spa.c revision ca45db4129beff691dc46576c328149443788af2
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/zio_compress.h>
39#include <sys/dmu.h>
40#include <sys/dmu_tx.h>
41#include <sys/zap.h>
42#include <sys/zil.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/uberblock_impl.h>
46#include <sys/txg.h>
47#include <sys/avl.h>
48#include <sys/dmu_traverse.h>
49#include <sys/dmu_objset.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dataset.h>
53#include <sys/dsl_dir.h>
54#include <sys/dsl_prop.h>
55#include <sys/dsl_synctask.h>
56#include <sys/fs/zfs.h>
57#include <sys/arc.h>
58#include <sys/callb.h>
59#include <sys/systeminfo.h>
60#include <sys/sunddi.h>
61#include <sys/spa_boot.h>
62#include <sys/zfs_ioctl.h>
63
64#ifdef	_KERNEL
65#include <sys/zone.h>
66#endif	/* _KERNEL */
67
68#include "zfs_prop.h"
69#include "zfs_comutil.h"
70
71enum zti_modes {
72	zti_mode_fixed,			/* value is # of threads (min 1) */
73	zti_mode_online_percent,	/* value is % of online CPUs */
74	zti_mode_tune,			/* fill from zio_taskq_tune_* */
75	zti_nmodes
76};
77
78#define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
79#define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
80#define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
81
82#define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
83
84typedef struct zio_taskq_info {
85	const char *zti_name;
86	struct {
87		enum zti_modes zti_mode;
88		uint_t zti_value;
89	} zti_nthreads[ZIO_TASKQ_TYPES];
90} zio_taskq_info_t;
91
92static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
93				"issue",		"intr"
94};
95
96const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
97	/*			ISSUE			INTR		*/
98	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
99	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
100	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
101	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
102	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104};
105
106enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
107uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
108
109static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
110static boolean_t spa_has_active_shared_spare(spa_t *spa);
111
112/*
113 * ==========================================================================
114 * SPA properties routines
115 * ==========================================================================
116 */
117
118/*
119 * Add a (source=src, propname=propval) list to an nvlist.
120 */
121static void
122spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
123    uint64_t intval, zprop_source_t src)
124{
125	const char *propname = zpool_prop_to_name(prop);
126	nvlist_t *propval;
127
128	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
129	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
130
131	if (strval != NULL)
132		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
133	else
134		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
135
136	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
137	nvlist_free(propval);
138}
139
140/*
141 * Get property values from the spa configuration.
142 */
143static void
144spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
145{
146	uint64_t size;
147	uint64_t used;
148	uint64_t cap, version;
149	zprop_source_t src = ZPROP_SRC_NONE;
150	spa_config_dirent_t *dp;
151
152	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
153
154	if (spa->spa_root_vdev != NULL) {
155		size = spa_get_space(spa);
156		used = spa_get_alloc(spa);
157		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
158		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
159		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
160		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
161		    size - used, src);
162
163		cap = (size == 0) ? 0 : (used * 100 / size);
164		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
165
166		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
167		    spa->spa_root_vdev->vdev_state, src);
168
169		version = spa_version(spa);
170		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
171			src = ZPROP_SRC_DEFAULT;
172		else
173			src = ZPROP_SRC_LOCAL;
174		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
175	}
176
177	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
178
179	if (spa->spa_root != NULL)
180		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
181		    0, ZPROP_SRC_LOCAL);
182
183	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
184		if (dp->scd_path == NULL) {
185			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
186			    "none", 0, ZPROP_SRC_LOCAL);
187		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
188			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
189			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
190		}
191	}
192}
193
194/*
195 * Get zpool property values.
196 */
197int
198spa_prop_get(spa_t *spa, nvlist_t **nvp)
199{
200	zap_cursor_t zc;
201	zap_attribute_t za;
202	objset_t *mos = spa->spa_meta_objset;
203	int err;
204
205	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
206
207	mutex_enter(&spa->spa_props_lock);
208
209	/*
210	 * Get properties from the spa config.
211	 */
212	spa_prop_get_config(spa, nvp);
213
214	/* If no pool property object, no more prop to get. */
215	if (spa->spa_pool_props_object == 0) {
216		mutex_exit(&spa->spa_props_lock);
217		return (0);
218	}
219
220	/*
221	 * Get properties from the MOS pool property object.
222	 */
223	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
224	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
225	    zap_cursor_advance(&zc)) {
226		uint64_t intval = 0;
227		char *strval = NULL;
228		zprop_source_t src = ZPROP_SRC_DEFAULT;
229		zpool_prop_t prop;
230
231		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
232			continue;
233
234		switch (za.za_integer_length) {
235		case 8:
236			/* integer property */
237			if (za.za_first_integer !=
238			    zpool_prop_default_numeric(prop))
239				src = ZPROP_SRC_LOCAL;
240
241			if (prop == ZPOOL_PROP_BOOTFS) {
242				dsl_pool_t *dp;
243				dsl_dataset_t *ds = NULL;
244
245				dp = spa_get_dsl(spa);
246				rw_enter(&dp->dp_config_rwlock, RW_READER);
247				if (err = dsl_dataset_hold_obj(dp,
248				    za.za_first_integer, FTAG, &ds)) {
249					rw_exit(&dp->dp_config_rwlock);
250					break;
251				}
252
253				strval = kmem_alloc(
254				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
255				    KM_SLEEP);
256				dsl_dataset_name(ds, strval);
257				dsl_dataset_rele(ds, FTAG);
258				rw_exit(&dp->dp_config_rwlock);
259			} else {
260				strval = NULL;
261				intval = za.za_first_integer;
262			}
263
264			spa_prop_add_list(*nvp, prop, strval, intval, src);
265
266			if (strval != NULL)
267				kmem_free(strval,
268				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
269
270			break;
271
272		case 1:
273			/* string property */
274			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
275			err = zap_lookup(mos, spa->spa_pool_props_object,
276			    za.za_name, 1, za.za_num_integers, strval);
277			if (err) {
278				kmem_free(strval, za.za_num_integers);
279				break;
280			}
281			spa_prop_add_list(*nvp, prop, strval, 0, src);
282			kmem_free(strval, za.za_num_integers);
283			break;
284
285		default:
286			break;
287		}
288	}
289	zap_cursor_fini(&zc);
290	mutex_exit(&spa->spa_props_lock);
291out:
292	if (err && err != ENOENT) {
293		nvlist_free(*nvp);
294		*nvp = NULL;
295		return (err);
296	}
297
298	return (0);
299}
300
301/*
302 * Validate the given pool properties nvlist and modify the list
303 * for the property values to be set.
304 */
305static int
306spa_prop_validate(spa_t *spa, nvlist_t *props)
307{
308	nvpair_t *elem;
309	int error = 0, reset_bootfs = 0;
310	uint64_t objnum;
311
312	elem = NULL;
313	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
314		zpool_prop_t prop;
315		char *propname, *strval;
316		uint64_t intval;
317		objset_t *os;
318		char *slash;
319
320		propname = nvpair_name(elem);
321
322		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323			return (EINVAL);
324
325		switch (prop) {
326		case ZPOOL_PROP_VERSION:
327			error = nvpair_value_uint64(elem, &intval);
328			if (!error &&
329			    (intval < spa_version(spa) || intval > SPA_VERSION))
330				error = EINVAL;
331			break;
332
333		case ZPOOL_PROP_DELEGATION:
334		case ZPOOL_PROP_AUTOREPLACE:
335		case ZPOOL_PROP_LISTSNAPS:
336		case ZPOOL_PROP_AUTOEXPAND:
337			error = nvpair_value_uint64(elem, &intval);
338			if (!error && intval > 1)
339				error = EINVAL;
340			break;
341
342		case ZPOOL_PROP_BOOTFS:
343			/*
344			 * If the pool version is less than SPA_VERSION_BOOTFS,
345			 * or the pool is still being created (version == 0),
346			 * the bootfs property cannot be set.
347			 */
348			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
349				error = ENOTSUP;
350				break;
351			}
352
353			/*
354			 * Make sure the vdev config is bootable
355			 */
356			if (!vdev_is_bootable(spa->spa_root_vdev)) {
357				error = ENOTSUP;
358				break;
359			}
360
361			reset_bootfs = 1;
362
363			error = nvpair_value_string(elem, &strval);
364
365			if (!error) {
366				uint64_t compress;
367
368				if (strval == NULL || strval[0] == '\0') {
369					objnum = zpool_prop_default_numeric(
370					    ZPOOL_PROP_BOOTFS);
371					break;
372				}
373
374				if (error = dmu_objset_hold(strval, FTAG, &os))
375					break;
376
377				/* Must be ZPL and not gzip compressed. */
378
379				if (dmu_objset_type(os) != DMU_OST_ZFS) {
380					error = ENOTSUP;
381				} else if ((error = dsl_prop_get_integer(strval,
382				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
383				    &compress, NULL)) == 0 &&
384				    !BOOTFS_COMPRESS_VALID(compress)) {
385					error = ENOTSUP;
386				} else {
387					objnum = dmu_objset_id(os);
388				}
389				dmu_objset_rele(os, FTAG);
390			}
391			break;
392
393		case ZPOOL_PROP_FAILUREMODE:
394			error = nvpair_value_uint64(elem, &intval);
395			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
396			    intval > ZIO_FAILURE_MODE_PANIC))
397				error = EINVAL;
398
399			/*
400			 * This is a special case which only occurs when
401			 * the pool has completely failed. This allows
402			 * the user to change the in-core failmode property
403			 * without syncing it out to disk (I/Os might
404			 * currently be blocked). We do this by returning
405			 * EIO to the caller (spa_prop_set) to trick it
406			 * into thinking we encountered a property validation
407			 * error.
408			 */
409			if (!error && spa_suspended(spa)) {
410				spa->spa_failmode = intval;
411				error = EIO;
412			}
413			break;
414
415		case ZPOOL_PROP_CACHEFILE:
416			if ((error = nvpair_value_string(elem, &strval)) != 0)
417				break;
418
419			if (strval[0] == '\0')
420				break;
421
422			if (strcmp(strval, "none") == 0)
423				break;
424
425			if (strval[0] != '/') {
426				error = EINVAL;
427				break;
428			}
429
430			slash = strrchr(strval, '/');
431			ASSERT(slash != NULL);
432
433			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
434			    strcmp(slash, "/..") == 0)
435				error = EINVAL;
436			break;
437		}
438
439		if (error)
440			break;
441	}
442
443	if (!error && reset_bootfs) {
444		error = nvlist_remove(props,
445		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
446
447		if (!error) {
448			error = nvlist_add_uint64(props,
449			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
450		}
451	}
452
453	return (error);
454}
455
456void
457spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
458{
459	char *cachefile;
460	spa_config_dirent_t *dp;
461
462	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
463	    &cachefile) != 0)
464		return;
465
466	dp = kmem_alloc(sizeof (spa_config_dirent_t),
467	    KM_SLEEP);
468
469	if (cachefile[0] == '\0')
470		dp->scd_path = spa_strdup(spa_config_path);
471	else if (strcmp(cachefile, "none") == 0)
472		dp->scd_path = NULL;
473	else
474		dp->scd_path = spa_strdup(cachefile);
475
476	list_insert_head(&spa->spa_config_list, dp);
477	if (need_sync)
478		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
479}
480
481int
482spa_prop_set(spa_t *spa, nvlist_t *nvp)
483{
484	int error;
485	nvpair_t *elem;
486	boolean_t need_sync = B_FALSE;
487	zpool_prop_t prop;
488
489	if ((error = spa_prop_validate(spa, nvp)) != 0)
490		return (error);
491
492	elem = NULL;
493	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
494		if ((prop = zpool_name_to_prop(
495		    nvpair_name(elem))) == ZPROP_INVAL)
496			return (EINVAL);
497
498		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
499			continue;
500
501		need_sync = B_TRUE;
502		break;
503	}
504
505	if (need_sync)
506		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
507		    spa, nvp, 3));
508	else
509		return (0);
510}
511
512/*
513 * If the bootfs property value is dsobj, clear it.
514 */
515void
516spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
517{
518	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
519		VERIFY(zap_remove(spa->spa_meta_objset,
520		    spa->spa_pool_props_object,
521		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
522		spa->spa_bootfs = 0;
523	}
524}
525
526/*
527 * ==========================================================================
528 * SPA state manipulation (open/create/destroy/import/export)
529 * ==========================================================================
530 */
531
532static int
533spa_error_entry_compare(const void *a, const void *b)
534{
535	spa_error_entry_t *sa = (spa_error_entry_t *)a;
536	spa_error_entry_t *sb = (spa_error_entry_t *)b;
537	int ret;
538
539	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
540	    sizeof (zbookmark_t));
541
542	if (ret < 0)
543		return (-1);
544	else if (ret > 0)
545		return (1);
546	else
547		return (0);
548}
549
550/*
551 * Utility function which retrieves copies of the current logs and
552 * re-initializes them in the process.
553 */
554void
555spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
556{
557	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
558
559	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
560	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
561
562	avl_create(&spa->spa_errlist_scrub,
563	    spa_error_entry_compare, sizeof (spa_error_entry_t),
564	    offsetof(spa_error_entry_t, se_avl));
565	avl_create(&spa->spa_errlist_last,
566	    spa_error_entry_compare, sizeof (spa_error_entry_t),
567	    offsetof(spa_error_entry_t, se_avl));
568}
569
570/*
571 * Activate an uninitialized pool.
572 */
573static void
574spa_activate(spa_t *spa, int mode)
575{
576	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
577
578	spa->spa_state = POOL_STATE_ACTIVE;
579	spa->spa_mode = mode;
580
581	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
582	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
583
584	for (int t = 0; t < ZIO_TYPES; t++) {
585		const zio_taskq_info_t *ztip = &zio_taskqs[t];
586		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
587			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
588			uint_t value = ztip->zti_nthreads[q].zti_value;
589			char name[32];
590
591			(void) snprintf(name, sizeof (name),
592			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
593
594			if (mode == zti_mode_tune) {
595				mode = zio_taskq_tune_mode;
596				value = zio_taskq_tune_value;
597				if (mode == zti_mode_tune)
598					mode = zti_mode_online_percent;
599			}
600
601			switch (mode) {
602			case zti_mode_fixed:
603				ASSERT3U(value, >=, 1);
604				value = MAX(value, 1);
605
606				spa->spa_zio_taskq[t][q] = taskq_create(name,
607				    value, maxclsyspri, 50, INT_MAX,
608				    TASKQ_PREPOPULATE);
609				break;
610
611			case zti_mode_online_percent:
612				spa->spa_zio_taskq[t][q] = taskq_create(name,
613				    value, maxclsyspri, 50, INT_MAX,
614				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
615				break;
616
617			case zti_mode_tune:
618			default:
619				panic("unrecognized mode for "
620				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
621				    "in spa_activate()",
622				    t, q, mode, value);
623				break;
624			}
625		}
626	}
627
628	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
629	    offsetof(vdev_t, vdev_config_dirty_node));
630	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
631	    offsetof(vdev_t, vdev_state_dirty_node));
632
633	txg_list_create(&spa->spa_vdev_txg_list,
634	    offsetof(struct vdev, vdev_txg_node));
635
636	avl_create(&spa->spa_errlist_scrub,
637	    spa_error_entry_compare, sizeof (spa_error_entry_t),
638	    offsetof(spa_error_entry_t, se_avl));
639	avl_create(&spa->spa_errlist_last,
640	    spa_error_entry_compare, sizeof (spa_error_entry_t),
641	    offsetof(spa_error_entry_t, se_avl));
642}
643
644/*
645 * Opposite of spa_activate().
646 */
647static void
648spa_deactivate(spa_t *spa)
649{
650	ASSERT(spa->spa_sync_on == B_FALSE);
651	ASSERT(spa->spa_dsl_pool == NULL);
652	ASSERT(spa->spa_root_vdev == NULL);
653	ASSERT(spa->spa_async_zio_root == NULL);
654	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
655
656	txg_list_destroy(&spa->spa_vdev_txg_list);
657
658	list_destroy(&spa->spa_config_dirty_list);
659	list_destroy(&spa->spa_state_dirty_list);
660
661	for (int t = 0; t < ZIO_TYPES; t++) {
662		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
663			taskq_destroy(spa->spa_zio_taskq[t][q]);
664			spa->spa_zio_taskq[t][q] = NULL;
665		}
666	}
667
668	metaslab_class_destroy(spa->spa_normal_class);
669	spa->spa_normal_class = NULL;
670
671	metaslab_class_destroy(spa->spa_log_class);
672	spa->spa_log_class = NULL;
673
674	/*
675	 * If this was part of an import or the open otherwise failed, we may
676	 * still have errors left in the queues.  Empty them just in case.
677	 */
678	spa_errlog_drain(spa);
679
680	avl_destroy(&spa->spa_errlist_scrub);
681	avl_destroy(&spa->spa_errlist_last);
682
683	spa->spa_state = POOL_STATE_UNINITIALIZED;
684}
685
686/*
687 * Verify a pool configuration, and construct the vdev tree appropriately.  This
688 * will create all the necessary vdevs in the appropriate layout, with each vdev
689 * in the CLOSED state.  This will prep the pool before open/creation/import.
690 * All vdev validation is done by the vdev_alloc() routine.
691 */
692static int
693spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
694    uint_t id, int atype)
695{
696	nvlist_t **child;
697	uint_t children;
698	int error;
699
700	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
701		return (error);
702
703	if ((*vdp)->vdev_ops->vdev_op_leaf)
704		return (0);
705
706	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
707	    &child, &children);
708
709	if (error == ENOENT)
710		return (0);
711
712	if (error) {
713		vdev_free(*vdp);
714		*vdp = NULL;
715		return (EINVAL);
716	}
717
718	for (int c = 0; c < children; c++) {
719		vdev_t *vd;
720		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
721		    atype)) != 0) {
722			vdev_free(*vdp);
723			*vdp = NULL;
724			return (error);
725		}
726	}
727
728	ASSERT(*vdp != NULL);
729
730	return (0);
731}
732
733/*
734 * Opposite of spa_load().
735 */
736static void
737spa_unload(spa_t *spa)
738{
739	int i;
740
741	ASSERT(MUTEX_HELD(&spa_namespace_lock));
742
743	/*
744	 * Stop async tasks.
745	 */
746	spa_async_suspend(spa);
747
748	/*
749	 * Stop syncing.
750	 */
751	if (spa->spa_sync_on) {
752		txg_sync_stop(spa->spa_dsl_pool);
753		spa->spa_sync_on = B_FALSE;
754	}
755
756	/*
757	 * Wait for any outstanding async I/O to complete.
758	 */
759	if (spa->spa_async_zio_root != NULL) {
760		(void) zio_wait(spa->spa_async_zio_root);
761		spa->spa_async_zio_root = NULL;
762	}
763
764	/*
765	 * Close the dsl pool.
766	 */
767	if (spa->spa_dsl_pool) {
768		dsl_pool_close(spa->spa_dsl_pool);
769		spa->spa_dsl_pool = NULL;
770	}
771
772	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
773
774	/*
775	 * Drop and purge level 2 cache
776	 */
777	spa_l2cache_drop(spa);
778
779	/*
780	 * Close all vdevs.
781	 */
782	if (spa->spa_root_vdev)
783		vdev_free(spa->spa_root_vdev);
784	ASSERT(spa->spa_root_vdev == NULL);
785
786	for (i = 0; i < spa->spa_spares.sav_count; i++)
787		vdev_free(spa->spa_spares.sav_vdevs[i]);
788	if (spa->spa_spares.sav_vdevs) {
789		kmem_free(spa->spa_spares.sav_vdevs,
790		    spa->spa_spares.sav_count * sizeof (void *));
791		spa->spa_spares.sav_vdevs = NULL;
792	}
793	if (spa->spa_spares.sav_config) {
794		nvlist_free(spa->spa_spares.sav_config);
795		spa->spa_spares.sav_config = NULL;
796	}
797	spa->spa_spares.sav_count = 0;
798
799	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
800		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
801	if (spa->spa_l2cache.sav_vdevs) {
802		kmem_free(spa->spa_l2cache.sav_vdevs,
803		    spa->spa_l2cache.sav_count * sizeof (void *));
804		spa->spa_l2cache.sav_vdevs = NULL;
805	}
806	if (spa->spa_l2cache.sav_config) {
807		nvlist_free(spa->spa_l2cache.sav_config);
808		spa->spa_l2cache.sav_config = NULL;
809	}
810	spa->spa_l2cache.sav_count = 0;
811
812	spa->spa_async_suspended = 0;
813
814	spa_config_exit(spa, SCL_ALL, FTAG);
815}
816
817/*
818 * Load (or re-load) the current list of vdevs describing the active spares for
819 * this pool.  When this is called, we have some form of basic information in
820 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
821 * then re-generate a more complete list including status information.
822 */
823static void
824spa_load_spares(spa_t *spa)
825{
826	nvlist_t **spares;
827	uint_t nspares;
828	int i;
829	vdev_t *vd, *tvd;
830
831	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
832
833	/*
834	 * First, close and free any existing spare vdevs.
835	 */
836	for (i = 0; i < spa->spa_spares.sav_count; i++) {
837		vd = spa->spa_spares.sav_vdevs[i];
838
839		/* Undo the call to spa_activate() below */
840		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
841		    B_FALSE)) != NULL && tvd->vdev_isspare)
842			spa_spare_remove(tvd);
843		vdev_close(vd);
844		vdev_free(vd);
845	}
846
847	if (spa->spa_spares.sav_vdevs)
848		kmem_free(spa->spa_spares.sav_vdevs,
849		    spa->spa_spares.sav_count * sizeof (void *));
850
851	if (spa->spa_spares.sav_config == NULL)
852		nspares = 0;
853	else
854		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
855		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
856
857	spa->spa_spares.sav_count = (int)nspares;
858	spa->spa_spares.sav_vdevs = NULL;
859
860	if (nspares == 0)
861		return;
862
863	/*
864	 * Construct the array of vdevs, opening them to get status in the
865	 * process.   For each spare, there is potentially two different vdev_t
866	 * structures associated with it: one in the list of spares (used only
867	 * for basic validation purposes) and one in the active vdev
868	 * configuration (if it's spared in).  During this phase we open and
869	 * validate each vdev on the spare list.  If the vdev also exists in the
870	 * active configuration, then we also mark this vdev as an active spare.
871	 */
872	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
873	    KM_SLEEP);
874	for (i = 0; i < spa->spa_spares.sav_count; i++) {
875		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
876		    VDEV_ALLOC_SPARE) == 0);
877		ASSERT(vd != NULL);
878
879		spa->spa_spares.sav_vdevs[i] = vd;
880
881		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
882		    B_FALSE)) != NULL) {
883			if (!tvd->vdev_isspare)
884				spa_spare_add(tvd);
885
886			/*
887			 * We only mark the spare active if we were successfully
888			 * able to load the vdev.  Otherwise, importing a pool
889			 * with a bad active spare would result in strange
890			 * behavior, because multiple pool would think the spare
891			 * is actively in use.
892			 *
893			 * There is a vulnerability here to an equally bizarre
894			 * circumstance, where a dead active spare is later
895			 * brought back to life (onlined or otherwise).  Given
896			 * the rarity of this scenario, and the extra complexity
897			 * it adds, we ignore the possibility.
898			 */
899			if (!vdev_is_dead(tvd))
900				spa_spare_activate(tvd);
901		}
902
903		vd->vdev_top = vd;
904		vd->vdev_aux = &spa->spa_spares;
905
906		if (vdev_open(vd) != 0)
907			continue;
908
909		if (vdev_validate_aux(vd) == 0)
910			spa_spare_add(vd);
911	}
912
913	/*
914	 * Recompute the stashed list of spares, with status information
915	 * this time.
916	 */
917	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
918	    DATA_TYPE_NVLIST_ARRAY) == 0);
919
920	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
921	    KM_SLEEP);
922	for (i = 0; i < spa->spa_spares.sav_count; i++)
923		spares[i] = vdev_config_generate(spa,
924		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
925	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
926	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
927	for (i = 0; i < spa->spa_spares.sav_count; i++)
928		nvlist_free(spares[i]);
929	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
930}
931
932/*
933 * Load (or re-load) the current list of vdevs describing the active l2cache for
934 * this pool.  When this is called, we have some form of basic information in
935 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
936 * then re-generate a more complete list including status information.
937 * Devices which are already active have their details maintained, and are
938 * not re-opened.
939 */
940static void
941spa_load_l2cache(spa_t *spa)
942{
943	nvlist_t **l2cache;
944	uint_t nl2cache;
945	int i, j, oldnvdevs;
946	uint64_t guid;
947	vdev_t *vd, **oldvdevs, **newvdevs;
948	spa_aux_vdev_t *sav = &spa->spa_l2cache;
949
950	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
951
952	if (sav->sav_config != NULL) {
953		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
954		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
955		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
956	} else {
957		nl2cache = 0;
958	}
959
960	oldvdevs = sav->sav_vdevs;
961	oldnvdevs = sav->sav_count;
962	sav->sav_vdevs = NULL;
963	sav->sav_count = 0;
964
965	/*
966	 * Process new nvlist of vdevs.
967	 */
968	for (i = 0; i < nl2cache; i++) {
969		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
970		    &guid) == 0);
971
972		newvdevs[i] = NULL;
973		for (j = 0; j < oldnvdevs; j++) {
974			vd = oldvdevs[j];
975			if (vd != NULL && guid == vd->vdev_guid) {
976				/*
977				 * Retain previous vdev for add/remove ops.
978				 */
979				newvdevs[i] = vd;
980				oldvdevs[j] = NULL;
981				break;
982			}
983		}
984
985		if (newvdevs[i] == NULL) {
986			/*
987			 * Create new vdev
988			 */
989			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
990			    VDEV_ALLOC_L2CACHE) == 0);
991			ASSERT(vd != NULL);
992			newvdevs[i] = vd;
993
994			/*
995			 * Commit this vdev as an l2cache device,
996			 * even if it fails to open.
997			 */
998			spa_l2cache_add(vd);
999
1000			vd->vdev_top = vd;
1001			vd->vdev_aux = sav;
1002
1003			spa_l2cache_activate(vd);
1004
1005			if (vdev_open(vd) != 0)
1006				continue;
1007
1008			(void) vdev_validate_aux(vd);
1009
1010			if (!vdev_is_dead(vd))
1011				l2arc_add_vdev(spa, vd);
1012		}
1013	}
1014
1015	/*
1016	 * Purge vdevs that were dropped
1017	 */
1018	for (i = 0; i < oldnvdevs; i++) {
1019		uint64_t pool;
1020
1021		vd = oldvdevs[i];
1022		if (vd != NULL) {
1023			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1024			    pool != 0ULL && l2arc_vdev_present(vd))
1025				l2arc_remove_vdev(vd);
1026			(void) vdev_close(vd);
1027			spa_l2cache_remove(vd);
1028		}
1029	}
1030
1031	if (oldvdevs)
1032		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1033
1034	if (sav->sav_config == NULL)
1035		goto out;
1036
1037	sav->sav_vdevs = newvdevs;
1038	sav->sav_count = (int)nl2cache;
1039
1040	/*
1041	 * Recompute the stashed list of l2cache devices, with status
1042	 * information this time.
1043	 */
1044	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1045	    DATA_TYPE_NVLIST_ARRAY) == 0);
1046
1047	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1048	for (i = 0; i < sav->sav_count; i++)
1049		l2cache[i] = vdev_config_generate(spa,
1050		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1051	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1052	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1053out:
1054	for (i = 0; i < sav->sav_count; i++)
1055		nvlist_free(l2cache[i]);
1056	if (sav->sav_count)
1057		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1058}
1059
1060static int
1061load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1062{
1063	dmu_buf_t *db;
1064	char *packed = NULL;
1065	size_t nvsize = 0;
1066	int error;
1067	*value = NULL;
1068
1069	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1070	nvsize = *(uint64_t *)db->db_data;
1071	dmu_buf_rele(db, FTAG);
1072
1073	packed = kmem_alloc(nvsize, KM_SLEEP);
1074	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1075	    DMU_READ_PREFETCH);
1076	if (error == 0)
1077		error = nvlist_unpack(packed, nvsize, value, 0);
1078	kmem_free(packed, nvsize);
1079
1080	return (error);
1081}
1082
1083/*
1084 * Checks to see if the given vdev could not be opened, in which case we post a
1085 * sysevent to notify the autoreplace code that the device has been removed.
1086 */
1087static void
1088spa_check_removed(vdev_t *vd)
1089{
1090	for (int c = 0; c < vd->vdev_children; c++)
1091		spa_check_removed(vd->vdev_child[c]);
1092
1093	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1094		zfs_post_autoreplace(vd->vdev_spa, vd);
1095		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1096	}
1097}
1098
1099/*
1100 * Load the slog device state from the config object since it's possible
1101 * that the label does not contain the most up-to-date information.
1102 */
1103void
1104spa_load_log_state(spa_t *spa)
1105{
1106	nvlist_t *nv, *nvroot, **child;
1107	uint64_t is_log;
1108	uint_t children;
1109	vdev_t *rvd = spa->spa_root_vdev;
1110
1111	VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1112	VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1113	VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1114	    &child, &children) == 0);
1115
1116	for (int c = 0; c < children; c++) {
1117		vdev_t *tvd = rvd->vdev_child[c];
1118
1119		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1120		    &is_log) == 0 && is_log)
1121			vdev_load_log_state(tvd, child[c]);
1122	}
1123	nvlist_free(nv);
1124}
1125
1126/*
1127 * Check for missing log devices
1128 */
1129int
1130spa_check_logs(spa_t *spa)
1131{
1132	switch (spa->spa_log_state) {
1133	case SPA_LOG_MISSING:
1134		/* need to recheck in case slog has been restored */
1135	case SPA_LOG_UNKNOWN:
1136		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1137		    DS_FIND_CHILDREN)) {
1138			spa->spa_log_state = SPA_LOG_MISSING;
1139			return (1);
1140		}
1141		break;
1142	}
1143	return (0);
1144}
1145
1146/*
1147 * Load an existing storage pool, using the pool's builtin spa_config as a
1148 * source of configuration information.
1149 */
1150static int
1151spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1152{
1153	int error = 0;
1154	nvlist_t *nvroot = NULL;
1155	vdev_t *rvd;
1156	uberblock_t *ub = &spa->spa_uberblock;
1157	uint64_t config_cache_txg = spa->spa_config_txg;
1158	uint64_t pool_guid;
1159	uint64_t version;
1160	uint64_t autoreplace = 0;
1161	int orig_mode = spa->spa_mode;
1162	char *ereport = FM_EREPORT_ZFS_POOL;
1163
1164	/*
1165	 * If this is an untrusted config, access the pool in read-only mode.
1166	 * This prevents things like resilvering recently removed devices.
1167	 */
1168	if (!mosconfig)
1169		spa->spa_mode = FREAD;
1170
1171	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1172
1173	spa->spa_load_state = state;
1174
1175	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1176	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1177		error = EINVAL;
1178		goto out;
1179	}
1180
1181	/*
1182	 * Versioning wasn't explicitly added to the label until later, so if
1183	 * it's not present treat it as the initial version.
1184	 */
1185	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1186		version = SPA_VERSION_INITIAL;
1187
1188	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1189	    &spa->spa_config_txg);
1190
1191	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1192	    spa_guid_exists(pool_guid, 0)) {
1193		error = EEXIST;
1194		goto out;
1195	}
1196
1197	spa->spa_load_guid = pool_guid;
1198
1199	/*
1200	 * Create "The Godfather" zio to hold all async IOs
1201	 */
1202	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1203	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1204
1205	/*
1206	 * Parse the configuration into a vdev tree.  We explicitly set the
1207	 * value that will be returned by spa_version() since parsing the
1208	 * configuration requires knowing the version number.
1209	 */
1210	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1211	spa->spa_ubsync.ub_version = version;
1212	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1213	spa_config_exit(spa, SCL_ALL, FTAG);
1214
1215	if (error != 0)
1216		goto out;
1217
1218	ASSERT(spa->spa_root_vdev == rvd);
1219	ASSERT(spa_guid(spa) == pool_guid);
1220
1221	/*
1222	 * Try to open all vdevs, loading each label in the process.
1223	 */
1224	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1225	error = vdev_open(rvd);
1226	spa_config_exit(spa, SCL_ALL, FTAG);
1227	if (error != 0)
1228		goto out;
1229
1230	/*
1231	 * We need to validate the vdev labels against the configuration that
1232	 * we have in hand, which is dependent on the setting of mosconfig. If
1233	 * mosconfig is true then we're validating the vdev labels based on
1234	 * that config. Otherwise, we're validating against the cached config
1235	 * (zpool.cache) that was read when we loaded the zfs module, and then
1236	 * later we will recursively call spa_load() and validate against
1237	 * the vdev config.
1238	 */
1239	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1240	error = vdev_validate(rvd);
1241	spa_config_exit(spa, SCL_ALL, FTAG);
1242	if (error != 0)
1243		goto out;
1244
1245	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1246		error = ENXIO;
1247		goto out;
1248	}
1249
1250	/*
1251	 * Find the best uberblock.
1252	 */
1253	vdev_uberblock_load(NULL, rvd, ub);
1254
1255	/*
1256	 * If we weren't able to find a single valid uberblock, return failure.
1257	 */
1258	if (ub->ub_txg == 0) {
1259		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1260		    VDEV_AUX_CORRUPT_DATA);
1261		error = ENXIO;
1262		goto out;
1263	}
1264
1265	/*
1266	 * If the pool is newer than the code, we can't open it.
1267	 */
1268	if (ub->ub_version > SPA_VERSION) {
1269		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1270		    VDEV_AUX_VERSION_NEWER);
1271		error = ENOTSUP;
1272		goto out;
1273	}
1274
1275	/*
1276	 * If the vdev guid sum doesn't match the uberblock, we have an
1277	 * incomplete configuration.
1278	 */
1279	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1280		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1281		    VDEV_AUX_BAD_GUID_SUM);
1282		error = ENXIO;
1283		goto out;
1284	}
1285
1286	/*
1287	 * Initialize internal SPA structures.
1288	 */
1289	spa->spa_state = POOL_STATE_ACTIVE;
1290	spa->spa_ubsync = spa->spa_uberblock;
1291	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1292	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1293	if (error) {
1294		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1295		    VDEV_AUX_CORRUPT_DATA);
1296		goto out;
1297	}
1298	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1299
1300	if (zap_lookup(spa->spa_meta_objset,
1301	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1302	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1303		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1304		    VDEV_AUX_CORRUPT_DATA);
1305		error = EIO;
1306		goto out;
1307	}
1308
1309	if (!mosconfig) {
1310		nvlist_t *newconfig;
1311		uint64_t hostid;
1312
1313		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1314			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1315			    VDEV_AUX_CORRUPT_DATA);
1316			error = EIO;
1317			goto out;
1318		}
1319
1320		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1321		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1322			char *hostname;
1323			unsigned long myhostid = 0;
1324
1325			VERIFY(nvlist_lookup_string(newconfig,
1326			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1327
1328#ifdef	_KERNEL
1329			myhostid = zone_get_hostid(NULL);
1330#else	/* _KERNEL */
1331			/*
1332			 * We're emulating the system's hostid in userland, so
1333			 * we can't use zone_get_hostid().
1334			 */
1335			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1336#endif	/* _KERNEL */
1337			if (hostid != 0 && myhostid != 0 &&
1338			    hostid != myhostid) {
1339				cmn_err(CE_WARN, "pool '%s' could not be "
1340				    "loaded as it was last accessed by "
1341				    "another system (host: %s hostid: 0x%lx). "
1342				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1343				    spa_name(spa), hostname,
1344				    (unsigned long)hostid);
1345				error = EBADF;
1346				goto out;
1347			}
1348		}
1349
1350		spa_config_set(spa, newconfig);
1351		spa_unload(spa);
1352		spa_deactivate(spa);
1353		spa_activate(spa, orig_mode);
1354
1355		return (spa_load(spa, newconfig, state, B_TRUE));
1356	}
1357
1358	if (zap_lookup(spa->spa_meta_objset,
1359	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1360	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1361		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1362		    VDEV_AUX_CORRUPT_DATA);
1363		error = EIO;
1364		goto out;
1365	}
1366
1367	/*
1368	 * Load the bit that tells us to use the new accounting function
1369	 * (raid-z deflation).  If we have an older pool, this will not
1370	 * be present.
1371	 */
1372	error = zap_lookup(spa->spa_meta_objset,
1373	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1374	    sizeof (uint64_t), 1, &spa->spa_deflate);
1375	if (error != 0 && error != ENOENT) {
1376		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1377		    VDEV_AUX_CORRUPT_DATA);
1378		error = EIO;
1379		goto out;
1380	}
1381
1382	/*
1383	 * Load the persistent error log.  If we have an older pool, this will
1384	 * not be present.
1385	 */
1386	error = zap_lookup(spa->spa_meta_objset,
1387	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1388	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1389	if (error != 0 && error != ENOENT) {
1390		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1391		    VDEV_AUX_CORRUPT_DATA);
1392		error = EIO;
1393		goto out;
1394	}
1395
1396	error = zap_lookup(spa->spa_meta_objset,
1397	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1398	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1399	if (error != 0 && error != ENOENT) {
1400		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1401		    VDEV_AUX_CORRUPT_DATA);
1402		error = EIO;
1403		goto out;
1404	}
1405
1406	/*
1407	 * Load the history object.  If we have an older pool, this
1408	 * will not be present.
1409	 */
1410	error = zap_lookup(spa->spa_meta_objset,
1411	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1412	    sizeof (uint64_t), 1, &spa->spa_history);
1413	if (error != 0 && error != ENOENT) {
1414		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1415		    VDEV_AUX_CORRUPT_DATA);
1416		error = EIO;
1417		goto out;
1418	}
1419
1420	/*
1421	 * Load any hot spares for this pool.
1422	 */
1423	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1424	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1425	if (error != 0 && error != ENOENT) {
1426		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1427		    VDEV_AUX_CORRUPT_DATA);
1428		error = EIO;
1429		goto out;
1430	}
1431	if (error == 0) {
1432		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1433		if (load_nvlist(spa, spa->spa_spares.sav_object,
1434		    &spa->spa_spares.sav_config) != 0) {
1435			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1436			    VDEV_AUX_CORRUPT_DATA);
1437			error = EIO;
1438			goto out;
1439		}
1440
1441		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1442		spa_load_spares(spa);
1443		spa_config_exit(spa, SCL_ALL, FTAG);
1444	}
1445
1446	/*
1447	 * Load any level 2 ARC devices for this pool.
1448	 */
1449	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1450	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1451	    &spa->spa_l2cache.sav_object);
1452	if (error != 0 && error != ENOENT) {
1453		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1454		    VDEV_AUX_CORRUPT_DATA);
1455		error = EIO;
1456		goto out;
1457	}
1458	if (error == 0) {
1459		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1460		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1461		    &spa->spa_l2cache.sav_config) != 0) {
1462			vdev_set_state(rvd, B_TRUE,
1463			    VDEV_STATE_CANT_OPEN,
1464			    VDEV_AUX_CORRUPT_DATA);
1465			error = EIO;
1466			goto out;
1467		}
1468
1469		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1470		spa_load_l2cache(spa);
1471		spa_config_exit(spa, SCL_ALL, FTAG);
1472	}
1473
1474	spa_load_log_state(spa);
1475
1476	if (spa_check_logs(spa)) {
1477		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1478		    VDEV_AUX_BAD_LOG);
1479		error = ENXIO;
1480		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1481		goto out;
1482	}
1483
1484
1485	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1486
1487	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1488	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1489
1490	if (error && error != ENOENT) {
1491		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1492		    VDEV_AUX_CORRUPT_DATA);
1493		error = EIO;
1494		goto out;
1495	}
1496
1497	if (error == 0) {
1498		(void) zap_lookup(spa->spa_meta_objset,
1499		    spa->spa_pool_props_object,
1500		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1501		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1502		(void) zap_lookup(spa->spa_meta_objset,
1503		    spa->spa_pool_props_object,
1504		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1505		    sizeof (uint64_t), 1, &autoreplace);
1506		(void) zap_lookup(spa->spa_meta_objset,
1507		    spa->spa_pool_props_object,
1508		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1509		    sizeof (uint64_t), 1, &spa->spa_delegation);
1510		(void) zap_lookup(spa->spa_meta_objset,
1511		    spa->spa_pool_props_object,
1512		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1513		    sizeof (uint64_t), 1, &spa->spa_failmode);
1514		(void) zap_lookup(spa->spa_meta_objset,
1515		    spa->spa_pool_props_object,
1516		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1517		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1518	}
1519
1520	/*
1521	 * If the 'autoreplace' property is set, then post a resource notifying
1522	 * the ZFS DE that it should not issue any faults for unopenable
1523	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1524	 * unopenable vdevs so that the normal autoreplace handler can take
1525	 * over.
1526	 */
1527	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1528		spa_check_removed(spa->spa_root_vdev);
1529
1530	/*
1531	 * Load the vdev state for all toplevel vdevs.
1532	 */
1533	vdev_load(rvd);
1534
1535	/*
1536	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1537	 */
1538	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1539	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1540	spa_config_exit(spa, SCL_ALL, FTAG);
1541
1542	/*
1543	 * Check the state of the root vdev.  If it can't be opened, it
1544	 * indicates one or more toplevel vdevs are faulted.
1545	 */
1546	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1547		error = ENXIO;
1548		goto out;
1549	}
1550
1551	if (spa_writeable(spa)) {
1552		dmu_tx_t *tx;
1553		int need_update = B_FALSE;
1554
1555		ASSERT(state != SPA_LOAD_TRYIMPORT);
1556
1557		/*
1558		 * Claim log blocks that haven't been committed yet.
1559		 * This must all happen in a single txg.
1560		 */
1561		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1562		    spa_first_txg(spa));
1563		(void) dmu_objset_find(spa_name(spa),
1564		    zil_claim, tx, DS_FIND_CHILDREN);
1565		dmu_tx_commit(tx);
1566
1567		spa->spa_log_state = SPA_LOG_GOOD;
1568		spa->spa_sync_on = B_TRUE;
1569		txg_sync_start(spa->spa_dsl_pool);
1570
1571		/*
1572		 * Wait for all claims to sync.
1573		 */
1574		txg_wait_synced(spa->spa_dsl_pool, 0);
1575
1576		/*
1577		 * If the config cache is stale, or we have uninitialized
1578		 * metaslabs (see spa_vdev_add()), then update the config.
1579		 *
1580		 * If spa_load_verbatim is true, trust the current
1581		 * in-core spa_config and update the disk labels.
1582		 */
1583		if (config_cache_txg != spa->spa_config_txg ||
1584		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim)
1585			need_update = B_TRUE;
1586
1587		for (int c = 0; c < rvd->vdev_children; c++)
1588			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1589				need_update = B_TRUE;
1590
1591		/*
1592		 * Update the config cache asychronously in case we're the
1593		 * root pool, in which case the config cache isn't writable yet.
1594		 */
1595		if (need_update)
1596			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1597
1598		/*
1599		 * Check all DTLs to see if anything needs resilvering.
1600		 */
1601		if (vdev_resilver_needed(rvd, NULL, NULL))
1602			spa_async_request(spa, SPA_ASYNC_RESILVER);
1603
1604		/*
1605		 * Delete any inconsistent datasets.
1606		 */
1607		(void) dmu_objset_find(spa_name(spa),
1608		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
1609
1610		/*
1611		 * Clean up any stale temporary dataset userrefs.
1612		 */
1613		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
1614	}
1615
1616	error = 0;
1617out:
1618	spa->spa_minref = refcount_count(&spa->spa_refcount);
1619	if (error && error != EBADF)
1620		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1621	spa->spa_load_state = SPA_LOAD_NONE;
1622	spa->spa_ena = 0;
1623
1624	return (error);
1625}
1626
1627/*
1628 * Pool Open/Import
1629 *
1630 * The import case is identical to an open except that the configuration is sent
1631 * down from userland, instead of grabbed from the configuration cache.  For the
1632 * case of an open, the pool configuration will exist in the
1633 * POOL_STATE_UNINITIALIZED state.
1634 *
1635 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1636 * the same time open the pool, without having to keep around the spa_t in some
1637 * ambiguous state.
1638 */
1639static int
1640spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1641{
1642	spa_t *spa;
1643	int error;
1644	int locked = B_FALSE;
1645
1646	*spapp = NULL;
1647
1648	/*
1649	 * As disgusting as this is, we need to support recursive calls to this
1650	 * function because dsl_dir_open() is called during spa_load(), and ends
1651	 * up calling spa_open() again.  The real fix is to figure out how to
1652	 * avoid dsl_dir_open() calling this in the first place.
1653	 */
1654	if (mutex_owner(&spa_namespace_lock) != curthread) {
1655		mutex_enter(&spa_namespace_lock);
1656		locked = B_TRUE;
1657	}
1658
1659	if ((spa = spa_lookup(pool)) == NULL) {
1660		if (locked)
1661			mutex_exit(&spa_namespace_lock);
1662		return (ENOENT);
1663	}
1664	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1665
1666		spa_activate(spa, spa_mode_global);
1667
1668		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1669
1670		if (error == EBADF) {
1671			/*
1672			 * If vdev_validate() returns failure (indicated by
1673			 * EBADF), it indicates that one of the vdevs indicates
1674			 * that the pool has been exported or destroyed.  If
1675			 * this is the case, the config cache is out of sync and
1676			 * we should remove the pool from the namespace.
1677			 */
1678			spa_unload(spa);
1679			spa_deactivate(spa);
1680			spa_config_sync(spa, B_TRUE, B_TRUE);
1681			spa_remove(spa);
1682			if (locked)
1683				mutex_exit(&spa_namespace_lock);
1684			return (ENOENT);
1685		}
1686
1687		if (error) {
1688			/*
1689			 * We can't open the pool, but we still have useful
1690			 * information: the state of each vdev after the
1691			 * attempted vdev_open().  Return this to the user.
1692			 */
1693			if (config != NULL && spa->spa_root_vdev != NULL)
1694				*config = spa_config_generate(spa, NULL, -1ULL,
1695				    B_TRUE);
1696			spa_unload(spa);
1697			spa_deactivate(spa);
1698			spa->spa_last_open_failed = B_TRUE;
1699			if (locked)
1700				mutex_exit(&spa_namespace_lock);
1701			*spapp = NULL;
1702			return (error);
1703		} else {
1704			spa->spa_last_open_failed = B_FALSE;
1705		}
1706	}
1707
1708	spa_open_ref(spa, tag);
1709
1710	if (locked)
1711		mutex_exit(&spa_namespace_lock);
1712
1713	*spapp = spa;
1714
1715	if (config != NULL)
1716		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1717
1718	return (0);
1719}
1720
1721int
1722spa_open(const char *name, spa_t **spapp, void *tag)
1723{
1724	return (spa_open_common(name, spapp, tag, NULL));
1725}
1726
1727/*
1728 * Lookup the given spa_t, incrementing the inject count in the process,
1729 * preventing it from being exported or destroyed.
1730 */
1731spa_t *
1732spa_inject_addref(char *name)
1733{
1734	spa_t *spa;
1735
1736	mutex_enter(&spa_namespace_lock);
1737	if ((spa = spa_lookup(name)) == NULL) {
1738		mutex_exit(&spa_namespace_lock);
1739		return (NULL);
1740	}
1741	spa->spa_inject_ref++;
1742	mutex_exit(&spa_namespace_lock);
1743
1744	return (spa);
1745}
1746
1747void
1748spa_inject_delref(spa_t *spa)
1749{
1750	mutex_enter(&spa_namespace_lock);
1751	spa->spa_inject_ref--;
1752	mutex_exit(&spa_namespace_lock);
1753}
1754
1755/*
1756 * Add spares device information to the nvlist.
1757 */
1758static void
1759spa_add_spares(spa_t *spa, nvlist_t *config)
1760{
1761	nvlist_t **spares;
1762	uint_t i, nspares;
1763	nvlist_t *nvroot;
1764	uint64_t guid;
1765	vdev_stat_t *vs;
1766	uint_t vsc;
1767	uint64_t pool;
1768
1769	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1770
1771	if (spa->spa_spares.sav_count == 0)
1772		return;
1773
1774	VERIFY(nvlist_lookup_nvlist(config,
1775	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1776	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1777	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1778	if (nspares != 0) {
1779		VERIFY(nvlist_add_nvlist_array(nvroot,
1780		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1781		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1782		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1783
1784		/*
1785		 * Go through and find any spares which have since been
1786		 * repurposed as an active spare.  If this is the case, update
1787		 * their status appropriately.
1788		 */
1789		for (i = 0; i < nspares; i++) {
1790			VERIFY(nvlist_lookup_uint64(spares[i],
1791			    ZPOOL_CONFIG_GUID, &guid) == 0);
1792			if (spa_spare_exists(guid, &pool, NULL) &&
1793			    pool != 0ULL) {
1794				VERIFY(nvlist_lookup_uint64_array(
1795				    spares[i], ZPOOL_CONFIG_STATS,
1796				    (uint64_t **)&vs, &vsc) == 0);
1797				vs->vs_state = VDEV_STATE_CANT_OPEN;
1798				vs->vs_aux = VDEV_AUX_SPARED;
1799			}
1800		}
1801	}
1802}
1803
1804/*
1805 * Add l2cache device information to the nvlist, including vdev stats.
1806 */
1807static void
1808spa_add_l2cache(spa_t *spa, nvlist_t *config)
1809{
1810	nvlist_t **l2cache;
1811	uint_t i, j, nl2cache;
1812	nvlist_t *nvroot;
1813	uint64_t guid;
1814	vdev_t *vd;
1815	vdev_stat_t *vs;
1816	uint_t vsc;
1817
1818	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1819
1820	if (spa->spa_l2cache.sav_count == 0)
1821		return;
1822
1823	VERIFY(nvlist_lookup_nvlist(config,
1824	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1825	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1826	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1827	if (nl2cache != 0) {
1828		VERIFY(nvlist_add_nvlist_array(nvroot,
1829		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1830		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1831		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1832
1833		/*
1834		 * Update level 2 cache device stats.
1835		 */
1836
1837		for (i = 0; i < nl2cache; i++) {
1838			VERIFY(nvlist_lookup_uint64(l2cache[i],
1839			    ZPOOL_CONFIG_GUID, &guid) == 0);
1840
1841			vd = NULL;
1842			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1843				if (guid ==
1844				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1845					vd = spa->spa_l2cache.sav_vdevs[j];
1846					break;
1847				}
1848			}
1849			ASSERT(vd != NULL);
1850
1851			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1852			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1853			vdev_get_stats(vd, vs);
1854		}
1855	}
1856}
1857
1858int
1859spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1860{
1861	int error;
1862	spa_t *spa;
1863
1864	*config = NULL;
1865	error = spa_open_common(name, &spa, FTAG, config);
1866
1867	if (spa != NULL) {
1868		/*
1869		 * This still leaves a window of inconsistency where the spares
1870		 * or l2cache devices could change and the config would be
1871		 * self-inconsistent.
1872		 */
1873		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1874
1875		if (*config != NULL) {
1876			VERIFY(nvlist_add_uint64(*config,
1877			    ZPOOL_CONFIG_ERRCOUNT,
1878			    spa_get_errlog_size(spa)) == 0);
1879
1880			if (spa_suspended(spa))
1881				VERIFY(nvlist_add_uint64(*config,
1882				    ZPOOL_CONFIG_SUSPENDED,
1883				    spa->spa_failmode) == 0);
1884
1885			spa_add_spares(spa, *config);
1886			spa_add_l2cache(spa, *config);
1887		}
1888	}
1889
1890	/*
1891	 * We want to get the alternate root even for faulted pools, so we cheat
1892	 * and call spa_lookup() directly.
1893	 */
1894	if (altroot) {
1895		if (spa == NULL) {
1896			mutex_enter(&spa_namespace_lock);
1897			spa = spa_lookup(name);
1898			if (spa)
1899				spa_altroot(spa, altroot, buflen);
1900			else
1901				altroot[0] = '\0';
1902			spa = NULL;
1903			mutex_exit(&spa_namespace_lock);
1904		} else {
1905			spa_altroot(spa, altroot, buflen);
1906		}
1907	}
1908
1909	if (spa != NULL) {
1910		spa_config_exit(spa, SCL_CONFIG, FTAG);
1911		spa_close(spa, FTAG);
1912	}
1913
1914	return (error);
1915}
1916
1917/*
1918 * Validate that the auxiliary device array is well formed.  We must have an
1919 * array of nvlists, each which describes a valid leaf vdev.  If this is an
1920 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1921 * specified, as long as they are well-formed.
1922 */
1923static int
1924spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1925    spa_aux_vdev_t *sav, const char *config, uint64_t version,
1926    vdev_labeltype_t label)
1927{
1928	nvlist_t **dev;
1929	uint_t i, ndev;
1930	vdev_t *vd;
1931	int error;
1932
1933	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1934
1935	/*
1936	 * It's acceptable to have no devs specified.
1937	 */
1938	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1939		return (0);
1940
1941	if (ndev == 0)
1942		return (EINVAL);
1943
1944	/*
1945	 * Make sure the pool is formatted with a version that supports this
1946	 * device type.
1947	 */
1948	if (spa_version(spa) < version)
1949		return (ENOTSUP);
1950
1951	/*
1952	 * Set the pending device list so we correctly handle device in-use
1953	 * checking.
1954	 */
1955	sav->sav_pending = dev;
1956	sav->sav_npending = ndev;
1957
1958	for (i = 0; i < ndev; i++) {
1959		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1960		    mode)) != 0)
1961			goto out;
1962
1963		if (!vd->vdev_ops->vdev_op_leaf) {
1964			vdev_free(vd);
1965			error = EINVAL;
1966			goto out;
1967		}
1968
1969		/*
1970		 * The L2ARC currently only supports disk devices in
1971		 * kernel context.  For user-level testing, we allow it.
1972		 */
1973#ifdef _KERNEL
1974		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1975		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1976			error = ENOTBLK;
1977			goto out;
1978		}
1979#endif
1980		vd->vdev_top = vd;
1981
1982		if ((error = vdev_open(vd)) == 0 &&
1983		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1984			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1985			    vd->vdev_guid) == 0);
1986		}
1987
1988		vdev_free(vd);
1989
1990		if (error &&
1991		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1992			goto out;
1993		else
1994			error = 0;
1995	}
1996
1997out:
1998	sav->sav_pending = NULL;
1999	sav->sav_npending = 0;
2000	return (error);
2001}
2002
2003static int
2004spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2005{
2006	int error;
2007
2008	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2009
2010	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2011	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2012	    VDEV_LABEL_SPARE)) != 0) {
2013		return (error);
2014	}
2015
2016	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2017	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2018	    VDEV_LABEL_L2CACHE));
2019}
2020
2021static void
2022spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2023    const char *config)
2024{
2025	int i;
2026
2027	if (sav->sav_config != NULL) {
2028		nvlist_t **olddevs;
2029		uint_t oldndevs;
2030		nvlist_t **newdevs;
2031
2032		/*
2033		 * Generate new dev list by concatentating with the
2034		 * current dev list.
2035		 */
2036		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2037		    &olddevs, &oldndevs) == 0);
2038
2039		newdevs = kmem_alloc(sizeof (void *) *
2040		    (ndevs + oldndevs), KM_SLEEP);
2041		for (i = 0; i < oldndevs; i++)
2042			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2043			    KM_SLEEP) == 0);
2044		for (i = 0; i < ndevs; i++)
2045			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2046			    KM_SLEEP) == 0);
2047
2048		VERIFY(nvlist_remove(sav->sav_config, config,
2049		    DATA_TYPE_NVLIST_ARRAY) == 0);
2050
2051		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2052		    config, newdevs, ndevs + oldndevs) == 0);
2053		for (i = 0; i < oldndevs + ndevs; i++)
2054			nvlist_free(newdevs[i]);
2055		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2056	} else {
2057		/*
2058		 * Generate a new dev list.
2059		 */
2060		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2061		    KM_SLEEP) == 0);
2062		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2063		    devs, ndevs) == 0);
2064	}
2065}
2066
2067/*
2068 * Stop and drop level 2 ARC devices
2069 */
2070void
2071spa_l2cache_drop(spa_t *spa)
2072{
2073	vdev_t *vd;
2074	int i;
2075	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2076
2077	for (i = 0; i < sav->sav_count; i++) {
2078		uint64_t pool;
2079
2080		vd = sav->sav_vdevs[i];
2081		ASSERT(vd != NULL);
2082
2083		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2084		    pool != 0ULL && l2arc_vdev_present(vd))
2085			l2arc_remove_vdev(vd);
2086		if (vd->vdev_isl2cache)
2087			spa_l2cache_remove(vd);
2088		vdev_clear_stats(vd);
2089		(void) vdev_close(vd);
2090	}
2091}
2092
2093/*
2094 * Pool Creation
2095 */
2096int
2097spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2098    const char *history_str, nvlist_t *zplprops)
2099{
2100	spa_t *spa;
2101	char *altroot = NULL;
2102	vdev_t *rvd;
2103	dsl_pool_t *dp;
2104	dmu_tx_t *tx;
2105	int error = 0;
2106	uint64_t txg = TXG_INITIAL;
2107	nvlist_t **spares, **l2cache;
2108	uint_t nspares, nl2cache;
2109	uint64_t version;
2110
2111	/*
2112	 * If this pool already exists, return failure.
2113	 */
2114	mutex_enter(&spa_namespace_lock);
2115	if (spa_lookup(pool) != NULL) {
2116		mutex_exit(&spa_namespace_lock);
2117		return (EEXIST);
2118	}
2119
2120	/*
2121	 * Allocate a new spa_t structure.
2122	 */
2123	(void) nvlist_lookup_string(props,
2124	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2125	spa = spa_add(pool, altroot);
2126	spa_activate(spa, spa_mode_global);
2127
2128	spa->spa_uberblock.ub_txg = txg - 1;
2129
2130	if (props && (error = spa_prop_validate(spa, props))) {
2131		spa_deactivate(spa);
2132		spa_remove(spa);
2133		mutex_exit(&spa_namespace_lock);
2134		return (error);
2135	}
2136
2137	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2138	    &version) != 0)
2139		version = SPA_VERSION;
2140	ASSERT(version <= SPA_VERSION);
2141	spa->spa_uberblock.ub_version = version;
2142	spa->spa_ubsync = spa->spa_uberblock;
2143
2144	/*
2145	 * Create "The Godfather" zio to hold all async IOs
2146	 */
2147	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2148	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2149
2150	/*
2151	 * Create the root vdev.
2152	 */
2153	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2154
2155	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2156
2157	ASSERT(error != 0 || rvd != NULL);
2158	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2159
2160	if (error == 0 && !zfs_allocatable_devs(nvroot))
2161		error = EINVAL;
2162
2163	if (error == 0 &&
2164	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2165	    (error = spa_validate_aux(spa, nvroot, txg,
2166	    VDEV_ALLOC_ADD)) == 0) {
2167		for (int c = 0; c < rvd->vdev_children; c++) {
2168			vdev_metaslab_set_size(rvd->vdev_child[c]);
2169			vdev_expand(rvd->vdev_child[c], txg);
2170		}
2171	}
2172
2173	spa_config_exit(spa, SCL_ALL, FTAG);
2174
2175	if (error != 0) {
2176		spa_unload(spa);
2177		spa_deactivate(spa);
2178		spa_remove(spa);
2179		mutex_exit(&spa_namespace_lock);
2180		return (error);
2181	}
2182
2183	/*
2184	 * Get the list of spares, if specified.
2185	 */
2186	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2187	    &spares, &nspares) == 0) {
2188		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2189		    KM_SLEEP) == 0);
2190		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2191		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2192		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2193		spa_load_spares(spa);
2194		spa_config_exit(spa, SCL_ALL, FTAG);
2195		spa->spa_spares.sav_sync = B_TRUE;
2196	}
2197
2198	/*
2199	 * Get the list of level 2 cache devices, if specified.
2200	 */
2201	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2202	    &l2cache, &nl2cache) == 0) {
2203		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2204		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2205		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2206		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2207		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2208		spa_load_l2cache(spa);
2209		spa_config_exit(spa, SCL_ALL, FTAG);
2210		spa->spa_l2cache.sav_sync = B_TRUE;
2211	}
2212
2213	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2214	spa->spa_meta_objset = dp->dp_meta_objset;
2215
2216	tx = dmu_tx_create_assigned(dp, txg);
2217
2218	/*
2219	 * Create the pool config object.
2220	 */
2221	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2222	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2223	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2224
2225	if (zap_add(spa->spa_meta_objset,
2226	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2227	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2228		cmn_err(CE_PANIC, "failed to add pool config");
2229	}
2230
2231	/* Newly created pools with the right version are always deflated. */
2232	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2233		spa->spa_deflate = TRUE;
2234		if (zap_add(spa->spa_meta_objset,
2235		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2236		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2237			cmn_err(CE_PANIC, "failed to add deflate");
2238		}
2239	}
2240
2241	/*
2242	 * Create the deferred-free bplist object.  Turn off compression
2243	 * because sync-to-convergence takes longer if the blocksize
2244	 * keeps changing.
2245	 */
2246	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2247	    1 << 14, tx);
2248	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2249	    ZIO_COMPRESS_OFF, tx);
2250
2251	if (zap_add(spa->spa_meta_objset,
2252	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2253	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2254		cmn_err(CE_PANIC, "failed to add bplist");
2255	}
2256
2257	/*
2258	 * Create the pool's history object.
2259	 */
2260	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2261		spa_history_create_obj(spa, tx);
2262
2263	/*
2264	 * Set pool properties.
2265	 */
2266	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2267	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2268	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2269	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2270	if (props != NULL) {
2271		spa_configfile_set(spa, props, B_FALSE);
2272		spa_sync_props(spa, props, CRED(), tx);
2273	}
2274
2275	dmu_tx_commit(tx);
2276
2277	spa->spa_sync_on = B_TRUE;
2278	txg_sync_start(spa->spa_dsl_pool);
2279
2280	/*
2281	 * We explicitly wait for the first transaction to complete so that our
2282	 * bean counters are appropriately updated.
2283	 */
2284	txg_wait_synced(spa->spa_dsl_pool, txg);
2285
2286	spa_config_sync(spa, B_FALSE, B_TRUE);
2287
2288	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2289		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2290	spa_history_log_version(spa, LOG_POOL_CREATE);
2291
2292	spa->spa_minref = refcount_count(&spa->spa_refcount);
2293
2294	mutex_exit(&spa_namespace_lock);
2295
2296	return (0);
2297}
2298
2299#ifdef _KERNEL
2300/*
2301 * Get the root pool information from the root disk, then import the root pool
2302 * during the system boot up time.
2303 */
2304extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2305
2306static nvlist_t *
2307spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2308{
2309	nvlist_t *config;
2310	nvlist_t *nvtop, *nvroot;
2311	uint64_t pgid;
2312
2313	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2314		return (NULL);
2315
2316	/*
2317	 * Add this top-level vdev to the child array.
2318	 */
2319	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2320	    &nvtop) == 0);
2321	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2322	    &pgid) == 0);
2323	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2324
2325	/*
2326	 * Put this pool's top-level vdevs into a root vdev.
2327	 */
2328	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2329	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2330	    VDEV_TYPE_ROOT) == 0);
2331	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2332	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2333	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2334	    &nvtop, 1) == 0);
2335
2336	/*
2337	 * Replace the existing vdev_tree with the new root vdev in
2338	 * this pool's configuration (remove the old, add the new).
2339	 */
2340	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2341	nvlist_free(nvroot);
2342	return (config);
2343}
2344
2345/*
2346 * Walk the vdev tree and see if we can find a device with "better"
2347 * configuration. A configuration is "better" if the label on that
2348 * device has a more recent txg.
2349 */
2350static void
2351spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2352{
2353	for (int c = 0; c < vd->vdev_children; c++)
2354		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2355
2356	if (vd->vdev_ops->vdev_op_leaf) {
2357		nvlist_t *label;
2358		uint64_t label_txg;
2359
2360		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2361		    &label) != 0)
2362			return;
2363
2364		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2365		    &label_txg) == 0);
2366
2367		/*
2368		 * Do we have a better boot device?
2369		 */
2370		if (label_txg > *txg) {
2371			*txg = label_txg;
2372			*avd = vd;
2373		}
2374		nvlist_free(label);
2375	}
2376}
2377
2378/*
2379 * Import a root pool.
2380 *
2381 * For x86. devpath_list will consist of devid and/or physpath name of
2382 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2383 * The GRUB "findroot" command will return the vdev we should boot.
2384 *
2385 * For Sparc, devpath_list consists the physpath name of the booting device
2386 * no matter the rootpool is a single device pool or a mirrored pool.
2387 * e.g.
2388 *	"/pci@1f,0/ide@d/disk@0,0:a"
2389 */
2390int
2391spa_import_rootpool(char *devpath, char *devid)
2392{
2393	spa_t *spa;
2394	vdev_t *rvd, *bvd, *avd = NULL;
2395	nvlist_t *config, *nvtop;
2396	uint64_t guid, txg;
2397	char *pname;
2398	int error;
2399
2400	/*
2401	 * Read the label from the boot device and generate a configuration.
2402	 */
2403	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2404		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2405		    devpath);
2406		return (EIO);
2407	}
2408
2409	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2410	    &pname) == 0);
2411	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2412
2413	mutex_enter(&spa_namespace_lock);
2414	if ((spa = spa_lookup(pname)) != NULL) {
2415		/*
2416		 * Remove the existing root pool from the namespace so that we
2417		 * can replace it with the correct config we just read in.
2418		 */
2419		spa_remove(spa);
2420	}
2421
2422	spa = spa_add(pname, NULL);
2423	spa->spa_is_root = B_TRUE;
2424	spa->spa_load_verbatim = B_TRUE;
2425
2426	/*
2427	 * Build up a vdev tree based on the boot device's label config.
2428	 */
2429	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2430	    &nvtop) == 0);
2431	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2432	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2433	    VDEV_ALLOC_ROOTPOOL);
2434	spa_config_exit(spa, SCL_ALL, FTAG);
2435	if (error) {
2436		mutex_exit(&spa_namespace_lock);
2437		nvlist_free(config);
2438		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2439		    pname);
2440		return (error);
2441	}
2442
2443	/*
2444	 * Get the boot vdev.
2445	 */
2446	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2447		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2448		    (u_longlong_t)guid);
2449		error = ENOENT;
2450		goto out;
2451	}
2452
2453	/*
2454	 * Determine if there is a better boot device.
2455	 */
2456	avd = bvd;
2457	spa_alt_rootvdev(rvd, &avd, &txg);
2458	if (avd != bvd) {
2459		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2460		    "try booting from '%s'", avd->vdev_path);
2461		error = EINVAL;
2462		goto out;
2463	}
2464
2465	/*
2466	 * If the boot device is part of a spare vdev then ensure that
2467	 * we're booting off the active spare.
2468	 */
2469	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2470	    !bvd->vdev_isspare) {
2471		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2472		    "try booting from '%s'",
2473		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2474		error = EINVAL;
2475		goto out;
2476	}
2477
2478	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2479	error = 0;
2480	spa_history_log_version(spa, LOG_POOL_IMPORT);
2481out:
2482	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2483	vdev_free(rvd);
2484	spa_config_exit(spa, SCL_ALL, FTAG);
2485	mutex_exit(&spa_namespace_lock);
2486
2487	nvlist_free(config);
2488	return (error);
2489}
2490
2491#endif
2492
2493/*
2494 * Take a pool and insert it into the namespace as if it had been loaded at
2495 * boot.
2496 */
2497int
2498spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2499{
2500	spa_t *spa;
2501	char *altroot = NULL;
2502
2503	mutex_enter(&spa_namespace_lock);
2504	if (spa_lookup(pool) != NULL) {
2505		mutex_exit(&spa_namespace_lock);
2506		return (EEXIST);
2507	}
2508
2509	(void) nvlist_lookup_string(props,
2510	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2511	spa = spa_add(pool, altroot);
2512
2513	spa->spa_load_verbatim = B_TRUE;
2514
2515	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2516
2517	if (props != NULL)
2518		spa_configfile_set(spa, props, B_FALSE);
2519
2520	spa_config_sync(spa, B_FALSE, B_TRUE);
2521
2522	mutex_exit(&spa_namespace_lock);
2523	spa_history_log_version(spa, LOG_POOL_IMPORT);
2524
2525	return (0);
2526}
2527
2528/*
2529 * Import a non-root pool into the system.
2530 */
2531int
2532spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2533{
2534	spa_t *spa;
2535	char *altroot = NULL;
2536	int error;
2537	nvlist_t *nvroot;
2538	nvlist_t **spares, **l2cache;
2539	uint_t nspares, nl2cache;
2540
2541	/*
2542	 * If a pool with this name exists, return failure.
2543	 */
2544	mutex_enter(&spa_namespace_lock);
2545	if ((spa = spa_lookup(pool)) != NULL) {
2546		mutex_exit(&spa_namespace_lock);
2547		return (EEXIST);
2548	}
2549
2550	/*
2551	 * Create and initialize the spa structure.
2552	 */
2553	(void) nvlist_lookup_string(props,
2554	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2555	spa = spa_add(pool, altroot);
2556	spa_activate(spa, spa_mode_global);
2557
2558	/*
2559	 * Don't start async tasks until we know everything is healthy.
2560	 */
2561	spa_async_suspend(spa);
2562
2563	/*
2564	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2565	 * because the user-supplied config is actually the one to trust when
2566	 * doing an import.
2567	 */
2568	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2569
2570	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2571	/*
2572	 * Toss any existing sparelist, as it doesn't have any validity
2573	 * anymore, and conflicts with spa_has_spare().
2574	 */
2575	if (spa->spa_spares.sav_config) {
2576		nvlist_free(spa->spa_spares.sav_config);
2577		spa->spa_spares.sav_config = NULL;
2578		spa_load_spares(spa);
2579	}
2580	if (spa->spa_l2cache.sav_config) {
2581		nvlist_free(spa->spa_l2cache.sav_config);
2582		spa->spa_l2cache.sav_config = NULL;
2583		spa_load_l2cache(spa);
2584	}
2585
2586	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2587	    &nvroot) == 0);
2588	if (error == 0)
2589		error = spa_validate_aux(spa, nvroot, -1ULL,
2590		    VDEV_ALLOC_SPARE);
2591	if (error == 0)
2592		error = spa_validate_aux(spa, nvroot, -1ULL,
2593		    VDEV_ALLOC_L2CACHE);
2594	spa_config_exit(spa, SCL_ALL, FTAG);
2595
2596	if (props != NULL)
2597		spa_configfile_set(spa, props, B_FALSE);
2598
2599	if (error != 0 || (props && spa_writeable(spa) &&
2600	    (error = spa_prop_set(spa, props)))) {
2601		spa_unload(spa);
2602		spa_deactivate(spa);
2603		spa_remove(spa);
2604		mutex_exit(&spa_namespace_lock);
2605		return (error);
2606	}
2607
2608	spa_async_resume(spa);
2609
2610	/*
2611	 * Override any spares and level 2 cache devices as specified by
2612	 * the user, as these may have correct device names/devids, etc.
2613	 */
2614	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2615	    &spares, &nspares) == 0) {
2616		if (spa->spa_spares.sav_config)
2617			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2618			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2619		else
2620			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2621			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2622		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2623		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2624		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2625		spa_load_spares(spa);
2626		spa_config_exit(spa, SCL_ALL, FTAG);
2627		spa->spa_spares.sav_sync = B_TRUE;
2628	}
2629	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2630	    &l2cache, &nl2cache) == 0) {
2631		if (spa->spa_l2cache.sav_config)
2632			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2633			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2634		else
2635			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2636			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2637		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2638		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2639		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2640		spa_load_l2cache(spa);
2641		spa_config_exit(spa, SCL_ALL, FTAG);
2642		spa->spa_l2cache.sav_sync = B_TRUE;
2643	}
2644
2645	if (spa_writeable(spa)) {
2646		/*
2647		 * Update the config cache to include the newly-imported pool.
2648		 */
2649		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2650	}
2651
2652	/*
2653	 * It's possible that the pool was expanded while it was exported.
2654	 * We kick off an async task to handle this for us.
2655	 */
2656	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2657
2658	mutex_exit(&spa_namespace_lock);
2659	spa_history_log_version(spa, LOG_POOL_IMPORT);
2660
2661	return (0);
2662}
2663
2664
2665/*
2666 * This (illegal) pool name is used when temporarily importing a spa_t in order
2667 * to get the vdev stats associated with the imported devices.
2668 */
2669#define	TRYIMPORT_NAME	"$import"
2670
2671nvlist_t *
2672spa_tryimport(nvlist_t *tryconfig)
2673{
2674	nvlist_t *config = NULL;
2675	char *poolname;
2676	spa_t *spa;
2677	uint64_t state;
2678	int error;
2679
2680	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2681		return (NULL);
2682
2683	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2684		return (NULL);
2685
2686	/*
2687	 * Create and initialize the spa structure.
2688	 */
2689	mutex_enter(&spa_namespace_lock);
2690	spa = spa_add(TRYIMPORT_NAME, NULL);
2691	spa_activate(spa, FREAD);
2692
2693	/*
2694	 * Pass off the heavy lifting to spa_load().
2695	 * Pass TRUE for mosconfig because the user-supplied config
2696	 * is actually the one to trust when doing an import.
2697	 */
2698	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2699
2700	/*
2701	 * If 'tryconfig' was at least parsable, return the current config.
2702	 */
2703	if (spa->spa_root_vdev != NULL) {
2704		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2705		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2706		    poolname) == 0);
2707		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2708		    state) == 0);
2709		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2710		    spa->spa_uberblock.ub_timestamp) == 0);
2711
2712		/*
2713		 * If the bootfs property exists on this pool then we
2714		 * copy it out so that external consumers can tell which
2715		 * pools are bootable.
2716		 */
2717		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2718			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2719
2720			/*
2721			 * We have to play games with the name since the
2722			 * pool was opened as TRYIMPORT_NAME.
2723			 */
2724			if (dsl_dsobj_to_dsname(spa_name(spa),
2725			    spa->spa_bootfs, tmpname) == 0) {
2726				char *cp;
2727				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2728
2729				cp = strchr(tmpname, '/');
2730				if (cp == NULL) {
2731					(void) strlcpy(dsname, tmpname,
2732					    MAXPATHLEN);
2733				} else {
2734					(void) snprintf(dsname, MAXPATHLEN,
2735					    "%s/%s", poolname, ++cp);
2736				}
2737				VERIFY(nvlist_add_string(config,
2738				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2739				kmem_free(dsname, MAXPATHLEN);
2740			}
2741			kmem_free(tmpname, MAXPATHLEN);
2742		}
2743
2744		/*
2745		 * Add the list of hot spares and level 2 cache devices.
2746		 */
2747		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2748		spa_add_spares(spa, config);
2749		spa_add_l2cache(spa, config);
2750		spa_config_exit(spa, SCL_CONFIG, FTAG);
2751	}
2752
2753	spa_unload(spa);
2754	spa_deactivate(spa);
2755	spa_remove(spa);
2756	mutex_exit(&spa_namespace_lock);
2757
2758	return (config);
2759}
2760
2761/*
2762 * Pool export/destroy
2763 *
2764 * The act of destroying or exporting a pool is very simple.  We make sure there
2765 * is no more pending I/O and any references to the pool are gone.  Then, we
2766 * update the pool state and sync all the labels to disk, removing the
2767 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2768 * we don't sync the labels or remove the configuration cache.
2769 */
2770static int
2771spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2772    boolean_t force, boolean_t hardforce)
2773{
2774	spa_t *spa;
2775
2776	if (oldconfig)
2777		*oldconfig = NULL;
2778
2779	if (!(spa_mode_global & FWRITE))
2780		return (EROFS);
2781
2782	mutex_enter(&spa_namespace_lock);
2783	if ((spa = spa_lookup(pool)) == NULL) {
2784		mutex_exit(&spa_namespace_lock);
2785		return (ENOENT);
2786	}
2787
2788	/*
2789	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2790	 * reacquire the namespace lock, and see if we can export.
2791	 */
2792	spa_open_ref(spa, FTAG);
2793	mutex_exit(&spa_namespace_lock);
2794	spa_async_suspend(spa);
2795	mutex_enter(&spa_namespace_lock);
2796	spa_close(spa, FTAG);
2797
2798	/*
2799	 * The pool will be in core if it's openable,
2800	 * in which case we can modify its state.
2801	 */
2802	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2803		/*
2804		 * Objsets may be open only because they're dirty, so we
2805		 * have to force it to sync before checking spa_refcnt.
2806		 */
2807		txg_wait_synced(spa->spa_dsl_pool, 0);
2808
2809		/*
2810		 * A pool cannot be exported or destroyed if there are active
2811		 * references.  If we are resetting a pool, allow references by
2812		 * fault injection handlers.
2813		 */
2814		if (!spa_refcount_zero(spa) ||
2815		    (spa->spa_inject_ref != 0 &&
2816		    new_state != POOL_STATE_UNINITIALIZED)) {
2817			spa_async_resume(spa);
2818			mutex_exit(&spa_namespace_lock);
2819			return (EBUSY);
2820		}
2821
2822		/*
2823		 * A pool cannot be exported if it has an active shared spare.
2824		 * This is to prevent other pools stealing the active spare
2825		 * from an exported pool. At user's own will, such pool can
2826		 * be forcedly exported.
2827		 */
2828		if (!force && new_state == POOL_STATE_EXPORTED &&
2829		    spa_has_active_shared_spare(spa)) {
2830			spa_async_resume(spa);
2831			mutex_exit(&spa_namespace_lock);
2832			return (EXDEV);
2833		}
2834
2835		/*
2836		 * We want this to be reflected on every label,
2837		 * so mark them all dirty.  spa_unload() will do the
2838		 * final sync that pushes these changes out.
2839		 */
2840		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2841			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2842			spa->spa_state = new_state;
2843			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2844			vdev_config_dirty(spa->spa_root_vdev);
2845			spa_config_exit(spa, SCL_ALL, FTAG);
2846		}
2847	}
2848
2849	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2850
2851	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2852		spa_unload(spa);
2853		spa_deactivate(spa);
2854	}
2855
2856	if (oldconfig && spa->spa_config)
2857		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2858
2859	if (new_state != POOL_STATE_UNINITIALIZED) {
2860		if (!hardforce)
2861			spa_config_sync(spa, B_TRUE, B_TRUE);
2862		spa_remove(spa);
2863	}
2864	mutex_exit(&spa_namespace_lock);
2865
2866	return (0);
2867}
2868
2869/*
2870 * Destroy a storage pool.
2871 */
2872int
2873spa_destroy(char *pool)
2874{
2875	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2876	    B_FALSE, B_FALSE));
2877}
2878
2879/*
2880 * Export a storage pool.
2881 */
2882int
2883spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2884    boolean_t hardforce)
2885{
2886	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2887	    force, hardforce));
2888}
2889
2890/*
2891 * Similar to spa_export(), this unloads the spa_t without actually removing it
2892 * from the namespace in any way.
2893 */
2894int
2895spa_reset(char *pool)
2896{
2897	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2898	    B_FALSE, B_FALSE));
2899}
2900
2901/*
2902 * ==========================================================================
2903 * Device manipulation
2904 * ==========================================================================
2905 */
2906
2907/*
2908 * Add a device to a storage pool.
2909 */
2910int
2911spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2912{
2913	uint64_t txg;
2914	int error;
2915	vdev_t *rvd = spa->spa_root_vdev;
2916	vdev_t *vd, *tvd;
2917	nvlist_t **spares, **l2cache;
2918	uint_t nspares, nl2cache;
2919
2920	txg = spa_vdev_enter(spa);
2921
2922	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2923	    VDEV_ALLOC_ADD)) != 0)
2924		return (spa_vdev_exit(spa, NULL, txg, error));
2925
2926	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2927
2928	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2929	    &nspares) != 0)
2930		nspares = 0;
2931
2932	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2933	    &nl2cache) != 0)
2934		nl2cache = 0;
2935
2936	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2937		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2938
2939	if (vd->vdev_children != 0 &&
2940	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2941		return (spa_vdev_exit(spa, vd, txg, error));
2942
2943	/*
2944	 * We must validate the spares and l2cache devices after checking the
2945	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2946	 */
2947	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2948		return (spa_vdev_exit(spa, vd, txg, error));
2949
2950	/*
2951	 * Transfer each new top-level vdev from vd to rvd.
2952	 */
2953	for (int c = 0; c < vd->vdev_children; c++) {
2954		tvd = vd->vdev_child[c];
2955		vdev_remove_child(vd, tvd);
2956		tvd->vdev_id = rvd->vdev_children;
2957		vdev_add_child(rvd, tvd);
2958		vdev_config_dirty(tvd);
2959	}
2960
2961	if (nspares != 0) {
2962		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2963		    ZPOOL_CONFIG_SPARES);
2964		spa_load_spares(spa);
2965		spa->spa_spares.sav_sync = B_TRUE;
2966	}
2967
2968	if (nl2cache != 0) {
2969		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2970		    ZPOOL_CONFIG_L2CACHE);
2971		spa_load_l2cache(spa);
2972		spa->spa_l2cache.sav_sync = B_TRUE;
2973	}
2974
2975	/*
2976	 * We have to be careful when adding new vdevs to an existing pool.
2977	 * If other threads start allocating from these vdevs before we
2978	 * sync the config cache, and we lose power, then upon reboot we may
2979	 * fail to open the pool because there are DVAs that the config cache
2980	 * can't translate.  Therefore, we first add the vdevs without
2981	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2982	 * and then let spa_config_update() initialize the new metaslabs.
2983	 *
2984	 * spa_load() checks for added-but-not-initialized vdevs, so that
2985	 * if we lose power at any point in this sequence, the remaining
2986	 * steps will be completed the next time we load the pool.
2987	 */
2988	(void) spa_vdev_exit(spa, vd, txg, 0);
2989
2990	mutex_enter(&spa_namespace_lock);
2991	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2992	mutex_exit(&spa_namespace_lock);
2993
2994	return (0);
2995}
2996
2997/*
2998 * Attach a device to a mirror.  The arguments are the path to any device
2999 * in the mirror, and the nvroot for the new device.  If the path specifies
3000 * a device that is not mirrored, we automatically insert the mirror vdev.
3001 *
3002 * If 'replacing' is specified, the new device is intended to replace the
3003 * existing device; in this case the two devices are made into their own
3004 * mirror using the 'replacing' vdev, which is functionally identical to
3005 * the mirror vdev (it actually reuses all the same ops) but has a few
3006 * extra rules: you can't attach to it after it's been created, and upon
3007 * completion of resilvering, the first disk (the one being replaced)
3008 * is automatically detached.
3009 */
3010int
3011spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3012{
3013	uint64_t txg, open_txg;
3014	vdev_t *rvd = spa->spa_root_vdev;
3015	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3016	vdev_ops_t *pvops;
3017	char *oldvdpath, *newvdpath;
3018	int newvd_isspare;
3019	int error;
3020
3021	txg = spa_vdev_enter(spa);
3022
3023	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3024
3025	if (oldvd == NULL)
3026		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3027
3028	if (!oldvd->vdev_ops->vdev_op_leaf)
3029		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3030
3031	pvd = oldvd->vdev_parent;
3032
3033	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3034	    VDEV_ALLOC_ADD)) != 0)
3035		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3036
3037	if (newrootvd->vdev_children != 1)
3038		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3039
3040	newvd = newrootvd->vdev_child[0];
3041
3042	if (!newvd->vdev_ops->vdev_op_leaf)
3043		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3044
3045	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3046		return (spa_vdev_exit(spa, newrootvd, txg, error));
3047
3048	/*
3049	 * Spares can't replace logs
3050	 */
3051	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3052		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3053
3054	if (!replacing) {
3055		/*
3056		 * For attach, the only allowable parent is a mirror or the root
3057		 * vdev.
3058		 */
3059		if (pvd->vdev_ops != &vdev_mirror_ops &&
3060		    pvd->vdev_ops != &vdev_root_ops)
3061			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3062
3063		pvops = &vdev_mirror_ops;
3064	} else {
3065		/*
3066		 * Active hot spares can only be replaced by inactive hot
3067		 * spares.
3068		 */
3069		if (pvd->vdev_ops == &vdev_spare_ops &&
3070		    pvd->vdev_child[1] == oldvd &&
3071		    !spa_has_spare(spa, newvd->vdev_guid))
3072			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3073
3074		/*
3075		 * If the source is a hot spare, and the parent isn't already a
3076		 * spare, then we want to create a new hot spare.  Otherwise, we
3077		 * want to create a replacing vdev.  The user is not allowed to
3078		 * attach to a spared vdev child unless the 'isspare' state is
3079		 * the same (spare replaces spare, non-spare replaces
3080		 * non-spare).
3081		 */
3082		if (pvd->vdev_ops == &vdev_replacing_ops)
3083			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3084		else if (pvd->vdev_ops == &vdev_spare_ops &&
3085		    newvd->vdev_isspare != oldvd->vdev_isspare)
3086			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3087		else if (pvd->vdev_ops != &vdev_spare_ops &&
3088		    newvd->vdev_isspare)
3089			pvops = &vdev_spare_ops;
3090		else
3091			pvops = &vdev_replacing_ops;
3092	}
3093
3094	/*
3095	 * Make sure the new device is big enough.
3096	 */
3097	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3098		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3099
3100	/*
3101	 * The new device cannot have a higher alignment requirement
3102	 * than the top-level vdev.
3103	 */
3104	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3105		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3106
3107	/*
3108	 * If this is an in-place replacement, update oldvd's path and devid
3109	 * to make it distinguishable from newvd, and unopenable from now on.
3110	 */
3111	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3112		spa_strfree(oldvd->vdev_path);
3113		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3114		    KM_SLEEP);
3115		(void) sprintf(oldvd->vdev_path, "%s/%s",
3116		    newvd->vdev_path, "old");
3117		if (oldvd->vdev_devid != NULL) {
3118			spa_strfree(oldvd->vdev_devid);
3119			oldvd->vdev_devid = NULL;
3120		}
3121	}
3122
3123	/*
3124	 * If the parent is not a mirror, or if we're replacing, insert the new
3125	 * mirror/replacing/spare vdev above oldvd.
3126	 */
3127	if (pvd->vdev_ops != pvops)
3128		pvd = vdev_add_parent(oldvd, pvops);
3129
3130	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3131	ASSERT(pvd->vdev_ops == pvops);
3132	ASSERT(oldvd->vdev_parent == pvd);
3133
3134	/*
3135	 * Extract the new device from its root and add it to pvd.
3136	 */
3137	vdev_remove_child(newrootvd, newvd);
3138	newvd->vdev_id = pvd->vdev_children;
3139	vdev_add_child(pvd, newvd);
3140
3141	tvd = newvd->vdev_top;
3142	ASSERT(pvd->vdev_top == tvd);
3143	ASSERT(tvd->vdev_parent == rvd);
3144
3145	vdev_config_dirty(tvd);
3146
3147	/*
3148	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3149	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3150	 */
3151	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3152
3153	vdev_dtl_dirty(newvd, DTL_MISSING,
3154	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3155
3156	if (newvd->vdev_isspare) {
3157		spa_spare_activate(newvd);
3158		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3159	}
3160
3161	oldvdpath = spa_strdup(oldvd->vdev_path);
3162	newvdpath = spa_strdup(newvd->vdev_path);
3163	newvd_isspare = newvd->vdev_isspare;
3164
3165	/*
3166	 * Mark newvd's DTL dirty in this txg.
3167	 */
3168	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3169
3170	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3171
3172	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3173	    CRED(),  "%s vdev=%s %s vdev=%s",
3174	    replacing && newvd_isspare ? "spare in" :
3175	    replacing ? "replace" : "attach", newvdpath,
3176	    replacing ? "for" : "to", oldvdpath);
3177
3178	spa_strfree(oldvdpath);
3179	spa_strfree(newvdpath);
3180
3181	/*
3182	 * Kick off a resilver to update newvd.
3183	 */
3184	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3185
3186	return (0);
3187}
3188
3189/*
3190 * Detach a device from a mirror or replacing vdev.
3191 * If 'replace_done' is specified, only detach if the parent
3192 * is a replacing vdev.
3193 */
3194int
3195spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3196{
3197	uint64_t txg;
3198	int error;
3199	vdev_t *rvd = spa->spa_root_vdev;
3200	vdev_t *vd, *pvd, *cvd, *tvd;
3201	boolean_t unspare = B_FALSE;
3202	uint64_t unspare_guid;
3203	size_t len;
3204
3205	txg = spa_vdev_enter(spa);
3206
3207	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3208
3209	if (vd == NULL)
3210		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3211
3212	if (!vd->vdev_ops->vdev_op_leaf)
3213		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3214
3215	pvd = vd->vdev_parent;
3216
3217	/*
3218	 * If the parent/child relationship is not as expected, don't do it.
3219	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3220	 * vdev that's replacing B with C.  The user's intent in replacing
3221	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3222	 * the replace by detaching C, the expected behavior is to end up
3223	 * M(A,B).  But suppose that right after deciding to detach C,
3224	 * the replacement of B completes.  We would have M(A,C), and then
3225	 * ask to detach C, which would leave us with just A -- not what
3226	 * the user wanted.  To prevent this, we make sure that the
3227	 * parent/child relationship hasn't changed -- in this example,
3228	 * that C's parent is still the replacing vdev R.
3229	 */
3230	if (pvd->vdev_guid != pguid && pguid != 0)
3231		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3232
3233	/*
3234	 * If replace_done is specified, only remove this device if it's
3235	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3236	 * disk can be removed.
3237	 */
3238	if (replace_done) {
3239		if (pvd->vdev_ops == &vdev_replacing_ops) {
3240			if (vd->vdev_id != 0)
3241				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3242		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3243			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3244		}
3245	}
3246
3247	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3248	    spa_version(spa) >= SPA_VERSION_SPARES);
3249
3250	/*
3251	 * Only mirror, replacing, and spare vdevs support detach.
3252	 */
3253	if (pvd->vdev_ops != &vdev_replacing_ops &&
3254	    pvd->vdev_ops != &vdev_mirror_ops &&
3255	    pvd->vdev_ops != &vdev_spare_ops)
3256		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3257
3258	/*
3259	 * If this device has the only valid copy of some data,
3260	 * we cannot safely detach it.
3261	 */
3262	if (vdev_dtl_required(vd))
3263		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3264
3265	ASSERT(pvd->vdev_children >= 2);
3266
3267	/*
3268	 * If we are detaching the second disk from a replacing vdev, then
3269	 * check to see if we changed the original vdev's path to have "/old"
3270	 * at the end in spa_vdev_attach().  If so, undo that change now.
3271	 */
3272	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3273	    pvd->vdev_child[0]->vdev_path != NULL &&
3274	    pvd->vdev_child[1]->vdev_path != NULL) {
3275		ASSERT(pvd->vdev_child[1] == vd);
3276		cvd = pvd->vdev_child[0];
3277		len = strlen(vd->vdev_path);
3278		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3279		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3280			spa_strfree(cvd->vdev_path);
3281			cvd->vdev_path = spa_strdup(vd->vdev_path);
3282		}
3283	}
3284
3285	/*
3286	 * If we are detaching the original disk from a spare, then it implies
3287	 * that the spare should become a real disk, and be removed from the
3288	 * active spare list for the pool.
3289	 */
3290	if (pvd->vdev_ops == &vdev_spare_ops &&
3291	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3292		unspare = B_TRUE;
3293
3294	/*
3295	 * Erase the disk labels so the disk can be used for other things.
3296	 * This must be done after all other error cases are handled,
3297	 * but before we disembowel vd (so we can still do I/O to it).
3298	 * But if we can't do it, don't treat the error as fatal --
3299	 * it may be that the unwritability of the disk is the reason
3300	 * it's being detached!
3301	 */
3302	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3303
3304	/*
3305	 * Remove vd from its parent and compact the parent's children.
3306	 */
3307	vdev_remove_child(pvd, vd);
3308	vdev_compact_children(pvd);
3309
3310	/*
3311	 * Remember one of the remaining children so we can get tvd below.
3312	 */
3313	cvd = pvd->vdev_child[0];
3314
3315	/*
3316	 * If we need to remove the remaining child from the list of hot spares,
3317	 * do it now, marking the vdev as no longer a spare in the process.
3318	 * We must do this before vdev_remove_parent(), because that can
3319	 * change the GUID if it creates a new toplevel GUID.  For a similar
3320	 * reason, we must remove the spare now, in the same txg as the detach;
3321	 * otherwise someone could attach a new sibling, change the GUID, and
3322	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3323	 */
3324	if (unspare) {
3325		ASSERT(cvd->vdev_isspare);
3326		spa_spare_remove(cvd);
3327		unspare_guid = cvd->vdev_guid;
3328		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3329	}
3330
3331	/*
3332	 * If the parent mirror/replacing vdev only has one child,
3333	 * the parent is no longer needed.  Remove it from the tree.
3334	 */
3335	if (pvd->vdev_children == 1)
3336		vdev_remove_parent(cvd);
3337
3338	/*
3339	 * We don't set tvd until now because the parent we just removed
3340	 * may have been the previous top-level vdev.
3341	 */
3342	tvd = cvd->vdev_top;
3343	ASSERT(tvd->vdev_parent == rvd);
3344
3345	/*
3346	 * Reevaluate the parent vdev state.
3347	 */
3348	vdev_propagate_state(cvd);
3349
3350	/*
3351	 * If the 'autoexpand' property is set on the pool then automatically
3352	 * try to expand the size of the pool. For example if the device we
3353	 * just detached was smaller than the others, it may be possible to
3354	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3355	 * first so that we can obtain the updated sizes of the leaf vdevs.
3356	 */
3357	if (spa->spa_autoexpand) {
3358		vdev_reopen(tvd);
3359		vdev_expand(tvd, txg);
3360	}
3361
3362	vdev_config_dirty(tvd);
3363
3364	/*
3365	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3366	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3367	 * But first make sure we're not on any *other* txg's DTL list, to
3368	 * prevent vd from being accessed after it's freed.
3369	 */
3370	for (int t = 0; t < TXG_SIZE; t++)
3371		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3372	vd->vdev_detached = B_TRUE;
3373	vdev_dirty(tvd, VDD_DTL, vd, txg);
3374
3375	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3376
3377	error = spa_vdev_exit(spa, vd, txg, 0);
3378
3379	/*
3380	 * If this was the removal of the original device in a hot spare vdev,
3381	 * then we want to go through and remove the device from the hot spare
3382	 * list of every other pool.
3383	 */
3384	if (unspare) {
3385		spa_t *myspa = spa;
3386		spa = NULL;
3387		mutex_enter(&spa_namespace_lock);
3388		while ((spa = spa_next(spa)) != NULL) {
3389			if (spa->spa_state != POOL_STATE_ACTIVE)
3390				continue;
3391			if (spa == myspa)
3392				continue;
3393			spa_open_ref(spa, FTAG);
3394			mutex_exit(&spa_namespace_lock);
3395			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3396			mutex_enter(&spa_namespace_lock);
3397			spa_close(spa, FTAG);
3398		}
3399		mutex_exit(&spa_namespace_lock);
3400	}
3401
3402	return (error);
3403}
3404
3405static nvlist_t *
3406spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3407{
3408	for (int i = 0; i < count; i++) {
3409		uint64_t guid;
3410
3411		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3412		    &guid) == 0);
3413
3414		if (guid == target_guid)
3415			return (nvpp[i]);
3416	}
3417
3418	return (NULL);
3419}
3420
3421static void
3422spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3423	nvlist_t *dev_to_remove)
3424{
3425	nvlist_t **newdev = NULL;
3426
3427	if (count > 1)
3428		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3429
3430	for (int i = 0, j = 0; i < count; i++) {
3431		if (dev[i] == dev_to_remove)
3432			continue;
3433		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3434	}
3435
3436	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3437	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3438
3439	for (int i = 0; i < count - 1; i++)
3440		nvlist_free(newdev[i]);
3441
3442	if (count > 1)
3443		kmem_free(newdev, (count - 1) * sizeof (void *));
3444}
3445
3446/*
3447 * Remove a device from the pool.  Currently, this supports removing only hot
3448 * spares and level 2 ARC devices.
3449 */
3450int
3451spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3452{
3453	vdev_t *vd;
3454	nvlist_t **spares, **l2cache, *nv;
3455	uint_t nspares, nl2cache;
3456	uint64_t txg = 0;
3457	int error = 0;
3458	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3459
3460	if (!locked)
3461		txg = spa_vdev_enter(spa);
3462
3463	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3464
3465	if (spa->spa_spares.sav_vdevs != NULL &&
3466	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3467	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3468	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3469		/*
3470		 * Only remove the hot spare if it's not currently in use
3471		 * in this pool.
3472		 */
3473		if (vd == NULL || unspare) {
3474			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3475			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3476			spa_load_spares(spa);
3477			spa->spa_spares.sav_sync = B_TRUE;
3478		} else {
3479			error = EBUSY;
3480		}
3481	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3482	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3483	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3484	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3485		/*
3486		 * Cache devices can always be removed.
3487		 */
3488		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3489		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3490		spa_load_l2cache(spa);
3491		spa->spa_l2cache.sav_sync = B_TRUE;
3492	} else if (vd != NULL) {
3493		/*
3494		 * Normal vdevs cannot be removed (yet).
3495		 */
3496		error = ENOTSUP;
3497	} else {
3498		/*
3499		 * There is no vdev of any kind with the specified guid.
3500		 */
3501		error = ENOENT;
3502	}
3503
3504	if (!locked)
3505		return (spa_vdev_exit(spa, NULL, txg, error));
3506
3507	return (error);
3508}
3509
3510/*
3511 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3512 * current spared, so we can detach it.
3513 */
3514static vdev_t *
3515spa_vdev_resilver_done_hunt(vdev_t *vd)
3516{
3517	vdev_t *newvd, *oldvd;
3518
3519	for (int c = 0; c < vd->vdev_children; c++) {
3520		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3521		if (oldvd != NULL)
3522			return (oldvd);
3523	}
3524
3525	/*
3526	 * Check for a completed replacement.
3527	 */
3528	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3529		oldvd = vd->vdev_child[0];
3530		newvd = vd->vdev_child[1];
3531
3532		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3533		    !vdev_dtl_required(oldvd))
3534			return (oldvd);
3535	}
3536
3537	/*
3538	 * Check for a completed resilver with the 'unspare' flag set.
3539	 */
3540	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3541		newvd = vd->vdev_child[0];
3542		oldvd = vd->vdev_child[1];
3543
3544		if (newvd->vdev_unspare &&
3545		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3546		    !vdev_dtl_required(oldvd)) {
3547			newvd->vdev_unspare = 0;
3548			return (oldvd);
3549		}
3550	}
3551
3552	return (NULL);
3553}
3554
3555static void
3556spa_vdev_resilver_done(spa_t *spa)
3557{
3558	vdev_t *vd, *pvd, *ppvd;
3559	uint64_t guid, sguid, pguid, ppguid;
3560
3561	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3562
3563	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3564		pvd = vd->vdev_parent;
3565		ppvd = pvd->vdev_parent;
3566		guid = vd->vdev_guid;
3567		pguid = pvd->vdev_guid;
3568		ppguid = ppvd->vdev_guid;
3569		sguid = 0;
3570		/*
3571		 * If we have just finished replacing a hot spared device, then
3572		 * we need to detach the parent's first child (the original hot
3573		 * spare) as well.
3574		 */
3575		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3576			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3577			ASSERT(ppvd->vdev_children == 2);
3578			sguid = ppvd->vdev_child[1]->vdev_guid;
3579		}
3580		spa_config_exit(spa, SCL_ALL, FTAG);
3581		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3582			return;
3583		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3584			return;
3585		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3586	}
3587
3588	spa_config_exit(spa, SCL_ALL, FTAG);
3589}
3590
3591/*
3592 * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3593 * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3594 */
3595int
3596spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3597    boolean_t ispath)
3598{
3599	vdev_t *vd;
3600	uint64_t txg;
3601
3602	txg = spa_vdev_enter(spa);
3603
3604	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3605		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3606
3607	if (!vd->vdev_ops->vdev_op_leaf)
3608		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3609
3610	if (ispath) {
3611		spa_strfree(vd->vdev_path);
3612		vd->vdev_path = spa_strdup(value);
3613	} else {
3614		if (vd->vdev_fru != NULL)
3615			spa_strfree(vd->vdev_fru);
3616		vd->vdev_fru = spa_strdup(value);
3617	}
3618
3619	vdev_config_dirty(vd->vdev_top);
3620
3621	return (spa_vdev_exit(spa, NULL, txg, 0));
3622}
3623
3624int
3625spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3626{
3627	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3628}
3629
3630int
3631spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3632{
3633	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3634}
3635
3636/*
3637 * ==========================================================================
3638 * SPA Scrubbing
3639 * ==========================================================================
3640 */
3641
3642int
3643spa_scrub(spa_t *spa, pool_scrub_type_t type)
3644{
3645	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3646
3647	if ((uint_t)type >= POOL_SCRUB_TYPES)
3648		return (ENOTSUP);
3649
3650	/*
3651	 * If a resilver was requested, but there is no DTL on a
3652	 * writeable leaf device, we have nothing to do.
3653	 */
3654	if (type == POOL_SCRUB_RESILVER &&
3655	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3656		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3657		return (0);
3658	}
3659
3660	if (type == POOL_SCRUB_EVERYTHING &&
3661	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3662	    spa->spa_dsl_pool->dp_scrub_isresilver)
3663		return (EBUSY);
3664
3665	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3666		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3667	} else if (type == POOL_SCRUB_NONE) {
3668		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3669	} else {
3670		return (EINVAL);
3671	}
3672}
3673
3674/*
3675 * ==========================================================================
3676 * SPA async task processing
3677 * ==========================================================================
3678 */
3679
3680static void
3681spa_async_remove(spa_t *spa, vdev_t *vd)
3682{
3683	if (vd->vdev_remove_wanted) {
3684		vd->vdev_remove_wanted = 0;
3685		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3686		vdev_clear(spa, vd);
3687		vdev_state_dirty(vd->vdev_top);
3688	}
3689
3690	for (int c = 0; c < vd->vdev_children; c++)
3691		spa_async_remove(spa, vd->vdev_child[c]);
3692}
3693
3694static void
3695spa_async_probe(spa_t *spa, vdev_t *vd)
3696{
3697	if (vd->vdev_probe_wanted) {
3698		vd->vdev_probe_wanted = 0;
3699		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3700	}
3701
3702	for (int c = 0; c < vd->vdev_children; c++)
3703		spa_async_probe(spa, vd->vdev_child[c]);
3704}
3705
3706static void
3707spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3708{
3709	sysevent_id_t eid;
3710	nvlist_t *attr;
3711	char *physpath;
3712
3713	if (!spa->spa_autoexpand)
3714		return;
3715
3716	for (int c = 0; c < vd->vdev_children; c++) {
3717		vdev_t *cvd = vd->vdev_child[c];
3718		spa_async_autoexpand(spa, cvd);
3719	}
3720
3721	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3722		return;
3723
3724	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3725	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3726
3727	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3728	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3729
3730	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3731	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3732
3733	nvlist_free(attr);
3734	kmem_free(physpath, MAXPATHLEN);
3735}
3736
3737static void
3738spa_async_thread(spa_t *spa)
3739{
3740	int tasks;
3741
3742	ASSERT(spa->spa_sync_on);
3743
3744	mutex_enter(&spa->spa_async_lock);
3745	tasks = spa->spa_async_tasks;
3746	spa->spa_async_tasks = 0;
3747	mutex_exit(&spa->spa_async_lock);
3748
3749	/*
3750	 * See if the config needs to be updated.
3751	 */
3752	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3753		uint64_t oldsz, space_update;
3754
3755		mutex_enter(&spa_namespace_lock);
3756		oldsz = spa_get_space(spa);
3757		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3758		space_update = spa_get_space(spa) - oldsz;
3759		mutex_exit(&spa_namespace_lock);
3760
3761		/*
3762		 * If the pool grew as a result of the config update,
3763		 * then log an internal history event.
3764		 */
3765		if (space_update) {
3766			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3767			    spa, NULL, CRED(),
3768			    "pool '%s' size: %llu(+%llu)",
3769			    spa_name(spa), spa_get_space(spa),
3770			    space_update);
3771		}
3772	}
3773
3774	/*
3775	 * See if any devices need to be marked REMOVED.
3776	 */
3777	if (tasks & SPA_ASYNC_REMOVE) {
3778		spa_vdev_state_enter(spa);
3779		spa_async_remove(spa, spa->spa_root_vdev);
3780		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3781			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3782		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3783			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3784		(void) spa_vdev_state_exit(spa, NULL, 0);
3785	}
3786
3787	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3788		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3789		spa_async_autoexpand(spa, spa->spa_root_vdev);
3790		spa_config_exit(spa, SCL_CONFIG, FTAG);
3791	}
3792
3793	/*
3794	 * See if any devices need to be probed.
3795	 */
3796	if (tasks & SPA_ASYNC_PROBE) {
3797		spa_vdev_state_enter(spa);
3798		spa_async_probe(spa, spa->spa_root_vdev);
3799		(void) spa_vdev_state_exit(spa, NULL, 0);
3800	}
3801
3802	/*
3803	 * If any devices are done replacing, detach them.
3804	 */
3805	if (tasks & SPA_ASYNC_RESILVER_DONE)
3806		spa_vdev_resilver_done(spa);
3807
3808	/*
3809	 * Kick off a resilver.
3810	 */
3811	if (tasks & SPA_ASYNC_RESILVER)
3812		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3813
3814	/*
3815	 * Let the world know that we're done.
3816	 */
3817	mutex_enter(&spa->spa_async_lock);
3818	spa->spa_async_thread = NULL;
3819	cv_broadcast(&spa->spa_async_cv);
3820	mutex_exit(&spa->spa_async_lock);
3821	thread_exit();
3822}
3823
3824void
3825spa_async_suspend(spa_t *spa)
3826{
3827	mutex_enter(&spa->spa_async_lock);
3828	spa->spa_async_suspended++;
3829	while (spa->spa_async_thread != NULL)
3830		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3831	mutex_exit(&spa->spa_async_lock);
3832}
3833
3834void
3835spa_async_resume(spa_t *spa)
3836{
3837	mutex_enter(&spa->spa_async_lock);
3838	ASSERT(spa->spa_async_suspended != 0);
3839	spa->spa_async_suspended--;
3840	mutex_exit(&spa->spa_async_lock);
3841}
3842
3843static void
3844spa_async_dispatch(spa_t *spa)
3845{
3846	mutex_enter(&spa->spa_async_lock);
3847	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3848	    spa->spa_async_thread == NULL &&
3849	    rootdir != NULL && !vn_is_readonly(rootdir))
3850		spa->spa_async_thread = thread_create(NULL, 0,
3851		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3852	mutex_exit(&spa->spa_async_lock);
3853}
3854
3855void
3856spa_async_request(spa_t *spa, int task)
3857{
3858	mutex_enter(&spa->spa_async_lock);
3859	spa->spa_async_tasks |= task;
3860	mutex_exit(&spa->spa_async_lock);
3861}
3862
3863/*
3864 * ==========================================================================
3865 * SPA syncing routines
3866 * ==========================================================================
3867 */
3868
3869static void
3870spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3871{
3872	bplist_t *bpl = &spa->spa_sync_bplist;
3873	dmu_tx_t *tx;
3874	blkptr_t blk;
3875	uint64_t itor = 0;
3876	zio_t *zio;
3877	int error;
3878	uint8_t c = 1;
3879
3880	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3881
3882	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3883		ASSERT(blk.blk_birth < txg);
3884		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3885		    ZIO_FLAG_MUSTSUCCEED));
3886	}
3887
3888	error = zio_wait(zio);
3889	ASSERT3U(error, ==, 0);
3890
3891	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3892	bplist_vacate(bpl, tx);
3893
3894	/*
3895	 * Pre-dirty the first block so we sync to convergence faster.
3896	 * (Usually only the first block is needed.)
3897	 */
3898	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3899	dmu_tx_commit(tx);
3900}
3901
3902static void
3903spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3904{
3905	char *packed = NULL;
3906	size_t bufsize;
3907	size_t nvsize = 0;
3908	dmu_buf_t *db;
3909
3910	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3911
3912	/*
3913	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3914	 * information.  This avoids the dbuf_will_dirty() path and
3915	 * saves us a pre-read to get data we don't actually care about.
3916	 */
3917	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3918	packed = kmem_alloc(bufsize, KM_SLEEP);
3919
3920	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3921	    KM_SLEEP) == 0);
3922	bzero(packed + nvsize, bufsize - nvsize);
3923
3924	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3925
3926	kmem_free(packed, bufsize);
3927
3928	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3929	dmu_buf_will_dirty(db, tx);
3930	*(uint64_t *)db->db_data = nvsize;
3931	dmu_buf_rele(db, FTAG);
3932}
3933
3934static void
3935spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3936    const char *config, const char *entry)
3937{
3938	nvlist_t *nvroot;
3939	nvlist_t **list;
3940	int i;
3941
3942	if (!sav->sav_sync)
3943		return;
3944
3945	/*
3946	 * Update the MOS nvlist describing the list of available devices.
3947	 * spa_validate_aux() will have already made sure this nvlist is
3948	 * valid and the vdevs are labeled appropriately.
3949	 */
3950	if (sav->sav_object == 0) {
3951		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3952		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3953		    sizeof (uint64_t), tx);
3954		VERIFY(zap_update(spa->spa_meta_objset,
3955		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3956		    &sav->sav_object, tx) == 0);
3957	}
3958
3959	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3960	if (sav->sav_count == 0) {
3961		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3962	} else {
3963		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3964		for (i = 0; i < sav->sav_count; i++)
3965			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3966			    B_FALSE, B_FALSE, B_TRUE);
3967		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3968		    sav->sav_count) == 0);
3969		for (i = 0; i < sav->sav_count; i++)
3970			nvlist_free(list[i]);
3971		kmem_free(list, sav->sav_count * sizeof (void *));
3972	}
3973
3974	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3975	nvlist_free(nvroot);
3976
3977	sav->sav_sync = B_FALSE;
3978}
3979
3980static void
3981spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3982{
3983	nvlist_t *config;
3984
3985	if (list_is_empty(&spa->spa_config_dirty_list))
3986		return;
3987
3988	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3989
3990	config = spa_config_generate(spa, spa->spa_root_vdev,
3991	    dmu_tx_get_txg(tx), B_FALSE);
3992
3993	spa_config_exit(spa, SCL_STATE, FTAG);
3994
3995	if (spa->spa_config_syncing)
3996		nvlist_free(spa->spa_config_syncing);
3997	spa->spa_config_syncing = config;
3998
3999	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4000}
4001
4002/*
4003 * Set zpool properties.
4004 */
4005static void
4006spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4007{
4008	spa_t *spa = arg1;
4009	objset_t *mos = spa->spa_meta_objset;
4010	nvlist_t *nvp = arg2;
4011	nvpair_t *elem;
4012	uint64_t intval;
4013	char *strval;
4014	zpool_prop_t prop;
4015	const char *propname;
4016	zprop_type_t proptype;
4017
4018	mutex_enter(&spa->spa_props_lock);
4019
4020	elem = NULL;
4021	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4022		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4023		case ZPOOL_PROP_VERSION:
4024			/*
4025			 * Only set version for non-zpool-creation cases
4026			 * (set/import). spa_create() needs special care
4027			 * for version setting.
4028			 */
4029			if (tx->tx_txg != TXG_INITIAL) {
4030				VERIFY(nvpair_value_uint64(elem,
4031				    &intval) == 0);
4032				ASSERT(intval <= SPA_VERSION);
4033				ASSERT(intval >= spa_version(spa));
4034				spa->spa_uberblock.ub_version = intval;
4035				vdev_config_dirty(spa->spa_root_vdev);
4036			}
4037			break;
4038
4039		case ZPOOL_PROP_ALTROOT:
4040			/*
4041			 * 'altroot' is a non-persistent property. It should
4042			 * have been set temporarily at creation or import time.
4043			 */
4044			ASSERT(spa->spa_root != NULL);
4045			break;
4046
4047		case ZPOOL_PROP_CACHEFILE:
4048			/*
4049			 * 'cachefile' is also a non-persisitent property.
4050			 */
4051			break;
4052		default:
4053			/*
4054			 * Set pool property values in the poolprops mos object.
4055			 */
4056			if (spa->spa_pool_props_object == 0) {
4057				objset_t *mos = spa->spa_meta_objset;
4058
4059				VERIFY((spa->spa_pool_props_object =
4060				    zap_create(mos, DMU_OT_POOL_PROPS,
4061				    DMU_OT_NONE, 0, tx)) > 0);
4062
4063				VERIFY(zap_update(mos,
4064				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4065				    8, 1, &spa->spa_pool_props_object, tx)
4066				    == 0);
4067			}
4068
4069			/* normalize the property name */
4070			propname = zpool_prop_to_name(prop);
4071			proptype = zpool_prop_get_type(prop);
4072
4073			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4074				ASSERT(proptype == PROP_TYPE_STRING);
4075				VERIFY(nvpair_value_string(elem, &strval) == 0);
4076				VERIFY(zap_update(mos,
4077				    spa->spa_pool_props_object, propname,
4078				    1, strlen(strval) + 1, strval, tx) == 0);
4079
4080			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4081				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4082
4083				if (proptype == PROP_TYPE_INDEX) {
4084					const char *unused;
4085					VERIFY(zpool_prop_index_to_string(
4086					    prop, intval, &unused) == 0);
4087				}
4088				VERIFY(zap_update(mos,
4089				    spa->spa_pool_props_object, propname,
4090				    8, 1, &intval, tx) == 0);
4091			} else {
4092				ASSERT(0); /* not allowed */
4093			}
4094
4095			switch (prop) {
4096			case ZPOOL_PROP_DELEGATION:
4097				spa->spa_delegation = intval;
4098				break;
4099			case ZPOOL_PROP_BOOTFS:
4100				spa->spa_bootfs = intval;
4101				break;
4102			case ZPOOL_PROP_FAILUREMODE:
4103				spa->spa_failmode = intval;
4104				break;
4105			case ZPOOL_PROP_AUTOEXPAND:
4106				spa->spa_autoexpand = intval;
4107				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4108				break;
4109			default:
4110				break;
4111			}
4112		}
4113
4114		/* log internal history if this is not a zpool create */
4115		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4116		    tx->tx_txg != TXG_INITIAL) {
4117			spa_history_internal_log(LOG_POOL_PROPSET,
4118			    spa, tx, cr, "%s %lld %s",
4119			    nvpair_name(elem), intval, spa_name(spa));
4120		}
4121	}
4122
4123	mutex_exit(&spa->spa_props_lock);
4124}
4125
4126/*
4127 * Sync the specified transaction group.  New blocks may be dirtied as
4128 * part of the process, so we iterate until it converges.
4129 */
4130void
4131spa_sync(spa_t *spa, uint64_t txg)
4132{
4133	dsl_pool_t *dp = spa->spa_dsl_pool;
4134	objset_t *mos = spa->spa_meta_objset;
4135	bplist_t *bpl = &spa->spa_sync_bplist;
4136	vdev_t *rvd = spa->spa_root_vdev;
4137	vdev_t *vd;
4138	dmu_tx_t *tx;
4139	int dirty_vdevs;
4140	int error;
4141
4142	/*
4143	 * Lock out configuration changes.
4144	 */
4145	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4146
4147	spa->spa_syncing_txg = txg;
4148	spa->spa_sync_pass = 0;
4149
4150	/*
4151	 * If there are any pending vdev state changes, convert them
4152	 * into config changes that go out with this transaction group.
4153	 */
4154	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4155	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4156		/*
4157		 * We need the write lock here because, for aux vdevs,
4158		 * calling vdev_config_dirty() modifies sav_config.
4159		 * This is ugly and will become unnecessary when we
4160		 * eliminate the aux vdev wart by integrating all vdevs
4161		 * into the root vdev tree.
4162		 */
4163		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4164		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4165		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4166			vdev_state_clean(vd);
4167			vdev_config_dirty(vd);
4168		}
4169		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4170		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4171	}
4172	spa_config_exit(spa, SCL_STATE, FTAG);
4173
4174	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4175
4176	tx = dmu_tx_create_assigned(dp, txg);
4177
4178	/*
4179	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4180	 * set spa_deflate if we have no raid-z vdevs.
4181	 */
4182	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4183	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4184		int i;
4185
4186		for (i = 0; i < rvd->vdev_children; i++) {
4187			vd = rvd->vdev_child[i];
4188			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4189				break;
4190		}
4191		if (i == rvd->vdev_children) {
4192			spa->spa_deflate = TRUE;
4193			VERIFY(0 == zap_add(spa->spa_meta_objset,
4194			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4195			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4196		}
4197	}
4198
4199	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4200	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4201		dsl_pool_create_origin(dp, tx);
4202
4203		/* Keeping the origin open increases spa_minref */
4204		spa->spa_minref += 3;
4205	}
4206
4207	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4208	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4209		dsl_pool_upgrade_clones(dp, tx);
4210	}
4211
4212	/*
4213	 * If anything has changed in this txg, push the deferred frees
4214	 * from the previous txg.  If not, leave them alone so that we
4215	 * don't generate work on an otherwise idle system.
4216	 */
4217	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4218	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4219	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4220		spa_sync_deferred_frees(spa, txg);
4221
4222	/*
4223	 * Iterate to convergence.
4224	 */
4225	do {
4226		spa->spa_sync_pass++;
4227
4228		spa_sync_config_object(spa, tx);
4229		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4230		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4231		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4232		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4233		spa_errlog_sync(spa, txg);
4234		dsl_pool_sync(dp, txg);
4235
4236		dirty_vdevs = 0;
4237		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4238			vdev_sync(vd, txg);
4239			dirty_vdevs++;
4240		}
4241
4242		bplist_sync(bpl, tx);
4243	} while (dirty_vdevs);
4244
4245	bplist_close(bpl);
4246
4247	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4248
4249	/*
4250	 * Rewrite the vdev configuration (which includes the uberblock)
4251	 * to commit the transaction group.
4252	 *
4253	 * If there are no dirty vdevs, we sync the uberblock to a few
4254	 * random top-level vdevs that are known to be visible in the
4255	 * config cache (see spa_vdev_add() for a complete description).
4256	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4257	 */
4258	for (;;) {
4259		/*
4260		 * We hold SCL_STATE to prevent vdev open/close/etc.
4261		 * while we're attempting to write the vdev labels.
4262		 */
4263		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4264
4265		if (list_is_empty(&spa->spa_config_dirty_list)) {
4266			vdev_t *svd[SPA_DVAS_PER_BP];
4267			int svdcount = 0;
4268			int children = rvd->vdev_children;
4269			int c0 = spa_get_random(children);
4270
4271			for (int c = 0; c < children; c++) {
4272				vd = rvd->vdev_child[(c0 + c) % children];
4273				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4274					continue;
4275				svd[svdcount++] = vd;
4276				if (svdcount == SPA_DVAS_PER_BP)
4277					break;
4278			}
4279			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4280			if (error != 0)
4281				error = vdev_config_sync(svd, svdcount, txg,
4282				    B_TRUE);
4283		} else {
4284			error = vdev_config_sync(rvd->vdev_child,
4285			    rvd->vdev_children, txg, B_FALSE);
4286			if (error != 0)
4287				error = vdev_config_sync(rvd->vdev_child,
4288				    rvd->vdev_children, txg, B_TRUE);
4289		}
4290
4291		spa_config_exit(spa, SCL_STATE, FTAG);
4292
4293		if (error == 0)
4294			break;
4295		zio_suspend(spa, NULL);
4296		zio_resume_wait(spa);
4297	}
4298	dmu_tx_commit(tx);
4299
4300	/*
4301	 * Clear the dirty config list.
4302	 */
4303	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4304		vdev_config_clean(vd);
4305
4306	/*
4307	 * Now that the new config has synced transactionally,
4308	 * let it become visible to the config cache.
4309	 */
4310	if (spa->spa_config_syncing != NULL) {
4311		spa_config_set(spa, spa->spa_config_syncing);
4312		spa->spa_config_txg = txg;
4313		spa->spa_config_syncing = NULL;
4314	}
4315
4316	spa->spa_ubsync = spa->spa_uberblock;
4317
4318	/*
4319	 * Clean up the ZIL records for the synced txg.
4320	 */
4321	dsl_pool_zil_clean(dp);
4322
4323	/*
4324	 * Update usable space statistics.
4325	 */
4326	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4327		vdev_sync_done(vd, txg);
4328
4329	/*
4330	 * It had better be the case that we didn't dirty anything
4331	 * since vdev_config_sync().
4332	 */
4333	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4334	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4335	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4336	ASSERT(bpl->bpl_queue == NULL);
4337
4338	spa_config_exit(spa, SCL_CONFIG, FTAG);
4339
4340	/*
4341	 * If any async tasks have been requested, kick them off.
4342	 */
4343	spa_async_dispatch(spa);
4344}
4345
4346/*
4347 * Sync all pools.  We don't want to hold the namespace lock across these
4348 * operations, so we take a reference on the spa_t and drop the lock during the
4349 * sync.
4350 */
4351void
4352spa_sync_allpools(void)
4353{
4354	spa_t *spa = NULL;
4355	mutex_enter(&spa_namespace_lock);
4356	while ((spa = spa_next(spa)) != NULL) {
4357		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4358			continue;
4359		spa_open_ref(spa, FTAG);
4360		mutex_exit(&spa_namespace_lock);
4361		txg_wait_synced(spa_get_dsl(spa), 0);
4362		mutex_enter(&spa_namespace_lock);
4363		spa_close(spa, FTAG);
4364	}
4365	mutex_exit(&spa_namespace_lock);
4366}
4367
4368/*
4369 * ==========================================================================
4370 * Miscellaneous routines
4371 * ==========================================================================
4372 */
4373
4374/*
4375 * Remove all pools in the system.
4376 */
4377void
4378spa_evict_all(void)
4379{
4380	spa_t *spa;
4381
4382	/*
4383	 * Remove all cached state.  All pools should be closed now,
4384	 * so every spa in the AVL tree should be unreferenced.
4385	 */
4386	mutex_enter(&spa_namespace_lock);
4387	while ((spa = spa_next(NULL)) != NULL) {
4388		/*
4389		 * Stop async tasks.  The async thread may need to detach
4390		 * a device that's been replaced, which requires grabbing
4391		 * spa_namespace_lock, so we must drop it here.
4392		 */
4393		spa_open_ref(spa, FTAG);
4394		mutex_exit(&spa_namespace_lock);
4395		spa_async_suspend(spa);
4396		mutex_enter(&spa_namespace_lock);
4397		spa_close(spa, FTAG);
4398
4399		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4400			spa_unload(spa);
4401			spa_deactivate(spa);
4402		}
4403		spa_remove(spa);
4404	}
4405	mutex_exit(&spa_namespace_lock);
4406}
4407
4408vdev_t *
4409spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4410{
4411	vdev_t *vd;
4412	int i;
4413
4414	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4415		return (vd);
4416
4417	if (aux) {
4418		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4419			vd = spa->spa_l2cache.sav_vdevs[i];
4420			if (vd->vdev_guid == guid)
4421				return (vd);
4422		}
4423
4424		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4425			vd = spa->spa_spares.sav_vdevs[i];
4426			if (vd->vdev_guid == guid)
4427				return (vd);
4428		}
4429	}
4430
4431	return (NULL);
4432}
4433
4434void
4435spa_upgrade(spa_t *spa, uint64_t version)
4436{
4437	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4438
4439	/*
4440	 * This should only be called for a non-faulted pool, and since a
4441	 * future version would result in an unopenable pool, this shouldn't be
4442	 * possible.
4443	 */
4444	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4445	ASSERT(version >= spa->spa_uberblock.ub_version);
4446
4447	spa->spa_uberblock.ub_version = version;
4448	vdev_config_dirty(spa->spa_root_vdev);
4449
4450	spa_config_exit(spa, SCL_ALL, FTAG);
4451
4452	txg_wait_synced(spa_get_dsl(spa), 0);
4453}
4454
4455boolean_t
4456spa_has_spare(spa_t *spa, uint64_t guid)
4457{
4458	int i;
4459	uint64_t spareguid;
4460	spa_aux_vdev_t *sav = &spa->spa_spares;
4461
4462	for (i = 0; i < sav->sav_count; i++)
4463		if (sav->sav_vdevs[i]->vdev_guid == guid)
4464			return (B_TRUE);
4465
4466	for (i = 0; i < sav->sav_npending; i++) {
4467		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4468		    &spareguid) == 0 && spareguid == guid)
4469			return (B_TRUE);
4470	}
4471
4472	return (B_FALSE);
4473}
4474
4475/*
4476 * Check if a pool has an active shared spare device.
4477 * Note: reference count of an active spare is 2, as a spare and as a replace
4478 */
4479static boolean_t
4480spa_has_active_shared_spare(spa_t *spa)
4481{
4482	int i, refcnt;
4483	uint64_t pool;
4484	spa_aux_vdev_t *sav = &spa->spa_spares;
4485
4486	for (i = 0; i < sav->sav_count; i++) {
4487		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4488		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4489		    refcnt > 2)
4490			return (B_TRUE);
4491	}
4492
4493	return (B_FALSE);
4494}
4495
4496/*
4497 * Post a sysevent corresponding to the given event.  The 'name' must be one of
4498 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4499 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4500 * in the userland libzpool, as we don't want consumers to misinterpret ztest
4501 * or zdb as real changes.
4502 */
4503void
4504spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4505{
4506#ifdef _KERNEL
4507	sysevent_t		*ev;
4508	sysevent_attr_list_t	*attr = NULL;
4509	sysevent_value_t	value;
4510	sysevent_id_t		eid;
4511
4512	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4513	    SE_SLEEP);
4514
4515	value.value_type = SE_DATA_TYPE_STRING;
4516	value.value.sv_string = spa_name(spa);
4517	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4518		goto done;
4519
4520	value.value_type = SE_DATA_TYPE_UINT64;
4521	value.value.sv_uint64 = spa_guid(spa);
4522	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4523		goto done;
4524
4525	if (vd) {
4526		value.value_type = SE_DATA_TYPE_UINT64;
4527		value.value.sv_uint64 = vd->vdev_guid;
4528		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4529		    SE_SLEEP) != 0)
4530			goto done;
4531
4532		if (vd->vdev_path) {
4533			value.value_type = SE_DATA_TYPE_STRING;
4534			value.value.sv_string = vd->vdev_path;
4535			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4536			    &value, SE_SLEEP) != 0)
4537				goto done;
4538		}
4539	}
4540
4541	if (sysevent_attach_attributes(ev, attr) != 0)
4542		goto done;
4543	attr = NULL;
4544
4545	(void) log_sysevent(ev, SE_SLEEP, &eid);
4546
4547done:
4548	if (attr)
4549		sysevent_free_attr(attr);
4550	sysevent_free(ev);
4551#endif
4552}
4553