xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision d5285cae913f4e01ffa0e6693a6d8ef1fbea30ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 #include <sys/zfeature.h>
66 
67 #ifdef	_KERNEL
68 #include <sys/bootprops.h>
69 #include <sys/callb.h>
70 #include <sys/cpupart.h>
71 #include <sys/pool.h>
72 #include <sys/sysdc.h>
73 #include <sys/zone.h>
74 #endif	/* _KERNEL */
75 
76 #include "zfs_prop.h"
77 #include "zfs_comutil.h"
78 
79 typedef enum zti_modes {
80 	zti_mode_fixed,			/* value is # of threads (min 1) */
81 	zti_mode_online_percent,	/* value is % of online CPUs */
82 	zti_mode_batch,			/* cpu-intensive; value is ignored */
83 	zti_mode_null,			/* don't create a taskq */
84 	zti_nmodes
85 } zti_modes_t;
86 
87 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
88 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
89 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
90 #define	ZTI_NULL	{ zti_mode_null, 0 }
91 
92 #define	ZTI_ONE		ZTI_FIX(1)
93 
94 typedef struct zio_taskq_info {
95 	enum zti_modes zti_mode;
96 	uint_t zti_value;
97 } zio_taskq_info_t;
98 
99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 	"issue", "issue_high", "intr", "intr_high"
101 };
102 
103 /*
104  * Define the taskq threads for the following I/O types:
105  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106  */
107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
109 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
111 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
112 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
115 };
116 
117 static dsl_syncfunc_t spa_sync_version;
118 static dsl_syncfunc_t spa_sync_props;
119 static dsl_checkfunc_t spa_change_guid_check;
120 static dsl_syncfunc_t spa_change_guid_sync;
121 static boolean_t spa_has_active_shared_spare(spa_t *spa);
122 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
123     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
124     char **ereport);
125 static void spa_vdev_resilver_done(spa_t *spa);
126 
127 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
128 id_t		zio_taskq_psrset_bind = PS_NONE;
129 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
130 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
131 
132 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
133 extern int	zfs_sync_pass_deferred_free;
134 
135 /*
136  * This (illegal) pool name is used when temporarily importing a spa_t in order
137  * to get the vdev stats associated with the imported devices.
138  */
139 #define	TRYIMPORT_NAME	"$import"
140 
141 /*
142  * ==========================================================================
143  * SPA properties routines
144  * ==========================================================================
145  */
146 
147 /*
148  * Add a (source=src, propname=propval) list to an nvlist.
149  */
150 static void
151 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
152     uint64_t intval, zprop_source_t src)
153 {
154 	const char *propname = zpool_prop_to_name(prop);
155 	nvlist_t *propval;
156 
157 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
158 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
159 
160 	if (strval != NULL)
161 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
162 	else
163 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
164 
165 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
166 	nvlist_free(propval);
167 }
168 
169 /*
170  * Get property values from the spa configuration.
171  */
172 static void
173 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
174 {
175 	vdev_t *rvd = spa->spa_root_vdev;
176 	dsl_pool_t *pool = spa->spa_dsl_pool;
177 	uint64_t size;
178 	uint64_t alloc;
179 	uint64_t space;
180 	uint64_t cap, version;
181 	zprop_source_t src = ZPROP_SRC_NONE;
182 	spa_config_dirent_t *dp;
183 
184 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
185 
186 	if (rvd != NULL) {
187 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
188 		size = metaslab_class_get_space(spa_normal_class(spa));
189 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
191 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
192 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
193 		    size - alloc, src);
194 
195 		space = 0;
196 		for (int c = 0; c < rvd->vdev_children; c++) {
197 			vdev_t *tvd = rvd->vdev_child[c];
198 			space += tvd->vdev_max_asize - tvd->vdev_asize;
199 		}
200 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
201 		    src);
202 
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
204 		    (spa_mode(spa) == FREAD), src);
205 
206 		cap = (size == 0) ? 0 : (alloc * 100 / size);
207 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
208 
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
210 		    ddt_get_pool_dedup_ratio(spa), src);
211 
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
213 		    rvd->vdev_state, src);
214 
215 		version = spa_version(spa);
216 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
217 			src = ZPROP_SRC_DEFAULT;
218 		else
219 			src = ZPROP_SRC_LOCAL;
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
221 	}
222 
223 	if (pool != NULL) {
224 		dsl_dir_t *freedir = pool->dp_free_dir;
225 
226 		/*
227 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
228 		 * when opening pools before this version freedir will be NULL.
229 		 */
230 		if (freedir != NULL) {
231 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
232 			    freedir->dd_phys->dd_used_bytes, src);
233 		} else {
234 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
235 			    NULL, 0, src);
236 		}
237 	}
238 
239 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
240 
241 	if (spa->spa_comment != NULL) {
242 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
243 		    0, ZPROP_SRC_LOCAL);
244 	}
245 
246 	if (spa->spa_root != NULL)
247 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
248 		    0, ZPROP_SRC_LOCAL);
249 
250 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
251 		if (dp->scd_path == NULL) {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
253 			    "none", 0, ZPROP_SRC_LOCAL);
254 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
256 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
257 		}
258 	}
259 }
260 
261 /*
262  * Get zpool property values.
263  */
264 int
265 spa_prop_get(spa_t *spa, nvlist_t **nvp)
266 {
267 	objset_t *mos = spa->spa_meta_objset;
268 	zap_cursor_t zc;
269 	zap_attribute_t za;
270 	int err;
271 
272 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
273 
274 	mutex_enter(&spa->spa_props_lock);
275 
276 	/*
277 	 * Get properties from the spa config.
278 	 */
279 	spa_prop_get_config(spa, nvp);
280 
281 	/* If no pool property object, no more prop to get. */
282 	if (mos == NULL || spa->spa_pool_props_object == 0) {
283 		mutex_exit(&spa->spa_props_lock);
284 		return (0);
285 	}
286 
287 	/*
288 	 * Get properties from the MOS pool property object.
289 	 */
290 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
291 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
292 	    zap_cursor_advance(&zc)) {
293 		uint64_t intval = 0;
294 		char *strval = NULL;
295 		zprop_source_t src = ZPROP_SRC_DEFAULT;
296 		zpool_prop_t prop;
297 
298 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
299 			continue;
300 
301 		switch (za.za_integer_length) {
302 		case 8:
303 			/* integer property */
304 			if (za.za_first_integer !=
305 			    zpool_prop_default_numeric(prop))
306 				src = ZPROP_SRC_LOCAL;
307 
308 			if (prop == ZPOOL_PROP_BOOTFS) {
309 				dsl_pool_t *dp;
310 				dsl_dataset_t *ds = NULL;
311 
312 				dp = spa_get_dsl(spa);
313 				rw_enter(&dp->dp_config_rwlock, RW_READER);
314 				if (err = dsl_dataset_hold_obj(dp,
315 				    za.za_first_integer, FTAG, &ds)) {
316 					rw_exit(&dp->dp_config_rwlock);
317 					break;
318 				}
319 
320 				strval = kmem_alloc(
321 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
322 				    KM_SLEEP);
323 				dsl_dataset_name(ds, strval);
324 				dsl_dataset_rele(ds, FTAG);
325 				rw_exit(&dp->dp_config_rwlock);
326 			} else {
327 				strval = NULL;
328 				intval = za.za_first_integer;
329 			}
330 
331 			spa_prop_add_list(*nvp, prop, strval, intval, src);
332 
333 			if (strval != NULL)
334 				kmem_free(strval,
335 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
336 
337 			break;
338 
339 		case 1:
340 			/* string property */
341 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
342 			err = zap_lookup(mos, spa->spa_pool_props_object,
343 			    za.za_name, 1, za.za_num_integers, strval);
344 			if (err) {
345 				kmem_free(strval, za.za_num_integers);
346 				break;
347 			}
348 			spa_prop_add_list(*nvp, prop, strval, 0, src);
349 			kmem_free(strval, za.za_num_integers);
350 			break;
351 
352 		default:
353 			break;
354 		}
355 	}
356 	zap_cursor_fini(&zc);
357 	mutex_exit(&spa->spa_props_lock);
358 out:
359 	if (err && err != ENOENT) {
360 		nvlist_free(*nvp);
361 		*nvp = NULL;
362 		return (err);
363 	}
364 
365 	return (0);
366 }
367 
368 /*
369  * Validate the given pool properties nvlist and modify the list
370  * for the property values to be set.
371  */
372 static int
373 spa_prop_validate(spa_t *spa, nvlist_t *props)
374 {
375 	nvpair_t *elem;
376 	int error = 0, reset_bootfs = 0;
377 	uint64_t objnum = 0;
378 	boolean_t has_feature = B_FALSE;
379 
380 	elem = NULL;
381 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
382 		uint64_t intval;
383 		char *strval, *slash, *check, *fname;
384 		const char *propname = nvpair_name(elem);
385 		zpool_prop_t prop = zpool_name_to_prop(propname);
386 
387 		switch (prop) {
388 		case ZPROP_INVAL:
389 			if (!zpool_prop_feature(propname)) {
390 				error = EINVAL;
391 				break;
392 			}
393 
394 			/*
395 			 * Sanitize the input.
396 			 */
397 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
398 				error = EINVAL;
399 				break;
400 			}
401 
402 			if (nvpair_value_uint64(elem, &intval) != 0) {
403 				error = EINVAL;
404 				break;
405 			}
406 
407 			if (intval != 0) {
408 				error = EINVAL;
409 				break;
410 			}
411 
412 			fname = strchr(propname, '@') + 1;
413 			if (zfeature_lookup_name(fname, NULL) != 0) {
414 				error = EINVAL;
415 				break;
416 			}
417 
418 			has_feature = B_TRUE;
419 			break;
420 
421 		case ZPOOL_PROP_VERSION:
422 			error = nvpair_value_uint64(elem, &intval);
423 			if (!error &&
424 			    (intval < spa_version(spa) ||
425 			    intval > SPA_VERSION_BEFORE_FEATURES ||
426 			    has_feature))
427 				error = EINVAL;
428 			break;
429 
430 		case ZPOOL_PROP_DELEGATION:
431 		case ZPOOL_PROP_AUTOREPLACE:
432 		case ZPOOL_PROP_LISTSNAPS:
433 		case ZPOOL_PROP_AUTOEXPAND:
434 			error = nvpair_value_uint64(elem, &intval);
435 			if (!error && intval > 1)
436 				error = EINVAL;
437 			break;
438 
439 		case ZPOOL_PROP_BOOTFS:
440 			/*
441 			 * If the pool version is less than SPA_VERSION_BOOTFS,
442 			 * or the pool is still being created (version == 0),
443 			 * the bootfs property cannot be set.
444 			 */
445 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
446 				error = ENOTSUP;
447 				break;
448 			}
449 
450 			/*
451 			 * Make sure the vdev config is bootable
452 			 */
453 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
454 				error = ENOTSUP;
455 				break;
456 			}
457 
458 			reset_bootfs = 1;
459 
460 			error = nvpair_value_string(elem, &strval);
461 
462 			if (!error) {
463 				objset_t *os;
464 				uint64_t compress;
465 
466 				if (strval == NULL || strval[0] == '\0') {
467 					objnum = zpool_prop_default_numeric(
468 					    ZPOOL_PROP_BOOTFS);
469 					break;
470 				}
471 
472 				if (error = dmu_objset_hold(strval, FTAG, &os))
473 					break;
474 
475 				/* Must be ZPL and not gzip compressed. */
476 
477 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
478 					error = ENOTSUP;
479 				} else if ((error = dsl_prop_get_integer(strval,
480 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
481 				    &compress, NULL)) == 0 &&
482 				    !BOOTFS_COMPRESS_VALID(compress)) {
483 					error = ENOTSUP;
484 				} else {
485 					objnum = dmu_objset_id(os);
486 				}
487 				dmu_objset_rele(os, FTAG);
488 			}
489 			break;
490 
491 		case ZPOOL_PROP_FAILUREMODE:
492 			error = nvpair_value_uint64(elem, &intval);
493 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
494 			    intval > ZIO_FAILURE_MODE_PANIC))
495 				error = EINVAL;
496 
497 			/*
498 			 * This is a special case which only occurs when
499 			 * the pool has completely failed. This allows
500 			 * the user to change the in-core failmode property
501 			 * without syncing it out to disk (I/Os might
502 			 * currently be blocked). We do this by returning
503 			 * EIO to the caller (spa_prop_set) to trick it
504 			 * into thinking we encountered a property validation
505 			 * error.
506 			 */
507 			if (!error && spa_suspended(spa)) {
508 				spa->spa_failmode = intval;
509 				error = EIO;
510 			}
511 			break;
512 
513 		case ZPOOL_PROP_CACHEFILE:
514 			if ((error = nvpair_value_string(elem, &strval)) != 0)
515 				break;
516 
517 			if (strval[0] == '\0')
518 				break;
519 
520 			if (strcmp(strval, "none") == 0)
521 				break;
522 
523 			if (strval[0] != '/') {
524 				error = EINVAL;
525 				break;
526 			}
527 
528 			slash = strrchr(strval, '/');
529 			ASSERT(slash != NULL);
530 
531 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
532 			    strcmp(slash, "/..") == 0)
533 				error = EINVAL;
534 			break;
535 
536 		case ZPOOL_PROP_COMMENT:
537 			if ((error = nvpair_value_string(elem, &strval)) != 0)
538 				break;
539 			for (check = strval; *check != '\0'; check++) {
540 				/*
541 				 * The kernel doesn't have an easy isprint()
542 				 * check.  For this kernel check, we merely
543 				 * check ASCII apart from DEL.  Fix this if
544 				 * there is an easy-to-use kernel isprint().
545 				 */
546 				if (*check >= 0x7f) {
547 					error = EINVAL;
548 					break;
549 				}
550 				check++;
551 			}
552 			if (strlen(strval) > ZPROP_MAX_COMMENT)
553 				error = E2BIG;
554 			break;
555 
556 		case ZPOOL_PROP_DEDUPDITTO:
557 			if (spa_version(spa) < SPA_VERSION_DEDUP)
558 				error = ENOTSUP;
559 			else
560 				error = nvpair_value_uint64(elem, &intval);
561 			if (error == 0 &&
562 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
563 				error = EINVAL;
564 			break;
565 		}
566 
567 		if (error)
568 			break;
569 	}
570 
571 	if (!error && reset_bootfs) {
572 		error = nvlist_remove(props,
573 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
574 
575 		if (!error) {
576 			error = nvlist_add_uint64(props,
577 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
578 		}
579 	}
580 
581 	return (error);
582 }
583 
584 void
585 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
586 {
587 	char *cachefile;
588 	spa_config_dirent_t *dp;
589 
590 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
591 	    &cachefile) != 0)
592 		return;
593 
594 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
595 	    KM_SLEEP);
596 
597 	if (cachefile[0] == '\0')
598 		dp->scd_path = spa_strdup(spa_config_path);
599 	else if (strcmp(cachefile, "none") == 0)
600 		dp->scd_path = NULL;
601 	else
602 		dp->scd_path = spa_strdup(cachefile);
603 
604 	list_insert_head(&spa->spa_config_list, dp);
605 	if (need_sync)
606 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
607 }
608 
609 int
610 spa_prop_set(spa_t *spa, nvlist_t *nvp)
611 {
612 	int error;
613 	nvpair_t *elem = NULL;
614 	boolean_t need_sync = B_FALSE;
615 
616 	if ((error = spa_prop_validate(spa, nvp)) != 0)
617 		return (error);
618 
619 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
620 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
621 
622 		if (prop == ZPOOL_PROP_CACHEFILE ||
623 		    prop == ZPOOL_PROP_ALTROOT ||
624 		    prop == ZPOOL_PROP_READONLY)
625 			continue;
626 
627 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
628 			uint64_t ver;
629 
630 			if (prop == ZPOOL_PROP_VERSION) {
631 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
632 			} else {
633 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
634 				ver = SPA_VERSION_FEATURES;
635 				need_sync = B_TRUE;
636 			}
637 
638 			/* Save time if the version is already set. */
639 			if (ver == spa_version(spa))
640 				continue;
641 
642 			/*
643 			 * In addition to the pool directory object, we might
644 			 * create the pool properties object, the features for
645 			 * read object, the features for write object, or the
646 			 * feature descriptions object.
647 			 */
648 			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
649 			    spa_sync_version, spa, &ver, 6);
650 			if (error)
651 				return (error);
652 			continue;
653 		}
654 
655 		need_sync = B_TRUE;
656 		break;
657 	}
658 
659 	if (need_sync) {
660 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
661 		    spa, nvp, 6));
662 	}
663 
664 	return (0);
665 }
666 
667 /*
668  * If the bootfs property value is dsobj, clear it.
669  */
670 void
671 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
672 {
673 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
674 		VERIFY(zap_remove(spa->spa_meta_objset,
675 		    spa->spa_pool_props_object,
676 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
677 		spa->spa_bootfs = 0;
678 	}
679 }
680 
681 /*ARGSUSED*/
682 static int
683 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
684 {
685 	spa_t *spa = arg1;
686 	uint64_t *newguid = arg2;
687 	vdev_t *rvd = spa->spa_root_vdev;
688 	uint64_t vdev_state;
689 
690 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
691 	vdev_state = rvd->vdev_state;
692 	spa_config_exit(spa, SCL_STATE, FTAG);
693 
694 	if (vdev_state != VDEV_STATE_HEALTHY)
695 		return (ENXIO);
696 
697 	ASSERT3U(spa_guid(spa), !=, *newguid);
698 
699 	return (0);
700 }
701 
702 static void
703 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
704 {
705 	spa_t *spa = arg1;
706 	uint64_t *newguid = arg2;
707 	uint64_t oldguid;
708 	vdev_t *rvd = spa->spa_root_vdev;
709 
710 	oldguid = spa_guid(spa);
711 
712 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
713 	rvd->vdev_guid = *newguid;
714 	rvd->vdev_guid_sum += (*newguid - oldguid);
715 	vdev_config_dirty(rvd);
716 	spa_config_exit(spa, SCL_STATE, FTAG);
717 
718 	spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
719 	    oldguid, *newguid);
720 }
721 
722 /*
723  * Change the GUID for the pool.  This is done so that we can later
724  * re-import a pool built from a clone of our own vdevs.  We will modify
725  * the root vdev's guid, our own pool guid, and then mark all of our
726  * vdevs dirty.  Note that we must make sure that all our vdevs are
727  * online when we do this, or else any vdevs that weren't present
728  * would be orphaned from our pool.  We are also going to issue a
729  * sysevent to update any watchers.
730  */
731 int
732 spa_change_guid(spa_t *spa)
733 {
734 	int error;
735 	uint64_t guid;
736 
737 	mutex_enter(&spa_namespace_lock);
738 	guid = spa_generate_guid(NULL);
739 
740 	error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
741 	    spa_change_guid_sync, spa, &guid, 5);
742 
743 	if (error == 0) {
744 		spa_config_sync(spa, B_FALSE, B_TRUE);
745 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
746 	}
747 
748 	mutex_exit(&spa_namespace_lock);
749 
750 	return (error);
751 }
752 
753 /*
754  * ==========================================================================
755  * SPA state manipulation (open/create/destroy/import/export)
756  * ==========================================================================
757  */
758 
759 static int
760 spa_error_entry_compare(const void *a, const void *b)
761 {
762 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
763 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
764 	int ret;
765 
766 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
767 	    sizeof (zbookmark_t));
768 
769 	if (ret < 0)
770 		return (-1);
771 	else if (ret > 0)
772 		return (1);
773 	else
774 		return (0);
775 }
776 
777 /*
778  * Utility function which retrieves copies of the current logs and
779  * re-initializes them in the process.
780  */
781 void
782 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
783 {
784 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
785 
786 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
787 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
788 
789 	avl_create(&spa->spa_errlist_scrub,
790 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
791 	    offsetof(spa_error_entry_t, se_avl));
792 	avl_create(&spa->spa_errlist_last,
793 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
794 	    offsetof(spa_error_entry_t, se_avl));
795 }
796 
797 static taskq_t *
798 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
799     uint_t value)
800 {
801 	uint_t flags = 0;
802 	boolean_t batch = B_FALSE;
803 
804 	switch (mode) {
805 	case zti_mode_null:
806 		return (NULL);		/* no taskq needed */
807 
808 	case zti_mode_fixed:
809 		ASSERT3U(value, >=, 1);
810 		value = MAX(value, 1);
811 		break;
812 
813 	case zti_mode_batch:
814 		batch = B_TRUE;
815 		flags |= TASKQ_THREADS_CPU_PCT;
816 		value = zio_taskq_batch_pct;
817 		break;
818 
819 	case zti_mode_online_percent:
820 		flags |= TASKQ_THREADS_CPU_PCT;
821 		break;
822 
823 	default:
824 		panic("unrecognized mode for %s taskq (%u:%u) in "
825 		    "spa_activate()",
826 		    name, mode, value);
827 		break;
828 	}
829 
830 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
831 		if (batch)
832 			flags |= TASKQ_DC_BATCH;
833 
834 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
835 		    spa->spa_proc, zio_taskq_basedc, flags));
836 	}
837 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
838 	    spa->spa_proc, flags));
839 }
840 
841 static void
842 spa_create_zio_taskqs(spa_t *spa)
843 {
844 	for (int t = 0; t < ZIO_TYPES; t++) {
845 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
846 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
847 			enum zti_modes mode = ztip->zti_mode;
848 			uint_t value = ztip->zti_value;
849 			char name[32];
850 
851 			(void) snprintf(name, sizeof (name),
852 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
853 
854 			spa->spa_zio_taskq[t][q] =
855 			    spa_taskq_create(spa, name, mode, value);
856 		}
857 	}
858 }
859 
860 #ifdef _KERNEL
861 static void
862 spa_thread(void *arg)
863 {
864 	callb_cpr_t cprinfo;
865 
866 	spa_t *spa = arg;
867 	user_t *pu = PTOU(curproc);
868 
869 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
870 	    spa->spa_name);
871 
872 	ASSERT(curproc != &p0);
873 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
874 	    "zpool-%s", spa->spa_name);
875 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
876 
877 	/* bind this thread to the requested psrset */
878 	if (zio_taskq_psrset_bind != PS_NONE) {
879 		pool_lock();
880 		mutex_enter(&cpu_lock);
881 		mutex_enter(&pidlock);
882 		mutex_enter(&curproc->p_lock);
883 
884 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
885 		    0, NULL, NULL) == 0)  {
886 			curthread->t_bind_pset = zio_taskq_psrset_bind;
887 		} else {
888 			cmn_err(CE_WARN,
889 			    "Couldn't bind process for zfs pool \"%s\" to "
890 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
891 		}
892 
893 		mutex_exit(&curproc->p_lock);
894 		mutex_exit(&pidlock);
895 		mutex_exit(&cpu_lock);
896 		pool_unlock();
897 	}
898 
899 	if (zio_taskq_sysdc) {
900 		sysdc_thread_enter(curthread, 100, 0);
901 	}
902 
903 	spa->spa_proc = curproc;
904 	spa->spa_did = curthread->t_did;
905 
906 	spa_create_zio_taskqs(spa);
907 
908 	mutex_enter(&spa->spa_proc_lock);
909 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
910 
911 	spa->spa_proc_state = SPA_PROC_ACTIVE;
912 	cv_broadcast(&spa->spa_proc_cv);
913 
914 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
915 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
916 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
917 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
918 
919 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
920 	spa->spa_proc_state = SPA_PROC_GONE;
921 	spa->spa_proc = &p0;
922 	cv_broadcast(&spa->spa_proc_cv);
923 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
924 
925 	mutex_enter(&curproc->p_lock);
926 	lwp_exit();
927 }
928 #endif
929 
930 /*
931  * Activate an uninitialized pool.
932  */
933 static void
934 spa_activate(spa_t *spa, int mode)
935 {
936 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
937 
938 	spa->spa_state = POOL_STATE_ACTIVE;
939 	spa->spa_mode = mode;
940 
941 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
942 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
943 
944 	/* Try to create a covering process */
945 	mutex_enter(&spa->spa_proc_lock);
946 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
947 	ASSERT(spa->spa_proc == &p0);
948 	spa->spa_did = 0;
949 
950 	/* Only create a process if we're going to be around a while. */
951 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
952 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
953 		    NULL, 0) == 0) {
954 			spa->spa_proc_state = SPA_PROC_CREATED;
955 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
956 				cv_wait(&spa->spa_proc_cv,
957 				    &spa->spa_proc_lock);
958 			}
959 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
960 			ASSERT(spa->spa_proc != &p0);
961 			ASSERT(spa->spa_did != 0);
962 		} else {
963 #ifdef _KERNEL
964 			cmn_err(CE_WARN,
965 			    "Couldn't create process for zfs pool \"%s\"\n",
966 			    spa->spa_name);
967 #endif
968 		}
969 	}
970 	mutex_exit(&spa->spa_proc_lock);
971 
972 	/* If we didn't create a process, we need to create our taskqs. */
973 	if (spa->spa_proc == &p0) {
974 		spa_create_zio_taskqs(spa);
975 	}
976 
977 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
978 	    offsetof(vdev_t, vdev_config_dirty_node));
979 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
980 	    offsetof(vdev_t, vdev_state_dirty_node));
981 
982 	txg_list_create(&spa->spa_vdev_txg_list,
983 	    offsetof(struct vdev, vdev_txg_node));
984 
985 	avl_create(&spa->spa_errlist_scrub,
986 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
987 	    offsetof(spa_error_entry_t, se_avl));
988 	avl_create(&spa->spa_errlist_last,
989 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
990 	    offsetof(spa_error_entry_t, se_avl));
991 }
992 
993 /*
994  * Opposite of spa_activate().
995  */
996 static void
997 spa_deactivate(spa_t *spa)
998 {
999 	ASSERT(spa->spa_sync_on == B_FALSE);
1000 	ASSERT(spa->spa_dsl_pool == NULL);
1001 	ASSERT(spa->spa_root_vdev == NULL);
1002 	ASSERT(spa->spa_async_zio_root == NULL);
1003 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1004 
1005 	txg_list_destroy(&spa->spa_vdev_txg_list);
1006 
1007 	list_destroy(&spa->spa_config_dirty_list);
1008 	list_destroy(&spa->spa_state_dirty_list);
1009 
1010 	for (int t = 0; t < ZIO_TYPES; t++) {
1011 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1012 			if (spa->spa_zio_taskq[t][q] != NULL)
1013 				taskq_destroy(spa->spa_zio_taskq[t][q]);
1014 			spa->spa_zio_taskq[t][q] = NULL;
1015 		}
1016 	}
1017 
1018 	metaslab_class_destroy(spa->spa_normal_class);
1019 	spa->spa_normal_class = NULL;
1020 
1021 	metaslab_class_destroy(spa->spa_log_class);
1022 	spa->spa_log_class = NULL;
1023 
1024 	/*
1025 	 * If this was part of an import or the open otherwise failed, we may
1026 	 * still have errors left in the queues.  Empty them just in case.
1027 	 */
1028 	spa_errlog_drain(spa);
1029 
1030 	avl_destroy(&spa->spa_errlist_scrub);
1031 	avl_destroy(&spa->spa_errlist_last);
1032 
1033 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1034 
1035 	mutex_enter(&spa->spa_proc_lock);
1036 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1037 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1038 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1039 		cv_broadcast(&spa->spa_proc_cv);
1040 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1041 			ASSERT(spa->spa_proc != &p0);
1042 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1043 		}
1044 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1045 		spa->spa_proc_state = SPA_PROC_NONE;
1046 	}
1047 	ASSERT(spa->spa_proc == &p0);
1048 	mutex_exit(&spa->spa_proc_lock);
1049 
1050 	/*
1051 	 * We want to make sure spa_thread() has actually exited the ZFS
1052 	 * module, so that the module can't be unloaded out from underneath
1053 	 * it.
1054 	 */
1055 	if (spa->spa_did != 0) {
1056 		thread_join(spa->spa_did);
1057 		spa->spa_did = 0;
1058 	}
1059 }
1060 
1061 /*
1062  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1063  * will create all the necessary vdevs in the appropriate layout, with each vdev
1064  * in the CLOSED state.  This will prep the pool before open/creation/import.
1065  * All vdev validation is done by the vdev_alloc() routine.
1066  */
1067 static int
1068 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1069     uint_t id, int atype)
1070 {
1071 	nvlist_t **child;
1072 	uint_t children;
1073 	int error;
1074 
1075 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1076 		return (error);
1077 
1078 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1079 		return (0);
1080 
1081 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1082 	    &child, &children);
1083 
1084 	if (error == ENOENT)
1085 		return (0);
1086 
1087 	if (error) {
1088 		vdev_free(*vdp);
1089 		*vdp = NULL;
1090 		return (EINVAL);
1091 	}
1092 
1093 	for (int c = 0; c < children; c++) {
1094 		vdev_t *vd;
1095 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1096 		    atype)) != 0) {
1097 			vdev_free(*vdp);
1098 			*vdp = NULL;
1099 			return (error);
1100 		}
1101 	}
1102 
1103 	ASSERT(*vdp != NULL);
1104 
1105 	return (0);
1106 }
1107 
1108 /*
1109  * Opposite of spa_load().
1110  */
1111 static void
1112 spa_unload(spa_t *spa)
1113 {
1114 	int i;
1115 
1116 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1117 
1118 	/*
1119 	 * Stop async tasks.
1120 	 */
1121 	spa_async_suspend(spa);
1122 
1123 	/*
1124 	 * Stop syncing.
1125 	 */
1126 	if (spa->spa_sync_on) {
1127 		txg_sync_stop(spa->spa_dsl_pool);
1128 		spa->spa_sync_on = B_FALSE;
1129 	}
1130 
1131 	/*
1132 	 * Wait for any outstanding async I/O to complete.
1133 	 */
1134 	if (spa->spa_async_zio_root != NULL) {
1135 		(void) zio_wait(spa->spa_async_zio_root);
1136 		spa->spa_async_zio_root = NULL;
1137 	}
1138 
1139 	bpobj_close(&spa->spa_deferred_bpobj);
1140 
1141 	/*
1142 	 * Close the dsl pool.
1143 	 */
1144 	if (spa->spa_dsl_pool) {
1145 		dsl_pool_close(spa->spa_dsl_pool);
1146 		spa->spa_dsl_pool = NULL;
1147 		spa->spa_meta_objset = NULL;
1148 	}
1149 
1150 	ddt_unload(spa);
1151 
1152 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1153 
1154 	/*
1155 	 * Drop and purge level 2 cache
1156 	 */
1157 	spa_l2cache_drop(spa);
1158 
1159 	/*
1160 	 * Close all vdevs.
1161 	 */
1162 	if (spa->spa_root_vdev)
1163 		vdev_free(spa->spa_root_vdev);
1164 	ASSERT(spa->spa_root_vdev == NULL);
1165 
1166 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1167 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1168 	if (spa->spa_spares.sav_vdevs) {
1169 		kmem_free(spa->spa_spares.sav_vdevs,
1170 		    spa->spa_spares.sav_count * sizeof (void *));
1171 		spa->spa_spares.sav_vdevs = NULL;
1172 	}
1173 	if (spa->spa_spares.sav_config) {
1174 		nvlist_free(spa->spa_spares.sav_config);
1175 		spa->spa_spares.sav_config = NULL;
1176 	}
1177 	spa->spa_spares.sav_count = 0;
1178 
1179 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1180 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1181 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1182 	}
1183 	if (spa->spa_l2cache.sav_vdevs) {
1184 		kmem_free(spa->spa_l2cache.sav_vdevs,
1185 		    spa->spa_l2cache.sav_count * sizeof (void *));
1186 		spa->spa_l2cache.sav_vdevs = NULL;
1187 	}
1188 	if (spa->spa_l2cache.sav_config) {
1189 		nvlist_free(spa->spa_l2cache.sav_config);
1190 		spa->spa_l2cache.sav_config = NULL;
1191 	}
1192 	spa->spa_l2cache.sav_count = 0;
1193 
1194 	spa->spa_async_suspended = 0;
1195 
1196 	if (spa->spa_comment != NULL) {
1197 		spa_strfree(spa->spa_comment);
1198 		spa->spa_comment = NULL;
1199 	}
1200 
1201 	spa_config_exit(spa, SCL_ALL, FTAG);
1202 }
1203 
1204 /*
1205  * Load (or re-load) the current list of vdevs describing the active spares for
1206  * this pool.  When this is called, we have some form of basic information in
1207  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1208  * then re-generate a more complete list including status information.
1209  */
1210 static void
1211 spa_load_spares(spa_t *spa)
1212 {
1213 	nvlist_t **spares;
1214 	uint_t nspares;
1215 	int i;
1216 	vdev_t *vd, *tvd;
1217 
1218 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1219 
1220 	/*
1221 	 * First, close and free any existing spare vdevs.
1222 	 */
1223 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1224 		vd = spa->spa_spares.sav_vdevs[i];
1225 
1226 		/* Undo the call to spa_activate() below */
1227 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1228 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1229 			spa_spare_remove(tvd);
1230 		vdev_close(vd);
1231 		vdev_free(vd);
1232 	}
1233 
1234 	if (spa->spa_spares.sav_vdevs)
1235 		kmem_free(spa->spa_spares.sav_vdevs,
1236 		    spa->spa_spares.sav_count * sizeof (void *));
1237 
1238 	if (spa->spa_spares.sav_config == NULL)
1239 		nspares = 0;
1240 	else
1241 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1242 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1243 
1244 	spa->spa_spares.sav_count = (int)nspares;
1245 	spa->spa_spares.sav_vdevs = NULL;
1246 
1247 	if (nspares == 0)
1248 		return;
1249 
1250 	/*
1251 	 * Construct the array of vdevs, opening them to get status in the
1252 	 * process.   For each spare, there is potentially two different vdev_t
1253 	 * structures associated with it: one in the list of spares (used only
1254 	 * for basic validation purposes) and one in the active vdev
1255 	 * configuration (if it's spared in).  During this phase we open and
1256 	 * validate each vdev on the spare list.  If the vdev also exists in the
1257 	 * active configuration, then we also mark this vdev as an active spare.
1258 	 */
1259 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1260 	    KM_SLEEP);
1261 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1262 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1263 		    VDEV_ALLOC_SPARE) == 0);
1264 		ASSERT(vd != NULL);
1265 
1266 		spa->spa_spares.sav_vdevs[i] = vd;
1267 
1268 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1269 		    B_FALSE)) != NULL) {
1270 			if (!tvd->vdev_isspare)
1271 				spa_spare_add(tvd);
1272 
1273 			/*
1274 			 * We only mark the spare active if we were successfully
1275 			 * able to load the vdev.  Otherwise, importing a pool
1276 			 * with a bad active spare would result in strange
1277 			 * behavior, because multiple pool would think the spare
1278 			 * is actively in use.
1279 			 *
1280 			 * There is a vulnerability here to an equally bizarre
1281 			 * circumstance, where a dead active spare is later
1282 			 * brought back to life (onlined or otherwise).  Given
1283 			 * the rarity of this scenario, and the extra complexity
1284 			 * it adds, we ignore the possibility.
1285 			 */
1286 			if (!vdev_is_dead(tvd))
1287 				spa_spare_activate(tvd);
1288 		}
1289 
1290 		vd->vdev_top = vd;
1291 		vd->vdev_aux = &spa->spa_spares;
1292 
1293 		if (vdev_open(vd) != 0)
1294 			continue;
1295 
1296 		if (vdev_validate_aux(vd) == 0)
1297 			spa_spare_add(vd);
1298 	}
1299 
1300 	/*
1301 	 * Recompute the stashed list of spares, with status information
1302 	 * this time.
1303 	 */
1304 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1305 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1306 
1307 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1308 	    KM_SLEEP);
1309 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1310 		spares[i] = vdev_config_generate(spa,
1311 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1312 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1313 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1314 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1315 		nvlist_free(spares[i]);
1316 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1317 }
1318 
1319 /*
1320  * Load (or re-load) the current list of vdevs describing the active l2cache for
1321  * this pool.  When this is called, we have some form of basic information in
1322  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1323  * then re-generate a more complete list including status information.
1324  * Devices which are already active have their details maintained, and are
1325  * not re-opened.
1326  */
1327 static void
1328 spa_load_l2cache(spa_t *spa)
1329 {
1330 	nvlist_t **l2cache;
1331 	uint_t nl2cache;
1332 	int i, j, oldnvdevs;
1333 	uint64_t guid;
1334 	vdev_t *vd, **oldvdevs, **newvdevs;
1335 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1336 
1337 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 
1339 	if (sav->sav_config != NULL) {
1340 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1341 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1342 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1343 	} else {
1344 		nl2cache = 0;
1345 		newvdevs = NULL;
1346 	}
1347 
1348 	oldvdevs = sav->sav_vdevs;
1349 	oldnvdevs = sav->sav_count;
1350 	sav->sav_vdevs = NULL;
1351 	sav->sav_count = 0;
1352 
1353 	/*
1354 	 * Process new nvlist of vdevs.
1355 	 */
1356 	for (i = 0; i < nl2cache; i++) {
1357 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1358 		    &guid) == 0);
1359 
1360 		newvdevs[i] = NULL;
1361 		for (j = 0; j < oldnvdevs; j++) {
1362 			vd = oldvdevs[j];
1363 			if (vd != NULL && guid == vd->vdev_guid) {
1364 				/*
1365 				 * Retain previous vdev for add/remove ops.
1366 				 */
1367 				newvdevs[i] = vd;
1368 				oldvdevs[j] = NULL;
1369 				break;
1370 			}
1371 		}
1372 
1373 		if (newvdevs[i] == NULL) {
1374 			/*
1375 			 * Create new vdev
1376 			 */
1377 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1378 			    VDEV_ALLOC_L2CACHE) == 0);
1379 			ASSERT(vd != NULL);
1380 			newvdevs[i] = vd;
1381 
1382 			/*
1383 			 * Commit this vdev as an l2cache device,
1384 			 * even if it fails to open.
1385 			 */
1386 			spa_l2cache_add(vd);
1387 
1388 			vd->vdev_top = vd;
1389 			vd->vdev_aux = sav;
1390 
1391 			spa_l2cache_activate(vd);
1392 
1393 			if (vdev_open(vd) != 0)
1394 				continue;
1395 
1396 			(void) vdev_validate_aux(vd);
1397 
1398 			if (!vdev_is_dead(vd))
1399 				l2arc_add_vdev(spa, vd);
1400 		}
1401 	}
1402 
1403 	/*
1404 	 * Purge vdevs that were dropped
1405 	 */
1406 	for (i = 0; i < oldnvdevs; i++) {
1407 		uint64_t pool;
1408 
1409 		vd = oldvdevs[i];
1410 		if (vd != NULL) {
1411 			ASSERT(vd->vdev_isl2cache);
1412 
1413 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1414 			    pool != 0ULL && l2arc_vdev_present(vd))
1415 				l2arc_remove_vdev(vd);
1416 			vdev_clear_stats(vd);
1417 			vdev_free(vd);
1418 		}
1419 	}
1420 
1421 	if (oldvdevs)
1422 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1423 
1424 	if (sav->sav_config == NULL)
1425 		goto out;
1426 
1427 	sav->sav_vdevs = newvdevs;
1428 	sav->sav_count = (int)nl2cache;
1429 
1430 	/*
1431 	 * Recompute the stashed list of l2cache devices, with status
1432 	 * information this time.
1433 	 */
1434 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1435 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1436 
1437 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1438 	for (i = 0; i < sav->sav_count; i++)
1439 		l2cache[i] = vdev_config_generate(spa,
1440 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1441 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1442 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1443 out:
1444 	for (i = 0; i < sav->sav_count; i++)
1445 		nvlist_free(l2cache[i]);
1446 	if (sav->sav_count)
1447 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1448 }
1449 
1450 static int
1451 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1452 {
1453 	dmu_buf_t *db;
1454 	char *packed = NULL;
1455 	size_t nvsize = 0;
1456 	int error;
1457 	*value = NULL;
1458 
1459 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1460 	nvsize = *(uint64_t *)db->db_data;
1461 	dmu_buf_rele(db, FTAG);
1462 
1463 	packed = kmem_alloc(nvsize, KM_SLEEP);
1464 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1465 	    DMU_READ_PREFETCH);
1466 	if (error == 0)
1467 		error = nvlist_unpack(packed, nvsize, value, 0);
1468 	kmem_free(packed, nvsize);
1469 
1470 	return (error);
1471 }
1472 
1473 /*
1474  * Checks to see if the given vdev could not be opened, in which case we post a
1475  * sysevent to notify the autoreplace code that the device has been removed.
1476  */
1477 static void
1478 spa_check_removed(vdev_t *vd)
1479 {
1480 	for (int c = 0; c < vd->vdev_children; c++)
1481 		spa_check_removed(vd->vdev_child[c]);
1482 
1483 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1484 		zfs_post_autoreplace(vd->vdev_spa, vd);
1485 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1486 	}
1487 }
1488 
1489 /*
1490  * Validate the current config against the MOS config
1491  */
1492 static boolean_t
1493 spa_config_valid(spa_t *spa, nvlist_t *config)
1494 {
1495 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1496 	nvlist_t *nv;
1497 
1498 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1499 
1500 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1501 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1502 
1503 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1504 
1505 	/*
1506 	 * If we're doing a normal import, then build up any additional
1507 	 * diagnostic information about missing devices in this config.
1508 	 * We'll pass this up to the user for further processing.
1509 	 */
1510 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1511 		nvlist_t **child, *nv;
1512 		uint64_t idx = 0;
1513 
1514 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1515 		    KM_SLEEP);
1516 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1517 
1518 		for (int c = 0; c < rvd->vdev_children; c++) {
1519 			vdev_t *tvd = rvd->vdev_child[c];
1520 			vdev_t *mtvd  = mrvd->vdev_child[c];
1521 
1522 			if (tvd->vdev_ops == &vdev_missing_ops &&
1523 			    mtvd->vdev_ops != &vdev_missing_ops &&
1524 			    mtvd->vdev_islog)
1525 				child[idx++] = vdev_config_generate(spa, mtvd,
1526 				    B_FALSE, 0);
1527 		}
1528 
1529 		if (idx) {
1530 			VERIFY(nvlist_add_nvlist_array(nv,
1531 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1532 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1533 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1534 
1535 			for (int i = 0; i < idx; i++)
1536 				nvlist_free(child[i]);
1537 		}
1538 		nvlist_free(nv);
1539 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1540 	}
1541 
1542 	/*
1543 	 * Compare the root vdev tree with the information we have
1544 	 * from the MOS config (mrvd). Check each top-level vdev
1545 	 * with the corresponding MOS config top-level (mtvd).
1546 	 */
1547 	for (int c = 0; c < rvd->vdev_children; c++) {
1548 		vdev_t *tvd = rvd->vdev_child[c];
1549 		vdev_t *mtvd  = mrvd->vdev_child[c];
1550 
1551 		/*
1552 		 * Resolve any "missing" vdevs in the current configuration.
1553 		 * If we find that the MOS config has more accurate information
1554 		 * about the top-level vdev then use that vdev instead.
1555 		 */
1556 		if (tvd->vdev_ops == &vdev_missing_ops &&
1557 		    mtvd->vdev_ops != &vdev_missing_ops) {
1558 
1559 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1560 				continue;
1561 
1562 			/*
1563 			 * Device specific actions.
1564 			 */
1565 			if (mtvd->vdev_islog) {
1566 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1567 			} else {
1568 				/*
1569 				 * XXX - once we have 'readonly' pool
1570 				 * support we should be able to handle
1571 				 * missing data devices by transitioning
1572 				 * the pool to readonly.
1573 				 */
1574 				continue;
1575 			}
1576 
1577 			/*
1578 			 * Swap the missing vdev with the data we were
1579 			 * able to obtain from the MOS config.
1580 			 */
1581 			vdev_remove_child(rvd, tvd);
1582 			vdev_remove_child(mrvd, mtvd);
1583 
1584 			vdev_add_child(rvd, mtvd);
1585 			vdev_add_child(mrvd, tvd);
1586 
1587 			spa_config_exit(spa, SCL_ALL, FTAG);
1588 			vdev_load(mtvd);
1589 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1590 
1591 			vdev_reopen(rvd);
1592 		} else if (mtvd->vdev_islog) {
1593 			/*
1594 			 * Load the slog device's state from the MOS config
1595 			 * since it's possible that the label does not
1596 			 * contain the most up-to-date information.
1597 			 */
1598 			vdev_load_log_state(tvd, mtvd);
1599 			vdev_reopen(tvd);
1600 		}
1601 	}
1602 	vdev_free(mrvd);
1603 	spa_config_exit(spa, SCL_ALL, FTAG);
1604 
1605 	/*
1606 	 * Ensure we were able to validate the config.
1607 	 */
1608 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1609 }
1610 
1611 /*
1612  * Check for missing log devices
1613  */
1614 static int
1615 spa_check_logs(spa_t *spa)
1616 {
1617 	switch (spa->spa_log_state) {
1618 	case SPA_LOG_MISSING:
1619 		/* need to recheck in case slog has been restored */
1620 	case SPA_LOG_UNKNOWN:
1621 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1622 		    DS_FIND_CHILDREN)) {
1623 			spa_set_log_state(spa, SPA_LOG_MISSING);
1624 			return (1);
1625 		}
1626 		break;
1627 	}
1628 	return (0);
1629 }
1630 
1631 static boolean_t
1632 spa_passivate_log(spa_t *spa)
1633 {
1634 	vdev_t *rvd = spa->spa_root_vdev;
1635 	boolean_t slog_found = B_FALSE;
1636 
1637 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1638 
1639 	if (!spa_has_slogs(spa))
1640 		return (B_FALSE);
1641 
1642 	for (int c = 0; c < rvd->vdev_children; c++) {
1643 		vdev_t *tvd = rvd->vdev_child[c];
1644 		metaslab_group_t *mg = tvd->vdev_mg;
1645 
1646 		if (tvd->vdev_islog) {
1647 			metaslab_group_passivate(mg);
1648 			slog_found = B_TRUE;
1649 		}
1650 	}
1651 
1652 	return (slog_found);
1653 }
1654 
1655 static void
1656 spa_activate_log(spa_t *spa)
1657 {
1658 	vdev_t *rvd = spa->spa_root_vdev;
1659 
1660 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1661 
1662 	for (int c = 0; c < rvd->vdev_children; c++) {
1663 		vdev_t *tvd = rvd->vdev_child[c];
1664 		metaslab_group_t *mg = tvd->vdev_mg;
1665 
1666 		if (tvd->vdev_islog)
1667 			metaslab_group_activate(mg);
1668 	}
1669 }
1670 
1671 int
1672 spa_offline_log(spa_t *spa)
1673 {
1674 	int error = 0;
1675 
1676 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1677 	    NULL, DS_FIND_CHILDREN)) == 0) {
1678 
1679 		/*
1680 		 * We successfully offlined the log device, sync out the
1681 		 * current txg so that the "stubby" block can be removed
1682 		 * by zil_sync().
1683 		 */
1684 		txg_wait_synced(spa->spa_dsl_pool, 0);
1685 	}
1686 	return (error);
1687 }
1688 
1689 static void
1690 spa_aux_check_removed(spa_aux_vdev_t *sav)
1691 {
1692 	for (int i = 0; i < sav->sav_count; i++)
1693 		spa_check_removed(sav->sav_vdevs[i]);
1694 }
1695 
1696 void
1697 spa_claim_notify(zio_t *zio)
1698 {
1699 	spa_t *spa = zio->io_spa;
1700 
1701 	if (zio->io_error)
1702 		return;
1703 
1704 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1705 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1706 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1707 	mutex_exit(&spa->spa_props_lock);
1708 }
1709 
1710 typedef struct spa_load_error {
1711 	uint64_t	sle_meta_count;
1712 	uint64_t	sle_data_count;
1713 } spa_load_error_t;
1714 
1715 static void
1716 spa_load_verify_done(zio_t *zio)
1717 {
1718 	blkptr_t *bp = zio->io_bp;
1719 	spa_load_error_t *sle = zio->io_private;
1720 	dmu_object_type_t type = BP_GET_TYPE(bp);
1721 	int error = zio->io_error;
1722 
1723 	if (error) {
1724 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1725 		    type != DMU_OT_INTENT_LOG)
1726 			atomic_add_64(&sle->sle_meta_count, 1);
1727 		else
1728 			atomic_add_64(&sle->sle_data_count, 1);
1729 	}
1730 	zio_data_buf_free(zio->io_data, zio->io_size);
1731 }
1732 
1733 /*ARGSUSED*/
1734 static int
1735 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1736     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1737 {
1738 	if (bp != NULL) {
1739 		zio_t *rio = arg;
1740 		size_t size = BP_GET_PSIZE(bp);
1741 		void *data = zio_data_buf_alloc(size);
1742 
1743 		zio_nowait(zio_read(rio, spa, bp, data, size,
1744 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1745 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1746 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1747 	}
1748 	return (0);
1749 }
1750 
1751 static int
1752 spa_load_verify(spa_t *spa)
1753 {
1754 	zio_t *rio;
1755 	spa_load_error_t sle = { 0 };
1756 	zpool_rewind_policy_t policy;
1757 	boolean_t verify_ok = B_FALSE;
1758 	int error;
1759 
1760 	zpool_get_rewind_policy(spa->spa_config, &policy);
1761 
1762 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1763 		return (0);
1764 
1765 	rio = zio_root(spa, NULL, &sle,
1766 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1767 
1768 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1769 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1770 
1771 	(void) zio_wait(rio);
1772 
1773 	spa->spa_load_meta_errors = sle.sle_meta_count;
1774 	spa->spa_load_data_errors = sle.sle_data_count;
1775 
1776 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1777 	    sle.sle_data_count <= policy.zrp_maxdata) {
1778 		int64_t loss = 0;
1779 
1780 		verify_ok = B_TRUE;
1781 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1782 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1783 
1784 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1785 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1786 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1787 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1788 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1789 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1790 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1791 	} else {
1792 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1793 	}
1794 
1795 	if (error) {
1796 		if (error != ENXIO && error != EIO)
1797 			error = EIO;
1798 		return (error);
1799 	}
1800 
1801 	return (verify_ok ? 0 : EIO);
1802 }
1803 
1804 /*
1805  * Find a value in the pool props object.
1806  */
1807 static void
1808 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1809 {
1810 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1811 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1812 }
1813 
1814 /*
1815  * Find a value in the pool directory object.
1816  */
1817 static int
1818 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1819 {
1820 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1821 	    name, sizeof (uint64_t), 1, val));
1822 }
1823 
1824 static int
1825 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1826 {
1827 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1828 	return (err);
1829 }
1830 
1831 /*
1832  * Fix up config after a partly-completed split.  This is done with the
1833  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1834  * pool have that entry in their config, but only the splitting one contains
1835  * a list of all the guids of the vdevs that are being split off.
1836  *
1837  * This function determines what to do with that list: either rejoin
1838  * all the disks to the pool, or complete the splitting process.  To attempt
1839  * the rejoin, each disk that is offlined is marked online again, and
1840  * we do a reopen() call.  If the vdev label for every disk that was
1841  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1842  * then we call vdev_split() on each disk, and complete the split.
1843  *
1844  * Otherwise we leave the config alone, with all the vdevs in place in
1845  * the original pool.
1846  */
1847 static void
1848 spa_try_repair(spa_t *spa, nvlist_t *config)
1849 {
1850 	uint_t extracted;
1851 	uint64_t *glist;
1852 	uint_t i, gcount;
1853 	nvlist_t *nvl;
1854 	vdev_t **vd;
1855 	boolean_t attempt_reopen;
1856 
1857 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1858 		return;
1859 
1860 	/* check that the config is complete */
1861 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1862 	    &glist, &gcount) != 0)
1863 		return;
1864 
1865 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1866 
1867 	/* attempt to online all the vdevs & validate */
1868 	attempt_reopen = B_TRUE;
1869 	for (i = 0; i < gcount; i++) {
1870 		if (glist[i] == 0)	/* vdev is hole */
1871 			continue;
1872 
1873 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1874 		if (vd[i] == NULL) {
1875 			/*
1876 			 * Don't bother attempting to reopen the disks;
1877 			 * just do the split.
1878 			 */
1879 			attempt_reopen = B_FALSE;
1880 		} else {
1881 			/* attempt to re-online it */
1882 			vd[i]->vdev_offline = B_FALSE;
1883 		}
1884 	}
1885 
1886 	if (attempt_reopen) {
1887 		vdev_reopen(spa->spa_root_vdev);
1888 
1889 		/* check each device to see what state it's in */
1890 		for (extracted = 0, i = 0; i < gcount; i++) {
1891 			if (vd[i] != NULL &&
1892 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1893 				break;
1894 			++extracted;
1895 		}
1896 	}
1897 
1898 	/*
1899 	 * If every disk has been moved to the new pool, or if we never
1900 	 * even attempted to look at them, then we split them off for
1901 	 * good.
1902 	 */
1903 	if (!attempt_reopen || gcount == extracted) {
1904 		for (i = 0; i < gcount; i++)
1905 			if (vd[i] != NULL)
1906 				vdev_split(vd[i]);
1907 		vdev_reopen(spa->spa_root_vdev);
1908 	}
1909 
1910 	kmem_free(vd, gcount * sizeof (vdev_t *));
1911 }
1912 
1913 static int
1914 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1915     boolean_t mosconfig)
1916 {
1917 	nvlist_t *config = spa->spa_config;
1918 	char *ereport = FM_EREPORT_ZFS_POOL;
1919 	char *comment;
1920 	int error;
1921 	uint64_t pool_guid;
1922 	nvlist_t *nvl;
1923 
1924 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1925 		return (EINVAL);
1926 
1927 	ASSERT(spa->spa_comment == NULL);
1928 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1929 		spa->spa_comment = spa_strdup(comment);
1930 
1931 	/*
1932 	 * Versioning wasn't explicitly added to the label until later, so if
1933 	 * it's not present treat it as the initial version.
1934 	 */
1935 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1936 	    &spa->spa_ubsync.ub_version) != 0)
1937 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1938 
1939 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1940 	    &spa->spa_config_txg);
1941 
1942 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1943 	    spa_guid_exists(pool_guid, 0)) {
1944 		error = EEXIST;
1945 	} else {
1946 		spa->spa_config_guid = pool_guid;
1947 
1948 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1949 		    &nvl) == 0) {
1950 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1951 			    KM_SLEEP) == 0);
1952 		}
1953 
1954 		nvlist_free(spa->spa_load_info);
1955 		spa->spa_load_info = fnvlist_alloc();
1956 
1957 		gethrestime(&spa->spa_loaded_ts);
1958 		error = spa_load_impl(spa, pool_guid, config, state, type,
1959 		    mosconfig, &ereport);
1960 	}
1961 
1962 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1963 	if (error) {
1964 		if (error != EEXIST) {
1965 			spa->spa_loaded_ts.tv_sec = 0;
1966 			spa->spa_loaded_ts.tv_nsec = 0;
1967 		}
1968 		if (error != EBADF) {
1969 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1970 		}
1971 	}
1972 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1973 	spa->spa_ena = 0;
1974 
1975 	return (error);
1976 }
1977 
1978 /*
1979  * Load an existing storage pool, using the pool's builtin spa_config as a
1980  * source of configuration information.
1981  */
1982 static int
1983 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1984     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1985     char **ereport)
1986 {
1987 	int error = 0;
1988 	nvlist_t *nvroot = NULL;
1989 	nvlist_t *label;
1990 	vdev_t *rvd;
1991 	uberblock_t *ub = &spa->spa_uberblock;
1992 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1993 	int orig_mode = spa->spa_mode;
1994 	int parse;
1995 	uint64_t obj;
1996 	boolean_t missing_feat_write = B_FALSE;
1997 
1998 	/*
1999 	 * If this is an untrusted config, access the pool in read-only mode.
2000 	 * This prevents things like resilvering recently removed devices.
2001 	 */
2002 	if (!mosconfig)
2003 		spa->spa_mode = FREAD;
2004 
2005 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2006 
2007 	spa->spa_load_state = state;
2008 
2009 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2010 		return (EINVAL);
2011 
2012 	parse = (type == SPA_IMPORT_EXISTING ?
2013 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2014 
2015 	/*
2016 	 * Create "The Godfather" zio to hold all async IOs
2017 	 */
2018 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2019 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2020 
2021 	/*
2022 	 * Parse the configuration into a vdev tree.  We explicitly set the
2023 	 * value that will be returned by spa_version() since parsing the
2024 	 * configuration requires knowing the version number.
2025 	 */
2026 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2027 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2028 	spa_config_exit(spa, SCL_ALL, FTAG);
2029 
2030 	if (error != 0)
2031 		return (error);
2032 
2033 	ASSERT(spa->spa_root_vdev == rvd);
2034 
2035 	if (type != SPA_IMPORT_ASSEMBLE) {
2036 		ASSERT(spa_guid(spa) == pool_guid);
2037 	}
2038 
2039 	/*
2040 	 * Try to open all vdevs, loading each label in the process.
2041 	 */
2042 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2043 	error = vdev_open(rvd);
2044 	spa_config_exit(spa, SCL_ALL, FTAG);
2045 	if (error != 0)
2046 		return (error);
2047 
2048 	/*
2049 	 * We need to validate the vdev labels against the configuration that
2050 	 * we have in hand, which is dependent on the setting of mosconfig. If
2051 	 * mosconfig is true then we're validating the vdev labels based on
2052 	 * that config.  Otherwise, we're validating against the cached config
2053 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2054 	 * later we will recursively call spa_load() and validate against
2055 	 * the vdev config.
2056 	 *
2057 	 * If we're assembling a new pool that's been split off from an
2058 	 * existing pool, the labels haven't yet been updated so we skip
2059 	 * validation for now.
2060 	 */
2061 	if (type != SPA_IMPORT_ASSEMBLE) {
2062 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2063 		error = vdev_validate(rvd, mosconfig);
2064 		spa_config_exit(spa, SCL_ALL, FTAG);
2065 
2066 		if (error != 0)
2067 			return (error);
2068 
2069 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2070 			return (ENXIO);
2071 	}
2072 
2073 	/*
2074 	 * Find the best uberblock.
2075 	 */
2076 	vdev_uberblock_load(rvd, ub, &label);
2077 
2078 	/*
2079 	 * If we weren't able to find a single valid uberblock, return failure.
2080 	 */
2081 	if (ub->ub_txg == 0) {
2082 		nvlist_free(label);
2083 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2084 	}
2085 
2086 	/*
2087 	 * If the pool has an unsupported version we can't open it.
2088 	 */
2089 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2090 		nvlist_free(label);
2091 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2092 	}
2093 
2094 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2095 		nvlist_t *features;
2096 
2097 		/*
2098 		 * If we weren't able to find what's necessary for reading the
2099 		 * MOS in the label, return failure.
2100 		 */
2101 		if (label == NULL || nvlist_lookup_nvlist(label,
2102 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2103 			nvlist_free(label);
2104 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2105 			    ENXIO));
2106 		}
2107 
2108 		/*
2109 		 * Update our in-core representation with the definitive values
2110 		 * from the label.
2111 		 */
2112 		nvlist_free(spa->spa_label_features);
2113 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2114 	}
2115 
2116 	nvlist_free(label);
2117 
2118 	/*
2119 	 * Look through entries in the label nvlist's features_for_read. If
2120 	 * there is a feature listed there which we don't understand then we
2121 	 * cannot open a pool.
2122 	 */
2123 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2124 		nvlist_t *unsup_feat;
2125 
2126 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2127 		    0);
2128 
2129 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2130 		    NULL); nvp != NULL;
2131 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2132 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2133 				VERIFY(nvlist_add_string(unsup_feat,
2134 				    nvpair_name(nvp), "") == 0);
2135 			}
2136 		}
2137 
2138 		if (!nvlist_empty(unsup_feat)) {
2139 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2140 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2141 			nvlist_free(unsup_feat);
2142 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2143 			    ENOTSUP));
2144 		}
2145 
2146 		nvlist_free(unsup_feat);
2147 	}
2148 
2149 	/*
2150 	 * If the vdev guid sum doesn't match the uberblock, we have an
2151 	 * incomplete configuration.  We first check to see if the pool
2152 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2153 	 * If it is, defer the vdev_guid_sum check till later so we
2154 	 * can handle missing vdevs.
2155 	 */
2156 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2157 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2158 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2159 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2160 
2161 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2162 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2163 		spa_try_repair(spa, config);
2164 		spa_config_exit(spa, SCL_ALL, FTAG);
2165 		nvlist_free(spa->spa_config_splitting);
2166 		spa->spa_config_splitting = NULL;
2167 	}
2168 
2169 	/*
2170 	 * Initialize internal SPA structures.
2171 	 */
2172 	spa->spa_state = POOL_STATE_ACTIVE;
2173 	spa->spa_ubsync = spa->spa_uberblock;
2174 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2175 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2176 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2177 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2178 	spa->spa_claim_max_txg = spa->spa_first_txg;
2179 	spa->spa_prev_software_version = ub->ub_software_version;
2180 
2181 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2182 	if (error)
2183 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2184 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2185 
2186 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2187 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2188 
2189 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2190 		boolean_t missing_feat_read = B_FALSE;
2191 		nvlist_t *unsup_feat, *enabled_feat;
2192 
2193 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2194 		    &spa->spa_feat_for_read_obj) != 0) {
2195 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2196 		}
2197 
2198 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2199 		    &spa->spa_feat_for_write_obj) != 0) {
2200 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2201 		}
2202 
2203 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2204 		    &spa->spa_feat_desc_obj) != 0) {
2205 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2206 		}
2207 
2208 		enabled_feat = fnvlist_alloc();
2209 		unsup_feat = fnvlist_alloc();
2210 
2211 		if (!feature_is_supported(spa->spa_meta_objset,
2212 		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2213 		    unsup_feat, enabled_feat))
2214 			missing_feat_read = B_TRUE;
2215 
2216 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2217 			if (!feature_is_supported(spa->spa_meta_objset,
2218 			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2219 			    unsup_feat, enabled_feat)) {
2220 				missing_feat_write = B_TRUE;
2221 			}
2222 		}
2223 
2224 		fnvlist_add_nvlist(spa->spa_load_info,
2225 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2226 
2227 		if (!nvlist_empty(unsup_feat)) {
2228 			fnvlist_add_nvlist(spa->spa_load_info,
2229 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2230 		}
2231 
2232 		fnvlist_free(enabled_feat);
2233 		fnvlist_free(unsup_feat);
2234 
2235 		if (!missing_feat_read) {
2236 			fnvlist_add_boolean(spa->spa_load_info,
2237 			    ZPOOL_CONFIG_CAN_RDONLY);
2238 		}
2239 
2240 		/*
2241 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2242 		 * twofold: to determine whether the pool is available for
2243 		 * import in read-write mode and (if it is not) whether the
2244 		 * pool is available for import in read-only mode. If the pool
2245 		 * is available for import in read-write mode, it is displayed
2246 		 * as available in userland; if it is not available for import
2247 		 * in read-only mode, it is displayed as unavailable in
2248 		 * userland. If the pool is available for import in read-only
2249 		 * mode but not read-write mode, it is displayed as unavailable
2250 		 * in userland with a special note that the pool is actually
2251 		 * available for open in read-only mode.
2252 		 *
2253 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2254 		 * missing a feature for write, we must first determine whether
2255 		 * the pool can be opened read-only before returning to
2256 		 * userland in order to know whether to display the
2257 		 * abovementioned note.
2258 		 */
2259 		if (missing_feat_read || (missing_feat_write &&
2260 		    spa_writeable(spa))) {
2261 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2262 			    ENOTSUP));
2263 		}
2264 	}
2265 
2266 	spa->spa_is_initializing = B_TRUE;
2267 	error = dsl_pool_open(spa->spa_dsl_pool);
2268 	spa->spa_is_initializing = B_FALSE;
2269 	if (error != 0)
2270 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2271 
2272 	if (!mosconfig) {
2273 		uint64_t hostid;
2274 		nvlist_t *policy = NULL, *nvconfig;
2275 
2276 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2277 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2278 
2279 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2280 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2281 			char *hostname;
2282 			unsigned long myhostid = 0;
2283 
2284 			VERIFY(nvlist_lookup_string(nvconfig,
2285 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2286 
2287 #ifdef	_KERNEL
2288 			myhostid = zone_get_hostid(NULL);
2289 #else	/* _KERNEL */
2290 			/*
2291 			 * We're emulating the system's hostid in userland, so
2292 			 * we can't use zone_get_hostid().
2293 			 */
2294 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2295 #endif	/* _KERNEL */
2296 			if (hostid != 0 && myhostid != 0 &&
2297 			    hostid != myhostid) {
2298 				nvlist_free(nvconfig);
2299 				cmn_err(CE_WARN, "pool '%s' could not be "
2300 				    "loaded as it was last accessed by "
2301 				    "another system (host: %s hostid: 0x%lx). "
2302 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2303 				    spa_name(spa), hostname,
2304 				    (unsigned long)hostid);
2305 				return (EBADF);
2306 			}
2307 		}
2308 		if (nvlist_lookup_nvlist(spa->spa_config,
2309 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2310 			VERIFY(nvlist_add_nvlist(nvconfig,
2311 			    ZPOOL_REWIND_POLICY, policy) == 0);
2312 
2313 		spa_config_set(spa, nvconfig);
2314 		spa_unload(spa);
2315 		spa_deactivate(spa);
2316 		spa_activate(spa, orig_mode);
2317 
2318 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2319 	}
2320 
2321 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2322 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2323 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2324 	if (error != 0)
2325 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326 
2327 	/*
2328 	 * Load the bit that tells us to use the new accounting function
2329 	 * (raid-z deflation).  If we have an older pool, this will not
2330 	 * be present.
2331 	 */
2332 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2333 	if (error != 0 && error != ENOENT)
2334 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2335 
2336 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2337 	    &spa->spa_creation_version);
2338 	if (error != 0 && error != ENOENT)
2339 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2340 
2341 	/*
2342 	 * Load the persistent error log.  If we have an older pool, this will
2343 	 * not be present.
2344 	 */
2345 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2346 	if (error != 0 && error != ENOENT)
2347 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348 
2349 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2350 	    &spa->spa_errlog_scrub);
2351 	if (error != 0 && error != ENOENT)
2352 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2353 
2354 	/*
2355 	 * Load the history object.  If we have an older pool, this
2356 	 * will not be present.
2357 	 */
2358 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2359 	if (error != 0 && error != ENOENT)
2360 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2361 
2362 	/*
2363 	 * If we're assembling the pool from the split-off vdevs of
2364 	 * an existing pool, we don't want to attach the spares & cache
2365 	 * devices.
2366 	 */
2367 
2368 	/*
2369 	 * Load any hot spares for this pool.
2370 	 */
2371 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2372 	if (error != 0 && error != ENOENT)
2373 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2374 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2375 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2376 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2377 		    &spa->spa_spares.sav_config) != 0)
2378 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2379 
2380 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2381 		spa_load_spares(spa);
2382 		spa_config_exit(spa, SCL_ALL, FTAG);
2383 	} else if (error == 0) {
2384 		spa->spa_spares.sav_sync = B_TRUE;
2385 	}
2386 
2387 	/*
2388 	 * Load any level 2 ARC devices for this pool.
2389 	 */
2390 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2391 	    &spa->spa_l2cache.sav_object);
2392 	if (error != 0 && error != ENOENT)
2393 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2394 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2395 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2396 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2397 		    &spa->spa_l2cache.sav_config) != 0)
2398 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2399 
2400 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2401 		spa_load_l2cache(spa);
2402 		spa_config_exit(spa, SCL_ALL, FTAG);
2403 	} else if (error == 0) {
2404 		spa->spa_l2cache.sav_sync = B_TRUE;
2405 	}
2406 
2407 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2408 
2409 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2410 	if (error && error != ENOENT)
2411 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2412 
2413 	if (error == 0) {
2414 		uint64_t autoreplace;
2415 
2416 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2417 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2418 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2419 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2420 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2421 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2422 		    &spa->spa_dedup_ditto);
2423 
2424 		spa->spa_autoreplace = (autoreplace != 0);
2425 	}
2426 
2427 	/*
2428 	 * If the 'autoreplace' property is set, then post a resource notifying
2429 	 * the ZFS DE that it should not issue any faults for unopenable
2430 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2431 	 * unopenable vdevs so that the normal autoreplace handler can take
2432 	 * over.
2433 	 */
2434 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2435 		spa_check_removed(spa->spa_root_vdev);
2436 		/*
2437 		 * For the import case, this is done in spa_import(), because
2438 		 * at this point we're using the spare definitions from
2439 		 * the MOS config, not necessarily from the userland config.
2440 		 */
2441 		if (state != SPA_LOAD_IMPORT) {
2442 			spa_aux_check_removed(&spa->spa_spares);
2443 			spa_aux_check_removed(&spa->spa_l2cache);
2444 		}
2445 	}
2446 
2447 	/*
2448 	 * Load the vdev state for all toplevel vdevs.
2449 	 */
2450 	vdev_load(rvd);
2451 
2452 	/*
2453 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2454 	 */
2455 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2456 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2457 	spa_config_exit(spa, SCL_ALL, FTAG);
2458 
2459 	/*
2460 	 * Load the DDTs (dedup tables).
2461 	 */
2462 	error = ddt_load(spa);
2463 	if (error != 0)
2464 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 
2466 	spa_update_dspace(spa);
2467 
2468 	/*
2469 	 * Validate the config, using the MOS config to fill in any
2470 	 * information which might be missing.  If we fail to validate
2471 	 * the config then declare the pool unfit for use. If we're
2472 	 * assembling a pool from a split, the log is not transferred
2473 	 * over.
2474 	 */
2475 	if (type != SPA_IMPORT_ASSEMBLE) {
2476 		nvlist_t *nvconfig;
2477 
2478 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2479 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2480 
2481 		if (!spa_config_valid(spa, nvconfig)) {
2482 			nvlist_free(nvconfig);
2483 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2484 			    ENXIO));
2485 		}
2486 		nvlist_free(nvconfig);
2487 
2488 		/*
2489 		 * Now that we've validated the config, check the state of the
2490 		 * root vdev.  If it can't be opened, it indicates one or
2491 		 * more toplevel vdevs are faulted.
2492 		 */
2493 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2494 			return (ENXIO);
2495 
2496 		if (spa_check_logs(spa)) {
2497 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2498 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2499 		}
2500 	}
2501 
2502 	if (missing_feat_write) {
2503 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2504 
2505 		/*
2506 		 * At this point, we know that we can open the pool in
2507 		 * read-only mode but not read-write mode. We now have enough
2508 		 * information and can return to userland.
2509 		 */
2510 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2511 	}
2512 
2513 	/*
2514 	 * We've successfully opened the pool, verify that we're ready
2515 	 * to start pushing transactions.
2516 	 */
2517 	if (state != SPA_LOAD_TRYIMPORT) {
2518 		if (error = spa_load_verify(spa))
2519 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2520 			    error));
2521 	}
2522 
2523 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2524 	    spa->spa_load_max_txg == UINT64_MAX)) {
2525 		dmu_tx_t *tx;
2526 		int need_update = B_FALSE;
2527 
2528 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2529 
2530 		/*
2531 		 * Claim log blocks that haven't been committed yet.
2532 		 * This must all happen in a single txg.
2533 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2534 		 * invoked from zil_claim_log_block()'s i/o done callback.
2535 		 * Price of rollback is that we abandon the log.
2536 		 */
2537 		spa->spa_claiming = B_TRUE;
2538 
2539 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2540 		    spa_first_txg(spa));
2541 		(void) dmu_objset_find(spa_name(spa),
2542 		    zil_claim, tx, DS_FIND_CHILDREN);
2543 		dmu_tx_commit(tx);
2544 
2545 		spa->spa_claiming = B_FALSE;
2546 
2547 		spa_set_log_state(spa, SPA_LOG_GOOD);
2548 		spa->spa_sync_on = B_TRUE;
2549 		txg_sync_start(spa->spa_dsl_pool);
2550 
2551 		/*
2552 		 * Wait for all claims to sync.  We sync up to the highest
2553 		 * claimed log block birth time so that claimed log blocks
2554 		 * don't appear to be from the future.  spa_claim_max_txg
2555 		 * will have been set for us by either zil_check_log_chain()
2556 		 * (invoked from spa_check_logs()) or zil_claim() above.
2557 		 */
2558 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2559 
2560 		/*
2561 		 * If the config cache is stale, or we have uninitialized
2562 		 * metaslabs (see spa_vdev_add()), then update the config.
2563 		 *
2564 		 * If this is a verbatim import, trust the current
2565 		 * in-core spa_config and update the disk labels.
2566 		 */
2567 		if (config_cache_txg != spa->spa_config_txg ||
2568 		    state == SPA_LOAD_IMPORT ||
2569 		    state == SPA_LOAD_RECOVER ||
2570 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2571 			need_update = B_TRUE;
2572 
2573 		for (int c = 0; c < rvd->vdev_children; c++)
2574 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2575 				need_update = B_TRUE;
2576 
2577 		/*
2578 		 * Update the config cache asychronously in case we're the
2579 		 * root pool, in which case the config cache isn't writable yet.
2580 		 */
2581 		if (need_update)
2582 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2583 
2584 		/*
2585 		 * Check all DTLs to see if anything needs resilvering.
2586 		 */
2587 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2588 		    vdev_resilver_needed(rvd, NULL, NULL))
2589 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2590 
2591 		/*
2592 		 * Log the fact that we booted up (so that we can detect if
2593 		 * we rebooted in the middle of an operation).
2594 		 */
2595 		spa_history_log_version(spa, "open");
2596 
2597 		/*
2598 		 * Delete any inconsistent datasets.
2599 		 */
2600 		(void) dmu_objset_find(spa_name(spa),
2601 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2602 
2603 		/*
2604 		 * Clean up any stale temporary dataset userrefs.
2605 		 */
2606 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2607 	}
2608 
2609 	return (0);
2610 }
2611 
2612 static int
2613 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2614 {
2615 	int mode = spa->spa_mode;
2616 
2617 	spa_unload(spa);
2618 	spa_deactivate(spa);
2619 
2620 	spa->spa_load_max_txg--;
2621 
2622 	spa_activate(spa, mode);
2623 	spa_async_suspend(spa);
2624 
2625 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2626 }
2627 
2628 /*
2629  * If spa_load() fails this function will try loading prior txg's. If
2630  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2631  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2632  * function will not rewind the pool and will return the same error as
2633  * spa_load().
2634  */
2635 static int
2636 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2637     uint64_t max_request, int rewind_flags)
2638 {
2639 	nvlist_t *loadinfo = NULL;
2640 	nvlist_t *config = NULL;
2641 	int load_error, rewind_error;
2642 	uint64_t safe_rewind_txg;
2643 	uint64_t min_txg;
2644 
2645 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2646 		spa->spa_load_max_txg = spa->spa_load_txg;
2647 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2648 	} else {
2649 		spa->spa_load_max_txg = max_request;
2650 	}
2651 
2652 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2653 	    mosconfig);
2654 	if (load_error == 0)
2655 		return (0);
2656 
2657 	if (spa->spa_root_vdev != NULL)
2658 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2659 
2660 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2661 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2662 
2663 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2664 		nvlist_free(config);
2665 		return (load_error);
2666 	}
2667 
2668 	if (state == SPA_LOAD_RECOVER) {
2669 		/* Price of rolling back is discarding txgs, including log */
2670 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2671 	} else {
2672 		/*
2673 		 * If we aren't rolling back save the load info from our first
2674 		 * import attempt so that we can restore it after attempting
2675 		 * to rewind.
2676 		 */
2677 		loadinfo = spa->spa_load_info;
2678 		spa->spa_load_info = fnvlist_alloc();
2679 	}
2680 
2681 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2682 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2683 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2684 	    TXG_INITIAL : safe_rewind_txg;
2685 
2686 	/*
2687 	 * Continue as long as we're finding errors, we're still within
2688 	 * the acceptable rewind range, and we're still finding uberblocks
2689 	 */
2690 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2691 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2692 		if (spa->spa_load_max_txg < safe_rewind_txg)
2693 			spa->spa_extreme_rewind = B_TRUE;
2694 		rewind_error = spa_load_retry(spa, state, mosconfig);
2695 	}
2696 
2697 	spa->spa_extreme_rewind = B_FALSE;
2698 	spa->spa_load_max_txg = UINT64_MAX;
2699 
2700 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2701 		spa_config_set(spa, config);
2702 
2703 	if (state == SPA_LOAD_RECOVER) {
2704 		ASSERT3P(loadinfo, ==, NULL);
2705 		return (rewind_error);
2706 	} else {
2707 		/* Store the rewind info as part of the initial load info */
2708 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2709 		    spa->spa_load_info);
2710 
2711 		/* Restore the initial load info */
2712 		fnvlist_free(spa->spa_load_info);
2713 		spa->spa_load_info = loadinfo;
2714 
2715 		return (load_error);
2716 	}
2717 }
2718 
2719 /*
2720  * Pool Open/Import
2721  *
2722  * The import case is identical to an open except that the configuration is sent
2723  * down from userland, instead of grabbed from the configuration cache.  For the
2724  * case of an open, the pool configuration will exist in the
2725  * POOL_STATE_UNINITIALIZED state.
2726  *
2727  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2728  * the same time open the pool, without having to keep around the spa_t in some
2729  * ambiguous state.
2730  */
2731 static int
2732 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2733     nvlist_t **config)
2734 {
2735 	spa_t *spa;
2736 	spa_load_state_t state = SPA_LOAD_OPEN;
2737 	int error;
2738 	int locked = B_FALSE;
2739 
2740 	*spapp = NULL;
2741 
2742 	/*
2743 	 * As disgusting as this is, we need to support recursive calls to this
2744 	 * function because dsl_dir_open() is called during spa_load(), and ends
2745 	 * up calling spa_open() again.  The real fix is to figure out how to
2746 	 * avoid dsl_dir_open() calling this in the first place.
2747 	 */
2748 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2749 		mutex_enter(&spa_namespace_lock);
2750 		locked = B_TRUE;
2751 	}
2752 
2753 	if ((spa = spa_lookup(pool)) == NULL) {
2754 		if (locked)
2755 			mutex_exit(&spa_namespace_lock);
2756 		return (ENOENT);
2757 	}
2758 
2759 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2760 		zpool_rewind_policy_t policy;
2761 
2762 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2763 		    &policy);
2764 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2765 			state = SPA_LOAD_RECOVER;
2766 
2767 		spa_activate(spa, spa_mode_global);
2768 
2769 		if (state != SPA_LOAD_RECOVER)
2770 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2771 
2772 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2773 		    policy.zrp_request);
2774 
2775 		if (error == EBADF) {
2776 			/*
2777 			 * If vdev_validate() returns failure (indicated by
2778 			 * EBADF), it indicates that one of the vdevs indicates
2779 			 * that the pool has been exported or destroyed.  If
2780 			 * this is the case, the config cache is out of sync and
2781 			 * we should remove the pool from the namespace.
2782 			 */
2783 			spa_unload(spa);
2784 			spa_deactivate(spa);
2785 			spa_config_sync(spa, B_TRUE, B_TRUE);
2786 			spa_remove(spa);
2787 			if (locked)
2788 				mutex_exit(&spa_namespace_lock);
2789 			return (ENOENT);
2790 		}
2791 
2792 		if (error) {
2793 			/*
2794 			 * We can't open the pool, but we still have useful
2795 			 * information: the state of each vdev after the
2796 			 * attempted vdev_open().  Return this to the user.
2797 			 */
2798 			if (config != NULL && spa->spa_config) {
2799 				VERIFY(nvlist_dup(spa->spa_config, config,
2800 				    KM_SLEEP) == 0);
2801 				VERIFY(nvlist_add_nvlist(*config,
2802 				    ZPOOL_CONFIG_LOAD_INFO,
2803 				    spa->spa_load_info) == 0);
2804 			}
2805 			spa_unload(spa);
2806 			spa_deactivate(spa);
2807 			spa->spa_last_open_failed = error;
2808 			if (locked)
2809 				mutex_exit(&spa_namespace_lock);
2810 			*spapp = NULL;
2811 			return (error);
2812 		}
2813 	}
2814 
2815 	spa_open_ref(spa, tag);
2816 
2817 	if (config != NULL)
2818 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2819 
2820 	/*
2821 	 * If we've recovered the pool, pass back any information we
2822 	 * gathered while doing the load.
2823 	 */
2824 	if (state == SPA_LOAD_RECOVER) {
2825 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2826 		    spa->spa_load_info) == 0);
2827 	}
2828 
2829 	if (locked) {
2830 		spa->spa_last_open_failed = 0;
2831 		spa->spa_last_ubsync_txg = 0;
2832 		spa->spa_load_txg = 0;
2833 		mutex_exit(&spa_namespace_lock);
2834 	}
2835 
2836 	*spapp = spa;
2837 
2838 	return (0);
2839 }
2840 
2841 int
2842 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2843     nvlist_t **config)
2844 {
2845 	return (spa_open_common(name, spapp, tag, policy, config));
2846 }
2847 
2848 int
2849 spa_open(const char *name, spa_t **spapp, void *tag)
2850 {
2851 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2852 }
2853 
2854 /*
2855  * Lookup the given spa_t, incrementing the inject count in the process,
2856  * preventing it from being exported or destroyed.
2857  */
2858 spa_t *
2859 spa_inject_addref(char *name)
2860 {
2861 	spa_t *spa;
2862 
2863 	mutex_enter(&spa_namespace_lock);
2864 	if ((spa = spa_lookup(name)) == NULL) {
2865 		mutex_exit(&spa_namespace_lock);
2866 		return (NULL);
2867 	}
2868 	spa->spa_inject_ref++;
2869 	mutex_exit(&spa_namespace_lock);
2870 
2871 	return (spa);
2872 }
2873 
2874 void
2875 spa_inject_delref(spa_t *spa)
2876 {
2877 	mutex_enter(&spa_namespace_lock);
2878 	spa->spa_inject_ref--;
2879 	mutex_exit(&spa_namespace_lock);
2880 }
2881 
2882 /*
2883  * Add spares device information to the nvlist.
2884  */
2885 static void
2886 spa_add_spares(spa_t *spa, nvlist_t *config)
2887 {
2888 	nvlist_t **spares;
2889 	uint_t i, nspares;
2890 	nvlist_t *nvroot;
2891 	uint64_t guid;
2892 	vdev_stat_t *vs;
2893 	uint_t vsc;
2894 	uint64_t pool;
2895 
2896 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2897 
2898 	if (spa->spa_spares.sav_count == 0)
2899 		return;
2900 
2901 	VERIFY(nvlist_lookup_nvlist(config,
2902 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2903 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2904 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2905 	if (nspares != 0) {
2906 		VERIFY(nvlist_add_nvlist_array(nvroot,
2907 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2908 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2909 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2910 
2911 		/*
2912 		 * Go through and find any spares which have since been
2913 		 * repurposed as an active spare.  If this is the case, update
2914 		 * their status appropriately.
2915 		 */
2916 		for (i = 0; i < nspares; i++) {
2917 			VERIFY(nvlist_lookup_uint64(spares[i],
2918 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2919 			if (spa_spare_exists(guid, &pool, NULL) &&
2920 			    pool != 0ULL) {
2921 				VERIFY(nvlist_lookup_uint64_array(
2922 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2923 				    (uint64_t **)&vs, &vsc) == 0);
2924 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2925 				vs->vs_aux = VDEV_AUX_SPARED;
2926 			}
2927 		}
2928 	}
2929 }
2930 
2931 /*
2932  * Add l2cache device information to the nvlist, including vdev stats.
2933  */
2934 static void
2935 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2936 {
2937 	nvlist_t **l2cache;
2938 	uint_t i, j, nl2cache;
2939 	nvlist_t *nvroot;
2940 	uint64_t guid;
2941 	vdev_t *vd;
2942 	vdev_stat_t *vs;
2943 	uint_t vsc;
2944 
2945 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2946 
2947 	if (spa->spa_l2cache.sav_count == 0)
2948 		return;
2949 
2950 	VERIFY(nvlist_lookup_nvlist(config,
2951 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2952 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2953 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2954 	if (nl2cache != 0) {
2955 		VERIFY(nvlist_add_nvlist_array(nvroot,
2956 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2957 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2958 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2959 
2960 		/*
2961 		 * Update level 2 cache device stats.
2962 		 */
2963 
2964 		for (i = 0; i < nl2cache; i++) {
2965 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2966 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2967 
2968 			vd = NULL;
2969 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2970 				if (guid ==
2971 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2972 					vd = spa->spa_l2cache.sav_vdevs[j];
2973 					break;
2974 				}
2975 			}
2976 			ASSERT(vd != NULL);
2977 
2978 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2979 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2980 			    == 0);
2981 			vdev_get_stats(vd, vs);
2982 		}
2983 	}
2984 }
2985 
2986 static void
2987 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2988 {
2989 	nvlist_t *features;
2990 	zap_cursor_t zc;
2991 	zap_attribute_t za;
2992 
2993 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2994 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2995 
2996 	if (spa->spa_feat_for_read_obj != 0) {
2997 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
2998 		    spa->spa_feat_for_read_obj);
2999 		    zap_cursor_retrieve(&zc, &za) == 0;
3000 		    zap_cursor_advance(&zc)) {
3001 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3002 			    za.za_num_integers == 1);
3003 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3004 			    za.za_first_integer));
3005 		}
3006 		zap_cursor_fini(&zc);
3007 	}
3008 
3009 	if (spa->spa_feat_for_write_obj != 0) {
3010 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3011 		    spa->spa_feat_for_write_obj);
3012 		    zap_cursor_retrieve(&zc, &za) == 0;
3013 		    zap_cursor_advance(&zc)) {
3014 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3015 			    za.za_num_integers == 1);
3016 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3017 			    za.za_first_integer));
3018 		}
3019 		zap_cursor_fini(&zc);
3020 	}
3021 
3022 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3023 	    features) == 0);
3024 	nvlist_free(features);
3025 }
3026 
3027 int
3028 spa_get_stats(const char *name, nvlist_t **config,
3029     char *altroot, size_t buflen)
3030 {
3031 	int error;
3032 	spa_t *spa;
3033 
3034 	*config = NULL;
3035 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3036 
3037 	if (spa != NULL) {
3038 		/*
3039 		 * This still leaves a window of inconsistency where the spares
3040 		 * or l2cache devices could change and the config would be
3041 		 * self-inconsistent.
3042 		 */
3043 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3044 
3045 		if (*config != NULL) {
3046 			uint64_t loadtimes[2];
3047 
3048 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3049 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3050 			VERIFY(nvlist_add_uint64_array(*config,
3051 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3052 
3053 			VERIFY(nvlist_add_uint64(*config,
3054 			    ZPOOL_CONFIG_ERRCOUNT,
3055 			    spa_get_errlog_size(spa)) == 0);
3056 
3057 			if (spa_suspended(spa))
3058 				VERIFY(nvlist_add_uint64(*config,
3059 				    ZPOOL_CONFIG_SUSPENDED,
3060 				    spa->spa_failmode) == 0);
3061 
3062 			spa_add_spares(spa, *config);
3063 			spa_add_l2cache(spa, *config);
3064 			spa_add_feature_stats(spa, *config);
3065 		}
3066 	}
3067 
3068 	/*
3069 	 * We want to get the alternate root even for faulted pools, so we cheat
3070 	 * and call spa_lookup() directly.
3071 	 */
3072 	if (altroot) {
3073 		if (spa == NULL) {
3074 			mutex_enter(&spa_namespace_lock);
3075 			spa = spa_lookup(name);
3076 			if (spa)
3077 				spa_altroot(spa, altroot, buflen);
3078 			else
3079 				altroot[0] = '\0';
3080 			spa = NULL;
3081 			mutex_exit(&spa_namespace_lock);
3082 		} else {
3083 			spa_altroot(spa, altroot, buflen);
3084 		}
3085 	}
3086 
3087 	if (spa != NULL) {
3088 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3089 		spa_close(spa, FTAG);
3090 	}
3091 
3092 	return (error);
3093 }
3094 
3095 /*
3096  * Validate that the auxiliary device array is well formed.  We must have an
3097  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3098  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3099  * specified, as long as they are well-formed.
3100  */
3101 static int
3102 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3103     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3104     vdev_labeltype_t label)
3105 {
3106 	nvlist_t **dev;
3107 	uint_t i, ndev;
3108 	vdev_t *vd;
3109 	int error;
3110 
3111 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3112 
3113 	/*
3114 	 * It's acceptable to have no devs specified.
3115 	 */
3116 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3117 		return (0);
3118 
3119 	if (ndev == 0)
3120 		return (EINVAL);
3121 
3122 	/*
3123 	 * Make sure the pool is formatted with a version that supports this
3124 	 * device type.
3125 	 */
3126 	if (spa_version(spa) < version)
3127 		return (ENOTSUP);
3128 
3129 	/*
3130 	 * Set the pending device list so we correctly handle device in-use
3131 	 * checking.
3132 	 */
3133 	sav->sav_pending = dev;
3134 	sav->sav_npending = ndev;
3135 
3136 	for (i = 0; i < ndev; i++) {
3137 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3138 		    mode)) != 0)
3139 			goto out;
3140 
3141 		if (!vd->vdev_ops->vdev_op_leaf) {
3142 			vdev_free(vd);
3143 			error = EINVAL;
3144 			goto out;
3145 		}
3146 
3147 		/*
3148 		 * The L2ARC currently only supports disk devices in
3149 		 * kernel context.  For user-level testing, we allow it.
3150 		 */
3151 #ifdef _KERNEL
3152 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3153 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3154 			error = ENOTBLK;
3155 			vdev_free(vd);
3156 			goto out;
3157 		}
3158 #endif
3159 		vd->vdev_top = vd;
3160 
3161 		if ((error = vdev_open(vd)) == 0 &&
3162 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3163 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3164 			    vd->vdev_guid) == 0);
3165 		}
3166 
3167 		vdev_free(vd);
3168 
3169 		if (error &&
3170 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3171 			goto out;
3172 		else
3173 			error = 0;
3174 	}
3175 
3176 out:
3177 	sav->sav_pending = NULL;
3178 	sav->sav_npending = 0;
3179 	return (error);
3180 }
3181 
3182 static int
3183 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3184 {
3185 	int error;
3186 
3187 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3188 
3189 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3190 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3191 	    VDEV_LABEL_SPARE)) != 0) {
3192 		return (error);
3193 	}
3194 
3195 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3196 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3197 	    VDEV_LABEL_L2CACHE));
3198 }
3199 
3200 static void
3201 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3202     const char *config)
3203 {
3204 	int i;
3205 
3206 	if (sav->sav_config != NULL) {
3207 		nvlist_t **olddevs;
3208 		uint_t oldndevs;
3209 		nvlist_t **newdevs;
3210 
3211 		/*
3212 		 * Generate new dev list by concatentating with the
3213 		 * current dev list.
3214 		 */
3215 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3216 		    &olddevs, &oldndevs) == 0);
3217 
3218 		newdevs = kmem_alloc(sizeof (void *) *
3219 		    (ndevs + oldndevs), KM_SLEEP);
3220 		for (i = 0; i < oldndevs; i++)
3221 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3222 			    KM_SLEEP) == 0);
3223 		for (i = 0; i < ndevs; i++)
3224 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3225 			    KM_SLEEP) == 0);
3226 
3227 		VERIFY(nvlist_remove(sav->sav_config, config,
3228 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3229 
3230 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3231 		    config, newdevs, ndevs + oldndevs) == 0);
3232 		for (i = 0; i < oldndevs + ndevs; i++)
3233 			nvlist_free(newdevs[i]);
3234 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3235 	} else {
3236 		/*
3237 		 * Generate a new dev list.
3238 		 */
3239 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3240 		    KM_SLEEP) == 0);
3241 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3242 		    devs, ndevs) == 0);
3243 	}
3244 }
3245 
3246 /*
3247  * Stop and drop level 2 ARC devices
3248  */
3249 void
3250 spa_l2cache_drop(spa_t *spa)
3251 {
3252 	vdev_t *vd;
3253 	int i;
3254 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3255 
3256 	for (i = 0; i < sav->sav_count; i++) {
3257 		uint64_t pool;
3258 
3259 		vd = sav->sav_vdevs[i];
3260 		ASSERT(vd != NULL);
3261 
3262 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3263 		    pool != 0ULL && l2arc_vdev_present(vd))
3264 			l2arc_remove_vdev(vd);
3265 	}
3266 }
3267 
3268 /*
3269  * Pool Creation
3270  */
3271 int
3272 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3273     nvlist_t *zplprops)
3274 {
3275 	spa_t *spa;
3276 	char *altroot = NULL;
3277 	vdev_t *rvd;
3278 	dsl_pool_t *dp;
3279 	dmu_tx_t *tx;
3280 	int error = 0;
3281 	uint64_t txg = TXG_INITIAL;
3282 	nvlist_t **spares, **l2cache;
3283 	uint_t nspares, nl2cache;
3284 	uint64_t version, obj;
3285 	boolean_t has_features;
3286 
3287 	/*
3288 	 * If this pool already exists, return failure.
3289 	 */
3290 	mutex_enter(&spa_namespace_lock);
3291 	if (spa_lookup(pool) != NULL) {
3292 		mutex_exit(&spa_namespace_lock);
3293 		return (EEXIST);
3294 	}
3295 
3296 	/*
3297 	 * Allocate a new spa_t structure.
3298 	 */
3299 	(void) nvlist_lookup_string(props,
3300 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3301 	spa = spa_add(pool, NULL, altroot);
3302 	spa_activate(spa, spa_mode_global);
3303 
3304 	if (props && (error = spa_prop_validate(spa, props))) {
3305 		spa_deactivate(spa);
3306 		spa_remove(spa);
3307 		mutex_exit(&spa_namespace_lock);
3308 		return (error);
3309 	}
3310 
3311 	has_features = B_FALSE;
3312 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3313 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3314 		if (zpool_prop_feature(nvpair_name(elem)))
3315 			has_features = B_TRUE;
3316 	}
3317 
3318 	if (has_features || nvlist_lookup_uint64(props,
3319 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3320 		version = SPA_VERSION;
3321 	}
3322 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3323 
3324 	spa->spa_first_txg = txg;
3325 	spa->spa_uberblock.ub_txg = txg - 1;
3326 	spa->spa_uberblock.ub_version = version;
3327 	spa->spa_ubsync = spa->spa_uberblock;
3328 
3329 	/*
3330 	 * Create "The Godfather" zio to hold all async IOs
3331 	 */
3332 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3333 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3334 
3335 	/*
3336 	 * Create the root vdev.
3337 	 */
3338 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3339 
3340 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3341 
3342 	ASSERT(error != 0 || rvd != NULL);
3343 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3344 
3345 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3346 		error = EINVAL;
3347 
3348 	if (error == 0 &&
3349 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3350 	    (error = spa_validate_aux(spa, nvroot, txg,
3351 	    VDEV_ALLOC_ADD)) == 0) {
3352 		for (int c = 0; c < rvd->vdev_children; c++) {
3353 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3354 			vdev_expand(rvd->vdev_child[c], txg);
3355 		}
3356 	}
3357 
3358 	spa_config_exit(spa, SCL_ALL, FTAG);
3359 
3360 	if (error != 0) {
3361 		spa_unload(spa);
3362 		spa_deactivate(spa);
3363 		spa_remove(spa);
3364 		mutex_exit(&spa_namespace_lock);
3365 		return (error);
3366 	}
3367 
3368 	/*
3369 	 * Get the list of spares, if specified.
3370 	 */
3371 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3372 	    &spares, &nspares) == 0) {
3373 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3374 		    KM_SLEEP) == 0);
3375 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3376 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3377 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3378 		spa_load_spares(spa);
3379 		spa_config_exit(spa, SCL_ALL, FTAG);
3380 		spa->spa_spares.sav_sync = B_TRUE;
3381 	}
3382 
3383 	/*
3384 	 * Get the list of level 2 cache devices, if specified.
3385 	 */
3386 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3387 	    &l2cache, &nl2cache) == 0) {
3388 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3389 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3390 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3391 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3392 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3393 		spa_load_l2cache(spa);
3394 		spa_config_exit(spa, SCL_ALL, FTAG);
3395 		spa->spa_l2cache.sav_sync = B_TRUE;
3396 	}
3397 
3398 	spa->spa_is_initializing = B_TRUE;
3399 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3400 	spa->spa_meta_objset = dp->dp_meta_objset;
3401 	spa->spa_is_initializing = B_FALSE;
3402 
3403 	/*
3404 	 * Create DDTs (dedup tables).
3405 	 */
3406 	ddt_create(spa);
3407 
3408 	spa_update_dspace(spa);
3409 
3410 	tx = dmu_tx_create_assigned(dp, txg);
3411 
3412 	/*
3413 	 * Create the pool config object.
3414 	 */
3415 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3416 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3417 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3418 
3419 	if (zap_add(spa->spa_meta_objset,
3420 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3421 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3422 		cmn_err(CE_PANIC, "failed to add pool config");
3423 	}
3424 
3425 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3426 		spa_feature_create_zap_objects(spa, tx);
3427 
3428 	if (zap_add(spa->spa_meta_objset,
3429 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3430 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3431 		cmn_err(CE_PANIC, "failed to add pool version");
3432 	}
3433 
3434 	/* Newly created pools with the right version are always deflated. */
3435 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3436 		spa->spa_deflate = TRUE;
3437 		if (zap_add(spa->spa_meta_objset,
3438 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3439 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3440 			cmn_err(CE_PANIC, "failed to add deflate");
3441 		}
3442 	}
3443 
3444 	/*
3445 	 * Create the deferred-free bpobj.  Turn off compression
3446 	 * because sync-to-convergence takes longer if the blocksize
3447 	 * keeps changing.
3448 	 */
3449 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3450 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3451 	    ZIO_COMPRESS_OFF, tx);
3452 	if (zap_add(spa->spa_meta_objset,
3453 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3454 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3455 		cmn_err(CE_PANIC, "failed to add bpobj");
3456 	}
3457 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3458 	    spa->spa_meta_objset, obj));
3459 
3460 	/*
3461 	 * Create the pool's history object.
3462 	 */
3463 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3464 		spa_history_create_obj(spa, tx);
3465 
3466 	/*
3467 	 * Set pool properties.
3468 	 */
3469 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3470 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3471 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3472 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3473 
3474 	if (props != NULL) {
3475 		spa_configfile_set(spa, props, B_FALSE);
3476 		spa_sync_props(spa, props, tx);
3477 	}
3478 
3479 	dmu_tx_commit(tx);
3480 
3481 	spa->spa_sync_on = B_TRUE;
3482 	txg_sync_start(spa->spa_dsl_pool);
3483 
3484 	/*
3485 	 * We explicitly wait for the first transaction to complete so that our
3486 	 * bean counters are appropriately updated.
3487 	 */
3488 	txg_wait_synced(spa->spa_dsl_pool, txg);
3489 
3490 	spa_config_sync(spa, B_FALSE, B_TRUE);
3491 
3492 	spa_history_log_version(spa, "create");
3493 
3494 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3495 
3496 	mutex_exit(&spa_namespace_lock);
3497 
3498 	return (0);
3499 }
3500 
3501 #ifdef _KERNEL
3502 /*
3503  * Get the root pool information from the root disk, then import the root pool
3504  * during the system boot up time.
3505  */
3506 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3507 
3508 static nvlist_t *
3509 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3510 {
3511 	nvlist_t *config;
3512 	nvlist_t *nvtop, *nvroot;
3513 	uint64_t pgid;
3514 
3515 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3516 		return (NULL);
3517 
3518 	/*
3519 	 * Add this top-level vdev to the child array.
3520 	 */
3521 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3522 	    &nvtop) == 0);
3523 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3524 	    &pgid) == 0);
3525 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3526 
3527 	/*
3528 	 * Put this pool's top-level vdevs into a root vdev.
3529 	 */
3530 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3531 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3532 	    VDEV_TYPE_ROOT) == 0);
3533 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3534 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3535 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3536 	    &nvtop, 1) == 0);
3537 
3538 	/*
3539 	 * Replace the existing vdev_tree with the new root vdev in
3540 	 * this pool's configuration (remove the old, add the new).
3541 	 */
3542 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3543 	nvlist_free(nvroot);
3544 	return (config);
3545 }
3546 
3547 /*
3548  * Walk the vdev tree and see if we can find a device with "better"
3549  * configuration. A configuration is "better" if the label on that
3550  * device has a more recent txg.
3551  */
3552 static void
3553 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3554 {
3555 	for (int c = 0; c < vd->vdev_children; c++)
3556 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3557 
3558 	if (vd->vdev_ops->vdev_op_leaf) {
3559 		nvlist_t *label;
3560 		uint64_t label_txg;
3561 
3562 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3563 		    &label) != 0)
3564 			return;
3565 
3566 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3567 		    &label_txg) == 0);
3568 
3569 		/*
3570 		 * Do we have a better boot device?
3571 		 */
3572 		if (label_txg > *txg) {
3573 			*txg = label_txg;
3574 			*avd = vd;
3575 		}
3576 		nvlist_free(label);
3577 	}
3578 }
3579 
3580 /*
3581  * Import a root pool.
3582  *
3583  * For x86. devpath_list will consist of devid and/or physpath name of
3584  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3585  * The GRUB "findroot" command will return the vdev we should boot.
3586  *
3587  * For Sparc, devpath_list consists the physpath name of the booting device
3588  * no matter the rootpool is a single device pool or a mirrored pool.
3589  * e.g.
3590  *	"/pci@1f,0/ide@d/disk@0,0:a"
3591  */
3592 int
3593 spa_import_rootpool(char *devpath, char *devid)
3594 {
3595 	spa_t *spa;
3596 	vdev_t *rvd, *bvd, *avd = NULL;
3597 	nvlist_t *config, *nvtop;
3598 	uint64_t guid, txg;
3599 	char *pname;
3600 	int error;
3601 
3602 	/*
3603 	 * Read the label from the boot device and generate a configuration.
3604 	 */
3605 	config = spa_generate_rootconf(devpath, devid, &guid);
3606 #if defined(_OBP) && defined(_KERNEL)
3607 	if (config == NULL) {
3608 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3609 			/* iscsi boot */
3610 			get_iscsi_bootpath_phy(devpath);
3611 			config = spa_generate_rootconf(devpath, devid, &guid);
3612 		}
3613 	}
3614 #endif
3615 	if (config == NULL) {
3616 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3617 		    devpath);
3618 		return (EIO);
3619 	}
3620 
3621 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3622 	    &pname) == 0);
3623 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3624 
3625 	mutex_enter(&spa_namespace_lock);
3626 	if ((spa = spa_lookup(pname)) != NULL) {
3627 		/*
3628 		 * Remove the existing root pool from the namespace so that we
3629 		 * can replace it with the correct config we just read in.
3630 		 */
3631 		spa_remove(spa);
3632 	}
3633 
3634 	spa = spa_add(pname, config, NULL);
3635 	spa->spa_is_root = B_TRUE;
3636 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3637 
3638 	/*
3639 	 * Build up a vdev tree based on the boot device's label config.
3640 	 */
3641 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3642 	    &nvtop) == 0);
3643 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3644 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3645 	    VDEV_ALLOC_ROOTPOOL);
3646 	spa_config_exit(spa, SCL_ALL, FTAG);
3647 	if (error) {
3648 		mutex_exit(&spa_namespace_lock);
3649 		nvlist_free(config);
3650 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3651 		    pname);
3652 		return (error);
3653 	}
3654 
3655 	/*
3656 	 * Get the boot vdev.
3657 	 */
3658 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3659 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3660 		    (u_longlong_t)guid);
3661 		error = ENOENT;
3662 		goto out;
3663 	}
3664 
3665 	/*
3666 	 * Determine if there is a better boot device.
3667 	 */
3668 	avd = bvd;
3669 	spa_alt_rootvdev(rvd, &avd, &txg);
3670 	if (avd != bvd) {
3671 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3672 		    "try booting from '%s'", avd->vdev_path);
3673 		error = EINVAL;
3674 		goto out;
3675 	}
3676 
3677 	/*
3678 	 * If the boot device is part of a spare vdev then ensure that
3679 	 * we're booting off the active spare.
3680 	 */
3681 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3682 	    !bvd->vdev_isspare) {
3683 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3684 		    "try booting from '%s'",
3685 		    bvd->vdev_parent->
3686 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3687 		error = EINVAL;
3688 		goto out;
3689 	}
3690 
3691 	error = 0;
3692 out:
3693 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3694 	vdev_free(rvd);
3695 	spa_config_exit(spa, SCL_ALL, FTAG);
3696 	mutex_exit(&spa_namespace_lock);
3697 
3698 	nvlist_free(config);
3699 	return (error);
3700 }
3701 
3702 #endif
3703 
3704 /*
3705  * Import a non-root pool into the system.
3706  */
3707 int
3708 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3709 {
3710 	spa_t *spa;
3711 	char *altroot = NULL;
3712 	spa_load_state_t state = SPA_LOAD_IMPORT;
3713 	zpool_rewind_policy_t policy;
3714 	uint64_t mode = spa_mode_global;
3715 	uint64_t readonly = B_FALSE;
3716 	int error;
3717 	nvlist_t *nvroot;
3718 	nvlist_t **spares, **l2cache;
3719 	uint_t nspares, nl2cache;
3720 
3721 	/*
3722 	 * If a pool with this name exists, return failure.
3723 	 */
3724 	mutex_enter(&spa_namespace_lock);
3725 	if (spa_lookup(pool) != NULL) {
3726 		mutex_exit(&spa_namespace_lock);
3727 		return (EEXIST);
3728 	}
3729 
3730 	/*
3731 	 * Create and initialize the spa structure.
3732 	 */
3733 	(void) nvlist_lookup_string(props,
3734 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3735 	(void) nvlist_lookup_uint64(props,
3736 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3737 	if (readonly)
3738 		mode = FREAD;
3739 	spa = spa_add(pool, config, altroot);
3740 	spa->spa_import_flags = flags;
3741 
3742 	/*
3743 	 * Verbatim import - Take a pool and insert it into the namespace
3744 	 * as if it had been loaded at boot.
3745 	 */
3746 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3747 		if (props != NULL)
3748 			spa_configfile_set(spa, props, B_FALSE);
3749 
3750 		spa_config_sync(spa, B_FALSE, B_TRUE);
3751 
3752 		mutex_exit(&spa_namespace_lock);
3753 		spa_history_log_version(spa, "import");
3754 
3755 		return (0);
3756 	}
3757 
3758 	spa_activate(spa, mode);
3759 
3760 	/*
3761 	 * Don't start async tasks until we know everything is healthy.
3762 	 */
3763 	spa_async_suspend(spa);
3764 
3765 	zpool_get_rewind_policy(config, &policy);
3766 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3767 		state = SPA_LOAD_RECOVER;
3768 
3769 	/*
3770 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3771 	 * because the user-supplied config is actually the one to trust when
3772 	 * doing an import.
3773 	 */
3774 	if (state != SPA_LOAD_RECOVER)
3775 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3776 
3777 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3778 	    policy.zrp_request);
3779 
3780 	/*
3781 	 * Propagate anything learned while loading the pool and pass it
3782 	 * back to caller (i.e. rewind info, missing devices, etc).
3783 	 */
3784 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3785 	    spa->spa_load_info) == 0);
3786 
3787 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3788 	/*
3789 	 * Toss any existing sparelist, as it doesn't have any validity
3790 	 * anymore, and conflicts with spa_has_spare().
3791 	 */
3792 	if (spa->spa_spares.sav_config) {
3793 		nvlist_free(spa->spa_spares.sav_config);
3794 		spa->spa_spares.sav_config = NULL;
3795 		spa_load_spares(spa);
3796 	}
3797 	if (spa->spa_l2cache.sav_config) {
3798 		nvlist_free(spa->spa_l2cache.sav_config);
3799 		spa->spa_l2cache.sav_config = NULL;
3800 		spa_load_l2cache(spa);
3801 	}
3802 
3803 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3804 	    &nvroot) == 0);
3805 	if (error == 0)
3806 		error = spa_validate_aux(spa, nvroot, -1ULL,
3807 		    VDEV_ALLOC_SPARE);
3808 	if (error == 0)
3809 		error = spa_validate_aux(spa, nvroot, -1ULL,
3810 		    VDEV_ALLOC_L2CACHE);
3811 	spa_config_exit(spa, SCL_ALL, FTAG);
3812 
3813 	if (props != NULL)
3814 		spa_configfile_set(spa, props, B_FALSE);
3815 
3816 	if (error != 0 || (props && spa_writeable(spa) &&
3817 	    (error = spa_prop_set(spa, props)))) {
3818 		spa_unload(spa);
3819 		spa_deactivate(spa);
3820 		spa_remove(spa);
3821 		mutex_exit(&spa_namespace_lock);
3822 		return (error);
3823 	}
3824 
3825 	spa_async_resume(spa);
3826 
3827 	/*
3828 	 * Override any spares and level 2 cache devices as specified by
3829 	 * the user, as these may have correct device names/devids, etc.
3830 	 */
3831 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3832 	    &spares, &nspares) == 0) {
3833 		if (spa->spa_spares.sav_config)
3834 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3835 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3836 		else
3837 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3838 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3839 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3840 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3841 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3842 		spa_load_spares(spa);
3843 		spa_config_exit(spa, SCL_ALL, FTAG);
3844 		spa->spa_spares.sav_sync = B_TRUE;
3845 	}
3846 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3847 	    &l2cache, &nl2cache) == 0) {
3848 		if (spa->spa_l2cache.sav_config)
3849 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3850 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3851 		else
3852 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3853 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3854 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3855 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3856 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3857 		spa_load_l2cache(spa);
3858 		spa_config_exit(spa, SCL_ALL, FTAG);
3859 		spa->spa_l2cache.sav_sync = B_TRUE;
3860 	}
3861 
3862 	/*
3863 	 * Check for any removed devices.
3864 	 */
3865 	if (spa->spa_autoreplace) {
3866 		spa_aux_check_removed(&spa->spa_spares);
3867 		spa_aux_check_removed(&spa->spa_l2cache);
3868 	}
3869 
3870 	if (spa_writeable(spa)) {
3871 		/*
3872 		 * Update the config cache to include the newly-imported pool.
3873 		 */
3874 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3875 	}
3876 
3877 	/*
3878 	 * It's possible that the pool was expanded while it was exported.
3879 	 * We kick off an async task to handle this for us.
3880 	 */
3881 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3882 
3883 	mutex_exit(&spa_namespace_lock);
3884 	spa_history_log_version(spa, "import");
3885 
3886 	return (0);
3887 }
3888 
3889 nvlist_t *
3890 spa_tryimport(nvlist_t *tryconfig)
3891 {
3892 	nvlist_t *config = NULL;
3893 	char *poolname;
3894 	spa_t *spa;
3895 	uint64_t state;
3896 	int error;
3897 
3898 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3899 		return (NULL);
3900 
3901 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3902 		return (NULL);
3903 
3904 	/*
3905 	 * Create and initialize the spa structure.
3906 	 */
3907 	mutex_enter(&spa_namespace_lock);
3908 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3909 	spa_activate(spa, FREAD);
3910 
3911 	/*
3912 	 * Pass off the heavy lifting to spa_load().
3913 	 * Pass TRUE for mosconfig because the user-supplied config
3914 	 * is actually the one to trust when doing an import.
3915 	 */
3916 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3917 
3918 	/*
3919 	 * If 'tryconfig' was at least parsable, return the current config.
3920 	 */
3921 	if (spa->spa_root_vdev != NULL) {
3922 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3923 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3924 		    poolname) == 0);
3925 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3926 		    state) == 0);
3927 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3928 		    spa->spa_uberblock.ub_timestamp) == 0);
3929 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3930 		    spa->spa_load_info) == 0);
3931 
3932 		/*
3933 		 * If the bootfs property exists on this pool then we
3934 		 * copy it out so that external consumers can tell which
3935 		 * pools are bootable.
3936 		 */
3937 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3938 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3939 
3940 			/*
3941 			 * We have to play games with the name since the
3942 			 * pool was opened as TRYIMPORT_NAME.
3943 			 */
3944 			if (dsl_dsobj_to_dsname(spa_name(spa),
3945 			    spa->spa_bootfs, tmpname) == 0) {
3946 				char *cp;
3947 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3948 
3949 				cp = strchr(tmpname, '/');
3950 				if (cp == NULL) {
3951 					(void) strlcpy(dsname, tmpname,
3952 					    MAXPATHLEN);
3953 				} else {
3954 					(void) snprintf(dsname, MAXPATHLEN,
3955 					    "%s/%s", poolname, ++cp);
3956 				}
3957 				VERIFY(nvlist_add_string(config,
3958 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3959 				kmem_free(dsname, MAXPATHLEN);
3960 			}
3961 			kmem_free(tmpname, MAXPATHLEN);
3962 		}
3963 
3964 		/*
3965 		 * Add the list of hot spares and level 2 cache devices.
3966 		 */
3967 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3968 		spa_add_spares(spa, config);
3969 		spa_add_l2cache(spa, config);
3970 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3971 	}
3972 
3973 	spa_unload(spa);
3974 	spa_deactivate(spa);
3975 	spa_remove(spa);
3976 	mutex_exit(&spa_namespace_lock);
3977 
3978 	return (config);
3979 }
3980 
3981 /*
3982  * Pool export/destroy
3983  *
3984  * The act of destroying or exporting a pool is very simple.  We make sure there
3985  * is no more pending I/O and any references to the pool are gone.  Then, we
3986  * update the pool state and sync all the labels to disk, removing the
3987  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3988  * we don't sync the labels or remove the configuration cache.
3989  */
3990 static int
3991 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3992     boolean_t force, boolean_t hardforce)
3993 {
3994 	spa_t *spa;
3995 
3996 	if (oldconfig)
3997 		*oldconfig = NULL;
3998 
3999 	if (!(spa_mode_global & FWRITE))
4000 		return (EROFS);
4001 
4002 	mutex_enter(&spa_namespace_lock);
4003 	if ((spa = spa_lookup(pool)) == NULL) {
4004 		mutex_exit(&spa_namespace_lock);
4005 		return (ENOENT);
4006 	}
4007 
4008 	/*
4009 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4010 	 * reacquire the namespace lock, and see if we can export.
4011 	 */
4012 	spa_open_ref(spa, FTAG);
4013 	mutex_exit(&spa_namespace_lock);
4014 	spa_async_suspend(spa);
4015 	mutex_enter(&spa_namespace_lock);
4016 	spa_close(spa, FTAG);
4017 
4018 	/*
4019 	 * The pool will be in core if it's openable,
4020 	 * in which case we can modify its state.
4021 	 */
4022 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4023 		/*
4024 		 * Objsets may be open only because they're dirty, so we
4025 		 * have to force it to sync before checking spa_refcnt.
4026 		 */
4027 		txg_wait_synced(spa->spa_dsl_pool, 0);
4028 
4029 		/*
4030 		 * A pool cannot be exported or destroyed if there are active
4031 		 * references.  If we are resetting a pool, allow references by
4032 		 * fault injection handlers.
4033 		 */
4034 		if (!spa_refcount_zero(spa) ||
4035 		    (spa->spa_inject_ref != 0 &&
4036 		    new_state != POOL_STATE_UNINITIALIZED)) {
4037 			spa_async_resume(spa);
4038 			mutex_exit(&spa_namespace_lock);
4039 			return (EBUSY);
4040 		}
4041 
4042 		/*
4043 		 * A pool cannot be exported if it has an active shared spare.
4044 		 * This is to prevent other pools stealing the active spare
4045 		 * from an exported pool. At user's own will, such pool can
4046 		 * be forcedly exported.
4047 		 */
4048 		if (!force && new_state == POOL_STATE_EXPORTED &&
4049 		    spa_has_active_shared_spare(spa)) {
4050 			spa_async_resume(spa);
4051 			mutex_exit(&spa_namespace_lock);
4052 			return (EXDEV);
4053 		}
4054 
4055 		/*
4056 		 * We want this to be reflected on every label,
4057 		 * so mark them all dirty.  spa_unload() will do the
4058 		 * final sync that pushes these changes out.
4059 		 */
4060 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4061 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4062 			spa->spa_state = new_state;
4063 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4064 			    TXG_DEFER_SIZE + 1;
4065 			vdev_config_dirty(spa->spa_root_vdev);
4066 			spa_config_exit(spa, SCL_ALL, FTAG);
4067 		}
4068 	}
4069 
4070 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4071 
4072 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4073 		spa_unload(spa);
4074 		spa_deactivate(spa);
4075 	}
4076 
4077 	if (oldconfig && spa->spa_config)
4078 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4079 
4080 	if (new_state != POOL_STATE_UNINITIALIZED) {
4081 		if (!hardforce)
4082 			spa_config_sync(spa, B_TRUE, B_TRUE);
4083 		spa_remove(spa);
4084 	}
4085 	mutex_exit(&spa_namespace_lock);
4086 
4087 	return (0);
4088 }
4089 
4090 /*
4091  * Destroy a storage pool.
4092  */
4093 int
4094 spa_destroy(char *pool)
4095 {
4096 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4097 	    B_FALSE, B_FALSE));
4098 }
4099 
4100 /*
4101  * Export a storage pool.
4102  */
4103 int
4104 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4105     boolean_t hardforce)
4106 {
4107 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4108 	    force, hardforce));
4109 }
4110 
4111 /*
4112  * Similar to spa_export(), this unloads the spa_t without actually removing it
4113  * from the namespace in any way.
4114  */
4115 int
4116 spa_reset(char *pool)
4117 {
4118 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4119 	    B_FALSE, B_FALSE));
4120 }
4121 
4122 /*
4123  * ==========================================================================
4124  * Device manipulation
4125  * ==========================================================================
4126  */
4127 
4128 /*
4129  * Add a device to a storage pool.
4130  */
4131 int
4132 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4133 {
4134 	uint64_t txg, id;
4135 	int error;
4136 	vdev_t *rvd = spa->spa_root_vdev;
4137 	vdev_t *vd, *tvd;
4138 	nvlist_t **spares, **l2cache;
4139 	uint_t nspares, nl2cache;
4140 
4141 	ASSERT(spa_writeable(spa));
4142 
4143 	txg = spa_vdev_enter(spa);
4144 
4145 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4146 	    VDEV_ALLOC_ADD)) != 0)
4147 		return (spa_vdev_exit(spa, NULL, txg, error));
4148 
4149 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4150 
4151 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4152 	    &nspares) != 0)
4153 		nspares = 0;
4154 
4155 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4156 	    &nl2cache) != 0)
4157 		nl2cache = 0;
4158 
4159 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4160 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4161 
4162 	if (vd->vdev_children != 0 &&
4163 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4164 		return (spa_vdev_exit(spa, vd, txg, error));
4165 
4166 	/*
4167 	 * We must validate the spares and l2cache devices after checking the
4168 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4169 	 */
4170 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4171 		return (spa_vdev_exit(spa, vd, txg, error));
4172 
4173 	/*
4174 	 * Transfer each new top-level vdev from vd to rvd.
4175 	 */
4176 	for (int c = 0; c < vd->vdev_children; c++) {
4177 
4178 		/*
4179 		 * Set the vdev id to the first hole, if one exists.
4180 		 */
4181 		for (id = 0; id < rvd->vdev_children; id++) {
4182 			if (rvd->vdev_child[id]->vdev_ishole) {
4183 				vdev_free(rvd->vdev_child[id]);
4184 				break;
4185 			}
4186 		}
4187 		tvd = vd->vdev_child[c];
4188 		vdev_remove_child(vd, tvd);
4189 		tvd->vdev_id = id;
4190 		vdev_add_child(rvd, tvd);
4191 		vdev_config_dirty(tvd);
4192 	}
4193 
4194 	if (nspares != 0) {
4195 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4196 		    ZPOOL_CONFIG_SPARES);
4197 		spa_load_spares(spa);
4198 		spa->spa_spares.sav_sync = B_TRUE;
4199 	}
4200 
4201 	if (nl2cache != 0) {
4202 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4203 		    ZPOOL_CONFIG_L2CACHE);
4204 		spa_load_l2cache(spa);
4205 		spa->spa_l2cache.sav_sync = B_TRUE;
4206 	}
4207 
4208 	/*
4209 	 * We have to be careful when adding new vdevs to an existing pool.
4210 	 * If other threads start allocating from these vdevs before we
4211 	 * sync the config cache, and we lose power, then upon reboot we may
4212 	 * fail to open the pool because there are DVAs that the config cache
4213 	 * can't translate.  Therefore, we first add the vdevs without
4214 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4215 	 * and then let spa_config_update() initialize the new metaslabs.
4216 	 *
4217 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4218 	 * if we lose power at any point in this sequence, the remaining
4219 	 * steps will be completed the next time we load the pool.
4220 	 */
4221 	(void) spa_vdev_exit(spa, vd, txg, 0);
4222 
4223 	mutex_enter(&spa_namespace_lock);
4224 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4225 	mutex_exit(&spa_namespace_lock);
4226 
4227 	return (0);
4228 }
4229 
4230 /*
4231  * Attach a device to a mirror.  The arguments are the path to any device
4232  * in the mirror, and the nvroot for the new device.  If the path specifies
4233  * a device that is not mirrored, we automatically insert the mirror vdev.
4234  *
4235  * If 'replacing' is specified, the new device is intended to replace the
4236  * existing device; in this case the two devices are made into their own
4237  * mirror using the 'replacing' vdev, which is functionally identical to
4238  * the mirror vdev (it actually reuses all the same ops) but has a few
4239  * extra rules: you can't attach to it after it's been created, and upon
4240  * completion of resilvering, the first disk (the one being replaced)
4241  * is automatically detached.
4242  */
4243 int
4244 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4245 {
4246 	uint64_t txg, dtl_max_txg;
4247 	vdev_t *rvd = spa->spa_root_vdev;
4248 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4249 	vdev_ops_t *pvops;
4250 	char *oldvdpath, *newvdpath;
4251 	int newvd_isspare;
4252 	int error;
4253 
4254 	ASSERT(spa_writeable(spa));
4255 
4256 	txg = spa_vdev_enter(spa);
4257 
4258 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4259 
4260 	if (oldvd == NULL)
4261 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4262 
4263 	if (!oldvd->vdev_ops->vdev_op_leaf)
4264 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4265 
4266 	pvd = oldvd->vdev_parent;
4267 
4268 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4269 	    VDEV_ALLOC_ATTACH)) != 0)
4270 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4271 
4272 	if (newrootvd->vdev_children != 1)
4273 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4274 
4275 	newvd = newrootvd->vdev_child[0];
4276 
4277 	if (!newvd->vdev_ops->vdev_op_leaf)
4278 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4279 
4280 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4281 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4282 
4283 	/*
4284 	 * Spares can't replace logs
4285 	 */
4286 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4287 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4288 
4289 	if (!replacing) {
4290 		/*
4291 		 * For attach, the only allowable parent is a mirror or the root
4292 		 * vdev.
4293 		 */
4294 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4295 		    pvd->vdev_ops != &vdev_root_ops)
4296 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4297 
4298 		pvops = &vdev_mirror_ops;
4299 	} else {
4300 		/*
4301 		 * Active hot spares can only be replaced by inactive hot
4302 		 * spares.
4303 		 */
4304 		if (pvd->vdev_ops == &vdev_spare_ops &&
4305 		    oldvd->vdev_isspare &&
4306 		    !spa_has_spare(spa, newvd->vdev_guid))
4307 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4308 
4309 		/*
4310 		 * If the source is a hot spare, and the parent isn't already a
4311 		 * spare, then we want to create a new hot spare.  Otherwise, we
4312 		 * want to create a replacing vdev.  The user is not allowed to
4313 		 * attach to a spared vdev child unless the 'isspare' state is
4314 		 * the same (spare replaces spare, non-spare replaces
4315 		 * non-spare).
4316 		 */
4317 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4318 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4319 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4320 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4321 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4322 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4323 		}
4324 
4325 		if (newvd->vdev_isspare)
4326 			pvops = &vdev_spare_ops;
4327 		else
4328 			pvops = &vdev_replacing_ops;
4329 	}
4330 
4331 	/*
4332 	 * Make sure the new device is big enough.
4333 	 */
4334 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4335 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4336 
4337 	/*
4338 	 * The new device cannot have a higher alignment requirement
4339 	 * than the top-level vdev.
4340 	 */
4341 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4342 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4343 
4344 	/*
4345 	 * If this is an in-place replacement, update oldvd's path and devid
4346 	 * to make it distinguishable from newvd, and unopenable from now on.
4347 	 */
4348 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4349 		spa_strfree(oldvd->vdev_path);
4350 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4351 		    KM_SLEEP);
4352 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4353 		    newvd->vdev_path, "old");
4354 		if (oldvd->vdev_devid != NULL) {
4355 			spa_strfree(oldvd->vdev_devid);
4356 			oldvd->vdev_devid = NULL;
4357 		}
4358 	}
4359 
4360 	/* mark the device being resilvered */
4361 	newvd->vdev_resilvering = B_TRUE;
4362 
4363 	/*
4364 	 * If the parent is not a mirror, or if we're replacing, insert the new
4365 	 * mirror/replacing/spare vdev above oldvd.
4366 	 */
4367 	if (pvd->vdev_ops != pvops)
4368 		pvd = vdev_add_parent(oldvd, pvops);
4369 
4370 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4371 	ASSERT(pvd->vdev_ops == pvops);
4372 	ASSERT(oldvd->vdev_parent == pvd);
4373 
4374 	/*
4375 	 * Extract the new device from its root and add it to pvd.
4376 	 */
4377 	vdev_remove_child(newrootvd, newvd);
4378 	newvd->vdev_id = pvd->vdev_children;
4379 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4380 	vdev_add_child(pvd, newvd);
4381 
4382 	tvd = newvd->vdev_top;
4383 	ASSERT(pvd->vdev_top == tvd);
4384 	ASSERT(tvd->vdev_parent == rvd);
4385 
4386 	vdev_config_dirty(tvd);
4387 
4388 	/*
4389 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4390 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4391 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4392 	 */
4393 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4394 
4395 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4396 	    dtl_max_txg - TXG_INITIAL);
4397 
4398 	if (newvd->vdev_isspare) {
4399 		spa_spare_activate(newvd);
4400 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4401 	}
4402 
4403 	oldvdpath = spa_strdup(oldvd->vdev_path);
4404 	newvdpath = spa_strdup(newvd->vdev_path);
4405 	newvd_isspare = newvd->vdev_isspare;
4406 
4407 	/*
4408 	 * Mark newvd's DTL dirty in this txg.
4409 	 */
4410 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4411 
4412 	/*
4413 	 * Restart the resilver
4414 	 */
4415 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4416 
4417 	/*
4418 	 * Commit the config
4419 	 */
4420 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4421 
4422 	spa_history_log_internal(spa, "vdev attach", NULL,
4423 	    "%s vdev=%s %s vdev=%s",
4424 	    replacing && newvd_isspare ? "spare in" :
4425 	    replacing ? "replace" : "attach", newvdpath,
4426 	    replacing ? "for" : "to", oldvdpath);
4427 
4428 	spa_strfree(oldvdpath);
4429 	spa_strfree(newvdpath);
4430 
4431 	if (spa->spa_bootfs)
4432 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4433 
4434 	return (0);
4435 }
4436 
4437 /*
4438  * Detach a device from a mirror or replacing vdev.
4439  * If 'replace_done' is specified, only detach if the parent
4440  * is a replacing vdev.
4441  */
4442 int
4443 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4444 {
4445 	uint64_t txg;
4446 	int error;
4447 	vdev_t *rvd = spa->spa_root_vdev;
4448 	vdev_t *vd, *pvd, *cvd, *tvd;
4449 	boolean_t unspare = B_FALSE;
4450 	uint64_t unspare_guid = 0;
4451 	char *vdpath;
4452 
4453 	ASSERT(spa_writeable(spa));
4454 
4455 	txg = spa_vdev_enter(spa);
4456 
4457 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4458 
4459 	if (vd == NULL)
4460 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4461 
4462 	if (!vd->vdev_ops->vdev_op_leaf)
4463 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4464 
4465 	pvd = vd->vdev_parent;
4466 
4467 	/*
4468 	 * If the parent/child relationship is not as expected, don't do it.
4469 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4470 	 * vdev that's replacing B with C.  The user's intent in replacing
4471 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4472 	 * the replace by detaching C, the expected behavior is to end up
4473 	 * M(A,B).  But suppose that right after deciding to detach C,
4474 	 * the replacement of B completes.  We would have M(A,C), and then
4475 	 * ask to detach C, which would leave us with just A -- not what
4476 	 * the user wanted.  To prevent this, we make sure that the
4477 	 * parent/child relationship hasn't changed -- in this example,
4478 	 * that C's parent is still the replacing vdev R.
4479 	 */
4480 	if (pvd->vdev_guid != pguid && pguid != 0)
4481 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4482 
4483 	/*
4484 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4485 	 */
4486 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4487 	    pvd->vdev_ops != &vdev_spare_ops)
4488 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4489 
4490 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4491 	    spa_version(spa) >= SPA_VERSION_SPARES);
4492 
4493 	/*
4494 	 * Only mirror, replacing, and spare vdevs support detach.
4495 	 */
4496 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4497 	    pvd->vdev_ops != &vdev_mirror_ops &&
4498 	    pvd->vdev_ops != &vdev_spare_ops)
4499 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4500 
4501 	/*
4502 	 * If this device has the only valid copy of some data,
4503 	 * we cannot safely detach it.
4504 	 */
4505 	if (vdev_dtl_required(vd))
4506 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4507 
4508 	ASSERT(pvd->vdev_children >= 2);
4509 
4510 	/*
4511 	 * If we are detaching the second disk from a replacing vdev, then
4512 	 * check to see if we changed the original vdev's path to have "/old"
4513 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4514 	 */
4515 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4516 	    vd->vdev_path != NULL) {
4517 		size_t len = strlen(vd->vdev_path);
4518 
4519 		for (int c = 0; c < pvd->vdev_children; c++) {
4520 			cvd = pvd->vdev_child[c];
4521 
4522 			if (cvd == vd || cvd->vdev_path == NULL)
4523 				continue;
4524 
4525 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4526 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4527 				spa_strfree(cvd->vdev_path);
4528 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4529 				break;
4530 			}
4531 		}
4532 	}
4533 
4534 	/*
4535 	 * If we are detaching the original disk from a spare, then it implies
4536 	 * that the spare should become a real disk, and be removed from the
4537 	 * active spare list for the pool.
4538 	 */
4539 	if (pvd->vdev_ops == &vdev_spare_ops &&
4540 	    vd->vdev_id == 0 &&
4541 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4542 		unspare = B_TRUE;
4543 
4544 	/*
4545 	 * Erase the disk labels so the disk can be used for other things.
4546 	 * This must be done after all other error cases are handled,
4547 	 * but before we disembowel vd (so we can still do I/O to it).
4548 	 * But if we can't do it, don't treat the error as fatal --
4549 	 * it may be that the unwritability of the disk is the reason
4550 	 * it's being detached!
4551 	 */
4552 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4553 
4554 	/*
4555 	 * Remove vd from its parent and compact the parent's children.
4556 	 */
4557 	vdev_remove_child(pvd, vd);
4558 	vdev_compact_children(pvd);
4559 
4560 	/*
4561 	 * Remember one of the remaining children so we can get tvd below.
4562 	 */
4563 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4564 
4565 	/*
4566 	 * If we need to remove the remaining child from the list of hot spares,
4567 	 * do it now, marking the vdev as no longer a spare in the process.
4568 	 * We must do this before vdev_remove_parent(), because that can
4569 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4570 	 * reason, we must remove the spare now, in the same txg as the detach;
4571 	 * otherwise someone could attach a new sibling, change the GUID, and
4572 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4573 	 */
4574 	if (unspare) {
4575 		ASSERT(cvd->vdev_isspare);
4576 		spa_spare_remove(cvd);
4577 		unspare_guid = cvd->vdev_guid;
4578 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4579 		cvd->vdev_unspare = B_TRUE;
4580 	}
4581 
4582 	/*
4583 	 * If the parent mirror/replacing vdev only has one child,
4584 	 * the parent is no longer needed.  Remove it from the tree.
4585 	 */
4586 	if (pvd->vdev_children == 1) {
4587 		if (pvd->vdev_ops == &vdev_spare_ops)
4588 			cvd->vdev_unspare = B_FALSE;
4589 		vdev_remove_parent(cvd);
4590 		cvd->vdev_resilvering = B_FALSE;
4591 	}
4592 
4593 
4594 	/*
4595 	 * We don't set tvd until now because the parent we just removed
4596 	 * may have been the previous top-level vdev.
4597 	 */
4598 	tvd = cvd->vdev_top;
4599 	ASSERT(tvd->vdev_parent == rvd);
4600 
4601 	/*
4602 	 * Reevaluate the parent vdev state.
4603 	 */
4604 	vdev_propagate_state(cvd);
4605 
4606 	/*
4607 	 * If the 'autoexpand' property is set on the pool then automatically
4608 	 * try to expand the size of the pool. For example if the device we
4609 	 * just detached was smaller than the others, it may be possible to
4610 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4611 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4612 	 */
4613 	if (spa->spa_autoexpand) {
4614 		vdev_reopen(tvd);
4615 		vdev_expand(tvd, txg);
4616 	}
4617 
4618 	vdev_config_dirty(tvd);
4619 
4620 	/*
4621 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4622 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4623 	 * But first make sure we're not on any *other* txg's DTL list, to
4624 	 * prevent vd from being accessed after it's freed.
4625 	 */
4626 	vdpath = spa_strdup(vd->vdev_path);
4627 	for (int t = 0; t < TXG_SIZE; t++)
4628 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4629 	vd->vdev_detached = B_TRUE;
4630 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4631 
4632 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4633 
4634 	/* hang on to the spa before we release the lock */
4635 	spa_open_ref(spa, FTAG);
4636 
4637 	error = spa_vdev_exit(spa, vd, txg, 0);
4638 
4639 	spa_history_log_internal(spa, "detach", NULL,
4640 	    "vdev=%s", vdpath);
4641 	spa_strfree(vdpath);
4642 
4643 	/*
4644 	 * If this was the removal of the original device in a hot spare vdev,
4645 	 * then we want to go through and remove the device from the hot spare
4646 	 * list of every other pool.
4647 	 */
4648 	if (unspare) {
4649 		spa_t *altspa = NULL;
4650 
4651 		mutex_enter(&spa_namespace_lock);
4652 		while ((altspa = spa_next(altspa)) != NULL) {
4653 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4654 			    altspa == spa)
4655 				continue;
4656 
4657 			spa_open_ref(altspa, FTAG);
4658 			mutex_exit(&spa_namespace_lock);
4659 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4660 			mutex_enter(&spa_namespace_lock);
4661 			spa_close(altspa, FTAG);
4662 		}
4663 		mutex_exit(&spa_namespace_lock);
4664 
4665 		/* search the rest of the vdevs for spares to remove */
4666 		spa_vdev_resilver_done(spa);
4667 	}
4668 
4669 	/* all done with the spa; OK to release */
4670 	mutex_enter(&spa_namespace_lock);
4671 	spa_close(spa, FTAG);
4672 	mutex_exit(&spa_namespace_lock);
4673 
4674 	return (error);
4675 }
4676 
4677 /*
4678  * Split a set of devices from their mirrors, and create a new pool from them.
4679  */
4680 int
4681 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4682     nvlist_t *props, boolean_t exp)
4683 {
4684 	int error = 0;
4685 	uint64_t txg, *glist;
4686 	spa_t *newspa;
4687 	uint_t c, children, lastlog;
4688 	nvlist_t **child, *nvl, *tmp;
4689 	dmu_tx_t *tx;
4690 	char *altroot = NULL;
4691 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4692 	boolean_t activate_slog;
4693 
4694 	ASSERT(spa_writeable(spa));
4695 
4696 	txg = spa_vdev_enter(spa);
4697 
4698 	/* clear the log and flush everything up to now */
4699 	activate_slog = spa_passivate_log(spa);
4700 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4701 	error = spa_offline_log(spa);
4702 	txg = spa_vdev_config_enter(spa);
4703 
4704 	if (activate_slog)
4705 		spa_activate_log(spa);
4706 
4707 	if (error != 0)
4708 		return (spa_vdev_exit(spa, NULL, txg, error));
4709 
4710 	/* check new spa name before going any further */
4711 	if (spa_lookup(newname) != NULL)
4712 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4713 
4714 	/*
4715 	 * scan through all the children to ensure they're all mirrors
4716 	 */
4717 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4718 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4719 	    &children) != 0)
4720 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4721 
4722 	/* first, check to ensure we've got the right child count */
4723 	rvd = spa->spa_root_vdev;
4724 	lastlog = 0;
4725 	for (c = 0; c < rvd->vdev_children; c++) {
4726 		vdev_t *vd = rvd->vdev_child[c];
4727 
4728 		/* don't count the holes & logs as children */
4729 		if (vd->vdev_islog || vd->vdev_ishole) {
4730 			if (lastlog == 0)
4731 				lastlog = c;
4732 			continue;
4733 		}
4734 
4735 		lastlog = 0;
4736 	}
4737 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4738 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4739 
4740 	/* next, ensure no spare or cache devices are part of the split */
4741 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4742 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4743 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4744 
4745 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4746 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4747 
4748 	/* then, loop over each vdev and validate it */
4749 	for (c = 0; c < children; c++) {
4750 		uint64_t is_hole = 0;
4751 
4752 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4753 		    &is_hole);
4754 
4755 		if (is_hole != 0) {
4756 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4757 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4758 				continue;
4759 			} else {
4760 				error = EINVAL;
4761 				break;
4762 			}
4763 		}
4764 
4765 		/* which disk is going to be split? */
4766 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4767 		    &glist[c]) != 0) {
4768 			error = EINVAL;
4769 			break;
4770 		}
4771 
4772 		/* look it up in the spa */
4773 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4774 		if (vml[c] == NULL) {
4775 			error = ENODEV;
4776 			break;
4777 		}
4778 
4779 		/* make sure there's nothing stopping the split */
4780 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4781 		    vml[c]->vdev_islog ||
4782 		    vml[c]->vdev_ishole ||
4783 		    vml[c]->vdev_isspare ||
4784 		    vml[c]->vdev_isl2cache ||
4785 		    !vdev_writeable(vml[c]) ||
4786 		    vml[c]->vdev_children != 0 ||
4787 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4788 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4789 			error = EINVAL;
4790 			break;
4791 		}
4792 
4793 		if (vdev_dtl_required(vml[c])) {
4794 			error = EBUSY;
4795 			break;
4796 		}
4797 
4798 		/* we need certain info from the top level */
4799 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4800 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4801 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4802 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4803 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4804 		    vml[c]->vdev_top->vdev_asize) == 0);
4805 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4806 		    vml[c]->vdev_top->vdev_ashift) == 0);
4807 	}
4808 
4809 	if (error != 0) {
4810 		kmem_free(vml, children * sizeof (vdev_t *));
4811 		kmem_free(glist, children * sizeof (uint64_t));
4812 		return (spa_vdev_exit(spa, NULL, txg, error));
4813 	}
4814 
4815 	/* stop writers from using the disks */
4816 	for (c = 0; c < children; c++) {
4817 		if (vml[c] != NULL)
4818 			vml[c]->vdev_offline = B_TRUE;
4819 	}
4820 	vdev_reopen(spa->spa_root_vdev);
4821 
4822 	/*
4823 	 * Temporarily record the splitting vdevs in the spa config.  This
4824 	 * will disappear once the config is regenerated.
4825 	 */
4826 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4827 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4828 	    glist, children) == 0);
4829 	kmem_free(glist, children * sizeof (uint64_t));
4830 
4831 	mutex_enter(&spa->spa_props_lock);
4832 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4833 	    nvl) == 0);
4834 	mutex_exit(&spa->spa_props_lock);
4835 	spa->spa_config_splitting = nvl;
4836 	vdev_config_dirty(spa->spa_root_vdev);
4837 
4838 	/* configure and create the new pool */
4839 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4840 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4841 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4842 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4843 	    spa_version(spa)) == 0);
4844 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4845 	    spa->spa_config_txg) == 0);
4846 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4847 	    spa_generate_guid(NULL)) == 0);
4848 	(void) nvlist_lookup_string(props,
4849 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4850 
4851 	/* add the new pool to the namespace */
4852 	newspa = spa_add(newname, config, altroot);
4853 	newspa->spa_config_txg = spa->spa_config_txg;
4854 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4855 
4856 	/* release the spa config lock, retaining the namespace lock */
4857 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4858 
4859 	if (zio_injection_enabled)
4860 		zio_handle_panic_injection(spa, FTAG, 1);
4861 
4862 	spa_activate(newspa, spa_mode_global);
4863 	spa_async_suspend(newspa);
4864 
4865 	/* create the new pool from the disks of the original pool */
4866 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4867 	if (error)
4868 		goto out;
4869 
4870 	/* if that worked, generate a real config for the new pool */
4871 	if (newspa->spa_root_vdev != NULL) {
4872 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4873 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4874 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4875 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4876 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4877 		    B_TRUE));
4878 	}
4879 
4880 	/* set the props */
4881 	if (props != NULL) {
4882 		spa_configfile_set(newspa, props, B_FALSE);
4883 		error = spa_prop_set(newspa, props);
4884 		if (error)
4885 			goto out;
4886 	}
4887 
4888 	/* flush everything */
4889 	txg = spa_vdev_config_enter(newspa);
4890 	vdev_config_dirty(newspa->spa_root_vdev);
4891 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4892 
4893 	if (zio_injection_enabled)
4894 		zio_handle_panic_injection(spa, FTAG, 2);
4895 
4896 	spa_async_resume(newspa);
4897 
4898 	/* finally, update the original pool's config */
4899 	txg = spa_vdev_config_enter(spa);
4900 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4901 	error = dmu_tx_assign(tx, TXG_WAIT);
4902 	if (error != 0)
4903 		dmu_tx_abort(tx);
4904 	for (c = 0; c < children; c++) {
4905 		if (vml[c] != NULL) {
4906 			vdev_split(vml[c]);
4907 			if (error == 0)
4908 				spa_history_log_internal(spa, "detach", tx,
4909 				    "vdev=%s", vml[c]->vdev_path);
4910 			vdev_free(vml[c]);
4911 		}
4912 	}
4913 	vdev_config_dirty(spa->spa_root_vdev);
4914 	spa->spa_config_splitting = NULL;
4915 	nvlist_free(nvl);
4916 	if (error == 0)
4917 		dmu_tx_commit(tx);
4918 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4919 
4920 	if (zio_injection_enabled)
4921 		zio_handle_panic_injection(spa, FTAG, 3);
4922 
4923 	/* split is complete; log a history record */
4924 	spa_history_log_internal(newspa, "split", NULL,
4925 	    "from pool %s", spa_name(spa));
4926 
4927 	kmem_free(vml, children * sizeof (vdev_t *));
4928 
4929 	/* if we're not going to mount the filesystems in userland, export */
4930 	if (exp)
4931 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4932 		    B_FALSE, B_FALSE);
4933 
4934 	return (error);
4935 
4936 out:
4937 	spa_unload(newspa);
4938 	spa_deactivate(newspa);
4939 	spa_remove(newspa);
4940 
4941 	txg = spa_vdev_config_enter(spa);
4942 
4943 	/* re-online all offlined disks */
4944 	for (c = 0; c < children; c++) {
4945 		if (vml[c] != NULL)
4946 			vml[c]->vdev_offline = B_FALSE;
4947 	}
4948 	vdev_reopen(spa->spa_root_vdev);
4949 
4950 	nvlist_free(spa->spa_config_splitting);
4951 	spa->spa_config_splitting = NULL;
4952 	(void) spa_vdev_exit(spa, NULL, txg, error);
4953 
4954 	kmem_free(vml, children * sizeof (vdev_t *));
4955 	return (error);
4956 }
4957 
4958 static nvlist_t *
4959 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4960 {
4961 	for (int i = 0; i < count; i++) {
4962 		uint64_t guid;
4963 
4964 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4965 		    &guid) == 0);
4966 
4967 		if (guid == target_guid)
4968 			return (nvpp[i]);
4969 	}
4970 
4971 	return (NULL);
4972 }
4973 
4974 static void
4975 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4976 	nvlist_t *dev_to_remove)
4977 {
4978 	nvlist_t **newdev = NULL;
4979 
4980 	if (count > 1)
4981 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4982 
4983 	for (int i = 0, j = 0; i < count; i++) {
4984 		if (dev[i] == dev_to_remove)
4985 			continue;
4986 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4987 	}
4988 
4989 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4990 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4991 
4992 	for (int i = 0; i < count - 1; i++)
4993 		nvlist_free(newdev[i]);
4994 
4995 	if (count > 1)
4996 		kmem_free(newdev, (count - 1) * sizeof (void *));
4997 }
4998 
4999 /*
5000  * Evacuate the device.
5001  */
5002 static int
5003 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5004 {
5005 	uint64_t txg;
5006 	int error = 0;
5007 
5008 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5009 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5010 	ASSERT(vd == vd->vdev_top);
5011 
5012 	/*
5013 	 * Evacuate the device.  We don't hold the config lock as writer
5014 	 * since we need to do I/O but we do keep the
5015 	 * spa_namespace_lock held.  Once this completes the device
5016 	 * should no longer have any blocks allocated on it.
5017 	 */
5018 	if (vd->vdev_islog) {
5019 		if (vd->vdev_stat.vs_alloc != 0)
5020 			error = spa_offline_log(spa);
5021 	} else {
5022 		error = ENOTSUP;
5023 	}
5024 
5025 	if (error)
5026 		return (error);
5027 
5028 	/*
5029 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5030 	 * associated with this vdev, and wait for these changes to sync.
5031 	 */
5032 	ASSERT0(vd->vdev_stat.vs_alloc);
5033 	txg = spa_vdev_config_enter(spa);
5034 	vd->vdev_removing = B_TRUE;
5035 	vdev_dirty(vd, 0, NULL, txg);
5036 	vdev_config_dirty(vd);
5037 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5038 
5039 	return (0);
5040 }
5041 
5042 /*
5043  * Complete the removal by cleaning up the namespace.
5044  */
5045 static void
5046 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5047 {
5048 	vdev_t *rvd = spa->spa_root_vdev;
5049 	uint64_t id = vd->vdev_id;
5050 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5051 
5052 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5053 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5054 	ASSERT(vd == vd->vdev_top);
5055 
5056 	/*
5057 	 * Only remove any devices which are empty.
5058 	 */
5059 	if (vd->vdev_stat.vs_alloc != 0)
5060 		return;
5061 
5062 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5063 
5064 	if (list_link_active(&vd->vdev_state_dirty_node))
5065 		vdev_state_clean(vd);
5066 	if (list_link_active(&vd->vdev_config_dirty_node))
5067 		vdev_config_clean(vd);
5068 
5069 	vdev_free(vd);
5070 
5071 	if (last_vdev) {
5072 		vdev_compact_children(rvd);
5073 	} else {
5074 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5075 		vdev_add_child(rvd, vd);
5076 	}
5077 	vdev_config_dirty(rvd);
5078 
5079 	/*
5080 	 * Reassess the health of our root vdev.
5081 	 */
5082 	vdev_reopen(rvd);
5083 }
5084 
5085 /*
5086  * Remove a device from the pool -
5087  *
5088  * Removing a device from the vdev namespace requires several steps
5089  * and can take a significant amount of time.  As a result we use
5090  * the spa_vdev_config_[enter/exit] functions which allow us to
5091  * grab and release the spa_config_lock while still holding the namespace
5092  * lock.  During each step the configuration is synced out.
5093  */
5094 
5095 /*
5096  * Remove a device from the pool.  Currently, this supports removing only hot
5097  * spares, slogs, and level 2 ARC devices.
5098  */
5099 int
5100 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5101 {
5102 	vdev_t *vd;
5103 	metaslab_group_t *mg;
5104 	nvlist_t **spares, **l2cache, *nv;
5105 	uint64_t txg = 0;
5106 	uint_t nspares, nl2cache;
5107 	int error = 0;
5108 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5109 
5110 	ASSERT(spa_writeable(spa));
5111 
5112 	if (!locked)
5113 		txg = spa_vdev_enter(spa);
5114 
5115 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5116 
5117 	if (spa->spa_spares.sav_vdevs != NULL &&
5118 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5119 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5120 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5121 		/*
5122 		 * Only remove the hot spare if it's not currently in use
5123 		 * in this pool.
5124 		 */
5125 		if (vd == NULL || unspare) {
5126 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5127 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5128 			spa_load_spares(spa);
5129 			spa->spa_spares.sav_sync = B_TRUE;
5130 		} else {
5131 			error = EBUSY;
5132 		}
5133 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5134 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5135 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5136 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5137 		/*
5138 		 * Cache devices can always be removed.
5139 		 */
5140 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5141 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5142 		spa_load_l2cache(spa);
5143 		spa->spa_l2cache.sav_sync = B_TRUE;
5144 	} else if (vd != NULL && vd->vdev_islog) {
5145 		ASSERT(!locked);
5146 		ASSERT(vd == vd->vdev_top);
5147 
5148 		/*
5149 		 * XXX - Once we have bp-rewrite this should
5150 		 * become the common case.
5151 		 */
5152 
5153 		mg = vd->vdev_mg;
5154 
5155 		/*
5156 		 * Stop allocating from this vdev.
5157 		 */
5158 		metaslab_group_passivate(mg);
5159 
5160 		/*
5161 		 * Wait for the youngest allocations and frees to sync,
5162 		 * and then wait for the deferral of those frees to finish.
5163 		 */
5164 		spa_vdev_config_exit(spa, NULL,
5165 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5166 
5167 		/*
5168 		 * Attempt to evacuate the vdev.
5169 		 */
5170 		error = spa_vdev_remove_evacuate(spa, vd);
5171 
5172 		txg = spa_vdev_config_enter(spa);
5173 
5174 		/*
5175 		 * If we couldn't evacuate the vdev, unwind.
5176 		 */
5177 		if (error) {
5178 			metaslab_group_activate(mg);
5179 			return (spa_vdev_exit(spa, NULL, txg, error));
5180 		}
5181 
5182 		/*
5183 		 * Clean up the vdev namespace.
5184 		 */
5185 		spa_vdev_remove_from_namespace(spa, vd);
5186 
5187 	} else if (vd != NULL) {
5188 		/*
5189 		 * Normal vdevs cannot be removed (yet).
5190 		 */
5191 		error = ENOTSUP;
5192 	} else {
5193 		/*
5194 		 * There is no vdev of any kind with the specified guid.
5195 		 */
5196 		error = ENOENT;
5197 	}
5198 
5199 	if (!locked)
5200 		return (spa_vdev_exit(spa, NULL, txg, error));
5201 
5202 	return (error);
5203 }
5204 
5205 /*
5206  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5207  * current spared, so we can detach it.
5208  */
5209 static vdev_t *
5210 spa_vdev_resilver_done_hunt(vdev_t *vd)
5211 {
5212 	vdev_t *newvd, *oldvd;
5213 
5214 	for (int c = 0; c < vd->vdev_children; c++) {
5215 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5216 		if (oldvd != NULL)
5217 			return (oldvd);
5218 	}
5219 
5220 	/*
5221 	 * Check for a completed replacement.  We always consider the first
5222 	 * vdev in the list to be the oldest vdev, and the last one to be
5223 	 * the newest (see spa_vdev_attach() for how that works).  In
5224 	 * the case where the newest vdev is faulted, we will not automatically
5225 	 * remove it after a resilver completes.  This is OK as it will require
5226 	 * user intervention to determine which disk the admin wishes to keep.
5227 	 */
5228 	if (vd->vdev_ops == &vdev_replacing_ops) {
5229 		ASSERT(vd->vdev_children > 1);
5230 
5231 		newvd = vd->vdev_child[vd->vdev_children - 1];
5232 		oldvd = vd->vdev_child[0];
5233 
5234 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5235 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5236 		    !vdev_dtl_required(oldvd))
5237 			return (oldvd);
5238 	}
5239 
5240 	/*
5241 	 * Check for a completed resilver with the 'unspare' flag set.
5242 	 */
5243 	if (vd->vdev_ops == &vdev_spare_ops) {
5244 		vdev_t *first = vd->vdev_child[0];
5245 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5246 
5247 		if (last->vdev_unspare) {
5248 			oldvd = first;
5249 			newvd = last;
5250 		} else if (first->vdev_unspare) {
5251 			oldvd = last;
5252 			newvd = first;
5253 		} else {
5254 			oldvd = NULL;
5255 		}
5256 
5257 		if (oldvd != NULL &&
5258 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5259 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5260 		    !vdev_dtl_required(oldvd))
5261 			return (oldvd);
5262 
5263 		/*
5264 		 * If there are more than two spares attached to a disk,
5265 		 * and those spares are not required, then we want to
5266 		 * attempt to free them up now so that they can be used
5267 		 * by other pools.  Once we're back down to a single
5268 		 * disk+spare, we stop removing them.
5269 		 */
5270 		if (vd->vdev_children > 2) {
5271 			newvd = vd->vdev_child[1];
5272 
5273 			if (newvd->vdev_isspare && last->vdev_isspare &&
5274 			    vdev_dtl_empty(last, DTL_MISSING) &&
5275 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5276 			    !vdev_dtl_required(newvd))
5277 				return (newvd);
5278 		}
5279 	}
5280 
5281 	return (NULL);
5282 }
5283 
5284 static void
5285 spa_vdev_resilver_done(spa_t *spa)
5286 {
5287 	vdev_t *vd, *pvd, *ppvd;
5288 	uint64_t guid, sguid, pguid, ppguid;
5289 
5290 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5291 
5292 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5293 		pvd = vd->vdev_parent;
5294 		ppvd = pvd->vdev_parent;
5295 		guid = vd->vdev_guid;
5296 		pguid = pvd->vdev_guid;
5297 		ppguid = ppvd->vdev_guid;
5298 		sguid = 0;
5299 		/*
5300 		 * If we have just finished replacing a hot spared device, then
5301 		 * we need to detach the parent's first child (the original hot
5302 		 * spare) as well.
5303 		 */
5304 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5305 		    ppvd->vdev_children == 2) {
5306 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5307 			sguid = ppvd->vdev_child[1]->vdev_guid;
5308 		}
5309 		spa_config_exit(spa, SCL_ALL, FTAG);
5310 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5311 			return;
5312 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5313 			return;
5314 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5315 	}
5316 
5317 	spa_config_exit(spa, SCL_ALL, FTAG);
5318 }
5319 
5320 /*
5321  * Update the stored path or FRU for this vdev.
5322  */
5323 int
5324 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5325     boolean_t ispath)
5326 {
5327 	vdev_t *vd;
5328 	boolean_t sync = B_FALSE;
5329 
5330 	ASSERT(spa_writeable(spa));
5331 
5332 	spa_vdev_state_enter(spa, SCL_ALL);
5333 
5334 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5335 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5336 
5337 	if (!vd->vdev_ops->vdev_op_leaf)
5338 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5339 
5340 	if (ispath) {
5341 		if (strcmp(value, vd->vdev_path) != 0) {
5342 			spa_strfree(vd->vdev_path);
5343 			vd->vdev_path = spa_strdup(value);
5344 			sync = B_TRUE;
5345 		}
5346 	} else {
5347 		if (vd->vdev_fru == NULL) {
5348 			vd->vdev_fru = spa_strdup(value);
5349 			sync = B_TRUE;
5350 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5351 			spa_strfree(vd->vdev_fru);
5352 			vd->vdev_fru = spa_strdup(value);
5353 			sync = B_TRUE;
5354 		}
5355 	}
5356 
5357 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5358 }
5359 
5360 int
5361 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5362 {
5363 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5364 }
5365 
5366 int
5367 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5368 {
5369 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5370 }
5371 
5372 /*
5373  * ==========================================================================
5374  * SPA Scanning
5375  * ==========================================================================
5376  */
5377 
5378 int
5379 spa_scan_stop(spa_t *spa)
5380 {
5381 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5382 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5383 		return (EBUSY);
5384 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5385 }
5386 
5387 int
5388 spa_scan(spa_t *spa, pool_scan_func_t func)
5389 {
5390 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5391 
5392 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5393 		return (ENOTSUP);
5394 
5395 	/*
5396 	 * If a resilver was requested, but there is no DTL on a
5397 	 * writeable leaf device, we have nothing to do.
5398 	 */
5399 	if (func == POOL_SCAN_RESILVER &&
5400 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5401 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5402 		return (0);
5403 	}
5404 
5405 	return (dsl_scan(spa->spa_dsl_pool, func));
5406 }
5407 
5408 /*
5409  * ==========================================================================
5410  * SPA async task processing
5411  * ==========================================================================
5412  */
5413 
5414 static void
5415 spa_async_remove(spa_t *spa, vdev_t *vd)
5416 {
5417 	if (vd->vdev_remove_wanted) {
5418 		vd->vdev_remove_wanted = B_FALSE;
5419 		vd->vdev_delayed_close = B_FALSE;
5420 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5421 
5422 		/*
5423 		 * We want to clear the stats, but we don't want to do a full
5424 		 * vdev_clear() as that will cause us to throw away
5425 		 * degraded/faulted state as well as attempt to reopen the
5426 		 * device, all of which is a waste.
5427 		 */
5428 		vd->vdev_stat.vs_read_errors = 0;
5429 		vd->vdev_stat.vs_write_errors = 0;
5430 		vd->vdev_stat.vs_checksum_errors = 0;
5431 
5432 		vdev_state_dirty(vd->vdev_top);
5433 	}
5434 
5435 	for (int c = 0; c < vd->vdev_children; c++)
5436 		spa_async_remove(spa, vd->vdev_child[c]);
5437 }
5438 
5439 static void
5440 spa_async_probe(spa_t *spa, vdev_t *vd)
5441 {
5442 	if (vd->vdev_probe_wanted) {
5443 		vd->vdev_probe_wanted = B_FALSE;
5444 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5445 	}
5446 
5447 	for (int c = 0; c < vd->vdev_children; c++)
5448 		spa_async_probe(spa, vd->vdev_child[c]);
5449 }
5450 
5451 static void
5452 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5453 {
5454 	sysevent_id_t eid;
5455 	nvlist_t *attr;
5456 	char *physpath;
5457 
5458 	if (!spa->spa_autoexpand)
5459 		return;
5460 
5461 	for (int c = 0; c < vd->vdev_children; c++) {
5462 		vdev_t *cvd = vd->vdev_child[c];
5463 		spa_async_autoexpand(spa, cvd);
5464 	}
5465 
5466 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5467 		return;
5468 
5469 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5470 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5471 
5472 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5473 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5474 
5475 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5476 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5477 
5478 	nvlist_free(attr);
5479 	kmem_free(physpath, MAXPATHLEN);
5480 }
5481 
5482 static void
5483 spa_async_thread(spa_t *spa)
5484 {
5485 	int tasks;
5486 
5487 	ASSERT(spa->spa_sync_on);
5488 
5489 	mutex_enter(&spa->spa_async_lock);
5490 	tasks = spa->spa_async_tasks;
5491 	spa->spa_async_tasks = 0;
5492 	mutex_exit(&spa->spa_async_lock);
5493 
5494 	/*
5495 	 * See if the config needs to be updated.
5496 	 */
5497 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5498 		uint64_t old_space, new_space;
5499 
5500 		mutex_enter(&spa_namespace_lock);
5501 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5502 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5503 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5504 		mutex_exit(&spa_namespace_lock);
5505 
5506 		/*
5507 		 * If the pool grew as a result of the config update,
5508 		 * then log an internal history event.
5509 		 */
5510 		if (new_space != old_space) {
5511 			spa_history_log_internal(spa, "vdev online", NULL,
5512 			    "pool '%s' size: %llu(+%llu)",
5513 			    spa_name(spa), new_space, new_space - old_space);
5514 		}
5515 	}
5516 
5517 	/*
5518 	 * See if any devices need to be marked REMOVED.
5519 	 */
5520 	if (tasks & SPA_ASYNC_REMOVE) {
5521 		spa_vdev_state_enter(spa, SCL_NONE);
5522 		spa_async_remove(spa, spa->spa_root_vdev);
5523 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5524 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5525 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5526 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5527 		(void) spa_vdev_state_exit(spa, NULL, 0);
5528 	}
5529 
5530 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5531 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5532 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5533 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5534 	}
5535 
5536 	/*
5537 	 * See if any devices need to be probed.
5538 	 */
5539 	if (tasks & SPA_ASYNC_PROBE) {
5540 		spa_vdev_state_enter(spa, SCL_NONE);
5541 		spa_async_probe(spa, spa->spa_root_vdev);
5542 		(void) spa_vdev_state_exit(spa, NULL, 0);
5543 	}
5544 
5545 	/*
5546 	 * If any devices are done replacing, detach them.
5547 	 */
5548 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5549 		spa_vdev_resilver_done(spa);
5550 
5551 	/*
5552 	 * Kick off a resilver.
5553 	 */
5554 	if (tasks & SPA_ASYNC_RESILVER)
5555 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5556 
5557 	/*
5558 	 * Let the world know that we're done.
5559 	 */
5560 	mutex_enter(&spa->spa_async_lock);
5561 	spa->spa_async_thread = NULL;
5562 	cv_broadcast(&spa->spa_async_cv);
5563 	mutex_exit(&spa->spa_async_lock);
5564 	thread_exit();
5565 }
5566 
5567 void
5568 spa_async_suspend(spa_t *spa)
5569 {
5570 	mutex_enter(&spa->spa_async_lock);
5571 	spa->spa_async_suspended++;
5572 	while (spa->spa_async_thread != NULL)
5573 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5574 	mutex_exit(&spa->spa_async_lock);
5575 }
5576 
5577 void
5578 spa_async_resume(spa_t *spa)
5579 {
5580 	mutex_enter(&spa->spa_async_lock);
5581 	ASSERT(spa->spa_async_suspended != 0);
5582 	spa->spa_async_suspended--;
5583 	mutex_exit(&spa->spa_async_lock);
5584 }
5585 
5586 static void
5587 spa_async_dispatch(spa_t *spa)
5588 {
5589 	mutex_enter(&spa->spa_async_lock);
5590 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5591 	    spa->spa_async_thread == NULL &&
5592 	    rootdir != NULL && !vn_is_readonly(rootdir))
5593 		spa->spa_async_thread = thread_create(NULL, 0,
5594 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5595 	mutex_exit(&spa->spa_async_lock);
5596 }
5597 
5598 void
5599 spa_async_request(spa_t *spa, int task)
5600 {
5601 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5602 	mutex_enter(&spa->spa_async_lock);
5603 	spa->spa_async_tasks |= task;
5604 	mutex_exit(&spa->spa_async_lock);
5605 }
5606 
5607 /*
5608  * ==========================================================================
5609  * SPA syncing routines
5610  * ==========================================================================
5611  */
5612 
5613 static int
5614 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5615 {
5616 	bpobj_t *bpo = arg;
5617 	bpobj_enqueue(bpo, bp, tx);
5618 	return (0);
5619 }
5620 
5621 static int
5622 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5623 {
5624 	zio_t *zio = arg;
5625 
5626 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5627 	    zio->io_flags));
5628 	return (0);
5629 }
5630 
5631 static void
5632 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5633 {
5634 	char *packed = NULL;
5635 	size_t bufsize;
5636 	size_t nvsize = 0;
5637 	dmu_buf_t *db;
5638 
5639 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5640 
5641 	/*
5642 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5643 	 * information.  This avoids the dbuf_will_dirty() path and
5644 	 * saves us a pre-read to get data we don't actually care about.
5645 	 */
5646 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5647 	packed = kmem_alloc(bufsize, KM_SLEEP);
5648 
5649 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5650 	    KM_SLEEP) == 0);
5651 	bzero(packed + nvsize, bufsize - nvsize);
5652 
5653 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5654 
5655 	kmem_free(packed, bufsize);
5656 
5657 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5658 	dmu_buf_will_dirty(db, tx);
5659 	*(uint64_t *)db->db_data = nvsize;
5660 	dmu_buf_rele(db, FTAG);
5661 }
5662 
5663 static void
5664 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5665     const char *config, const char *entry)
5666 {
5667 	nvlist_t *nvroot;
5668 	nvlist_t **list;
5669 	int i;
5670 
5671 	if (!sav->sav_sync)
5672 		return;
5673 
5674 	/*
5675 	 * Update the MOS nvlist describing the list of available devices.
5676 	 * spa_validate_aux() will have already made sure this nvlist is
5677 	 * valid and the vdevs are labeled appropriately.
5678 	 */
5679 	if (sav->sav_object == 0) {
5680 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5681 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5682 		    sizeof (uint64_t), tx);
5683 		VERIFY(zap_update(spa->spa_meta_objset,
5684 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5685 		    &sav->sav_object, tx) == 0);
5686 	}
5687 
5688 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5689 	if (sav->sav_count == 0) {
5690 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5691 	} else {
5692 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5693 		for (i = 0; i < sav->sav_count; i++)
5694 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5695 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5696 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5697 		    sav->sav_count) == 0);
5698 		for (i = 0; i < sav->sav_count; i++)
5699 			nvlist_free(list[i]);
5700 		kmem_free(list, sav->sav_count * sizeof (void *));
5701 	}
5702 
5703 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5704 	nvlist_free(nvroot);
5705 
5706 	sav->sav_sync = B_FALSE;
5707 }
5708 
5709 static void
5710 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5711 {
5712 	nvlist_t *config;
5713 
5714 	if (list_is_empty(&spa->spa_config_dirty_list))
5715 		return;
5716 
5717 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5718 
5719 	config = spa_config_generate(spa, spa->spa_root_vdev,
5720 	    dmu_tx_get_txg(tx), B_FALSE);
5721 
5722 	/*
5723 	 * If we're upgrading the spa version then make sure that
5724 	 * the config object gets updated with the correct version.
5725 	 */
5726 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5727 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5728 		    spa->spa_uberblock.ub_version);
5729 
5730 	spa_config_exit(spa, SCL_STATE, FTAG);
5731 
5732 	if (spa->spa_config_syncing)
5733 		nvlist_free(spa->spa_config_syncing);
5734 	spa->spa_config_syncing = config;
5735 
5736 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5737 }
5738 
5739 static void
5740 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5741 {
5742 	spa_t *spa = arg1;
5743 	uint64_t version = *(uint64_t *)arg2;
5744 
5745 	/*
5746 	 * Setting the version is special cased when first creating the pool.
5747 	 */
5748 	ASSERT(tx->tx_txg != TXG_INITIAL);
5749 
5750 	ASSERT(version <= SPA_VERSION);
5751 	ASSERT(version >= spa_version(spa));
5752 
5753 	spa->spa_uberblock.ub_version = version;
5754 	vdev_config_dirty(spa->spa_root_vdev);
5755 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5756 }
5757 
5758 /*
5759  * Set zpool properties.
5760  */
5761 static void
5762 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5763 {
5764 	spa_t *spa = arg1;
5765 	objset_t *mos = spa->spa_meta_objset;
5766 	nvlist_t *nvp = arg2;
5767 	nvpair_t *elem = NULL;
5768 
5769 	mutex_enter(&spa->spa_props_lock);
5770 
5771 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5772 		uint64_t intval;
5773 		char *strval, *fname;
5774 		zpool_prop_t prop;
5775 		const char *propname;
5776 		zprop_type_t proptype;
5777 		zfeature_info_t *feature;
5778 
5779 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5780 		case ZPROP_INVAL:
5781 			/*
5782 			 * We checked this earlier in spa_prop_validate().
5783 			 */
5784 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5785 
5786 			fname = strchr(nvpair_name(elem), '@') + 1;
5787 			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5788 
5789 			spa_feature_enable(spa, feature, tx);
5790 			spa_history_log_internal(spa, "set", tx,
5791 			    "%s=enabled", nvpair_name(elem));
5792 			break;
5793 
5794 		case ZPOOL_PROP_VERSION:
5795 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5796 			/*
5797 			 * The version is synced seperatly before other
5798 			 * properties and should be correct by now.
5799 			 */
5800 			ASSERT3U(spa_version(spa), >=, intval);
5801 			break;
5802 
5803 		case ZPOOL_PROP_ALTROOT:
5804 			/*
5805 			 * 'altroot' is a non-persistent property. It should
5806 			 * have been set temporarily at creation or import time.
5807 			 */
5808 			ASSERT(spa->spa_root != NULL);
5809 			break;
5810 
5811 		case ZPOOL_PROP_READONLY:
5812 		case ZPOOL_PROP_CACHEFILE:
5813 			/*
5814 			 * 'readonly' and 'cachefile' are also non-persisitent
5815 			 * properties.
5816 			 */
5817 			break;
5818 		case ZPOOL_PROP_COMMENT:
5819 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5820 			if (spa->spa_comment != NULL)
5821 				spa_strfree(spa->spa_comment);
5822 			spa->spa_comment = spa_strdup(strval);
5823 			/*
5824 			 * We need to dirty the configuration on all the vdevs
5825 			 * so that their labels get updated.  It's unnecessary
5826 			 * to do this for pool creation since the vdev's
5827 			 * configuratoin has already been dirtied.
5828 			 */
5829 			if (tx->tx_txg != TXG_INITIAL)
5830 				vdev_config_dirty(spa->spa_root_vdev);
5831 			spa_history_log_internal(spa, "set", tx,
5832 			    "%s=%s", nvpair_name(elem), strval);
5833 			break;
5834 		default:
5835 			/*
5836 			 * Set pool property values in the poolprops mos object.
5837 			 */
5838 			if (spa->spa_pool_props_object == 0) {
5839 				spa->spa_pool_props_object =
5840 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5841 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5842 				    tx);
5843 			}
5844 
5845 			/* normalize the property name */
5846 			propname = zpool_prop_to_name(prop);
5847 			proptype = zpool_prop_get_type(prop);
5848 
5849 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5850 				ASSERT(proptype == PROP_TYPE_STRING);
5851 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5852 				VERIFY(zap_update(mos,
5853 				    spa->spa_pool_props_object, propname,
5854 				    1, strlen(strval) + 1, strval, tx) == 0);
5855 				spa_history_log_internal(spa, "set", tx,
5856 				    "%s=%s", nvpair_name(elem), strval);
5857 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5858 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5859 
5860 				if (proptype == PROP_TYPE_INDEX) {
5861 					const char *unused;
5862 					VERIFY(zpool_prop_index_to_string(
5863 					    prop, intval, &unused) == 0);
5864 				}
5865 				VERIFY(zap_update(mos,
5866 				    spa->spa_pool_props_object, propname,
5867 				    8, 1, &intval, tx) == 0);
5868 				spa_history_log_internal(spa, "set", tx,
5869 				    "%s=%lld", nvpair_name(elem), intval);
5870 			} else {
5871 				ASSERT(0); /* not allowed */
5872 			}
5873 
5874 			switch (prop) {
5875 			case ZPOOL_PROP_DELEGATION:
5876 				spa->spa_delegation = intval;
5877 				break;
5878 			case ZPOOL_PROP_BOOTFS:
5879 				spa->spa_bootfs = intval;
5880 				break;
5881 			case ZPOOL_PROP_FAILUREMODE:
5882 				spa->spa_failmode = intval;
5883 				break;
5884 			case ZPOOL_PROP_AUTOEXPAND:
5885 				spa->spa_autoexpand = intval;
5886 				if (tx->tx_txg != TXG_INITIAL)
5887 					spa_async_request(spa,
5888 					    SPA_ASYNC_AUTOEXPAND);
5889 				break;
5890 			case ZPOOL_PROP_DEDUPDITTO:
5891 				spa->spa_dedup_ditto = intval;
5892 				break;
5893 			default:
5894 				break;
5895 			}
5896 		}
5897 
5898 	}
5899 
5900 	mutex_exit(&spa->spa_props_lock);
5901 }
5902 
5903 /*
5904  * Perform one-time upgrade on-disk changes.  spa_version() does not
5905  * reflect the new version this txg, so there must be no changes this
5906  * txg to anything that the upgrade code depends on after it executes.
5907  * Therefore this must be called after dsl_pool_sync() does the sync
5908  * tasks.
5909  */
5910 static void
5911 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5912 {
5913 	dsl_pool_t *dp = spa->spa_dsl_pool;
5914 
5915 	ASSERT(spa->spa_sync_pass == 1);
5916 
5917 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5918 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5919 		dsl_pool_create_origin(dp, tx);
5920 
5921 		/* Keeping the origin open increases spa_minref */
5922 		spa->spa_minref += 3;
5923 	}
5924 
5925 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5926 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5927 		dsl_pool_upgrade_clones(dp, tx);
5928 	}
5929 
5930 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5931 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5932 		dsl_pool_upgrade_dir_clones(dp, tx);
5933 
5934 		/* Keeping the freedir open increases spa_minref */
5935 		spa->spa_minref += 3;
5936 	}
5937 
5938 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5939 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5940 		spa_feature_create_zap_objects(spa, tx);
5941 	}
5942 }
5943 
5944 /*
5945  * Sync the specified transaction group.  New blocks may be dirtied as
5946  * part of the process, so we iterate until it converges.
5947  */
5948 void
5949 spa_sync(spa_t *spa, uint64_t txg)
5950 {
5951 	dsl_pool_t *dp = spa->spa_dsl_pool;
5952 	objset_t *mos = spa->spa_meta_objset;
5953 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5954 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5955 	vdev_t *rvd = spa->spa_root_vdev;
5956 	vdev_t *vd;
5957 	dmu_tx_t *tx;
5958 	int error;
5959 
5960 	VERIFY(spa_writeable(spa));
5961 
5962 	/*
5963 	 * Lock out configuration changes.
5964 	 */
5965 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5966 
5967 	spa->spa_syncing_txg = txg;
5968 	spa->spa_sync_pass = 0;
5969 
5970 	/*
5971 	 * If there are any pending vdev state changes, convert them
5972 	 * into config changes that go out with this transaction group.
5973 	 */
5974 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5975 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5976 		/*
5977 		 * We need the write lock here because, for aux vdevs,
5978 		 * calling vdev_config_dirty() modifies sav_config.
5979 		 * This is ugly and will become unnecessary when we
5980 		 * eliminate the aux vdev wart by integrating all vdevs
5981 		 * into the root vdev tree.
5982 		 */
5983 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5984 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5985 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5986 			vdev_state_clean(vd);
5987 			vdev_config_dirty(vd);
5988 		}
5989 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5990 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5991 	}
5992 	spa_config_exit(spa, SCL_STATE, FTAG);
5993 
5994 	tx = dmu_tx_create_assigned(dp, txg);
5995 
5996 	spa->spa_sync_starttime = gethrtime();
5997 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
5998 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
5999 
6000 	/*
6001 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6002 	 * set spa_deflate if we have no raid-z vdevs.
6003 	 */
6004 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6005 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6006 		int i;
6007 
6008 		for (i = 0; i < rvd->vdev_children; i++) {
6009 			vd = rvd->vdev_child[i];
6010 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6011 				break;
6012 		}
6013 		if (i == rvd->vdev_children) {
6014 			spa->spa_deflate = TRUE;
6015 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6016 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6017 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6018 		}
6019 	}
6020 
6021 	/*
6022 	 * If anything has changed in this txg, or if someone is waiting
6023 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6024 	 * deferred frees from the previous txg.  If not, leave them
6025 	 * alone so that we don't generate work on an otherwise idle
6026 	 * system.
6027 	 */
6028 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6029 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6030 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6031 	    ((dsl_scan_active(dp->dp_scan) ||
6032 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6033 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6034 		VERIFY3U(bpobj_iterate(defer_bpo,
6035 		    spa_free_sync_cb, zio, tx), ==, 0);
6036 		VERIFY0(zio_wait(zio));
6037 	}
6038 
6039 	/*
6040 	 * Iterate to convergence.
6041 	 */
6042 	do {
6043 		int pass = ++spa->spa_sync_pass;
6044 
6045 		spa_sync_config_object(spa, tx);
6046 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6047 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6048 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6049 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6050 		spa_errlog_sync(spa, txg);
6051 		dsl_pool_sync(dp, txg);
6052 
6053 		if (pass < zfs_sync_pass_deferred_free) {
6054 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6055 			bplist_iterate(free_bpl, spa_free_sync_cb,
6056 			    zio, tx);
6057 			VERIFY(zio_wait(zio) == 0);
6058 		} else {
6059 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6060 			    defer_bpo, tx);
6061 		}
6062 
6063 		ddt_sync(spa, txg);
6064 		dsl_scan_sync(dp, tx);
6065 
6066 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6067 			vdev_sync(vd, txg);
6068 
6069 		if (pass == 1)
6070 			spa_sync_upgrades(spa, tx);
6071 
6072 	} while (dmu_objset_is_dirty(mos, txg));
6073 
6074 	/*
6075 	 * Rewrite the vdev configuration (which includes the uberblock)
6076 	 * to commit the transaction group.
6077 	 *
6078 	 * If there are no dirty vdevs, we sync the uberblock to a few
6079 	 * random top-level vdevs that are known to be visible in the
6080 	 * config cache (see spa_vdev_add() for a complete description).
6081 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6082 	 */
6083 	for (;;) {
6084 		/*
6085 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6086 		 * while we're attempting to write the vdev labels.
6087 		 */
6088 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6089 
6090 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6091 			vdev_t *svd[SPA_DVAS_PER_BP];
6092 			int svdcount = 0;
6093 			int children = rvd->vdev_children;
6094 			int c0 = spa_get_random(children);
6095 
6096 			for (int c = 0; c < children; c++) {
6097 				vd = rvd->vdev_child[(c0 + c) % children];
6098 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6099 					continue;
6100 				svd[svdcount++] = vd;
6101 				if (svdcount == SPA_DVAS_PER_BP)
6102 					break;
6103 			}
6104 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6105 			if (error != 0)
6106 				error = vdev_config_sync(svd, svdcount, txg,
6107 				    B_TRUE);
6108 		} else {
6109 			error = vdev_config_sync(rvd->vdev_child,
6110 			    rvd->vdev_children, txg, B_FALSE);
6111 			if (error != 0)
6112 				error = vdev_config_sync(rvd->vdev_child,
6113 				    rvd->vdev_children, txg, B_TRUE);
6114 		}
6115 
6116 		if (error == 0)
6117 			spa->spa_last_synced_guid = rvd->vdev_guid;
6118 
6119 		spa_config_exit(spa, SCL_STATE, FTAG);
6120 
6121 		if (error == 0)
6122 			break;
6123 		zio_suspend(spa, NULL);
6124 		zio_resume_wait(spa);
6125 	}
6126 	dmu_tx_commit(tx);
6127 
6128 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6129 
6130 	/*
6131 	 * Clear the dirty config list.
6132 	 */
6133 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6134 		vdev_config_clean(vd);
6135 
6136 	/*
6137 	 * Now that the new config has synced transactionally,
6138 	 * let it become visible to the config cache.
6139 	 */
6140 	if (spa->spa_config_syncing != NULL) {
6141 		spa_config_set(spa, spa->spa_config_syncing);
6142 		spa->spa_config_txg = txg;
6143 		spa->spa_config_syncing = NULL;
6144 	}
6145 
6146 	spa->spa_ubsync = spa->spa_uberblock;
6147 
6148 	dsl_pool_sync_done(dp, txg);
6149 
6150 	/*
6151 	 * Update usable space statistics.
6152 	 */
6153 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6154 		vdev_sync_done(vd, txg);
6155 
6156 	spa_update_dspace(spa);
6157 
6158 	/*
6159 	 * It had better be the case that we didn't dirty anything
6160 	 * since vdev_config_sync().
6161 	 */
6162 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6163 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6164 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6165 
6166 	spa->spa_sync_pass = 0;
6167 
6168 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6169 
6170 	spa_handle_ignored_writes(spa);
6171 
6172 	/*
6173 	 * If any async tasks have been requested, kick them off.
6174 	 */
6175 	spa_async_dispatch(spa);
6176 }
6177 
6178 /*
6179  * Sync all pools.  We don't want to hold the namespace lock across these
6180  * operations, so we take a reference on the spa_t and drop the lock during the
6181  * sync.
6182  */
6183 void
6184 spa_sync_allpools(void)
6185 {
6186 	spa_t *spa = NULL;
6187 	mutex_enter(&spa_namespace_lock);
6188 	while ((spa = spa_next(spa)) != NULL) {
6189 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6190 		    !spa_writeable(spa) || spa_suspended(spa))
6191 			continue;
6192 		spa_open_ref(spa, FTAG);
6193 		mutex_exit(&spa_namespace_lock);
6194 		txg_wait_synced(spa_get_dsl(spa), 0);
6195 		mutex_enter(&spa_namespace_lock);
6196 		spa_close(spa, FTAG);
6197 	}
6198 	mutex_exit(&spa_namespace_lock);
6199 }
6200 
6201 /*
6202  * ==========================================================================
6203  * Miscellaneous routines
6204  * ==========================================================================
6205  */
6206 
6207 /*
6208  * Remove all pools in the system.
6209  */
6210 void
6211 spa_evict_all(void)
6212 {
6213 	spa_t *spa;
6214 
6215 	/*
6216 	 * Remove all cached state.  All pools should be closed now,
6217 	 * so every spa in the AVL tree should be unreferenced.
6218 	 */
6219 	mutex_enter(&spa_namespace_lock);
6220 	while ((spa = spa_next(NULL)) != NULL) {
6221 		/*
6222 		 * Stop async tasks.  The async thread may need to detach
6223 		 * a device that's been replaced, which requires grabbing
6224 		 * spa_namespace_lock, so we must drop it here.
6225 		 */
6226 		spa_open_ref(spa, FTAG);
6227 		mutex_exit(&spa_namespace_lock);
6228 		spa_async_suspend(spa);
6229 		mutex_enter(&spa_namespace_lock);
6230 		spa_close(spa, FTAG);
6231 
6232 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6233 			spa_unload(spa);
6234 			spa_deactivate(spa);
6235 		}
6236 		spa_remove(spa);
6237 	}
6238 	mutex_exit(&spa_namespace_lock);
6239 }
6240 
6241 vdev_t *
6242 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6243 {
6244 	vdev_t *vd;
6245 	int i;
6246 
6247 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6248 		return (vd);
6249 
6250 	if (aux) {
6251 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6252 			vd = spa->spa_l2cache.sav_vdevs[i];
6253 			if (vd->vdev_guid == guid)
6254 				return (vd);
6255 		}
6256 
6257 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6258 			vd = spa->spa_spares.sav_vdevs[i];
6259 			if (vd->vdev_guid == guid)
6260 				return (vd);
6261 		}
6262 	}
6263 
6264 	return (NULL);
6265 }
6266 
6267 void
6268 spa_upgrade(spa_t *spa, uint64_t version)
6269 {
6270 	ASSERT(spa_writeable(spa));
6271 
6272 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6273 
6274 	/*
6275 	 * This should only be called for a non-faulted pool, and since a
6276 	 * future version would result in an unopenable pool, this shouldn't be
6277 	 * possible.
6278 	 */
6279 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6280 	ASSERT(version >= spa->spa_uberblock.ub_version);
6281 
6282 	spa->spa_uberblock.ub_version = version;
6283 	vdev_config_dirty(spa->spa_root_vdev);
6284 
6285 	spa_config_exit(spa, SCL_ALL, FTAG);
6286 
6287 	txg_wait_synced(spa_get_dsl(spa), 0);
6288 }
6289 
6290 boolean_t
6291 spa_has_spare(spa_t *spa, uint64_t guid)
6292 {
6293 	int i;
6294 	uint64_t spareguid;
6295 	spa_aux_vdev_t *sav = &spa->spa_spares;
6296 
6297 	for (i = 0; i < sav->sav_count; i++)
6298 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6299 			return (B_TRUE);
6300 
6301 	for (i = 0; i < sav->sav_npending; i++) {
6302 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6303 		    &spareguid) == 0 && spareguid == guid)
6304 			return (B_TRUE);
6305 	}
6306 
6307 	return (B_FALSE);
6308 }
6309 
6310 /*
6311  * Check if a pool has an active shared spare device.
6312  * Note: reference count of an active spare is 2, as a spare and as a replace
6313  */
6314 static boolean_t
6315 spa_has_active_shared_spare(spa_t *spa)
6316 {
6317 	int i, refcnt;
6318 	uint64_t pool;
6319 	spa_aux_vdev_t *sav = &spa->spa_spares;
6320 
6321 	for (i = 0; i < sav->sav_count; i++) {
6322 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6323 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6324 		    refcnt > 2)
6325 			return (B_TRUE);
6326 	}
6327 
6328 	return (B_FALSE);
6329 }
6330 
6331 /*
6332  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6333  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6334  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6335  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6336  * or zdb as real changes.
6337  */
6338 void
6339 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6340 {
6341 #ifdef _KERNEL
6342 	sysevent_t		*ev;
6343 	sysevent_attr_list_t	*attr = NULL;
6344 	sysevent_value_t	value;
6345 	sysevent_id_t		eid;
6346 
6347 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6348 	    SE_SLEEP);
6349 
6350 	value.value_type = SE_DATA_TYPE_STRING;
6351 	value.value.sv_string = spa_name(spa);
6352 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6353 		goto done;
6354 
6355 	value.value_type = SE_DATA_TYPE_UINT64;
6356 	value.value.sv_uint64 = spa_guid(spa);
6357 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6358 		goto done;
6359 
6360 	if (vd) {
6361 		value.value_type = SE_DATA_TYPE_UINT64;
6362 		value.value.sv_uint64 = vd->vdev_guid;
6363 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6364 		    SE_SLEEP) != 0)
6365 			goto done;
6366 
6367 		if (vd->vdev_path) {
6368 			value.value_type = SE_DATA_TYPE_STRING;
6369 			value.value.sv_string = vd->vdev_path;
6370 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6371 			    &value, SE_SLEEP) != 0)
6372 				goto done;
6373 		}
6374 	}
6375 
6376 	if (sysevent_attach_attributes(ev, attr) != 0)
6377 		goto done;
6378 	attr = NULL;
6379 
6380 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6381 
6382 done:
6383 	if (attr)
6384 		sysevent_free_attr(attr);
6385 	sysevent_free(ev);
6386 #endif
6387 }
6388