 	newvd->vdev_id = pvd->vdev_children;
4014 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4015 	vdev_add_child(pvd, newvd);
4016 
4017 	tvd = newvd->vdev_top;
4018 	ASSERT(pvd->vdev_top == tvd);
4019 	ASSERT(tvd->vdev_parent == rvd);
4020 
4021 	vdev_config_dirty(tvd);
4022 
4023 	/*
4024 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4025 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4026 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4027 	 */
4028 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4029 
4030 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4031 	    dtl_max_txg - TXG_INITIAL);
4032 
4033 	if (newvd->vdev_isspare) {
4034 		spa_spare_activate(newvd);
4035 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4036 	}
4037 
4038 	oldvdpath = spa_strdup(oldvd->vdev_path);
4039 	newvdpath = spa_strdup(newvd->vdev_path);
4040 	newvd_isspare = newvd->vdev_isspare;
4041 
4042 	/*
4043 	 * Mark newvd's DTL dirty in this txg.
4044 	 */
4045 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4046 
4047 	/*
4048 	 * Restart the resilver
4049 	 */
4050 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4051 
4052 	/*
4053 	 * Commit the config
4054 	 */
4055 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4056 
4057 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4058 	    "%s vdev=%s %s vdev=%s",
4059 	    replacing && newvd_isspare ? "spare in" :
4060 	    replacing ? "replace" : "attach", newvdpath,
4061 	    replacing ? "for" : "to", oldvdpath);
4062 
4063 	spa_strfree(oldvdpath);
4064 	spa_strfree(newvdpath);
4065 
4066 	if (spa->spa_bootfs)
4067 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4068 
4069 	return (0);
4070 }
4071 
4072 /*
4073  * Detach a device from a mirror or replacing vdev.
4074  * If 'replace_done' is specified, only detach if the parent
4075  * is a replacing vdev.
4076  */
4077 int
4078 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4079 {
4080 	uint64_t txg;
4081 	int error;
4082 	vdev_t *rvd = spa->spa_root_vdev;
4083 	vdev_t *vd, *pvd, *cvd, *tvd;
4084 	boolean_t unspare = B_FALSE;
4085 	uint64_t unspare_guid;
4086 	char *vdpath;
4087 
4088 	ASSERT(spa_writeable(spa));
4089 
4090 	txg = spa_vdev_enter(spa);
4091 
4092 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4093 
4094 	if (vd == NULL)
4095 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4096 
4097 	if (!vd->vdev_ops->vdev_op_leaf)
4098 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4099 
4100 	pvd = vd->vdev_parent;
4101 
4102 	/*
4103 	 * If the parent/child relationship is not as expected, don't do it.
4104 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4105 	 * vdev that's replacing B with C.  The user's intent in replacing
4106 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4107 	 * the replace by detaching C, the expected behavior is to end up
4108 	 * M(A,B).  But suppose that right after deciding to detach C,
4109 	 * the replacement of B completes.  We would have M(A,C), and then
4110 	 * ask to detach C, which would leave us with just A -- not what
4111 	 * the user wanted.  To prevent this, we make sure that the
4112 	 * parent/child relationship hasn't changed -- in this example,
4113 	 * that C's parent is still the replacing vdev R.
4114 	 */
4115 	if (pvd->vdev_guid != pguid && pguid != 0)
4116 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4117 
4118 	/*
4119 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4120 	 */
4121 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4122 	    pvd->vdev_ops != &vdev_spare_ops)
4123 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4124 
4125 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4126 	    spa_version(spa) >= SPA_VERSION_SPARES);
4127 
4128 	/*
4129 	 * Only mirror, replacing, and spare vdevs support detach.
4130 	 */
4131 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4132 	    pvd->vdev_ops != &vdev_mirror_ops &&
4133 	    pvd->vdev_ops != &vdev_spare_ops)
4134 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4135 
4136 	/*
4137 	 * If this device has the only valid copy of some data,
4138 	 * we cannot safely detach it.
4139 	 */
4140 	if (vdev_dtl_required(vd))
4141 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4142 
4143 	ASSERT(pvd->vdev_children >= 2);
4144 
4145 	/*
4146 	 * If we are detaching the second disk from a replacing vdev, then
4147 	 * check to see if we changed the original vdev's path to have "/old"
4148 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4149 	 */
4150 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4151 	    vd->vdev_path != NULL) {
4152 		size_t len = strlen(vd->vdev_path);
4153 
4154 		for (int c = 0; c < pvd->vdev_children; c++) {
4155 			cvd = pvd->vdev_child[c];
4156 
4157 			if (cvd == vd || cvd->vdev_path == NULL)
4158 				continue;
4159 
4160 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4161 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4162 				spa_strfree(cvd->vdev_path);
4163 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4164 				break;
4165 			}
4166 		}
4167 	}
4168 
4169 	/*
4170 	 * If we are detaching the original disk from a spare, then it implies
4171 	 * that the spare should become a real disk, and be removed from the
4172 	 * active spare list for the pool.
4173 	 */
4174 	if (pvd->vdev_ops == &vdev_spare_ops &&
4175 	    vd->vdev_id == 0 &&
4176 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4177 		unspare = B_TRUE;
4178 
4179 	/*
4180 	 * Erase the disk labels so the disk can be used for other things.
4181 	 * This must be done after all other error cases are handled,
4182 	 * but before we disembowel vd (so we can still do I/O to it).
4183 	 * But if we can't do it, don't treat the error as fatal --
4184 	 * it may be that the unwritability of the disk is the reason
4185 	 * it's being detached!
4186 	 */
4187 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4188 
4189 	/*
4190 	 * Remove vd from its parent and compact the parent's children.
4191 	 */
4192 	vdev_remove_child(pvd, vd);
4193 	vdev_compact_children(pvd);
4194 
4195 	/*
4196 	 * Remember one of the remaining children so we can get tvd below.
4197 	 */
4198 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4199 
4200 	/*
4201 	 * If we need to remove the remaining child from the list of hot spares,
4202 	 * do it now, marking the vdev as no longer a spare in the process.
4203 	 * We must do this before vdev_remove_parent(), because that can
4204 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4205 	 * reason, we must remove the spare now, in the same txg as the detach;
4206 	 * otherwise someone could attach a new sibling, change the GUID, and
4207 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4208 	 */
4209 	if (unspare) {
4210 		ASSERT(cvd->vdev_isspare);
4211 		spa_spare_remove(cvd);
4212 		unspare_guid = cvd->vdev_guid;
4213 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4214 		cvd->vdev_unspare = B_TRUE;
4215 	}
4216 
4217 	/*
4218 	 * If the parent mirror/replacing vdev only has one child,
4219 	 * the parent is no longer needed.  Remove it from the tree.
4220 	 */
4221 	if (pvd->vdev_children == 1) {
4222 		if (pvd->vdev_ops == &vdev_spare_ops)
4223 			cvd->vdev_unspare = B_FALSE;
4224 		vdev_remove_parent(cvd);
4225 		cvd->vdev_resilvering = B_FALSE;
4226 	}
4227 
4228 
4229 	/*
4230 	 * We don't set tvd until now because the parent we just removed
4231 	 * may have been the previous top-level vdev.
4232 	 */
4233 	tvd = cvd->vdev_top;
4234 	ASSERT(tvd->vdev_parent == rvd);
4235 
4236 	/*
4237 	 * Reevaluate the parent vdev state.
4238 	 */
4239 	vdev_propagate_state(cvd);
4240 
4241 	/*
4242 	 * If the 'autoexpand' property is set on the pool then automatically
4243 	 * try to expand the size of the pool. For example if the device we
4244 	 * just detached was smaller than the others, it may be possible to
4245 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4246 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4247 	 */
4248 	if (spa->spa_autoexpand) {
4249 		vdev_reopen(tvd);
4250 		vdev_expand(tvd, txg);
4251 	}
4252 
4253 	vdev_config_dirty(tvd);
4254 
4255 	/*
4256 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4257 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4258 	 * But first make sure we're not on any *other* txg's DTL list, to
4259 	 * prevent vd from being accessed after it's freed.
4260 	 */
4261 	vdpath = spa_strdup(vd->vdev_path);
4262 	for (int t = 0; t < TXG_SIZE; t++)
4263 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4264 	vd->vdev_detached = B_TRUE;
4265 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4266 
4267 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4268 
4269 	/* hang on to the spa before we release the lock */
4270 	spa_open_ref(spa, FTAG);
4271 
4272 	error = spa_vdev_exit(spa, vd, txg, 0);
4273 
4274 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4275 	    "vdev=%s", vdpath);
4276 	spa_strfree(vdpath);
4277 
4278 	/*
4279 	 * If this was the removal of the original device in a hot spare vdev,
4280 	 * then we want to go through and remove the device from the hot spare
4281 	 * list of every other pool.
4282 	 */
4283 	if (unspare) {
4284 		spa_t *altspa = NULL;
4285 
4286 		mutex_enter(&spa_namespace_lock);
4287 		while ((altspa = spa_next(altspa)) != NULL) {
4288 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4289 			    altspa == spa)
4290 				continue;
4291 
4292 			spa_open_ref(altspa, FTAG);
4293 			mutex_exit(&spa_namespace_lock);
4294 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4295 			mutex_enter(&spa_namespace_lock);
4296 			spa_close(altspa, FTAG);
4297 		}
4298 		mutex_exit(&spa_namespace_lock);
4299 
4300 		/* search the rest of the vdevs for spares to remove */
4301 		spa_vdev_resilver_done(spa);
4302 	}
4303 
4304 	/* all done with the spa; OK to release */
4305 	mutex_enter(&spa_namespace_lock);
4306 	spa_close(spa, FTAG);
4307 	mutex_exit(&spa_namespace_lock);
4308 
4309 	return (error);
4310 }
4311 
4312 /*
4313  * Split a set of devices from their mirrors, and create a new pool from them.
4314  */
4315 int
4316 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4317     nvlist_t *props, boolean_t exp)
4318 {
4319 	int error = 0;
4320 	uint64_t txg, *glist;
4321 	spa_t *newspa;
4322 	uint_t c, children, lastlog;
4323 	nvlist_t **child, *nvl, *tmp;
4324 	dmu_tx_t *tx;
4325 	char *altroot = NULL;
4326 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4327 	boolean_t activate_slog;
4328 
4329 	ASSERT(spa_writeable(spa));
4330 
4331 	txg = spa_vdev_enter(spa);
4332 
4333 	/* clear the log and flush everything up to now */
4334 	activate_slog = spa_passivate_log(spa);
4335 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4336 	error = spa_offline_log(spa);
4337 	txg = spa_vdev_config_enter(spa);
4338 
4339 	if (activate_slog)
4340 		spa_activate_log(spa);
4341 
4342 	if (error != 0)
4343 		return (spa_vdev_exit(spa, NULL, txg, error));
4344 
4345 	/* check new spa name before going any further */
4346 	if (spa_lookup(newname) != NULL)
4347 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4348 
4349 	/*
4350 	 * scan through all the children to ensure they're all mirrors
4351 	 */
4352 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4353 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4354 	    &children) != 0)
4355 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4356 
4357 	/* first, check to ensure we've got the right child count */
4358 	rvd = spa->spa_root_vdev;
4359 	lastlog = 0;
4360 	for (c = 0; c < rvd->vdev_children; c++) {
4361 		vdev_t *vd = rvd->vdev_child[c];
4362 
4363 		/* don't count the holes & logs as children */
4364 		if (vd->vdev_islog || vd->vdev_ishole) {
4365 			if (lastlog == 0)
4366 				lastlog = c;
4367 			continue;
4368 		}
4369 
4370 		lastlog = 0;
4371 	}
4372 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4373 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4374 
4375 	/* next, ensure no spare or cache devices are part of the split */
4376 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4377 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4378 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4379 
4380 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4381 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4382 
4383 	/* then, loop over each vdev and validate it */
4384 	for (c = 0; c < children; c++) {
4385 		uint64_t is_hole = 0;
4386 
4387 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4388 		    &is_hole);
4389 
4390 		if (is_hole != 0) {
4391 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4392 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4393 				continue;
4394 			} else {
4395 				error = EINVAL;
4396 				break;
4397 			}
4398 		}
4399 
4400 		/* which disk is going to be split? */
4401 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4402 		    &glist[c]) != 0) {
4403 			error = EINVAL;
4404 			break;
4405 		}
4406 
4407 		/* look it up in the spa */
4408 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4409 		if (vml[c] == NULL) {
4410 			error = ENODEV;
4411 			break;
4412 		}
4413 
4414 		/* make sure there's nothing stopping the split */
4415 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4416 		    vml[c]->vdev_islog ||
4417 		    vml[c]->vdev_ishole ||
4418 		    vml[c]->vdev_isspare ||
4419 		    vml[c]->vdev_isl2cache ||
4420 		    !vdev_writeable(vml[c]) ||
4421 		    vml[c]->vdev_children != 0 ||
4422 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4423 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4424 			error = EINVAL;
4425 			break;
4426 		}
4427 
4428 		if (vdev_dtl_required(vml[c])) {
4429 			error = EBUSY;
4430 			break;
4431 		}
4432 
4433 		/* we need certain info from the top level */
4434 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4435 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4436 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4437 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4438 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4439 		    vml[c]->vdev_top->vdev_asize) == 0);
4440 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4441 		    vml[c]->vdev_top->vdev_ashift) == 0);
4442 	}
4443 
4444 	if (error != 0) {
4445 		kmem_free(vml, children * sizeof (vdev_t *));
4446 		kmem_free(glist, children * sizeof (uint64_t));
4447 		return (spa_vdev_exit(spa, NULL, txg, error));
4448 	}
4449 
4450 	/* stop writers from using the disks */
4451 	for (c = 0; c < children; c++) {
4452 		if (vml[c] != NULL)
4453 			vml[c]->vdev_offline = B_TRUE;
4454 	}
4455 	vdev_reopen(spa->spa_root_vdev);
4456 
4457 	/*
4458 	 * Temporarily record the splitting vdevs in the spa config.  This
4459 	 * will disappear once the config is regenerated.
4460 	 */
4461 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4462 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4463 	    glist, children) == 0);
4464 	kmem_free(glist, children * sizeof (uint64_t));
4465 
4466 	mutex_enter(&spa->spa_props_lock);
4467 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4468 	    nvl) == 0);
4469 	mutex_exit(&spa->spa_props_lock);
4470 	spa->spa_config_splitting = nvl;
4471 	vdev_config_dirty(spa->spa_root_vdev);
4472 
4473 	/* configure and create the new pool */
4474 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4475 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4476 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4477 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4478 	    spa_version(spa)) == 0);
4479 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4480 	    spa->spa_config_txg) == 0);
4481 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4482 	    spa_generate_guid(NULL)) == 0);
4483 	(void) nvlist_lookup_string(props,
4484 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4485 
4486 	/* add the new pool to the namespace */
4487 	newspa = spa_add(newname, config, altroot);
4488 	newspa->spa_config_txg = spa->spa_config_txg;
4489 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4490 
4491 	/* release the spa config lock, retaining the namespace lock */
4492 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4493 
4494 	if (zio_injection_enabled)
4495 		zio_handle_panic_injection(spa, FTAG, 1);
4496 
4497 	spa_activate(newspa, spa_mode_global);
4498 	spa_async_suspend(newspa);
4499 
4500 	/* create the new pool from the disks of the original pool */
4501 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4502 	if (error)
4503 		goto out;
4504 
4505 	/* if that worked, generate a real config for the new pool */
4506 	if (newspa->spa_root_vdev != NULL) {
4507 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4508 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4509 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4510 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4511 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4512 		    B_TRUE));
4513 	}
4514 
4515 	/* set the props */
4516 	if (props != NULL) {
4517 		spa_configfile_set(newspa, props, B_FALSE);
4518 		error = spa_prop_set(newspa, props);
4519 		if (error)
4520 			goto out;
4521 	}
4522 
4523 	/* flush everything */
4524 	txg = spa_vdev_config_enter(newspa);
4525 	vdev_config_dirty(newspa->spa_root_vdev);
4526 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4527 
4528 	if (zio_injection_enabled)
4529 		zio_handle_panic_injection(spa, FTAG, 2);
4530 
4531 	spa_async_resume(newspa);
4532 
4533 	/* finally, update the original pool's config */
4534 	txg = spa_vdev_config_enter(spa);
4535 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4536 	error = dmu_tx_assign(tx, TXG_WAIT);
4537 	if (error != 0)
4538 		dmu_tx_abort(tx);
4539 	for (c = 0; c < children; c++) {
4540 		if (vml[c] != NULL) {
4541 			vdev_split(vml[c]);
4542 			if (error == 0)
4543 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4544 				    spa, tx, "vdev=%s",
4545 				    vml[c]->vdev_path);
4546 			vdev_free(vml[c]);
4547 		}
4548 	}
4549 	vdev_config_dirty(spa->spa_root_vdev);
4550 	spa->spa_config_splitting = NULL;
4551 	nvlist_free(nvl);
4552 	if (error == 0)
4553 		dmu_tx_commit(tx);
4554 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4555 
4556 	if (zio_injection_enabled)
4557 		zio_handle_panic_injection(spa, FTAG, 3);
4558 
4559 	/* split is complete; log a history record */
4560 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4561 	    "split new pool %s from pool %s", newname, spa_name(spa));
4562 
4563 	kmem_free(vml, children * sizeof (vdev_t *));
4564 
4565 	/* if we're not going to mount the filesystems in userland, export */
4566 	if (exp)
4567 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4568 		    B_FALSE, B_FALSE);
4569 
4570 	return (error);
4571 
4572 out:
4573 	spa_unload(newspa);
4574 	spa_deactivate(newspa);
4575 	spa_remove(newspa);
4576 
4577 	txg = spa_vdev_config_enter(spa);
4578 
4579 	/* re-online all offlined disks */
4580 	for (c = 0; c < children; c++) {
4581 		if (vml[c] != NULL)
4582 			vml[c]->vdev_offline = B_FALSE;
4583 	}
4584 	vdev_reopen(spa->spa_root_vdev);
4585 
4586 	nvlist_free(spa->spa_config_splitting);
4587 	spa->spa_config_splitting = NULL;
4588 	(void) spa_vdev_exit(spa, NULL, txg, error);
4589 
4590 	kmem_free(vml, children * sizeof (vdev_t *));
4591 	return (error);
4592 }
4593 
4594 static nvlist_t *
4595 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4596 {
4597 	for (int i = 0; i < count; i++) {
4598 		uint64_t guid;
4599 
4600 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4601 		    &guid) == 0);
4602 
4603 		if (guid == target_guid)
4604 			return (nvpp[i]);
4605 	}
4606 
4607 	return (NULL);
4608 }
4609 
4610 static void
4611 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4612 	nvlist_t *dev_to_remove)
4613 {
4614 	nvlist_t **newdev = NULL;
4615 
4616 	if (count > 1)
4617 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4618 
4619 	for (int i = 0, j = 0; i < count; i++) {
4620 		if (dev[i] == dev_to_remove)
4621 			continue;
4622 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4623 	}
4624 
4625 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4626 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4627 
4628 	for (int i = 0; i < count - 1; i++)
4629 		nvlist_free(newdev[i]);
4630 
4631 	if (count > 1)
4632 		kmem_free(newdev, (count - 1) * sizeof (void *));
4633 }
4634 
4635 /*
4636  * Evacuate the device.
4637  */
4638 static int
4639 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4640 {
4641 	uint64_t txg;
4642 	int error = 0;
4643 
4644 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4645 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4646 	ASSERT(vd == vd->vdev_top);
4647 
4648 	/*
4649 	 * Evacuate the device.  We don't hold the config lock as writer
4650 	 * since we need to do I/O but we do keep the
4651 	 * spa_namespace_lock held.  Once this completes the device
4652 	 * should no longer have any blocks allocated on it.
4653 	 */
4654 	if (vd->vdev_islog) {
4655 		if (vd->vdev_stat.vs_alloc != 0)
4656 			error = spa_offline_log(spa);
4657 	} else {
4658 		error = ENOTSUP;
4659 	}
4660 
4661 	if (error)
4662 		return (error);
4663 
4664 	/*
4665 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4666 	 * associated with this vdev, and wait for these changes to sync.
4667 	 */
4668 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4669 	txg = spa_vdev_config_enter(spa);
4670 	vd->vdev_removing = B_TRUE;
4671 	vdev_dirty(vd, 0, NULL, txg);
4672 	vdev_config_dirty(vd);
4673 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4674 
4675 	return (0);
4676 }
4677 
4678 /*
4679  * Complete the removal by cleaning up the namespace.
4680  */
4681 static void
4682 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4683 {
4684 	vdev_t *rvd = spa->spa_root_vdev;
4685 	uint64_t id = vd->vdev_id;
4686 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4687 
4688 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4689 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4690 	ASSERT(vd == vd->vdev_top);
4691 
4692 	/*
4693 	 * Only remove any devices which are empty.
4694 	 */
4695 	if (vd->vdev_stat.vs_alloc != 0)
4696 		return;
4697 
4698 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4699 
4700 	if (list_link_active(&vd->vdev_state_dirty_node))
4701 		vdev_state_clean(vd);
4702 	if (list_link_active(&vd->vdev_config_dirty_node))
4703 		vdev_config_clean(vd);
4704 
4705 	vdev_free(vd);
4706 
4707 	if (last_vdev) {
4708 		vdev_compact_children(rvd);
4709 	} else {
4710 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4711 		vdev_add_child(rvd, vd);
4712 	}
4713 	vdev_config_dirty(rvd);
4714 
4715 	/*
4716 	 * Reassess the health of our root vdev.
4717 	 */
4718 	vdev_reopen(rvd);
4719 }
4720 
4721 /*
4722  * Remove a device from the pool -
4723  *
4724  * Removing a device from the vdev namespace requires several steps
4725  * and can take a significant amount of time.  As a result we use
4726  * the spa_vdev_config_[enter/exit] functions which allow us to
4727  * grab and release the spa_config_lock while still holding the namespace
4728  * lock.  During each step the configuration is synced out.
4729  */
4730 
4731 /*
4732  * Remove a device from the pool.  Currently, this supports removing only hot
4733  * spares, slogs, and level 2 ARC devices.
4734  */
4735 int
4736 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4737 {
4738 	vdev_t *vd;
4739 	metaslab_group_t *mg;
4740 	nvlist_t **spares, **l2cache, *nv;
4741 	uint64_t txg = 0;
4742 	uint_t nspares, nl2cache;
4743 	int error = 0;
4744 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4745 
4746 	ASSERT(spa_writeable(spa));
4747 
4748 	if (!locked)
4749 		txg = spa_vdev_enter(spa);
4750 
4751 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4752 
4753 	if (spa->spa_spares.sav_vdevs != NULL &&
4754 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4755 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4756 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4757 		/*
4758 		 * Only remove the hot spare if it's not currently in use
4759 		 * in this pool.
4760 		 */
4761 		if (vd == NULL || unspare) {
4762 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4763 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4764 			spa_load_spares(spa);
4765 			spa->spa_spares.sav_sync = B_TRUE;
4766 		} else {
4767 			error = EBUSY;
4768 		}
4769 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4770 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4771 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4772 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4773 		/*
4774 		 * Cache devices can always be removed.
4775 		 */
4776 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4777 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4778 		spa_load_l2cache(spa);
4779 		spa->spa_l2cache.sav_sync = B_TRUE;
4780 	} else if (vd != NULL && vd->vdev_islog) {
4781 		ASSERT(!locked);
4782 		ASSERT(vd == vd->vdev_top);
4783 
4784 		/*
4785 		 * XXX - Once we have bp-rewrite this should
4786 		 * become the common case.
4787 		 */
4788 
4789 		mg = vd->vdev_mg;
4790 
4791 		/*
4792 		 * Stop allocating from this vdev.
4793 		 */
4794 		metaslab_group_passivate(mg);
4795 
4796 		/*
4797 		 * Wait for the youngest allocations and frees to sync,
4798 		 * and then wait for the deferral of those frees to finish.
4799 		 */
4800 		spa_vdev_config_exit(spa, NULL,
4801 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4802 
4803 		/*
4804 		 * Attempt to evacuate the vdev.
4805 		 */
4806 		error = spa_vdev_remove_evacuate(spa, vd);
4807 
4808 		txg = spa_vdev_config_enter(spa);
4809 
4810 		/*
4811 		 * If we couldn't evacuate the vdev, unwind.
4812 		 */
4813 		if (error) {
4814 			metaslab_group_activate(mg);
4815 			return (spa_vdev_exit(spa, NULL, txg, error));
4816 		}
4817 
4818 		/*
4819 		 * Clean up the vdev namespace.
4820 		 */
4821 		spa_vdev_remove_from_namespace(spa, vd);
4822 
4823 	} else if (vd != NULL) {
4824 		/*
4825 		 * Normal vdevs cannot be removed (yet).
4826 		 */
4827 		error = ENOTSUP;
4828 	} else {
4829 		/*
4830 		 * There is no vdev of any kind with the specified guid.
4831 		 */
4832 		error = ENOENT;
4833 	}
4834 
4835 	if (!locked)
4836 		return (spa_vdev_exit(spa, NULL, txg, error));
4837 
4838 	return (error);
4839 }
4840 
4841 /*
4842  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4843  * current spared, so we can detach it.
4844  */
4845 static vdev_t *
4846 spa_vdev_resilver_done_hunt(vdev_t *vd)
4847 {
4848 	vdev_t *newvd, *oldvd;
4849 
4850 	for (int c = 0; c < vd->vdev_children; c++) {
4851 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4852 		if (oldvd != NULL)
4853 			return (oldvd);
4854 	}
4855 
4856 	/*
4857 	 * Check for a completed replacement.  We always consider the first
4858 	 * vdev in the list to be the oldest vdev, and the last one to be
4859 	 * the newest (see spa_vdev_attach() for how that works).  In
4860 	 * the case where the newest vdev is faulted, we will not automatically
4861 	 * remove it after a resilver completes.  This is OK as it will require
4862 	 * user intervention to determine which disk the admin wishes to keep.
4863 	 */
4864 	if (vd->vdev_ops == &vdev_replacing_ops) {
4865 		ASSERT(vd->vdev_children > 1);
4866 
4867 		newvd = vd->vdev_child[vd->vdev_children - 1];
4868 		oldvd = vd->vdev_child[0];
4869 
4870 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4871 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4872 		    !vdev_dtl_required(oldvd))
4873 			return (oldvd);
4874 	}
4875 
4876 	/*
4877 	 * Check for a completed resilver with the 'unspare' flag set.
4878 	 */
4879 	if (vd->vdev_ops == &vdev_spare_ops) {
4880 		vdev_t *first = vd->vdev_child[0];
4881 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4882 
4883 		if (last->vdev_unspare) {
4884 			oldvd = first;
4885 			newvd = last;
4886 		} else if (first->vdev_unspare) {
4887 			oldvd = last;
4888 			newvd = first;
4889 		} else {
4890 			oldvd = NULL;
4891 		}
4892 
4893 		if (oldvd != NULL &&
4894 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4895 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4896 		    !vdev_dtl_required(oldvd))
4897 			return (oldvd);
4898 
4899 		/*
4900 		 * If there are more than two spares attached to a disk,
4901 		 * and those spares are not required, then we want to
4902 		 * attempt to free them up now so that they can be used
4903 		 * by other pools.  Once we're back down to a single
4904 		 * disk+spare, we stop removing them.
4905 		 */
4906 		if (vd->vdev_children > 2) {
4907 			newvd = vd->vdev_child[1];
4908 
4909 			if (newvd->vdev_isspare && last->vdev_isspare &&
4910 			    vdev_dtl_empty(last, DTL_MISSING) &&
4911 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
4912 			    !vdev_dtl_required(newvd))
4913 				return (newvd);
4914 		}
4915 	}
4916 
4917 	return (NULL);
4918 }
4919 
4920 static void
4921 spa_vdev_resilver_done(spa_t *spa)
4922 {
4923 	vdev_t *vd, *pvd, *ppvd;
4924 	uint64_t guid, sguid, pguid, ppguid;
4925 
4926 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4927 
4928 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4929 		pvd = vd->vdev_parent;
4930 		ppvd = pvd->vdev_parent;
4931 		guid = vd->vdev_guid;
4932 		pguid = pvd->vdev_guid;
4933 		ppguid = ppvd->vdev_guid;
4934 		sguid = 0;
4935 		/*
4936 		 * If we have just finished replacing a hot spared device, then
4937 		 * we need to detach the parent's first child (the original hot
4938 		 * spare) as well.
4939 		 */
4940 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4941 		    ppvd->vdev_children == 2) {
4942 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4943 			sguid = ppvd->vdev_child[1]->vdev_guid;
4944 		}
4945 		spa_config_exit(spa, SCL_ALL, FTAG);
4946 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4947 			return;
4948 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4949 			return;
4950 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4951 	}
4952 
4953 	spa_config_exit(spa, SCL_ALL, FTAG);
4954 }
4955 
4956 /*
4957  * Update the stored path or FRU for this vdev.
4958  */
4959 int
4960 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4961     boolean_t ispath)
4962 {
4963 	vdev_t *vd;
4964 	boolean_t sync = B_FALSE;
4965 
4966 	ASSERT(spa_writeable(spa));
4967 
4968 	spa_vdev_state_enter(spa, SCL_ALL);
4969 
4970 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4971 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4972 
4973 	if (!vd->vdev_ops->vdev_op_leaf)
4974 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4975 
4976 	if (ispath) {
4977 		if (strcmp(value, vd->vdev_path) != 0) {
4978 			spa_strfree(vd->vdev_path);
4979 			vd->vdev_path = spa_strdup(value);
4980 			sync = B_TRUE;
4981 		}
4982 	} else {
4983 		if (vd->vdev_fru == NULL) {
4984 			vd->vdev_fru = spa_strdup(value);
4985 			sync = B_TRUE;
4986 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4987 			spa_strfree(vd->vdev_fru);
4988 			vd->vdev_fru = spa_strdup(value);
4989 			sync = B_TRUE;
4990 		}
4991 	}
4992 
4993 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4994 }
4995 
4996 int
4997 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4998 {
4999 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5000 }
5001 
5002 int
5003 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5004 {
5005 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5006 }
5007 
5008 /*
5009  * ==========================================================================
5010  * SPA Scanning
5011  * ==========================================================================
5012  */
5013 
5014 int
5015 spa_scan_stop(spa_t *spa)
5016 {
5017 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5018 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5019 		return (EBUSY);
5020 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5021 }
5022 
5023 int
5024 spa_scan(spa_t *spa, pool_scan_func_t func)
5025 {
5026 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5027 
5028 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5029 		return (ENOTSUP);
5030 
5031 	/*
5032 	 * If a resilver was requested, but there is no DTL on a
5033 	 * writeable leaf device, we have nothing to do.
5034 	 */
5035 	if (func == POOL_SCAN_RESILVER &&
5036 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5037 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5038 		return (0);
5039 	}
5040 
5041 	return (dsl_scan(spa->spa_dsl_pool, func));
5042 }
5043 
5044 /*
5045  * ==========================================================================
5046  * SPA async task processing
5047  * ==========================================================================
5048  */
5049 
5050 static void
5051 spa_async_remove(spa_t *spa, vdev_t *vd)
5052 {
5053 	if (vd->vdev_remove_wanted) {
5054 		vd->vdev_remove_wanted = B_FALSE;
5055 		vd->vdev_delayed_close = B_FALSE;
5056 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5057 
5058 		/*
5059 		 * We want to clear the stats, but we don't want to do a full
5060 		 * vdev_clear() as that will cause us to throw away
5061 		 * degraded/faulted state as well as attempt to reopen the
5062 		 * device, all of which is a waste.
5063 		 */
5064 		vd->vdev_stat.vs_read_errors = 0;
5065 		vd->vdev_stat.vs_write_errors = 0;
5066 		vd->vdev_stat.vs_checksum_errors = 0;
5067 
5068 		vdev_state_dirty(vd->vdev_top);
5069 	}
5070 
5071 	for (int c = 0; c < vd->vdev_children; c++)
5072 		spa_async_remove(spa, vd->vdev_child[c]);
5073 }
5074 
5075 static void
5076 spa_async_probe(spa_t *spa, vdev_t *vd)
5077 {
5078 	if (vd->vdev_probe_wanted) {
5079 		vd->vdev_probe_wanted = B_FALSE;
5080 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5081 	}
5082 
5083 	for (int c = 0; c < vd->vdev_children; c++)
5084 		spa_async_probe(spa, vd->vdev_child[c]);
5085 }
5086 
5087 static void
5088 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5089 {
5090 	sysevent_id_t eid;
5091 	nvlist_t *attr;
5092 	char *physpath;
5093 
5094 	if (!spa->spa_autoexpand)
5095 		return;
5096 
5097 	for (int c = 0; c < vd->vdev_children; c++) {
5098 		vdev_t *cvd = vd->vdev_child[c];
5099 		spa_async_autoexpand(spa, cvd);
5100 	}
5101 
5102 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5103 		return;
5104 
5105 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5106 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5107 
5108 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5109 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5110 
5111 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5112 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5113 
5114 	nvlist_free(attr);
5115 	kmem_free(physpath, MAXPATHLEN);
5116 }
5117 
5118 static void
5119 spa_async_thread(spa_t *spa)
5120 {
5121 	int tasks;
5122 
5123 	ASSERT(spa->spa_sync_on);
5124 
5125 	mutex_enter(&spa->spa_async_lock);
5126 	tasks = spa->spa_async_tasks;
5127 	spa->spa_async_tasks = 0;
5128 	mutex_exit(&spa->spa_async_lock);
5129 
5130 	/*
5131 	 * See if the config needs to be updated.
5132 	 */
5133 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5134 		uint64_t old_space, new_space;
5135 
5136 		mutex_enter(&spa_namespace_lock);
5137 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5138 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5139 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5140 		mutex_exit(&spa_namespace_lock);
5141 
5142 		/*
5143 		 * If the pool grew as a result of the config update,
5144 		 * then log an internal history event.
5145 		 */
5146 		if (new_space != old_space) {
5147 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5148 			    spa, NULL,
5149 			    "pool '%s' size: %llu(+%llu)",
5150 			    spa_name(spa), new_space, new_space - old_space);
5151 		}
5152 	}
5153 
5154 	/*
5155 	 * See if any devices need to be marked REMOVED.
5156 	 */
5157 	if (tasks & SPA_ASYNC_REMOVE) {
5158 		spa_vdev_state_enter(spa, SCL_NONE);
5159 		spa_async_remove(spa, spa->spa_root_vdev);
5160 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5161 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5162 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5163 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5164 		(void) spa_vdev_state_exit(spa, NULL, 0);
5165 	}
5166 
5167 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5168 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5169 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5170 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5171 	}
5172 
5173 	/*
5174 	 * See if any devices need to be probed.
5175 	 */
5176 	if (tasks & SPA_ASYNC_PROBE) {
5177 		spa_vdev_state_enter(spa, SCL_NONE);
5178 		spa_async_probe(spa, spa->spa_root_vdev);
5179 		(void) spa_vdev_state_exit(spa, NULL, 0);
5180 	}
5181 
5182 	/*
5183 	 * If any devices are done replacing, detach them.
5184 	 */
5185 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5186 		spa_vdev_resilver_done(spa);
5187 
5188 	/*
5189 	 * Kick off a resilver.
5190 	 */
5191 	if (tasks & SPA_ASYNC_RESILVER)
5192 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5193 
5194 	/*
5195 	 * Let the world know that we're done.
5196 	 */
5197 	mutex_enter(&spa->spa_async_lock);
5198 	spa->spa_async_thread = NULL;
5199 	cv_broadcast(&spa->spa_async_cv);
5200 	mutex_exit(&spa->spa_async_lock);
5201 	thread_exit();
5202 }
5203 
5204 void
5205 spa_async_suspend(spa_t *spa)
5206 {
5207 	mutex_enter(&spa->spa_async_lock);
5208 	spa->spa_async_suspended++;
5209 	while (spa->spa_async_thread != NULL)
5210 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5211 	mutex_exit(&spa->spa_async_lock);
5212 }
5213 
5214 void
5215 spa_async_resume(spa_t *spa)
5216 {
5217 	mutex_enter(&spa->spa_async_lock);
5218 	ASSERT(spa->spa_async_suspended != 0);
5219 	spa->spa_async_suspended--;
5220 	mutex_exit(&spa->spa_async_lock);
5221 }
5222 
5223 static void
5224 spa_async_dispatch(spa_t *spa)
5225 {
5226 	mutex_enter(&spa->spa_async_lock);
5227 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5228 	    spa->spa_async_thread == NULL &&
5229 	    rootdir != NULL && !vn_is_readonly(rootdir))
5230 		spa->spa_async_thread = thread_create(NULL, 0,
5231 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5232 	mutex_exit(&spa->spa_async_lock);
5233 }
5234 
5235 void
5236 spa_async_request(spa_t *spa, int task)
5237 {
5238 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5239 	mutex_enter(&spa->spa_async_lock);
5240 	spa->spa_async_tasks |= task;
5241 	mutex_exit(&spa->spa_async_lock);
5242 }
5243 
5244 /*
5245  * ==========================================================================
5246  * SPA syncing routines
5247  * ==========================================================================
5248  */
5249 
5250 static int
5251 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5252 {
5253 	bpobj_t *bpo = arg;
5254 	bpobj_enqueue(bpo, bp, tx);
5255 	return (0);
5256 }
5257 
5258 static int
5259 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5260 {
5261 	zio_t *zio = arg;
5262 
5263 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5264 	    zio->io_flags));
5265 	return (0);
5266 }
5267 
5268 static void
5269 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5270 {
5271 	char *packed = NULL;
5272 	size_t bufsize;
5273 	size_t nvsize = 0;
5274 	dmu_buf_t *db;
5275 
5276 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5277 
5278 	/*
5279 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5280 	 * information.  This avoids the dbuf_will_dirty() path and
5281 	 * saves us a pre-read to get data we don't actually care about.
5282 	 */
5283 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5284 	packed = kmem_alloc(bufsize, KM_SLEEP);
5285 
5286 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5287 	    KM_SLEEP) == 0);
5288 	bzero(packed + nvsize, bufsize - nvsize);
5289 
5290 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5291 
5292 	kmem_free(packed, bufsize);
5293 
5294 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5295 	dmu_buf_will_dirty(db, tx);
5296 	*(uint64_t *)db->db_data = nvsize;
5297 	dmu_buf_rele(db, FTAG);
5298 }
5299 
5300 static void
5301 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5302     const char *config, const char *entry)
5303 {
5304 	nvlist_t *nvroot;
5305 	nvlist_t **list;
5306 	int i;
5307 
5308 	if (!sav->sav_sync)
5309 		return;
5310 
5311 	/*
5312 	 * Update the MOS nvlist describing the list of available devices.
5313 	 * spa_validate_aux() will have already made sure this nvlist is
5314 	 * valid and the vdevs are labeled appropriately.
5315 	 */
5316 	if (sav->sav_object == 0) {
5317 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5318 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5319 		    sizeof (uint64_t), tx);
5320 		VERIFY(zap_update(spa->spa_meta_objset,
5321 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5322 		    &sav->sav_object, tx) == 0);
5323 	}
5324 
5325 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5326 	if (sav->sav_count == 0) {
5327 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5328 	} else {
5329 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5330 		for (i = 0; i < sav->sav_count; i++)
5331 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5332 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5333 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5334 		    sav->sav_count) == 0);
5335 		for (i = 0; i < sav->sav_count; i++)
5336 			nvlist_free(list[i]);
5337 		kmem_free(list, sav->sav_count * sizeof (void *));
5338 	}
5339 
5340 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5341 	nvlist_free(nvroot);
5342 
5343 	sav->sav_sync = B_FALSE;
5344 }
5345 
5346 static void
5347 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5348 {
5349 	nvlist_t *config;
5350 
5351 	if (list_is_empty(&spa->spa_config_dirty_list))
5352 		return;
5353 
5354 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5355 
5356 	config = spa_config_generate(spa, spa->spa_root_vdev,
5357 	    dmu_tx_get_txg(tx), B_FALSE);
5358 
5359 	spa_config_exit(spa, SCL_STATE, FTAG);
5360 
5361 	if (spa->spa_config_syncing)
5362 		nvlist_free(spa->spa_config_syncing);
5363 	spa->spa_config_syncing = config;
5364 
5365 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5366 }
5367 
5368 /*
5369  * Set zpool properties.
5370  */
5371 static void
5372 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5373 {
5374 	spa_t *spa = arg1;
5375 	objset_t *mos = spa->spa_meta_objset;
5376 	nvlist_t *nvp = arg2;
5377 	nvpair_t *elem;
5378 	uint64_t intval;
5379 	char *strval;
5380 	zpool_prop_t prop;
5381 	const char *propname;
5382 	zprop_type_t proptype;
5383 
5384 	mutex_enter(&spa->spa_props_lock);
5385 
5386 	elem = NULL;
5387 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5388 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5389 		case ZPOOL_PROP_VERSION:
5390 			/*
5391 			 * Only set version for non-zpool-creation cases
5392 			 * (set/import). spa_create() needs special care
5393 			 * for version setting.
5394 			 */
5395 			if (tx->tx_txg != TXG_INITIAL) {
5396 				VERIFY(nvpair_value_uint64(elem,
5397 				    &intval) == 0);
5398 				ASSERT(intval <= SPA_VERSION);
5399 				ASSERT(intval >= spa_version(spa));
5400 				spa->spa_uberblock.ub_version = intval;
5401 				vdev_config_dirty(spa->spa_root_vdev);
5402 			}
5403 			break;
5404 
5405 		case ZPOOL_PROP_ALTROOT:
5406 			/*
5407 			 * 'altroot' is a non-persistent property. It should
5408 			 * have been set temporarily at creation or import time.
5409 			 */
5410 			ASSERT(spa->spa_root != NULL);
5411 			break;
5412 
5413 		case ZPOOL_PROP_READONLY:
5414 		case ZPOOL_PROP_CACHEFILE:
5415 			/*
5416 			 * 'readonly' and 'cachefile' are also non-persisitent
5417 			 * properties.
5418 			 */
5419 			break;
5420 		case ZPOOL_PROP_COMMENT:
5421 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5422 			if (spa->spa_comment != NULL)
5423 				spa_strfree(spa->spa_comment);
5424 			spa->spa_comment = spa_strdup(strval);
5425 			/*
5426 			 * We need to dirty the configuration on all the vdevs
5427 			 * so that their labels get updated.  It's unnecessary
5428 			 * to do this for pool creation since the vdev's
5429 			 * configuratoin has already been dirtied.
5430 			 */
5431 			if (tx->tx_txg != TXG_INITIAL)
5432 				vdev_config_dirty(spa->spa_root_vdev);
5433 			break;
5434 		default:
5435 			/*
5436 			 * Set pool property values in the poolprops mos object.
5437 			 */
5438 			if (spa->spa_pool_props_object == 0) {
5439 				VERIFY((spa->spa_pool_props_object =
5440 				    zap_create(mos, DMU_OT_POOL_PROPS,
5441 				    DMU_OT_NONE, 0, tx)) > 0);
5442 
5443 				VERIFY(zap_update(mos,
5444 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5445 				    8, 1, &spa->spa_pool_props_object, tx)
5446 				    == 0);
5447 			}
5448 
5449 			/* normalize the property name */
5450 			propname = zpool_prop_to_name(prop);
5451 			proptype = zpool_prop_get_type(prop);
5452 
5453 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5454 				ASSERT(proptype == PROP_TYPE_STRING);
5455 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5456 				VERIFY(zap_update(mos,
5457 				    spa->spa_pool_props_object, propname,
5458 				    1, strlen(strval) + 1, strval, tx) == 0);
5459 
5460 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5461 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5462 
5463 				if (proptype == PROP_TYPE_INDEX) {
5464 					const char *unused;
5465 					VERIFY(zpool_prop_index_to_string(
5466 					    prop, intval, &unused) == 0);
5467 				}
5468 				VERIFY(zap_update(mos,
5469 				    spa->spa_pool_props_object, propname,
5470 				    8, 1, &intval, tx) == 0);
5471 			} else {
5472 				ASSERT(0); /* not allowed */
5473 			}
5474 
5475 			switch (prop) {
5476 			case ZPOOL_PROP_DELEGATION:
5477 				spa->spa_delegation = intval;
5478 				break;
5479 			case ZPOOL_PROP_BOOTFS:
5480 				spa->spa_bootfs = intval;
5481 				break;
5482 			case ZPOOL_PROP_FAILUREMODE:
5483 				spa->spa_failmode = intval;
5484 				break;
5485 			case ZPOOL_PROP_AUTOEXPAND:
5486 				spa->spa_autoexpand = intval;
5487 				if (tx->tx_txg != TXG_INITIAL)
5488 					spa_async_request(spa,
5489 					    SPA_ASYNC_AUTOEXPAND);
5490 				break;
5491 			case ZPOOL_PROP_DEDUPDITTO:
5492 				spa->spa_dedup_ditto = intval;
5493 				break;
5494 			default:
5495 				break;
5496 			}
5497 		}
5498 
5499 		/* log internal history if this is not a zpool create */
5500 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5501 		    tx->tx_txg != TXG_INITIAL) {
5502 			spa_history_log_internal(LOG_POOL_PROPSET,
5503 			    spa, tx, "%s %lld %s",
5504 			    nvpair_name(elem), intval, spa_name(spa));
5505 		}
5506 	}
5507 
5508 	mutex_exit(&spa->spa_props_lock);
5509 }
5510 
5511 /*
5512  * Perform one-time upgrade on-disk changes.  spa_version() does not
5513  * reflect the new version this txg, so there must be no changes this
5514  * txg to anything that the upgrade code depends on after it executes.
5515  * Therefore this must be called after dsl_pool_sync() does the sync
5516  * tasks.
5517  */
5518 static void
5519 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5520 {
5521 	dsl_pool_t *dp = spa->spa_dsl_pool;
5522 
5523 	ASSERT(spa->spa_sync_pass == 1);
5524 
5525 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5526 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5527 		dsl_pool_create_origin(dp, tx);
5528 
5529 		/* Keeping the origin open increases spa_minref */
5530 		spa->spa_minref += 3;
5531 	}
5532 
5533 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5534 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5535 		dsl_pool_upgrade_clones(dp, tx);
5536 	}
5537 
5538 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5539 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5540 		dsl_pool_upgrade_dir_clones(dp, tx);
5541 
5542 		/* Keeping the freedir open increases spa_minref */
5543 		spa->spa_minref += 3;
5544 	}
5545 }
5546 
5547 /*
5548  * Sync the specified transaction group.  New blocks may be dirtied as
5549  * part of the process, so we iterate until it converges.
5550  */
5551 void
5552 spa_sync(spa_t *spa, uint64_t txg)
5553 {
5554 	dsl_pool_t *dp = spa->spa_dsl_pool;
5555 	objset_t *mos = spa->spa_meta_objset;
5556 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5557 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5558 	vdev_t *rvd = spa->spa_root_vdev;
5559 	vdev_t *vd;
5560 	dmu_tx_t *tx;
5561 	int error;
5562 
5563 	VERIFY(spa_writeable(spa));
5564 
5565 	/*
5566 	 * Lock out configuration changes.
5567 	 */
5568 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5569 
5570 	spa->spa_syncing_txg = txg;
5571 	spa->spa_sync_pass = 0;
5572 
5573 	/*
5574 	 * If there are any pending vdev state changes, convert them
5575 	 * into config changes that go out with this transaction group.
5576 	 */
5577 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5578 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5579 		/*
5580 		 * We need the write lock here because, for aux vdevs,
5581 		 * calling vdev_config_dirty() modifies sav_config.
5582 		 * This is ugly and will become unnecessary when we
5583 		 * eliminate the aux vdev wart by integrating all vdevs
5584 		 * into the root vdev tree.
5585 		 */
5586 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5587 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5588 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5589 			vdev_state_clean(vd);
5590 			vdev_config_dirty(vd);
5591 		}
5592 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5593 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5594 	}
5595 	spa_config_exit(spa, SCL_STATE, FTAG);
5596 
5597 	tx = dmu_tx_create_assigned(dp, txg);
5598 
5599 	/*
5600 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5601 	 * set spa_deflate if we have no raid-z vdevs.
5602 	 */
5603 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5604 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5605 		int i;
5606 
5607 		for (i = 0; i < rvd->vdev_children; i++) {
5608 			vd = rvd->vdev_child[i];
5609 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5610 				break;
5611 		}
5612 		if (i == rvd->vdev_children) {
5613 			spa->spa_deflate = TRUE;
5614 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5615 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5616 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5617 		}
5618 	}
5619 
5620 	/*
5621 	 * If anything has changed in this txg, or if someone is waiting
5622 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5623 	 * deferred frees from the previous txg.  If not, leave them
5624 	 * alone so that we don't generate work on an otherwise idle
5625 	 * system.
5626 	 */
5627 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5628 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5629 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5630 	    ((dsl_scan_active(dp->dp_scan) ||
5631 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5632 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5633 		VERIFY3U(bpobj_iterate(defer_bpo,
5634 		    spa_free_sync_cb, zio, tx), ==, 0);
5635 		VERIFY3U(zio_wait(zio), ==, 0);
5636 	}
5637 
5638 	/*
5639 	 * Iterate to convergence.
5640 	 */
5641 	do {
5642 		int pass = ++spa->spa_sync_pass;
5643 
5644 		spa_sync_config_object(spa, tx);
5645 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5646 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5647 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5648 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5649 		spa_errlog_sync(spa, txg);
5650 		dsl_pool_sync(dp, txg);
5651 
5652 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5653 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5654 			bplist_iterate(free_bpl, spa_free_sync_cb,
5655 			    zio, tx);
5656 			VERIFY(zio_wait(zio) == 0);
5657 		} else {
5658 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5659 			    defer_bpo, tx);
5660 		}
5661 
5662 		ddt_sync(spa, txg);
5663 		dsl_scan_sync(dp, tx);
5664 
5665 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5666 			vdev_sync(vd, txg);
5667 
5668 		if (pass == 1)
5669 			spa_sync_upgrades(spa, tx);
5670 
5671 	} while (dmu_objset_is_dirty(mos, txg));
5672 
5673 	/*
5674 	 * Rewrite the vdev configuration (which includes the uberblock)
5675 	 * to commit the transaction group.
5676 	 *
5677 	 * If there are no dirty vdevs, we sync the uberblock to a few
5678 	 * random top-level vdevs that are known to be visible in the
5679 	 * config cache (see spa_vdev_add() for a complete description).
5680 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5681 	 */
5682 	for (;;) {
5683 		/*
5684 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5685 		 * while we're attempting to write the vdev labels.
5686 		 */
5687 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5688 
5689 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5690 			vdev_t *svd[SPA_DVAS_PER_BP];
5691 			int svdcount = 0;
5692 			int children = rvd->vdev_children;
5693 			int c0 = spa_get_random(children);
5694 
5695 			for (int c = 0; c < children; c++) {
5696 				vd = rvd->vdev_child[(c0 + c) % children];
5697 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5698 					continue;
5699 				svd[svdcount++] = vd;
5700 				if (svdcount == SPA_DVAS_PER_BP)
5701 					break;
5702 			}
5703 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5704 			if (error != 0)
5705 				error = vdev_config_sync(svd, svdcount, txg,
5706 				    B_TRUE);
5707 		} else {
5708 			error = vdev_config_sync(rvd->vdev_child,
5709 			    rvd->vdev_children, txg, B_FALSE);
5710 			if (error != 0)
5711 				error = vdev_config_sync(rvd->vdev_child,
5712 				    rvd->vdev_children, txg, B_TRUE);
5713 		}
5714 
5715 		spa_config_exit(spa, SCL_STATE, FTAG);
5716 
5717 		if (error == 0)
5718 			break;
5719 		zio_suspend(spa, NULL);
5720 		zio_resume_wait(spa);
5721 	}
5722 	dmu_tx_commit(tx);
5723 
5724 	/*
5725 	 * Clear the dirty config list.
5726 	 */
5727 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5728 		vdev_config_clean(vd);
5729 
5730 	/*
5731 	 * Now that the new config has synced transactionally,
5732 	 * let it become visible to the config cache.
5733 	 */
5734 	if (spa->spa_config_syncing != NULL) {
5735 		spa_config_set(spa, spa->spa_config_syncing);
5736 		spa->spa_config_txg = txg;
5737 		spa->spa_config_syncing = NULL;
5738 	}
5739 
5740 	spa->spa_ubsync = spa->spa_uberblock;
5741 
5742 	dsl_pool_sync_done(dp, txg);
5743 
5744 	/*
5745 	 * Update usable space statistics.
5746 	 */
5747 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5748 		vdev_sync_done(vd, txg);
5749 
5750 	spa_update_dspace(spa);
5751 
5752 	/*
5753 	 * It had better be the case that we didn't dirty anything
5754 	 * since vdev_config_sync().
5755 	 */
5756 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5757 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5758 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5759 
5760 	spa->spa_sync_pass = 0;
5761 
5762 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5763 
5764 	spa_handle_ignored_writes(spa);
5765 
5766 	/*
5767 	 * If any async tasks have been requested, kick them off.
5768 	 */
5769 	spa_async_dispatch(spa);
5770 }
5771 
5772 /*
5773  * Sync all pools.  We don't want to hold the namespace lock across these
5774  * operations, so we take a reference on the spa_t and drop the lock during the
5775  * sync.
5776  */
5777 void
5778 spa_sync_allpools(void)
5779 {
5780 	spa_t *spa = NULL;
5781 	mutex_enter(&spa_namespace_lock);
5782 	while ((spa = spa_next(spa)) != NULL) {
5783 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
5784 		    !spa_writeable(spa) || spa_suspended(spa))
5785 			continue;
5786 		spa_open_ref(spa, FTAG);
5787 		mutex_exit(&spa_namespace_lock);
5788 		txg_wait_synced(spa_get_dsl(spa), 0);
5789 		mutex_enter(&spa_namespace_lock);
5790 		spa_close(spa, FTAG);
5791 	}
5792 	mutex_exit(&spa_namespace_lock);
5793 }
5794 
5795 /*
5796  * ==========================================================================
5797  * Miscellaneous routines
5798  * ==========================================================================
5799  */
5800 
5801 /*
5802  * Remove all pools in the system.
5803  */
5804 void
5805 spa_evict_all(void)
5806 {
5807 	spa_t *spa;
5808 
5809 	/*
5810 	 * Remove all cached state.  All pools should be closed now,
5811 	 * so every spa in the AVL tree should be unreferenced.
5812 	 */
5813 	mutex_enter(&spa_namespace_lock);
5814 	while ((spa = spa_next(NULL)) != NULL) {
5815 		/*
5816 		 * Stop async tasks.  The async thread may need to detach
5817 		 * a device that's been replaced, which requires grabbing
5818 		 * spa_namespace_lock, so we must drop it here.
5819 		 */
5820 		spa_open_ref(spa, FTAG);
5821 		mutex_exit(&spa_namespace_lock);
5822 		spa_async_suspend(spa);
5823 		mutex_enter(&spa_namespace_lock);
5824 		spa_close(spa, FTAG);
5825 
5826 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5827 			spa_unload(spa);
5828 			spa_deactivate(spa);
5829 		}
5830 		spa_remove(spa);
5831 	}
5832 	mutex_exit(&spa_namespace_lock);
5833 }
5834 
5835 vdev_t *
5836 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5837 {
5838 	vdev_t *vd;
5839 	int i;
5840 
5841 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5842 		return (vd);
5843 
5844 	if (aux) {
5845 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5846 			vd = spa->spa_l2cache.sav_vdevs[i];
5847 			if (vd->vdev_guid == guid)
5848 				return (vd);
5849 		}
5850 
5851 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5852 			vd = spa->spa_spares.sav_vdevs[i];
5853 			if (vd->vdev_guid == guid)
5854 				return (vd);
5855 		}
5856 	}
5857 
5858 	return (NULL);
5859 }
5860 
5861 void
5862 spa_upgrade(spa_t *spa, uint64_t version)
5863 {
5864 	ASSERT(spa_writeable(spa));
5865 
5866 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5867 
5868 	/*
5869 	 * This should only be called for a non-faulted pool, and since a
5870 	 * future version would result in an unopenable pool, this shouldn't be
5871 	 * possible.
5872 	 */
5873 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5874 	ASSERT(version >= spa->spa_uberblock.ub_version);
5875 
5876 	spa->spa_uberblock.ub_version = version;
5877 	vdev_config_dirty(spa->spa_root_vdev);
5878 
5879 	spa_config_exit(spa, SCL_ALL, FTAG);
5880 
5881 	txg_wait_synced(spa_get_dsl(spa), 0);
5882 }
5883 
5884 boolean_t
5885 spa_has_spare(spa_t *spa, uint64_t guid)
5886 {
5887 	int i;
5888 	uint64_t spareguid;
5889 	spa_aux_vdev_t *sav = &spa->spa_spares;
5890 
5891 	for (i = 0; i < sav->sav_count; i++)
5892 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5893 			return (B_TRUE);
5894 
5895 	for (i = 0; i < sav->sav_npending; i++) {
5896 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5897 		    &spareguid) == 0 && spareguid == guid)
5898 			return (B_TRUE);
5899 	}
5900 
5901 	return (B_FALSE);
5902 }
5903 
5904 /*
5905  * Check if a pool has an active shared spare device.
5906  * Note: reference count of an active spare is 2, as a spare and as a replace
5907  */
5908 static boolean_t
5909 spa_has_active_shared_spare(spa_t *spa)
5910 {
5911 	int i, refcnt;
5912 	uint64_t pool;
5913 	spa_aux_vdev_t *sav = &spa->spa_spares;
5914 
5915 	for (i = 0; i < sav->sav_count; i++) {
5916 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5917 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5918 		    refcnt > 2)
5919 			return (B_TRUE);
5920 	}
5921 
5922 	return (B_FALSE);
5923 }
5924 
5925 /*
5926  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5927  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5928  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5929  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5930  * or zdb as real changes.
5931  */
5932 void
5933 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5934 {
5935 #ifdef _KERNEL
5936 	sysevent_t		*ev;
5937 	sysevent_attr_list_t	*attr = NULL;
5938 	sysevent_value_t	value;
5939 	sysevent_id_t		eid;
5940 
5941 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5942 	    SE_SLEEP);
5943 
5944 	value.value_type = SE_DATA_TYPE_STRING;
5945 	value.value.sv_string = spa_name(spa);
5946 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5947 		goto done;
5948 
5949 	value.value_type = SE_DATA_TYPE_UINT64;
5950 	value.value.sv_uint64 = spa_guid(spa);
5951 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5952 		goto done;
5953 
5954 	if (vd) {
5955 		value.value_type = SE_DATA_TYPE_UINT64;
5956 		value.value.sv_uint64 = vd->vdev_guid;
5957 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5958 		    SE_SLEEP) != 0)
5959 			goto done;
5960 
5961 		if (vd->vdev_path) {
5962 			value.value_type = SE_DATA_TYPE_STRING;
5963 			value.value.sv_string = vd->vdev_path;
5964 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5965 			    &value, SE_SLEEP) != 0)
5966 				goto done;
5967 		}
5968 	}
5969 
5970 	if (sysevent_attach_attributes(ev, attr) != 0)
5971 		goto done;
5972 	attr = NULL;
5973 
5974 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5975 
5976 done:
5977 	if (attr)
5978 		sysevent_free_attr(attr);
5979 	sysevent_free(ev);
5980 #endif
5981 }
5982