xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision c971037baa5d64dfecf6d87ed602fc3116ebec41)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 /*
32  * SPA: Storage Pool Allocator
33  *
34  * This file contains all the routines used when modifying on-disk SPA state.
35  * This includes opening, importing, destroying, exporting a pool, and syncing a
36  * pool.
37  */
38 
39 #include <sys/zfs_context.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/spa_impl.h>
42 #include <sys/zio.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu.h>
45 #include <sys/dmu_tx.h>
46 #include <sys/zap.h>
47 #include <sys/zil.h>
48 #include <sys/ddt.h>
49 #include <sys/vdev_impl.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72 
73 #ifdef	_KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif	/* _KERNEL */
81 
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84 
85 /*
86  * The interval, in seconds, at which failed configuration cache file writes
87  * should be retried.
88  */
89 static int zfs_ccw_retry_interval = 300;
90 
91 typedef enum zti_modes {
92 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
93 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
94 	ZTI_MODE_NULL,			/* don't create a taskq */
95 	ZTI_NMODES
96 } zti_modes_t;
97 
98 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
99 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
100 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
101 
102 #define	ZTI_N(n)	ZTI_P(n, 1)
103 #define	ZTI_ONE		ZTI_N(1)
104 
105 typedef struct zio_taskq_info {
106 	zti_modes_t zti_mode;
107 	uint_t zti_value;
108 	uint_t zti_count;
109 } zio_taskq_info_t;
110 
111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
112 	"issue", "issue_high", "intr", "intr_high"
113 };
114 
115 /*
116  * This table defines the taskq settings for each ZFS I/O type. When
117  * initializing a pool, we use this table to create an appropriately sized
118  * taskq. Some operations are low volume and therefore have a small, static
119  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
120  * macros. Other operations process a large amount of data; the ZTI_BATCH
121  * macro causes us to create a taskq oriented for throughput. Some operations
122  * are so high frequency and short-lived that the taskq itself can become a a
123  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
124  * additional degree of parallelism specified by the number of threads per-
125  * taskq and the number of taskqs; when dispatching an event in this case, the
126  * particular taskq is chosen at random.
127  *
128  * The different taskq priorities are to handle the different contexts (issue
129  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
130  * need to be handled with minimum delay.
131  */
132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
133 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
134 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
135 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
136 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
137 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
138 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
140 };
141 
142 static void spa_sync_version(void *arg, dmu_tx_t *tx);
143 static void spa_sync_props(void *arg, dmu_tx_t *tx);
144 static boolean_t spa_has_active_shared_spare(spa_t *spa);
145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
146     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
147     char **ereport);
148 static void spa_vdev_resilver_done(spa_t *spa);
149 
150 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
151 id_t		zio_taskq_psrset_bind = PS_NONE;
152 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
153 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
154 
155 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
156 extern int	zfs_sync_pass_deferred_free;
157 
158 /*
159  * This (illegal) pool name is used when temporarily importing a spa_t in order
160  * to get the vdev stats associated with the imported devices.
161  */
162 #define	TRYIMPORT_NAME	"$import"
163 
164 /*
165  * ==========================================================================
166  * SPA properties routines
167  * ==========================================================================
168  */
169 
170 /*
171  * Add a (source=src, propname=propval) list to an nvlist.
172  */
173 static void
174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
175     uint64_t intval, zprop_source_t src)
176 {
177 	const char *propname = zpool_prop_to_name(prop);
178 	nvlist_t *propval;
179 
180 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
181 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
182 
183 	if (strval != NULL)
184 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
185 	else
186 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
187 
188 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
189 	nvlist_free(propval);
190 }
191 
192 /*
193  * Get property values from the spa configuration.
194  */
195 static void
196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
197 {
198 	vdev_t *rvd = spa->spa_root_vdev;
199 	dsl_pool_t *pool = spa->spa_dsl_pool;
200 	uint64_t size, alloc, cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 	metaslab_class_t *mc = spa_normal_class(spa);
204 
205 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
206 
207 	if (rvd != NULL) {
208 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
209 		size = metaslab_class_get_space(spa_normal_class(spa));
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
214 		    size - alloc, src);
215 
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
217 		    metaslab_class_fragmentation(mc), src);
218 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
219 		    metaslab_class_expandable_space(mc), src);
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 		    (spa_mode(spa) == FREAD), src);
222 
223 		cap = (size == 0) ? 0 : (alloc * 100 / size);
224 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 		    ddt_get_pool_dedup_ratio(spa), src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 		    rvd->vdev_state, src);
231 
232 		version = spa_version(spa);
233 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 			src = ZPROP_SRC_DEFAULT;
235 		else
236 			src = ZPROP_SRC_LOCAL;
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 	}
239 
240 	if (pool != NULL) {
241 		/*
242 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
243 		 * when opening pools before this version freedir will be NULL.
244 		 */
245 		if (pool->dp_free_dir != NULL) {
246 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
247 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
248 			    src);
249 		} else {
250 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 			    NULL, 0, src);
252 		}
253 
254 		if (pool->dp_leak_dir != NULL) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
256 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
257 			    src);
258 		} else {
259 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
260 			    NULL, 0, src);
261 		}
262 	}
263 
264 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
265 
266 	if (spa->spa_comment != NULL) {
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
268 		    0, ZPROP_SRC_LOCAL);
269 	}
270 
271 	if (spa->spa_root != NULL)
272 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
273 		    0, ZPROP_SRC_LOCAL);
274 
275 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
276 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
278 	} else {
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 	}
282 
283 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
284 		if (dp->scd_path == NULL) {
285 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 			    "none", 0, ZPROP_SRC_LOCAL);
287 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
288 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
290 		}
291 	}
292 }
293 
294 /*
295  * Get zpool property values.
296  */
297 int
298 spa_prop_get(spa_t *spa, nvlist_t **nvp)
299 {
300 	objset_t *mos = spa->spa_meta_objset;
301 	zap_cursor_t zc;
302 	zap_attribute_t za;
303 	int err;
304 
305 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
306 
307 	mutex_enter(&spa->spa_props_lock);
308 
309 	/*
310 	 * Get properties from the spa config.
311 	 */
312 	spa_prop_get_config(spa, nvp);
313 
314 	/* If no pool property object, no more prop to get. */
315 	if (mos == NULL || spa->spa_pool_props_object == 0) {
316 		mutex_exit(&spa->spa_props_lock);
317 		return (0);
318 	}
319 
320 	/*
321 	 * Get properties from the MOS pool property object.
322 	 */
323 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
324 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
325 	    zap_cursor_advance(&zc)) {
326 		uint64_t intval = 0;
327 		char *strval = NULL;
328 		zprop_source_t src = ZPROP_SRC_DEFAULT;
329 		zpool_prop_t prop;
330 
331 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
332 			continue;
333 
334 		switch (za.za_integer_length) {
335 		case 8:
336 			/* integer property */
337 			if (za.za_first_integer !=
338 			    zpool_prop_default_numeric(prop))
339 				src = ZPROP_SRC_LOCAL;
340 
341 			if (prop == ZPOOL_PROP_BOOTFS) {
342 				dsl_pool_t *dp;
343 				dsl_dataset_t *ds = NULL;
344 
345 				dp = spa_get_dsl(spa);
346 				dsl_pool_config_enter(dp, FTAG);
347 				if (err = dsl_dataset_hold_obj(dp,
348 				    za.za_first_integer, FTAG, &ds)) {
349 					dsl_pool_config_exit(dp, FTAG);
350 					break;
351 				}
352 
353 				strval = kmem_alloc(
354 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
355 				    KM_SLEEP);
356 				dsl_dataset_name(ds, strval);
357 				dsl_dataset_rele(ds, FTAG);
358 				dsl_pool_config_exit(dp, FTAG);
359 			} else {
360 				strval = NULL;
361 				intval = za.za_first_integer;
362 			}
363 
364 			spa_prop_add_list(*nvp, prop, strval, intval, src);
365 
366 			if (strval != NULL)
367 				kmem_free(strval,
368 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
369 
370 			break;
371 
372 		case 1:
373 			/* string property */
374 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
375 			err = zap_lookup(mos, spa->spa_pool_props_object,
376 			    za.za_name, 1, za.za_num_integers, strval);
377 			if (err) {
378 				kmem_free(strval, za.za_num_integers);
379 				break;
380 			}
381 			spa_prop_add_list(*nvp, prop, strval, 0, src);
382 			kmem_free(strval, za.za_num_integers);
383 			break;
384 
385 		default:
386 			break;
387 		}
388 	}
389 	zap_cursor_fini(&zc);
390 	mutex_exit(&spa->spa_props_lock);
391 out:
392 	if (err && err != ENOENT) {
393 		nvlist_free(*nvp);
394 		*nvp = NULL;
395 		return (err);
396 	}
397 
398 	return (0);
399 }
400 
401 /*
402  * Validate the given pool properties nvlist and modify the list
403  * for the property values to be set.
404  */
405 static int
406 spa_prop_validate(spa_t *spa, nvlist_t *props)
407 {
408 	nvpair_t *elem;
409 	int error = 0, reset_bootfs = 0;
410 	uint64_t objnum = 0;
411 	boolean_t has_feature = B_FALSE;
412 
413 	elem = NULL;
414 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
415 		uint64_t intval;
416 		char *strval, *slash, *check, *fname;
417 		const char *propname = nvpair_name(elem);
418 		zpool_prop_t prop = zpool_name_to_prop(propname);
419 
420 		switch (prop) {
421 		case ZPROP_INVAL:
422 			if (!zpool_prop_feature(propname)) {
423 				error = SET_ERROR(EINVAL);
424 				break;
425 			}
426 
427 			/*
428 			 * Sanitize the input.
429 			 */
430 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
431 				error = SET_ERROR(EINVAL);
432 				break;
433 			}
434 
435 			if (nvpair_value_uint64(elem, &intval) != 0) {
436 				error = SET_ERROR(EINVAL);
437 				break;
438 			}
439 
440 			if (intval != 0) {
441 				error = SET_ERROR(EINVAL);
442 				break;
443 			}
444 
445 			fname = strchr(propname, '@') + 1;
446 			if (zfeature_lookup_name(fname, NULL) != 0) {
447 				error = SET_ERROR(EINVAL);
448 				break;
449 			}
450 
451 			has_feature = B_TRUE;
452 			break;
453 
454 		case ZPOOL_PROP_VERSION:
455 			error = nvpair_value_uint64(elem, &intval);
456 			if (!error &&
457 			    (intval < spa_version(spa) ||
458 			    intval > SPA_VERSION_BEFORE_FEATURES ||
459 			    has_feature))
460 				error = SET_ERROR(EINVAL);
461 			break;
462 
463 		case ZPOOL_PROP_DELEGATION:
464 		case ZPOOL_PROP_AUTOREPLACE:
465 		case ZPOOL_PROP_LISTSNAPS:
466 		case ZPOOL_PROP_AUTOEXPAND:
467 			error = nvpair_value_uint64(elem, &intval);
468 			if (!error && intval > 1)
469 				error = SET_ERROR(EINVAL);
470 			break;
471 
472 		case ZPOOL_PROP_BOOTFS:
473 			/*
474 			 * If the pool version is less than SPA_VERSION_BOOTFS,
475 			 * or the pool is still being created (version == 0),
476 			 * the bootfs property cannot be set.
477 			 */
478 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
479 				error = SET_ERROR(ENOTSUP);
480 				break;
481 			}
482 
483 			/*
484 			 * Make sure the vdev config is bootable
485 			 */
486 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
487 				error = SET_ERROR(ENOTSUP);
488 				break;
489 			}
490 
491 			reset_bootfs = 1;
492 
493 			error = nvpair_value_string(elem, &strval);
494 
495 			if (!error) {
496 				objset_t *os;
497 				uint64_t propval;
498 
499 				if (strval == NULL || strval[0] == '\0') {
500 					objnum = zpool_prop_default_numeric(
501 					    ZPOOL_PROP_BOOTFS);
502 					break;
503 				}
504 
505 				if (error = dmu_objset_hold(strval, FTAG, &os))
506 					break;
507 
508 				/*
509 				 * Must be ZPL, and its property settings
510 				 * must be supported by GRUB (compression
511 				 * is not gzip, and large blocks are not used).
512 				 */
513 
514 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515 					error = SET_ERROR(ENOTSUP);
516 				} else if ((error =
517 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519 				    &propval)) == 0 &&
520 				    !BOOTFS_COMPRESS_VALID(propval)) {
521 					error = SET_ERROR(ENOTSUP);
522 				} else if ((error =
523 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
524 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
525 				    &propval)) == 0 &&
526 				    propval > SPA_OLD_MAXBLOCKSIZE) {
527 					error = SET_ERROR(ENOTSUP);
528 				} else {
529 					objnum = dmu_objset_id(os);
530 				}
531 				dmu_objset_rele(os, FTAG);
532 			}
533 			break;
534 
535 		case ZPOOL_PROP_FAILUREMODE:
536 			error = nvpair_value_uint64(elem, &intval);
537 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
538 			    intval > ZIO_FAILURE_MODE_PANIC))
539 				error = SET_ERROR(EINVAL);
540 
541 			/*
542 			 * This is a special case which only occurs when
543 			 * the pool has completely failed. This allows
544 			 * the user to change the in-core failmode property
545 			 * without syncing it out to disk (I/Os might
546 			 * currently be blocked). We do this by returning
547 			 * EIO to the caller (spa_prop_set) to trick it
548 			 * into thinking we encountered a property validation
549 			 * error.
550 			 */
551 			if (!error && spa_suspended(spa)) {
552 				spa->spa_failmode = intval;
553 				error = SET_ERROR(EIO);
554 			}
555 			break;
556 
557 		case ZPOOL_PROP_CACHEFILE:
558 			if ((error = nvpair_value_string(elem, &strval)) != 0)
559 				break;
560 
561 			if (strval[0] == '\0')
562 				break;
563 
564 			if (strcmp(strval, "none") == 0)
565 				break;
566 
567 			if (strval[0] != '/') {
568 				error = SET_ERROR(EINVAL);
569 				break;
570 			}
571 
572 			slash = strrchr(strval, '/');
573 			ASSERT(slash != NULL);
574 
575 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
576 			    strcmp(slash, "/..") == 0)
577 				error = SET_ERROR(EINVAL);
578 			break;
579 
580 		case ZPOOL_PROP_COMMENT:
581 			if ((error = nvpair_value_string(elem, &strval)) != 0)
582 				break;
583 			for (check = strval; *check != '\0'; check++) {
584 				/*
585 				 * The kernel doesn't have an easy isprint()
586 				 * check.  For this kernel check, we merely
587 				 * check ASCII apart from DEL.  Fix this if
588 				 * there is an easy-to-use kernel isprint().
589 				 */
590 				if (*check >= 0x7f) {
591 					error = SET_ERROR(EINVAL);
592 					break;
593 				}
594 			}
595 			if (strlen(strval) > ZPROP_MAX_COMMENT)
596 				error = E2BIG;
597 			break;
598 
599 		case ZPOOL_PROP_DEDUPDITTO:
600 			if (spa_version(spa) < SPA_VERSION_DEDUP)
601 				error = SET_ERROR(ENOTSUP);
602 			else
603 				error = nvpair_value_uint64(elem, &intval);
604 			if (error == 0 &&
605 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
606 				error = SET_ERROR(EINVAL);
607 			break;
608 		}
609 
610 		if (error)
611 			break;
612 	}
613 
614 	if (!error && reset_bootfs) {
615 		error = nvlist_remove(props,
616 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
617 
618 		if (!error) {
619 			error = nvlist_add_uint64(props,
620 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
621 		}
622 	}
623 
624 	return (error);
625 }
626 
627 void
628 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
629 {
630 	char *cachefile;
631 	spa_config_dirent_t *dp;
632 
633 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
634 	    &cachefile) != 0)
635 		return;
636 
637 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
638 	    KM_SLEEP);
639 
640 	if (cachefile[0] == '\0')
641 		dp->scd_path = spa_strdup(spa_config_path);
642 	else if (strcmp(cachefile, "none") == 0)
643 		dp->scd_path = NULL;
644 	else
645 		dp->scd_path = spa_strdup(cachefile);
646 
647 	list_insert_head(&spa->spa_config_list, dp);
648 	if (need_sync)
649 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
650 }
651 
652 int
653 spa_prop_set(spa_t *spa, nvlist_t *nvp)
654 {
655 	int error;
656 	nvpair_t *elem = NULL;
657 	boolean_t need_sync = B_FALSE;
658 
659 	if ((error = spa_prop_validate(spa, nvp)) != 0)
660 		return (error);
661 
662 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
663 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
664 
665 		if (prop == ZPOOL_PROP_CACHEFILE ||
666 		    prop == ZPOOL_PROP_ALTROOT ||
667 		    prop == ZPOOL_PROP_READONLY)
668 			continue;
669 
670 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
671 			uint64_t ver;
672 
673 			if (prop == ZPOOL_PROP_VERSION) {
674 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
675 			} else {
676 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
677 				ver = SPA_VERSION_FEATURES;
678 				need_sync = B_TRUE;
679 			}
680 
681 			/* Save time if the version is already set. */
682 			if (ver == spa_version(spa))
683 				continue;
684 
685 			/*
686 			 * In addition to the pool directory object, we might
687 			 * create the pool properties object, the features for
688 			 * read object, the features for write object, or the
689 			 * feature descriptions object.
690 			 */
691 			error = dsl_sync_task(spa->spa_name, NULL,
692 			    spa_sync_version, &ver,
693 			    6, ZFS_SPACE_CHECK_RESERVED);
694 			if (error)
695 				return (error);
696 			continue;
697 		}
698 
699 		need_sync = B_TRUE;
700 		break;
701 	}
702 
703 	if (need_sync) {
704 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
705 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
706 	}
707 
708 	return (0);
709 }
710 
711 /*
712  * If the bootfs property value is dsobj, clear it.
713  */
714 void
715 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
716 {
717 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
718 		VERIFY(zap_remove(spa->spa_meta_objset,
719 		    spa->spa_pool_props_object,
720 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
721 		spa->spa_bootfs = 0;
722 	}
723 }
724 
725 /*ARGSUSED*/
726 static int
727 spa_change_guid_check(void *arg, dmu_tx_t *tx)
728 {
729 	uint64_t *newguid = arg;
730 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
731 	vdev_t *rvd = spa->spa_root_vdev;
732 	uint64_t vdev_state;
733 
734 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
735 	vdev_state = rvd->vdev_state;
736 	spa_config_exit(spa, SCL_STATE, FTAG);
737 
738 	if (vdev_state != VDEV_STATE_HEALTHY)
739 		return (SET_ERROR(ENXIO));
740 
741 	ASSERT3U(spa_guid(spa), !=, *newguid);
742 
743 	return (0);
744 }
745 
746 static void
747 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
748 {
749 	uint64_t *newguid = arg;
750 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751 	uint64_t oldguid;
752 	vdev_t *rvd = spa->spa_root_vdev;
753 
754 	oldguid = spa_guid(spa);
755 
756 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
757 	rvd->vdev_guid = *newguid;
758 	rvd->vdev_guid_sum += (*newguid - oldguid);
759 	vdev_config_dirty(rvd);
760 	spa_config_exit(spa, SCL_STATE, FTAG);
761 
762 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
763 	    oldguid, *newguid);
764 }
765 
766 /*
767  * Change the GUID for the pool.  This is done so that we can later
768  * re-import a pool built from a clone of our own vdevs.  We will modify
769  * the root vdev's guid, our own pool guid, and then mark all of our
770  * vdevs dirty.  Note that we must make sure that all our vdevs are
771  * online when we do this, or else any vdevs that weren't present
772  * would be orphaned from our pool.  We are also going to issue a
773  * sysevent to update any watchers.
774  */
775 int
776 spa_change_guid(spa_t *spa)
777 {
778 	int error;
779 	uint64_t guid;
780 
781 	mutex_enter(&spa->spa_vdev_top_lock);
782 	mutex_enter(&spa_namespace_lock);
783 	guid = spa_generate_guid(NULL);
784 
785 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
786 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
787 
788 	if (error == 0) {
789 		spa_config_sync(spa, B_FALSE, B_TRUE);
790 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
791 	}
792 
793 	mutex_exit(&spa_namespace_lock);
794 	mutex_exit(&spa->spa_vdev_top_lock);
795 
796 	return (error);
797 }
798 
799 /*
800  * ==========================================================================
801  * SPA state manipulation (open/create/destroy/import/export)
802  * ==========================================================================
803  */
804 
805 static int
806 spa_error_entry_compare(const void *a, const void *b)
807 {
808 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
809 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
810 	int ret;
811 
812 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
813 	    sizeof (zbookmark_phys_t));
814 
815 	if (ret < 0)
816 		return (-1);
817 	else if (ret > 0)
818 		return (1);
819 	else
820 		return (0);
821 }
822 
823 /*
824  * Utility function which retrieves copies of the current logs and
825  * re-initializes them in the process.
826  */
827 void
828 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
829 {
830 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
831 
832 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
833 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
834 
835 	avl_create(&spa->spa_errlist_scrub,
836 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
837 	    offsetof(spa_error_entry_t, se_avl));
838 	avl_create(&spa->spa_errlist_last,
839 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
840 	    offsetof(spa_error_entry_t, se_avl));
841 }
842 
843 static void
844 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
845 {
846 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
847 	enum zti_modes mode = ztip->zti_mode;
848 	uint_t value = ztip->zti_value;
849 	uint_t count = ztip->zti_count;
850 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
851 	char name[32];
852 	uint_t flags = 0;
853 	boolean_t batch = B_FALSE;
854 
855 	if (mode == ZTI_MODE_NULL) {
856 		tqs->stqs_count = 0;
857 		tqs->stqs_taskq = NULL;
858 		return;
859 	}
860 
861 	ASSERT3U(count, >, 0);
862 
863 	tqs->stqs_count = count;
864 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
865 
866 	switch (mode) {
867 	case ZTI_MODE_FIXED:
868 		ASSERT3U(value, >=, 1);
869 		value = MAX(value, 1);
870 		break;
871 
872 	case ZTI_MODE_BATCH:
873 		batch = B_TRUE;
874 		flags |= TASKQ_THREADS_CPU_PCT;
875 		value = zio_taskq_batch_pct;
876 		break;
877 
878 	default:
879 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
880 		    "spa_activate()",
881 		    zio_type_name[t], zio_taskq_types[q], mode, value);
882 		break;
883 	}
884 
885 	for (uint_t i = 0; i < count; i++) {
886 		taskq_t *tq;
887 
888 		if (count > 1) {
889 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
890 			    zio_type_name[t], zio_taskq_types[q], i);
891 		} else {
892 			(void) snprintf(name, sizeof (name), "%s_%s",
893 			    zio_type_name[t], zio_taskq_types[q]);
894 		}
895 
896 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
897 			if (batch)
898 				flags |= TASKQ_DC_BATCH;
899 
900 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
901 			    spa->spa_proc, zio_taskq_basedc, flags);
902 		} else {
903 			pri_t pri = maxclsyspri;
904 			/*
905 			 * The write issue taskq can be extremely CPU
906 			 * intensive.  Run it at slightly lower priority
907 			 * than the other taskqs.
908 			 */
909 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
910 				pri--;
911 
912 			tq = taskq_create_proc(name, value, pri, 50,
913 			    INT_MAX, spa->spa_proc, flags);
914 		}
915 
916 		tqs->stqs_taskq[i] = tq;
917 	}
918 }
919 
920 static void
921 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
922 {
923 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 
925 	if (tqs->stqs_taskq == NULL) {
926 		ASSERT0(tqs->stqs_count);
927 		return;
928 	}
929 
930 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
931 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
932 		taskq_destroy(tqs->stqs_taskq[i]);
933 	}
934 
935 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
936 	tqs->stqs_taskq = NULL;
937 }
938 
939 /*
940  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
941  * Note that a type may have multiple discrete taskqs to avoid lock contention
942  * on the taskq itself. In that case we choose which taskq at random by using
943  * the low bits of gethrtime().
944  */
945 void
946 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
947     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
948 {
949 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
950 	taskq_t *tq;
951 
952 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
953 	ASSERT3U(tqs->stqs_count, !=, 0);
954 
955 	if (tqs->stqs_count == 1) {
956 		tq = tqs->stqs_taskq[0];
957 	} else {
958 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
959 	}
960 
961 	taskq_dispatch_ent(tq, func, arg, flags, ent);
962 }
963 
964 static void
965 spa_create_zio_taskqs(spa_t *spa)
966 {
967 	for (int t = 0; t < ZIO_TYPES; t++) {
968 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
969 			spa_taskqs_init(spa, t, q);
970 		}
971 	}
972 }
973 
974 #ifdef _KERNEL
975 static void
976 spa_thread(void *arg)
977 {
978 	callb_cpr_t cprinfo;
979 
980 	spa_t *spa = arg;
981 	user_t *pu = PTOU(curproc);
982 
983 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
984 	    spa->spa_name);
985 
986 	ASSERT(curproc != &p0);
987 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
988 	    "zpool-%s", spa->spa_name);
989 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
990 
991 	/* bind this thread to the requested psrset */
992 	if (zio_taskq_psrset_bind != PS_NONE) {
993 		pool_lock();
994 		mutex_enter(&cpu_lock);
995 		mutex_enter(&pidlock);
996 		mutex_enter(&curproc->p_lock);
997 
998 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999 		    0, NULL, NULL) == 0)  {
1000 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001 		} else {
1002 			cmn_err(CE_WARN,
1003 			    "Couldn't bind process for zfs pool \"%s\" to "
1004 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005 		}
1006 
1007 		mutex_exit(&curproc->p_lock);
1008 		mutex_exit(&pidlock);
1009 		mutex_exit(&cpu_lock);
1010 		pool_unlock();
1011 	}
1012 
1013 	if (zio_taskq_sysdc) {
1014 		sysdc_thread_enter(curthread, 100, 0);
1015 	}
1016 
1017 	spa->spa_proc = curproc;
1018 	spa->spa_did = curthread->t_did;
1019 
1020 	spa_create_zio_taskqs(spa);
1021 
1022 	mutex_enter(&spa->spa_proc_lock);
1023 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1024 
1025 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1026 	cv_broadcast(&spa->spa_proc_cv);
1027 
1028 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1029 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1030 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1031 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1032 
1033 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1034 	spa->spa_proc_state = SPA_PROC_GONE;
1035 	spa->spa_proc = &p0;
1036 	cv_broadcast(&spa->spa_proc_cv);
1037 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1038 
1039 	mutex_enter(&curproc->p_lock);
1040 	lwp_exit();
1041 }
1042 #endif
1043 
1044 /*
1045  * Activate an uninitialized pool.
1046  */
1047 static void
1048 spa_activate(spa_t *spa, int mode)
1049 {
1050 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1051 
1052 	spa->spa_state = POOL_STATE_ACTIVE;
1053 	spa->spa_mode = mode;
1054 
1055 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 
1058 	/* Try to create a covering process */
1059 	mutex_enter(&spa->spa_proc_lock);
1060 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1061 	ASSERT(spa->spa_proc == &p0);
1062 	spa->spa_did = 0;
1063 
1064 	/* Only create a process if we're going to be around a while. */
1065 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1066 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1067 		    NULL, 0) == 0) {
1068 			spa->spa_proc_state = SPA_PROC_CREATED;
1069 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1070 				cv_wait(&spa->spa_proc_cv,
1071 				    &spa->spa_proc_lock);
1072 			}
1073 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1074 			ASSERT(spa->spa_proc != &p0);
1075 			ASSERT(spa->spa_did != 0);
1076 		} else {
1077 #ifdef _KERNEL
1078 			cmn_err(CE_WARN,
1079 			    "Couldn't create process for zfs pool \"%s\"\n",
1080 			    spa->spa_name);
1081 #endif
1082 		}
1083 	}
1084 	mutex_exit(&spa->spa_proc_lock);
1085 
1086 	/* If we didn't create a process, we need to create our taskqs. */
1087 	if (spa->spa_proc == &p0) {
1088 		spa_create_zio_taskqs(spa);
1089 	}
1090 
1091 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1092 	    offsetof(vdev_t, vdev_config_dirty_node));
1093 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1094 	    offsetof(objset_t, os_evicting_node));
1095 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1096 	    offsetof(vdev_t, vdev_state_dirty_node));
1097 
1098 	txg_list_create(&spa->spa_vdev_txg_list,
1099 	    offsetof(struct vdev, vdev_txg_node));
1100 
1101 	avl_create(&spa->spa_errlist_scrub,
1102 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1103 	    offsetof(spa_error_entry_t, se_avl));
1104 	avl_create(&spa->spa_errlist_last,
1105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1106 	    offsetof(spa_error_entry_t, se_avl));
1107 }
1108 
1109 /*
1110  * Opposite of spa_activate().
1111  */
1112 static void
1113 spa_deactivate(spa_t *spa)
1114 {
1115 	ASSERT(spa->spa_sync_on == B_FALSE);
1116 	ASSERT(spa->spa_dsl_pool == NULL);
1117 	ASSERT(spa->spa_root_vdev == NULL);
1118 	ASSERT(spa->spa_async_zio_root == NULL);
1119 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1120 
1121 	spa_evicting_os_wait(spa);
1122 
1123 	txg_list_destroy(&spa->spa_vdev_txg_list);
1124 
1125 	list_destroy(&spa->spa_config_dirty_list);
1126 	list_destroy(&spa->spa_evicting_os_list);
1127 	list_destroy(&spa->spa_state_dirty_list);
1128 
1129 	for (int t = 0; t < ZIO_TYPES; t++) {
1130 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1131 			spa_taskqs_fini(spa, t, q);
1132 		}
1133 	}
1134 
1135 	metaslab_class_destroy(spa->spa_normal_class);
1136 	spa->spa_normal_class = NULL;
1137 
1138 	metaslab_class_destroy(spa->spa_log_class);
1139 	spa->spa_log_class = NULL;
1140 
1141 	/*
1142 	 * If this was part of an import or the open otherwise failed, we may
1143 	 * still have errors left in the queues.  Empty them just in case.
1144 	 */
1145 	spa_errlog_drain(spa);
1146 
1147 	avl_destroy(&spa->spa_errlist_scrub);
1148 	avl_destroy(&spa->spa_errlist_last);
1149 
1150 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1151 
1152 	mutex_enter(&spa->spa_proc_lock);
1153 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1154 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1155 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1156 		cv_broadcast(&spa->spa_proc_cv);
1157 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1158 			ASSERT(spa->spa_proc != &p0);
1159 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1160 		}
1161 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1162 		spa->spa_proc_state = SPA_PROC_NONE;
1163 	}
1164 	ASSERT(spa->spa_proc == &p0);
1165 	mutex_exit(&spa->spa_proc_lock);
1166 
1167 	/*
1168 	 * We want to make sure spa_thread() has actually exited the ZFS
1169 	 * module, so that the module can't be unloaded out from underneath
1170 	 * it.
1171 	 */
1172 	if (spa->spa_did != 0) {
1173 		thread_join(spa->spa_did);
1174 		spa->spa_did = 0;
1175 	}
1176 }
1177 
1178 /*
1179  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1180  * will create all the necessary vdevs in the appropriate layout, with each vdev
1181  * in the CLOSED state.  This will prep the pool before open/creation/import.
1182  * All vdev validation is done by the vdev_alloc() routine.
1183  */
1184 static int
1185 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1186     uint_t id, int atype)
1187 {
1188 	nvlist_t **child;
1189 	uint_t children;
1190 	int error;
1191 
1192 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1193 		return (error);
1194 
1195 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1196 		return (0);
1197 
1198 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1199 	    &child, &children);
1200 
1201 	if (error == ENOENT)
1202 		return (0);
1203 
1204 	if (error) {
1205 		vdev_free(*vdp);
1206 		*vdp = NULL;
1207 		return (SET_ERROR(EINVAL));
1208 	}
1209 
1210 	for (int c = 0; c < children; c++) {
1211 		vdev_t *vd;
1212 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1213 		    atype)) != 0) {
1214 			vdev_free(*vdp);
1215 			*vdp = NULL;
1216 			return (error);
1217 		}
1218 	}
1219 
1220 	ASSERT(*vdp != NULL);
1221 
1222 	return (0);
1223 }
1224 
1225 /*
1226  * Opposite of spa_load().
1227  */
1228 static void
1229 spa_unload(spa_t *spa)
1230 {
1231 	int i;
1232 
1233 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1234 
1235 	/*
1236 	 * Stop async tasks.
1237 	 */
1238 	spa_async_suspend(spa);
1239 
1240 	/*
1241 	 * Stop syncing.
1242 	 */
1243 	if (spa->spa_sync_on) {
1244 		txg_sync_stop(spa->spa_dsl_pool);
1245 		spa->spa_sync_on = B_FALSE;
1246 	}
1247 
1248 	/*
1249 	 * Wait for any outstanding async I/O to complete.
1250 	 */
1251 	if (spa->spa_async_zio_root != NULL) {
1252 		for (int i = 0; i < max_ncpus; i++)
1253 			(void) zio_wait(spa->spa_async_zio_root[i]);
1254 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1255 		spa->spa_async_zio_root = NULL;
1256 	}
1257 
1258 	bpobj_close(&spa->spa_deferred_bpobj);
1259 
1260 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1261 
1262 	/*
1263 	 * Close all vdevs.
1264 	 */
1265 	if (spa->spa_root_vdev)
1266 		vdev_free(spa->spa_root_vdev);
1267 	ASSERT(spa->spa_root_vdev == NULL);
1268 
1269 	/*
1270 	 * Close the dsl pool.
1271 	 */
1272 	if (spa->spa_dsl_pool) {
1273 		dsl_pool_close(spa->spa_dsl_pool);
1274 		spa->spa_dsl_pool = NULL;
1275 		spa->spa_meta_objset = NULL;
1276 	}
1277 
1278 	ddt_unload(spa);
1279 
1280 
1281 	/*
1282 	 * Drop and purge level 2 cache
1283 	 */
1284 	spa_l2cache_drop(spa);
1285 
1286 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1287 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1288 	if (spa->spa_spares.sav_vdevs) {
1289 		kmem_free(spa->spa_spares.sav_vdevs,
1290 		    spa->spa_spares.sav_count * sizeof (void *));
1291 		spa->spa_spares.sav_vdevs = NULL;
1292 	}
1293 	if (spa->spa_spares.sav_config) {
1294 		nvlist_free(spa->spa_spares.sav_config);
1295 		spa->spa_spares.sav_config = NULL;
1296 	}
1297 	spa->spa_spares.sav_count = 0;
1298 
1299 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1300 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1301 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1302 	}
1303 	if (spa->spa_l2cache.sav_vdevs) {
1304 		kmem_free(spa->spa_l2cache.sav_vdevs,
1305 		    spa->spa_l2cache.sav_count * sizeof (void *));
1306 		spa->spa_l2cache.sav_vdevs = NULL;
1307 	}
1308 	if (spa->spa_l2cache.sav_config) {
1309 		nvlist_free(spa->spa_l2cache.sav_config);
1310 		spa->spa_l2cache.sav_config = NULL;
1311 	}
1312 	spa->spa_l2cache.sav_count = 0;
1313 
1314 	spa->spa_async_suspended = 0;
1315 
1316 	if (spa->spa_comment != NULL) {
1317 		spa_strfree(spa->spa_comment);
1318 		spa->spa_comment = NULL;
1319 	}
1320 
1321 	spa_config_exit(spa, SCL_ALL, FTAG);
1322 }
1323 
1324 /*
1325  * Load (or re-load) the current list of vdevs describing the active spares for
1326  * this pool.  When this is called, we have some form of basic information in
1327  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1328  * then re-generate a more complete list including status information.
1329  */
1330 static void
1331 spa_load_spares(spa_t *spa)
1332 {
1333 	nvlist_t **spares;
1334 	uint_t nspares;
1335 	int i;
1336 	vdev_t *vd, *tvd;
1337 
1338 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1339 
1340 	/*
1341 	 * First, close and free any existing spare vdevs.
1342 	 */
1343 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1344 		vd = spa->spa_spares.sav_vdevs[i];
1345 
1346 		/* Undo the call to spa_activate() below */
1347 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1348 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1349 			spa_spare_remove(tvd);
1350 		vdev_close(vd);
1351 		vdev_free(vd);
1352 	}
1353 
1354 	if (spa->spa_spares.sav_vdevs)
1355 		kmem_free(spa->spa_spares.sav_vdevs,
1356 		    spa->spa_spares.sav_count * sizeof (void *));
1357 
1358 	if (spa->spa_spares.sav_config == NULL)
1359 		nspares = 0;
1360 	else
1361 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1362 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1363 
1364 	spa->spa_spares.sav_count = (int)nspares;
1365 	spa->spa_spares.sav_vdevs = NULL;
1366 
1367 	if (nspares == 0)
1368 		return;
1369 
1370 	/*
1371 	 * Construct the array of vdevs, opening them to get status in the
1372 	 * process.   For each spare, there is potentially two different vdev_t
1373 	 * structures associated with it: one in the list of spares (used only
1374 	 * for basic validation purposes) and one in the active vdev
1375 	 * configuration (if it's spared in).  During this phase we open and
1376 	 * validate each vdev on the spare list.  If the vdev also exists in the
1377 	 * active configuration, then we also mark this vdev as an active spare.
1378 	 */
1379 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1380 	    KM_SLEEP);
1381 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1382 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1383 		    VDEV_ALLOC_SPARE) == 0);
1384 		ASSERT(vd != NULL);
1385 
1386 		spa->spa_spares.sav_vdevs[i] = vd;
1387 
1388 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1389 		    B_FALSE)) != NULL) {
1390 			if (!tvd->vdev_isspare)
1391 				spa_spare_add(tvd);
1392 
1393 			/*
1394 			 * We only mark the spare active if we were successfully
1395 			 * able to load the vdev.  Otherwise, importing a pool
1396 			 * with a bad active spare would result in strange
1397 			 * behavior, because multiple pool would think the spare
1398 			 * is actively in use.
1399 			 *
1400 			 * There is a vulnerability here to an equally bizarre
1401 			 * circumstance, where a dead active spare is later
1402 			 * brought back to life (onlined or otherwise).  Given
1403 			 * the rarity of this scenario, and the extra complexity
1404 			 * it adds, we ignore the possibility.
1405 			 */
1406 			if (!vdev_is_dead(tvd))
1407 				spa_spare_activate(tvd);
1408 		}
1409 
1410 		vd->vdev_top = vd;
1411 		vd->vdev_aux = &spa->spa_spares;
1412 
1413 		if (vdev_open(vd) != 0)
1414 			continue;
1415 
1416 		if (vdev_validate_aux(vd) == 0)
1417 			spa_spare_add(vd);
1418 	}
1419 
1420 	/*
1421 	 * Recompute the stashed list of spares, with status information
1422 	 * this time.
1423 	 */
1424 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1425 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1426 
1427 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1428 	    KM_SLEEP);
1429 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1430 		spares[i] = vdev_config_generate(spa,
1431 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1432 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1433 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1434 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1435 		nvlist_free(spares[i]);
1436 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1437 }
1438 
1439 /*
1440  * Load (or re-load) the current list of vdevs describing the active l2cache for
1441  * this pool.  When this is called, we have some form of basic information in
1442  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1443  * then re-generate a more complete list including status information.
1444  * Devices which are already active have their details maintained, and are
1445  * not re-opened.
1446  */
1447 static void
1448 spa_load_l2cache(spa_t *spa)
1449 {
1450 	nvlist_t **l2cache;
1451 	uint_t nl2cache;
1452 	int i, j, oldnvdevs;
1453 	uint64_t guid;
1454 	vdev_t *vd, **oldvdevs, **newvdevs;
1455 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1456 
1457 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1458 
1459 	if (sav->sav_config != NULL) {
1460 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1461 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1462 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1463 	} else {
1464 		nl2cache = 0;
1465 		newvdevs = NULL;
1466 	}
1467 
1468 	oldvdevs = sav->sav_vdevs;
1469 	oldnvdevs = sav->sav_count;
1470 	sav->sav_vdevs = NULL;
1471 	sav->sav_count = 0;
1472 
1473 	/*
1474 	 * Process new nvlist of vdevs.
1475 	 */
1476 	for (i = 0; i < nl2cache; i++) {
1477 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1478 		    &guid) == 0);
1479 
1480 		newvdevs[i] = NULL;
1481 		for (j = 0; j < oldnvdevs; j++) {
1482 			vd = oldvdevs[j];
1483 			if (vd != NULL && guid == vd->vdev_guid) {
1484 				/*
1485 				 * Retain previous vdev for add/remove ops.
1486 				 */
1487 				newvdevs[i] = vd;
1488 				oldvdevs[j] = NULL;
1489 				break;
1490 			}
1491 		}
1492 
1493 		if (newvdevs[i] == NULL) {
1494 			/*
1495 			 * Create new vdev
1496 			 */
1497 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1498 			    VDEV_ALLOC_L2CACHE) == 0);
1499 			ASSERT(vd != NULL);
1500 			newvdevs[i] = vd;
1501 
1502 			/*
1503 			 * Commit this vdev as an l2cache device,
1504 			 * even if it fails to open.
1505 			 */
1506 			spa_l2cache_add(vd);
1507 
1508 			vd->vdev_top = vd;
1509 			vd->vdev_aux = sav;
1510 
1511 			spa_l2cache_activate(vd);
1512 
1513 			if (vdev_open(vd) != 0)
1514 				continue;
1515 
1516 			(void) vdev_validate_aux(vd);
1517 
1518 			if (!vdev_is_dead(vd))
1519 				l2arc_add_vdev(spa, vd);
1520 		}
1521 	}
1522 
1523 	/*
1524 	 * Purge vdevs that were dropped
1525 	 */
1526 	for (i = 0; i < oldnvdevs; i++) {
1527 		uint64_t pool;
1528 
1529 		vd = oldvdevs[i];
1530 		if (vd != NULL) {
1531 			ASSERT(vd->vdev_isl2cache);
1532 
1533 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1534 			    pool != 0ULL && l2arc_vdev_present(vd))
1535 				l2arc_remove_vdev(vd);
1536 			vdev_clear_stats(vd);
1537 			vdev_free(vd);
1538 		}
1539 	}
1540 
1541 	if (oldvdevs)
1542 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1543 
1544 	if (sav->sav_config == NULL)
1545 		goto out;
1546 
1547 	sav->sav_vdevs = newvdevs;
1548 	sav->sav_count = (int)nl2cache;
1549 
1550 	/*
1551 	 * Recompute the stashed list of l2cache devices, with status
1552 	 * information this time.
1553 	 */
1554 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1555 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1556 
1557 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1558 	for (i = 0; i < sav->sav_count; i++)
1559 		l2cache[i] = vdev_config_generate(spa,
1560 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1561 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1562 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1563 out:
1564 	for (i = 0; i < sav->sav_count; i++)
1565 		nvlist_free(l2cache[i]);
1566 	if (sav->sav_count)
1567 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1568 }
1569 
1570 static int
1571 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1572 {
1573 	dmu_buf_t *db;
1574 	char *packed = NULL;
1575 	size_t nvsize = 0;
1576 	int error;
1577 	*value = NULL;
1578 
1579 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1580 	if (error != 0)
1581 		return (error);
1582 
1583 	nvsize = *(uint64_t *)db->db_data;
1584 	dmu_buf_rele(db, FTAG);
1585 
1586 	packed = kmem_alloc(nvsize, KM_SLEEP);
1587 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1588 	    DMU_READ_PREFETCH);
1589 	if (error == 0)
1590 		error = nvlist_unpack(packed, nvsize, value, 0);
1591 	kmem_free(packed, nvsize);
1592 
1593 	return (error);
1594 }
1595 
1596 /*
1597  * Checks to see if the given vdev could not be opened, in which case we post a
1598  * sysevent to notify the autoreplace code that the device has been removed.
1599  */
1600 static void
1601 spa_check_removed(vdev_t *vd)
1602 {
1603 	for (int c = 0; c < vd->vdev_children; c++)
1604 		spa_check_removed(vd->vdev_child[c]);
1605 
1606 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1607 	    !vd->vdev_ishole) {
1608 		zfs_post_autoreplace(vd->vdev_spa, vd);
1609 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1610 	}
1611 }
1612 
1613 static void
1614 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1615 {
1616 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1617 
1618 	vd->vdev_top_zap = mvd->vdev_top_zap;
1619 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1620 
1621 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1622 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1623 	}
1624 }
1625 
1626 /*
1627  * Validate the current config against the MOS config
1628  */
1629 static boolean_t
1630 spa_config_valid(spa_t *spa, nvlist_t *config)
1631 {
1632 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1633 	nvlist_t *nv;
1634 
1635 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1636 
1637 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1638 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1639 
1640 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1641 
1642 	/*
1643 	 * If we're doing a normal import, then build up any additional
1644 	 * diagnostic information about missing devices in this config.
1645 	 * We'll pass this up to the user for further processing.
1646 	 */
1647 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1648 		nvlist_t **child, *nv;
1649 		uint64_t idx = 0;
1650 
1651 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1652 		    KM_SLEEP);
1653 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1654 
1655 		for (int c = 0; c < rvd->vdev_children; c++) {
1656 			vdev_t *tvd = rvd->vdev_child[c];
1657 			vdev_t *mtvd  = mrvd->vdev_child[c];
1658 
1659 			if (tvd->vdev_ops == &vdev_missing_ops &&
1660 			    mtvd->vdev_ops != &vdev_missing_ops &&
1661 			    mtvd->vdev_islog)
1662 				child[idx++] = vdev_config_generate(spa, mtvd,
1663 				    B_FALSE, 0);
1664 		}
1665 
1666 		if (idx) {
1667 			VERIFY(nvlist_add_nvlist_array(nv,
1668 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1669 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1670 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1671 
1672 			for (int i = 0; i < idx; i++)
1673 				nvlist_free(child[i]);
1674 		}
1675 		nvlist_free(nv);
1676 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1677 	}
1678 
1679 	/*
1680 	 * Compare the root vdev tree with the information we have
1681 	 * from the MOS config (mrvd). Check each top-level vdev
1682 	 * with the corresponding MOS config top-level (mtvd).
1683 	 */
1684 	for (int c = 0; c < rvd->vdev_children; c++) {
1685 		vdev_t *tvd = rvd->vdev_child[c];
1686 		vdev_t *mtvd  = mrvd->vdev_child[c];
1687 
1688 		/*
1689 		 * Resolve any "missing" vdevs in the current configuration.
1690 		 * If we find that the MOS config has more accurate information
1691 		 * about the top-level vdev then use that vdev instead.
1692 		 */
1693 		if (tvd->vdev_ops == &vdev_missing_ops &&
1694 		    mtvd->vdev_ops != &vdev_missing_ops) {
1695 
1696 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1697 				continue;
1698 
1699 			/*
1700 			 * Device specific actions.
1701 			 */
1702 			if (mtvd->vdev_islog) {
1703 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1704 			} else {
1705 				/*
1706 				 * XXX - once we have 'readonly' pool
1707 				 * support we should be able to handle
1708 				 * missing data devices by transitioning
1709 				 * the pool to readonly.
1710 				 */
1711 				continue;
1712 			}
1713 
1714 			/*
1715 			 * Swap the missing vdev with the data we were
1716 			 * able to obtain from the MOS config.
1717 			 */
1718 			vdev_remove_child(rvd, tvd);
1719 			vdev_remove_child(mrvd, mtvd);
1720 
1721 			vdev_add_child(rvd, mtvd);
1722 			vdev_add_child(mrvd, tvd);
1723 
1724 			spa_config_exit(spa, SCL_ALL, FTAG);
1725 			vdev_load(mtvd);
1726 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1727 
1728 			vdev_reopen(rvd);
1729 		} else {
1730 			if (mtvd->vdev_islog) {
1731 				/*
1732 				 * Load the slog device's state from the MOS
1733 				 * config since it's possible that the label
1734 				 * does not contain the most up-to-date
1735 				 * information.
1736 				 */
1737 				vdev_load_log_state(tvd, mtvd);
1738 				vdev_reopen(tvd);
1739 			}
1740 
1741 			/*
1742 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1743 			 */
1744 			spa_config_valid_zaps(tvd, mtvd);
1745 		}
1746 	}
1747 
1748 	vdev_free(mrvd);
1749 	spa_config_exit(spa, SCL_ALL, FTAG);
1750 
1751 	/*
1752 	 * Ensure we were able to validate the config.
1753 	 */
1754 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1755 }
1756 
1757 /*
1758  * Check for missing log devices
1759  */
1760 static boolean_t
1761 spa_check_logs(spa_t *spa)
1762 {
1763 	boolean_t rv = B_FALSE;
1764 	dsl_pool_t *dp = spa_get_dsl(spa);
1765 
1766 	switch (spa->spa_log_state) {
1767 	case SPA_LOG_MISSING:
1768 		/* need to recheck in case slog has been restored */
1769 	case SPA_LOG_UNKNOWN:
1770 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1771 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1772 		if (rv)
1773 			spa_set_log_state(spa, SPA_LOG_MISSING);
1774 		break;
1775 	}
1776 	return (rv);
1777 }
1778 
1779 static boolean_t
1780 spa_passivate_log(spa_t *spa)
1781 {
1782 	vdev_t *rvd = spa->spa_root_vdev;
1783 	boolean_t slog_found = B_FALSE;
1784 
1785 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1786 
1787 	if (!spa_has_slogs(spa))
1788 		return (B_FALSE);
1789 
1790 	for (int c = 0; c < rvd->vdev_children; c++) {
1791 		vdev_t *tvd = rvd->vdev_child[c];
1792 		metaslab_group_t *mg = tvd->vdev_mg;
1793 
1794 		if (tvd->vdev_islog) {
1795 			metaslab_group_passivate(mg);
1796 			slog_found = B_TRUE;
1797 		}
1798 	}
1799 
1800 	return (slog_found);
1801 }
1802 
1803 static void
1804 spa_activate_log(spa_t *spa)
1805 {
1806 	vdev_t *rvd = spa->spa_root_vdev;
1807 
1808 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1809 
1810 	for (int c = 0; c < rvd->vdev_children; c++) {
1811 		vdev_t *tvd = rvd->vdev_child[c];
1812 		metaslab_group_t *mg = tvd->vdev_mg;
1813 
1814 		if (tvd->vdev_islog)
1815 			metaslab_group_activate(mg);
1816 	}
1817 }
1818 
1819 int
1820 spa_offline_log(spa_t *spa)
1821 {
1822 	int error;
1823 
1824 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1825 	    NULL, DS_FIND_CHILDREN);
1826 	if (error == 0) {
1827 		/*
1828 		 * We successfully offlined the log device, sync out the
1829 		 * current txg so that the "stubby" block can be removed
1830 		 * by zil_sync().
1831 		 */
1832 		txg_wait_synced(spa->spa_dsl_pool, 0);
1833 	}
1834 	return (error);
1835 }
1836 
1837 static void
1838 spa_aux_check_removed(spa_aux_vdev_t *sav)
1839 {
1840 	for (int i = 0; i < sav->sav_count; i++)
1841 		spa_check_removed(sav->sav_vdevs[i]);
1842 }
1843 
1844 void
1845 spa_claim_notify(zio_t *zio)
1846 {
1847 	spa_t *spa = zio->io_spa;
1848 
1849 	if (zio->io_error)
1850 		return;
1851 
1852 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1853 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1854 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1855 	mutex_exit(&spa->spa_props_lock);
1856 }
1857 
1858 typedef struct spa_load_error {
1859 	uint64_t	sle_meta_count;
1860 	uint64_t	sle_data_count;
1861 } spa_load_error_t;
1862 
1863 static void
1864 spa_load_verify_done(zio_t *zio)
1865 {
1866 	blkptr_t *bp = zio->io_bp;
1867 	spa_load_error_t *sle = zio->io_private;
1868 	dmu_object_type_t type = BP_GET_TYPE(bp);
1869 	int error = zio->io_error;
1870 	spa_t *spa = zio->io_spa;
1871 
1872 	if (error) {
1873 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1874 		    type != DMU_OT_INTENT_LOG)
1875 			atomic_inc_64(&sle->sle_meta_count);
1876 		else
1877 			atomic_inc_64(&sle->sle_data_count);
1878 	}
1879 	zio_data_buf_free(zio->io_data, zio->io_size);
1880 
1881 	mutex_enter(&spa->spa_scrub_lock);
1882 	spa->spa_scrub_inflight--;
1883 	cv_broadcast(&spa->spa_scrub_io_cv);
1884 	mutex_exit(&spa->spa_scrub_lock);
1885 }
1886 
1887 /*
1888  * Maximum number of concurrent scrub i/os to create while verifying
1889  * a pool while importing it.
1890  */
1891 int spa_load_verify_maxinflight = 10000;
1892 boolean_t spa_load_verify_metadata = B_TRUE;
1893 boolean_t spa_load_verify_data = B_TRUE;
1894 
1895 /*ARGSUSED*/
1896 static int
1897 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1898     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1899 {
1900 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1901 		return (0);
1902 	/*
1903 	 * Note: normally this routine will not be called if
1904 	 * spa_load_verify_metadata is not set.  However, it may be useful
1905 	 * to manually set the flag after the traversal has begun.
1906 	 */
1907 	if (!spa_load_verify_metadata)
1908 		return (0);
1909 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1910 		return (0);
1911 
1912 	zio_t *rio = arg;
1913 	size_t size = BP_GET_PSIZE(bp);
1914 	void *data = zio_data_buf_alloc(size);
1915 
1916 	mutex_enter(&spa->spa_scrub_lock);
1917 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1918 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1919 	spa->spa_scrub_inflight++;
1920 	mutex_exit(&spa->spa_scrub_lock);
1921 
1922 	zio_nowait(zio_read(rio, spa, bp, data, size,
1923 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1924 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1925 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1926 	return (0);
1927 }
1928 
1929 /* ARGSUSED */
1930 int
1931 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1932 {
1933 	char namebuf[MAXPATHLEN];
1934 	dsl_dataset_name(ds, namebuf);
1935 	if (strlen(namebuf) > MAXNAMELEN) {
1936 		return (SET_ERROR(ENAMETOOLONG));
1937 	}
1938 
1939 	return (0);
1940 }
1941 
1942 static int
1943 spa_load_verify(spa_t *spa)
1944 {
1945 	zio_t *rio;
1946 	spa_load_error_t sle = { 0 };
1947 	zpool_rewind_policy_t policy;
1948 	boolean_t verify_ok = B_FALSE;
1949 	int error = 0;
1950 
1951 	zpool_get_rewind_policy(spa->spa_config, &policy);
1952 
1953 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1954 		return (0);
1955 
1956 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1957 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1958 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1959 	    DS_FIND_CHILDREN);
1960 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1961 	if (error != 0)
1962 		return (error);
1963 
1964 	rio = zio_root(spa, NULL, &sle,
1965 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1966 
1967 	if (spa_load_verify_metadata) {
1968 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1969 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1970 		    spa_load_verify_cb, rio);
1971 	}
1972 
1973 	(void) zio_wait(rio);
1974 
1975 	spa->spa_load_meta_errors = sle.sle_meta_count;
1976 	spa->spa_load_data_errors = sle.sle_data_count;
1977 
1978 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1979 	    sle.sle_data_count <= policy.zrp_maxdata) {
1980 		int64_t loss = 0;
1981 
1982 		verify_ok = B_TRUE;
1983 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1984 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1985 
1986 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1987 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1988 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1989 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1990 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1991 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1992 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1993 	} else {
1994 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1995 	}
1996 
1997 	if (error) {
1998 		if (error != ENXIO && error != EIO)
1999 			error = SET_ERROR(EIO);
2000 		return (error);
2001 	}
2002 
2003 	return (verify_ok ? 0 : EIO);
2004 }
2005 
2006 /*
2007  * Find a value in the pool props object.
2008  */
2009 static void
2010 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2011 {
2012 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2013 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2014 }
2015 
2016 /*
2017  * Find a value in the pool directory object.
2018  */
2019 static int
2020 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2021 {
2022 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2023 	    name, sizeof (uint64_t), 1, val));
2024 }
2025 
2026 static int
2027 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2028 {
2029 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2030 	return (err);
2031 }
2032 
2033 /*
2034  * Fix up config after a partly-completed split.  This is done with the
2035  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2036  * pool have that entry in their config, but only the splitting one contains
2037  * a list of all the guids of the vdevs that are being split off.
2038  *
2039  * This function determines what to do with that list: either rejoin
2040  * all the disks to the pool, or complete the splitting process.  To attempt
2041  * the rejoin, each disk that is offlined is marked online again, and
2042  * we do a reopen() call.  If the vdev label for every disk that was
2043  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2044  * then we call vdev_split() on each disk, and complete the split.
2045  *
2046  * Otherwise we leave the config alone, with all the vdevs in place in
2047  * the original pool.
2048  */
2049 static void
2050 spa_try_repair(spa_t *spa, nvlist_t *config)
2051 {
2052 	uint_t extracted;
2053 	uint64_t *glist;
2054 	uint_t i, gcount;
2055 	nvlist_t *nvl;
2056 	vdev_t **vd;
2057 	boolean_t attempt_reopen;
2058 
2059 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2060 		return;
2061 
2062 	/* check that the config is complete */
2063 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2064 	    &glist, &gcount) != 0)
2065 		return;
2066 
2067 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2068 
2069 	/* attempt to online all the vdevs & validate */
2070 	attempt_reopen = B_TRUE;
2071 	for (i = 0; i < gcount; i++) {
2072 		if (glist[i] == 0)	/* vdev is hole */
2073 			continue;
2074 
2075 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2076 		if (vd[i] == NULL) {
2077 			/*
2078 			 * Don't bother attempting to reopen the disks;
2079 			 * just do the split.
2080 			 */
2081 			attempt_reopen = B_FALSE;
2082 		} else {
2083 			/* attempt to re-online it */
2084 			vd[i]->vdev_offline = B_FALSE;
2085 		}
2086 	}
2087 
2088 	if (attempt_reopen) {
2089 		vdev_reopen(spa->spa_root_vdev);
2090 
2091 		/* check each device to see what state it's in */
2092 		for (extracted = 0, i = 0; i < gcount; i++) {
2093 			if (vd[i] != NULL &&
2094 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2095 				break;
2096 			++extracted;
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * If every disk has been moved to the new pool, or if we never
2102 	 * even attempted to look at them, then we split them off for
2103 	 * good.
2104 	 */
2105 	if (!attempt_reopen || gcount == extracted) {
2106 		for (i = 0; i < gcount; i++)
2107 			if (vd[i] != NULL)
2108 				vdev_split(vd[i]);
2109 		vdev_reopen(spa->spa_root_vdev);
2110 	}
2111 
2112 	kmem_free(vd, gcount * sizeof (vdev_t *));
2113 }
2114 
2115 static int
2116 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2117     boolean_t mosconfig)
2118 {
2119 	nvlist_t *config = spa->spa_config;
2120 	char *ereport = FM_EREPORT_ZFS_POOL;
2121 	char *comment;
2122 	int error;
2123 	uint64_t pool_guid;
2124 	nvlist_t *nvl;
2125 
2126 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2127 		return (SET_ERROR(EINVAL));
2128 
2129 	ASSERT(spa->spa_comment == NULL);
2130 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2131 		spa->spa_comment = spa_strdup(comment);
2132 
2133 	/*
2134 	 * Versioning wasn't explicitly added to the label until later, so if
2135 	 * it's not present treat it as the initial version.
2136 	 */
2137 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2138 	    &spa->spa_ubsync.ub_version) != 0)
2139 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2140 
2141 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2142 	    &spa->spa_config_txg);
2143 
2144 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2145 	    spa_guid_exists(pool_guid, 0)) {
2146 		error = SET_ERROR(EEXIST);
2147 	} else {
2148 		spa->spa_config_guid = pool_guid;
2149 
2150 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2151 		    &nvl) == 0) {
2152 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2153 			    KM_SLEEP) == 0);
2154 		}
2155 
2156 		nvlist_free(spa->spa_load_info);
2157 		spa->spa_load_info = fnvlist_alloc();
2158 
2159 		gethrestime(&spa->spa_loaded_ts);
2160 		error = spa_load_impl(spa, pool_guid, config, state, type,
2161 		    mosconfig, &ereport);
2162 	}
2163 
2164 	/*
2165 	 * Don't count references from objsets that are already closed
2166 	 * and are making their way through the eviction process.
2167 	 */
2168 	spa_evicting_os_wait(spa);
2169 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2170 	if (error) {
2171 		if (error != EEXIST) {
2172 			spa->spa_loaded_ts.tv_sec = 0;
2173 			spa->spa_loaded_ts.tv_nsec = 0;
2174 		}
2175 		if (error != EBADF) {
2176 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2177 		}
2178 	}
2179 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2180 	spa->spa_ena = 0;
2181 
2182 	return (error);
2183 }
2184 
2185 /*
2186  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2187  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2188  * spa's per-vdev ZAP list.
2189  */
2190 static uint64_t
2191 vdev_count_verify_zaps(vdev_t *vd)
2192 {
2193 	spa_t *spa = vd->vdev_spa;
2194 	uint64_t total = 0;
2195 	if (vd->vdev_top_zap != 0) {
2196 		total++;
2197 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2198 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2199 	}
2200 	if (vd->vdev_leaf_zap != 0) {
2201 		total++;
2202 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2203 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2204 	}
2205 
2206 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2207 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2208 	}
2209 
2210 	return (total);
2211 }
2212 
2213 /*
2214  * Load an existing storage pool, using the pool's builtin spa_config as a
2215  * source of configuration information.
2216  */
2217 static int
2218 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2219     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2220     char **ereport)
2221 {
2222 	int error = 0;
2223 	nvlist_t *nvroot = NULL;
2224 	nvlist_t *label;
2225 	vdev_t *rvd;
2226 	uberblock_t *ub = &spa->spa_uberblock;
2227 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2228 	int orig_mode = spa->spa_mode;
2229 	int parse;
2230 	uint64_t obj;
2231 	boolean_t missing_feat_write = B_FALSE;
2232 
2233 	/*
2234 	 * If this is an untrusted config, access the pool in read-only mode.
2235 	 * This prevents things like resilvering recently removed devices.
2236 	 */
2237 	if (!mosconfig)
2238 		spa->spa_mode = FREAD;
2239 
2240 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2241 
2242 	spa->spa_load_state = state;
2243 
2244 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2245 		return (SET_ERROR(EINVAL));
2246 
2247 	parse = (type == SPA_IMPORT_EXISTING ?
2248 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2249 
2250 	/*
2251 	 * Create "The Godfather" zio to hold all async IOs
2252 	 */
2253 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2254 	    KM_SLEEP);
2255 	for (int i = 0; i < max_ncpus; i++) {
2256 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2257 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2258 		    ZIO_FLAG_GODFATHER);
2259 	}
2260 
2261 	/*
2262 	 * Parse the configuration into a vdev tree.  We explicitly set the
2263 	 * value that will be returned by spa_version() since parsing the
2264 	 * configuration requires knowing the version number.
2265 	 */
2266 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2267 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2268 	spa_config_exit(spa, SCL_ALL, FTAG);
2269 
2270 	if (error != 0)
2271 		return (error);
2272 
2273 	ASSERT(spa->spa_root_vdev == rvd);
2274 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2275 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2276 
2277 	if (type != SPA_IMPORT_ASSEMBLE) {
2278 		ASSERT(spa_guid(spa) == pool_guid);
2279 	}
2280 
2281 	/*
2282 	 * Try to open all vdevs, loading each label in the process.
2283 	 */
2284 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2285 	error = vdev_open(rvd);
2286 	spa_config_exit(spa, SCL_ALL, FTAG);
2287 	if (error != 0)
2288 		return (error);
2289 
2290 	/*
2291 	 * We need to validate the vdev labels against the configuration that
2292 	 * we have in hand, which is dependent on the setting of mosconfig. If
2293 	 * mosconfig is true then we're validating the vdev labels based on
2294 	 * that config.  Otherwise, we're validating against the cached config
2295 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2296 	 * later we will recursively call spa_load() and validate against
2297 	 * the vdev config.
2298 	 *
2299 	 * If we're assembling a new pool that's been split off from an
2300 	 * existing pool, the labels haven't yet been updated so we skip
2301 	 * validation for now.
2302 	 */
2303 	if (type != SPA_IMPORT_ASSEMBLE) {
2304 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2305 		error = vdev_validate(rvd, mosconfig);
2306 		spa_config_exit(spa, SCL_ALL, FTAG);
2307 
2308 		if (error != 0)
2309 			return (error);
2310 
2311 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2312 			return (SET_ERROR(ENXIO));
2313 	}
2314 
2315 	/*
2316 	 * Find the best uberblock.
2317 	 */
2318 	vdev_uberblock_load(rvd, ub, &label);
2319 
2320 	/*
2321 	 * If we weren't able to find a single valid uberblock, return failure.
2322 	 */
2323 	if (ub->ub_txg == 0) {
2324 		nvlist_free(label);
2325 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2326 	}
2327 
2328 	/*
2329 	 * If the pool has an unsupported version we can't open it.
2330 	 */
2331 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2332 		nvlist_free(label);
2333 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2334 	}
2335 
2336 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2337 		nvlist_t *features;
2338 
2339 		/*
2340 		 * If we weren't able to find what's necessary for reading the
2341 		 * MOS in the label, return failure.
2342 		 */
2343 		if (label == NULL || nvlist_lookup_nvlist(label,
2344 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2345 			nvlist_free(label);
2346 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2347 			    ENXIO));
2348 		}
2349 
2350 		/*
2351 		 * Update our in-core representation with the definitive values
2352 		 * from the label.
2353 		 */
2354 		nvlist_free(spa->spa_label_features);
2355 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2356 	}
2357 
2358 	nvlist_free(label);
2359 
2360 	/*
2361 	 * Look through entries in the label nvlist's features_for_read. If
2362 	 * there is a feature listed there which we don't understand then we
2363 	 * cannot open a pool.
2364 	 */
2365 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2366 		nvlist_t *unsup_feat;
2367 
2368 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2369 		    0);
2370 
2371 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2372 		    NULL); nvp != NULL;
2373 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2374 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2375 				VERIFY(nvlist_add_string(unsup_feat,
2376 				    nvpair_name(nvp), "") == 0);
2377 			}
2378 		}
2379 
2380 		if (!nvlist_empty(unsup_feat)) {
2381 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2382 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2383 			nvlist_free(unsup_feat);
2384 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2385 			    ENOTSUP));
2386 		}
2387 
2388 		nvlist_free(unsup_feat);
2389 	}
2390 
2391 	/*
2392 	 * If the vdev guid sum doesn't match the uberblock, we have an
2393 	 * incomplete configuration.  We first check to see if the pool
2394 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2395 	 * If it is, defer the vdev_guid_sum check till later so we
2396 	 * can handle missing vdevs.
2397 	 */
2398 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2399 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2400 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2401 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2402 
2403 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2404 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2405 		spa_try_repair(spa, config);
2406 		spa_config_exit(spa, SCL_ALL, FTAG);
2407 		nvlist_free(spa->spa_config_splitting);
2408 		spa->spa_config_splitting = NULL;
2409 	}
2410 
2411 	/*
2412 	 * Initialize internal SPA structures.
2413 	 */
2414 	spa->spa_state = POOL_STATE_ACTIVE;
2415 	spa->spa_ubsync = spa->spa_uberblock;
2416 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2417 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2418 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2419 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2420 	spa->spa_claim_max_txg = spa->spa_first_txg;
2421 	spa->spa_prev_software_version = ub->ub_software_version;
2422 
2423 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2424 	if (error)
2425 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2427 
2428 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2429 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2430 
2431 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2432 		boolean_t missing_feat_read = B_FALSE;
2433 		nvlist_t *unsup_feat, *enabled_feat;
2434 
2435 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2436 		    &spa->spa_feat_for_read_obj) != 0) {
2437 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2438 		}
2439 
2440 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2441 		    &spa->spa_feat_for_write_obj) != 0) {
2442 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443 		}
2444 
2445 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2446 		    &spa->spa_feat_desc_obj) != 0) {
2447 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448 		}
2449 
2450 		enabled_feat = fnvlist_alloc();
2451 		unsup_feat = fnvlist_alloc();
2452 
2453 		if (!spa_features_check(spa, B_FALSE,
2454 		    unsup_feat, enabled_feat))
2455 			missing_feat_read = B_TRUE;
2456 
2457 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2458 			if (!spa_features_check(spa, B_TRUE,
2459 			    unsup_feat, enabled_feat)) {
2460 				missing_feat_write = B_TRUE;
2461 			}
2462 		}
2463 
2464 		fnvlist_add_nvlist(spa->spa_load_info,
2465 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2466 
2467 		if (!nvlist_empty(unsup_feat)) {
2468 			fnvlist_add_nvlist(spa->spa_load_info,
2469 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2470 		}
2471 
2472 		fnvlist_free(enabled_feat);
2473 		fnvlist_free(unsup_feat);
2474 
2475 		if (!missing_feat_read) {
2476 			fnvlist_add_boolean(spa->spa_load_info,
2477 			    ZPOOL_CONFIG_CAN_RDONLY);
2478 		}
2479 
2480 		/*
2481 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2482 		 * twofold: to determine whether the pool is available for
2483 		 * import in read-write mode and (if it is not) whether the
2484 		 * pool is available for import in read-only mode. If the pool
2485 		 * is available for import in read-write mode, it is displayed
2486 		 * as available in userland; if it is not available for import
2487 		 * in read-only mode, it is displayed as unavailable in
2488 		 * userland. If the pool is available for import in read-only
2489 		 * mode but not read-write mode, it is displayed as unavailable
2490 		 * in userland with a special note that the pool is actually
2491 		 * available for open in read-only mode.
2492 		 *
2493 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2494 		 * missing a feature for write, we must first determine whether
2495 		 * the pool can be opened read-only before returning to
2496 		 * userland in order to know whether to display the
2497 		 * abovementioned note.
2498 		 */
2499 		if (missing_feat_read || (missing_feat_write &&
2500 		    spa_writeable(spa))) {
2501 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2502 			    ENOTSUP));
2503 		}
2504 
2505 		/*
2506 		 * Load refcounts for ZFS features from disk into an in-memory
2507 		 * cache during SPA initialization.
2508 		 */
2509 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2510 			uint64_t refcount;
2511 
2512 			error = feature_get_refcount_from_disk(spa,
2513 			    &spa_feature_table[i], &refcount);
2514 			if (error == 0) {
2515 				spa->spa_feat_refcount_cache[i] = refcount;
2516 			} else if (error == ENOTSUP) {
2517 				spa->spa_feat_refcount_cache[i] =
2518 				    SPA_FEATURE_DISABLED;
2519 			} else {
2520 				return (spa_vdev_err(rvd,
2521 				    VDEV_AUX_CORRUPT_DATA, EIO));
2522 			}
2523 		}
2524 	}
2525 
2526 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2527 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2528 		    &spa->spa_feat_enabled_txg_obj) != 0)
2529 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530 	}
2531 
2532 	spa->spa_is_initializing = B_TRUE;
2533 	error = dsl_pool_open(spa->spa_dsl_pool);
2534 	spa->spa_is_initializing = B_FALSE;
2535 	if (error != 0)
2536 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2537 
2538 	if (!mosconfig) {
2539 		uint64_t hostid;
2540 		nvlist_t *policy = NULL, *nvconfig;
2541 
2542 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2543 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2544 
2545 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2546 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2547 			char *hostname;
2548 			unsigned long myhostid = 0;
2549 
2550 			VERIFY(nvlist_lookup_string(nvconfig,
2551 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2552 
2553 #ifdef	_KERNEL
2554 			myhostid = zone_get_hostid(NULL);
2555 #else	/* _KERNEL */
2556 			/*
2557 			 * We're emulating the system's hostid in userland, so
2558 			 * we can't use zone_get_hostid().
2559 			 */
2560 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2561 #endif	/* _KERNEL */
2562 			if (hostid != 0 && myhostid != 0 &&
2563 			    hostid != myhostid) {
2564 				nvlist_free(nvconfig);
2565 				cmn_err(CE_WARN, "pool '%s' could not be "
2566 				    "loaded as it was last accessed by "
2567 				    "another system (host: %s hostid: 0x%lx). "
2568 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2569 				    spa_name(spa), hostname,
2570 				    (unsigned long)hostid);
2571 				return (SET_ERROR(EBADF));
2572 			}
2573 		}
2574 		if (nvlist_lookup_nvlist(spa->spa_config,
2575 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2576 			VERIFY(nvlist_add_nvlist(nvconfig,
2577 			    ZPOOL_REWIND_POLICY, policy) == 0);
2578 
2579 		spa_config_set(spa, nvconfig);
2580 		spa_unload(spa);
2581 		spa_deactivate(spa);
2582 		spa_activate(spa, orig_mode);
2583 
2584 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2585 	}
2586 
2587 	/* Grab the secret checksum salt from the MOS. */
2588 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2589 	    DMU_POOL_CHECKSUM_SALT, 1,
2590 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2591 	    spa->spa_cksum_salt.zcs_bytes);
2592 	if (error == ENOENT) {
2593 		/* Generate a new salt for subsequent use */
2594 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2595 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2596 	} else if (error != 0) {
2597 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2598 	}
2599 
2600 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2601 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2603 	if (error != 0)
2604 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605 
2606 	/*
2607 	 * Load the bit that tells us to use the new accounting function
2608 	 * (raid-z deflation).  If we have an older pool, this will not
2609 	 * be present.
2610 	 */
2611 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2612 	if (error != 0 && error != ENOENT)
2613 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2614 
2615 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2616 	    &spa->spa_creation_version);
2617 	if (error != 0 && error != ENOENT)
2618 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619 
2620 	/*
2621 	 * Load the persistent error log.  If we have an older pool, this will
2622 	 * not be present.
2623 	 */
2624 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2625 	if (error != 0 && error != ENOENT)
2626 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2627 
2628 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2629 	    &spa->spa_errlog_scrub);
2630 	if (error != 0 && error != ENOENT)
2631 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2632 
2633 	/*
2634 	 * Load the history object.  If we have an older pool, this
2635 	 * will not be present.
2636 	 */
2637 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2638 	if (error != 0 && error != ENOENT)
2639 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2640 
2641 	/*
2642 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2643 	 * be present; in this case, defer its creation to a later time to
2644 	 * avoid dirtying the MOS this early / out of sync context. See
2645 	 * spa_sync_config_object.
2646 	 */
2647 
2648 	/* The sentinel is only available in the MOS config. */
2649 	nvlist_t *mos_config;
2650 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2651 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2652 
2653 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2654 	    &spa->spa_all_vdev_zaps);
2655 
2656 	if (error != ENOENT && error != 0) {
2657 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2658 	} else if (error == 0 && !nvlist_exists(mos_config,
2659 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2660 		/*
2661 		 * An older version of ZFS overwrote the sentinel value, so
2662 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2663 		 * destruction to later; see spa_sync_config_object.
2664 		 */
2665 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2666 		/*
2667 		 * We're assuming that no vdevs have had their ZAPs created
2668 		 * before this. Better be sure of it.
2669 		 */
2670 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2671 	}
2672 	nvlist_free(mos_config);
2673 
2674 	/*
2675 	 * If we're assembling the pool from the split-off vdevs of
2676 	 * an existing pool, we don't want to attach the spares & cache
2677 	 * devices.
2678 	 */
2679 
2680 	/*
2681 	 * Load any hot spares for this pool.
2682 	 */
2683 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2684 	if (error != 0 && error != ENOENT)
2685 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2686 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2687 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2688 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2689 		    &spa->spa_spares.sav_config) != 0)
2690 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2691 
2692 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2693 		spa_load_spares(spa);
2694 		spa_config_exit(spa, SCL_ALL, FTAG);
2695 	} else if (error == 0) {
2696 		spa->spa_spares.sav_sync = B_TRUE;
2697 	}
2698 
2699 	/*
2700 	 * Load any level 2 ARC devices for this pool.
2701 	 */
2702 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2703 	    &spa->spa_l2cache.sav_object);
2704 	if (error != 0 && error != ENOENT)
2705 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2706 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2707 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2708 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2709 		    &spa->spa_l2cache.sav_config) != 0)
2710 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2711 
2712 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2713 		spa_load_l2cache(spa);
2714 		spa_config_exit(spa, SCL_ALL, FTAG);
2715 	} else if (error == 0) {
2716 		spa->spa_l2cache.sav_sync = B_TRUE;
2717 	}
2718 
2719 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2720 
2721 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2722 	if (error && error != ENOENT)
2723 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2724 
2725 	if (error == 0) {
2726 		uint64_t autoreplace;
2727 
2728 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2729 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2730 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2731 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2732 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2733 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2734 		    &spa->spa_dedup_ditto);
2735 
2736 		spa->spa_autoreplace = (autoreplace != 0);
2737 	}
2738 
2739 	/*
2740 	 * If the 'autoreplace' property is set, then post a resource notifying
2741 	 * the ZFS DE that it should not issue any faults for unopenable
2742 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2743 	 * unopenable vdevs so that the normal autoreplace handler can take
2744 	 * over.
2745 	 */
2746 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2747 		spa_check_removed(spa->spa_root_vdev);
2748 		/*
2749 		 * For the import case, this is done in spa_import(), because
2750 		 * at this point we're using the spare definitions from
2751 		 * the MOS config, not necessarily from the userland config.
2752 		 */
2753 		if (state != SPA_LOAD_IMPORT) {
2754 			spa_aux_check_removed(&spa->spa_spares);
2755 			spa_aux_check_removed(&spa->spa_l2cache);
2756 		}
2757 	}
2758 
2759 	/*
2760 	 * Load the vdev state for all toplevel vdevs.
2761 	 */
2762 	vdev_load(rvd);
2763 
2764 	/*
2765 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2766 	 */
2767 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2768 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2769 	spa_config_exit(spa, SCL_ALL, FTAG);
2770 
2771 	/*
2772 	 * Load the DDTs (dedup tables).
2773 	 */
2774 	error = ddt_load(spa);
2775 	if (error != 0)
2776 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2777 
2778 	spa_update_dspace(spa);
2779 
2780 	/*
2781 	 * Validate the config, using the MOS config to fill in any
2782 	 * information which might be missing.  If we fail to validate
2783 	 * the config then declare the pool unfit for use. If we're
2784 	 * assembling a pool from a split, the log is not transferred
2785 	 * over.
2786 	 */
2787 	if (type != SPA_IMPORT_ASSEMBLE) {
2788 		nvlist_t *nvconfig;
2789 
2790 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2791 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2792 
2793 		if (!spa_config_valid(spa, nvconfig)) {
2794 			nvlist_free(nvconfig);
2795 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2796 			    ENXIO));
2797 		}
2798 		nvlist_free(nvconfig);
2799 
2800 		/*
2801 		 * Now that we've validated the config, check the state of the
2802 		 * root vdev.  If it can't be opened, it indicates one or
2803 		 * more toplevel vdevs are faulted.
2804 		 */
2805 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2806 			return (SET_ERROR(ENXIO));
2807 
2808 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2809 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2810 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2811 		}
2812 	}
2813 
2814 	if (missing_feat_write) {
2815 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2816 
2817 		/*
2818 		 * At this point, we know that we can open the pool in
2819 		 * read-only mode but not read-write mode. We now have enough
2820 		 * information and can return to userland.
2821 		 */
2822 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2823 	}
2824 
2825 	/*
2826 	 * We've successfully opened the pool, verify that we're ready
2827 	 * to start pushing transactions.
2828 	 */
2829 	if (state != SPA_LOAD_TRYIMPORT) {
2830 		if (error = spa_load_verify(spa))
2831 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2832 			    error));
2833 	}
2834 
2835 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2836 	    spa->spa_load_max_txg == UINT64_MAX)) {
2837 		dmu_tx_t *tx;
2838 		int need_update = B_FALSE;
2839 		dsl_pool_t *dp = spa_get_dsl(spa);
2840 
2841 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2842 
2843 		/*
2844 		 * Claim log blocks that haven't been committed yet.
2845 		 * This must all happen in a single txg.
2846 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2847 		 * invoked from zil_claim_log_block()'s i/o done callback.
2848 		 * Price of rollback is that we abandon the log.
2849 		 */
2850 		spa->spa_claiming = B_TRUE;
2851 
2852 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2853 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2854 		    zil_claim, tx, DS_FIND_CHILDREN);
2855 		dmu_tx_commit(tx);
2856 
2857 		spa->spa_claiming = B_FALSE;
2858 
2859 		spa_set_log_state(spa, SPA_LOG_GOOD);
2860 		spa->spa_sync_on = B_TRUE;
2861 		txg_sync_start(spa->spa_dsl_pool);
2862 
2863 		/*
2864 		 * Wait for all claims to sync.  We sync up to the highest
2865 		 * claimed log block birth time so that claimed log blocks
2866 		 * don't appear to be from the future.  spa_claim_max_txg
2867 		 * will have been set for us by either zil_check_log_chain()
2868 		 * (invoked from spa_check_logs()) or zil_claim() above.
2869 		 */
2870 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2871 
2872 		/*
2873 		 * If the config cache is stale, or we have uninitialized
2874 		 * metaslabs (see spa_vdev_add()), then update the config.
2875 		 *
2876 		 * If this is a verbatim import, trust the current
2877 		 * in-core spa_config and update the disk labels.
2878 		 */
2879 		if (config_cache_txg != spa->spa_config_txg ||
2880 		    state == SPA_LOAD_IMPORT ||
2881 		    state == SPA_LOAD_RECOVER ||
2882 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2883 			need_update = B_TRUE;
2884 
2885 		for (int c = 0; c < rvd->vdev_children; c++)
2886 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2887 				need_update = B_TRUE;
2888 
2889 		/*
2890 		 * Update the config cache asychronously in case we're the
2891 		 * root pool, in which case the config cache isn't writable yet.
2892 		 */
2893 		if (need_update)
2894 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2895 
2896 		/*
2897 		 * Check all DTLs to see if anything needs resilvering.
2898 		 */
2899 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2900 		    vdev_resilver_needed(rvd, NULL, NULL))
2901 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2902 
2903 		/*
2904 		 * Log the fact that we booted up (so that we can detect if
2905 		 * we rebooted in the middle of an operation).
2906 		 */
2907 		spa_history_log_version(spa, "open");
2908 
2909 		/*
2910 		 * Delete any inconsistent datasets.
2911 		 */
2912 		(void) dmu_objset_find(spa_name(spa),
2913 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2914 
2915 		/*
2916 		 * Clean up any stale temporary dataset userrefs.
2917 		 */
2918 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2919 	}
2920 
2921 	return (0);
2922 }
2923 
2924 static int
2925 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2926 {
2927 	int mode = spa->spa_mode;
2928 
2929 	spa_unload(spa);
2930 	spa_deactivate(spa);
2931 
2932 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2933 
2934 	spa_activate(spa, mode);
2935 	spa_async_suspend(spa);
2936 
2937 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2938 }
2939 
2940 /*
2941  * If spa_load() fails this function will try loading prior txg's. If
2942  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2943  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2944  * function will not rewind the pool and will return the same error as
2945  * spa_load().
2946  */
2947 static int
2948 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2949     uint64_t max_request, int rewind_flags)
2950 {
2951 	nvlist_t *loadinfo = NULL;
2952 	nvlist_t *config = NULL;
2953 	int load_error, rewind_error;
2954 	uint64_t safe_rewind_txg;
2955 	uint64_t min_txg;
2956 
2957 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2958 		spa->spa_load_max_txg = spa->spa_load_txg;
2959 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2960 	} else {
2961 		spa->spa_load_max_txg = max_request;
2962 		if (max_request != UINT64_MAX)
2963 			spa->spa_extreme_rewind = B_TRUE;
2964 	}
2965 
2966 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2967 	    mosconfig);
2968 	if (load_error == 0)
2969 		return (0);
2970 
2971 	if (spa->spa_root_vdev != NULL)
2972 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2973 
2974 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2975 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2976 
2977 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2978 		nvlist_free(config);
2979 		return (load_error);
2980 	}
2981 
2982 	if (state == SPA_LOAD_RECOVER) {
2983 		/* Price of rolling back is discarding txgs, including log */
2984 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2985 	} else {
2986 		/*
2987 		 * If we aren't rolling back save the load info from our first
2988 		 * import attempt so that we can restore it after attempting
2989 		 * to rewind.
2990 		 */
2991 		loadinfo = spa->spa_load_info;
2992 		spa->spa_load_info = fnvlist_alloc();
2993 	}
2994 
2995 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2996 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2997 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2998 	    TXG_INITIAL : safe_rewind_txg;
2999 
3000 	/*
3001 	 * Continue as long as we're finding errors, we're still within
3002 	 * the acceptable rewind range, and we're still finding uberblocks
3003 	 */
3004 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3005 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3006 		if (spa->spa_load_max_txg < safe_rewind_txg)
3007 			spa->spa_extreme_rewind = B_TRUE;
3008 		rewind_error = spa_load_retry(spa, state, mosconfig);
3009 	}
3010 
3011 	spa->spa_extreme_rewind = B_FALSE;
3012 	spa->spa_load_max_txg = UINT64_MAX;
3013 
3014 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3015 		spa_config_set(spa, config);
3016 
3017 	if (state == SPA_LOAD_RECOVER) {
3018 		ASSERT3P(loadinfo, ==, NULL);
3019 		return (rewind_error);
3020 	} else {
3021 		/* Store the rewind info as part of the initial load info */
3022 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3023 		    spa->spa_load_info);
3024 
3025 		/* Restore the initial load info */
3026 		fnvlist_free(spa->spa_load_info);
3027 		spa->spa_load_info = loadinfo;
3028 
3029 		return (load_error);
3030 	}
3031 }
3032 
3033 /*
3034  * Pool Open/Import
3035  *
3036  * The import case is identical to an open except that the configuration is sent
3037  * down from userland, instead of grabbed from the configuration cache.  For the
3038  * case of an open, the pool configuration will exist in the
3039  * POOL_STATE_UNINITIALIZED state.
3040  *
3041  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3042  * the same time open the pool, without having to keep around the spa_t in some
3043  * ambiguous state.
3044  */
3045 static int
3046 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3047     nvlist_t **config)
3048 {
3049 	spa_t *spa;
3050 	spa_load_state_t state = SPA_LOAD_OPEN;
3051 	int error;
3052 	int locked = B_FALSE;
3053 
3054 	*spapp = NULL;
3055 
3056 	/*
3057 	 * As disgusting as this is, we need to support recursive calls to this
3058 	 * function because dsl_dir_open() is called during spa_load(), and ends
3059 	 * up calling spa_open() again.  The real fix is to figure out how to
3060 	 * avoid dsl_dir_open() calling this in the first place.
3061 	 */
3062 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3063 		mutex_enter(&spa_namespace_lock);
3064 		locked = B_TRUE;
3065 	}
3066 
3067 	if ((spa = spa_lookup(pool)) == NULL) {
3068 		if (locked)
3069 			mutex_exit(&spa_namespace_lock);
3070 		return (SET_ERROR(ENOENT));
3071 	}
3072 
3073 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3074 		zpool_rewind_policy_t policy;
3075 
3076 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3077 		    &policy);
3078 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3079 			state = SPA_LOAD_RECOVER;
3080 
3081 		spa_activate(spa, spa_mode_global);
3082 
3083 		if (state != SPA_LOAD_RECOVER)
3084 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3085 
3086 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3087 		    policy.zrp_request);
3088 
3089 		if (error == EBADF) {
3090 			/*
3091 			 * If vdev_validate() returns failure (indicated by
3092 			 * EBADF), it indicates that one of the vdevs indicates
3093 			 * that the pool has been exported or destroyed.  If
3094 			 * this is the case, the config cache is out of sync and
3095 			 * we should remove the pool from the namespace.
3096 			 */
3097 			spa_unload(spa);
3098 			spa_deactivate(spa);
3099 			spa_config_sync(spa, B_TRUE, B_TRUE);
3100 			spa_remove(spa);
3101 			if (locked)
3102 				mutex_exit(&spa_namespace_lock);
3103 			return (SET_ERROR(ENOENT));
3104 		}
3105 
3106 		if (error) {
3107 			/*
3108 			 * We can't open the pool, but we still have useful
3109 			 * information: the state of each vdev after the
3110 			 * attempted vdev_open().  Return this to the user.
3111 			 */
3112 			if (config != NULL && spa->spa_config) {
3113 				VERIFY(nvlist_dup(spa->spa_config, config,
3114 				    KM_SLEEP) == 0);
3115 				VERIFY(nvlist_add_nvlist(*config,
3116 				    ZPOOL_CONFIG_LOAD_INFO,
3117 				    spa->spa_load_info) == 0);
3118 			}
3119 			spa_unload(spa);
3120 			spa_deactivate(spa);
3121 			spa->spa_last_open_failed = error;
3122 			if (locked)
3123 				mutex_exit(&spa_namespace_lock);
3124 			*spapp = NULL;
3125 			return (error);
3126 		}
3127 	}
3128 
3129 	spa_open_ref(spa, tag);
3130 
3131 	if (config != NULL)
3132 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3133 
3134 	/*
3135 	 * If we've recovered the pool, pass back any information we
3136 	 * gathered while doing the load.
3137 	 */
3138 	if (state == SPA_LOAD_RECOVER) {
3139 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3140 		    spa->spa_load_info) == 0);
3141 	}
3142 
3143 	if (locked) {
3144 		spa->spa_last_open_failed = 0;
3145 		spa->spa_last_ubsync_txg = 0;
3146 		spa->spa_load_txg = 0;
3147 		mutex_exit(&spa_namespace_lock);
3148 	}
3149 
3150 	*spapp = spa;
3151 
3152 	return (0);
3153 }
3154 
3155 int
3156 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3157     nvlist_t **config)
3158 {
3159 	return (spa_open_common(name, spapp, tag, policy, config));
3160 }
3161 
3162 int
3163 spa_open(const char *name, spa_t **spapp, void *tag)
3164 {
3165 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3166 }
3167 
3168 /*
3169  * Lookup the given spa_t, incrementing the inject count in the process,
3170  * preventing it from being exported or destroyed.
3171  */
3172 spa_t *
3173 spa_inject_addref(char *name)
3174 {
3175 	spa_t *spa;
3176 
3177 	mutex_enter(&spa_namespace_lock);
3178 	if ((spa = spa_lookup(name)) == NULL) {
3179 		mutex_exit(&spa_namespace_lock);
3180 		return (NULL);
3181 	}
3182 	spa->spa_inject_ref++;
3183 	mutex_exit(&spa_namespace_lock);
3184 
3185 	return (spa);
3186 }
3187 
3188 void
3189 spa_inject_delref(spa_t *spa)
3190 {
3191 	mutex_enter(&spa_namespace_lock);
3192 	spa->spa_inject_ref--;
3193 	mutex_exit(&spa_namespace_lock);
3194 }
3195 
3196 /*
3197  * Add spares device information to the nvlist.
3198  */
3199 static void
3200 spa_add_spares(spa_t *spa, nvlist_t *config)
3201 {
3202 	nvlist_t **spares;
3203 	uint_t i, nspares;
3204 	nvlist_t *nvroot;
3205 	uint64_t guid;
3206 	vdev_stat_t *vs;
3207 	uint_t vsc;
3208 	uint64_t pool;
3209 
3210 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3211 
3212 	if (spa->spa_spares.sav_count == 0)
3213 		return;
3214 
3215 	VERIFY(nvlist_lookup_nvlist(config,
3216 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3217 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3218 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3219 	if (nspares != 0) {
3220 		VERIFY(nvlist_add_nvlist_array(nvroot,
3221 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3222 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3223 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3224 
3225 		/*
3226 		 * Go through and find any spares which have since been
3227 		 * repurposed as an active spare.  If this is the case, update
3228 		 * their status appropriately.
3229 		 */
3230 		for (i = 0; i < nspares; i++) {
3231 			VERIFY(nvlist_lookup_uint64(spares[i],
3232 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3233 			if (spa_spare_exists(guid, &pool, NULL) &&
3234 			    pool != 0ULL) {
3235 				VERIFY(nvlist_lookup_uint64_array(
3236 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3237 				    (uint64_t **)&vs, &vsc) == 0);
3238 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3239 				vs->vs_aux = VDEV_AUX_SPARED;
3240 			}
3241 		}
3242 	}
3243 }
3244 
3245 /*
3246  * Add l2cache device information to the nvlist, including vdev stats.
3247  */
3248 static void
3249 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3250 {
3251 	nvlist_t **l2cache;
3252 	uint_t i, j, nl2cache;
3253 	nvlist_t *nvroot;
3254 	uint64_t guid;
3255 	vdev_t *vd;
3256 	vdev_stat_t *vs;
3257 	uint_t vsc;
3258 
3259 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3260 
3261 	if (spa->spa_l2cache.sav_count == 0)
3262 		return;
3263 
3264 	VERIFY(nvlist_lookup_nvlist(config,
3265 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3266 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3267 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3268 	if (nl2cache != 0) {
3269 		VERIFY(nvlist_add_nvlist_array(nvroot,
3270 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3271 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3272 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3273 
3274 		/*
3275 		 * Update level 2 cache device stats.
3276 		 */
3277 
3278 		for (i = 0; i < nl2cache; i++) {
3279 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3280 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3281 
3282 			vd = NULL;
3283 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3284 				if (guid ==
3285 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3286 					vd = spa->spa_l2cache.sav_vdevs[j];
3287 					break;
3288 				}
3289 			}
3290 			ASSERT(vd != NULL);
3291 
3292 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3293 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3294 			    == 0);
3295 			vdev_get_stats(vd, vs);
3296 		}
3297 	}
3298 }
3299 
3300 static void
3301 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3302 {
3303 	nvlist_t *features;
3304 	zap_cursor_t zc;
3305 	zap_attribute_t za;
3306 
3307 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3308 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3309 
3310 	if (spa->spa_feat_for_read_obj != 0) {
3311 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3312 		    spa->spa_feat_for_read_obj);
3313 		    zap_cursor_retrieve(&zc, &za) == 0;
3314 		    zap_cursor_advance(&zc)) {
3315 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3316 			    za.za_num_integers == 1);
3317 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3318 			    za.za_first_integer));
3319 		}
3320 		zap_cursor_fini(&zc);
3321 	}
3322 
3323 	if (spa->spa_feat_for_write_obj != 0) {
3324 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3325 		    spa->spa_feat_for_write_obj);
3326 		    zap_cursor_retrieve(&zc, &za) == 0;
3327 		    zap_cursor_advance(&zc)) {
3328 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3329 			    za.za_num_integers == 1);
3330 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3331 			    za.za_first_integer));
3332 		}
3333 		zap_cursor_fini(&zc);
3334 	}
3335 
3336 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3337 	    features) == 0);
3338 	nvlist_free(features);
3339 }
3340 
3341 int
3342 spa_get_stats(const char *name, nvlist_t **config,
3343     char *altroot, size_t buflen)
3344 {
3345 	int error;
3346 	spa_t *spa;
3347 
3348 	*config = NULL;
3349 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3350 
3351 	if (spa != NULL) {
3352 		/*
3353 		 * This still leaves a window of inconsistency where the spares
3354 		 * or l2cache devices could change and the config would be
3355 		 * self-inconsistent.
3356 		 */
3357 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3358 
3359 		if (*config != NULL) {
3360 			uint64_t loadtimes[2];
3361 
3362 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3363 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3364 			VERIFY(nvlist_add_uint64_array(*config,
3365 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3366 
3367 			VERIFY(nvlist_add_uint64(*config,
3368 			    ZPOOL_CONFIG_ERRCOUNT,
3369 			    spa_get_errlog_size(spa)) == 0);
3370 
3371 			if (spa_suspended(spa))
3372 				VERIFY(nvlist_add_uint64(*config,
3373 				    ZPOOL_CONFIG_SUSPENDED,
3374 				    spa->spa_failmode) == 0);
3375 
3376 			spa_add_spares(spa, *config);
3377 			spa_add_l2cache(spa, *config);
3378 			spa_add_feature_stats(spa, *config);
3379 		}
3380 	}
3381 
3382 	/*
3383 	 * We want to get the alternate root even for faulted pools, so we cheat
3384 	 * and call spa_lookup() directly.
3385 	 */
3386 	if (altroot) {
3387 		if (spa == NULL) {
3388 			mutex_enter(&spa_namespace_lock);
3389 			spa = spa_lookup(name);
3390 			if (spa)
3391 				spa_altroot(spa, altroot, buflen);
3392 			else
3393 				altroot[0] = '\0';
3394 			spa = NULL;
3395 			mutex_exit(&spa_namespace_lock);
3396 		} else {
3397 			spa_altroot(spa, altroot, buflen);
3398 		}
3399 	}
3400 
3401 	if (spa != NULL) {
3402 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3403 		spa_close(spa, FTAG);
3404 	}
3405 
3406 	return (error);
3407 }
3408 
3409 /*
3410  * Validate that the auxiliary device array is well formed.  We must have an
3411  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3412  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3413  * specified, as long as they are well-formed.
3414  */
3415 static int
3416 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3417     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3418     vdev_labeltype_t label)
3419 {
3420 	nvlist_t **dev;
3421 	uint_t i, ndev;
3422 	vdev_t *vd;
3423 	int error;
3424 
3425 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3426 
3427 	/*
3428 	 * It's acceptable to have no devs specified.
3429 	 */
3430 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3431 		return (0);
3432 
3433 	if (ndev == 0)
3434 		return (SET_ERROR(EINVAL));
3435 
3436 	/*
3437 	 * Make sure the pool is formatted with a version that supports this
3438 	 * device type.
3439 	 */
3440 	if (spa_version(spa) < version)
3441 		return (SET_ERROR(ENOTSUP));
3442 
3443 	/*
3444 	 * Set the pending device list so we correctly handle device in-use
3445 	 * checking.
3446 	 */
3447 	sav->sav_pending = dev;
3448 	sav->sav_npending = ndev;
3449 
3450 	for (i = 0; i < ndev; i++) {
3451 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3452 		    mode)) != 0)
3453 			goto out;
3454 
3455 		if (!vd->vdev_ops->vdev_op_leaf) {
3456 			vdev_free(vd);
3457 			error = SET_ERROR(EINVAL);
3458 			goto out;
3459 		}
3460 
3461 		/*
3462 		 * The L2ARC currently only supports disk devices in
3463 		 * kernel context.  For user-level testing, we allow it.
3464 		 */
3465 #ifdef _KERNEL
3466 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3467 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3468 			error = SET_ERROR(ENOTBLK);
3469 			vdev_free(vd);
3470 			goto out;
3471 		}
3472 #endif
3473 		vd->vdev_top = vd;
3474 
3475 		if ((error = vdev_open(vd)) == 0 &&
3476 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3477 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3478 			    vd->vdev_guid) == 0);
3479 		}
3480 
3481 		vdev_free(vd);
3482 
3483 		if (error &&
3484 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3485 			goto out;
3486 		else
3487 			error = 0;
3488 	}
3489 
3490 out:
3491 	sav->sav_pending = NULL;
3492 	sav->sav_npending = 0;
3493 	return (error);
3494 }
3495 
3496 static int
3497 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3498 {
3499 	int error;
3500 
3501 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3502 
3503 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3504 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3505 	    VDEV_LABEL_SPARE)) != 0) {
3506 		return (error);
3507 	}
3508 
3509 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3510 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3511 	    VDEV_LABEL_L2CACHE));
3512 }
3513 
3514 static void
3515 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3516     const char *config)
3517 {
3518 	int i;
3519 
3520 	if (sav->sav_config != NULL) {
3521 		nvlist_t **olddevs;
3522 		uint_t oldndevs;
3523 		nvlist_t **newdevs;
3524 
3525 		/*
3526 		 * Generate new dev list by concatentating with the
3527 		 * current dev list.
3528 		 */
3529 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3530 		    &olddevs, &oldndevs) == 0);
3531 
3532 		newdevs = kmem_alloc(sizeof (void *) *
3533 		    (ndevs + oldndevs), KM_SLEEP);
3534 		for (i = 0; i < oldndevs; i++)
3535 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3536 			    KM_SLEEP) == 0);
3537 		for (i = 0; i < ndevs; i++)
3538 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3539 			    KM_SLEEP) == 0);
3540 
3541 		VERIFY(nvlist_remove(sav->sav_config, config,
3542 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3543 
3544 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3545 		    config, newdevs, ndevs + oldndevs) == 0);
3546 		for (i = 0; i < oldndevs + ndevs; i++)
3547 			nvlist_free(newdevs[i]);
3548 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3549 	} else {
3550 		/*
3551 		 * Generate a new dev list.
3552 		 */
3553 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3554 		    KM_SLEEP) == 0);
3555 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3556 		    devs, ndevs) == 0);
3557 	}
3558 }
3559 
3560 /*
3561  * Stop and drop level 2 ARC devices
3562  */
3563 void
3564 spa_l2cache_drop(spa_t *spa)
3565 {
3566 	vdev_t *vd;
3567 	int i;
3568 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3569 
3570 	for (i = 0; i < sav->sav_count; i++) {
3571 		uint64_t pool;
3572 
3573 		vd = sav->sav_vdevs[i];
3574 		ASSERT(vd != NULL);
3575 
3576 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3577 		    pool != 0ULL && l2arc_vdev_present(vd))
3578 			l2arc_remove_vdev(vd);
3579 	}
3580 }
3581 
3582 /*
3583  * Pool Creation
3584  */
3585 int
3586 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3587     nvlist_t *zplprops)
3588 {
3589 	spa_t *spa;
3590 	char *altroot = NULL;
3591 	vdev_t *rvd;
3592 	dsl_pool_t *dp;
3593 	dmu_tx_t *tx;
3594 	int error = 0;
3595 	uint64_t txg = TXG_INITIAL;
3596 	nvlist_t **spares, **l2cache;
3597 	uint_t nspares, nl2cache;
3598 	uint64_t version, obj;
3599 	boolean_t has_features;
3600 
3601 	/*
3602 	 * If this pool already exists, return failure.
3603 	 */
3604 	mutex_enter(&spa_namespace_lock);
3605 	if (spa_lookup(pool) != NULL) {
3606 		mutex_exit(&spa_namespace_lock);
3607 		return (SET_ERROR(EEXIST));
3608 	}
3609 
3610 	/*
3611 	 * Allocate a new spa_t structure.
3612 	 */
3613 	(void) nvlist_lookup_string(props,
3614 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3615 	spa = spa_add(pool, NULL, altroot);
3616 	spa_activate(spa, spa_mode_global);
3617 
3618 	if (props && (error = spa_prop_validate(spa, props))) {
3619 		spa_deactivate(spa);
3620 		spa_remove(spa);
3621 		mutex_exit(&spa_namespace_lock);
3622 		return (error);
3623 	}
3624 
3625 	has_features = B_FALSE;
3626 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3627 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3628 		if (zpool_prop_feature(nvpair_name(elem)))
3629 			has_features = B_TRUE;
3630 	}
3631 
3632 	if (has_features || nvlist_lookup_uint64(props,
3633 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3634 		version = SPA_VERSION;
3635 	}
3636 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3637 
3638 	spa->spa_first_txg = txg;
3639 	spa->spa_uberblock.ub_txg = txg - 1;
3640 	spa->spa_uberblock.ub_version = version;
3641 	spa->spa_ubsync = spa->spa_uberblock;
3642 
3643 	/*
3644 	 * Create "The Godfather" zio to hold all async IOs
3645 	 */
3646 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3647 	    KM_SLEEP);
3648 	for (int i = 0; i < max_ncpus; i++) {
3649 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3650 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3651 		    ZIO_FLAG_GODFATHER);
3652 	}
3653 
3654 	/*
3655 	 * Create the root vdev.
3656 	 */
3657 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3658 
3659 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3660 
3661 	ASSERT(error != 0 || rvd != NULL);
3662 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3663 
3664 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3665 		error = SET_ERROR(EINVAL);
3666 
3667 	if (error == 0 &&
3668 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3669 	    (error = spa_validate_aux(spa, nvroot, txg,
3670 	    VDEV_ALLOC_ADD)) == 0) {
3671 		for (int c = 0; c < rvd->vdev_children; c++) {
3672 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3673 			vdev_expand(rvd->vdev_child[c], txg);
3674 		}
3675 	}
3676 
3677 	spa_config_exit(spa, SCL_ALL, FTAG);
3678 
3679 	if (error != 0) {
3680 		spa_unload(spa);
3681 		spa_deactivate(spa);
3682 		spa_remove(spa);
3683 		mutex_exit(&spa_namespace_lock);
3684 		return (error);
3685 	}
3686 
3687 	/*
3688 	 * Get the list of spares, if specified.
3689 	 */
3690 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3691 	    &spares, &nspares) == 0) {
3692 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3693 		    KM_SLEEP) == 0);
3694 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3695 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3696 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697 		spa_load_spares(spa);
3698 		spa_config_exit(spa, SCL_ALL, FTAG);
3699 		spa->spa_spares.sav_sync = B_TRUE;
3700 	}
3701 
3702 	/*
3703 	 * Get the list of level 2 cache devices, if specified.
3704 	 */
3705 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3706 	    &l2cache, &nl2cache) == 0) {
3707 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3708 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3709 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3710 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3711 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3712 		spa_load_l2cache(spa);
3713 		spa_config_exit(spa, SCL_ALL, FTAG);
3714 		spa->spa_l2cache.sav_sync = B_TRUE;
3715 	}
3716 
3717 	spa->spa_is_initializing = B_TRUE;
3718 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3719 	spa->spa_meta_objset = dp->dp_meta_objset;
3720 	spa->spa_is_initializing = B_FALSE;
3721 
3722 	/*
3723 	 * Create DDTs (dedup tables).
3724 	 */
3725 	ddt_create(spa);
3726 
3727 	spa_update_dspace(spa);
3728 
3729 	tx = dmu_tx_create_assigned(dp, txg);
3730 
3731 	/*
3732 	 * Create the pool config object.
3733 	 */
3734 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3735 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3736 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3737 
3738 	if (zap_add(spa->spa_meta_objset,
3739 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3740 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3741 		cmn_err(CE_PANIC, "failed to add pool config");
3742 	}
3743 
3744 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3745 		spa_feature_create_zap_objects(spa, tx);
3746 
3747 	if (zap_add(spa->spa_meta_objset,
3748 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3749 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3750 		cmn_err(CE_PANIC, "failed to add pool version");
3751 	}
3752 
3753 	/* Newly created pools with the right version are always deflated. */
3754 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3755 		spa->spa_deflate = TRUE;
3756 		if (zap_add(spa->spa_meta_objset,
3757 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3758 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3759 			cmn_err(CE_PANIC, "failed to add deflate");
3760 		}
3761 	}
3762 
3763 	/*
3764 	 * Create the deferred-free bpobj.  Turn off compression
3765 	 * because sync-to-convergence takes longer if the blocksize
3766 	 * keeps changing.
3767 	 */
3768 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3769 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3770 	    ZIO_COMPRESS_OFF, tx);
3771 	if (zap_add(spa->spa_meta_objset,
3772 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3773 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3774 		cmn_err(CE_PANIC, "failed to add bpobj");
3775 	}
3776 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3777 	    spa->spa_meta_objset, obj));
3778 
3779 	/*
3780 	 * Create the pool's history object.
3781 	 */
3782 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3783 		spa_history_create_obj(spa, tx);
3784 
3785 	/*
3786 	 * Generate some random noise for salted checksums to operate on.
3787 	 */
3788 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3789 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3790 
3791 	/*
3792 	 * Set pool properties.
3793 	 */
3794 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3795 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3796 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3797 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3798 
3799 	if (props != NULL) {
3800 		spa_configfile_set(spa, props, B_FALSE);
3801 		spa_sync_props(props, tx);
3802 	}
3803 
3804 	dmu_tx_commit(tx);
3805 
3806 	spa->spa_sync_on = B_TRUE;
3807 	txg_sync_start(spa->spa_dsl_pool);
3808 
3809 	/*
3810 	 * We explicitly wait for the first transaction to complete so that our
3811 	 * bean counters are appropriately updated.
3812 	 */
3813 	txg_wait_synced(spa->spa_dsl_pool, txg);
3814 
3815 	spa_config_sync(spa, B_FALSE, B_TRUE);
3816 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3817 
3818 	spa_history_log_version(spa, "create");
3819 
3820 	/*
3821 	 * Don't count references from objsets that are already closed
3822 	 * and are making their way through the eviction process.
3823 	 */
3824 	spa_evicting_os_wait(spa);
3825 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3826 
3827 	mutex_exit(&spa_namespace_lock);
3828 
3829 	return (0);
3830 }
3831 
3832 #ifdef _KERNEL
3833 /*
3834  * Get the root pool information from the root disk, then import the root pool
3835  * during the system boot up time.
3836  */
3837 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3838 
3839 static nvlist_t *
3840 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3841 {
3842 	nvlist_t *config;
3843 	nvlist_t *nvtop, *nvroot;
3844 	uint64_t pgid;
3845 
3846 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3847 		return (NULL);
3848 
3849 	/*
3850 	 * Add this top-level vdev to the child array.
3851 	 */
3852 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3853 	    &nvtop) == 0);
3854 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3855 	    &pgid) == 0);
3856 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3857 
3858 	/*
3859 	 * Put this pool's top-level vdevs into a root vdev.
3860 	 */
3861 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3862 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3863 	    VDEV_TYPE_ROOT) == 0);
3864 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3865 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3866 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3867 	    &nvtop, 1) == 0);
3868 
3869 	/*
3870 	 * Replace the existing vdev_tree with the new root vdev in
3871 	 * this pool's configuration (remove the old, add the new).
3872 	 */
3873 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3874 	nvlist_free(nvroot);
3875 	return (config);
3876 }
3877 
3878 /*
3879  * Walk the vdev tree and see if we can find a device with "better"
3880  * configuration. A configuration is "better" if the label on that
3881  * device has a more recent txg.
3882  */
3883 static void
3884 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3885 {
3886 	for (int c = 0; c < vd->vdev_children; c++)
3887 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3888 
3889 	if (vd->vdev_ops->vdev_op_leaf) {
3890 		nvlist_t *label;
3891 		uint64_t label_txg;
3892 
3893 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3894 		    &label) != 0)
3895 			return;
3896 
3897 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3898 		    &label_txg) == 0);
3899 
3900 		/*
3901 		 * Do we have a better boot device?
3902 		 */
3903 		if (label_txg > *txg) {
3904 			*txg = label_txg;
3905 			*avd = vd;
3906 		}
3907 		nvlist_free(label);
3908 	}
3909 }
3910 
3911 /*
3912  * Import a root pool.
3913  *
3914  * For x86. devpath_list will consist of devid and/or physpath name of
3915  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3916  * The GRUB "findroot" command will return the vdev we should boot.
3917  *
3918  * For Sparc, devpath_list consists the physpath name of the booting device
3919  * no matter the rootpool is a single device pool or a mirrored pool.
3920  * e.g.
3921  *	"/pci@1f,0/ide@d/disk@0,0:a"
3922  */
3923 int
3924 spa_import_rootpool(char *devpath, char *devid)
3925 {
3926 	spa_t *spa;
3927 	vdev_t *rvd, *bvd, *avd = NULL;
3928 	nvlist_t *config, *nvtop;
3929 	uint64_t guid, txg;
3930 	char *pname;
3931 	int error;
3932 
3933 	/*
3934 	 * Read the label from the boot device and generate a configuration.
3935 	 */
3936 	config = spa_generate_rootconf(devpath, devid, &guid);
3937 #if defined(_OBP) && defined(_KERNEL)
3938 	if (config == NULL) {
3939 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3940 			/* iscsi boot */
3941 			get_iscsi_bootpath_phy(devpath);
3942 			config = spa_generate_rootconf(devpath, devid, &guid);
3943 		}
3944 	}
3945 #endif
3946 	if (config == NULL) {
3947 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3948 		    devpath);
3949 		return (SET_ERROR(EIO));
3950 	}
3951 
3952 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3953 	    &pname) == 0);
3954 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3955 
3956 	mutex_enter(&spa_namespace_lock);
3957 	if ((spa = spa_lookup(pname)) != NULL) {
3958 		/*
3959 		 * Remove the existing root pool from the namespace so that we
3960 		 * can replace it with the correct config we just read in.
3961 		 */
3962 		spa_remove(spa);
3963 	}
3964 
3965 	spa = spa_add(pname, config, NULL);
3966 	spa->spa_is_root = B_TRUE;
3967 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3968 
3969 	/*
3970 	 * Build up a vdev tree based on the boot device's label config.
3971 	 */
3972 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3973 	    &nvtop) == 0);
3974 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3975 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3976 	    VDEV_ALLOC_ROOTPOOL);
3977 	spa_config_exit(spa, SCL_ALL, FTAG);
3978 	if (error) {
3979 		mutex_exit(&spa_namespace_lock);
3980 		nvlist_free(config);
3981 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3982 		    pname);
3983 		return (error);
3984 	}
3985 
3986 	/*
3987 	 * Get the boot vdev.
3988 	 */
3989 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3990 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3991 		    (u_longlong_t)guid);
3992 		error = SET_ERROR(ENOENT);
3993 		goto out;
3994 	}
3995 
3996 	/*
3997 	 * Determine if there is a better boot device.
3998 	 */
3999 	avd = bvd;
4000 	spa_alt_rootvdev(rvd, &avd, &txg);
4001 	if (avd != bvd) {
4002 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4003 		    "try booting from '%s'", avd->vdev_path);
4004 		error = SET_ERROR(EINVAL);
4005 		goto out;
4006 	}
4007 
4008 	/*
4009 	 * If the boot device is part of a spare vdev then ensure that
4010 	 * we're booting off the active spare.
4011 	 */
4012 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4013 	    !bvd->vdev_isspare) {
4014 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4015 		    "try booting from '%s'",
4016 		    bvd->vdev_parent->
4017 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4018 		error = SET_ERROR(EINVAL);
4019 		goto out;
4020 	}
4021 
4022 	error = 0;
4023 out:
4024 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4025 	vdev_free(rvd);
4026 	spa_config_exit(spa, SCL_ALL, FTAG);
4027 	mutex_exit(&spa_namespace_lock);
4028 
4029 	nvlist_free(config);
4030 	return (error);
4031 }
4032 
4033 #endif
4034 
4035 /*
4036  * Import a non-root pool into the system.
4037  */
4038 int
4039 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4040 {
4041 	spa_t *spa;
4042 	char *altroot = NULL;
4043 	spa_load_state_t state = SPA_LOAD_IMPORT;
4044 	zpool_rewind_policy_t policy;
4045 	uint64_t mode = spa_mode_global;
4046 	uint64_t readonly = B_FALSE;
4047 	int error;
4048 	nvlist_t *nvroot;
4049 	nvlist_t **spares, **l2cache;
4050 	uint_t nspares, nl2cache;
4051 
4052 	/*
4053 	 * If a pool with this name exists, return failure.
4054 	 */
4055 	mutex_enter(&spa_namespace_lock);
4056 	if (spa_lookup(pool) != NULL) {
4057 		mutex_exit(&spa_namespace_lock);
4058 		return (SET_ERROR(EEXIST));
4059 	}
4060 
4061 	/*
4062 	 * Create and initialize the spa structure.
4063 	 */
4064 	(void) nvlist_lookup_string(props,
4065 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4066 	(void) nvlist_lookup_uint64(props,
4067 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4068 	if (readonly)
4069 		mode = FREAD;
4070 	spa = spa_add(pool, config, altroot);
4071 	spa->spa_import_flags = flags;
4072 
4073 	/*
4074 	 * Verbatim import - Take a pool and insert it into the namespace
4075 	 * as if it had been loaded at boot.
4076 	 */
4077 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4078 		if (props != NULL)
4079 			spa_configfile_set(spa, props, B_FALSE);
4080 
4081 		spa_config_sync(spa, B_FALSE, B_TRUE);
4082 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4083 
4084 		mutex_exit(&spa_namespace_lock);
4085 		return (0);
4086 	}
4087 
4088 	spa_activate(spa, mode);
4089 
4090 	/*
4091 	 * Don't start async tasks until we know everything is healthy.
4092 	 */
4093 	spa_async_suspend(spa);
4094 
4095 	zpool_get_rewind_policy(config, &policy);
4096 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4097 		state = SPA_LOAD_RECOVER;
4098 
4099 	/*
4100 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4101 	 * because the user-supplied config is actually the one to trust when
4102 	 * doing an import.
4103 	 */
4104 	if (state != SPA_LOAD_RECOVER)
4105 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4106 
4107 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4108 	    policy.zrp_request);
4109 
4110 	/*
4111 	 * Propagate anything learned while loading the pool and pass it
4112 	 * back to caller (i.e. rewind info, missing devices, etc).
4113 	 */
4114 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4115 	    spa->spa_load_info) == 0);
4116 
4117 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4118 	/*
4119 	 * Toss any existing sparelist, as it doesn't have any validity
4120 	 * anymore, and conflicts with spa_has_spare().
4121 	 */
4122 	if (spa->spa_spares.sav_config) {
4123 		nvlist_free(spa->spa_spares.sav_config);
4124 		spa->spa_spares.sav_config = NULL;
4125 		spa_load_spares(spa);
4126 	}
4127 	if (spa->spa_l2cache.sav_config) {
4128 		nvlist_free(spa->spa_l2cache.sav_config);
4129 		spa->spa_l2cache.sav_config = NULL;
4130 		spa_load_l2cache(spa);
4131 	}
4132 
4133 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4134 	    &nvroot) == 0);
4135 	if (error == 0)
4136 		error = spa_validate_aux(spa, nvroot, -1ULL,
4137 		    VDEV_ALLOC_SPARE);
4138 	if (error == 0)
4139 		error = spa_validate_aux(spa, nvroot, -1ULL,
4140 		    VDEV_ALLOC_L2CACHE);
4141 	spa_config_exit(spa, SCL_ALL, FTAG);
4142 
4143 	if (props != NULL)
4144 		spa_configfile_set(spa, props, B_FALSE);
4145 
4146 	if (error != 0 || (props && spa_writeable(spa) &&
4147 	    (error = spa_prop_set(spa, props)))) {
4148 		spa_unload(spa);
4149 		spa_deactivate(spa);
4150 		spa_remove(spa);
4151 		mutex_exit(&spa_namespace_lock);
4152 		return (error);
4153 	}
4154 
4155 	spa_async_resume(spa);
4156 
4157 	/*
4158 	 * Override any spares and level 2 cache devices as specified by
4159 	 * the user, as these may have correct device names/devids, etc.
4160 	 */
4161 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4162 	    &spares, &nspares) == 0) {
4163 		if (spa->spa_spares.sav_config)
4164 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4165 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4166 		else
4167 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4168 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4169 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4170 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4171 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4172 		spa_load_spares(spa);
4173 		spa_config_exit(spa, SCL_ALL, FTAG);
4174 		spa->spa_spares.sav_sync = B_TRUE;
4175 	}
4176 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4177 	    &l2cache, &nl2cache) == 0) {
4178 		if (spa->spa_l2cache.sav_config)
4179 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4180 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4181 		else
4182 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4183 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4184 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4185 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4186 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4187 		spa_load_l2cache(spa);
4188 		spa_config_exit(spa, SCL_ALL, FTAG);
4189 		spa->spa_l2cache.sav_sync = B_TRUE;
4190 	}
4191 
4192 	/*
4193 	 * Check for any removed devices.
4194 	 */
4195 	if (spa->spa_autoreplace) {
4196 		spa_aux_check_removed(&spa->spa_spares);
4197 		spa_aux_check_removed(&spa->spa_l2cache);
4198 	}
4199 
4200 	if (spa_writeable(spa)) {
4201 		/*
4202 		 * Update the config cache to include the newly-imported pool.
4203 		 */
4204 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4205 	}
4206 
4207 	/*
4208 	 * It's possible that the pool was expanded while it was exported.
4209 	 * We kick off an async task to handle this for us.
4210 	 */
4211 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4212 
4213 	spa_history_log_version(spa, "import");
4214 
4215 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4216 
4217 	mutex_exit(&spa_namespace_lock);
4218 
4219 	return (0);
4220 }
4221 
4222 nvlist_t *
4223 spa_tryimport(nvlist_t *tryconfig)
4224 {
4225 	nvlist_t *config = NULL;
4226 	char *poolname;
4227 	spa_t *spa;
4228 	uint64_t state;
4229 	int error;
4230 
4231 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4232 		return (NULL);
4233 
4234 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4235 		return (NULL);
4236 
4237 	/*
4238 	 * Create and initialize the spa structure.
4239 	 */
4240 	mutex_enter(&spa_namespace_lock);
4241 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4242 	spa_activate(spa, FREAD);
4243 
4244 	/*
4245 	 * Pass off the heavy lifting to spa_load().
4246 	 * Pass TRUE for mosconfig because the user-supplied config
4247 	 * is actually the one to trust when doing an import.
4248 	 */
4249 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4250 
4251 	/*
4252 	 * If 'tryconfig' was at least parsable, return the current config.
4253 	 */
4254 	if (spa->spa_root_vdev != NULL) {
4255 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4256 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4257 		    poolname) == 0);
4258 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4259 		    state) == 0);
4260 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4261 		    spa->spa_uberblock.ub_timestamp) == 0);
4262 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4263 		    spa->spa_load_info) == 0);
4264 
4265 		/*
4266 		 * If the bootfs property exists on this pool then we
4267 		 * copy it out so that external consumers can tell which
4268 		 * pools are bootable.
4269 		 */
4270 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4271 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4272 
4273 			/*
4274 			 * We have to play games with the name since the
4275 			 * pool was opened as TRYIMPORT_NAME.
4276 			 */
4277 			if (dsl_dsobj_to_dsname(spa_name(spa),
4278 			    spa->spa_bootfs, tmpname) == 0) {
4279 				char *cp;
4280 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4281 
4282 				cp = strchr(tmpname, '/');
4283 				if (cp == NULL) {
4284 					(void) strlcpy(dsname, tmpname,
4285 					    MAXPATHLEN);
4286 				} else {
4287 					(void) snprintf(dsname, MAXPATHLEN,
4288 					    "%s/%s", poolname, ++cp);
4289 				}
4290 				VERIFY(nvlist_add_string(config,
4291 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4292 				kmem_free(dsname, MAXPATHLEN);
4293 			}
4294 			kmem_free(tmpname, MAXPATHLEN);
4295 		}
4296 
4297 		/*
4298 		 * Add the list of hot spares and level 2 cache devices.
4299 		 */
4300 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4301 		spa_add_spares(spa, config);
4302 		spa_add_l2cache(spa, config);
4303 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4304 	}
4305 
4306 	spa_unload(spa);
4307 	spa_deactivate(spa);
4308 	spa_remove(spa);
4309 	mutex_exit(&spa_namespace_lock);
4310 
4311 	return (config);
4312 }
4313 
4314 /*
4315  * Pool export/destroy
4316  *
4317  * The act of destroying or exporting a pool is very simple.  We make sure there
4318  * is no more pending I/O and any references to the pool are gone.  Then, we
4319  * update the pool state and sync all the labels to disk, removing the
4320  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4321  * we don't sync the labels or remove the configuration cache.
4322  */
4323 static int
4324 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4325     boolean_t force, boolean_t hardforce)
4326 {
4327 	spa_t *spa;
4328 
4329 	if (oldconfig)
4330 		*oldconfig = NULL;
4331 
4332 	if (!(spa_mode_global & FWRITE))
4333 		return (SET_ERROR(EROFS));
4334 
4335 	mutex_enter(&spa_namespace_lock);
4336 	if ((spa = spa_lookup(pool)) == NULL) {
4337 		mutex_exit(&spa_namespace_lock);
4338 		return (SET_ERROR(ENOENT));
4339 	}
4340 
4341 	/*
4342 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4343 	 * reacquire the namespace lock, and see if we can export.
4344 	 */
4345 	spa_open_ref(spa, FTAG);
4346 	mutex_exit(&spa_namespace_lock);
4347 	spa_async_suspend(spa);
4348 	mutex_enter(&spa_namespace_lock);
4349 	spa_close(spa, FTAG);
4350 
4351 	/*
4352 	 * The pool will be in core if it's openable,
4353 	 * in which case we can modify its state.
4354 	 */
4355 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4356 		/*
4357 		 * Objsets may be open only because they're dirty, so we
4358 		 * have to force it to sync before checking spa_refcnt.
4359 		 */
4360 		txg_wait_synced(spa->spa_dsl_pool, 0);
4361 		spa_evicting_os_wait(spa);
4362 
4363 		/*
4364 		 * A pool cannot be exported or destroyed if there are active
4365 		 * references.  If we are resetting a pool, allow references by
4366 		 * fault injection handlers.
4367 		 */
4368 		if (!spa_refcount_zero(spa) ||
4369 		    (spa->spa_inject_ref != 0 &&
4370 		    new_state != POOL_STATE_UNINITIALIZED)) {
4371 			spa_async_resume(spa);
4372 			mutex_exit(&spa_namespace_lock);
4373 			return (SET_ERROR(EBUSY));
4374 		}
4375 
4376 		/*
4377 		 * A pool cannot be exported if it has an active shared spare.
4378 		 * This is to prevent other pools stealing the active spare
4379 		 * from an exported pool. At user's own will, such pool can
4380 		 * be forcedly exported.
4381 		 */
4382 		if (!force && new_state == POOL_STATE_EXPORTED &&
4383 		    spa_has_active_shared_spare(spa)) {
4384 			spa_async_resume(spa);
4385 			mutex_exit(&spa_namespace_lock);
4386 			return (SET_ERROR(EXDEV));
4387 		}
4388 
4389 		/*
4390 		 * We want this to be reflected on every label,
4391 		 * so mark them all dirty.  spa_unload() will do the
4392 		 * final sync that pushes these changes out.
4393 		 */
4394 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4395 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4396 			spa->spa_state = new_state;
4397 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4398 			    TXG_DEFER_SIZE + 1;
4399 			vdev_config_dirty(spa->spa_root_vdev);
4400 			spa_config_exit(spa, SCL_ALL, FTAG);
4401 		}
4402 	}
4403 
4404 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4405 
4406 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4407 		spa_unload(spa);
4408 		spa_deactivate(spa);
4409 	}
4410 
4411 	if (oldconfig && spa->spa_config)
4412 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4413 
4414 	if (new_state != POOL_STATE_UNINITIALIZED) {
4415 		if (!hardforce)
4416 			spa_config_sync(spa, B_TRUE, B_TRUE);
4417 		spa_remove(spa);
4418 	}
4419 	mutex_exit(&spa_namespace_lock);
4420 
4421 	return (0);
4422 }
4423 
4424 /*
4425  * Destroy a storage pool.
4426  */
4427 int
4428 spa_destroy(char *pool)
4429 {
4430 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4431 	    B_FALSE, B_FALSE));
4432 }
4433 
4434 /*
4435  * Export a storage pool.
4436  */
4437 int
4438 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4439     boolean_t hardforce)
4440 {
4441 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4442 	    force, hardforce));
4443 }
4444 
4445 /*
4446  * Similar to spa_export(), this unloads the spa_t without actually removing it
4447  * from the namespace in any way.
4448  */
4449 int
4450 spa_reset(char *pool)
4451 {
4452 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4453 	    B_FALSE, B_FALSE));
4454 }
4455 
4456 /*
4457  * ==========================================================================
4458  * Device manipulation
4459  * ==========================================================================
4460  */
4461 
4462 /*
4463  * Add a device to a storage pool.
4464  */
4465 int
4466 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4467 {
4468 	uint64_t txg, id;
4469 	int error;
4470 	vdev_t *rvd = spa->spa_root_vdev;
4471 	vdev_t *vd, *tvd;
4472 	nvlist_t **spares, **l2cache;
4473 	uint_t nspares, nl2cache;
4474 
4475 	ASSERT(spa_writeable(spa));
4476 
4477 	txg = spa_vdev_enter(spa);
4478 
4479 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4480 	    VDEV_ALLOC_ADD)) != 0)
4481 		return (spa_vdev_exit(spa, NULL, txg, error));
4482 
4483 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4484 
4485 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4486 	    &nspares) != 0)
4487 		nspares = 0;
4488 
4489 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4490 	    &nl2cache) != 0)
4491 		nl2cache = 0;
4492 
4493 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4494 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4495 
4496 	if (vd->vdev_children != 0 &&
4497 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4498 		return (spa_vdev_exit(spa, vd, txg, error));
4499 
4500 	/*
4501 	 * We must validate the spares and l2cache devices after checking the
4502 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4503 	 */
4504 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4505 		return (spa_vdev_exit(spa, vd, txg, error));
4506 
4507 	/*
4508 	 * Transfer each new top-level vdev from vd to rvd.
4509 	 */
4510 	for (int c = 0; c < vd->vdev_children; c++) {
4511 
4512 		/*
4513 		 * Set the vdev id to the first hole, if one exists.
4514 		 */
4515 		for (id = 0; id < rvd->vdev_children; id++) {
4516 			if (rvd->vdev_child[id]->vdev_ishole) {
4517 				vdev_free(rvd->vdev_child[id]);
4518 				break;
4519 			}
4520 		}
4521 		tvd = vd->vdev_child[c];
4522 		vdev_remove_child(vd, tvd);
4523 		tvd->vdev_id = id;
4524 		vdev_add_child(rvd, tvd);
4525 		vdev_config_dirty(tvd);
4526 	}
4527 
4528 	if (nspares != 0) {
4529 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4530 		    ZPOOL_CONFIG_SPARES);
4531 		spa_load_spares(spa);
4532 		spa->spa_spares.sav_sync = B_TRUE;
4533 	}
4534 
4535 	if (nl2cache != 0) {
4536 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4537 		    ZPOOL_CONFIG_L2CACHE);
4538 		spa_load_l2cache(spa);
4539 		spa->spa_l2cache.sav_sync = B_TRUE;
4540 	}
4541 
4542 	/*
4543 	 * We have to be careful when adding new vdevs to an existing pool.
4544 	 * If other threads start allocating from these vdevs before we
4545 	 * sync the config cache, and we lose power, then upon reboot we may
4546 	 * fail to open the pool because there are DVAs that the config cache
4547 	 * can't translate.  Therefore, we first add the vdevs without
4548 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4549 	 * and then let spa_config_update() initialize the new metaslabs.
4550 	 *
4551 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4552 	 * if we lose power at any point in this sequence, the remaining
4553 	 * steps will be completed the next time we load the pool.
4554 	 */
4555 	(void) spa_vdev_exit(spa, vd, txg, 0);
4556 
4557 	mutex_enter(&spa_namespace_lock);
4558 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4559 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4560 	mutex_exit(&spa_namespace_lock);
4561 
4562 	return (0);
4563 }
4564 
4565 /*
4566  * Attach a device to a mirror.  The arguments are the path to any device
4567  * in the mirror, and the nvroot for the new device.  If the path specifies
4568  * a device that is not mirrored, we automatically insert the mirror vdev.
4569  *
4570  * If 'replacing' is specified, the new device is intended to replace the
4571  * existing device; in this case the two devices are made into their own
4572  * mirror using the 'replacing' vdev, which is functionally identical to
4573  * the mirror vdev (it actually reuses all the same ops) but has a few
4574  * extra rules: you can't attach to it after it's been created, and upon
4575  * completion of resilvering, the first disk (the one being replaced)
4576  * is automatically detached.
4577  */
4578 int
4579 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4580 {
4581 	uint64_t txg, dtl_max_txg;
4582 	vdev_t *rvd = spa->spa_root_vdev;
4583 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4584 	vdev_ops_t *pvops;
4585 	char *oldvdpath, *newvdpath;
4586 	int newvd_isspare;
4587 	int error;
4588 
4589 	ASSERT(spa_writeable(spa));
4590 
4591 	txg = spa_vdev_enter(spa);
4592 
4593 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4594 
4595 	if (oldvd == NULL)
4596 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4597 
4598 	if (!oldvd->vdev_ops->vdev_op_leaf)
4599 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4600 
4601 	pvd = oldvd->vdev_parent;
4602 
4603 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4604 	    VDEV_ALLOC_ATTACH)) != 0)
4605 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4606 
4607 	if (newrootvd->vdev_children != 1)
4608 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4609 
4610 	newvd = newrootvd->vdev_child[0];
4611 
4612 	if (!newvd->vdev_ops->vdev_op_leaf)
4613 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4614 
4615 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4616 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4617 
4618 	/*
4619 	 * Spares can't replace logs
4620 	 */
4621 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4622 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4623 
4624 	if (!replacing) {
4625 		/*
4626 		 * For attach, the only allowable parent is a mirror or the root
4627 		 * vdev.
4628 		 */
4629 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4630 		    pvd->vdev_ops != &vdev_root_ops)
4631 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4632 
4633 		pvops = &vdev_mirror_ops;
4634 	} else {
4635 		/*
4636 		 * Active hot spares can only be replaced by inactive hot
4637 		 * spares.
4638 		 */
4639 		if (pvd->vdev_ops == &vdev_spare_ops &&
4640 		    oldvd->vdev_isspare &&
4641 		    !spa_has_spare(spa, newvd->vdev_guid))
4642 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4643 
4644 		/*
4645 		 * If the source is a hot spare, and the parent isn't already a
4646 		 * spare, then we want to create a new hot spare.  Otherwise, we
4647 		 * want to create a replacing vdev.  The user is not allowed to
4648 		 * attach to a spared vdev child unless the 'isspare' state is
4649 		 * the same (spare replaces spare, non-spare replaces
4650 		 * non-spare).
4651 		 */
4652 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4653 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4654 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4655 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4656 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4657 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4658 		}
4659 
4660 		if (newvd->vdev_isspare)
4661 			pvops = &vdev_spare_ops;
4662 		else
4663 			pvops = &vdev_replacing_ops;
4664 	}
4665 
4666 	/*
4667 	 * Make sure the new device is big enough.
4668 	 */
4669 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4670 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4671 
4672 	/*
4673 	 * The new device cannot have a higher alignment requirement
4674 	 * than the top-level vdev.
4675 	 */
4676 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4677 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4678 
4679 	/*
4680 	 * If this is an in-place replacement, update oldvd's path and devid
4681 	 * to make it distinguishable from newvd, and unopenable from now on.
4682 	 */
4683 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4684 		spa_strfree(oldvd->vdev_path);
4685 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4686 		    KM_SLEEP);
4687 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4688 		    newvd->vdev_path, "old");
4689 		if (oldvd->vdev_devid != NULL) {
4690 			spa_strfree(oldvd->vdev_devid);
4691 			oldvd->vdev_devid = NULL;
4692 		}
4693 	}
4694 
4695 	/* mark the device being resilvered */
4696 	newvd->vdev_resilver_txg = txg;
4697 
4698 	/*
4699 	 * If the parent is not a mirror, or if we're replacing, insert the new
4700 	 * mirror/replacing/spare vdev above oldvd.
4701 	 */
4702 	if (pvd->vdev_ops != pvops)
4703 		pvd = vdev_add_parent(oldvd, pvops);
4704 
4705 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4706 	ASSERT(pvd->vdev_ops == pvops);
4707 	ASSERT(oldvd->vdev_parent == pvd);
4708 
4709 	/*
4710 	 * Extract the new device from its root and add it to pvd.
4711 	 */
4712 	vdev_remove_child(newrootvd, newvd);
4713 	newvd->vdev_id = pvd->vdev_children;
4714 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4715 	vdev_add_child(pvd, newvd);
4716 
4717 	tvd = newvd->vdev_top;
4718 	ASSERT(pvd->vdev_top == tvd);
4719 	ASSERT(tvd->vdev_parent == rvd);
4720 
4721 	vdev_config_dirty(tvd);
4722 
4723 	/*
4724 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4725 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4726 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4727 	 */
4728 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4729 
4730 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4731 	    dtl_max_txg - TXG_INITIAL);
4732 
4733 	if (newvd->vdev_isspare) {
4734 		spa_spare_activate(newvd);
4735 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4736 	}
4737 
4738 	oldvdpath = spa_strdup(oldvd->vdev_path);
4739 	newvdpath = spa_strdup(newvd->vdev_path);
4740 	newvd_isspare = newvd->vdev_isspare;
4741 
4742 	/*
4743 	 * Mark newvd's DTL dirty in this txg.
4744 	 */
4745 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4746 
4747 	/*
4748 	 * Schedule the resilver to restart in the future. We do this to
4749 	 * ensure that dmu_sync-ed blocks have been stitched into the
4750 	 * respective datasets.
4751 	 */
4752 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4753 
4754 	if (spa->spa_bootfs)
4755 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4756 
4757 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4758 
4759 	/*
4760 	 * Commit the config
4761 	 */
4762 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4763 
4764 	spa_history_log_internal(spa, "vdev attach", NULL,
4765 	    "%s vdev=%s %s vdev=%s",
4766 	    replacing && newvd_isspare ? "spare in" :
4767 	    replacing ? "replace" : "attach", newvdpath,
4768 	    replacing ? "for" : "to", oldvdpath);
4769 
4770 	spa_strfree(oldvdpath);
4771 	spa_strfree(newvdpath);
4772 
4773 	return (0);
4774 }
4775 
4776 /*
4777  * Detach a device from a mirror or replacing vdev.
4778  *
4779  * If 'replace_done' is specified, only detach if the parent
4780  * is a replacing vdev.
4781  */
4782 int
4783 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4784 {
4785 	uint64_t txg;
4786 	int error;
4787 	vdev_t *rvd = spa->spa_root_vdev;
4788 	vdev_t *vd, *pvd, *cvd, *tvd;
4789 	boolean_t unspare = B_FALSE;
4790 	uint64_t unspare_guid = 0;
4791 	char *vdpath;
4792 
4793 	ASSERT(spa_writeable(spa));
4794 
4795 	txg = spa_vdev_enter(spa);
4796 
4797 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4798 
4799 	if (vd == NULL)
4800 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4801 
4802 	if (!vd->vdev_ops->vdev_op_leaf)
4803 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4804 
4805 	pvd = vd->vdev_parent;
4806 
4807 	/*
4808 	 * If the parent/child relationship is not as expected, don't do it.
4809 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4810 	 * vdev that's replacing B with C.  The user's intent in replacing
4811 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4812 	 * the replace by detaching C, the expected behavior is to end up
4813 	 * M(A,B).  But suppose that right after deciding to detach C,
4814 	 * the replacement of B completes.  We would have M(A,C), and then
4815 	 * ask to detach C, which would leave us with just A -- not what
4816 	 * the user wanted.  To prevent this, we make sure that the
4817 	 * parent/child relationship hasn't changed -- in this example,
4818 	 * that C's parent is still the replacing vdev R.
4819 	 */
4820 	if (pvd->vdev_guid != pguid && pguid != 0)
4821 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4822 
4823 	/*
4824 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4825 	 */
4826 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4827 	    pvd->vdev_ops != &vdev_spare_ops)
4828 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4829 
4830 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4831 	    spa_version(spa) >= SPA_VERSION_SPARES);
4832 
4833 	/*
4834 	 * Only mirror, replacing, and spare vdevs support detach.
4835 	 */
4836 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4837 	    pvd->vdev_ops != &vdev_mirror_ops &&
4838 	    pvd->vdev_ops != &vdev_spare_ops)
4839 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4840 
4841 	/*
4842 	 * If this device has the only valid copy of some data,
4843 	 * we cannot safely detach it.
4844 	 */
4845 	if (vdev_dtl_required(vd))
4846 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4847 
4848 	ASSERT(pvd->vdev_children >= 2);
4849 
4850 	/*
4851 	 * If we are detaching the second disk from a replacing vdev, then
4852 	 * check to see if we changed the original vdev's path to have "/old"
4853 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4854 	 */
4855 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4856 	    vd->vdev_path != NULL) {
4857 		size_t len = strlen(vd->vdev_path);
4858 
4859 		for (int c = 0; c < pvd->vdev_children; c++) {
4860 			cvd = pvd->vdev_child[c];
4861 
4862 			if (cvd == vd || cvd->vdev_path == NULL)
4863 				continue;
4864 
4865 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4866 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4867 				spa_strfree(cvd->vdev_path);
4868 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4869 				break;
4870 			}
4871 		}
4872 	}
4873 
4874 	/*
4875 	 * If we are detaching the original disk from a spare, then it implies
4876 	 * that the spare should become a real disk, and be removed from the
4877 	 * active spare list for the pool.
4878 	 */
4879 	if (pvd->vdev_ops == &vdev_spare_ops &&
4880 	    vd->vdev_id == 0 &&
4881 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4882 		unspare = B_TRUE;
4883 
4884 	/*
4885 	 * Erase the disk labels so the disk can be used for other things.
4886 	 * This must be done after all other error cases are handled,
4887 	 * but before we disembowel vd (so we can still do I/O to it).
4888 	 * But if we can't do it, don't treat the error as fatal --
4889 	 * it may be that the unwritability of the disk is the reason
4890 	 * it's being detached!
4891 	 */
4892 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4893 
4894 	/*
4895 	 * Remove vd from its parent and compact the parent's children.
4896 	 */
4897 	vdev_remove_child(pvd, vd);
4898 	vdev_compact_children(pvd);
4899 
4900 	/*
4901 	 * Remember one of the remaining children so we can get tvd below.
4902 	 */
4903 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4904 
4905 	/*
4906 	 * If we need to remove the remaining child from the list of hot spares,
4907 	 * do it now, marking the vdev as no longer a spare in the process.
4908 	 * We must do this before vdev_remove_parent(), because that can
4909 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4910 	 * reason, we must remove the spare now, in the same txg as the detach;
4911 	 * otherwise someone could attach a new sibling, change the GUID, and
4912 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4913 	 */
4914 	if (unspare) {
4915 		ASSERT(cvd->vdev_isspare);
4916 		spa_spare_remove(cvd);
4917 		unspare_guid = cvd->vdev_guid;
4918 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4919 		cvd->vdev_unspare = B_TRUE;
4920 	}
4921 
4922 	/*
4923 	 * If the parent mirror/replacing vdev only has one child,
4924 	 * the parent is no longer needed.  Remove it from the tree.
4925 	 */
4926 	if (pvd->vdev_children == 1) {
4927 		if (pvd->vdev_ops == &vdev_spare_ops)
4928 			cvd->vdev_unspare = B_FALSE;
4929 		vdev_remove_parent(cvd);
4930 	}
4931 
4932 
4933 	/*
4934 	 * We don't set tvd until now because the parent we just removed
4935 	 * may have been the previous top-level vdev.
4936 	 */
4937 	tvd = cvd->vdev_top;
4938 	ASSERT(tvd->vdev_parent == rvd);
4939 
4940 	/*
4941 	 * Reevaluate the parent vdev state.
4942 	 */
4943 	vdev_propagate_state(cvd);
4944 
4945 	/*
4946 	 * If the 'autoexpand' property is set on the pool then automatically
4947 	 * try to expand the size of the pool. For example if the device we
4948 	 * just detached was smaller than the others, it may be possible to
4949 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4950 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4951 	 */
4952 	if (spa->spa_autoexpand) {
4953 		vdev_reopen(tvd);
4954 		vdev_expand(tvd, txg);
4955 	}
4956 
4957 	vdev_config_dirty(tvd);
4958 
4959 	/*
4960 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4961 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4962 	 * But first make sure we're not on any *other* txg's DTL list, to
4963 	 * prevent vd from being accessed after it's freed.
4964 	 */
4965 	vdpath = spa_strdup(vd->vdev_path);
4966 	for (int t = 0; t < TXG_SIZE; t++)
4967 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4968 	vd->vdev_detached = B_TRUE;
4969 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4970 
4971 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4972 
4973 	/* hang on to the spa before we release the lock */
4974 	spa_open_ref(spa, FTAG);
4975 
4976 	error = spa_vdev_exit(spa, vd, txg, 0);
4977 
4978 	spa_history_log_internal(spa, "detach", NULL,
4979 	    "vdev=%s", vdpath);
4980 	spa_strfree(vdpath);
4981 
4982 	/*
4983 	 * If this was the removal of the original device in a hot spare vdev,
4984 	 * then we want to go through and remove the device from the hot spare
4985 	 * list of every other pool.
4986 	 */
4987 	if (unspare) {
4988 		spa_t *altspa = NULL;
4989 
4990 		mutex_enter(&spa_namespace_lock);
4991 		while ((altspa = spa_next(altspa)) != NULL) {
4992 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4993 			    altspa == spa)
4994 				continue;
4995 
4996 			spa_open_ref(altspa, FTAG);
4997 			mutex_exit(&spa_namespace_lock);
4998 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4999 			mutex_enter(&spa_namespace_lock);
5000 			spa_close(altspa, FTAG);
5001 		}
5002 		mutex_exit(&spa_namespace_lock);
5003 
5004 		/* search the rest of the vdevs for spares to remove */
5005 		spa_vdev_resilver_done(spa);
5006 	}
5007 
5008 	/* all done with the spa; OK to release */
5009 	mutex_enter(&spa_namespace_lock);
5010 	spa_close(spa, FTAG);
5011 	mutex_exit(&spa_namespace_lock);
5012 
5013 	return (error);
5014 }
5015 
5016 /*
5017  * Split a set of devices from their mirrors, and create a new pool from them.
5018  */
5019 int
5020 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5021     nvlist_t *props, boolean_t exp)
5022 {
5023 	int error = 0;
5024 	uint64_t txg, *glist;
5025 	spa_t *newspa;
5026 	uint_t c, children, lastlog;
5027 	nvlist_t **child, *nvl, *tmp;
5028 	dmu_tx_t *tx;
5029 	char *altroot = NULL;
5030 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5031 	boolean_t activate_slog;
5032 
5033 	ASSERT(spa_writeable(spa));
5034 
5035 	txg = spa_vdev_enter(spa);
5036 
5037 	/* clear the log and flush everything up to now */
5038 	activate_slog = spa_passivate_log(spa);
5039 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5040 	error = spa_offline_log(spa);
5041 	txg = spa_vdev_config_enter(spa);
5042 
5043 	if (activate_slog)
5044 		spa_activate_log(spa);
5045 
5046 	if (error != 0)
5047 		return (spa_vdev_exit(spa, NULL, txg, error));
5048 
5049 	/* check new spa name before going any further */
5050 	if (spa_lookup(newname) != NULL)
5051 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5052 
5053 	/*
5054 	 * scan through all the children to ensure they're all mirrors
5055 	 */
5056 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5057 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5058 	    &children) != 0)
5059 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5060 
5061 	/* first, check to ensure we've got the right child count */
5062 	rvd = spa->spa_root_vdev;
5063 	lastlog = 0;
5064 	for (c = 0; c < rvd->vdev_children; c++) {
5065 		vdev_t *vd = rvd->vdev_child[c];
5066 
5067 		/* don't count the holes & logs as children */
5068 		if (vd->vdev_islog || vd->vdev_ishole) {
5069 			if (lastlog == 0)
5070 				lastlog = c;
5071 			continue;
5072 		}
5073 
5074 		lastlog = 0;
5075 	}
5076 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5077 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5078 
5079 	/* next, ensure no spare or cache devices are part of the split */
5080 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5081 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5082 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5083 
5084 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5085 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5086 
5087 	/* then, loop over each vdev and validate it */
5088 	for (c = 0; c < children; c++) {
5089 		uint64_t is_hole = 0;
5090 
5091 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5092 		    &is_hole);
5093 
5094 		if (is_hole != 0) {
5095 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5096 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5097 				continue;
5098 			} else {
5099 				error = SET_ERROR(EINVAL);
5100 				break;
5101 			}
5102 		}
5103 
5104 		/* which disk is going to be split? */
5105 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5106 		    &glist[c]) != 0) {
5107 			error = SET_ERROR(EINVAL);
5108 			break;
5109 		}
5110 
5111 		/* look it up in the spa */
5112 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5113 		if (vml[c] == NULL) {
5114 			error = SET_ERROR(ENODEV);
5115 			break;
5116 		}
5117 
5118 		/* make sure there's nothing stopping the split */
5119 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5120 		    vml[c]->vdev_islog ||
5121 		    vml[c]->vdev_ishole ||
5122 		    vml[c]->vdev_isspare ||
5123 		    vml[c]->vdev_isl2cache ||
5124 		    !vdev_writeable(vml[c]) ||
5125 		    vml[c]->vdev_children != 0 ||
5126 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5127 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5128 			error = SET_ERROR(EINVAL);
5129 			break;
5130 		}
5131 
5132 		if (vdev_dtl_required(vml[c])) {
5133 			error = SET_ERROR(EBUSY);
5134 			break;
5135 		}
5136 
5137 		/* we need certain info from the top level */
5138 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5139 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5140 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5141 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5142 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5143 		    vml[c]->vdev_top->vdev_asize) == 0);
5144 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5145 		    vml[c]->vdev_top->vdev_ashift) == 0);
5146 
5147 		/* transfer per-vdev ZAPs */
5148 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5149 		VERIFY0(nvlist_add_uint64(child[c],
5150 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5151 
5152 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5153 		VERIFY0(nvlist_add_uint64(child[c],
5154 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5155 		    vml[c]->vdev_parent->vdev_top_zap));
5156 	}
5157 
5158 	if (error != 0) {
5159 		kmem_free(vml, children * sizeof (vdev_t *));
5160 		kmem_free(glist, children * sizeof (uint64_t));
5161 		return (spa_vdev_exit(spa, NULL, txg, error));
5162 	}
5163 
5164 	/* stop writers from using the disks */
5165 	for (c = 0; c < children; c++) {
5166 		if (vml[c] != NULL)
5167 			vml[c]->vdev_offline = B_TRUE;
5168 	}
5169 	vdev_reopen(spa->spa_root_vdev);
5170 
5171 	/*
5172 	 * Temporarily record the splitting vdevs in the spa config.  This
5173 	 * will disappear once the config is regenerated.
5174 	 */
5175 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5176 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5177 	    glist, children) == 0);
5178 	kmem_free(glist, children * sizeof (uint64_t));
5179 
5180 	mutex_enter(&spa->spa_props_lock);
5181 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5182 	    nvl) == 0);
5183 	mutex_exit(&spa->spa_props_lock);
5184 	spa->spa_config_splitting = nvl;
5185 	vdev_config_dirty(spa->spa_root_vdev);
5186 
5187 	/* configure and create the new pool */
5188 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5189 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5190 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5191 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5192 	    spa_version(spa)) == 0);
5193 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5194 	    spa->spa_config_txg) == 0);
5195 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5196 	    spa_generate_guid(NULL)) == 0);
5197 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5198 	(void) nvlist_lookup_string(props,
5199 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5200 
5201 	/* add the new pool to the namespace */
5202 	newspa = spa_add(newname, config, altroot);
5203 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5204 	newspa->spa_config_txg = spa->spa_config_txg;
5205 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5206 
5207 	/* release the spa config lock, retaining the namespace lock */
5208 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5209 
5210 	if (zio_injection_enabled)
5211 		zio_handle_panic_injection(spa, FTAG, 1);
5212 
5213 	spa_activate(newspa, spa_mode_global);
5214 	spa_async_suspend(newspa);
5215 
5216 	/* create the new pool from the disks of the original pool */
5217 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5218 	if (error)
5219 		goto out;
5220 
5221 	/* if that worked, generate a real config for the new pool */
5222 	if (newspa->spa_root_vdev != NULL) {
5223 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5224 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5225 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5226 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5227 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5228 		    B_TRUE));
5229 	}
5230 
5231 	/* set the props */
5232 	if (props != NULL) {
5233 		spa_configfile_set(newspa, props, B_FALSE);
5234 		error = spa_prop_set(newspa, props);
5235 		if (error)
5236 			goto out;
5237 	}
5238 
5239 	/* flush everything */
5240 	txg = spa_vdev_config_enter(newspa);
5241 	vdev_config_dirty(newspa->spa_root_vdev);
5242 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5243 
5244 	if (zio_injection_enabled)
5245 		zio_handle_panic_injection(spa, FTAG, 2);
5246 
5247 	spa_async_resume(newspa);
5248 
5249 	/* finally, update the original pool's config */
5250 	txg = spa_vdev_config_enter(spa);
5251 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5252 	error = dmu_tx_assign(tx, TXG_WAIT);
5253 	if (error != 0)
5254 		dmu_tx_abort(tx);
5255 	for (c = 0; c < children; c++) {
5256 		if (vml[c] != NULL) {
5257 			vdev_split(vml[c]);
5258 			if (error == 0)
5259 				spa_history_log_internal(spa, "detach", tx,
5260 				    "vdev=%s", vml[c]->vdev_path);
5261 
5262 			vdev_free(vml[c]);
5263 		}
5264 	}
5265 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5266 	vdev_config_dirty(spa->spa_root_vdev);
5267 	spa->spa_config_splitting = NULL;
5268 	nvlist_free(nvl);
5269 	if (error == 0)
5270 		dmu_tx_commit(tx);
5271 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5272 
5273 	if (zio_injection_enabled)
5274 		zio_handle_panic_injection(spa, FTAG, 3);
5275 
5276 	/* split is complete; log a history record */
5277 	spa_history_log_internal(newspa, "split", NULL,
5278 	    "from pool %s", spa_name(spa));
5279 
5280 	kmem_free(vml, children * sizeof (vdev_t *));
5281 
5282 	/* if we're not going to mount the filesystems in userland, export */
5283 	if (exp)
5284 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5285 		    B_FALSE, B_FALSE);
5286 
5287 	return (error);
5288 
5289 out:
5290 	spa_unload(newspa);
5291 	spa_deactivate(newspa);
5292 	spa_remove(newspa);
5293 
5294 	txg = spa_vdev_config_enter(spa);
5295 
5296 	/* re-online all offlined disks */
5297 	for (c = 0; c < children; c++) {
5298 		if (vml[c] != NULL)
5299 			vml[c]->vdev_offline = B_FALSE;
5300 	}
5301 	vdev_reopen(spa->spa_root_vdev);
5302 
5303 	nvlist_free(spa->spa_config_splitting);
5304 	spa->spa_config_splitting = NULL;
5305 	(void) spa_vdev_exit(spa, NULL, txg, error);
5306 
5307 	kmem_free(vml, children * sizeof (vdev_t *));
5308 	return (error);
5309 }
5310 
5311 static nvlist_t *
5312 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5313 {
5314 	for (int i = 0; i < count; i++) {
5315 		uint64_t guid;
5316 
5317 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5318 		    &guid) == 0);
5319 
5320 		if (guid == target_guid)
5321 			return (nvpp[i]);
5322 	}
5323 
5324 	return (NULL);
5325 }
5326 
5327 static void
5328 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5329 	nvlist_t *dev_to_remove)
5330 {
5331 	nvlist_t **newdev = NULL;
5332 
5333 	if (count > 1)
5334 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5335 
5336 	for (int i = 0, j = 0; i < count; i++) {
5337 		if (dev[i] == dev_to_remove)
5338 			continue;
5339 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5340 	}
5341 
5342 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5343 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5344 
5345 	for (int i = 0; i < count - 1; i++)
5346 		nvlist_free(newdev[i]);
5347 
5348 	if (count > 1)
5349 		kmem_free(newdev, (count - 1) * sizeof (void *));
5350 }
5351 
5352 /*
5353  * Evacuate the device.
5354  */
5355 static int
5356 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5357 {
5358 	uint64_t txg;
5359 	int error = 0;
5360 
5361 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5362 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5363 	ASSERT(vd == vd->vdev_top);
5364 
5365 	/*
5366 	 * Evacuate the device.  We don't hold the config lock as writer
5367 	 * since we need to do I/O but we do keep the
5368 	 * spa_namespace_lock held.  Once this completes the device
5369 	 * should no longer have any blocks allocated on it.
5370 	 */
5371 	if (vd->vdev_islog) {
5372 		if (vd->vdev_stat.vs_alloc != 0)
5373 			error = spa_offline_log(spa);
5374 	} else {
5375 		error = SET_ERROR(ENOTSUP);
5376 	}
5377 
5378 	if (error)
5379 		return (error);
5380 
5381 	/*
5382 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5383 	 * associated with this vdev, and wait for these changes to sync.
5384 	 */
5385 	ASSERT0(vd->vdev_stat.vs_alloc);
5386 	txg = spa_vdev_config_enter(spa);
5387 	vd->vdev_removing = B_TRUE;
5388 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5389 	vdev_config_dirty(vd);
5390 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5391 
5392 	return (0);
5393 }
5394 
5395 /*
5396  * Complete the removal by cleaning up the namespace.
5397  */
5398 static void
5399 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5400 {
5401 	vdev_t *rvd = spa->spa_root_vdev;
5402 	uint64_t id = vd->vdev_id;
5403 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5404 
5405 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5406 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5407 	ASSERT(vd == vd->vdev_top);
5408 
5409 	/*
5410 	 * Only remove any devices which are empty.
5411 	 */
5412 	if (vd->vdev_stat.vs_alloc != 0)
5413 		return;
5414 
5415 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5416 
5417 	if (list_link_active(&vd->vdev_state_dirty_node))
5418 		vdev_state_clean(vd);
5419 	if (list_link_active(&vd->vdev_config_dirty_node))
5420 		vdev_config_clean(vd);
5421 
5422 	vdev_free(vd);
5423 
5424 	if (last_vdev) {
5425 		vdev_compact_children(rvd);
5426 	} else {
5427 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5428 		vdev_add_child(rvd, vd);
5429 	}
5430 	vdev_config_dirty(rvd);
5431 
5432 	/*
5433 	 * Reassess the health of our root vdev.
5434 	 */
5435 	vdev_reopen(rvd);
5436 }
5437 
5438 /*
5439  * Remove a device from the pool -
5440  *
5441  * Removing a device from the vdev namespace requires several steps
5442  * and can take a significant amount of time.  As a result we use
5443  * the spa_vdev_config_[enter/exit] functions which allow us to
5444  * grab and release the spa_config_lock while still holding the namespace
5445  * lock.  During each step the configuration is synced out.
5446  *
5447  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5448  * devices.
5449  */
5450 int
5451 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5452 {
5453 	vdev_t *vd;
5454 	metaslab_group_t *mg;
5455 	nvlist_t **spares, **l2cache, *nv;
5456 	uint64_t txg = 0;
5457 	uint_t nspares, nl2cache;
5458 	int error = 0;
5459 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5460 
5461 	ASSERT(spa_writeable(spa));
5462 
5463 	if (!locked)
5464 		txg = spa_vdev_enter(spa);
5465 
5466 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5467 
5468 	if (spa->spa_spares.sav_vdevs != NULL &&
5469 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5470 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5471 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5472 		/*
5473 		 * Only remove the hot spare if it's not currently in use
5474 		 * in this pool.
5475 		 */
5476 		if (vd == NULL || unspare) {
5477 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5478 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5479 			spa_load_spares(spa);
5480 			spa->spa_spares.sav_sync = B_TRUE;
5481 		} else {
5482 			error = SET_ERROR(EBUSY);
5483 		}
5484 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5485 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5486 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5487 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5488 		/*
5489 		 * Cache devices can always be removed.
5490 		 */
5491 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5492 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5493 		spa_load_l2cache(spa);
5494 		spa->spa_l2cache.sav_sync = B_TRUE;
5495 	} else if (vd != NULL && vd->vdev_islog) {
5496 		ASSERT(!locked);
5497 		ASSERT(vd == vd->vdev_top);
5498 
5499 		mg = vd->vdev_mg;
5500 
5501 		/*
5502 		 * Stop allocating from this vdev.
5503 		 */
5504 		metaslab_group_passivate(mg);
5505 
5506 		/*
5507 		 * Wait for the youngest allocations and frees to sync,
5508 		 * and then wait for the deferral of those frees to finish.
5509 		 */
5510 		spa_vdev_config_exit(spa, NULL,
5511 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5512 
5513 		/*
5514 		 * Attempt to evacuate the vdev.
5515 		 */
5516 		error = spa_vdev_remove_evacuate(spa, vd);
5517 
5518 		txg = spa_vdev_config_enter(spa);
5519 
5520 		/*
5521 		 * If we couldn't evacuate the vdev, unwind.
5522 		 */
5523 		if (error) {
5524 			metaslab_group_activate(mg);
5525 			return (spa_vdev_exit(spa, NULL, txg, error));
5526 		}
5527 
5528 		/*
5529 		 * Clean up the vdev namespace.
5530 		 */
5531 		spa_vdev_remove_from_namespace(spa, vd);
5532 
5533 	} else if (vd != NULL) {
5534 		/*
5535 		 * Normal vdevs cannot be removed (yet).
5536 		 */
5537 		error = SET_ERROR(ENOTSUP);
5538 	} else {
5539 		/*
5540 		 * There is no vdev of any kind with the specified guid.
5541 		 */
5542 		error = SET_ERROR(ENOENT);
5543 	}
5544 
5545 	if (!locked)
5546 		return (spa_vdev_exit(spa, NULL, txg, error));
5547 
5548 	return (error);
5549 }
5550 
5551 /*
5552  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5553  * currently spared, so we can detach it.
5554  */
5555 static vdev_t *
5556 spa_vdev_resilver_done_hunt(vdev_t *vd)
5557 {
5558 	vdev_t *newvd, *oldvd;
5559 
5560 	for (int c = 0; c < vd->vdev_children; c++) {
5561 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5562 		if (oldvd != NULL)
5563 			return (oldvd);
5564 	}
5565 
5566 	/*
5567 	 * Check for a completed replacement.  We always consider the first
5568 	 * vdev in the list to be the oldest vdev, and the last one to be
5569 	 * the newest (see spa_vdev_attach() for how that works).  In
5570 	 * the case where the newest vdev is faulted, we will not automatically
5571 	 * remove it after a resilver completes.  This is OK as it will require
5572 	 * user intervention to determine which disk the admin wishes to keep.
5573 	 */
5574 	if (vd->vdev_ops == &vdev_replacing_ops) {
5575 		ASSERT(vd->vdev_children > 1);
5576 
5577 		newvd = vd->vdev_child[vd->vdev_children - 1];
5578 		oldvd = vd->vdev_child[0];
5579 
5580 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5581 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5582 		    !vdev_dtl_required(oldvd))
5583 			return (oldvd);
5584 	}
5585 
5586 	/*
5587 	 * Check for a completed resilver with the 'unspare' flag set.
5588 	 */
5589 	if (vd->vdev_ops == &vdev_spare_ops) {
5590 		vdev_t *first = vd->vdev_child[0];
5591 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5592 
5593 		if (last->vdev_unspare) {
5594 			oldvd = first;
5595 			newvd = last;
5596 		} else if (first->vdev_unspare) {
5597 			oldvd = last;
5598 			newvd = first;
5599 		} else {
5600 			oldvd = NULL;
5601 		}
5602 
5603 		if (oldvd != NULL &&
5604 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5605 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5606 		    !vdev_dtl_required(oldvd))
5607 			return (oldvd);
5608 
5609 		/*
5610 		 * If there are more than two spares attached to a disk,
5611 		 * and those spares are not required, then we want to
5612 		 * attempt to free them up now so that they can be used
5613 		 * by other pools.  Once we're back down to a single
5614 		 * disk+spare, we stop removing them.
5615 		 */
5616 		if (vd->vdev_children > 2) {
5617 			newvd = vd->vdev_child[1];
5618 
5619 			if (newvd->vdev_isspare && last->vdev_isspare &&
5620 			    vdev_dtl_empty(last, DTL_MISSING) &&
5621 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5622 			    !vdev_dtl_required(newvd))
5623 				return (newvd);
5624 		}
5625 	}
5626 
5627 	return (NULL);
5628 }
5629 
5630 static void
5631 spa_vdev_resilver_done(spa_t *spa)
5632 {
5633 	vdev_t *vd, *pvd, *ppvd;
5634 	uint64_t guid, sguid, pguid, ppguid;
5635 
5636 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5637 
5638 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5639 		pvd = vd->vdev_parent;
5640 		ppvd = pvd->vdev_parent;
5641 		guid = vd->vdev_guid;
5642 		pguid = pvd->vdev_guid;
5643 		ppguid = ppvd->vdev_guid;
5644 		sguid = 0;
5645 		/*
5646 		 * If we have just finished replacing a hot spared device, then
5647 		 * we need to detach the parent's first child (the original hot
5648 		 * spare) as well.
5649 		 */
5650 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5651 		    ppvd->vdev_children == 2) {
5652 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5653 			sguid = ppvd->vdev_child[1]->vdev_guid;
5654 		}
5655 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5656 
5657 		spa_config_exit(spa, SCL_ALL, FTAG);
5658 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5659 			return;
5660 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5661 			return;
5662 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5663 	}
5664 
5665 	spa_config_exit(spa, SCL_ALL, FTAG);
5666 }
5667 
5668 /*
5669  * Update the stored path or FRU for this vdev.
5670  */
5671 int
5672 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5673     boolean_t ispath)
5674 {
5675 	vdev_t *vd;
5676 	boolean_t sync = B_FALSE;
5677 
5678 	ASSERT(spa_writeable(spa));
5679 
5680 	spa_vdev_state_enter(spa, SCL_ALL);
5681 
5682 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5683 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5684 
5685 	if (!vd->vdev_ops->vdev_op_leaf)
5686 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5687 
5688 	if (ispath) {
5689 		if (strcmp(value, vd->vdev_path) != 0) {
5690 			spa_strfree(vd->vdev_path);
5691 			vd->vdev_path = spa_strdup(value);
5692 			sync = B_TRUE;
5693 		}
5694 	} else {
5695 		if (vd->vdev_fru == NULL) {
5696 			vd->vdev_fru = spa_strdup(value);
5697 			sync = B_TRUE;
5698 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5699 			spa_strfree(vd->vdev_fru);
5700 			vd->vdev_fru = spa_strdup(value);
5701 			sync = B_TRUE;
5702 		}
5703 	}
5704 
5705 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5706 }
5707 
5708 int
5709 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5710 {
5711 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5712 }
5713 
5714 int
5715 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5716 {
5717 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5718 }
5719 
5720 /*
5721  * ==========================================================================
5722  * SPA Scanning
5723  * ==========================================================================
5724  */
5725 
5726 int
5727 spa_scan_stop(spa_t *spa)
5728 {
5729 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5730 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5731 		return (SET_ERROR(EBUSY));
5732 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5733 }
5734 
5735 int
5736 spa_scan(spa_t *spa, pool_scan_func_t func)
5737 {
5738 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5739 
5740 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5741 		return (SET_ERROR(ENOTSUP));
5742 
5743 	/*
5744 	 * If a resilver was requested, but there is no DTL on a
5745 	 * writeable leaf device, we have nothing to do.
5746 	 */
5747 	if (func == POOL_SCAN_RESILVER &&
5748 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5749 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5750 		return (0);
5751 	}
5752 
5753 	return (dsl_scan(spa->spa_dsl_pool, func));
5754 }
5755 
5756 /*
5757  * ==========================================================================
5758  * SPA async task processing
5759  * ==========================================================================
5760  */
5761 
5762 static void
5763 spa_async_remove(spa_t *spa, vdev_t *vd)
5764 {
5765 	if (vd->vdev_remove_wanted) {
5766 		vd->vdev_remove_wanted = B_FALSE;
5767 		vd->vdev_delayed_close = B_FALSE;
5768 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5769 
5770 		/*
5771 		 * We want to clear the stats, but we don't want to do a full
5772 		 * vdev_clear() as that will cause us to throw away
5773 		 * degraded/faulted state as well as attempt to reopen the
5774 		 * device, all of which is a waste.
5775 		 */
5776 		vd->vdev_stat.vs_read_errors = 0;
5777 		vd->vdev_stat.vs_write_errors = 0;
5778 		vd->vdev_stat.vs_checksum_errors = 0;
5779 
5780 		vdev_state_dirty(vd->vdev_top);
5781 	}
5782 
5783 	for (int c = 0; c < vd->vdev_children; c++)
5784 		spa_async_remove(spa, vd->vdev_child[c]);
5785 }
5786 
5787 static void
5788 spa_async_probe(spa_t *spa, vdev_t *vd)
5789 {
5790 	if (vd->vdev_probe_wanted) {
5791 		vd->vdev_probe_wanted = B_FALSE;
5792 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5793 	}
5794 
5795 	for (int c = 0; c < vd->vdev_children; c++)
5796 		spa_async_probe(spa, vd->vdev_child[c]);
5797 }
5798 
5799 static void
5800 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5801 {
5802 	sysevent_id_t eid;
5803 	nvlist_t *attr;
5804 	char *physpath;
5805 
5806 	if (!spa->spa_autoexpand)
5807 		return;
5808 
5809 	for (int c = 0; c < vd->vdev_children; c++) {
5810 		vdev_t *cvd = vd->vdev_child[c];
5811 		spa_async_autoexpand(spa, cvd);
5812 	}
5813 
5814 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5815 		return;
5816 
5817 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5818 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5819 
5820 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5821 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5822 
5823 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5824 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5825 
5826 	nvlist_free(attr);
5827 	kmem_free(physpath, MAXPATHLEN);
5828 }
5829 
5830 static void
5831 spa_async_thread(spa_t *spa)
5832 {
5833 	int tasks;
5834 
5835 	ASSERT(spa->spa_sync_on);
5836 
5837 	mutex_enter(&spa->spa_async_lock);
5838 	tasks = spa->spa_async_tasks;
5839 	spa->spa_async_tasks = 0;
5840 	mutex_exit(&spa->spa_async_lock);
5841 
5842 	/*
5843 	 * See if the config needs to be updated.
5844 	 */
5845 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5846 		uint64_t old_space, new_space;
5847 
5848 		mutex_enter(&spa_namespace_lock);
5849 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5850 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5851 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5852 		mutex_exit(&spa_namespace_lock);
5853 
5854 		/*
5855 		 * If the pool grew as a result of the config update,
5856 		 * then log an internal history event.
5857 		 */
5858 		if (new_space != old_space) {
5859 			spa_history_log_internal(spa, "vdev online", NULL,
5860 			    "pool '%s' size: %llu(+%llu)",
5861 			    spa_name(spa), new_space, new_space - old_space);
5862 		}
5863 	}
5864 
5865 	/*
5866 	 * See if any devices need to be marked REMOVED.
5867 	 */
5868 	if (tasks & SPA_ASYNC_REMOVE) {
5869 		spa_vdev_state_enter(spa, SCL_NONE);
5870 		spa_async_remove(spa, spa->spa_root_vdev);
5871 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5872 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5873 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5874 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5875 		(void) spa_vdev_state_exit(spa, NULL, 0);
5876 	}
5877 
5878 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5879 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5880 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5881 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5882 	}
5883 
5884 	/*
5885 	 * See if any devices need to be probed.
5886 	 */
5887 	if (tasks & SPA_ASYNC_PROBE) {
5888 		spa_vdev_state_enter(spa, SCL_NONE);
5889 		spa_async_probe(spa, spa->spa_root_vdev);
5890 		(void) spa_vdev_state_exit(spa, NULL, 0);
5891 	}
5892 
5893 	/*
5894 	 * If any devices are done replacing, detach them.
5895 	 */
5896 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5897 		spa_vdev_resilver_done(spa);
5898 
5899 	/*
5900 	 * Kick off a resilver.
5901 	 */
5902 	if (tasks & SPA_ASYNC_RESILVER)
5903 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5904 
5905 	/*
5906 	 * Let the world know that we're done.
5907 	 */
5908 	mutex_enter(&spa->spa_async_lock);
5909 	spa->spa_async_thread = NULL;
5910 	cv_broadcast(&spa->spa_async_cv);
5911 	mutex_exit(&spa->spa_async_lock);
5912 	thread_exit();
5913 }
5914 
5915 void
5916 spa_async_suspend(spa_t *spa)
5917 {
5918 	mutex_enter(&spa->spa_async_lock);
5919 	spa->spa_async_suspended++;
5920 	while (spa->spa_async_thread != NULL)
5921 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5922 	mutex_exit(&spa->spa_async_lock);
5923 }
5924 
5925 void
5926 spa_async_resume(spa_t *spa)
5927 {
5928 	mutex_enter(&spa->spa_async_lock);
5929 	ASSERT(spa->spa_async_suspended != 0);
5930 	spa->spa_async_suspended--;
5931 	mutex_exit(&spa->spa_async_lock);
5932 }
5933 
5934 static boolean_t
5935 spa_async_tasks_pending(spa_t *spa)
5936 {
5937 	uint_t non_config_tasks;
5938 	uint_t config_task;
5939 	boolean_t config_task_suspended;
5940 
5941 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5942 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5943 	if (spa->spa_ccw_fail_time == 0) {
5944 		config_task_suspended = B_FALSE;
5945 	} else {
5946 		config_task_suspended =
5947 		    (gethrtime() - spa->spa_ccw_fail_time) <
5948 		    (zfs_ccw_retry_interval * NANOSEC);
5949 	}
5950 
5951 	return (non_config_tasks || (config_task && !config_task_suspended));
5952 }
5953 
5954 static void
5955 spa_async_dispatch(spa_t *spa)
5956 {
5957 	mutex_enter(&spa->spa_async_lock);
5958 	if (spa_async_tasks_pending(spa) &&
5959 	    !spa->spa_async_suspended &&
5960 	    spa->spa_async_thread == NULL &&
5961 	    rootdir != NULL)
5962 		spa->spa_async_thread = thread_create(NULL, 0,
5963 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5964 	mutex_exit(&spa->spa_async_lock);
5965 }
5966 
5967 void
5968 spa_async_request(spa_t *spa, int task)
5969 {
5970 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5971 	mutex_enter(&spa->spa_async_lock);
5972 	spa->spa_async_tasks |= task;
5973 	mutex_exit(&spa->spa_async_lock);
5974 }
5975 
5976 /*
5977  * ==========================================================================
5978  * SPA syncing routines
5979  * ==========================================================================
5980  */
5981 
5982 static int
5983 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5984 {
5985 	bpobj_t *bpo = arg;
5986 	bpobj_enqueue(bpo, bp, tx);
5987 	return (0);
5988 }
5989 
5990 static int
5991 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5992 {
5993 	zio_t *zio = arg;
5994 
5995 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5996 	    zio->io_flags));
5997 	return (0);
5998 }
5999 
6000 /*
6001  * Note: this simple function is not inlined to make it easier to dtrace the
6002  * amount of time spent syncing frees.
6003  */
6004 static void
6005 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6006 {
6007 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6008 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6009 	VERIFY(zio_wait(zio) == 0);
6010 }
6011 
6012 /*
6013  * Note: this simple function is not inlined to make it easier to dtrace the
6014  * amount of time spent syncing deferred frees.
6015  */
6016 static void
6017 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6018 {
6019 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6020 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6021 	    spa_free_sync_cb, zio, tx), ==, 0);
6022 	VERIFY0(zio_wait(zio));
6023 }
6024 
6025 
6026 static void
6027 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6028 {
6029 	char *packed = NULL;
6030 	size_t bufsize;
6031 	size_t nvsize = 0;
6032 	dmu_buf_t *db;
6033 
6034 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6035 
6036 	/*
6037 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6038 	 * information.  This avoids the dmu_buf_will_dirty() path and
6039 	 * saves us a pre-read to get data we don't actually care about.
6040 	 */
6041 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6042 	packed = kmem_alloc(bufsize, KM_SLEEP);
6043 
6044 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6045 	    KM_SLEEP) == 0);
6046 	bzero(packed + nvsize, bufsize - nvsize);
6047 
6048 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6049 
6050 	kmem_free(packed, bufsize);
6051 
6052 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6053 	dmu_buf_will_dirty(db, tx);
6054 	*(uint64_t *)db->db_data = nvsize;
6055 	dmu_buf_rele(db, FTAG);
6056 }
6057 
6058 static void
6059 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6060     const char *config, const char *entry)
6061 {
6062 	nvlist_t *nvroot;
6063 	nvlist_t **list;
6064 	int i;
6065 
6066 	if (!sav->sav_sync)
6067 		return;
6068 
6069 	/*
6070 	 * Update the MOS nvlist describing the list of available devices.
6071 	 * spa_validate_aux() will have already made sure this nvlist is
6072 	 * valid and the vdevs are labeled appropriately.
6073 	 */
6074 	if (sav->sav_object == 0) {
6075 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6076 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6077 		    sizeof (uint64_t), tx);
6078 		VERIFY(zap_update(spa->spa_meta_objset,
6079 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6080 		    &sav->sav_object, tx) == 0);
6081 	}
6082 
6083 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6084 	if (sav->sav_count == 0) {
6085 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6086 	} else {
6087 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6088 		for (i = 0; i < sav->sav_count; i++)
6089 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6090 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6091 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6092 		    sav->sav_count) == 0);
6093 		for (i = 0; i < sav->sav_count; i++)
6094 			nvlist_free(list[i]);
6095 		kmem_free(list, sav->sav_count * sizeof (void *));
6096 	}
6097 
6098 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6099 	nvlist_free(nvroot);
6100 
6101 	sav->sav_sync = B_FALSE;
6102 }
6103 
6104 /*
6105  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6106  * The all-vdev ZAP must be empty.
6107  */
6108 static void
6109 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6110 {
6111 	spa_t *spa = vd->vdev_spa;
6112 	if (vd->vdev_top_zap != 0) {
6113 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6114 		    vd->vdev_top_zap, tx));
6115 	}
6116 	if (vd->vdev_leaf_zap != 0) {
6117 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6118 		    vd->vdev_leaf_zap, tx));
6119 	}
6120 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6121 		spa_avz_build(vd->vdev_child[i], avz, tx);
6122 	}
6123 }
6124 
6125 static void
6126 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6127 {
6128 	nvlist_t *config;
6129 
6130 	/*
6131 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6132 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6133 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6134 	 * need to rebuild the AVZ although the config may not be dirty.
6135 	 */
6136 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6137 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6138 		return;
6139 
6140 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6141 
6142 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6143 	    spa->spa_all_vdev_zaps != 0);
6144 
6145 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6146 		/* Make and build the new AVZ */
6147 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6148 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6149 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6150 
6151 		/* Diff old AVZ with new one */
6152 		zap_cursor_t zc;
6153 		zap_attribute_t za;
6154 
6155 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6156 		    spa->spa_all_vdev_zaps);
6157 		    zap_cursor_retrieve(&zc, &za) == 0;
6158 		    zap_cursor_advance(&zc)) {
6159 			uint64_t vdzap = za.za_first_integer;
6160 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6161 			    vdzap) == ENOENT) {
6162 				/*
6163 				 * ZAP is listed in old AVZ but not in new one;
6164 				 * destroy it
6165 				 */
6166 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6167 				    tx));
6168 			}
6169 		}
6170 
6171 		zap_cursor_fini(&zc);
6172 
6173 		/* Destroy the old AVZ */
6174 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6175 		    spa->spa_all_vdev_zaps, tx));
6176 
6177 		/* Replace the old AVZ in the dir obj with the new one */
6178 		VERIFY0(zap_update(spa->spa_meta_objset,
6179 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6180 		    sizeof (new_avz), 1, &new_avz, tx));
6181 
6182 		spa->spa_all_vdev_zaps = new_avz;
6183 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6184 		zap_cursor_t zc;
6185 		zap_attribute_t za;
6186 
6187 		/* Walk through the AVZ and destroy all listed ZAPs */
6188 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6189 		    spa->spa_all_vdev_zaps);
6190 		    zap_cursor_retrieve(&zc, &za) == 0;
6191 		    zap_cursor_advance(&zc)) {
6192 			uint64_t zap = za.za_first_integer;
6193 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6194 		}
6195 
6196 		zap_cursor_fini(&zc);
6197 
6198 		/* Destroy and unlink the AVZ itself */
6199 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6200 		    spa->spa_all_vdev_zaps, tx));
6201 		VERIFY0(zap_remove(spa->spa_meta_objset,
6202 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6203 		spa->spa_all_vdev_zaps = 0;
6204 	}
6205 
6206 	if (spa->spa_all_vdev_zaps == 0) {
6207 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6208 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6209 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6210 	}
6211 	spa->spa_avz_action = AVZ_ACTION_NONE;
6212 
6213 	/* Create ZAPs for vdevs that don't have them. */
6214 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6215 
6216 	config = spa_config_generate(spa, spa->spa_root_vdev,
6217 	    dmu_tx_get_txg(tx), B_FALSE);
6218 
6219 	/*
6220 	 * If we're upgrading the spa version then make sure that
6221 	 * the config object gets updated with the correct version.
6222 	 */
6223 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6224 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6225 		    spa->spa_uberblock.ub_version);
6226 
6227 	spa_config_exit(spa, SCL_STATE, FTAG);
6228 
6229 	nvlist_free(spa->spa_config_syncing);
6230 	spa->spa_config_syncing = config;
6231 
6232 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6233 }
6234 
6235 static void
6236 spa_sync_version(void *arg, dmu_tx_t *tx)
6237 {
6238 	uint64_t *versionp = arg;
6239 	uint64_t version = *versionp;
6240 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6241 
6242 	/*
6243 	 * Setting the version is special cased when first creating the pool.
6244 	 */
6245 	ASSERT(tx->tx_txg != TXG_INITIAL);
6246 
6247 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6248 	ASSERT(version >= spa_version(spa));
6249 
6250 	spa->spa_uberblock.ub_version = version;
6251 	vdev_config_dirty(spa->spa_root_vdev);
6252 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6253 }
6254 
6255 /*
6256  * Set zpool properties.
6257  */
6258 static void
6259 spa_sync_props(void *arg, dmu_tx_t *tx)
6260 {
6261 	nvlist_t *nvp = arg;
6262 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6263 	objset_t *mos = spa->spa_meta_objset;
6264 	nvpair_t *elem = NULL;
6265 
6266 	mutex_enter(&spa->spa_props_lock);
6267 
6268 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6269 		uint64_t intval;
6270 		char *strval, *fname;
6271 		zpool_prop_t prop;
6272 		const char *propname;
6273 		zprop_type_t proptype;
6274 		spa_feature_t fid;
6275 
6276 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6277 		case ZPROP_INVAL:
6278 			/*
6279 			 * We checked this earlier in spa_prop_validate().
6280 			 */
6281 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6282 
6283 			fname = strchr(nvpair_name(elem), '@') + 1;
6284 			VERIFY0(zfeature_lookup_name(fname, &fid));
6285 
6286 			spa_feature_enable(spa, fid, tx);
6287 			spa_history_log_internal(spa, "set", tx,
6288 			    "%s=enabled", nvpair_name(elem));
6289 			break;
6290 
6291 		case ZPOOL_PROP_VERSION:
6292 			intval = fnvpair_value_uint64(elem);
6293 			/*
6294 			 * The version is synced seperatly before other
6295 			 * properties and should be correct by now.
6296 			 */
6297 			ASSERT3U(spa_version(spa), >=, intval);
6298 			break;
6299 
6300 		case ZPOOL_PROP_ALTROOT:
6301 			/*
6302 			 * 'altroot' is a non-persistent property. It should
6303 			 * have been set temporarily at creation or import time.
6304 			 */
6305 			ASSERT(spa->spa_root != NULL);
6306 			break;
6307 
6308 		case ZPOOL_PROP_READONLY:
6309 		case ZPOOL_PROP_CACHEFILE:
6310 			/*
6311 			 * 'readonly' and 'cachefile' are also non-persisitent
6312 			 * properties.
6313 			 */
6314 			break;
6315 		case ZPOOL_PROP_COMMENT:
6316 			strval = fnvpair_value_string(elem);
6317 			if (spa->spa_comment != NULL)
6318 				spa_strfree(spa->spa_comment);
6319 			spa->spa_comment = spa_strdup(strval);
6320 			/*
6321 			 * We need to dirty the configuration on all the vdevs
6322 			 * so that their labels get updated.  It's unnecessary
6323 			 * to do this for pool creation since the vdev's
6324 			 * configuratoin has already been dirtied.
6325 			 */
6326 			if (tx->tx_txg != TXG_INITIAL)
6327 				vdev_config_dirty(spa->spa_root_vdev);
6328 			spa_history_log_internal(spa, "set", tx,
6329 			    "%s=%s", nvpair_name(elem), strval);
6330 			break;
6331 		default:
6332 			/*
6333 			 * Set pool property values in the poolprops mos object.
6334 			 */
6335 			if (spa->spa_pool_props_object == 0) {
6336 				spa->spa_pool_props_object =
6337 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6338 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6339 				    tx);
6340 			}
6341 
6342 			/* normalize the property name */
6343 			propname = zpool_prop_to_name(prop);
6344 			proptype = zpool_prop_get_type(prop);
6345 
6346 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6347 				ASSERT(proptype == PROP_TYPE_STRING);
6348 				strval = fnvpair_value_string(elem);
6349 				VERIFY0(zap_update(mos,
6350 				    spa->spa_pool_props_object, propname,
6351 				    1, strlen(strval) + 1, strval, tx));
6352 				spa_history_log_internal(spa, "set", tx,
6353 				    "%s=%s", nvpair_name(elem), strval);
6354 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6355 				intval = fnvpair_value_uint64(elem);
6356 
6357 				if (proptype == PROP_TYPE_INDEX) {
6358 					const char *unused;
6359 					VERIFY0(zpool_prop_index_to_string(
6360 					    prop, intval, &unused));
6361 				}
6362 				VERIFY0(zap_update(mos,
6363 				    spa->spa_pool_props_object, propname,
6364 				    8, 1, &intval, tx));
6365 				spa_history_log_internal(spa, "set", tx,
6366 				    "%s=%lld", nvpair_name(elem), intval);
6367 			} else {
6368 				ASSERT(0); /* not allowed */
6369 			}
6370 
6371 			switch (prop) {
6372 			case ZPOOL_PROP_DELEGATION:
6373 				spa->spa_delegation = intval;
6374 				break;
6375 			case ZPOOL_PROP_BOOTFS:
6376 				spa->spa_bootfs = intval;
6377 				break;
6378 			case ZPOOL_PROP_FAILUREMODE:
6379 				spa->spa_failmode = intval;
6380 				break;
6381 			case ZPOOL_PROP_AUTOEXPAND:
6382 				spa->spa_autoexpand = intval;
6383 				if (tx->tx_txg != TXG_INITIAL)
6384 					spa_async_request(spa,
6385 					    SPA_ASYNC_AUTOEXPAND);
6386 				break;
6387 			case ZPOOL_PROP_DEDUPDITTO:
6388 				spa->spa_dedup_ditto = intval;
6389 				break;
6390 			default:
6391 				break;
6392 			}
6393 		}
6394 
6395 	}
6396 
6397 	mutex_exit(&spa->spa_props_lock);
6398 }
6399 
6400 /*
6401  * Perform one-time upgrade on-disk changes.  spa_version() does not
6402  * reflect the new version this txg, so there must be no changes this
6403  * txg to anything that the upgrade code depends on after it executes.
6404  * Therefore this must be called after dsl_pool_sync() does the sync
6405  * tasks.
6406  */
6407 static void
6408 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6409 {
6410 	dsl_pool_t *dp = spa->spa_dsl_pool;
6411 
6412 	ASSERT(spa->spa_sync_pass == 1);
6413 
6414 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6415 
6416 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6417 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6418 		dsl_pool_create_origin(dp, tx);
6419 
6420 		/* Keeping the origin open increases spa_minref */
6421 		spa->spa_minref += 3;
6422 	}
6423 
6424 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6425 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6426 		dsl_pool_upgrade_clones(dp, tx);
6427 	}
6428 
6429 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6430 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6431 		dsl_pool_upgrade_dir_clones(dp, tx);
6432 
6433 		/* Keeping the freedir open increases spa_minref */
6434 		spa->spa_minref += 3;
6435 	}
6436 
6437 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6438 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6439 		spa_feature_create_zap_objects(spa, tx);
6440 	}
6441 
6442 	/*
6443 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6444 	 * when possibility to use lz4 compression for metadata was added
6445 	 * Old pools that have this feature enabled must be upgraded to have
6446 	 * this feature active
6447 	 */
6448 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6449 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6450 		    SPA_FEATURE_LZ4_COMPRESS);
6451 		boolean_t lz4_ac = spa_feature_is_active(spa,
6452 		    SPA_FEATURE_LZ4_COMPRESS);
6453 
6454 		if (lz4_en && !lz4_ac)
6455 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6456 	}
6457 
6458 	/*
6459 	 * If we haven't written the salt, do so now.  Note that the
6460 	 * feature may not be activated yet, but that's fine since
6461 	 * the presence of this ZAP entry is backwards compatible.
6462 	 */
6463 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6464 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6465 		VERIFY0(zap_add(spa->spa_meta_objset,
6466 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6467 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6468 		    spa->spa_cksum_salt.zcs_bytes, tx));
6469 	}
6470 
6471 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6472 }
6473 
6474 /*
6475  * Sync the specified transaction group.  New blocks may be dirtied as
6476  * part of the process, so we iterate until it converges.
6477  */
6478 void
6479 spa_sync(spa_t *spa, uint64_t txg)
6480 {
6481 	dsl_pool_t *dp = spa->spa_dsl_pool;
6482 	objset_t *mos = spa->spa_meta_objset;
6483 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6484 	vdev_t *rvd = spa->spa_root_vdev;
6485 	vdev_t *vd;
6486 	dmu_tx_t *tx;
6487 	int error;
6488 
6489 	VERIFY(spa_writeable(spa));
6490 
6491 	/*
6492 	 * Lock out configuration changes.
6493 	 */
6494 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6495 
6496 	spa->spa_syncing_txg = txg;
6497 	spa->spa_sync_pass = 0;
6498 
6499 	/*
6500 	 * If there are any pending vdev state changes, convert them
6501 	 * into config changes that go out with this transaction group.
6502 	 */
6503 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6504 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6505 		/*
6506 		 * We need the write lock here because, for aux vdevs,
6507 		 * calling vdev_config_dirty() modifies sav_config.
6508 		 * This is ugly and will become unnecessary when we
6509 		 * eliminate the aux vdev wart by integrating all vdevs
6510 		 * into the root vdev tree.
6511 		 */
6512 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6513 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6514 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6515 			vdev_state_clean(vd);
6516 			vdev_config_dirty(vd);
6517 		}
6518 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6519 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6520 	}
6521 	spa_config_exit(spa, SCL_STATE, FTAG);
6522 
6523 	tx = dmu_tx_create_assigned(dp, txg);
6524 
6525 	spa->spa_sync_starttime = gethrtime();
6526 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6527 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6528 
6529 	/*
6530 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6531 	 * set spa_deflate if we have no raid-z vdevs.
6532 	 */
6533 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6534 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6535 		int i;
6536 
6537 		for (i = 0; i < rvd->vdev_children; i++) {
6538 			vd = rvd->vdev_child[i];
6539 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6540 				break;
6541 		}
6542 		if (i == rvd->vdev_children) {
6543 			spa->spa_deflate = TRUE;
6544 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6545 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6546 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6547 		}
6548 	}
6549 
6550 	/*
6551 	 * Iterate to convergence.
6552 	 */
6553 	do {
6554 		int pass = ++spa->spa_sync_pass;
6555 
6556 		spa_sync_config_object(spa, tx);
6557 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6558 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6559 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6560 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6561 		spa_errlog_sync(spa, txg);
6562 		dsl_pool_sync(dp, txg);
6563 
6564 		if (pass < zfs_sync_pass_deferred_free) {
6565 			spa_sync_frees(spa, free_bpl, tx);
6566 		} else {
6567 			/*
6568 			 * We can not defer frees in pass 1, because
6569 			 * we sync the deferred frees later in pass 1.
6570 			 */
6571 			ASSERT3U(pass, >, 1);
6572 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6573 			    &spa->spa_deferred_bpobj, tx);
6574 		}
6575 
6576 		ddt_sync(spa, txg);
6577 		dsl_scan_sync(dp, tx);
6578 
6579 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6580 			vdev_sync(vd, txg);
6581 
6582 		if (pass == 1) {
6583 			spa_sync_upgrades(spa, tx);
6584 			ASSERT3U(txg, >=,
6585 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6586 			/*
6587 			 * Note: We need to check if the MOS is dirty
6588 			 * because we could have marked the MOS dirty
6589 			 * without updating the uberblock (e.g. if we
6590 			 * have sync tasks but no dirty user data).  We
6591 			 * need to check the uberblock's rootbp because
6592 			 * it is updated if we have synced out dirty
6593 			 * data (though in this case the MOS will most
6594 			 * likely also be dirty due to second order
6595 			 * effects, we don't want to rely on that here).
6596 			 */
6597 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6598 			    !dmu_objset_is_dirty(mos, txg)) {
6599 				/*
6600 				 * Nothing changed on the first pass,
6601 				 * therefore this TXG is a no-op.  Avoid
6602 				 * syncing deferred frees, so that we
6603 				 * can keep this TXG as a no-op.
6604 				 */
6605 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6606 				    txg));
6607 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6608 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6609 				break;
6610 			}
6611 			spa_sync_deferred_frees(spa, tx);
6612 		}
6613 
6614 	} while (dmu_objset_is_dirty(mos, txg));
6615 
6616 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6617 		/*
6618 		 * Make sure that the number of ZAPs for all the vdevs matches
6619 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6620 		 * called if the config is dirty; otherwise there may be
6621 		 * outstanding AVZ operations that weren't completed in
6622 		 * spa_sync_config_object.
6623 		 */
6624 		uint64_t all_vdev_zap_entry_count;
6625 		ASSERT0(zap_count(spa->spa_meta_objset,
6626 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6627 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6628 		    all_vdev_zap_entry_count);
6629 	}
6630 
6631 	/*
6632 	 * Rewrite the vdev configuration (which includes the uberblock)
6633 	 * to commit the transaction group.
6634 	 *
6635 	 * If there are no dirty vdevs, we sync the uberblock to a few
6636 	 * random top-level vdevs that are known to be visible in the
6637 	 * config cache (see spa_vdev_add() for a complete description).
6638 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6639 	 */
6640 	for (;;) {
6641 		/*
6642 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6643 		 * while we're attempting to write the vdev labels.
6644 		 */
6645 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6646 
6647 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6648 			vdev_t *svd[SPA_DVAS_PER_BP];
6649 			int svdcount = 0;
6650 			int children = rvd->vdev_children;
6651 			int c0 = spa_get_random(children);
6652 
6653 			for (int c = 0; c < children; c++) {
6654 				vd = rvd->vdev_child[(c0 + c) % children];
6655 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6656 					continue;
6657 				svd[svdcount++] = vd;
6658 				if (svdcount == SPA_DVAS_PER_BP)
6659 					break;
6660 			}
6661 			error = vdev_config_sync(svd, svdcount, txg);
6662 		} else {
6663 			error = vdev_config_sync(rvd->vdev_child,
6664 			    rvd->vdev_children, txg);
6665 		}
6666 
6667 		if (error == 0)
6668 			spa->spa_last_synced_guid = rvd->vdev_guid;
6669 
6670 		spa_config_exit(spa, SCL_STATE, FTAG);
6671 
6672 		if (error == 0)
6673 			break;
6674 		zio_suspend(spa, NULL);
6675 		zio_resume_wait(spa);
6676 	}
6677 	dmu_tx_commit(tx);
6678 
6679 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6680 
6681 	/*
6682 	 * Clear the dirty config list.
6683 	 */
6684 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6685 		vdev_config_clean(vd);
6686 
6687 	/*
6688 	 * Now that the new config has synced transactionally,
6689 	 * let it become visible to the config cache.
6690 	 */
6691 	if (spa->spa_config_syncing != NULL) {
6692 		spa_config_set(spa, spa->spa_config_syncing);
6693 		spa->spa_config_txg = txg;
6694 		spa->spa_config_syncing = NULL;
6695 	}
6696 
6697 	spa->spa_ubsync = spa->spa_uberblock;
6698 
6699 	dsl_pool_sync_done(dp, txg);
6700 
6701 	/*
6702 	 * Update usable space statistics.
6703 	 */
6704 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6705 		vdev_sync_done(vd, txg);
6706 
6707 	spa_update_dspace(spa);
6708 
6709 	/*
6710 	 * It had better be the case that we didn't dirty anything
6711 	 * since vdev_config_sync().
6712 	 */
6713 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6714 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6715 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6716 
6717 	spa->spa_sync_pass = 0;
6718 
6719 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6720 
6721 	spa_handle_ignored_writes(spa);
6722 
6723 	/*
6724 	 * If any async tasks have been requested, kick them off.
6725 	 */
6726 	spa_async_dispatch(spa);
6727 }
6728 
6729 /*
6730  * Sync all pools.  We don't want to hold the namespace lock across these
6731  * operations, so we take a reference on the spa_t and drop the lock during the
6732  * sync.
6733  */
6734 void
6735 spa_sync_allpools(void)
6736 {
6737 	spa_t *spa = NULL;
6738 	mutex_enter(&spa_namespace_lock);
6739 	while ((spa = spa_next(spa)) != NULL) {
6740 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6741 		    !spa_writeable(spa) || spa_suspended(spa))
6742 			continue;
6743 		spa_open_ref(spa, FTAG);
6744 		mutex_exit(&spa_namespace_lock);
6745 		txg_wait_synced(spa_get_dsl(spa), 0);
6746 		mutex_enter(&spa_namespace_lock);
6747 		spa_close(spa, FTAG);
6748 	}
6749 	mutex_exit(&spa_namespace_lock);
6750 }
6751 
6752 /*
6753  * ==========================================================================
6754  * Miscellaneous routines
6755  * ==========================================================================
6756  */
6757 
6758 /*
6759  * Remove all pools in the system.
6760  */
6761 void
6762 spa_evict_all(void)
6763 {
6764 	spa_t *spa;
6765 
6766 	/*
6767 	 * Remove all cached state.  All pools should be closed now,
6768 	 * so every spa in the AVL tree should be unreferenced.
6769 	 */
6770 	mutex_enter(&spa_namespace_lock);
6771 	while ((spa = spa_next(NULL)) != NULL) {
6772 		/*
6773 		 * Stop async tasks.  The async thread may need to detach
6774 		 * a device that's been replaced, which requires grabbing
6775 		 * spa_namespace_lock, so we must drop it here.
6776 		 */
6777 		spa_open_ref(spa, FTAG);
6778 		mutex_exit(&spa_namespace_lock);
6779 		spa_async_suspend(spa);
6780 		mutex_enter(&spa_namespace_lock);
6781 		spa_close(spa, FTAG);
6782 
6783 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6784 			spa_unload(spa);
6785 			spa_deactivate(spa);
6786 		}
6787 		spa_remove(spa);
6788 	}
6789 	mutex_exit(&spa_namespace_lock);
6790 }
6791 
6792 vdev_t *
6793 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6794 {
6795 	vdev_t *vd;
6796 	int i;
6797 
6798 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6799 		return (vd);
6800 
6801 	if (aux) {
6802 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6803 			vd = spa->spa_l2cache.sav_vdevs[i];
6804 			if (vd->vdev_guid == guid)
6805 				return (vd);
6806 		}
6807 
6808 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6809 			vd = spa->spa_spares.sav_vdevs[i];
6810 			if (vd->vdev_guid == guid)
6811 				return (vd);
6812 		}
6813 	}
6814 
6815 	return (NULL);
6816 }
6817 
6818 void
6819 spa_upgrade(spa_t *spa, uint64_t version)
6820 {
6821 	ASSERT(spa_writeable(spa));
6822 
6823 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6824 
6825 	/*
6826 	 * This should only be called for a non-faulted pool, and since a
6827 	 * future version would result in an unopenable pool, this shouldn't be
6828 	 * possible.
6829 	 */
6830 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6831 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6832 
6833 	spa->spa_uberblock.ub_version = version;
6834 	vdev_config_dirty(spa->spa_root_vdev);
6835 
6836 	spa_config_exit(spa, SCL_ALL, FTAG);
6837 
6838 	txg_wait_synced(spa_get_dsl(spa), 0);
6839 }
6840 
6841 boolean_t
6842 spa_has_spare(spa_t *spa, uint64_t guid)
6843 {
6844 	int i;
6845 	uint64_t spareguid;
6846 	spa_aux_vdev_t *sav = &spa->spa_spares;
6847 
6848 	for (i = 0; i < sav->sav_count; i++)
6849 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6850 			return (B_TRUE);
6851 
6852 	for (i = 0; i < sav->sav_npending; i++) {
6853 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6854 		    &spareguid) == 0 && spareguid == guid)
6855 			return (B_TRUE);
6856 	}
6857 
6858 	return (B_FALSE);
6859 }
6860 
6861 /*
6862  * Check if a pool has an active shared spare device.
6863  * Note: reference count of an active spare is 2, as a spare and as a replace
6864  */
6865 static boolean_t
6866 spa_has_active_shared_spare(spa_t *spa)
6867 {
6868 	int i, refcnt;
6869 	uint64_t pool;
6870 	spa_aux_vdev_t *sav = &spa->spa_spares;
6871 
6872 	for (i = 0; i < sav->sav_count; i++) {
6873 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6874 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6875 		    refcnt > 2)
6876 			return (B_TRUE);
6877 	}
6878 
6879 	return (B_FALSE);
6880 }
6881 
6882 /*
6883  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6884  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6885  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6886  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6887  * or zdb as real changes.
6888  */
6889 void
6890 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6891 {
6892 #ifdef _KERNEL
6893 	sysevent_t		*ev;
6894 	sysevent_attr_list_t	*attr = NULL;
6895 	sysevent_value_t	value;
6896 	sysevent_id_t		eid;
6897 
6898 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6899 	    SE_SLEEP);
6900 
6901 	value.value_type = SE_DATA_TYPE_STRING;
6902 	value.value.sv_string = spa_name(spa);
6903 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6904 		goto done;
6905 
6906 	value.value_type = SE_DATA_TYPE_UINT64;
6907 	value.value.sv_uint64 = spa_guid(spa);
6908 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6909 		goto done;
6910 
6911 	if (vd) {
6912 		value.value_type = SE_DATA_TYPE_UINT64;
6913 		value.value.sv_uint64 = vd->vdev_guid;
6914 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6915 		    SE_SLEEP) != 0)
6916 			goto done;
6917 
6918 		if (vd->vdev_path) {
6919 			value.value_type = SE_DATA_TYPE_STRING;
6920 			value.value.sv_string = vd->vdev_path;
6921 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6922 			    &value, SE_SLEEP) != 0)
6923 				goto done;
6924 		}
6925 	}
6926 
6927 	if (sysevent_attach_attributes(ev, attr) != 0)
6928 		goto done;
6929 	attr = NULL;
6930 
6931 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6932 
6933 done:
6934 	if (attr)
6935 		sysevent_free_attr(attr);
6936 	sysevent_free(ev);
6937 #endif
6938 }
6939