spa.c revision c8e1f6d2e1adb3a8cc413859aaa8c61813665ac6
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/zio_compress.h>
39#include <sys/dmu.h>
40#include <sys/dmu_tx.h>
41#include <sys/zap.h>
42#include <sys/zil.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/uberblock_impl.h>
46#include <sys/txg.h>
47#include <sys/avl.h>
48#include <sys/dmu_traverse.h>
49#include <sys/dmu_objset.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dataset.h>
53#include <sys/dsl_dir.h>
54#include <sys/dsl_prop.h>
55#include <sys/dsl_synctask.h>
56#include <sys/fs/zfs.h>
57#include <sys/arc.h>
58#include <sys/callb.h>
59#include <sys/systeminfo.h>
60#include <sys/sunddi.h>
61#include <sys/spa_boot.h>
62#include <sys/zfs_ioctl.h>
63
64#ifdef	_KERNEL
65#include <sys/zone.h>
66#endif	/* _KERNEL */
67
68#include "zfs_prop.h"
69#include "zfs_comutil.h"
70
71enum zti_modes {
72	zti_mode_fixed,			/* value is # of threads (min 1) */
73	zti_mode_online_percent,	/* value is % of online CPUs */
74	zti_mode_tune,			/* fill from zio_taskq_tune_* */
75	zti_nmodes
76};
77
78#define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
79#define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
80#define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
81
82#define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
83
84typedef struct zio_taskq_info {
85	const char *zti_name;
86	struct {
87		enum zti_modes zti_mode;
88		uint_t zti_value;
89	} zti_nthreads[ZIO_TASKQ_TYPES];
90} zio_taskq_info_t;
91
92static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
93				"issue",		"intr"
94};
95
96const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
97	/*			ISSUE			INTR		*/
98	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
99	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
100	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
101	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
102	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104};
105
106enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
107uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
108
109static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
110static boolean_t spa_has_active_shared_spare(spa_t *spa);
111
112/*
113 * ==========================================================================
114 * SPA properties routines
115 * ==========================================================================
116 */
117
118/*
119 * Add a (source=src, propname=propval) list to an nvlist.
120 */
121static void
122spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
123    uint64_t intval, zprop_source_t src)
124{
125	const char *propname = zpool_prop_to_name(prop);
126	nvlist_t *propval;
127
128	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
129	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
130
131	if (strval != NULL)
132		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
133	else
134		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
135
136	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
137	nvlist_free(propval);
138}
139
140/*
141 * Get property values from the spa configuration.
142 */
143static void
144spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
145{
146	uint64_t size;
147	uint64_t used;
148	uint64_t cap, version;
149	zprop_source_t src = ZPROP_SRC_NONE;
150	spa_config_dirent_t *dp;
151
152	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
153
154	if (spa->spa_root_vdev != NULL) {
155		size = spa_get_space(spa);
156		used = spa_get_alloc(spa);
157		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
158		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
159		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
160		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
161		    size - used, src);
162
163		cap = (size == 0) ? 0 : (used * 100 / size);
164		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
165
166		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
167		    spa->spa_root_vdev->vdev_state, src);
168
169		version = spa_version(spa);
170		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
171			src = ZPROP_SRC_DEFAULT;
172		else
173			src = ZPROP_SRC_LOCAL;
174		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
175	}
176
177	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
178
179	if (spa->spa_root != NULL)
180		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
181		    0, ZPROP_SRC_LOCAL);
182
183	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
184		if (dp->scd_path == NULL) {
185			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
186			    "none", 0, ZPROP_SRC_LOCAL);
187		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
188			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
189			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
190		}
191	}
192}
193
194/*
195 * Get zpool property values.
196 */
197int
198spa_prop_get(spa_t *spa, nvlist_t **nvp)
199{
200	zap_cursor_t zc;
201	zap_attribute_t za;
202	objset_t *mos = spa->spa_meta_objset;
203	int err;
204
205	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
206
207	mutex_enter(&spa->spa_props_lock);
208
209	/*
210	 * Get properties from the spa config.
211	 */
212	spa_prop_get_config(spa, nvp);
213
214	/* If no pool property object, no more prop to get. */
215	if (spa->spa_pool_props_object == 0) {
216		mutex_exit(&spa->spa_props_lock);
217		return (0);
218	}
219
220	/*
221	 * Get properties from the MOS pool property object.
222	 */
223	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
224	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
225	    zap_cursor_advance(&zc)) {
226		uint64_t intval = 0;
227		char *strval = NULL;
228		zprop_source_t src = ZPROP_SRC_DEFAULT;
229		zpool_prop_t prop;
230
231		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
232			continue;
233
234		switch (za.za_integer_length) {
235		case 8:
236			/* integer property */
237			if (za.za_first_integer !=
238			    zpool_prop_default_numeric(prop))
239				src = ZPROP_SRC_LOCAL;
240
241			if (prop == ZPOOL_PROP_BOOTFS) {
242				dsl_pool_t *dp;
243				dsl_dataset_t *ds = NULL;
244
245				dp = spa_get_dsl(spa);
246				rw_enter(&dp->dp_config_rwlock, RW_READER);
247				if (err = dsl_dataset_hold_obj(dp,
248				    za.za_first_integer, FTAG, &ds)) {
249					rw_exit(&dp->dp_config_rwlock);
250					break;
251				}
252
253				strval = kmem_alloc(
254				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
255				    KM_SLEEP);
256				dsl_dataset_name(ds, strval);
257				dsl_dataset_rele(ds, FTAG);
258				rw_exit(&dp->dp_config_rwlock);
259			} else {
260				strval = NULL;
261				intval = za.za_first_integer;
262			}
263
264			spa_prop_add_list(*nvp, prop, strval, intval, src);
265
266			if (strval != NULL)
267				kmem_free(strval,
268				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
269
270			break;
271
272		case 1:
273			/* string property */
274			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
275			err = zap_lookup(mos, spa->spa_pool_props_object,
276			    za.za_name, 1, za.za_num_integers, strval);
277			if (err) {
278				kmem_free(strval, za.za_num_integers);
279				break;
280			}
281			spa_prop_add_list(*nvp, prop, strval, 0, src);
282			kmem_free(strval, za.za_num_integers);
283			break;
284
285		default:
286			break;
287		}
288	}
289	zap_cursor_fini(&zc);
290	mutex_exit(&spa->spa_props_lock);
291out:
292	if (err && err != ENOENT) {
293		nvlist_free(*nvp);
294		*nvp = NULL;
295		return (err);
296	}
297
298	return (0);
299}
300
301/*
302 * Validate the given pool properties nvlist and modify the list
303 * for the property values to be set.
304 */
305static int
306spa_prop_validate(spa_t *spa, nvlist_t *props)
307{
308	nvpair_t *elem;
309	int error = 0, reset_bootfs = 0;
310	uint64_t objnum;
311
312	elem = NULL;
313	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
314		zpool_prop_t prop;
315		char *propname, *strval;
316		uint64_t intval;
317		objset_t *os;
318		char *slash;
319
320		propname = nvpair_name(elem);
321
322		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323			return (EINVAL);
324
325		switch (prop) {
326		case ZPOOL_PROP_VERSION:
327			error = nvpair_value_uint64(elem, &intval);
328			if (!error &&
329			    (intval < spa_version(spa) || intval > SPA_VERSION))
330				error = EINVAL;
331			break;
332
333		case ZPOOL_PROP_DELEGATION:
334		case ZPOOL_PROP_AUTOREPLACE:
335		case ZPOOL_PROP_LISTSNAPS:
336		case ZPOOL_PROP_AUTOEXPAND:
337			error = nvpair_value_uint64(elem, &intval);
338			if (!error && intval > 1)
339				error = EINVAL;
340			break;
341
342		case ZPOOL_PROP_BOOTFS:
343			/*
344			 * If the pool version is less than SPA_VERSION_BOOTFS,
345			 * or the pool is still being created (version == 0),
346			 * the bootfs property cannot be set.
347			 */
348			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
349				error = ENOTSUP;
350				break;
351			}
352
353			/*
354			 * Make sure the vdev config is bootable
355			 */
356			if (!vdev_is_bootable(spa->spa_root_vdev)) {
357				error = ENOTSUP;
358				break;
359			}
360
361			reset_bootfs = 1;
362
363			error = nvpair_value_string(elem, &strval);
364
365			if (!error) {
366				uint64_t compress;
367
368				if (strval == NULL || strval[0] == '\0') {
369					objnum = zpool_prop_default_numeric(
370					    ZPOOL_PROP_BOOTFS);
371					break;
372				}
373
374				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
375				    DS_MODE_USER | DS_MODE_READONLY, &os))
376					break;
377
378				/* We don't support gzip bootable datasets */
379				if ((error = dsl_prop_get_integer(strval,
380				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
381				    &compress, NULL)) == 0 &&
382				    !BOOTFS_COMPRESS_VALID(compress)) {
383					error = ENOTSUP;
384				} else {
385					objnum = dmu_objset_id(os);
386				}
387				dmu_objset_close(os);
388			}
389			break;
390
391		case ZPOOL_PROP_FAILUREMODE:
392			error = nvpair_value_uint64(elem, &intval);
393			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
394			    intval > ZIO_FAILURE_MODE_PANIC))
395				error = EINVAL;
396
397			/*
398			 * This is a special case which only occurs when
399			 * the pool has completely failed. This allows
400			 * the user to change the in-core failmode property
401			 * without syncing it out to disk (I/Os might
402			 * currently be blocked). We do this by returning
403			 * EIO to the caller (spa_prop_set) to trick it
404			 * into thinking we encountered a property validation
405			 * error.
406			 */
407			if (!error && spa_suspended(spa)) {
408				spa->spa_failmode = intval;
409				error = EIO;
410			}
411			break;
412
413		case ZPOOL_PROP_CACHEFILE:
414			if ((error = nvpair_value_string(elem, &strval)) != 0)
415				break;
416
417			if (strval[0] == '\0')
418				break;
419
420			if (strcmp(strval, "none") == 0)
421				break;
422
423			if (strval[0] != '/') {
424				error = EINVAL;
425				break;
426			}
427
428			slash = strrchr(strval, '/');
429			ASSERT(slash != NULL);
430
431			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
432			    strcmp(slash, "/..") == 0)
433				error = EINVAL;
434			break;
435		}
436
437		if (error)
438			break;
439	}
440
441	if (!error && reset_bootfs) {
442		error = nvlist_remove(props,
443		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
444
445		if (!error) {
446			error = nvlist_add_uint64(props,
447			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
448		}
449	}
450
451	return (error);
452}
453
454void
455spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
456{
457	char *cachefile;
458	spa_config_dirent_t *dp;
459
460	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
461	    &cachefile) != 0)
462		return;
463
464	dp = kmem_alloc(sizeof (spa_config_dirent_t),
465	    KM_SLEEP);
466
467	if (cachefile[0] == '\0')
468		dp->scd_path = spa_strdup(spa_config_path);
469	else if (strcmp(cachefile, "none") == 0)
470		dp->scd_path = NULL;
471	else
472		dp->scd_path = spa_strdup(cachefile);
473
474	list_insert_head(&spa->spa_config_list, dp);
475	if (need_sync)
476		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
477}
478
479int
480spa_prop_set(spa_t *spa, nvlist_t *nvp)
481{
482	int error;
483	nvpair_t *elem;
484	boolean_t need_sync = B_FALSE;
485	zpool_prop_t prop;
486
487	if ((error = spa_prop_validate(spa, nvp)) != 0)
488		return (error);
489
490	elem = NULL;
491	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
492		if ((prop = zpool_name_to_prop(
493		    nvpair_name(elem))) == ZPROP_INVAL)
494			return (EINVAL);
495
496		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
497			continue;
498
499		need_sync = B_TRUE;
500		break;
501	}
502
503	if (need_sync)
504		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
505		    spa, nvp, 3));
506	else
507		return (0);
508}
509
510/*
511 * If the bootfs property value is dsobj, clear it.
512 */
513void
514spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
515{
516	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
517		VERIFY(zap_remove(spa->spa_meta_objset,
518		    spa->spa_pool_props_object,
519		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
520		spa->spa_bootfs = 0;
521	}
522}
523
524/*
525 * ==========================================================================
526 * SPA state manipulation (open/create/destroy/import/export)
527 * ==========================================================================
528 */
529
530static int
531spa_error_entry_compare(const void *a, const void *b)
532{
533	spa_error_entry_t *sa = (spa_error_entry_t *)a;
534	spa_error_entry_t *sb = (spa_error_entry_t *)b;
535	int ret;
536
537	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
538	    sizeof (zbookmark_t));
539
540	if (ret < 0)
541		return (-1);
542	else if (ret > 0)
543		return (1);
544	else
545		return (0);
546}
547
548/*
549 * Utility function which retrieves copies of the current logs and
550 * re-initializes them in the process.
551 */
552void
553spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
554{
555	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
556
557	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
558	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
559
560	avl_create(&spa->spa_errlist_scrub,
561	    spa_error_entry_compare, sizeof (spa_error_entry_t),
562	    offsetof(spa_error_entry_t, se_avl));
563	avl_create(&spa->spa_errlist_last,
564	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565	    offsetof(spa_error_entry_t, se_avl));
566}
567
568/*
569 * Activate an uninitialized pool.
570 */
571static void
572spa_activate(spa_t *spa, int mode)
573{
574	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
575
576	spa->spa_state = POOL_STATE_ACTIVE;
577	spa->spa_mode = mode;
578
579	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
580	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
581
582	for (int t = 0; t < ZIO_TYPES; t++) {
583		const zio_taskq_info_t *ztip = &zio_taskqs[t];
584		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
585			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
586			uint_t value = ztip->zti_nthreads[q].zti_value;
587			char name[32];
588
589			(void) snprintf(name, sizeof (name),
590			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
591
592			if (mode == zti_mode_tune) {
593				mode = zio_taskq_tune_mode;
594				value = zio_taskq_tune_value;
595				if (mode == zti_mode_tune)
596					mode = zti_mode_online_percent;
597			}
598
599			switch (mode) {
600			case zti_mode_fixed:
601				ASSERT3U(value, >=, 1);
602				value = MAX(value, 1);
603
604				spa->spa_zio_taskq[t][q] = taskq_create(name,
605				    value, maxclsyspri, 50, INT_MAX,
606				    TASKQ_PREPOPULATE);
607				break;
608
609			case zti_mode_online_percent:
610				spa->spa_zio_taskq[t][q] = taskq_create(name,
611				    value, maxclsyspri, 50, INT_MAX,
612				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
613				break;
614
615			case zti_mode_tune:
616			default:
617				panic("unrecognized mode for "
618				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
619				    "in spa_activate()",
620				    t, q, mode, value);
621				break;
622			}
623		}
624	}
625
626	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
627	    offsetof(vdev_t, vdev_config_dirty_node));
628	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
629	    offsetof(vdev_t, vdev_state_dirty_node));
630
631	txg_list_create(&spa->spa_vdev_txg_list,
632	    offsetof(struct vdev, vdev_txg_node));
633
634	avl_create(&spa->spa_errlist_scrub,
635	    spa_error_entry_compare, sizeof (spa_error_entry_t),
636	    offsetof(spa_error_entry_t, se_avl));
637	avl_create(&spa->spa_errlist_last,
638	    spa_error_entry_compare, sizeof (spa_error_entry_t),
639	    offsetof(spa_error_entry_t, se_avl));
640}
641
642/*
643 * Opposite of spa_activate().
644 */
645static void
646spa_deactivate(spa_t *spa)
647{
648	ASSERT(spa->spa_sync_on == B_FALSE);
649	ASSERT(spa->spa_dsl_pool == NULL);
650	ASSERT(spa->spa_root_vdev == NULL);
651	ASSERT(spa->spa_async_zio_root == NULL);
652	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
653
654	txg_list_destroy(&spa->spa_vdev_txg_list);
655
656	list_destroy(&spa->spa_config_dirty_list);
657	list_destroy(&spa->spa_state_dirty_list);
658
659	for (int t = 0; t < ZIO_TYPES; t++) {
660		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
661			taskq_destroy(spa->spa_zio_taskq[t][q]);
662			spa->spa_zio_taskq[t][q] = NULL;
663		}
664	}
665
666	metaslab_class_destroy(spa->spa_normal_class);
667	spa->spa_normal_class = NULL;
668
669	metaslab_class_destroy(spa->spa_log_class);
670	spa->spa_log_class = NULL;
671
672	/*
673	 * If this was part of an import or the open otherwise failed, we may
674	 * still have errors left in the queues.  Empty them just in case.
675	 */
676	spa_errlog_drain(spa);
677
678	avl_destroy(&spa->spa_errlist_scrub);
679	avl_destroy(&spa->spa_errlist_last);
680
681	spa->spa_state = POOL_STATE_UNINITIALIZED;
682}
683
684/*
685 * Verify a pool configuration, and construct the vdev tree appropriately.  This
686 * will create all the necessary vdevs in the appropriate layout, with each vdev
687 * in the CLOSED state.  This will prep the pool before open/creation/import.
688 * All vdev validation is done by the vdev_alloc() routine.
689 */
690static int
691spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
692    uint_t id, int atype)
693{
694	nvlist_t **child;
695	uint_t children;
696	int error;
697
698	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
699		return (error);
700
701	if ((*vdp)->vdev_ops->vdev_op_leaf)
702		return (0);
703
704	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
705	    &child, &children);
706
707	if (error == ENOENT)
708		return (0);
709
710	if (error) {
711		vdev_free(*vdp);
712		*vdp = NULL;
713		return (EINVAL);
714	}
715
716	for (int c = 0; c < children; c++) {
717		vdev_t *vd;
718		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
719		    atype)) != 0) {
720			vdev_free(*vdp);
721			*vdp = NULL;
722			return (error);
723		}
724	}
725
726	ASSERT(*vdp != NULL);
727
728	return (0);
729}
730
731/*
732 * Opposite of spa_load().
733 */
734static void
735spa_unload(spa_t *spa)
736{
737	int i;
738
739	ASSERT(MUTEX_HELD(&spa_namespace_lock));
740
741	/*
742	 * Stop async tasks.
743	 */
744	spa_async_suspend(spa);
745
746	/*
747	 * Stop syncing.
748	 */
749	if (spa->spa_sync_on) {
750		txg_sync_stop(spa->spa_dsl_pool);
751		spa->spa_sync_on = B_FALSE;
752	}
753
754	/*
755	 * Wait for any outstanding async I/O to complete.
756	 */
757	if (spa->spa_async_zio_root != NULL) {
758		(void) zio_wait(spa->spa_async_zio_root);
759		spa->spa_async_zio_root = NULL;
760	}
761
762	/*
763	 * Close the dsl pool.
764	 */
765	if (spa->spa_dsl_pool) {
766		dsl_pool_close(spa->spa_dsl_pool);
767		spa->spa_dsl_pool = NULL;
768	}
769
770	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
771
772	/*
773	 * Drop and purge level 2 cache
774	 */
775	spa_l2cache_drop(spa);
776
777	/*
778	 * Close all vdevs.
779	 */
780	if (spa->spa_root_vdev)
781		vdev_free(spa->spa_root_vdev);
782	ASSERT(spa->spa_root_vdev == NULL);
783
784	for (i = 0; i < spa->spa_spares.sav_count; i++)
785		vdev_free(spa->spa_spares.sav_vdevs[i]);
786	if (spa->spa_spares.sav_vdevs) {
787		kmem_free(spa->spa_spares.sav_vdevs,
788		    spa->spa_spares.sav_count * sizeof (void *));
789		spa->spa_spares.sav_vdevs = NULL;
790	}
791	if (spa->spa_spares.sav_config) {
792		nvlist_free(spa->spa_spares.sav_config);
793		spa->spa_spares.sav_config = NULL;
794	}
795	spa->spa_spares.sav_count = 0;
796
797	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
798		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
799	if (spa->spa_l2cache.sav_vdevs) {
800		kmem_free(spa->spa_l2cache.sav_vdevs,
801		    spa->spa_l2cache.sav_count * sizeof (void *));
802		spa->spa_l2cache.sav_vdevs = NULL;
803	}
804	if (spa->spa_l2cache.sav_config) {
805		nvlist_free(spa->spa_l2cache.sav_config);
806		spa->spa_l2cache.sav_config = NULL;
807	}
808	spa->spa_l2cache.sav_count = 0;
809
810	spa->spa_async_suspended = 0;
811
812	spa_config_exit(spa, SCL_ALL, FTAG);
813}
814
815/*
816 * Load (or re-load) the current list of vdevs describing the active spares for
817 * this pool.  When this is called, we have some form of basic information in
818 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
819 * then re-generate a more complete list including status information.
820 */
821static void
822spa_load_spares(spa_t *spa)
823{
824	nvlist_t **spares;
825	uint_t nspares;
826	int i;
827	vdev_t *vd, *tvd;
828
829	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
830
831	/*
832	 * First, close and free any existing spare vdevs.
833	 */
834	for (i = 0; i < spa->spa_spares.sav_count; i++) {
835		vd = spa->spa_spares.sav_vdevs[i];
836
837		/* Undo the call to spa_activate() below */
838		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
839		    B_FALSE)) != NULL && tvd->vdev_isspare)
840			spa_spare_remove(tvd);
841		vdev_close(vd);
842		vdev_free(vd);
843	}
844
845	if (spa->spa_spares.sav_vdevs)
846		kmem_free(spa->spa_spares.sav_vdevs,
847		    spa->spa_spares.sav_count * sizeof (void *));
848
849	if (spa->spa_spares.sav_config == NULL)
850		nspares = 0;
851	else
852		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
853		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
854
855	spa->spa_spares.sav_count = (int)nspares;
856	spa->spa_spares.sav_vdevs = NULL;
857
858	if (nspares == 0)
859		return;
860
861	/*
862	 * Construct the array of vdevs, opening them to get status in the
863	 * process.   For each spare, there is potentially two different vdev_t
864	 * structures associated with it: one in the list of spares (used only
865	 * for basic validation purposes) and one in the active vdev
866	 * configuration (if it's spared in).  During this phase we open and
867	 * validate each vdev on the spare list.  If the vdev also exists in the
868	 * active configuration, then we also mark this vdev as an active spare.
869	 */
870	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
871	    KM_SLEEP);
872	for (i = 0; i < spa->spa_spares.sav_count; i++) {
873		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
874		    VDEV_ALLOC_SPARE) == 0);
875		ASSERT(vd != NULL);
876
877		spa->spa_spares.sav_vdevs[i] = vd;
878
879		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
880		    B_FALSE)) != NULL) {
881			if (!tvd->vdev_isspare)
882				spa_spare_add(tvd);
883
884			/*
885			 * We only mark the spare active if we were successfully
886			 * able to load the vdev.  Otherwise, importing a pool
887			 * with a bad active spare would result in strange
888			 * behavior, because multiple pool would think the spare
889			 * is actively in use.
890			 *
891			 * There is a vulnerability here to an equally bizarre
892			 * circumstance, where a dead active spare is later
893			 * brought back to life (onlined or otherwise).  Given
894			 * the rarity of this scenario, and the extra complexity
895			 * it adds, we ignore the possibility.
896			 */
897			if (!vdev_is_dead(tvd))
898				spa_spare_activate(tvd);
899		}
900
901		vd->vdev_top = vd;
902		vd->vdev_aux = &spa->spa_spares;
903
904		if (vdev_open(vd) != 0)
905			continue;
906
907		if (vdev_validate_aux(vd) == 0)
908			spa_spare_add(vd);
909	}
910
911	/*
912	 * Recompute the stashed list of spares, with status information
913	 * this time.
914	 */
915	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
916	    DATA_TYPE_NVLIST_ARRAY) == 0);
917
918	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
919	    KM_SLEEP);
920	for (i = 0; i < spa->spa_spares.sav_count; i++)
921		spares[i] = vdev_config_generate(spa,
922		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
923	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
924	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
925	for (i = 0; i < spa->spa_spares.sav_count; i++)
926		nvlist_free(spares[i]);
927	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
928}
929
930/*
931 * Load (or re-load) the current list of vdevs describing the active l2cache for
932 * this pool.  When this is called, we have some form of basic information in
933 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
934 * then re-generate a more complete list including status information.
935 * Devices which are already active have their details maintained, and are
936 * not re-opened.
937 */
938static void
939spa_load_l2cache(spa_t *spa)
940{
941	nvlist_t **l2cache;
942	uint_t nl2cache;
943	int i, j, oldnvdevs;
944	uint64_t guid;
945	vdev_t *vd, **oldvdevs, **newvdevs;
946	spa_aux_vdev_t *sav = &spa->spa_l2cache;
947
948	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
949
950	if (sav->sav_config != NULL) {
951		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
952		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
953		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
954	} else {
955		nl2cache = 0;
956	}
957
958	oldvdevs = sav->sav_vdevs;
959	oldnvdevs = sav->sav_count;
960	sav->sav_vdevs = NULL;
961	sav->sav_count = 0;
962
963	/*
964	 * Process new nvlist of vdevs.
965	 */
966	for (i = 0; i < nl2cache; i++) {
967		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
968		    &guid) == 0);
969
970		newvdevs[i] = NULL;
971		for (j = 0; j < oldnvdevs; j++) {
972			vd = oldvdevs[j];
973			if (vd != NULL && guid == vd->vdev_guid) {
974				/*
975				 * Retain previous vdev for add/remove ops.
976				 */
977				newvdevs[i] = vd;
978				oldvdevs[j] = NULL;
979				break;
980			}
981		}
982
983		if (newvdevs[i] == NULL) {
984			/*
985			 * Create new vdev
986			 */
987			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
988			    VDEV_ALLOC_L2CACHE) == 0);
989			ASSERT(vd != NULL);
990			newvdevs[i] = vd;
991
992			/*
993			 * Commit this vdev as an l2cache device,
994			 * even if it fails to open.
995			 */
996			spa_l2cache_add(vd);
997
998			vd->vdev_top = vd;
999			vd->vdev_aux = sav;
1000
1001			spa_l2cache_activate(vd);
1002
1003			if (vdev_open(vd) != 0)
1004				continue;
1005
1006			(void) vdev_validate_aux(vd);
1007
1008			if (!vdev_is_dead(vd))
1009				l2arc_add_vdev(spa, vd);
1010		}
1011	}
1012
1013	/*
1014	 * Purge vdevs that were dropped
1015	 */
1016	for (i = 0; i < oldnvdevs; i++) {
1017		uint64_t pool;
1018
1019		vd = oldvdevs[i];
1020		if (vd != NULL) {
1021			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1022			    pool != 0ULL && l2arc_vdev_present(vd))
1023				l2arc_remove_vdev(vd);
1024			(void) vdev_close(vd);
1025			spa_l2cache_remove(vd);
1026		}
1027	}
1028
1029	if (oldvdevs)
1030		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1031
1032	if (sav->sav_config == NULL)
1033		goto out;
1034
1035	sav->sav_vdevs = newvdevs;
1036	sav->sav_count = (int)nl2cache;
1037
1038	/*
1039	 * Recompute the stashed list of l2cache devices, with status
1040	 * information this time.
1041	 */
1042	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1043	    DATA_TYPE_NVLIST_ARRAY) == 0);
1044
1045	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1046	for (i = 0; i < sav->sav_count; i++)
1047		l2cache[i] = vdev_config_generate(spa,
1048		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1049	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1050	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1051out:
1052	for (i = 0; i < sav->sav_count; i++)
1053		nvlist_free(l2cache[i]);
1054	if (sav->sav_count)
1055		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1056}
1057
1058static int
1059load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1060{
1061	dmu_buf_t *db;
1062	char *packed = NULL;
1063	size_t nvsize = 0;
1064	int error;
1065	*value = NULL;
1066
1067	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1068	nvsize = *(uint64_t *)db->db_data;
1069	dmu_buf_rele(db, FTAG);
1070
1071	packed = kmem_alloc(nvsize, KM_SLEEP);
1072	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1073	    DMU_READ_PREFETCH);
1074	if (error == 0)
1075		error = nvlist_unpack(packed, nvsize, value, 0);
1076	kmem_free(packed, nvsize);
1077
1078	return (error);
1079}
1080
1081/*
1082 * Checks to see if the given vdev could not be opened, in which case we post a
1083 * sysevent to notify the autoreplace code that the device has been removed.
1084 */
1085static void
1086spa_check_removed(vdev_t *vd)
1087{
1088	for (int c = 0; c < vd->vdev_children; c++)
1089		spa_check_removed(vd->vdev_child[c]);
1090
1091	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1092		zfs_post_autoreplace(vd->vdev_spa, vd);
1093		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1094	}
1095}
1096
1097/*
1098 * Load the slog device state from the config object since it's possible
1099 * that the label does not contain the most up-to-date information.
1100 */
1101void
1102spa_load_log_state(spa_t *spa)
1103{
1104	nvlist_t *nv, *nvroot, **child;
1105	uint64_t is_log;
1106	uint_t children;
1107	vdev_t *rvd = spa->spa_root_vdev;
1108
1109	VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1110	VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1111	VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1112	    &child, &children) == 0);
1113
1114	for (int c = 0; c < children; c++) {
1115		vdev_t *tvd = rvd->vdev_child[c];
1116
1117		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1118		    &is_log) == 0 && is_log)
1119			vdev_load_log_state(tvd, child[c]);
1120	}
1121	nvlist_free(nv);
1122}
1123
1124/*
1125 * Check for missing log devices
1126 */
1127int
1128spa_check_logs(spa_t *spa)
1129{
1130	switch (spa->spa_log_state) {
1131	case SPA_LOG_MISSING:
1132		/* need to recheck in case slog has been restored */
1133	case SPA_LOG_UNKNOWN:
1134		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1135		    DS_FIND_CHILDREN)) {
1136			spa->spa_log_state = SPA_LOG_MISSING;
1137			return (1);
1138		}
1139		break;
1140	}
1141	return (0);
1142}
1143
1144/*
1145 * Load an existing storage pool, using the pool's builtin spa_config as a
1146 * source of configuration information.
1147 */
1148static int
1149spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1150{
1151	int error = 0;
1152	nvlist_t *nvroot = NULL;
1153	vdev_t *rvd;
1154	uberblock_t *ub = &spa->spa_uberblock;
1155	uint64_t config_cache_txg = spa->spa_config_txg;
1156	uint64_t pool_guid;
1157	uint64_t version;
1158	uint64_t autoreplace = 0;
1159	int orig_mode = spa->spa_mode;
1160	char *ereport = FM_EREPORT_ZFS_POOL;
1161
1162	/*
1163	 * If this is an untrusted config, access the pool in read-only mode.
1164	 * This prevents things like resilvering recently removed devices.
1165	 */
1166	if (!mosconfig)
1167		spa->spa_mode = FREAD;
1168
1169	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1170
1171	spa->spa_load_state = state;
1172
1173	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1174	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1175		error = EINVAL;
1176		goto out;
1177	}
1178
1179	/*
1180	 * Versioning wasn't explicitly added to the label until later, so if
1181	 * it's not present treat it as the initial version.
1182	 */
1183	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1184		version = SPA_VERSION_INITIAL;
1185
1186	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1187	    &spa->spa_config_txg);
1188
1189	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1190	    spa_guid_exists(pool_guid, 0)) {
1191		error = EEXIST;
1192		goto out;
1193	}
1194
1195	spa->spa_load_guid = pool_guid;
1196
1197	/*
1198	 * Create "The Godfather" zio to hold all async IOs
1199	 */
1200	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1201	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1202
1203	/*
1204	 * Parse the configuration into a vdev tree.  We explicitly set the
1205	 * value that will be returned by spa_version() since parsing the
1206	 * configuration requires knowing the version number.
1207	 */
1208	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1209	spa->spa_ubsync.ub_version = version;
1210	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1211	spa_config_exit(spa, SCL_ALL, FTAG);
1212
1213	if (error != 0)
1214		goto out;
1215
1216	ASSERT(spa->spa_root_vdev == rvd);
1217	ASSERT(spa_guid(spa) == pool_guid);
1218
1219	/*
1220	 * Try to open all vdevs, loading each label in the process.
1221	 */
1222	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1223	error = vdev_open(rvd);
1224	spa_config_exit(spa, SCL_ALL, FTAG);
1225	if (error != 0)
1226		goto out;
1227
1228	/*
1229	 * We need to validate the vdev labels against the configuration that
1230	 * we have in hand, which is dependent on the setting of mosconfig. If
1231	 * mosconfig is true then we're validating the vdev labels based on
1232	 * that config. Otherwise, we're validating against the cached config
1233	 * (zpool.cache) that was read when we loaded the zfs module, and then
1234	 * later we will recursively call spa_load() and validate against
1235	 * the vdev config.
1236	 */
1237	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238	error = vdev_validate(rvd);
1239	spa_config_exit(spa, SCL_ALL, FTAG);
1240	if (error != 0)
1241		goto out;
1242
1243	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1244		error = ENXIO;
1245		goto out;
1246	}
1247
1248	/*
1249	 * Find the best uberblock.
1250	 */
1251	vdev_uberblock_load(NULL, rvd, ub);
1252
1253	/*
1254	 * If we weren't able to find a single valid uberblock, return failure.
1255	 */
1256	if (ub->ub_txg == 0) {
1257		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258		    VDEV_AUX_CORRUPT_DATA);
1259		error = ENXIO;
1260		goto out;
1261	}
1262
1263	/*
1264	 * If the pool is newer than the code, we can't open it.
1265	 */
1266	if (ub->ub_version > SPA_VERSION) {
1267		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268		    VDEV_AUX_VERSION_NEWER);
1269		error = ENOTSUP;
1270		goto out;
1271	}
1272
1273	/*
1274	 * If the vdev guid sum doesn't match the uberblock, we have an
1275	 * incomplete configuration.
1276	 */
1277	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1278		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1279		    VDEV_AUX_BAD_GUID_SUM);
1280		error = ENXIO;
1281		goto out;
1282	}
1283
1284	/*
1285	 * Initialize internal SPA structures.
1286	 */
1287	spa->spa_state = POOL_STATE_ACTIVE;
1288	spa->spa_ubsync = spa->spa_uberblock;
1289	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1290	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1291	if (error) {
1292		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1293		    VDEV_AUX_CORRUPT_DATA);
1294		goto out;
1295	}
1296	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1297
1298	if (zap_lookup(spa->spa_meta_objset,
1299	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1300	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1301		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302		    VDEV_AUX_CORRUPT_DATA);
1303		error = EIO;
1304		goto out;
1305	}
1306
1307	if (!mosconfig) {
1308		nvlist_t *newconfig;
1309		uint64_t hostid;
1310
1311		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1312			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313			    VDEV_AUX_CORRUPT_DATA);
1314			error = EIO;
1315			goto out;
1316		}
1317
1318		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1319		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1320			char *hostname;
1321			unsigned long myhostid = 0;
1322
1323			VERIFY(nvlist_lookup_string(newconfig,
1324			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1325
1326#ifdef	_KERNEL
1327			myhostid = zone_get_hostid(NULL);
1328#else	/* _KERNEL */
1329			/*
1330			 * We're emulating the system's hostid in userland, so
1331			 * we can't use zone_get_hostid().
1332			 */
1333			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1334#endif	/* _KERNEL */
1335			if (hostid != 0 && myhostid != 0 &&
1336			    hostid != myhostid) {
1337				cmn_err(CE_WARN, "pool '%s' could not be "
1338				    "loaded as it was last accessed by "
1339				    "another system (host: %s hostid: 0x%lx). "
1340				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1341				    spa_name(spa), hostname,
1342				    (unsigned long)hostid);
1343				error = EBADF;
1344				goto out;
1345			}
1346		}
1347
1348		spa_config_set(spa, newconfig);
1349		spa_unload(spa);
1350		spa_deactivate(spa);
1351		spa_activate(spa, orig_mode);
1352
1353		return (spa_load(spa, newconfig, state, B_TRUE));
1354	}
1355
1356	if (zap_lookup(spa->spa_meta_objset,
1357	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1358	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1359		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360		    VDEV_AUX_CORRUPT_DATA);
1361		error = EIO;
1362		goto out;
1363	}
1364
1365	/*
1366	 * Load the bit that tells us to use the new accounting function
1367	 * (raid-z deflation).  If we have an older pool, this will not
1368	 * be present.
1369	 */
1370	error = zap_lookup(spa->spa_meta_objset,
1371	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1372	    sizeof (uint64_t), 1, &spa->spa_deflate);
1373	if (error != 0 && error != ENOENT) {
1374		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375		    VDEV_AUX_CORRUPT_DATA);
1376		error = EIO;
1377		goto out;
1378	}
1379
1380	/*
1381	 * Load the persistent error log.  If we have an older pool, this will
1382	 * not be present.
1383	 */
1384	error = zap_lookup(spa->spa_meta_objset,
1385	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1386	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1387	if (error != 0 && error != ENOENT) {
1388		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1389		    VDEV_AUX_CORRUPT_DATA);
1390		error = EIO;
1391		goto out;
1392	}
1393
1394	error = zap_lookup(spa->spa_meta_objset,
1395	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1396	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1397	if (error != 0 && error != ENOENT) {
1398		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1399		    VDEV_AUX_CORRUPT_DATA);
1400		error = EIO;
1401		goto out;
1402	}
1403
1404	/*
1405	 * Load the history object.  If we have an older pool, this
1406	 * will not be present.
1407	 */
1408	error = zap_lookup(spa->spa_meta_objset,
1409	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1410	    sizeof (uint64_t), 1, &spa->spa_history);
1411	if (error != 0 && error != ENOENT) {
1412		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1413		    VDEV_AUX_CORRUPT_DATA);
1414		error = EIO;
1415		goto out;
1416	}
1417
1418	/*
1419	 * Load any hot spares for this pool.
1420	 */
1421	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1422	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1423	if (error != 0 && error != ENOENT) {
1424		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425		    VDEV_AUX_CORRUPT_DATA);
1426		error = EIO;
1427		goto out;
1428	}
1429	if (error == 0) {
1430		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1431		if (load_nvlist(spa, spa->spa_spares.sav_object,
1432		    &spa->spa_spares.sav_config) != 0) {
1433			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1434			    VDEV_AUX_CORRUPT_DATA);
1435			error = EIO;
1436			goto out;
1437		}
1438
1439		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1440		spa_load_spares(spa);
1441		spa_config_exit(spa, SCL_ALL, FTAG);
1442	}
1443
1444	/*
1445	 * Load any level 2 ARC devices for this pool.
1446	 */
1447	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1449	    &spa->spa_l2cache.sav_object);
1450	if (error != 0 && error != ENOENT) {
1451		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452		    VDEV_AUX_CORRUPT_DATA);
1453		error = EIO;
1454		goto out;
1455	}
1456	if (error == 0) {
1457		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1458		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1459		    &spa->spa_l2cache.sav_config) != 0) {
1460			vdev_set_state(rvd, B_TRUE,
1461			    VDEV_STATE_CANT_OPEN,
1462			    VDEV_AUX_CORRUPT_DATA);
1463			error = EIO;
1464			goto out;
1465		}
1466
1467		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1468		spa_load_l2cache(spa);
1469		spa_config_exit(spa, SCL_ALL, FTAG);
1470	}
1471
1472	spa_load_log_state(spa);
1473
1474	if (spa_check_logs(spa)) {
1475		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1476		    VDEV_AUX_BAD_LOG);
1477		error = ENXIO;
1478		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1479		goto out;
1480	}
1481
1482
1483	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1484
1485	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1486	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1487
1488	if (error && error != ENOENT) {
1489		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1490		    VDEV_AUX_CORRUPT_DATA);
1491		error = EIO;
1492		goto out;
1493	}
1494
1495	if (error == 0) {
1496		(void) zap_lookup(spa->spa_meta_objset,
1497		    spa->spa_pool_props_object,
1498		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1499		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1500		(void) zap_lookup(spa->spa_meta_objset,
1501		    spa->spa_pool_props_object,
1502		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1503		    sizeof (uint64_t), 1, &autoreplace);
1504		(void) zap_lookup(spa->spa_meta_objset,
1505		    spa->spa_pool_props_object,
1506		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1507		    sizeof (uint64_t), 1, &spa->spa_delegation);
1508		(void) zap_lookup(spa->spa_meta_objset,
1509		    spa->spa_pool_props_object,
1510		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1511		    sizeof (uint64_t), 1, &spa->spa_failmode);
1512		(void) zap_lookup(spa->spa_meta_objset,
1513		    spa->spa_pool_props_object,
1514		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1515		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1516	}
1517
1518	/*
1519	 * If the 'autoreplace' property is set, then post a resource notifying
1520	 * the ZFS DE that it should not issue any faults for unopenable
1521	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1522	 * unopenable vdevs so that the normal autoreplace handler can take
1523	 * over.
1524	 */
1525	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1526		spa_check_removed(spa->spa_root_vdev);
1527
1528	/*
1529	 * Load the vdev state for all toplevel vdevs.
1530	 */
1531	vdev_load(rvd);
1532
1533	/*
1534	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1535	 */
1536	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1537	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1538	spa_config_exit(spa, SCL_ALL, FTAG);
1539
1540	/*
1541	 * Check the state of the root vdev.  If it can't be opened, it
1542	 * indicates one or more toplevel vdevs are faulted.
1543	 */
1544	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1545		error = ENXIO;
1546		goto out;
1547	}
1548
1549	if (spa_writeable(spa)) {
1550		dmu_tx_t *tx;
1551		int need_update = B_FALSE;
1552
1553		ASSERT(state != SPA_LOAD_TRYIMPORT);
1554
1555		/*
1556		 * Claim log blocks that haven't been committed yet.
1557		 * This must all happen in a single txg.
1558		 */
1559		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1560		    spa_first_txg(spa));
1561		(void) dmu_objset_find(spa_name(spa),
1562		    zil_claim, tx, DS_FIND_CHILDREN);
1563		dmu_tx_commit(tx);
1564
1565		spa->spa_log_state = SPA_LOG_GOOD;
1566		spa->spa_sync_on = B_TRUE;
1567		txg_sync_start(spa->spa_dsl_pool);
1568
1569		/*
1570		 * Wait for all claims to sync.
1571		 */
1572		txg_wait_synced(spa->spa_dsl_pool, 0);
1573
1574		/*
1575		 * If the config cache is stale, or we have uninitialized
1576		 * metaslabs (see spa_vdev_add()), then update the config.
1577		 */
1578		if (config_cache_txg != spa->spa_config_txg ||
1579		    state == SPA_LOAD_IMPORT)
1580			need_update = B_TRUE;
1581
1582		for (int c = 0; c < rvd->vdev_children; c++)
1583			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1584				need_update = B_TRUE;
1585
1586		/*
1587		 * Update the config cache asychronously in case we're the
1588		 * root pool, in which case the config cache isn't writable yet.
1589		 */
1590		if (need_update)
1591			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1592
1593		/*
1594		 * Check all DTLs to see if anything needs resilvering.
1595		 */
1596		if (vdev_resilver_needed(rvd, NULL, NULL))
1597			spa_async_request(spa, SPA_ASYNC_RESILVER);
1598	}
1599
1600	error = 0;
1601out:
1602	spa->spa_minref = refcount_count(&spa->spa_refcount);
1603	if (error && error != EBADF)
1604		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1605	spa->spa_load_state = SPA_LOAD_NONE;
1606	spa->spa_ena = 0;
1607
1608	return (error);
1609}
1610
1611/*
1612 * Pool Open/Import
1613 *
1614 * The import case is identical to an open except that the configuration is sent
1615 * down from userland, instead of grabbed from the configuration cache.  For the
1616 * case of an open, the pool configuration will exist in the
1617 * POOL_STATE_UNINITIALIZED state.
1618 *
1619 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1620 * the same time open the pool, without having to keep around the spa_t in some
1621 * ambiguous state.
1622 */
1623static int
1624spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1625{
1626	spa_t *spa;
1627	int error;
1628	int locked = B_FALSE;
1629
1630	*spapp = NULL;
1631
1632	/*
1633	 * As disgusting as this is, we need to support recursive calls to this
1634	 * function because dsl_dir_open() is called during spa_load(), and ends
1635	 * up calling spa_open() again.  The real fix is to figure out how to
1636	 * avoid dsl_dir_open() calling this in the first place.
1637	 */
1638	if (mutex_owner(&spa_namespace_lock) != curthread) {
1639		mutex_enter(&spa_namespace_lock);
1640		locked = B_TRUE;
1641	}
1642
1643	if ((spa = spa_lookup(pool)) == NULL) {
1644		if (locked)
1645			mutex_exit(&spa_namespace_lock);
1646		return (ENOENT);
1647	}
1648	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1649
1650		spa_activate(spa, spa_mode_global);
1651
1652		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1653
1654		if (error == EBADF) {
1655			/*
1656			 * If vdev_validate() returns failure (indicated by
1657			 * EBADF), it indicates that one of the vdevs indicates
1658			 * that the pool has been exported or destroyed.  If
1659			 * this is the case, the config cache is out of sync and
1660			 * we should remove the pool from the namespace.
1661			 */
1662			spa_unload(spa);
1663			spa_deactivate(spa);
1664			spa_config_sync(spa, B_TRUE, B_TRUE);
1665			spa_remove(spa);
1666			if (locked)
1667				mutex_exit(&spa_namespace_lock);
1668			return (ENOENT);
1669		}
1670
1671		if (error) {
1672			/*
1673			 * We can't open the pool, but we still have useful
1674			 * information: the state of each vdev after the
1675			 * attempted vdev_open().  Return this to the user.
1676			 */
1677			if (config != NULL && spa->spa_root_vdev != NULL)
1678				*config = spa_config_generate(spa, NULL, -1ULL,
1679				    B_TRUE);
1680			spa_unload(spa);
1681			spa_deactivate(spa);
1682			spa->spa_last_open_failed = B_TRUE;
1683			if (locked)
1684				mutex_exit(&spa_namespace_lock);
1685			*spapp = NULL;
1686			return (error);
1687		} else {
1688			spa->spa_last_open_failed = B_FALSE;
1689		}
1690	}
1691
1692	spa_open_ref(spa, tag);
1693
1694	if (locked)
1695		mutex_exit(&spa_namespace_lock);
1696
1697	*spapp = spa;
1698
1699	if (config != NULL)
1700		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1701
1702	return (0);
1703}
1704
1705int
1706spa_open(const char *name, spa_t **spapp, void *tag)
1707{
1708	return (spa_open_common(name, spapp, tag, NULL));
1709}
1710
1711/*
1712 * Lookup the given spa_t, incrementing the inject count in the process,
1713 * preventing it from being exported or destroyed.
1714 */
1715spa_t *
1716spa_inject_addref(char *name)
1717{
1718	spa_t *spa;
1719
1720	mutex_enter(&spa_namespace_lock);
1721	if ((spa = spa_lookup(name)) == NULL) {
1722		mutex_exit(&spa_namespace_lock);
1723		return (NULL);
1724	}
1725	spa->spa_inject_ref++;
1726	mutex_exit(&spa_namespace_lock);
1727
1728	return (spa);
1729}
1730
1731void
1732spa_inject_delref(spa_t *spa)
1733{
1734	mutex_enter(&spa_namespace_lock);
1735	spa->spa_inject_ref--;
1736	mutex_exit(&spa_namespace_lock);
1737}
1738
1739/*
1740 * Add spares device information to the nvlist.
1741 */
1742static void
1743spa_add_spares(spa_t *spa, nvlist_t *config)
1744{
1745	nvlist_t **spares;
1746	uint_t i, nspares;
1747	nvlist_t *nvroot;
1748	uint64_t guid;
1749	vdev_stat_t *vs;
1750	uint_t vsc;
1751	uint64_t pool;
1752
1753	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1754
1755	if (spa->spa_spares.sav_count == 0)
1756		return;
1757
1758	VERIFY(nvlist_lookup_nvlist(config,
1759	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1760	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1761	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1762	if (nspares != 0) {
1763		VERIFY(nvlist_add_nvlist_array(nvroot,
1764		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1765		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1766		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1767
1768		/*
1769		 * Go through and find any spares which have since been
1770		 * repurposed as an active spare.  If this is the case, update
1771		 * their status appropriately.
1772		 */
1773		for (i = 0; i < nspares; i++) {
1774			VERIFY(nvlist_lookup_uint64(spares[i],
1775			    ZPOOL_CONFIG_GUID, &guid) == 0);
1776			if (spa_spare_exists(guid, &pool, NULL) &&
1777			    pool != 0ULL) {
1778				VERIFY(nvlist_lookup_uint64_array(
1779				    spares[i], ZPOOL_CONFIG_STATS,
1780				    (uint64_t **)&vs, &vsc) == 0);
1781				vs->vs_state = VDEV_STATE_CANT_OPEN;
1782				vs->vs_aux = VDEV_AUX_SPARED;
1783			}
1784		}
1785	}
1786}
1787
1788/*
1789 * Add l2cache device information to the nvlist, including vdev stats.
1790 */
1791static void
1792spa_add_l2cache(spa_t *spa, nvlist_t *config)
1793{
1794	nvlist_t **l2cache;
1795	uint_t i, j, nl2cache;
1796	nvlist_t *nvroot;
1797	uint64_t guid;
1798	vdev_t *vd;
1799	vdev_stat_t *vs;
1800	uint_t vsc;
1801
1802	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1803
1804	if (spa->spa_l2cache.sav_count == 0)
1805		return;
1806
1807	VERIFY(nvlist_lookup_nvlist(config,
1808	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1809	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1810	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1811	if (nl2cache != 0) {
1812		VERIFY(nvlist_add_nvlist_array(nvroot,
1813		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1814		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1815		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1816
1817		/*
1818		 * Update level 2 cache device stats.
1819		 */
1820
1821		for (i = 0; i < nl2cache; i++) {
1822			VERIFY(nvlist_lookup_uint64(l2cache[i],
1823			    ZPOOL_CONFIG_GUID, &guid) == 0);
1824
1825			vd = NULL;
1826			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1827				if (guid ==
1828				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1829					vd = spa->spa_l2cache.sav_vdevs[j];
1830					break;
1831				}
1832			}
1833			ASSERT(vd != NULL);
1834
1835			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1836			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1837			vdev_get_stats(vd, vs);
1838		}
1839	}
1840}
1841
1842int
1843spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1844{
1845	int error;
1846	spa_t *spa;
1847
1848	*config = NULL;
1849	error = spa_open_common(name, &spa, FTAG, config);
1850
1851	if (spa != NULL) {
1852		/*
1853		 * This still leaves a window of inconsistency where the spares
1854		 * or l2cache devices could change and the config would be
1855		 * self-inconsistent.
1856		 */
1857		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1858
1859		if (*config != NULL) {
1860			VERIFY(nvlist_add_uint64(*config,
1861			    ZPOOL_CONFIG_ERRCOUNT,
1862			    spa_get_errlog_size(spa)) == 0);
1863
1864			if (spa_suspended(spa))
1865				VERIFY(nvlist_add_uint64(*config,
1866				    ZPOOL_CONFIG_SUSPENDED,
1867				    spa->spa_failmode) == 0);
1868
1869			spa_add_spares(spa, *config);
1870			spa_add_l2cache(spa, *config);
1871		}
1872	}
1873
1874	/*
1875	 * We want to get the alternate root even for faulted pools, so we cheat
1876	 * and call spa_lookup() directly.
1877	 */
1878	if (altroot) {
1879		if (spa == NULL) {
1880			mutex_enter(&spa_namespace_lock);
1881			spa = spa_lookup(name);
1882			if (spa)
1883				spa_altroot(spa, altroot, buflen);
1884			else
1885				altroot[0] = '\0';
1886			spa = NULL;
1887			mutex_exit(&spa_namespace_lock);
1888		} else {
1889			spa_altroot(spa, altroot, buflen);
1890		}
1891	}
1892
1893	if (spa != NULL) {
1894		spa_config_exit(spa, SCL_CONFIG, FTAG);
1895		spa_close(spa, FTAG);
1896	}
1897
1898	return (error);
1899}
1900
1901/*
1902 * Validate that the auxiliary device array is well formed.  We must have an
1903 * array of nvlists, each which describes a valid leaf vdev.  If this is an
1904 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1905 * specified, as long as they are well-formed.
1906 */
1907static int
1908spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1909    spa_aux_vdev_t *sav, const char *config, uint64_t version,
1910    vdev_labeltype_t label)
1911{
1912	nvlist_t **dev;
1913	uint_t i, ndev;
1914	vdev_t *vd;
1915	int error;
1916
1917	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1918
1919	/*
1920	 * It's acceptable to have no devs specified.
1921	 */
1922	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1923		return (0);
1924
1925	if (ndev == 0)
1926		return (EINVAL);
1927
1928	/*
1929	 * Make sure the pool is formatted with a version that supports this
1930	 * device type.
1931	 */
1932	if (spa_version(spa) < version)
1933		return (ENOTSUP);
1934
1935	/*
1936	 * Set the pending device list so we correctly handle device in-use
1937	 * checking.
1938	 */
1939	sav->sav_pending = dev;
1940	sav->sav_npending = ndev;
1941
1942	for (i = 0; i < ndev; i++) {
1943		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1944		    mode)) != 0)
1945			goto out;
1946
1947		if (!vd->vdev_ops->vdev_op_leaf) {
1948			vdev_free(vd);
1949			error = EINVAL;
1950			goto out;
1951		}
1952
1953		/*
1954		 * The L2ARC currently only supports disk devices in
1955		 * kernel context.  For user-level testing, we allow it.
1956		 */
1957#ifdef _KERNEL
1958		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1959		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1960			error = ENOTBLK;
1961			goto out;
1962		}
1963#endif
1964		vd->vdev_top = vd;
1965
1966		if ((error = vdev_open(vd)) == 0 &&
1967		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1968			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1969			    vd->vdev_guid) == 0);
1970		}
1971
1972		vdev_free(vd);
1973
1974		if (error &&
1975		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1976			goto out;
1977		else
1978			error = 0;
1979	}
1980
1981out:
1982	sav->sav_pending = NULL;
1983	sav->sav_npending = 0;
1984	return (error);
1985}
1986
1987static int
1988spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1989{
1990	int error;
1991
1992	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1993
1994	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1995	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1996	    VDEV_LABEL_SPARE)) != 0) {
1997		return (error);
1998	}
1999
2000	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2001	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2002	    VDEV_LABEL_L2CACHE));
2003}
2004
2005static void
2006spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2007    const char *config)
2008{
2009	int i;
2010
2011	if (sav->sav_config != NULL) {
2012		nvlist_t **olddevs;
2013		uint_t oldndevs;
2014		nvlist_t **newdevs;
2015
2016		/*
2017		 * Generate new dev list by concatentating with the
2018		 * current dev list.
2019		 */
2020		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2021		    &olddevs, &oldndevs) == 0);
2022
2023		newdevs = kmem_alloc(sizeof (void *) *
2024		    (ndevs + oldndevs), KM_SLEEP);
2025		for (i = 0; i < oldndevs; i++)
2026			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2027			    KM_SLEEP) == 0);
2028		for (i = 0; i < ndevs; i++)
2029			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2030			    KM_SLEEP) == 0);
2031
2032		VERIFY(nvlist_remove(sav->sav_config, config,
2033		    DATA_TYPE_NVLIST_ARRAY) == 0);
2034
2035		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2036		    config, newdevs, ndevs + oldndevs) == 0);
2037		for (i = 0; i < oldndevs + ndevs; i++)
2038			nvlist_free(newdevs[i]);
2039		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2040	} else {
2041		/*
2042		 * Generate a new dev list.
2043		 */
2044		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2045		    KM_SLEEP) == 0);
2046		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2047		    devs, ndevs) == 0);
2048	}
2049}
2050
2051/*
2052 * Stop and drop level 2 ARC devices
2053 */
2054void
2055spa_l2cache_drop(spa_t *spa)
2056{
2057	vdev_t *vd;
2058	int i;
2059	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2060
2061	for (i = 0; i < sav->sav_count; i++) {
2062		uint64_t pool;
2063
2064		vd = sav->sav_vdevs[i];
2065		ASSERT(vd != NULL);
2066
2067		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2068		    pool != 0ULL && l2arc_vdev_present(vd))
2069			l2arc_remove_vdev(vd);
2070		if (vd->vdev_isl2cache)
2071			spa_l2cache_remove(vd);
2072		vdev_clear_stats(vd);
2073		(void) vdev_close(vd);
2074	}
2075}
2076
2077/*
2078 * Pool Creation
2079 */
2080int
2081spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2082    const char *history_str, nvlist_t *zplprops)
2083{
2084	spa_t *spa;
2085	char *altroot = NULL;
2086	vdev_t *rvd;
2087	dsl_pool_t *dp;
2088	dmu_tx_t *tx;
2089	int error = 0;
2090	uint64_t txg = TXG_INITIAL;
2091	nvlist_t **spares, **l2cache;
2092	uint_t nspares, nl2cache;
2093	uint64_t version;
2094
2095	/*
2096	 * If this pool already exists, return failure.
2097	 */
2098	mutex_enter(&spa_namespace_lock);
2099	if (spa_lookup(pool) != NULL) {
2100		mutex_exit(&spa_namespace_lock);
2101		return (EEXIST);
2102	}
2103
2104	/*
2105	 * Allocate a new spa_t structure.
2106	 */
2107	(void) nvlist_lookup_string(props,
2108	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2109	spa = spa_add(pool, altroot);
2110	spa_activate(spa, spa_mode_global);
2111
2112	spa->spa_uberblock.ub_txg = txg - 1;
2113
2114	if (props && (error = spa_prop_validate(spa, props))) {
2115		spa_deactivate(spa);
2116		spa_remove(spa);
2117		mutex_exit(&spa_namespace_lock);
2118		return (error);
2119	}
2120
2121	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2122	    &version) != 0)
2123		version = SPA_VERSION;
2124	ASSERT(version <= SPA_VERSION);
2125	spa->spa_uberblock.ub_version = version;
2126	spa->spa_ubsync = spa->spa_uberblock;
2127
2128	/*
2129	 * Create "The Godfather" zio to hold all async IOs
2130	 */
2131	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2132	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2133
2134	/*
2135	 * Create the root vdev.
2136	 */
2137	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2138
2139	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2140
2141	ASSERT(error != 0 || rvd != NULL);
2142	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2143
2144	if (error == 0 && !zfs_allocatable_devs(nvroot))
2145		error = EINVAL;
2146
2147	if (error == 0 &&
2148	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2149	    (error = spa_validate_aux(spa, nvroot, txg,
2150	    VDEV_ALLOC_ADD)) == 0) {
2151		for (int c = 0; c < rvd->vdev_children; c++) {
2152			vdev_metaslab_set_size(rvd->vdev_child[c]);
2153			vdev_expand(rvd->vdev_child[c], txg);
2154		}
2155	}
2156
2157	spa_config_exit(spa, SCL_ALL, FTAG);
2158
2159	if (error != 0) {
2160		spa_unload(spa);
2161		spa_deactivate(spa);
2162		spa_remove(spa);
2163		mutex_exit(&spa_namespace_lock);
2164		return (error);
2165	}
2166
2167	/*
2168	 * Get the list of spares, if specified.
2169	 */
2170	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2171	    &spares, &nspares) == 0) {
2172		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2173		    KM_SLEEP) == 0);
2174		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2175		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2176		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2177		spa_load_spares(spa);
2178		spa_config_exit(spa, SCL_ALL, FTAG);
2179		spa->spa_spares.sav_sync = B_TRUE;
2180	}
2181
2182	/*
2183	 * Get the list of level 2 cache devices, if specified.
2184	 */
2185	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2186	    &l2cache, &nl2cache) == 0) {
2187		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2188		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2189		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2190		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2191		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2192		spa_load_l2cache(spa);
2193		spa_config_exit(spa, SCL_ALL, FTAG);
2194		spa->spa_l2cache.sav_sync = B_TRUE;
2195	}
2196
2197	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2198	spa->spa_meta_objset = dp->dp_meta_objset;
2199
2200	tx = dmu_tx_create_assigned(dp, txg);
2201
2202	/*
2203	 * Create the pool config object.
2204	 */
2205	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2206	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2207	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2208
2209	if (zap_add(spa->spa_meta_objset,
2210	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2211	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2212		cmn_err(CE_PANIC, "failed to add pool config");
2213	}
2214
2215	/* Newly created pools with the right version are always deflated. */
2216	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2217		spa->spa_deflate = TRUE;
2218		if (zap_add(spa->spa_meta_objset,
2219		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2220		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2221			cmn_err(CE_PANIC, "failed to add deflate");
2222		}
2223	}
2224
2225	/*
2226	 * Create the deferred-free bplist object.  Turn off compression
2227	 * because sync-to-convergence takes longer if the blocksize
2228	 * keeps changing.
2229	 */
2230	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2231	    1 << 14, tx);
2232	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2233	    ZIO_COMPRESS_OFF, tx);
2234
2235	if (zap_add(spa->spa_meta_objset,
2236	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2237	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2238		cmn_err(CE_PANIC, "failed to add bplist");
2239	}
2240
2241	/*
2242	 * Create the pool's history object.
2243	 */
2244	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2245		spa_history_create_obj(spa, tx);
2246
2247	/*
2248	 * Set pool properties.
2249	 */
2250	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2251	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2252	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2253	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2254	if (props != NULL) {
2255		spa_configfile_set(spa, props, B_FALSE);
2256		spa_sync_props(spa, props, CRED(), tx);
2257	}
2258
2259	dmu_tx_commit(tx);
2260
2261	spa->spa_sync_on = B_TRUE;
2262	txg_sync_start(spa->spa_dsl_pool);
2263
2264	/*
2265	 * We explicitly wait for the first transaction to complete so that our
2266	 * bean counters are appropriately updated.
2267	 */
2268	txg_wait_synced(spa->spa_dsl_pool, txg);
2269
2270	spa_config_sync(spa, B_FALSE, B_TRUE);
2271
2272	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2273		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2274	spa_history_log_version(spa, LOG_POOL_CREATE);
2275
2276	spa->spa_minref = refcount_count(&spa->spa_refcount);
2277
2278	mutex_exit(&spa_namespace_lock);
2279
2280	return (0);
2281}
2282
2283#ifdef _KERNEL
2284/*
2285 * Get the root pool information from the root disk, then import the root pool
2286 * during the system boot up time.
2287 */
2288extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2289
2290static nvlist_t *
2291spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2292{
2293	nvlist_t *config;
2294	nvlist_t *nvtop, *nvroot;
2295	uint64_t pgid;
2296
2297	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2298		return (NULL);
2299
2300	/*
2301	 * Add this top-level vdev to the child array.
2302	 */
2303	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2304	    &nvtop) == 0);
2305	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2306	    &pgid) == 0);
2307	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2308
2309	/*
2310	 * Put this pool's top-level vdevs into a root vdev.
2311	 */
2312	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2313	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2314	    VDEV_TYPE_ROOT) == 0);
2315	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2316	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2317	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2318	    &nvtop, 1) == 0);
2319
2320	/*
2321	 * Replace the existing vdev_tree with the new root vdev in
2322	 * this pool's configuration (remove the old, add the new).
2323	 */
2324	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2325	nvlist_free(nvroot);
2326	return (config);
2327}
2328
2329/*
2330 * Walk the vdev tree and see if we can find a device with "better"
2331 * configuration. A configuration is "better" if the label on that
2332 * device has a more recent txg.
2333 */
2334static void
2335spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2336{
2337	for (int c = 0; c < vd->vdev_children; c++)
2338		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2339
2340	if (vd->vdev_ops->vdev_op_leaf) {
2341		nvlist_t *label;
2342		uint64_t label_txg;
2343
2344		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2345		    &label) != 0)
2346			return;
2347
2348		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2349		    &label_txg) == 0);
2350
2351		/*
2352		 * Do we have a better boot device?
2353		 */
2354		if (label_txg > *txg) {
2355			*txg = label_txg;
2356			*avd = vd;
2357		}
2358		nvlist_free(label);
2359	}
2360}
2361
2362/*
2363 * Import a root pool.
2364 *
2365 * For x86. devpath_list will consist of devid and/or physpath name of
2366 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2367 * The GRUB "findroot" command will return the vdev we should boot.
2368 *
2369 * For Sparc, devpath_list consists the physpath name of the booting device
2370 * no matter the rootpool is a single device pool or a mirrored pool.
2371 * e.g.
2372 *	"/pci@1f,0/ide@d/disk@0,0:a"
2373 */
2374int
2375spa_import_rootpool(char *devpath, char *devid)
2376{
2377	spa_t *spa;
2378	vdev_t *rvd, *bvd, *avd = NULL;
2379	nvlist_t *config, *nvtop;
2380	uint64_t guid, txg;
2381	char *pname;
2382	int error;
2383
2384	/*
2385	 * Read the label from the boot device and generate a configuration.
2386	 */
2387	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2388		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2389		    devpath);
2390		return (EIO);
2391	}
2392
2393	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2394	    &pname) == 0);
2395	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2396
2397	mutex_enter(&spa_namespace_lock);
2398	if ((spa = spa_lookup(pname)) != NULL) {
2399		/*
2400		 * Remove the existing root pool from the namespace so that we
2401		 * can replace it with the correct config we just read in.
2402		 */
2403		spa_remove(spa);
2404	}
2405
2406	spa = spa_add(pname, NULL);
2407	spa->spa_is_root = B_TRUE;
2408
2409	/*
2410	 * Build up a vdev tree based on the boot device's label config.
2411	 */
2412	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2413	    &nvtop) == 0);
2414	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2415	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2416	    VDEV_ALLOC_ROOTPOOL);
2417	spa_config_exit(spa, SCL_ALL, FTAG);
2418	if (error) {
2419		mutex_exit(&spa_namespace_lock);
2420		nvlist_free(config);
2421		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2422		    pname);
2423		return (error);
2424	}
2425
2426	/*
2427	 * Get the boot vdev.
2428	 */
2429	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2430		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2431		    (u_longlong_t)guid);
2432		error = ENOENT;
2433		goto out;
2434	}
2435
2436	/*
2437	 * Determine if there is a better boot device.
2438	 */
2439	avd = bvd;
2440	spa_alt_rootvdev(rvd, &avd, &txg);
2441	if (avd != bvd) {
2442		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2443		    "try booting from '%s'", avd->vdev_path);
2444		error = EINVAL;
2445		goto out;
2446	}
2447
2448	/*
2449	 * If the boot device is part of a spare vdev then ensure that
2450	 * we're booting off the active spare.
2451	 */
2452	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2453	    !bvd->vdev_isspare) {
2454		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2455		    "try booting from '%s'",
2456		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2457		error = EINVAL;
2458		goto out;
2459	}
2460
2461	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2462	error = 0;
2463	spa_history_log_version(spa, LOG_POOL_IMPORT);
2464out:
2465	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2466	vdev_free(rvd);
2467	spa_config_exit(spa, SCL_ALL, FTAG);
2468	mutex_exit(&spa_namespace_lock);
2469
2470	nvlist_free(config);
2471	return (error);
2472}
2473
2474#endif
2475
2476/*
2477 * Take a pool and insert it into the namespace as if it had been loaded at
2478 * boot.
2479 */
2480int
2481spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2482{
2483	spa_t *spa;
2484	char *altroot = NULL;
2485
2486	mutex_enter(&spa_namespace_lock);
2487	if (spa_lookup(pool) != NULL) {
2488		mutex_exit(&spa_namespace_lock);
2489		return (EEXIST);
2490	}
2491
2492	(void) nvlist_lookup_string(props,
2493	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2494	spa = spa_add(pool, altroot);
2495
2496	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2497
2498	if (props != NULL)
2499		spa_configfile_set(spa, props, B_FALSE);
2500
2501	spa_config_sync(spa, B_FALSE, B_TRUE);
2502
2503	mutex_exit(&spa_namespace_lock);
2504	spa_history_log_version(spa, LOG_POOL_IMPORT);
2505
2506	return (0);
2507}
2508
2509/*
2510 * Import a non-root pool into the system.
2511 */
2512int
2513spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2514{
2515	spa_t *spa;
2516	char *altroot = NULL;
2517	int error;
2518	nvlist_t *nvroot;
2519	nvlist_t **spares, **l2cache;
2520	uint_t nspares, nl2cache;
2521
2522	/*
2523	 * If a pool with this name exists, return failure.
2524	 */
2525	mutex_enter(&spa_namespace_lock);
2526	if ((spa = spa_lookup(pool)) != NULL) {
2527		mutex_exit(&spa_namespace_lock);
2528		return (EEXIST);
2529	}
2530
2531	/*
2532	 * Create and initialize the spa structure.
2533	 */
2534	(void) nvlist_lookup_string(props,
2535	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2536	spa = spa_add(pool, altroot);
2537	spa_activate(spa, spa_mode_global);
2538
2539	/*
2540	 * Don't start async tasks until we know everything is healthy.
2541	 */
2542	spa_async_suspend(spa);
2543
2544	/*
2545	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2546	 * because the user-supplied config is actually the one to trust when
2547	 * doing an import.
2548	 */
2549	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2550
2551	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2552	/*
2553	 * Toss any existing sparelist, as it doesn't have any validity
2554	 * anymore, and conflicts with spa_has_spare().
2555	 */
2556	if (spa->spa_spares.sav_config) {
2557		nvlist_free(spa->spa_spares.sav_config);
2558		spa->spa_spares.sav_config = NULL;
2559		spa_load_spares(spa);
2560	}
2561	if (spa->spa_l2cache.sav_config) {
2562		nvlist_free(spa->spa_l2cache.sav_config);
2563		spa->spa_l2cache.sav_config = NULL;
2564		spa_load_l2cache(spa);
2565	}
2566
2567	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2568	    &nvroot) == 0);
2569	if (error == 0)
2570		error = spa_validate_aux(spa, nvroot, -1ULL,
2571		    VDEV_ALLOC_SPARE);
2572	if (error == 0)
2573		error = spa_validate_aux(spa, nvroot, -1ULL,
2574		    VDEV_ALLOC_L2CACHE);
2575	spa_config_exit(spa, SCL_ALL, FTAG);
2576
2577	if (props != NULL)
2578		spa_configfile_set(spa, props, B_FALSE);
2579
2580	if (error != 0 || (props && spa_writeable(spa) &&
2581	    (error = spa_prop_set(spa, props)))) {
2582		spa_unload(spa);
2583		spa_deactivate(spa);
2584		spa_remove(spa);
2585		mutex_exit(&spa_namespace_lock);
2586		return (error);
2587	}
2588
2589	spa_async_resume(spa);
2590
2591	/*
2592	 * Override any spares and level 2 cache devices as specified by
2593	 * the user, as these may have correct device names/devids, etc.
2594	 */
2595	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2596	    &spares, &nspares) == 0) {
2597		if (spa->spa_spares.sav_config)
2598			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2599			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2600		else
2601			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2602			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2603		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2604		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2605		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2606		spa_load_spares(spa);
2607		spa_config_exit(spa, SCL_ALL, FTAG);
2608		spa->spa_spares.sav_sync = B_TRUE;
2609	}
2610	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2611	    &l2cache, &nl2cache) == 0) {
2612		if (spa->spa_l2cache.sav_config)
2613			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2614			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2615		else
2616			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2617			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2618		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2619		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2620		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2621		spa_load_l2cache(spa);
2622		spa_config_exit(spa, SCL_ALL, FTAG);
2623		spa->spa_l2cache.sav_sync = B_TRUE;
2624	}
2625
2626	if (spa_writeable(spa)) {
2627		/*
2628		 * Update the config cache to include the newly-imported pool.
2629		 */
2630		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, B_FALSE);
2631	}
2632
2633	/*
2634	 * It's possible that the pool was expanded while it was exported.
2635	 * We kick off an async task to handle this for us.
2636	 */
2637	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2638
2639	mutex_exit(&spa_namespace_lock);
2640	spa_history_log_version(spa, LOG_POOL_IMPORT);
2641
2642	return (0);
2643}
2644
2645
2646/*
2647 * This (illegal) pool name is used when temporarily importing a spa_t in order
2648 * to get the vdev stats associated with the imported devices.
2649 */
2650#define	TRYIMPORT_NAME	"$import"
2651
2652nvlist_t *
2653spa_tryimport(nvlist_t *tryconfig)
2654{
2655	nvlist_t *config = NULL;
2656	char *poolname;
2657	spa_t *spa;
2658	uint64_t state;
2659	int error;
2660
2661	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2662		return (NULL);
2663
2664	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2665		return (NULL);
2666
2667	/*
2668	 * Create and initialize the spa structure.
2669	 */
2670	mutex_enter(&spa_namespace_lock);
2671	spa = spa_add(TRYIMPORT_NAME, NULL);
2672	spa_activate(spa, FREAD);
2673
2674	/*
2675	 * Pass off the heavy lifting to spa_load().
2676	 * Pass TRUE for mosconfig because the user-supplied config
2677	 * is actually the one to trust when doing an import.
2678	 */
2679	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2680
2681	/*
2682	 * If 'tryconfig' was at least parsable, return the current config.
2683	 */
2684	if (spa->spa_root_vdev != NULL) {
2685		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2686		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2687		    poolname) == 0);
2688		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2689		    state) == 0);
2690		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2691		    spa->spa_uberblock.ub_timestamp) == 0);
2692
2693		/*
2694		 * If the bootfs property exists on this pool then we
2695		 * copy it out so that external consumers can tell which
2696		 * pools are bootable.
2697		 */
2698		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2699			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2700
2701			/*
2702			 * We have to play games with the name since the
2703			 * pool was opened as TRYIMPORT_NAME.
2704			 */
2705			if (dsl_dsobj_to_dsname(spa_name(spa),
2706			    spa->spa_bootfs, tmpname) == 0) {
2707				char *cp;
2708				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2709
2710				cp = strchr(tmpname, '/');
2711				if (cp == NULL) {
2712					(void) strlcpy(dsname, tmpname,
2713					    MAXPATHLEN);
2714				} else {
2715					(void) snprintf(dsname, MAXPATHLEN,
2716					    "%s/%s", poolname, ++cp);
2717				}
2718				VERIFY(nvlist_add_string(config,
2719				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2720				kmem_free(dsname, MAXPATHLEN);
2721			}
2722			kmem_free(tmpname, MAXPATHLEN);
2723		}
2724
2725		/*
2726		 * Add the list of hot spares and level 2 cache devices.
2727		 */
2728		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2729		spa_add_spares(spa, config);
2730		spa_add_l2cache(spa, config);
2731		spa_config_exit(spa, SCL_CONFIG, FTAG);
2732	}
2733
2734	spa_unload(spa);
2735	spa_deactivate(spa);
2736	spa_remove(spa);
2737	mutex_exit(&spa_namespace_lock);
2738
2739	return (config);
2740}
2741
2742/*
2743 * Pool export/destroy
2744 *
2745 * The act of destroying or exporting a pool is very simple.  We make sure there
2746 * is no more pending I/O and any references to the pool are gone.  Then, we
2747 * update the pool state and sync all the labels to disk, removing the
2748 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2749 * we don't sync the labels or remove the configuration cache.
2750 */
2751static int
2752spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2753    boolean_t force, boolean_t hardforce)
2754{
2755	spa_t *spa;
2756
2757	if (oldconfig)
2758		*oldconfig = NULL;
2759
2760	if (!(spa_mode_global & FWRITE))
2761		return (EROFS);
2762
2763	mutex_enter(&spa_namespace_lock);
2764	if ((spa = spa_lookup(pool)) == NULL) {
2765		mutex_exit(&spa_namespace_lock);
2766		return (ENOENT);
2767	}
2768
2769	/*
2770	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2771	 * reacquire the namespace lock, and see if we can export.
2772	 */
2773	spa_open_ref(spa, FTAG);
2774	mutex_exit(&spa_namespace_lock);
2775	spa_async_suspend(spa);
2776	mutex_enter(&spa_namespace_lock);
2777	spa_close(spa, FTAG);
2778
2779	/*
2780	 * The pool will be in core if it's openable,
2781	 * in which case we can modify its state.
2782	 */
2783	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2784		/*
2785		 * Objsets may be open only because they're dirty, so we
2786		 * have to force it to sync before checking spa_refcnt.
2787		 */
2788		txg_wait_synced(spa->spa_dsl_pool, 0);
2789
2790		/*
2791		 * A pool cannot be exported or destroyed if there are active
2792		 * references.  If we are resetting a pool, allow references by
2793		 * fault injection handlers.
2794		 */
2795		if (!spa_refcount_zero(spa) ||
2796		    (spa->spa_inject_ref != 0 &&
2797		    new_state != POOL_STATE_UNINITIALIZED)) {
2798			spa_async_resume(spa);
2799			mutex_exit(&spa_namespace_lock);
2800			return (EBUSY);
2801		}
2802
2803		/*
2804		 * A pool cannot be exported if it has an active shared spare.
2805		 * This is to prevent other pools stealing the active spare
2806		 * from an exported pool. At user's own will, such pool can
2807		 * be forcedly exported.
2808		 */
2809		if (!force && new_state == POOL_STATE_EXPORTED &&
2810		    spa_has_active_shared_spare(spa)) {
2811			spa_async_resume(spa);
2812			mutex_exit(&spa_namespace_lock);
2813			return (EXDEV);
2814		}
2815
2816		/*
2817		 * We want this to be reflected on every label,
2818		 * so mark them all dirty.  spa_unload() will do the
2819		 * final sync that pushes these changes out.
2820		 */
2821		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2822			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2823			spa->spa_state = new_state;
2824			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2825			vdev_config_dirty(spa->spa_root_vdev);
2826			spa_config_exit(spa, SCL_ALL, FTAG);
2827		}
2828	}
2829
2830	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2831
2832	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2833		spa_unload(spa);
2834		spa_deactivate(spa);
2835	}
2836
2837	if (oldconfig && spa->spa_config)
2838		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2839
2840	if (new_state != POOL_STATE_UNINITIALIZED) {
2841		if (!hardforce)
2842			spa_config_sync(spa, B_TRUE, B_TRUE);
2843		spa_remove(spa);
2844	}
2845	mutex_exit(&spa_namespace_lock);
2846
2847	return (0);
2848}
2849
2850/*
2851 * Destroy a storage pool.
2852 */
2853int
2854spa_destroy(char *pool)
2855{
2856	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2857	    B_FALSE, B_FALSE));
2858}
2859
2860/*
2861 * Export a storage pool.
2862 */
2863int
2864spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2865    boolean_t hardforce)
2866{
2867	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2868	    force, hardforce));
2869}
2870
2871/*
2872 * Similar to spa_export(), this unloads the spa_t without actually removing it
2873 * from the namespace in any way.
2874 */
2875int
2876spa_reset(char *pool)
2877{
2878	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2879	    B_FALSE, B_FALSE));
2880}
2881
2882/*
2883 * ==========================================================================
2884 * Device manipulation
2885 * ==========================================================================
2886 */
2887
2888/*
2889 * Add a device to a storage pool.
2890 */
2891int
2892spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2893{
2894	uint64_t txg;
2895	int error;
2896	vdev_t *rvd = spa->spa_root_vdev;
2897	vdev_t *vd, *tvd;
2898	nvlist_t **spares, **l2cache;
2899	uint_t nspares, nl2cache;
2900
2901	txg = spa_vdev_enter(spa);
2902
2903	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2904	    VDEV_ALLOC_ADD)) != 0)
2905		return (spa_vdev_exit(spa, NULL, txg, error));
2906
2907	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2908
2909	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2910	    &nspares) != 0)
2911		nspares = 0;
2912
2913	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2914	    &nl2cache) != 0)
2915		nl2cache = 0;
2916
2917	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2918		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2919
2920	if (vd->vdev_children != 0 &&
2921	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2922		return (spa_vdev_exit(spa, vd, txg, error));
2923
2924	/*
2925	 * We must validate the spares and l2cache devices after checking the
2926	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2927	 */
2928	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2929		return (spa_vdev_exit(spa, vd, txg, error));
2930
2931	/*
2932	 * Transfer each new top-level vdev from vd to rvd.
2933	 */
2934	for (int c = 0; c < vd->vdev_children; c++) {
2935		tvd = vd->vdev_child[c];
2936		vdev_remove_child(vd, tvd);
2937		tvd->vdev_id = rvd->vdev_children;
2938		vdev_add_child(rvd, tvd);
2939		vdev_config_dirty(tvd);
2940	}
2941
2942	if (nspares != 0) {
2943		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2944		    ZPOOL_CONFIG_SPARES);
2945		spa_load_spares(spa);
2946		spa->spa_spares.sav_sync = B_TRUE;
2947	}
2948
2949	if (nl2cache != 0) {
2950		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2951		    ZPOOL_CONFIG_L2CACHE);
2952		spa_load_l2cache(spa);
2953		spa->spa_l2cache.sav_sync = B_TRUE;
2954	}
2955
2956	/*
2957	 * We have to be careful when adding new vdevs to an existing pool.
2958	 * If other threads start allocating from these vdevs before we
2959	 * sync the config cache, and we lose power, then upon reboot we may
2960	 * fail to open the pool because there are DVAs that the config cache
2961	 * can't translate.  Therefore, we first add the vdevs without
2962	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2963	 * and then let spa_config_update() initialize the new metaslabs.
2964	 *
2965	 * spa_load() checks for added-but-not-initialized vdevs, so that
2966	 * if we lose power at any point in this sequence, the remaining
2967	 * steps will be completed the next time we load the pool.
2968	 */
2969	(void) spa_vdev_exit(spa, vd, txg, 0);
2970
2971	mutex_enter(&spa_namespace_lock);
2972	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2973	mutex_exit(&spa_namespace_lock);
2974
2975	return (0);
2976}
2977
2978/*
2979 * Attach a device to a mirror.  The arguments are the path to any device
2980 * in the mirror, and the nvroot for the new device.  If the path specifies
2981 * a device that is not mirrored, we automatically insert the mirror vdev.
2982 *
2983 * If 'replacing' is specified, the new device is intended to replace the
2984 * existing device; in this case the two devices are made into their own
2985 * mirror using the 'replacing' vdev, which is functionally identical to
2986 * the mirror vdev (it actually reuses all the same ops) but has a few
2987 * extra rules: you can't attach to it after it's been created, and upon
2988 * completion of resilvering, the first disk (the one being replaced)
2989 * is automatically detached.
2990 */
2991int
2992spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2993{
2994	uint64_t txg, open_txg;
2995	vdev_t *rvd = spa->spa_root_vdev;
2996	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2997	vdev_ops_t *pvops;
2998	char *oldvdpath, *newvdpath;
2999	int newvd_isspare;
3000	int error;
3001
3002	txg = spa_vdev_enter(spa);
3003
3004	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3005
3006	if (oldvd == NULL)
3007		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3008
3009	if (!oldvd->vdev_ops->vdev_op_leaf)
3010		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3011
3012	pvd = oldvd->vdev_parent;
3013
3014	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3015	    VDEV_ALLOC_ADD)) != 0)
3016		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3017
3018	if (newrootvd->vdev_children != 1)
3019		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3020
3021	newvd = newrootvd->vdev_child[0];
3022
3023	if (!newvd->vdev_ops->vdev_op_leaf)
3024		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3025
3026	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3027		return (spa_vdev_exit(spa, newrootvd, txg, error));
3028
3029	/*
3030	 * Spares can't replace logs
3031	 */
3032	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3033		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3034
3035	if (!replacing) {
3036		/*
3037		 * For attach, the only allowable parent is a mirror or the root
3038		 * vdev.
3039		 */
3040		if (pvd->vdev_ops != &vdev_mirror_ops &&
3041		    pvd->vdev_ops != &vdev_root_ops)
3042			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3043
3044		pvops = &vdev_mirror_ops;
3045	} else {
3046		/*
3047		 * Active hot spares can only be replaced by inactive hot
3048		 * spares.
3049		 */
3050		if (pvd->vdev_ops == &vdev_spare_ops &&
3051		    pvd->vdev_child[1] == oldvd &&
3052		    !spa_has_spare(spa, newvd->vdev_guid))
3053			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3054
3055		/*
3056		 * If the source is a hot spare, and the parent isn't already a
3057		 * spare, then we want to create a new hot spare.  Otherwise, we
3058		 * want to create a replacing vdev.  The user is not allowed to
3059		 * attach to a spared vdev child unless the 'isspare' state is
3060		 * the same (spare replaces spare, non-spare replaces
3061		 * non-spare).
3062		 */
3063		if (pvd->vdev_ops == &vdev_replacing_ops)
3064			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3065		else if (pvd->vdev_ops == &vdev_spare_ops &&
3066		    newvd->vdev_isspare != oldvd->vdev_isspare)
3067			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3068		else if (pvd->vdev_ops != &vdev_spare_ops &&
3069		    newvd->vdev_isspare)
3070			pvops = &vdev_spare_ops;
3071		else
3072			pvops = &vdev_replacing_ops;
3073	}
3074
3075	/*
3076	 * Make sure the new device is big enough.
3077	 */
3078	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3079		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3080
3081	/*
3082	 * The new device cannot have a higher alignment requirement
3083	 * than the top-level vdev.
3084	 */
3085	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3086		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3087
3088	/*
3089	 * If this is an in-place replacement, update oldvd's path and devid
3090	 * to make it distinguishable from newvd, and unopenable from now on.
3091	 */
3092	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3093		spa_strfree(oldvd->vdev_path);
3094		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3095		    KM_SLEEP);
3096		(void) sprintf(oldvd->vdev_path, "%s/%s",
3097		    newvd->vdev_path, "old");
3098		if (oldvd->vdev_devid != NULL) {
3099			spa_strfree(oldvd->vdev_devid);
3100			oldvd->vdev_devid = NULL;
3101		}
3102	}
3103
3104	/*
3105	 * If the parent is not a mirror, or if we're replacing, insert the new
3106	 * mirror/replacing/spare vdev above oldvd.
3107	 */
3108	if (pvd->vdev_ops != pvops)
3109		pvd = vdev_add_parent(oldvd, pvops);
3110
3111	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3112	ASSERT(pvd->vdev_ops == pvops);
3113	ASSERT(oldvd->vdev_parent == pvd);
3114
3115	/*
3116	 * Extract the new device from its root and add it to pvd.
3117	 */
3118	vdev_remove_child(newrootvd, newvd);
3119	newvd->vdev_id = pvd->vdev_children;
3120	vdev_add_child(pvd, newvd);
3121
3122	tvd = newvd->vdev_top;
3123	ASSERT(pvd->vdev_top == tvd);
3124	ASSERT(tvd->vdev_parent == rvd);
3125
3126	vdev_config_dirty(tvd);
3127
3128	/*
3129	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3130	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3131	 */
3132	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3133
3134	vdev_dtl_dirty(newvd, DTL_MISSING,
3135	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3136
3137	if (newvd->vdev_isspare) {
3138		spa_spare_activate(newvd);
3139		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3140	}
3141
3142	oldvdpath = spa_strdup(oldvd->vdev_path);
3143	newvdpath = spa_strdup(newvd->vdev_path);
3144	newvd_isspare = newvd->vdev_isspare;
3145
3146	/*
3147	 * Mark newvd's DTL dirty in this txg.
3148	 */
3149	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3150
3151	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3152
3153	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3154	    CRED(),  "%s vdev=%s %s vdev=%s",
3155	    replacing && newvd_isspare ? "spare in" :
3156	    replacing ? "replace" : "attach", newvdpath,
3157	    replacing ? "for" : "to", oldvdpath);
3158
3159	spa_strfree(oldvdpath);
3160	spa_strfree(newvdpath);
3161
3162	/*
3163	 * Kick off a resilver to update newvd.
3164	 */
3165	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3166
3167	return (0);
3168}
3169
3170/*
3171 * Detach a device from a mirror or replacing vdev.
3172 * If 'replace_done' is specified, only detach if the parent
3173 * is a replacing vdev.
3174 */
3175int
3176spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3177{
3178	uint64_t txg;
3179	int error;
3180	vdev_t *rvd = spa->spa_root_vdev;
3181	vdev_t *vd, *pvd, *cvd, *tvd;
3182	boolean_t unspare = B_FALSE;
3183	uint64_t unspare_guid;
3184	size_t len;
3185
3186	txg = spa_vdev_enter(spa);
3187
3188	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3189
3190	if (vd == NULL)
3191		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3192
3193	if (!vd->vdev_ops->vdev_op_leaf)
3194		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3195
3196	pvd = vd->vdev_parent;
3197
3198	/*
3199	 * If the parent/child relationship is not as expected, don't do it.
3200	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3201	 * vdev that's replacing B with C.  The user's intent in replacing
3202	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3203	 * the replace by detaching C, the expected behavior is to end up
3204	 * M(A,B).  But suppose that right after deciding to detach C,
3205	 * the replacement of B completes.  We would have M(A,C), and then
3206	 * ask to detach C, which would leave us with just A -- not what
3207	 * the user wanted.  To prevent this, we make sure that the
3208	 * parent/child relationship hasn't changed -- in this example,
3209	 * that C's parent is still the replacing vdev R.
3210	 */
3211	if (pvd->vdev_guid != pguid && pguid != 0)
3212		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3213
3214	/*
3215	 * If replace_done is specified, only remove this device if it's
3216	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3217	 * disk can be removed.
3218	 */
3219	if (replace_done) {
3220		if (pvd->vdev_ops == &vdev_replacing_ops) {
3221			if (vd->vdev_id != 0)
3222				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3223		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3224			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3225		}
3226	}
3227
3228	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3229	    spa_version(spa) >= SPA_VERSION_SPARES);
3230
3231	/*
3232	 * Only mirror, replacing, and spare vdevs support detach.
3233	 */
3234	if (pvd->vdev_ops != &vdev_replacing_ops &&
3235	    pvd->vdev_ops != &vdev_mirror_ops &&
3236	    pvd->vdev_ops != &vdev_spare_ops)
3237		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3238
3239	/*
3240	 * If this device has the only valid copy of some data,
3241	 * we cannot safely detach it.
3242	 */
3243	if (vdev_dtl_required(vd))
3244		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3245
3246	ASSERT(pvd->vdev_children >= 2);
3247
3248	/*
3249	 * If we are detaching the second disk from a replacing vdev, then
3250	 * check to see if we changed the original vdev's path to have "/old"
3251	 * at the end in spa_vdev_attach().  If so, undo that change now.
3252	 */
3253	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3254	    pvd->vdev_child[0]->vdev_path != NULL &&
3255	    pvd->vdev_child[1]->vdev_path != NULL) {
3256		ASSERT(pvd->vdev_child[1] == vd);
3257		cvd = pvd->vdev_child[0];
3258		len = strlen(vd->vdev_path);
3259		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3260		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3261			spa_strfree(cvd->vdev_path);
3262			cvd->vdev_path = spa_strdup(vd->vdev_path);
3263		}
3264	}
3265
3266	/*
3267	 * If we are detaching the original disk from a spare, then it implies
3268	 * that the spare should become a real disk, and be removed from the
3269	 * active spare list for the pool.
3270	 */
3271	if (pvd->vdev_ops == &vdev_spare_ops &&
3272	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3273		unspare = B_TRUE;
3274
3275	/*
3276	 * Erase the disk labels so the disk can be used for other things.
3277	 * This must be done after all other error cases are handled,
3278	 * but before we disembowel vd (so we can still do I/O to it).
3279	 * But if we can't do it, don't treat the error as fatal --
3280	 * it may be that the unwritability of the disk is the reason
3281	 * it's being detached!
3282	 */
3283	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3284
3285	/*
3286	 * Remove vd from its parent and compact the parent's children.
3287	 */
3288	vdev_remove_child(pvd, vd);
3289	vdev_compact_children(pvd);
3290
3291	/*
3292	 * Remember one of the remaining children so we can get tvd below.
3293	 */
3294	cvd = pvd->vdev_child[0];
3295
3296	/*
3297	 * If we need to remove the remaining child from the list of hot spares,
3298	 * do it now, marking the vdev as no longer a spare in the process.
3299	 * We must do this before vdev_remove_parent(), because that can
3300	 * change the GUID if it creates a new toplevel GUID.  For a similar
3301	 * reason, we must remove the spare now, in the same txg as the detach;
3302	 * otherwise someone could attach a new sibling, change the GUID, and
3303	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3304	 */
3305	if (unspare) {
3306		ASSERT(cvd->vdev_isspare);
3307		spa_spare_remove(cvd);
3308		unspare_guid = cvd->vdev_guid;
3309		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3310	}
3311
3312	/*
3313	 * If the parent mirror/replacing vdev only has one child,
3314	 * the parent is no longer needed.  Remove it from the tree.
3315	 */
3316	if (pvd->vdev_children == 1)
3317		vdev_remove_parent(cvd);
3318
3319	/*
3320	 * We don't set tvd until now because the parent we just removed
3321	 * may have been the previous top-level vdev.
3322	 */
3323	tvd = cvd->vdev_top;
3324	ASSERT(tvd->vdev_parent == rvd);
3325
3326	/*
3327	 * Reevaluate the parent vdev state.
3328	 */
3329	vdev_propagate_state(cvd);
3330
3331	/*
3332	 * If the 'autoexpand' property is set on the pool then automatically
3333	 * try to expand the size of the pool. For example if the device we
3334	 * just detached was smaller than the others, it may be possible to
3335	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3336	 * first so that we can obtain the updated sizes of the leaf vdevs.
3337	 */
3338	if (spa->spa_autoexpand) {
3339		vdev_reopen(tvd);
3340		vdev_expand(tvd, txg);
3341	}
3342
3343	vdev_config_dirty(tvd);
3344
3345	/*
3346	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3347	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3348	 * But first make sure we're not on any *other* txg's DTL list, to
3349	 * prevent vd from being accessed after it's freed.
3350	 */
3351	for (int t = 0; t < TXG_SIZE; t++)
3352		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3353	vd->vdev_detached = B_TRUE;
3354	vdev_dirty(tvd, VDD_DTL, vd, txg);
3355
3356	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3357
3358	error = spa_vdev_exit(spa, vd, txg, 0);
3359
3360	/*
3361	 * If this was the removal of the original device in a hot spare vdev,
3362	 * then we want to go through and remove the device from the hot spare
3363	 * list of every other pool.
3364	 */
3365	if (unspare) {
3366		spa_t *myspa = spa;
3367		spa = NULL;
3368		mutex_enter(&spa_namespace_lock);
3369		while ((spa = spa_next(spa)) != NULL) {
3370			if (spa->spa_state != POOL_STATE_ACTIVE)
3371				continue;
3372			if (spa == myspa)
3373				continue;
3374			spa_open_ref(spa, FTAG);
3375			mutex_exit(&spa_namespace_lock);
3376			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3377			mutex_enter(&spa_namespace_lock);
3378			spa_close(spa, FTAG);
3379		}
3380		mutex_exit(&spa_namespace_lock);
3381	}
3382
3383	return (error);
3384}
3385
3386static nvlist_t *
3387spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3388{
3389	for (int i = 0; i < count; i++) {
3390		uint64_t guid;
3391
3392		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3393		    &guid) == 0);
3394
3395		if (guid == target_guid)
3396			return (nvpp[i]);
3397	}
3398
3399	return (NULL);
3400}
3401
3402static void
3403spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3404	nvlist_t *dev_to_remove)
3405{
3406	nvlist_t **newdev = NULL;
3407
3408	if (count > 1)
3409		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3410
3411	for (int i = 0, j = 0; i < count; i++) {
3412		if (dev[i] == dev_to_remove)
3413			continue;
3414		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3415	}
3416
3417	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3418	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3419
3420	for (int i = 0; i < count - 1; i++)
3421		nvlist_free(newdev[i]);
3422
3423	if (count > 1)
3424		kmem_free(newdev, (count - 1) * sizeof (void *));
3425}
3426
3427/*
3428 * Remove a device from the pool.  Currently, this supports removing only hot
3429 * spares and level 2 ARC devices.
3430 */
3431int
3432spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3433{
3434	vdev_t *vd;
3435	nvlist_t **spares, **l2cache, *nv;
3436	uint_t nspares, nl2cache;
3437	uint64_t txg = 0;
3438	int error = 0;
3439	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3440
3441	if (!locked)
3442		txg = spa_vdev_enter(spa);
3443
3444	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3445
3446	if (spa->spa_spares.sav_vdevs != NULL &&
3447	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3448	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3449	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3450		/*
3451		 * Only remove the hot spare if it's not currently in use
3452		 * in this pool.
3453		 */
3454		if (vd == NULL || unspare) {
3455			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3456			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3457			spa_load_spares(spa);
3458			spa->spa_spares.sav_sync = B_TRUE;
3459		} else {
3460			error = EBUSY;
3461		}
3462	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3463	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3464	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3465	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3466		/*
3467		 * Cache devices can always be removed.
3468		 */
3469		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3470		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3471		spa_load_l2cache(spa);
3472		spa->spa_l2cache.sav_sync = B_TRUE;
3473	} else if (vd != NULL) {
3474		/*
3475		 * Normal vdevs cannot be removed (yet).
3476		 */
3477		error = ENOTSUP;
3478	} else {
3479		/*
3480		 * There is no vdev of any kind with the specified guid.
3481		 */
3482		error = ENOENT;
3483	}
3484
3485	if (!locked)
3486		return (spa_vdev_exit(spa, NULL, txg, error));
3487
3488	return (error);
3489}
3490
3491/*
3492 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3493 * current spared, so we can detach it.
3494 */
3495static vdev_t *
3496spa_vdev_resilver_done_hunt(vdev_t *vd)
3497{
3498	vdev_t *newvd, *oldvd;
3499
3500	for (int c = 0; c < vd->vdev_children; c++) {
3501		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3502		if (oldvd != NULL)
3503			return (oldvd);
3504	}
3505
3506	/*
3507	 * Check for a completed replacement.
3508	 */
3509	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3510		oldvd = vd->vdev_child[0];
3511		newvd = vd->vdev_child[1];
3512
3513		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3514		    !vdev_dtl_required(oldvd))
3515			return (oldvd);
3516	}
3517
3518	/*
3519	 * Check for a completed resilver with the 'unspare' flag set.
3520	 */
3521	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3522		newvd = vd->vdev_child[0];
3523		oldvd = vd->vdev_child[1];
3524
3525		if (newvd->vdev_unspare &&
3526		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3527		    !vdev_dtl_required(oldvd)) {
3528			newvd->vdev_unspare = 0;
3529			return (oldvd);
3530		}
3531	}
3532
3533	return (NULL);
3534}
3535
3536static void
3537spa_vdev_resilver_done(spa_t *spa)
3538{
3539	vdev_t *vd, *pvd, *ppvd;
3540	uint64_t guid, sguid, pguid, ppguid;
3541
3542	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3543
3544	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3545		pvd = vd->vdev_parent;
3546		ppvd = pvd->vdev_parent;
3547		guid = vd->vdev_guid;
3548		pguid = pvd->vdev_guid;
3549		ppguid = ppvd->vdev_guid;
3550		sguid = 0;
3551		/*
3552		 * If we have just finished replacing a hot spared device, then
3553		 * we need to detach the parent's first child (the original hot
3554		 * spare) as well.
3555		 */
3556		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3557			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3558			ASSERT(ppvd->vdev_children == 2);
3559			sguid = ppvd->vdev_child[1]->vdev_guid;
3560		}
3561		spa_config_exit(spa, SCL_ALL, FTAG);
3562		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3563			return;
3564		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3565			return;
3566		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3567	}
3568
3569	spa_config_exit(spa, SCL_ALL, FTAG);
3570}
3571
3572/*
3573 * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3574 * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3575 */
3576int
3577spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3578    boolean_t ispath)
3579{
3580	vdev_t *vd;
3581	uint64_t txg;
3582
3583	txg = spa_vdev_enter(spa);
3584
3585	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3586		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3587
3588	if (!vd->vdev_ops->vdev_op_leaf)
3589		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3590
3591	if (ispath) {
3592		spa_strfree(vd->vdev_path);
3593		vd->vdev_path = spa_strdup(value);
3594	} else {
3595		if (vd->vdev_fru != NULL)
3596			spa_strfree(vd->vdev_fru);
3597		vd->vdev_fru = spa_strdup(value);
3598	}
3599
3600	vdev_config_dirty(vd->vdev_top);
3601
3602	return (spa_vdev_exit(spa, NULL, txg, 0));
3603}
3604
3605int
3606spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3607{
3608	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3609}
3610
3611int
3612spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3613{
3614	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3615}
3616
3617/*
3618 * ==========================================================================
3619 * SPA Scrubbing
3620 * ==========================================================================
3621 */
3622
3623int
3624spa_scrub(spa_t *spa, pool_scrub_type_t type)
3625{
3626	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3627
3628	if ((uint_t)type >= POOL_SCRUB_TYPES)
3629		return (ENOTSUP);
3630
3631	/*
3632	 * If a resilver was requested, but there is no DTL on a
3633	 * writeable leaf device, we have nothing to do.
3634	 */
3635	if (type == POOL_SCRUB_RESILVER &&
3636	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3637		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3638		return (0);
3639	}
3640
3641	if (type == POOL_SCRUB_EVERYTHING &&
3642	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3643	    spa->spa_dsl_pool->dp_scrub_isresilver)
3644		return (EBUSY);
3645
3646	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3647		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3648	} else if (type == POOL_SCRUB_NONE) {
3649		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3650	} else {
3651		return (EINVAL);
3652	}
3653}
3654
3655/*
3656 * ==========================================================================
3657 * SPA async task processing
3658 * ==========================================================================
3659 */
3660
3661static void
3662spa_async_remove(spa_t *spa, vdev_t *vd)
3663{
3664	if (vd->vdev_remove_wanted) {
3665		vd->vdev_remove_wanted = 0;
3666		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3667		vdev_clear(spa, vd);
3668		vdev_state_dirty(vd->vdev_top);
3669	}
3670
3671	for (int c = 0; c < vd->vdev_children; c++)
3672		spa_async_remove(spa, vd->vdev_child[c]);
3673}
3674
3675static void
3676spa_async_probe(spa_t *spa, vdev_t *vd)
3677{
3678	if (vd->vdev_probe_wanted) {
3679		vd->vdev_probe_wanted = 0;
3680		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3681	}
3682
3683	for (int c = 0; c < vd->vdev_children; c++)
3684		spa_async_probe(spa, vd->vdev_child[c]);
3685}
3686
3687static void
3688spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3689{
3690	sysevent_id_t eid;
3691	nvlist_t *attr;
3692	char *physpath;
3693
3694	if (!spa->spa_autoexpand)
3695		return;
3696
3697	for (int c = 0; c < vd->vdev_children; c++) {
3698		vdev_t *cvd = vd->vdev_child[c];
3699		spa_async_autoexpand(spa, cvd);
3700	}
3701
3702	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3703		return;
3704
3705	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3706	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3707
3708	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3709	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3710
3711	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3712	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3713
3714	nvlist_free(attr);
3715	kmem_free(physpath, MAXPATHLEN);
3716}
3717
3718static void
3719spa_async_thread(spa_t *spa)
3720{
3721	int tasks;
3722
3723	ASSERT(spa->spa_sync_on);
3724
3725	mutex_enter(&spa->spa_async_lock);
3726	tasks = spa->spa_async_tasks;
3727	spa->spa_async_tasks = 0;
3728	mutex_exit(&spa->spa_async_lock);
3729
3730	/*
3731	 * See if the config needs to be updated.
3732	 */
3733	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3734		uint64_t oldsz, space_update;
3735
3736		mutex_enter(&spa_namespace_lock);
3737		oldsz = spa_get_space(spa);
3738		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3739		space_update = spa_get_space(spa) - oldsz;
3740		mutex_exit(&spa_namespace_lock);
3741
3742		/*
3743		 * If the pool grew as a result of the config update,
3744		 * then log an internal history event.
3745		 */
3746		if (space_update) {
3747			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3748			    spa, NULL, CRED(),
3749			    "pool '%s' size: %llu(+%llu)",
3750			    spa_name(spa), spa_get_space(spa),
3751			    space_update);
3752		}
3753	}
3754
3755	/*
3756	 * See if any devices need to be marked REMOVED.
3757	 */
3758	if (tasks & SPA_ASYNC_REMOVE) {
3759		spa_vdev_state_enter(spa);
3760		spa_async_remove(spa, spa->spa_root_vdev);
3761		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3762			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3763		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3764			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3765		(void) spa_vdev_state_exit(spa, NULL, 0);
3766	}
3767
3768	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3769		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3770		spa_async_autoexpand(spa, spa->spa_root_vdev);
3771		spa_config_exit(spa, SCL_CONFIG, FTAG);
3772	}
3773
3774	/*
3775	 * See if any devices need to be probed.
3776	 */
3777	if (tasks & SPA_ASYNC_PROBE) {
3778		spa_vdev_state_enter(spa);
3779		spa_async_probe(spa, spa->spa_root_vdev);
3780		(void) spa_vdev_state_exit(spa, NULL, 0);
3781	}
3782
3783	/*
3784	 * If any devices are done replacing, detach them.
3785	 */
3786	if (tasks & SPA_ASYNC_RESILVER_DONE)
3787		spa_vdev_resilver_done(spa);
3788
3789	/*
3790	 * Kick off a resilver.
3791	 */
3792	if (tasks & SPA_ASYNC_RESILVER)
3793		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3794
3795	/*
3796	 * Let the world know that we're done.
3797	 */
3798	mutex_enter(&spa->spa_async_lock);
3799	spa->spa_async_thread = NULL;
3800	cv_broadcast(&spa->spa_async_cv);
3801	mutex_exit(&spa->spa_async_lock);
3802	thread_exit();
3803}
3804
3805void
3806spa_async_suspend(spa_t *spa)
3807{
3808	mutex_enter(&spa->spa_async_lock);
3809	spa->spa_async_suspended++;
3810	while (spa->spa_async_thread != NULL)
3811		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3812	mutex_exit(&spa->spa_async_lock);
3813}
3814
3815void
3816spa_async_resume(spa_t *spa)
3817{
3818	mutex_enter(&spa->spa_async_lock);
3819	ASSERT(spa->spa_async_suspended != 0);
3820	spa->spa_async_suspended--;
3821	mutex_exit(&spa->spa_async_lock);
3822}
3823
3824static void
3825spa_async_dispatch(spa_t *spa)
3826{
3827	mutex_enter(&spa->spa_async_lock);
3828	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3829	    spa->spa_async_thread == NULL &&
3830	    rootdir != NULL && !vn_is_readonly(rootdir))
3831		spa->spa_async_thread = thread_create(NULL, 0,
3832		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3833	mutex_exit(&spa->spa_async_lock);
3834}
3835
3836void
3837spa_async_request(spa_t *spa, int task)
3838{
3839	mutex_enter(&spa->spa_async_lock);
3840	spa->spa_async_tasks |= task;
3841	mutex_exit(&spa->spa_async_lock);
3842}
3843
3844/*
3845 * ==========================================================================
3846 * SPA syncing routines
3847 * ==========================================================================
3848 */
3849
3850static void
3851spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3852{
3853	bplist_t *bpl = &spa->spa_sync_bplist;
3854	dmu_tx_t *tx;
3855	blkptr_t blk;
3856	uint64_t itor = 0;
3857	zio_t *zio;
3858	int error;
3859	uint8_t c = 1;
3860
3861	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3862
3863	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3864		ASSERT(blk.blk_birth < txg);
3865		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3866		    ZIO_FLAG_MUSTSUCCEED));
3867	}
3868
3869	error = zio_wait(zio);
3870	ASSERT3U(error, ==, 0);
3871
3872	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3873	bplist_vacate(bpl, tx);
3874
3875	/*
3876	 * Pre-dirty the first block so we sync to convergence faster.
3877	 * (Usually only the first block is needed.)
3878	 */
3879	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3880	dmu_tx_commit(tx);
3881}
3882
3883static void
3884spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3885{
3886	char *packed = NULL;
3887	size_t bufsize;
3888	size_t nvsize = 0;
3889	dmu_buf_t *db;
3890
3891	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3892
3893	/*
3894	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3895	 * information.  This avoids the dbuf_will_dirty() path and
3896	 * saves us a pre-read to get data we don't actually care about.
3897	 */
3898	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3899	packed = kmem_alloc(bufsize, KM_SLEEP);
3900
3901	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3902	    KM_SLEEP) == 0);
3903	bzero(packed + nvsize, bufsize - nvsize);
3904
3905	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3906
3907	kmem_free(packed, bufsize);
3908
3909	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3910	dmu_buf_will_dirty(db, tx);
3911	*(uint64_t *)db->db_data = nvsize;
3912	dmu_buf_rele(db, FTAG);
3913}
3914
3915static void
3916spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3917    const char *config, const char *entry)
3918{
3919	nvlist_t *nvroot;
3920	nvlist_t **list;
3921	int i;
3922
3923	if (!sav->sav_sync)
3924		return;
3925
3926	/*
3927	 * Update the MOS nvlist describing the list of available devices.
3928	 * spa_validate_aux() will have already made sure this nvlist is
3929	 * valid and the vdevs are labeled appropriately.
3930	 */
3931	if (sav->sav_object == 0) {
3932		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3933		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3934		    sizeof (uint64_t), tx);
3935		VERIFY(zap_update(spa->spa_meta_objset,
3936		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3937		    &sav->sav_object, tx) == 0);
3938	}
3939
3940	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3941	if (sav->sav_count == 0) {
3942		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3943	} else {
3944		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3945		for (i = 0; i < sav->sav_count; i++)
3946			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3947			    B_FALSE, B_FALSE, B_TRUE);
3948		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3949		    sav->sav_count) == 0);
3950		for (i = 0; i < sav->sav_count; i++)
3951			nvlist_free(list[i]);
3952		kmem_free(list, sav->sav_count * sizeof (void *));
3953	}
3954
3955	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3956	nvlist_free(nvroot);
3957
3958	sav->sav_sync = B_FALSE;
3959}
3960
3961static void
3962spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3963{
3964	nvlist_t *config;
3965
3966	if (list_is_empty(&spa->spa_config_dirty_list))
3967		return;
3968
3969	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3970
3971	config = spa_config_generate(spa, spa->spa_root_vdev,
3972	    dmu_tx_get_txg(tx), B_FALSE);
3973
3974	spa_config_exit(spa, SCL_STATE, FTAG);
3975
3976	if (spa->spa_config_syncing)
3977		nvlist_free(spa->spa_config_syncing);
3978	spa->spa_config_syncing = config;
3979
3980	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3981}
3982
3983/*
3984 * Set zpool properties.
3985 */
3986static void
3987spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3988{
3989	spa_t *spa = arg1;
3990	objset_t *mos = spa->spa_meta_objset;
3991	nvlist_t *nvp = arg2;
3992	nvpair_t *elem;
3993	uint64_t intval;
3994	char *strval;
3995	zpool_prop_t prop;
3996	const char *propname;
3997	zprop_type_t proptype;
3998
3999	mutex_enter(&spa->spa_props_lock);
4000
4001	elem = NULL;
4002	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4003		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4004		case ZPOOL_PROP_VERSION:
4005			/*
4006			 * Only set version for non-zpool-creation cases
4007			 * (set/import). spa_create() needs special care
4008			 * for version setting.
4009			 */
4010			if (tx->tx_txg != TXG_INITIAL) {
4011				VERIFY(nvpair_value_uint64(elem,
4012				    &intval) == 0);
4013				ASSERT(intval <= SPA_VERSION);
4014				ASSERT(intval >= spa_version(spa));
4015				spa->spa_uberblock.ub_version = intval;
4016				vdev_config_dirty(spa->spa_root_vdev);
4017			}
4018			break;
4019
4020		case ZPOOL_PROP_ALTROOT:
4021			/*
4022			 * 'altroot' is a non-persistent property. It should
4023			 * have been set temporarily at creation or import time.
4024			 */
4025			ASSERT(spa->spa_root != NULL);
4026			break;
4027
4028		case ZPOOL_PROP_CACHEFILE:
4029			/*
4030			 * 'cachefile' is also a non-persisitent property.
4031			 */
4032			break;
4033		default:
4034			/*
4035			 * Set pool property values in the poolprops mos object.
4036			 */
4037			if (spa->spa_pool_props_object == 0) {
4038				objset_t *mos = spa->spa_meta_objset;
4039
4040				VERIFY((spa->spa_pool_props_object =
4041				    zap_create(mos, DMU_OT_POOL_PROPS,
4042				    DMU_OT_NONE, 0, tx)) > 0);
4043
4044				VERIFY(zap_update(mos,
4045				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4046				    8, 1, &spa->spa_pool_props_object, tx)
4047				    == 0);
4048			}
4049
4050			/* normalize the property name */
4051			propname = zpool_prop_to_name(prop);
4052			proptype = zpool_prop_get_type(prop);
4053
4054			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4055				ASSERT(proptype == PROP_TYPE_STRING);
4056				VERIFY(nvpair_value_string(elem, &strval) == 0);
4057				VERIFY(zap_update(mos,
4058				    spa->spa_pool_props_object, propname,
4059				    1, strlen(strval) + 1, strval, tx) == 0);
4060
4061			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4062				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4063
4064				if (proptype == PROP_TYPE_INDEX) {
4065					const char *unused;
4066					VERIFY(zpool_prop_index_to_string(
4067					    prop, intval, &unused) == 0);
4068				}
4069				VERIFY(zap_update(mos,
4070				    spa->spa_pool_props_object, propname,
4071				    8, 1, &intval, tx) == 0);
4072			} else {
4073				ASSERT(0); /* not allowed */
4074			}
4075
4076			switch (prop) {
4077			case ZPOOL_PROP_DELEGATION:
4078				spa->spa_delegation = intval;
4079				break;
4080			case ZPOOL_PROP_BOOTFS:
4081				spa->spa_bootfs = intval;
4082				break;
4083			case ZPOOL_PROP_FAILUREMODE:
4084				spa->spa_failmode = intval;
4085				break;
4086			case ZPOOL_PROP_AUTOEXPAND:
4087				spa->spa_autoexpand = intval;
4088				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4089				break;
4090			default:
4091				break;
4092			}
4093		}
4094
4095		/* log internal history if this is not a zpool create */
4096		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4097		    tx->tx_txg != TXG_INITIAL) {
4098			spa_history_internal_log(LOG_POOL_PROPSET,
4099			    spa, tx, cr, "%s %lld %s",
4100			    nvpair_name(elem), intval, spa_name(spa));
4101		}
4102	}
4103
4104	mutex_exit(&spa->spa_props_lock);
4105}
4106
4107/*
4108 * Sync the specified transaction group.  New blocks may be dirtied as
4109 * part of the process, so we iterate until it converges.
4110 */
4111void
4112spa_sync(spa_t *spa, uint64_t txg)
4113{
4114	dsl_pool_t *dp = spa->spa_dsl_pool;
4115	objset_t *mos = spa->spa_meta_objset;
4116	bplist_t *bpl = &spa->spa_sync_bplist;
4117	vdev_t *rvd = spa->spa_root_vdev;
4118	vdev_t *vd;
4119	dmu_tx_t *tx;
4120	int dirty_vdevs;
4121	int error;
4122
4123	/*
4124	 * Lock out configuration changes.
4125	 */
4126	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4127
4128	spa->spa_syncing_txg = txg;
4129	spa->spa_sync_pass = 0;
4130
4131	/*
4132	 * If there are any pending vdev state changes, convert them
4133	 * into config changes that go out with this transaction group.
4134	 */
4135	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4136	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4137		/*
4138		 * We need the write lock here because, for aux vdevs,
4139		 * calling vdev_config_dirty() modifies sav_config.
4140		 * This is ugly and will become unnecessary when we
4141		 * eliminate the aux vdev wart by integrating all vdevs
4142		 * into the root vdev tree.
4143		 */
4144		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4145		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4146		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4147			vdev_state_clean(vd);
4148			vdev_config_dirty(vd);
4149		}
4150		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4151		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4152	}
4153	spa_config_exit(spa, SCL_STATE, FTAG);
4154
4155	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4156
4157	tx = dmu_tx_create_assigned(dp, txg);
4158
4159	/*
4160	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4161	 * set spa_deflate if we have no raid-z vdevs.
4162	 */
4163	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4164	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4165		int i;
4166
4167		for (i = 0; i < rvd->vdev_children; i++) {
4168			vd = rvd->vdev_child[i];
4169			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4170				break;
4171		}
4172		if (i == rvd->vdev_children) {
4173			spa->spa_deflate = TRUE;
4174			VERIFY(0 == zap_add(spa->spa_meta_objset,
4175			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4176			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4177		}
4178	}
4179
4180	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4181	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4182		dsl_pool_create_origin(dp, tx);
4183
4184		/* Keeping the origin open increases spa_minref */
4185		spa->spa_minref += 3;
4186	}
4187
4188	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4189	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4190		dsl_pool_upgrade_clones(dp, tx);
4191	}
4192
4193	/*
4194	 * If anything has changed in this txg, push the deferred frees
4195	 * from the previous txg.  If not, leave them alone so that we
4196	 * don't generate work on an otherwise idle system.
4197	 */
4198	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4199	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4200	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4201		spa_sync_deferred_frees(spa, txg);
4202
4203	/*
4204	 * Iterate to convergence.
4205	 */
4206	do {
4207		spa->spa_sync_pass++;
4208
4209		spa_sync_config_object(spa, tx);
4210		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4211		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4212		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4213		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4214		spa_errlog_sync(spa, txg);
4215		dsl_pool_sync(dp, txg);
4216
4217		dirty_vdevs = 0;
4218		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4219			vdev_sync(vd, txg);
4220			dirty_vdevs++;
4221		}
4222
4223		bplist_sync(bpl, tx);
4224	} while (dirty_vdevs);
4225
4226	bplist_close(bpl);
4227
4228	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4229
4230	/*
4231	 * Rewrite the vdev configuration (which includes the uberblock)
4232	 * to commit the transaction group.
4233	 *
4234	 * If there are no dirty vdevs, we sync the uberblock to a few
4235	 * random top-level vdevs that are known to be visible in the
4236	 * config cache (see spa_vdev_add() for a complete description).
4237	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4238	 */
4239	for (;;) {
4240		/*
4241		 * We hold SCL_STATE to prevent vdev open/close/etc.
4242		 * while we're attempting to write the vdev labels.
4243		 */
4244		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4245
4246		if (list_is_empty(&spa->spa_config_dirty_list)) {
4247			vdev_t *svd[SPA_DVAS_PER_BP];
4248			int svdcount = 0;
4249			int children = rvd->vdev_children;
4250			int c0 = spa_get_random(children);
4251
4252			for (int c = 0; c < children; c++) {
4253				vd = rvd->vdev_child[(c0 + c) % children];
4254				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4255					continue;
4256				svd[svdcount++] = vd;
4257				if (svdcount == SPA_DVAS_PER_BP)
4258					break;
4259			}
4260			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4261			if (error != 0)
4262				error = vdev_config_sync(svd, svdcount, txg,
4263				    B_TRUE);
4264		} else {
4265			error = vdev_config_sync(rvd->vdev_child,
4266			    rvd->vdev_children, txg, B_FALSE);
4267			if (error != 0)
4268				error = vdev_config_sync(rvd->vdev_child,
4269				    rvd->vdev_children, txg, B_TRUE);
4270		}
4271
4272		spa_config_exit(spa, SCL_STATE, FTAG);
4273
4274		if (error == 0)
4275			break;
4276		zio_suspend(spa, NULL);
4277		zio_resume_wait(spa);
4278	}
4279	dmu_tx_commit(tx);
4280
4281	/*
4282	 * Clear the dirty config list.
4283	 */
4284	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4285		vdev_config_clean(vd);
4286
4287	/*
4288	 * Now that the new config has synced transactionally,
4289	 * let it become visible to the config cache.
4290	 */
4291	if (spa->spa_config_syncing != NULL) {
4292		spa_config_set(spa, spa->spa_config_syncing);
4293		spa->spa_config_txg = txg;
4294		spa->spa_config_syncing = NULL;
4295	}
4296
4297	spa->spa_ubsync = spa->spa_uberblock;
4298
4299	/*
4300	 * Clean up the ZIL records for the synced txg.
4301	 */
4302	dsl_pool_zil_clean(dp);
4303
4304	/*
4305	 * Update usable space statistics.
4306	 */
4307	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4308		vdev_sync_done(vd, txg);
4309
4310	/*
4311	 * It had better be the case that we didn't dirty anything
4312	 * since vdev_config_sync().
4313	 */
4314	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4315	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4316	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4317	ASSERT(bpl->bpl_queue == NULL);
4318
4319	spa_config_exit(spa, SCL_CONFIG, FTAG);
4320
4321	/*
4322	 * If any async tasks have been requested, kick them off.
4323	 */
4324	spa_async_dispatch(spa);
4325}
4326
4327/*
4328 * Sync all pools.  We don't want to hold the namespace lock across these
4329 * operations, so we take a reference on the spa_t and drop the lock during the
4330 * sync.
4331 */
4332void
4333spa_sync_allpools(void)
4334{
4335	spa_t *spa = NULL;
4336	mutex_enter(&spa_namespace_lock);
4337	while ((spa = spa_next(spa)) != NULL) {
4338		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4339			continue;
4340		spa_open_ref(spa, FTAG);
4341		mutex_exit(&spa_namespace_lock);
4342		txg_wait_synced(spa_get_dsl(spa), 0);
4343		mutex_enter(&spa_namespace_lock);
4344		spa_close(spa, FTAG);
4345	}
4346	mutex_exit(&spa_namespace_lock);
4347}
4348
4349/*
4350 * ==========================================================================
4351 * Miscellaneous routines
4352 * ==========================================================================
4353 */
4354
4355/*
4356 * Remove all pools in the system.
4357 */
4358void
4359spa_evict_all(void)
4360{
4361	spa_t *spa;
4362
4363	/*
4364	 * Remove all cached state.  All pools should be closed now,
4365	 * so every spa in the AVL tree should be unreferenced.
4366	 */
4367	mutex_enter(&spa_namespace_lock);
4368	while ((spa = spa_next(NULL)) != NULL) {
4369		/*
4370		 * Stop async tasks.  The async thread may need to detach
4371		 * a device that's been replaced, which requires grabbing
4372		 * spa_namespace_lock, so we must drop it here.
4373		 */
4374		spa_open_ref(spa, FTAG);
4375		mutex_exit(&spa_namespace_lock);
4376		spa_async_suspend(spa);
4377		mutex_enter(&spa_namespace_lock);
4378		spa_close(spa, FTAG);
4379
4380		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4381			spa_unload(spa);
4382			spa_deactivate(spa);
4383		}
4384		spa_remove(spa);
4385	}
4386	mutex_exit(&spa_namespace_lock);
4387}
4388
4389vdev_t *
4390spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4391{
4392	vdev_t *vd;
4393	int i;
4394
4395	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4396		return (vd);
4397
4398	if (aux) {
4399		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4400			vd = spa->spa_l2cache.sav_vdevs[i];
4401			if (vd->vdev_guid == guid)
4402				return (vd);
4403		}
4404
4405		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4406			vd = spa->spa_spares.sav_vdevs[i];
4407			if (vd->vdev_guid == guid)
4408				return (vd);
4409		}
4410	}
4411
4412	return (NULL);
4413}
4414
4415void
4416spa_upgrade(spa_t *spa, uint64_t version)
4417{
4418	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4419
4420	/*
4421	 * This should only be called for a non-faulted pool, and since a
4422	 * future version would result in an unopenable pool, this shouldn't be
4423	 * possible.
4424	 */
4425	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4426	ASSERT(version >= spa->spa_uberblock.ub_version);
4427
4428	spa->spa_uberblock.ub_version = version;
4429	vdev_config_dirty(spa->spa_root_vdev);
4430
4431	spa_config_exit(spa, SCL_ALL, FTAG);
4432
4433	txg_wait_synced(spa_get_dsl(spa), 0);
4434}
4435
4436boolean_t
4437spa_has_spare(spa_t *spa, uint64_t guid)
4438{
4439	int i;
4440	uint64_t spareguid;
4441	spa_aux_vdev_t *sav = &spa->spa_spares;
4442
4443	for (i = 0; i < sav->sav_count; i++)
4444		if (sav->sav_vdevs[i]->vdev_guid == guid)
4445			return (B_TRUE);
4446
4447	for (i = 0; i < sav->sav_npending; i++) {
4448		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4449		    &spareguid) == 0 && spareguid == guid)
4450			return (B_TRUE);
4451	}
4452
4453	return (B_FALSE);
4454}
4455
4456/*
4457 * Check if a pool has an active shared spare device.
4458 * Note: reference count of an active spare is 2, as a spare and as a replace
4459 */
4460static boolean_t
4461spa_has_active_shared_spare(spa_t *spa)
4462{
4463	int i, refcnt;
4464	uint64_t pool;
4465	spa_aux_vdev_t *sav = &spa->spa_spares;
4466
4467	for (i = 0; i < sav->sav_count; i++) {
4468		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4469		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4470		    refcnt > 2)
4471			return (B_TRUE);
4472	}
4473
4474	return (B_FALSE);
4475}
4476
4477/*
4478 * Post a sysevent corresponding to the given event.  The 'name' must be one of
4479 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4480 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4481 * in the userland libzpool, as we don't want consumers to misinterpret ztest
4482 * or zdb as real changes.
4483 */
4484void
4485spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4486{
4487#ifdef _KERNEL
4488	sysevent_t		*ev;
4489	sysevent_attr_list_t	*attr = NULL;
4490	sysevent_value_t	value;
4491	sysevent_id_t		eid;
4492
4493	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4494	    SE_SLEEP);
4495
4496	value.value_type = SE_DATA_TYPE_STRING;
4497	value.value.sv_string = spa_name(spa);
4498	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4499		goto done;
4500
4501	value.value_type = SE_DATA_TYPE_UINT64;
4502	value.value.sv_uint64 = spa_guid(spa);
4503	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4504		goto done;
4505
4506	if (vd) {
4507		value.value_type = SE_DATA_TYPE_UINT64;
4508		value.value.sv_uint64 = vd->vdev_guid;
4509		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4510		    SE_SLEEP) != 0)
4511			goto done;
4512
4513		if (vd->vdev_path) {
4514			value.value_type = SE_DATA_TYPE_STRING;
4515			value.value.sv_string = vd->vdev_path;
4516			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4517			    &value, SE_SLEEP) != 0)
4518				goto done;
4519		}
4520	}
4521
4522	if (sysevent_attach_attributes(ev, attr) != 0)
4523		goto done;
4524	attr = NULL;
4525
4526	(void) log_sysevent(ev, SE_SLEEP, &eid);
4527
4528done:
4529	if (attr)
4530		sysevent_free_attr(attr);
4531	sysevent_free(ev);
4532#endif
4533}
4534