xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision c4ab0d3f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2018 Joyent, Inc.
31  * Copyright (c) 2017, Intel Corporation.
32  * Copyright (c) 2017 Datto Inc.
33  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34  */
35 
36 /*
37  * SPA: Storage Pool Allocator
38  *
39  * This file contains all the routines used when modifying on-disk SPA state.
40  * This includes opening, importing, destroying, exporting a pool, and syncing a
41  * pool.
42  */
43 
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_removal.h>
56 #include <sys/vdev_indirect_mapping.h>
57 #include <sys/vdev_indirect_births.h>
58 #include <sys/vdev_initialize.h>
59 #include <sys/metaslab.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/mmp.h>
62 #include <sys/uberblock_impl.h>
63 #include <sys/txg.h>
64 #include <sys/avl.h>
65 #include <sys/bpobj.h>
66 #include <sys/dmu_traverse.h>
67 #include <sys/dmu_objset.h>
68 #include <sys/unique.h>
69 #include <sys/dsl_pool.h>
70 #include <sys/dsl_dataset.h>
71 #include <sys/dsl_dir.h>
72 #include <sys/dsl_prop.h>
73 #include <sys/dsl_synctask.h>
74 #include <sys/fs/zfs.h>
75 #include <sys/arc.h>
76 #include <sys/callb.h>
77 #include <sys/systeminfo.h>
78 #include <sys/spa_boot.h>
79 #include <sys/zfs_ioctl.h>
80 #include <sys/dsl_scan.h>
81 #include <sys/zfeature.h>
82 #include <sys/dsl_destroy.h>
83 #include <sys/abd.h>
84 
85 #ifdef	_KERNEL
86 #include <sys/bootprops.h>
87 #include <sys/callb.h>
88 #include <sys/cpupart.h>
89 #include <sys/pool.h>
90 #include <sys/sysdc.h>
91 #include <sys/zone.h>
92 #endif	/* _KERNEL */
93 
94 #include "zfs_prop.h"
95 #include "zfs_comutil.h"
96 
97 /*
98  * The interval, in seconds, at which failed configuration cache file writes
99  * should be retried.
100  */
101 int zfs_ccw_retry_interval = 300;
102 
103 typedef enum zti_modes {
104 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
105 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
106 	ZTI_MODE_NULL,			/* don't create a taskq */
107 	ZTI_NMODES
108 } zti_modes_t;
109 
110 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
111 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
112 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
113 
114 #define	ZTI_N(n)	ZTI_P(n, 1)
115 #define	ZTI_ONE		ZTI_N(1)
116 
117 typedef struct zio_taskq_info {
118 	zti_modes_t zti_mode;
119 	uint_t zti_value;
120 	uint_t zti_count;
121 } zio_taskq_info_t;
122 
123 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
124 	"issue", "issue_high", "intr", "intr_high"
125 };
126 
127 /*
128  * This table defines the taskq settings for each ZFS I/O type. When
129  * initializing a pool, we use this table to create an appropriately sized
130  * taskq. Some operations are low volume and therefore have a small, static
131  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
132  * macros. Other operations process a large amount of data; the ZTI_BATCH
133  * macro causes us to create a taskq oriented for throughput. Some operations
134  * are so high frequency and short-lived that the taskq itself can become a a
135  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
136  * additional degree of parallelism specified by the number of threads per-
137  * taskq and the number of taskqs; when dispatching an event in this case, the
138  * particular taskq is chosen at random.
139  *
140  * The different taskq priorities are to handle the different contexts (issue
141  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
142  * need to be handled with minimum delay.
143  */
144 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
145 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
146 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
147 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
148 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
149 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
150 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
151 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
152 };
153 
154 static void spa_sync_version(void *arg, dmu_tx_t *tx);
155 static void spa_sync_props(void *arg, dmu_tx_t *tx);
156 static boolean_t spa_has_active_shared_spare(spa_t *spa);
157 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
158 static void spa_vdev_resilver_done(spa_t *spa);
159 
160 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
161 id_t		zio_taskq_psrset_bind = PS_NONE;
162 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
163 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164 
165 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166 extern int	zfs_sync_pass_deferred_free;
167 
168 /*
169  * Report any spa_load_verify errors found, but do not fail spa_load.
170  * This is used by zdb to analyze non-idle pools.
171  */
172 boolean_t	spa_load_verify_dryrun = B_FALSE;
173 
174 /*
175  * This (illegal) pool name is used when temporarily importing a spa_t in order
176  * to get the vdev stats associated with the imported devices.
177  */
178 #define	TRYIMPORT_NAME	"$import"
179 
180 /*
181  * For debugging purposes: print out vdev tree during pool import.
182  */
183 boolean_t	spa_load_print_vdev_tree = B_FALSE;
184 
185 /*
186  * A non-zero value for zfs_max_missing_tvds means that we allow importing
187  * pools with missing top-level vdevs. This is strictly intended for advanced
188  * pool recovery cases since missing data is almost inevitable. Pools with
189  * missing devices can only be imported read-only for safety reasons, and their
190  * fail-mode will be automatically set to "continue".
191  *
192  * With 1 missing vdev we should be able to import the pool and mount all
193  * datasets. User data that was not modified after the missing device has been
194  * added should be recoverable. This means that snapshots created prior to the
195  * addition of that device should be completely intact.
196  *
197  * With 2 missing vdevs, some datasets may fail to mount since there are
198  * dataset statistics that are stored as regular metadata. Some data might be
199  * recoverable if those vdevs were added recently.
200  *
201  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
202  * may be missing entirely. Chances of data recovery are very low. Note that
203  * there are also risks of performing an inadvertent rewind as we might be
204  * missing all the vdevs with the latest uberblocks.
205  */
206 uint64_t	zfs_max_missing_tvds = 0;
207 
208 /*
209  * The parameters below are similar to zfs_max_missing_tvds but are only
210  * intended for a preliminary open of the pool with an untrusted config which
211  * might be incomplete or out-dated.
212  *
213  * We are more tolerant for pools opened from a cachefile since we could have
214  * an out-dated cachefile where a device removal was not registered.
215  * We could have set the limit arbitrarily high but in the case where devices
216  * are really missing we would want to return the proper error codes; we chose
217  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
218  * and we get a chance to retrieve the trusted config.
219  */
220 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
221 
222 /*
223  * In the case where config was assembled by scanning device paths (/dev/dsks
224  * by default) we are less tolerant since all the existing devices should have
225  * been detected and we want spa_load to return the right error codes.
226  */
227 uint64_t	zfs_max_missing_tvds_scan = 0;
228 
229 /*
230  * Debugging aid that pauses spa_sync() towards the end.
231  */
232 boolean_t	zfs_pause_spa_sync = B_FALSE;
233 
234 /*
235  * ==========================================================================
236  * SPA properties routines
237  * ==========================================================================
238  */
239 
240 /*
241  * Add a (source=src, propname=propval) list to an nvlist.
242  */
243 static void
244 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
245     uint64_t intval, zprop_source_t src)
246 {
247 	const char *propname = zpool_prop_to_name(prop);
248 	nvlist_t *propval;
249 
250 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
251 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
252 
253 	if (strval != NULL)
254 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
255 	else
256 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
257 
258 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
259 	nvlist_free(propval);
260 }
261 
262 /*
263  * Get property values from the spa configuration.
264  */
265 static void
266 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
267 {
268 	vdev_t *rvd = spa->spa_root_vdev;
269 	dsl_pool_t *pool = spa->spa_dsl_pool;
270 	uint64_t size, alloc, cap, version;
271 	zprop_source_t src = ZPROP_SRC_NONE;
272 	spa_config_dirent_t *dp;
273 	metaslab_class_t *mc = spa_normal_class(spa);
274 
275 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
276 
277 	if (rvd != NULL) {
278 		alloc = metaslab_class_get_alloc(mc);
279 		alloc += metaslab_class_get_alloc(spa_special_class(spa));
280 		alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
281 
282 		size = metaslab_class_get_space(mc);
283 		size += metaslab_class_get_space(spa_special_class(spa));
284 		size += metaslab_class_get_space(spa_dedup_class(spa));
285 
286 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
287 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
289 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
290 		    size - alloc, src);
291 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
292 		    spa->spa_checkpoint_info.sci_dspace, src);
293 
294 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
295 		    metaslab_class_fragmentation(mc), src);
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
297 		    metaslab_class_expandable_space(mc), src);
298 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
299 		    (spa_mode(spa) == FREAD), src);
300 
301 		cap = (size == 0) ? 0 : (alloc * 100 / size);
302 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
303 
304 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
305 		    ddt_get_pool_dedup_ratio(spa), src);
306 
307 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
308 		    rvd->vdev_state, src);
309 
310 		version = spa_version(spa);
311 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
312 			src = ZPROP_SRC_DEFAULT;
313 		else
314 			src = ZPROP_SRC_LOCAL;
315 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
316 	}
317 
318 	if (pool != NULL) {
319 		/*
320 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
321 		 * when opening pools before this version freedir will be NULL.
322 		 */
323 		if (pool->dp_free_dir != NULL) {
324 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
325 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
326 			    src);
327 		} else {
328 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
329 			    NULL, 0, src);
330 		}
331 
332 		if (pool->dp_leak_dir != NULL) {
333 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
334 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
335 			    src);
336 		} else {
337 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
338 			    NULL, 0, src);
339 		}
340 	}
341 
342 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
343 
344 	if (spa->spa_comment != NULL) {
345 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
346 		    0, ZPROP_SRC_LOCAL);
347 	}
348 
349 	if (spa->spa_root != NULL)
350 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
351 		    0, ZPROP_SRC_LOCAL);
352 
353 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
354 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
355 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
356 	} else {
357 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
358 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
359 	}
360 
361 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
362 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
363 		    DNODE_MAX_SIZE, ZPROP_SRC_NONE);
364 	} else {
365 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
366 		    DNODE_MIN_SIZE, ZPROP_SRC_NONE);
367 	}
368 
369 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
370 		if (dp->scd_path == NULL) {
371 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
372 			    "none", 0, ZPROP_SRC_LOCAL);
373 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
374 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
375 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
376 		}
377 	}
378 }
379 
380 /*
381  * Get zpool property values.
382  */
383 int
384 spa_prop_get(spa_t *spa, nvlist_t **nvp)
385 {
386 	objset_t *mos = spa->spa_meta_objset;
387 	zap_cursor_t zc;
388 	zap_attribute_t za;
389 	int err;
390 
391 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
392 
393 	mutex_enter(&spa->spa_props_lock);
394 
395 	/*
396 	 * Get properties from the spa config.
397 	 */
398 	spa_prop_get_config(spa, nvp);
399 
400 	/* If no pool property object, no more prop to get. */
401 	if (mos == NULL || spa->spa_pool_props_object == 0) {
402 		mutex_exit(&spa->spa_props_lock);
403 		return (0);
404 	}
405 
406 	/*
407 	 * Get properties from the MOS pool property object.
408 	 */
409 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
410 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
411 	    zap_cursor_advance(&zc)) {
412 		uint64_t intval = 0;
413 		char *strval = NULL;
414 		zprop_source_t src = ZPROP_SRC_DEFAULT;
415 		zpool_prop_t prop;
416 
417 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
418 			continue;
419 
420 		switch (za.za_integer_length) {
421 		case 8:
422 			/* integer property */
423 			if (za.za_first_integer !=
424 			    zpool_prop_default_numeric(prop))
425 				src = ZPROP_SRC_LOCAL;
426 
427 			if (prop == ZPOOL_PROP_BOOTFS) {
428 				dsl_pool_t *dp;
429 				dsl_dataset_t *ds = NULL;
430 
431 				dp = spa_get_dsl(spa);
432 				dsl_pool_config_enter(dp, FTAG);
433 				err = dsl_dataset_hold_obj(dp,
434 				    za.za_first_integer, FTAG, &ds);
435 				if (err != 0) {
436 					dsl_pool_config_exit(dp, FTAG);
437 					break;
438 				}
439 
440 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
441 				    KM_SLEEP);
442 				dsl_dataset_name(ds, strval);
443 				dsl_dataset_rele(ds, FTAG);
444 				dsl_pool_config_exit(dp, FTAG);
445 			} else {
446 				strval = NULL;
447 				intval = za.za_first_integer;
448 			}
449 
450 			spa_prop_add_list(*nvp, prop, strval, intval, src);
451 
452 			if (strval != NULL)
453 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
454 
455 			break;
456 
457 		case 1:
458 			/* string property */
459 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
460 			err = zap_lookup(mos, spa->spa_pool_props_object,
461 			    za.za_name, 1, za.za_num_integers, strval);
462 			if (err) {
463 				kmem_free(strval, za.za_num_integers);
464 				break;
465 			}
466 			spa_prop_add_list(*nvp, prop, strval, 0, src);
467 			kmem_free(strval, za.za_num_integers);
468 			break;
469 
470 		default:
471 			break;
472 		}
473 	}
474 	zap_cursor_fini(&zc);
475 	mutex_exit(&spa->spa_props_lock);
476 out:
477 	if (err && err != ENOENT) {
478 		nvlist_free(*nvp);
479 		*nvp = NULL;
480 		return (err);
481 	}
482 
483 	return (0);
484 }
485 
486 /*
487  * Validate the given pool properties nvlist and modify the list
488  * for the property values to be set.
489  */
490 static int
491 spa_prop_validate(spa_t *spa, nvlist_t *props)
492 {
493 	nvpair_t *elem;
494 	int error = 0, reset_bootfs = 0;
495 	uint64_t objnum = 0;
496 	boolean_t has_feature = B_FALSE;
497 
498 	elem = NULL;
499 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
500 		uint64_t intval;
501 		char *strval, *slash, *check, *fname;
502 		const char *propname = nvpair_name(elem);
503 		zpool_prop_t prop = zpool_name_to_prop(propname);
504 
505 		switch (prop) {
506 		case ZPOOL_PROP_INVAL:
507 			if (!zpool_prop_feature(propname)) {
508 				error = SET_ERROR(EINVAL);
509 				break;
510 			}
511 
512 			/*
513 			 * Sanitize the input.
514 			 */
515 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
516 				error = SET_ERROR(EINVAL);
517 				break;
518 			}
519 
520 			if (nvpair_value_uint64(elem, &intval) != 0) {
521 				error = SET_ERROR(EINVAL);
522 				break;
523 			}
524 
525 			if (intval != 0) {
526 				error = SET_ERROR(EINVAL);
527 				break;
528 			}
529 
530 			fname = strchr(propname, '@') + 1;
531 			if (zfeature_lookup_name(fname, NULL) != 0) {
532 				error = SET_ERROR(EINVAL);
533 				break;
534 			}
535 
536 			has_feature = B_TRUE;
537 			break;
538 
539 		case ZPOOL_PROP_VERSION:
540 			error = nvpair_value_uint64(elem, &intval);
541 			if (!error &&
542 			    (intval < spa_version(spa) ||
543 			    intval > SPA_VERSION_BEFORE_FEATURES ||
544 			    has_feature))
545 				error = SET_ERROR(EINVAL);
546 			break;
547 
548 		case ZPOOL_PROP_DELEGATION:
549 		case ZPOOL_PROP_AUTOREPLACE:
550 		case ZPOOL_PROP_LISTSNAPS:
551 		case ZPOOL_PROP_AUTOEXPAND:
552 			error = nvpair_value_uint64(elem, &intval);
553 			if (!error && intval > 1)
554 				error = SET_ERROR(EINVAL);
555 			break;
556 
557 		case ZPOOL_PROP_MULTIHOST:
558 			error = nvpair_value_uint64(elem, &intval);
559 			if (!error && intval > 1)
560 				error = SET_ERROR(EINVAL);
561 
562 			if (!error && !spa_get_hostid())
563 				error = SET_ERROR(ENOTSUP);
564 
565 			break;
566 
567 		case ZPOOL_PROP_BOOTFS:
568 			/*
569 			 * If the pool version is less than SPA_VERSION_BOOTFS,
570 			 * or the pool is still being created (version == 0),
571 			 * the bootfs property cannot be set.
572 			 */
573 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
574 				error = SET_ERROR(ENOTSUP);
575 				break;
576 			}
577 
578 			/*
579 			 * Make sure the vdev config is bootable
580 			 */
581 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
582 				error = SET_ERROR(ENOTSUP);
583 				break;
584 			}
585 
586 			reset_bootfs = 1;
587 
588 			error = nvpair_value_string(elem, &strval);
589 
590 			if (!error) {
591 				objset_t *os;
592 				uint64_t propval;
593 
594 				if (strval == NULL || strval[0] == '\0') {
595 					objnum = zpool_prop_default_numeric(
596 					    ZPOOL_PROP_BOOTFS);
597 					break;
598 				}
599 
600 				error = dmu_objset_hold(strval, FTAG, &os);
601 				if (error != 0)
602 					break;
603 
604 				/*
605 				 * Must be ZPL, and its property settings
606 				 * must be supported.
607 				 */
608 
609 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
610 					error = SET_ERROR(ENOTSUP);
611 				} else if ((error =
612 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
613 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
614 				    &propval)) == 0 &&
615 				    !BOOTFS_COMPRESS_VALID(propval)) {
616 					error = SET_ERROR(ENOTSUP);
617 				} else {
618 					objnum = dmu_objset_id(os);
619 				}
620 				dmu_objset_rele(os, FTAG);
621 			}
622 			break;
623 
624 		case ZPOOL_PROP_FAILUREMODE:
625 			error = nvpair_value_uint64(elem, &intval);
626 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
627 			    intval > ZIO_FAILURE_MODE_PANIC))
628 				error = SET_ERROR(EINVAL);
629 
630 			/*
631 			 * This is a special case which only occurs when
632 			 * the pool has completely failed. This allows
633 			 * the user to change the in-core failmode property
634 			 * without syncing it out to disk (I/Os might
635 			 * currently be blocked). We do this by returning
636 			 * EIO to the caller (spa_prop_set) to trick it
637 			 * into thinking we encountered a property validation
638 			 * error.
639 			 */
640 			if (!error && spa_suspended(spa)) {
641 				spa->spa_failmode = intval;
642 				error = SET_ERROR(EIO);
643 			}
644 			break;
645 
646 		case ZPOOL_PROP_CACHEFILE:
647 			if ((error = nvpair_value_string(elem, &strval)) != 0)
648 				break;
649 
650 			if (strval[0] == '\0')
651 				break;
652 
653 			if (strcmp(strval, "none") == 0)
654 				break;
655 
656 			if (strval[0] != '/') {
657 				error = SET_ERROR(EINVAL);
658 				break;
659 			}
660 
661 			slash = strrchr(strval, '/');
662 			ASSERT(slash != NULL);
663 
664 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
665 			    strcmp(slash, "/..") == 0)
666 				error = SET_ERROR(EINVAL);
667 			break;
668 
669 		case ZPOOL_PROP_COMMENT:
670 			if ((error = nvpair_value_string(elem, &strval)) != 0)
671 				break;
672 			for (check = strval; *check != '\0'; check++) {
673 				/*
674 				 * The kernel doesn't have an easy isprint()
675 				 * check.  For this kernel check, we merely
676 				 * check ASCII apart from DEL.  Fix this if
677 				 * there is an easy-to-use kernel isprint().
678 				 */
679 				if (*check >= 0x7f) {
680 					error = SET_ERROR(EINVAL);
681 					break;
682 				}
683 			}
684 			if (strlen(strval) > ZPROP_MAX_COMMENT)
685 				error = E2BIG;
686 			break;
687 
688 		case ZPOOL_PROP_DEDUPDITTO:
689 			if (spa_version(spa) < SPA_VERSION_DEDUP)
690 				error = SET_ERROR(ENOTSUP);
691 			else
692 				error = nvpair_value_uint64(elem, &intval);
693 			if (error == 0 &&
694 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
695 				error = SET_ERROR(EINVAL);
696 			break;
697 		}
698 
699 		if (error)
700 			break;
701 	}
702 
703 	if (!error && reset_bootfs) {
704 		error = nvlist_remove(props,
705 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
706 
707 		if (!error) {
708 			error = nvlist_add_uint64(props,
709 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
710 		}
711 	}
712 
713 	return (error);
714 }
715 
716 void
717 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
718 {
719 	char *cachefile;
720 	spa_config_dirent_t *dp;
721 
722 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
723 	    &cachefile) != 0)
724 		return;
725 
726 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
727 	    KM_SLEEP);
728 
729 	if (cachefile[0] == '\0')
730 		dp->scd_path = spa_strdup(spa_config_path);
731 	else if (strcmp(cachefile, "none") == 0)
732 		dp->scd_path = NULL;
733 	else
734 		dp->scd_path = spa_strdup(cachefile);
735 
736 	list_insert_head(&spa->spa_config_list, dp);
737 	if (need_sync)
738 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
739 }
740 
741 int
742 spa_prop_set(spa_t *spa, nvlist_t *nvp)
743 {
744 	int error;
745 	nvpair_t *elem = NULL;
746 	boolean_t need_sync = B_FALSE;
747 
748 	if ((error = spa_prop_validate(spa, nvp)) != 0)
749 		return (error);
750 
751 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
752 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
753 
754 		if (prop == ZPOOL_PROP_CACHEFILE ||
755 		    prop == ZPOOL_PROP_ALTROOT ||
756 		    prop == ZPOOL_PROP_READONLY)
757 			continue;
758 
759 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
760 			uint64_t ver;
761 
762 			if (prop == ZPOOL_PROP_VERSION) {
763 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
764 			} else {
765 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
766 				ver = SPA_VERSION_FEATURES;
767 				need_sync = B_TRUE;
768 			}
769 
770 			/* Save time if the version is already set. */
771 			if (ver == spa_version(spa))
772 				continue;
773 
774 			/*
775 			 * In addition to the pool directory object, we might
776 			 * create the pool properties object, the features for
777 			 * read object, the features for write object, or the
778 			 * feature descriptions object.
779 			 */
780 			error = dsl_sync_task(spa->spa_name, NULL,
781 			    spa_sync_version, &ver,
782 			    6, ZFS_SPACE_CHECK_RESERVED);
783 			if (error)
784 				return (error);
785 			continue;
786 		}
787 
788 		need_sync = B_TRUE;
789 		break;
790 	}
791 
792 	if (need_sync) {
793 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
794 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
795 	}
796 
797 	return (0);
798 }
799 
800 /*
801  * If the bootfs property value is dsobj, clear it.
802  */
803 void
804 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
805 {
806 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
807 		VERIFY(zap_remove(spa->spa_meta_objset,
808 		    spa->spa_pool_props_object,
809 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
810 		spa->spa_bootfs = 0;
811 	}
812 }
813 
814 /*ARGSUSED*/
815 static int
816 spa_change_guid_check(void *arg, dmu_tx_t *tx)
817 {
818 	uint64_t *newguid = arg;
819 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
820 	vdev_t *rvd = spa->spa_root_vdev;
821 	uint64_t vdev_state;
822 
823 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
824 		int error = (spa_has_checkpoint(spa)) ?
825 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
826 		return (SET_ERROR(error));
827 	}
828 
829 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
830 	vdev_state = rvd->vdev_state;
831 	spa_config_exit(spa, SCL_STATE, FTAG);
832 
833 	if (vdev_state != VDEV_STATE_HEALTHY)
834 		return (SET_ERROR(ENXIO));
835 
836 	ASSERT3U(spa_guid(spa), !=, *newguid);
837 
838 	return (0);
839 }
840 
841 static void
842 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
843 {
844 	uint64_t *newguid = arg;
845 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
846 	uint64_t oldguid;
847 	vdev_t *rvd = spa->spa_root_vdev;
848 
849 	oldguid = spa_guid(spa);
850 
851 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
852 	rvd->vdev_guid = *newguid;
853 	rvd->vdev_guid_sum += (*newguid - oldguid);
854 	vdev_config_dirty(rvd);
855 	spa_config_exit(spa, SCL_STATE, FTAG);
856 
857 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
858 	    oldguid, *newguid);
859 }
860 
861 /*
862  * Change the GUID for the pool.  This is done so that we can later
863  * re-import a pool built from a clone of our own vdevs.  We will modify
864  * the root vdev's guid, our own pool guid, and then mark all of our
865  * vdevs dirty.  Note that we must make sure that all our vdevs are
866  * online when we do this, or else any vdevs that weren't present
867  * would be orphaned from our pool.  We are also going to issue a
868  * sysevent to update any watchers.
869  */
870 int
871 spa_change_guid(spa_t *spa)
872 {
873 	int error;
874 	uint64_t guid;
875 
876 	mutex_enter(&spa->spa_vdev_top_lock);
877 	mutex_enter(&spa_namespace_lock);
878 	guid = spa_generate_guid(NULL);
879 
880 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
881 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
882 
883 	if (error == 0) {
884 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
885 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
886 	}
887 
888 	mutex_exit(&spa_namespace_lock);
889 	mutex_exit(&spa->spa_vdev_top_lock);
890 
891 	return (error);
892 }
893 
894 /*
895  * ==========================================================================
896  * SPA state manipulation (open/create/destroy/import/export)
897  * ==========================================================================
898  */
899 
900 static int
901 spa_error_entry_compare(const void *a, const void *b)
902 {
903 	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
904 	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
905 	int ret;
906 
907 	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
908 	    sizeof (zbookmark_phys_t));
909 
910 	return (AVL_ISIGN(ret));
911 }
912 
913 /*
914  * Utility function which retrieves copies of the current logs and
915  * re-initializes them in the process.
916  */
917 void
918 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
919 {
920 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
921 
922 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
923 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
924 
925 	avl_create(&spa->spa_errlist_scrub,
926 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
927 	    offsetof(spa_error_entry_t, se_avl));
928 	avl_create(&spa->spa_errlist_last,
929 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
930 	    offsetof(spa_error_entry_t, se_avl));
931 }
932 
933 static void
934 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
935 {
936 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
937 	enum zti_modes mode = ztip->zti_mode;
938 	uint_t value = ztip->zti_value;
939 	uint_t count = ztip->zti_count;
940 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
941 	char name[32];
942 	uint_t flags = 0;
943 	boolean_t batch = B_FALSE;
944 
945 	if (mode == ZTI_MODE_NULL) {
946 		tqs->stqs_count = 0;
947 		tqs->stqs_taskq = NULL;
948 		return;
949 	}
950 
951 	ASSERT3U(count, >, 0);
952 
953 	tqs->stqs_count = count;
954 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
955 
956 	switch (mode) {
957 	case ZTI_MODE_FIXED:
958 		ASSERT3U(value, >=, 1);
959 		value = MAX(value, 1);
960 		break;
961 
962 	case ZTI_MODE_BATCH:
963 		batch = B_TRUE;
964 		flags |= TASKQ_THREADS_CPU_PCT;
965 		value = zio_taskq_batch_pct;
966 		break;
967 
968 	default:
969 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
970 		    "spa_activate()",
971 		    zio_type_name[t], zio_taskq_types[q], mode, value);
972 		break;
973 	}
974 
975 	for (uint_t i = 0; i < count; i++) {
976 		taskq_t *tq;
977 
978 		if (count > 1) {
979 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
980 			    zio_type_name[t], zio_taskq_types[q], i);
981 		} else {
982 			(void) snprintf(name, sizeof (name), "%s_%s",
983 			    zio_type_name[t], zio_taskq_types[q]);
984 		}
985 
986 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
987 			if (batch)
988 				flags |= TASKQ_DC_BATCH;
989 
990 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
991 			    spa->spa_proc, zio_taskq_basedc, flags);
992 		} else {
993 			pri_t pri = maxclsyspri;
994 			/*
995 			 * The write issue taskq can be extremely CPU
996 			 * intensive.  Run it at slightly lower priority
997 			 * than the other taskqs.
998 			 */
999 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1000 				pri--;
1001 
1002 			tq = taskq_create_proc(name, value, pri, 50,
1003 			    INT_MAX, spa->spa_proc, flags);
1004 		}
1005 
1006 		tqs->stqs_taskq[i] = tq;
1007 	}
1008 }
1009 
1010 static void
1011 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1012 {
1013 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1014 
1015 	if (tqs->stqs_taskq == NULL) {
1016 		ASSERT0(tqs->stqs_count);
1017 		return;
1018 	}
1019 
1020 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1021 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1022 		taskq_destroy(tqs->stqs_taskq[i]);
1023 	}
1024 
1025 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1026 	tqs->stqs_taskq = NULL;
1027 }
1028 
1029 /*
1030  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1031  * Note that a type may have multiple discrete taskqs to avoid lock contention
1032  * on the taskq itself. In that case we choose which taskq at random by using
1033  * the low bits of gethrtime().
1034  */
1035 void
1036 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1037     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1038 {
1039 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1040 	taskq_t *tq;
1041 
1042 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1043 	ASSERT3U(tqs->stqs_count, !=, 0);
1044 
1045 	if (tqs->stqs_count == 1) {
1046 		tq = tqs->stqs_taskq[0];
1047 	} else {
1048 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1049 	}
1050 
1051 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1052 }
1053 
1054 static void
1055 spa_create_zio_taskqs(spa_t *spa)
1056 {
1057 	for (int t = 0; t < ZIO_TYPES; t++) {
1058 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1059 			spa_taskqs_init(spa, t, q);
1060 		}
1061 	}
1062 }
1063 
1064 #ifdef _KERNEL
1065 static void
1066 spa_thread(void *arg)
1067 {
1068 	callb_cpr_t cprinfo;
1069 
1070 	spa_t *spa = arg;
1071 	user_t *pu = PTOU(curproc);
1072 
1073 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1074 	    spa->spa_name);
1075 
1076 	ASSERT(curproc != &p0);
1077 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1078 	    "zpool-%s", spa->spa_name);
1079 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1080 
1081 	/* bind this thread to the requested psrset */
1082 	if (zio_taskq_psrset_bind != PS_NONE) {
1083 		pool_lock();
1084 		mutex_enter(&cpu_lock);
1085 		mutex_enter(&pidlock);
1086 		mutex_enter(&curproc->p_lock);
1087 
1088 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1089 		    0, NULL, NULL) == 0)  {
1090 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1091 		} else {
1092 			cmn_err(CE_WARN,
1093 			    "Couldn't bind process for zfs pool \"%s\" to "
1094 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1095 		}
1096 
1097 		mutex_exit(&curproc->p_lock);
1098 		mutex_exit(&pidlock);
1099 		mutex_exit(&cpu_lock);
1100 		pool_unlock();
1101 	}
1102 
1103 	if (zio_taskq_sysdc) {
1104 		sysdc_thread_enter(curthread, 100, 0);
1105 	}
1106 
1107 	spa->spa_proc = curproc;
1108 	spa->spa_did = curthread->t_did;
1109 
1110 	spa_create_zio_taskqs(spa);
1111 
1112 	mutex_enter(&spa->spa_proc_lock);
1113 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1114 
1115 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1116 	cv_broadcast(&spa->spa_proc_cv);
1117 
1118 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1119 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1120 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1121 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1122 
1123 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1124 	spa->spa_proc_state = SPA_PROC_GONE;
1125 	spa->spa_proc = &p0;
1126 	cv_broadcast(&spa->spa_proc_cv);
1127 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1128 
1129 	mutex_enter(&curproc->p_lock);
1130 	lwp_exit();
1131 }
1132 #endif
1133 
1134 /*
1135  * Activate an uninitialized pool.
1136  */
1137 static void
1138 spa_activate(spa_t *spa, int mode)
1139 {
1140 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1141 
1142 	spa->spa_state = POOL_STATE_ACTIVE;
1143 	spa->spa_mode = mode;
1144 
1145 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1146 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1147 	spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1148 	spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1149 
1150 	/* Try to create a covering process */
1151 	mutex_enter(&spa->spa_proc_lock);
1152 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1153 	ASSERT(spa->spa_proc == &p0);
1154 	spa->spa_did = 0;
1155 
1156 	/* Only create a process if we're going to be around a while. */
1157 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1158 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1159 		    NULL, 0) == 0) {
1160 			spa->spa_proc_state = SPA_PROC_CREATED;
1161 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1162 				cv_wait(&spa->spa_proc_cv,
1163 				    &spa->spa_proc_lock);
1164 			}
1165 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1166 			ASSERT(spa->spa_proc != &p0);
1167 			ASSERT(spa->spa_did != 0);
1168 		} else {
1169 #ifdef _KERNEL
1170 			cmn_err(CE_WARN,
1171 			    "Couldn't create process for zfs pool \"%s\"\n",
1172 			    spa->spa_name);
1173 #endif
1174 		}
1175 	}
1176 	mutex_exit(&spa->spa_proc_lock);
1177 
1178 	/* If we didn't create a process, we need to create our taskqs. */
1179 	if (spa->spa_proc == &p0) {
1180 		spa_create_zio_taskqs(spa);
1181 	}
1182 
1183 	for (size_t i = 0; i < TXG_SIZE; i++) {
1184 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1185 		    ZIO_FLAG_CANFAIL);
1186 	}
1187 
1188 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1189 	    offsetof(vdev_t, vdev_config_dirty_node));
1190 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1191 	    offsetof(objset_t, os_evicting_node));
1192 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1193 	    offsetof(vdev_t, vdev_state_dirty_node));
1194 
1195 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1196 	    offsetof(struct vdev, vdev_txg_node));
1197 
1198 	avl_create(&spa->spa_errlist_scrub,
1199 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1200 	    offsetof(spa_error_entry_t, se_avl));
1201 	avl_create(&spa->spa_errlist_last,
1202 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1203 	    offsetof(spa_error_entry_t, se_avl));
1204 }
1205 
1206 /*
1207  * Opposite of spa_activate().
1208  */
1209 static void
1210 spa_deactivate(spa_t *spa)
1211 {
1212 	ASSERT(spa->spa_sync_on == B_FALSE);
1213 	ASSERT(spa->spa_dsl_pool == NULL);
1214 	ASSERT(spa->spa_root_vdev == NULL);
1215 	ASSERT(spa->spa_async_zio_root == NULL);
1216 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1217 
1218 	spa_evicting_os_wait(spa);
1219 
1220 	txg_list_destroy(&spa->spa_vdev_txg_list);
1221 
1222 	list_destroy(&spa->spa_config_dirty_list);
1223 	list_destroy(&spa->spa_evicting_os_list);
1224 	list_destroy(&spa->spa_state_dirty_list);
1225 
1226 	for (int t = 0; t < ZIO_TYPES; t++) {
1227 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1228 			spa_taskqs_fini(spa, t, q);
1229 		}
1230 	}
1231 
1232 	for (size_t i = 0; i < TXG_SIZE; i++) {
1233 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1234 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1235 		spa->spa_txg_zio[i] = NULL;
1236 	}
1237 
1238 	metaslab_class_destroy(spa->spa_normal_class);
1239 	spa->spa_normal_class = NULL;
1240 
1241 	metaslab_class_destroy(spa->spa_log_class);
1242 	spa->spa_log_class = NULL;
1243 
1244 	metaslab_class_destroy(spa->spa_special_class);
1245 	spa->spa_special_class = NULL;
1246 
1247 	metaslab_class_destroy(spa->spa_dedup_class);
1248 	spa->spa_dedup_class = NULL;
1249 
1250 	/*
1251 	 * If this was part of an import or the open otherwise failed, we may
1252 	 * still have errors left in the queues.  Empty them just in case.
1253 	 */
1254 	spa_errlog_drain(spa);
1255 
1256 	avl_destroy(&spa->spa_errlist_scrub);
1257 	avl_destroy(&spa->spa_errlist_last);
1258 
1259 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1260 
1261 	mutex_enter(&spa->spa_proc_lock);
1262 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1263 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1264 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1265 		cv_broadcast(&spa->spa_proc_cv);
1266 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1267 			ASSERT(spa->spa_proc != &p0);
1268 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1269 		}
1270 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1271 		spa->spa_proc_state = SPA_PROC_NONE;
1272 	}
1273 	ASSERT(spa->spa_proc == &p0);
1274 	mutex_exit(&spa->spa_proc_lock);
1275 
1276 	/*
1277 	 * We want to make sure spa_thread() has actually exited the ZFS
1278 	 * module, so that the module can't be unloaded out from underneath
1279 	 * it.
1280 	 */
1281 	if (spa->spa_did != 0) {
1282 		thread_join(spa->spa_did);
1283 		spa->spa_did = 0;
1284 	}
1285 }
1286 
1287 /*
1288  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1289  * will create all the necessary vdevs in the appropriate layout, with each vdev
1290  * in the CLOSED state.  This will prep the pool before open/creation/import.
1291  * All vdev validation is done by the vdev_alloc() routine.
1292  */
1293 static int
1294 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1295     uint_t id, int atype)
1296 {
1297 	nvlist_t **child;
1298 	uint_t children;
1299 	int error;
1300 
1301 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1302 		return (error);
1303 
1304 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1305 		return (0);
1306 
1307 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1308 	    &child, &children);
1309 
1310 	if (error == ENOENT)
1311 		return (0);
1312 
1313 	if (error) {
1314 		vdev_free(*vdp);
1315 		*vdp = NULL;
1316 		return (SET_ERROR(EINVAL));
1317 	}
1318 
1319 	for (int c = 0; c < children; c++) {
1320 		vdev_t *vd;
1321 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1322 		    atype)) != 0) {
1323 			vdev_free(*vdp);
1324 			*vdp = NULL;
1325 			return (error);
1326 		}
1327 	}
1328 
1329 	ASSERT(*vdp != NULL);
1330 
1331 	return (0);
1332 }
1333 
1334 /*
1335  * Opposite of spa_load().
1336  */
1337 static void
1338 spa_unload(spa_t *spa)
1339 {
1340 	int i;
1341 
1342 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1343 
1344 	spa_load_note(spa, "UNLOADING");
1345 
1346 	/*
1347 	 * Stop async tasks.
1348 	 */
1349 	spa_async_suspend(spa);
1350 
1351 	if (spa->spa_root_vdev) {
1352 		vdev_initialize_stop_all(spa->spa_root_vdev,
1353 		    VDEV_INITIALIZE_ACTIVE);
1354 	}
1355 
1356 	/*
1357 	 * Stop syncing.
1358 	 */
1359 	if (spa->spa_sync_on) {
1360 		txg_sync_stop(spa->spa_dsl_pool);
1361 		spa->spa_sync_on = B_FALSE;
1362 	}
1363 
1364 	/*
1365 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1366 	 * to call it earlier, before we wait for async i/o to complete.
1367 	 * This ensures that there is no async metaslab prefetching, by
1368 	 * calling taskq_wait(mg_taskq).
1369 	 */
1370 	if (spa->spa_root_vdev != NULL) {
1371 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1372 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1373 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1374 		spa_config_exit(spa, SCL_ALL, spa);
1375 	}
1376 
1377 	if (spa->spa_mmp.mmp_thread)
1378 		mmp_thread_stop(spa);
1379 
1380 	/*
1381 	 * Wait for any outstanding async I/O to complete.
1382 	 */
1383 	if (spa->spa_async_zio_root != NULL) {
1384 		for (int i = 0; i < max_ncpus; i++)
1385 			(void) zio_wait(spa->spa_async_zio_root[i]);
1386 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1387 		spa->spa_async_zio_root = NULL;
1388 	}
1389 
1390 	if (spa->spa_vdev_removal != NULL) {
1391 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1392 		spa->spa_vdev_removal = NULL;
1393 	}
1394 
1395 	if (spa->spa_condense_zthr != NULL) {
1396 		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1397 		zthr_destroy(spa->spa_condense_zthr);
1398 		spa->spa_condense_zthr = NULL;
1399 	}
1400 
1401 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1402 		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1403 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1404 		spa->spa_checkpoint_discard_zthr = NULL;
1405 	}
1406 
1407 	spa_condense_fini(spa);
1408 
1409 	bpobj_close(&spa->spa_deferred_bpobj);
1410 
1411 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1412 
1413 	/*
1414 	 * Close all vdevs.
1415 	 */
1416 	if (spa->spa_root_vdev)
1417 		vdev_free(spa->spa_root_vdev);
1418 	ASSERT(spa->spa_root_vdev == NULL);
1419 
1420 	/*
1421 	 * Close the dsl pool.
1422 	 */
1423 	if (spa->spa_dsl_pool) {
1424 		dsl_pool_close(spa->spa_dsl_pool);
1425 		spa->spa_dsl_pool = NULL;
1426 		spa->spa_meta_objset = NULL;
1427 	}
1428 
1429 	ddt_unload(spa);
1430 
1431 	/*
1432 	 * Drop and purge level 2 cache
1433 	 */
1434 	spa_l2cache_drop(spa);
1435 
1436 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1437 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1438 	if (spa->spa_spares.sav_vdevs) {
1439 		kmem_free(spa->spa_spares.sav_vdevs,
1440 		    spa->spa_spares.sav_count * sizeof (void *));
1441 		spa->spa_spares.sav_vdevs = NULL;
1442 	}
1443 	if (spa->spa_spares.sav_config) {
1444 		nvlist_free(spa->spa_spares.sav_config);
1445 		spa->spa_spares.sav_config = NULL;
1446 	}
1447 	spa->spa_spares.sav_count = 0;
1448 
1449 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1450 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1451 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1452 	}
1453 	if (spa->spa_l2cache.sav_vdevs) {
1454 		kmem_free(spa->spa_l2cache.sav_vdevs,
1455 		    spa->spa_l2cache.sav_count * sizeof (void *));
1456 		spa->spa_l2cache.sav_vdevs = NULL;
1457 	}
1458 	if (spa->spa_l2cache.sav_config) {
1459 		nvlist_free(spa->spa_l2cache.sav_config);
1460 		spa->spa_l2cache.sav_config = NULL;
1461 	}
1462 	spa->spa_l2cache.sav_count = 0;
1463 
1464 	spa->spa_async_suspended = 0;
1465 
1466 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1467 
1468 	if (spa->spa_comment != NULL) {
1469 		spa_strfree(spa->spa_comment);
1470 		spa->spa_comment = NULL;
1471 	}
1472 
1473 	spa_config_exit(spa, SCL_ALL, spa);
1474 }
1475 
1476 /*
1477  * Load (or re-load) the current list of vdevs describing the active spares for
1478  * this pool.  When this is called, we have some form of basic information in
1479  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1480  * then re-generate a more complete list including status information.
1481  */
1482 void
1483 spa_load_spares(spa_t *spa)
1484 {
1485 	nvlist_t **spares;
1486 	uint_t nspares;
1487 	int i;
1488 	vdev_t *vd, *tvd;
1489 
1490 #ifndef _KERNEL
1491 	/*
1492 	 * zdb opens both the current state of the pool and the
1493 	 * checkpointed state (if present), with a different spa_t.
1494 	 *
1495 	 * As spare vdevs are shared among open pools, we skip loading
1496 	 * them when we load the checkpointed state of the pool.
1497 	 */
1498 	if (!spa_writeable(spa))
1499 		return;
1500 #endif
1501 
1502 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1503 
1504 	/*
1505 	 * First, close and free any existing spare vdevs.
1506 	 */
1507 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1508 		vd = spa->spa_spares.sav_vdevs[i];
1509 
1510 		/* Undo the call to spa_activate() below */
1511 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1512 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1513 			spa_spare_remove(tvd);
1514 		vdev_close(vd);
1515 		vdev_free(vd);
1516 	}
1517 
1518 	if (spa->spa_spares.sav_vdevs)
1519 		kmem_free(spa->spa_spares.sav_vdevs,
1520 		    spa->spa_spares.sav_count * sizeof (void *));
1521 
1522 	if (spa->spa_spares.sav_config == NULL)
1523 		nspares = 0;
1524 	else
1525 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1526 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1527 
1528 	spa->spa_spares.sav_count = (int)nspares;
1529 	spa->spa_spares.sav_vdevs = NULL;
1530 
1531 	if (nspares == 0)
1532 		return;
1533 
1534 	/*
1535 	 * Construct the array of vdevs, opening them to get status in the
1536 	 * process.   For each spare, there is potentially two different vdev_t
1537 	 * structures associated with it: one in the list of spares (used only
1538 	 * for basic validation purposes) and one in the active vdev
1539 	 * configuration (if it's spared in).  During this phase we open and
1540 	 * validate each vdev on the spare list.  If the vdev also exists in the
1541 	 * active configuration, then we also mark this vdev as an active spare.
1542 	 */
1543 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1544 	    KM_SLEEP);
1545 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1546 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1547 		    VDEV_ALLOC_SPARE) == 0);
1548 		ASSERT(vd != NULL);
1549 
1550 		spa->spa_spares.sav_vdevs[i] = vd;
1551 
1552 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1553 		    B_FALSE)) != NULL) {
1554 			if (!tvd->vdev_isspare)
1555 				spa_spare_add(tvd);
1556 
1557 			/*
1558 			 * We only mark the spare active if we were successfully
1559 			 * able to load the vdev.  Otherwise, importing a pool
1560 			 * with a bad active spare would result in strange
1561 			 * behavior, because multiple pool would think the spare
1562 			 * is actively in use.
1563 			 *
1564 			 * There is a vulnerability here to an equally bizarre
1565 			 * circumstance, where a dead active spare is later
1566 			 * brought back to life (onlined or otherwise).  Given
1567 			 * the rarity of this scenario, and the extra complexity
1568 			 * it adds, we ignore the possibility.
1569 			 */
1570 			if (!vdev_is_dead(tvd))
1571 				spa_spare_activate(tvd);
1572 		}
1573 
1574 		vd->vdev_top = vd;
1575 		vd->vdev_aux = &spa->spa_spares;
1576 
1577 		if (vdev_open(vd) != 0)
1578 			continue;
1579 
1580 		if (vdev_validate_aux(vd) == 0)
1581 			spa_spare_add(vd);
1582 	}
1583 
1584 	/*
1585 	 * Recompute the stashed list of spares, with status information
1586 	 * this time.
1587 	 */
1588 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1589 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1590 
1591 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1592 	    KM_SLEEP);
1593 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1594 		spares[i] = vdev_config_generate(spa,
1595 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1596 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1597 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1598 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1599 		nvlist_free(spares[i]);
1600 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1601 }
1602 
1603 /*
1604  * Load (or re-load) the current list of vdevs describing the active l2cache for
1605  * this pool.  When this is called, we have some form of basic information in
1606  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1607  * then re-generate a more complete list including status information.
1608  * Devices which are already active have their details maintained, and are
1609  * not re-opened.
1610  */
1611 void
1612 spa_load_l2cache(spa_t *spa)
1613 {
1614 	nvlist_t **l2cache;
1615 	uint_t nl2cache;
1616 	int i, j, oldnvdevs;
1617 	uint64_t guid;
1618 	vdev_t *vd, **oldvdevs, **newvdevs;
1619 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1620 
1621 #ifndef _KERNEL
1622 	/*
1623 	 * zdb opens both the current state of the pool and the
1624 	 * checkpointed state (if present), with a different spa_t.
1625 	 *
1626 	 * As L2 caches are part of the ARC which is shared among open
1627 	 * pools, we skip loading them when we load the checkpointed
1628 	 * state of the pool.
1629 	 */
1630 	if (!spa_writeable(spa))
1631 		return;
1632 #endif
1633 
1634 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1635 
1636 	if (sav->sav_config != NULL) {
1637 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1638 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1639 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1640 	} else {
1641 		nl2cache = 0;
1642 		newvdevs = NULL;
1643 	}
1644 
1645 	oldvdevs = sav->sav_vdevs;
1646 	oldnvdevs = sav->sav_count;
1647 	sav->sav_vdevs = NULL;
1648 	sav->sav_count = 0;
1649 
1650 	/*
1651 	 * Process new nvlist of vdevs.
1652 	 */
1653 	for (i = 0; i < nl2cache; i++) {
1654 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1655 		    &guid) == 0);
1656 
1657 		newvdevs[i] = NULL;
1658 		for (j = 0; j < oldnvdevs; j++) {
1659 			vd = oldvdevs[j];
1660 			if (vd != NULL && guid == vd->vdev_guid) {
1661 				/*
1662 				 * Retain previous vdev for add/remove ops.
1663 				 */
1664 				newvdevs[i] = vd;
1665 				oldvdevs[j] = NULL;
1666 				break;
1667 			}
1668 		}
1669 
1670 		if (newvdevs[i] == NULL) {
1671 			/*
1672 			 * Create new vdev
1673 			 */
1674 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1675 			    VDEV_ALLOC_L2CACHE) == 0);
1676 			ASSERT(vd != NULL);
1677 			newvdevs[i] = vd;
1678 
1679 			/*
1680 			 * Commit this vdev as an l2cache device,
1681 			 * even if it fails to open.
1682 			 */
1683 			spa_l2cache_add(vd);
1684 
1685 			vd->vdev_top = vd;
1686 			vd->vdev_aux = sav;
1687 
1688 			spa_l2cache_activate(vd);
1689 
1690 			if (vdev_open(vd) != 0)
1691 				continue;
1692 
1693 			(void) vdev_validate_aux(vd);
1694 
1695 			if (!vdev_is_dead(vd))
1696 				l2arc_add_vdev(spa, vd);
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * Purge vdevs that were dropped
1702 	 */
1703 	for (i = 0; i < oldnvdevs; i++) {
1704 		uint64_t pool;
1705 
1706 		vd = oldvdevs[i];
1707 		if (vd != NULL) {
1708 			ASSERT(vd->vdev_isl2cache);
1709 
1710 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1711 			    pool != 0ULL && l2arc_vdev_present(vd))
1712 				l2arc_remove_vdev(vd);
1713 			vdev_clear_stats(vd);
1714 			vdev_free(vd);
1715 		}
1716 	}
1717 
1718 	if (oldvdevs)
1719 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1720 
1721 	if (sav->sav_config == NULL)
1722 		goto out;
1723 
1724 	sav->sav_vdevs = newvdevs;
1725 	sav->sav_count = (int)nl2cache;
1726 
1727 	/*
1728 	 * Recompute the stashed list of l2cache devices, with status
1729 	 * information this time.
1730 	 */
1731 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1732 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1733 
1734 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1735 	for (i = 0; i < sav->sav_count; i++)
1736 		l2cache[i] = vdev_config_generate(spa,
1737 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1738 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1739 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1740 out:
1741 	for (i = 0; i < sav->sav_count; i++)
1742 		nvlist_free(l2cache[i]);
1743 	if (sav->sav_count)
1744 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1745 }
1746 
1747 static int
1748 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1749 {
1750 	dmu_buf_t *db;
1751 	char *packed = NULL;
1752 	size_t nvsize = 0;
1753 	int error;
1754 	*value = NULL;
1755 
1756 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1757 	if (error != 0)
1758 		return (error);
1759 
1760 	nvsize = *(uint64_t *)db->db_data;
1761 	dmu_buf_rele(db, FTAG);
1762 
1763 	packed = kmem_alloc(nvsize, KM_SLEEP);
1764 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1765 	    DMU_READ_PREFETCH);
1766 	if (error == 0)
1767 		error = nvlist_unpack(packed, nvsize, value, 0);
1768 	kmem_free(packed, nvsize);
1769 
1770 	return (error);
1771 }
1772 
1773 /*
1774  * Concrete top-level vdevs that are not missing and are not logs. At every
1775  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1776  */
1777 static uint64_t
1778 spa_healthy_core_tvds(spa_t *spa)
1779 {
1780 	vdev_t *rvd = spa->spa_root_vdev;
1781 	uint64_t tvds = 0;
1782 
1783 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1784 		vdev_t *vd = rvd->vdev_child[i];
1785 		if (vd->vdev_islog)
1786 			continue;
1787 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1788 			tvds++;
1789 	}
1790 
1791 	return (tvds);
1792 }
1793 
1794 /*
1795  * Checks to see if the given vdev could not be opened, in which case we post a
1796  * sysevent to notify the autoreplace code that the device has been removed.
1797  */
1798 static void
1799 spa_check_removed(vdev_t *vd)
1800 {
1801 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1802 		spa_check_removed(vd->vdev_child[c]);
1803 
1804 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1805 	    vdev_is_concrete(vd)) {
1806 		zfs_post_autoreplace(vd->vdev_spa, vd);
1807 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1808 	}
1809 }
1810 
1811 static int
1812 spa_check_for_missing_logs(spa_t *spa)
1813 {
1814 	vdev_t *rvd = spa->spa_root_vdev;
1815 
1816 	/*
1817 	 * If we're doing a normal import, then build up any additional
1818 	 * diagnostic information about missing log devices.
1819 	 * We'll pass this up to the user for further processing.
1820 	 */
1821 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1822 		nvlist_t **child, *nv;
1823 		uint64_t idx = 0;
1824 
1825 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1826 		    KM_SLEEP);
1827 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1828 
1829 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1830 			vdev_t *tvd = rvd->vdev_child[c];
1831 
1832 			/*
1833 			 * We consider a device as missing only if it failed
1834 			 * to open (i.e. offline or faulted is not considered
1835 			 * as missing).
1836 			 */
1837 			if (tvd->vdev_islog &&
1838 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1839 				child[idx++] = vdev_config_generate(spa, tvd,
1840 				    B_FALSE, VDEV_CONFIG_MISSING);
1841 			}
1842 		}
1843 
1844 		if (idx > 0) {
1845 			fnvlist_add_nvlist_array(nv,
1846 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1847 			fnvlist_add_nvlist(spa->spa_load_info,
1848 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1849 
1850 			for (uint64_t i = 0; i < idx; i++)
1851 				nvlist_free(child[i]);
1852 		}
1853 		nvlist_free(nv);
1854 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1855 
1856 		if (idx > 0) {
1857 			spa_load_failed(spa, "some log devices are missing");
1858 			vdev_dbgmsg_print_tree(rvd, 2);
1859 			return (SET_ERROR(ENXIO));
1860 		}
1861 	} else {
1862 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1863 			vdev_t *tvd = rvd->vdev_child[c];
1864 
1865 			if (tvd->vdev_islog &&
1866 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1867 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1868 				spa_load_note(spa, "some log devices are "
1869 				    "missing, ZIL is dropped.");
1870 				vdev_dbgmsg_print_tree(rvd, 2);
1871 				break;
1872 			}
1873 		}
1874 	}
1875 
1876 	return (0);
1877 }
1878 
1879 /*
1880  * Check for missing log devices
1881  */
1882 static boolean_t
1883 spa_check_logs(spa_t *spa)
1884 {
1885 	boolean_t rv = B_FALSE;
1886 	dsl_pool_t *dp = spa_get_dsl(spa);
1887 
1888 	switch (spa->spa_log_state) {
1889 	case SPA_LOG_MISSING:
1890 		/* need to recheck in case slog has been restored */
1891 	case SPA_LOG_UNKNOWN:
1892 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1893 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1894 		if (rv)
1895 			spa_set_log_state(spa, SPA_LOG_MISSING);
1896 		break;
1897 	}
1898 	return (rv);
1899 }
1900 
1901 static boolean_t
1902 spa_passivate_log(spa_t *spa)
1903 {
1904 	vdev_t *rvd = spa->spa_root_vdev;
1905 	boolean_t slog_found = B_FALSE;
1906 
1907 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1908 
1909 	if (!spa_has_slogs(spa))
1910 		return (B_FALSE);
1911 
1912 	for (int c = 0; c < rvd->vdev_children; c++) {
1913 		vdev_t *tvd = rvd->vdev_child[c];
1914 		metaslab_group_t *mg = tvd->vdev_mg;
1915 
1916 		if (tvd->vdev_islog) {
1917 			metaslab_group_passivate(mg);
1918 			slog_found = B_TRUE;
1919 		}
1920 	}
1921 
1922 	return (slog_found);
1923 }
1924 
1925 static void
1926 spa_activate_log(spa_t *spa)
1927 {
1928 	vdev_t *rvd = spa->spa_root_vdev;
1929 
1930 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1931 
1932 	for (int c = 0; c < rvd->vdev_children; c++) {
1933 		vdev_t *tvd = rvd->vdev_child[c];
1934 		metaslab_group_t *mg = tvd->vdev_mg;
1935 
1936 		if (tvd->vdev_islog)
1937 			metaslab_group_activate(mg);
1938 	}
1939 }
1940 
1941 int
1942 spa_reset_logs(spa_t *spa)
1943 {
1944 	int error;
1945 
1946 	error = dmu_objset_find(spa_name(spa), zil_reset,
1947 	    NULL, DS_FIND_CHILDREN);
1948 	if (error == 0) {
1949 		/*
1950 		 * We successfully offlined the log device, sync out the
1951 		 * current txg so that the "stubby" block can be removed
1952 		 * by zil_sync().
1953 		 */
1954 		txg_wait_synced(spa->spa_dsl_pool, 0);
1955 	}
1956 	return (error);
1957 }
1958 
1959 static void
1960 spa_aux_check_removed(spa_aux_vdev_t *sav)
1961 {
1962 	for (int i = 0; i < sav->sav_count; i++)
1963 		spa_check_removed(sav->sav_vdevs[i]);
1964 }
1965 
1966 void
1967 spa_claim_notify(zio_t *zio)
1968 {
1969 	spa_t *spa = zio->io_spa;
1970 
1971 	if (zio->io_error)
1972 		return;
1973 
1974 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1975 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1976 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1977 	mutex_exit(&spa->spa_props_lock);
1978 }
1979 
1980 typedef struct spa_load_error {
1981 	uint64_t	sle_meta_count;
1982 	uint64_t	sle_data_count;
1983 } spa_load_error_t;
1984 
1985 static void
1986 spa_load_verify_done(zio_t *zio)
1987 {
1988 	blkptr_t *bp = zio->io_bp;
1989 	spa_load_error_t *sle = zio->io_private;
1990 	dmu_object_type_t type = BP_GET_TYPE(bp);
1991 	int error = zio->io_error;
1992 	spa_t *spa = zio->io_spa;
1993 
1994 	abd_free(zio->io_abd);
1995 	if (error) {
1996 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1997 		    type != DMU_OT_INTENT_LOG)
1998 			atomic_inc_64(&sle->sle_meta_count);
1999 		else
2000 			atomic_inc_64(&sle->sle_data_count);
2001 	}
2002 
2003 	mutex_enter(&spa->spa_scrub_lock);
2004 	spa->spa_scrub_inflight--;
2005 	cv_broadcast(&spa->spa_scrub_io_cv);
2006 	mutex_exit(&spa->spa_scrub_lock);
2007 }
2008 
2009 /*
2010  * Maximum number of concurrent scrub i/os to create while verifying
2011  * a pool while importing it.
2012  */
2013 int spa_load_verify_maxinflight = 10000;
2014 boolean_t spa_load_verify_metadata = B_TRUE;
2015 boolean_t spa_load_verify_data = B_TRUE;
2016 
2017 /*ARGSUSED*/
2018 static int
2019 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2020     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2021 {
2022 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2023 		return (0);
2024 	/*
2025 	 * Note: normally this routine will not be called if
2026 	 * spa_load_verify_metadata is not set.  However, it may be useful
2027 	 * to manually set the flag after the traversal has begun.
2028 	 */
2029 	if (!spa_load_verify_metadata)
2030 		return (0);
2031 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2032 		return (0);
2033 
2034 	zio_t *rio = arg;
2035 	size_t size = BP_GET_PSIZE(bp);
2036 
2037 	mutex_enter(&spa->spa_scrub_lock);
2038 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2039 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2040 	spa->spa_scrub_inflight++;
2041 	mutex_exit(&spa->spa_scrub_lock);
2042 
2043 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2044 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2045 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2046 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2047 	return (0);
2048 }
2049 
2050 /* ARGSUSED */
2051 int
2052 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2053 {
2054 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2055 		return (SET_ERROR(ENAMETOOLONG));
2056 
2057 	return (0);
2058 }
2059 
2060 static int
2061 spa_load_verify(spa_t *spa)
2062 {
2063 	zio_t *rio;
2064 	spa_load_error_t sle = { 0 };
2065 	zpool_load_policy_t policy;
2066 	boolean_t verify_ok = B_FALSE;
2067 	int error = 0;
2068 
2069 	zpool_get_load_policy(spa->spa_config, &policy);
2070 
2071 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2072 		return (0);
2073 
2074 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2075 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2076 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2077 	    DS_FIND_CHILDREN);
2078 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2079 	if (error != 0)
2080 		return (error);
2081 
2082 	rio = zio_root(spa, NULL, &sle,
2083 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2084 
2085 	if (spa_load_verify_metadata) {
2086 		if (spa->spa_extreme_rewind) {
2087 			spa_load_note(spa, "performing a complete scan of the "
2088 			    "pool since extreme rewind is on. This may take "
2089 			    "a very long time.\n  (spa_load_verify_data=%u, "
2090 			    "spa_load_verify_metadata=%u)",
2091 			    spa_load_verify_data, spa_load_verify_metadata);
2092 		}
2093 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2094 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2095 		    spa_load_verify_cb, rio);
2096 	}
2097 
2098 	(void) zio_wait(rio);
2099 
2100 	spa->spa_load_meta_errors = sle.sle_meta_count;
2101 	spa->spa_load_data_errors = sle.sle_data_count;
2102 
2103 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2104 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2105 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2106 		    (u_longlong_t)sle.sle_data_count);
2107 	}
2108 
2109 	if (spa_load_verify_dryrun ||
2110 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2111 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2112 		int64_t loss = 0;
2113 
2114 		verify_ok = B_TRUE;
2115 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2116 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2117 
2118 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2119 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2120 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2121 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2122 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2123 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2124 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2125 	} else {
2126 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2127 	}
2128 
2129 	if (spa_load_verify_dryrun)
2130 		return (0);
2131 
2132 	if (error) {
2133 		if (error != ENXIO && error != EIO)
2134 			error = SET_ERROR(EIO);
2135 		return (error);
2136 	}
2137 
2138 	return (verify_ok ? 0 : EIO);
2139 }
2140 
2141 /*
2142  * Find a value in the pool props object.
2143  */
2144 static void
2145 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2146 {
2147 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2148 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2149 }
2150 
2151 /*
2152  * Find a value in the pool directory object.
2153  */
2154 static int
2155 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2156 {
2157 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2158 	    name, sizeof (uint64_t), 1, val);
2159 
2160 	if (error != 0 && (error != ENOENT || log_enoent)) {
2161 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2162 		    "[error=%d]", name, error);
2163 	}
2164 
2165 	return (error);
2166 }
2167 
2168 static int
2169 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2170 {
2171 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2172 	return (SET_ERROR(err));
2173 }
2174 
2175 static void
2176 spa_spawn_aux_threads(spa_t *spa)
2177 {
2178 	ASSERT(spa_writeable(spa));
2179 
2180 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2181 
2182 	spa_start_indirect_condensing_thread(spa);
2183 
2184 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2185 	spa->spa_checkpoint_discard_zthr =
2186 	    zthr_create(spa_checkpoint_discard_thread_check,
2187 	    spa_checkpoint_discard_thread, spa);
2188 }
2189 
2190 /*
2191  * Fix up config after a partly-completed split.  This is done with the
2192  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2193  * pool have that entry in their config, but only the splitting one contains
2194  * a list of all the guids of the vdevs that are being split off.
2195  *
2196  * This function determines what to do with that list: either rejoin
2197  * all the disks to the pool, or complete the splitting process.  To attempt
2198  * the rejoin, each disk that is offlined is marked online again, and
2199  * we do a reopen() call.  If the vdev label for every disk that was
2200  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2201  * then we call vdev_split() on each disk, and complete the split.
2202  *
2203  * Otherwise we leave the config alone, with all the vdevs in place in
2204  * the original pool.
2205  */
2206 static void
2207 spa_try_repair(spa_t *spa, nvlist_t *config)
2208 {
2209 	uint_t extracted;
2210 	uint64_t *glist;
2211 	uint_t i, gcount;
2212 	nvlist_t *nvl;
2213 	vdev_t **vd;
2214 	boolean_t attempt_reopen;
2215 
2216 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2217 		return;
2218 
2219 	/* check that the config is complete */
2220 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2221 	    &glist, &gcount) != 0)
2222 		return;
2223 
2224 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2225 
2226 	/* attempt to online all the vdevs & validate */
2227 	attempt_reopen = B_TRUE;
2228 	for (i = 0; i < gcount; i++) {
2229 		if (glist[i] == 0)	/* vdev is hole */
2230 			continue;
2231 
2232 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2233 		if (vd[i] == NULL) {
2234 			/*
2235 			 * Don't bother attempting to reopen the disks;
2236 			 * just do the split.
2237 			 */
2238 			attempt_reopen = B_FALSE;
2239 		} else {
2240 			/* attempt to re-online it */
2241 			vd[i]->vdev_offline = B_FALSE;
2242 		}
2243 	}
2244 
2245 	if (attempt_reopen) {
2246 		vdev_reopen(spa->spa_root_vdev);
2247 
2248 		/* check each device to see what state it's in */
2249 		for (extracted = 0, i = 0; i < gcount; i++) {
2250 			if (vd[i] != NULL &&
2251 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2252 				break;
2253 			++extracted;
2254 		}
2255 	}
2256 
2257 	/*
2258 	 * If every disk has been moved to the new pool, or if we never
2259 	 * even attempted to look at them, then we split them off for
2260 	 * good.
2261 	 */
2262 	if (!attempt_reopen || gcount == extracted) {
2263 		for (i = 0; i < gcount; i++)
2264 			if (vd[i] != NULL)
2265 				vdev_split(vd[i]);
2266 		vdev_reopen(spa->spa_root_vdev);
2267 	}
2268 
2269 	kmem_free(vd, gcount * sizeof (vdev_t *));
2270 }
2271 
2272 static int
2273 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2274 {
2275 	char *ereport = FM_EREPORT_ZFS_POOL;
2276 	int error;
2277 
2278 	spa->spa_load_state = state;
2279 
2280 	gethrestime(&spa->spa_loaded_ts);
2281 	error = spa_load_impl(spa, type, &ereport);
2282 
2283 	/*
2284 	 * Don't count references from objsets that are already closed
2285 	 * and are making their way through the eviction process.
2286 	 */
2287 	spa_evicting_os_wait(spa);
2288 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2289 	if (error) {
2290 		if (error != EEXIST) {
2291 			spa->spa_loaded_ts.tv_sec = 0;
2292 			spa->spa_loaded_ts.tv_nsec = 0;
2293 		}
2294 		if (error != EBADF) {
2295 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2296 		}
2297 	}
2298 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2299 	spa->spa_ena = 0;
2300 
2301 	return (error);
2302 }
2303 
2304 /*
2305  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2306  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2307  * spa's per-vdev ZAP list.
2308  */
2309 static uint64_t
2310 vdev_count_verify_zaps(vdev_t *vd)
2311 {
2312 	spa_t *spa = vd->vdev_spa;
2313 	uint64_t total = 0;
2314 	if (vd->vdev_top_zap != 0) {
2315 		total++;
2316 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2317 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2318 	}
2319 	if (vd->vdev_leaf_zap != 0) {
2320 		total++;
2321 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2322 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2323 	}
2324 
2325 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2326 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2327 	}
2328 
2329 	return (total);
2330 }
2331 
2332 /*
2333  * Determine whether the activity check is required.
2334  */
2335 static boolean_t
2336 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2337     nvlist_t *config)
2338 {
2339 	uint64_t state = 0;
2340 	uint64_t hostid = 0;
2341 	uint64_t tryconfig_txg = 0;
2342 	uint64_t tryconfig_timestamp = 0;
2343 	nvlist_t *nvinfo;
2344 
2345 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2346 		nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2347 		(void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2348 		    &tryconfig_txg);
2349 		(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2350 		    &tryconfig_timestamp);
2351 	}
2352 
2353 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2354 
2355 	/*
2356 	 * Disable the MMP activity check - This is used by zdb which
2357 	 * is intended to be used on potentially active pools.
2358 	 */
2359 	if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2360 		return (B_FALSE);
2361 
2362 	/*
2363 	 * Skip the activity check when the MMP feature is disabled.
2364 	 */
2365 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2366 		return (B_FALSE);
2367 	/*
2368 	 * If the tryconfig_* values are nonzero, they are the results of an
2369 	 * earlier tryimport.  If they match the uberblock we just found, then
2370 	 * the pool has not changed and we return false so we do not test a
2371 	 * second time.
2372 	 */
2373 	if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2374 	    tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2375 		return (B_FALSE);
2376 
2377 	/*
2378 	 * Allow the activity check to be skipped when importing the pool
2379 	 * on the same host which last imported it.  Since the hostid from
2380 	 * configuration may be stale use the one read from the label.
2381 	 */
2382 	if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2383 		hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2384 
2385 	if (hostid == spa_get_hostid())
2386 		return (B_FALSE);
2387 
2388 	/*
2389 	 * Skip the activity test when the pool was cleanly exported.
2390 	 */
2391 	if (state != POOL_STATE_ACTIVE)
2392 		return (B_FALSE);
2393 
2394 	return (B_TRUE);
2395 }
2396 
2397 /*
2398  * Perform the import activity check.  If the user canceled the import or
2399  * we detected activity then fail.
2400  */
2401 static int
2402 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2403 {
2404 	uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2405 	uint64_t txg = ub->ub_txg;
2406 	uint64_t timestamp = ub->ub_timestamp;
2407 	uint64_t import_delay = NANOSEC;
2408 	hrtime_t import_expire;
2409 	nvlist_t *mmp_label = NULL;
2410 	vdev_t *rvd = spa->spa_root_vdev;
2411 	kcondvar_t cv;
2412 	kmutex_t mtx;
2413 	int error = 0;
2414 
2415 	cv_init(&cv, NULL, CV_DEFAULT, NULL);
2416 	mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2417 	mutex_enter(&mtx);
2418 
2419 	/*
2420 	 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2421 	 * during the earlier tryimport.  If the txg recorded there is 0 then
2422 	 * the pool is known to be active on another host.
2423 	 *
2424 	 * Otherwise, the pool might be in use on another node.  Check for
2425 	 * changes in the uberblocks on disk if necessary.
2426 	 */
2427 	if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2428 		nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2429 		    ZPOOL_CONFIG_LOAD_INFO);
2430 
2431 		if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2432 		    fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2433 			vdev_uberblock_load(rvd, ub, &mmp_label);
2434 			error = SET_ERROR(EREMOTEIO);
2435 			goto out;
2436 		}
2437 	}
2438 
2439 	/*
2440 	 * Preferentially use the zfs_multihost_interval from the node which
2441 	 * last imported the pool.  This value is stored in an MMP uberblock as.
2442 	 *
2443 	 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2444 	 */
2445 	if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2446 		import_delay = MAX(import_delay, import_intervals *
2447 		    ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2448 
2449 	/* Apply a floor using the local default values. */
2450 	import_delay = MAX(import_delay, import_intervals *
2451 	    MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2452 
2453 	zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
2454 	    "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
2455 	    vdev_count_leaves(spa));
2456 
2457 	/* Add a small random factor in case of simultaneous imports (0-25%) */
2458 	import_expire = gethrtime() + import_delay +
2459 	    (import_delay * spa_get_random(250) / 1000);
2460 
2461 	while (gethrtime() < import_expire) {
2462 		vdev_uberblock_load(rvd, ub, &mmp_label);
2463 
2464 		if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2465 			error = SET_ERROR(EREMOTEIO);
2466 			break;
2467 		}
2468 
2469 		if (mmp_label) {
2470 			nvlist_free(mmp_label);
2471 			mmp_label = NULL;
2472 		}
2473 
2474 		error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2475 		if (error != -1) {
2476 			error = SET_ERROR(EINTR);
2477 			break;
2478 		}
2479 		error = 0;
2480 	}
2481 
2482 out:
2483 	mutex_exit(&mtx);
2484 	mutex_destroy(&mtx);
2485 	cv_destroy(&cv);
2486 
2487 	/*
2488 	 * If the pool is determined to be active store the status in the
2489 	 * spa->spa_load_info nvlist.  If the remote hostname or hostid are
2490 	 * available from configuration read from disk store them as well.
2491 	 * This allows 'zpool import' to generate a more useful message.
2492 	 *
2493 	 * ZPOOL_CONFIG_MMP_STATE    - observed pool status (mandatory)
2494 	 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2495 	 * ZPOOL_CONFIG_MMP_HOSTID   - hostid from the active pool
2496 	 */
2497 	if (error == EREMOTEIO) {
2498 		char *hostname = "<unknown>";
2499 		uint64_t hostid = 0;
2500 
2501 		if (mmp_label) {
2502 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2503 				hostname = fnvlist_lookup_string(mmp_label,
2504 				    ZPOOL_CONFIG_HOSTNAME);
2505 				fnvlist_add_string(spa->spa_load_info,
2506 				    ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2507 			}
2508 
2509 			if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2510 				hostid = fnvlist_lookup_uint64(mmp_label,
2511 				    ZPOOL_CONFIG_HOSTID);
2512 				fnvlist_add_uint64(spa->spa_load_info,
2513 				    ZPOOL_CONFIG_MMP_HOSTID, hostid);
2514 			}
2515 		}
2516 
2517 		fnvlist_add_uint64(spa->spa_load_info,
2518 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2519 		fnvlist_add_uint64(spa->spa_load_info,
2520 		    ZPOOL_CONFIG_MMP_TXG, 0);
2521 
2522 		error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2523 	}
2524 
2525 	if (mmp_label)
2526 		nvlist_free(mmp_label);
2527 
2528 	return (error);
2529 }
2530 
2531 static int
2532 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2533 {
2534 	uint64_t hostid;
2535 	char *hostname;
2536 	uint64_t myhostid = 0;
2537 
2538 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2539 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2540 		hostname = fnvlist_lookup_string(mos_config,
2541 		    ZPOOL_CONFIG_HOSTNAME);
2542 
2543 		myhostid = zone_get_hostid(NULL);
2544 
2545 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2546 			cmn_err(CE_WARN, "pool '%s' could not be "
2547 			    "loaded as it was last accessed by "
2548 			    "another system (host: %s hostid: 0x%llx). "
2549 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2550 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2551 			spa_load_failed(spa, "hostid verification failed: pool "
2552 			    "last accessed by host: %s (hostid: 0x%llx)",
2553 			    hostname, (u_longlong_t)hostid);
2554 			return (SET_ERROR(EBADF));
2555 		}
2556 	}
2557 
2558 	return (0);
2559 }
2560 
2561 static int
2562 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2563 {
2564 	int error = 0;
2565 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2566 	int parse;
2567 	vdev_t *rvd;
2568 	uint64_t pool_guid;
2569 	char *comment;
2570 
2571 	/*
2572 	 * Versioning wasn't explicitly added to the label until later, so if
2573 	 * it's not present treat it as the initial version.
2574 	 */
2575 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2576 	    &spa->spa_ubsync.ub_version) != 0)
2577 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2578 
2579 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2580 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2581 		    ZPOOL_CONFIG_POOL_GUID);
2582 		return (SET_ERROR(EINVAL));
2583 	}
2584 
2585 	/*
2586 	 * If we are doing an import, ensure that the pool is not already
2587 	 * imported by checking if its pool guid already exists in the
2588 	 * spa namespace.
2589 	 *
2590 	 * The only case that we allow an already imported pool to be
2591 	 * imported again, is when the pool is checkpointed and we want to
2592 	 * look at its checkpointed state from userland tools like zdb.
2593 	 */
2594 #ifdef _KERNEL
2595 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2596 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2597 	    spa_guid_exists(pool_guid, 0)) {
2598 #else
2599 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2600 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2601 	    spa_guid_exists(pool_guid, 0) &&
2602 	    !spa_importing_readonly_checkpoint(spa)) {
2603 #endif
2604 		spa_load_failed(spa, "a pool with guid %llu is already open",
2605 		    (u_longlong_t)pool_guid);
2606 		return (SET_ERROR(EEXIST));
2607 	}
2608 
2609 	spa->spa_config_guid = pool_guid;
2610 
2611 	nvlist_free(spa->spa_load_info);
2612 	spa->spa_load_info = fnvlist_alloc();
2613 
2614 	ASSERT(spa->spa_comment == NULL);
2615 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2616 		spa->spa_comment = spa_strdup(comment);
2617 
2618 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2619 	    &spa->spa_config_txg);
2620 
2621 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2622 		spa->spa_config_splitting = fnvlist_dup(nvl);
2623 
2624 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2625 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2626 		    ZPOOL_CONFIG_VDEV_TREE);
2627 		return (SET_ERROR(EINVAL));
2628 	}
2629 
2630 	/*
2631 	 * Create "The Godfather" zio to hold all async IOs
2632 	 */
2633 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2634 	    KM_SLEEP);
2635 	for (int i = 0; i < max_ncpus; i++) {
2636 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2637 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2638 		    ZIO_FLAG_GODFATHER);
2639 	}
2640 
2641 	/*
2642 	 * Parse the configuration into a vdev tree.  We explicitly set the
2643 	 * value that will be returned by spa_version() since parsing the
2644 	 * configuration requires knowing the version number.
2645 	 */
2646 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2647 	parse = (type == SPA_IMPORT_EXISTING ?
2648 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2649 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2650 	spa_config_exit(spa, SCL_ALL, FTAG);
2651 
2652 	if (error != 0) {
2653 		spa_load_failed(spa, "unable to parse config [error=%d]",
2654 		    error);
2655 		return (error);
2656 	}
2657 
2658 	ASSERT(spa->spa_root_vdev == rvd);
2659 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2660 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2661 
2662 	if (type != SPA_IMPORT_ASSEMBLE) {
2663 		ASSERT(spa_guid(spa) == pool_guid);
2664 	}
2665 
2666 	return (0);
2667 }
2668 
2669 /*
2670  * Recursively open all vdevs in the vdev tree. This function is called twice:
2671  * first with the untrusted config, then with the trusted config.
2672  */
2673 static int
2674 spa_ld_open_vdevs(spa_t *spa)
2675 {
2676 	int error = 0;
2677 
2678 	/*
2679 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2680 	 * missing/unopenable for the root vdev to be still considered openable.
2681 	 */
2682 	if (spa->spa_trust_config) {
2683 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2684 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2685 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2686 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2687 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2688 	} else {
2689 		spa->spa_missing_tvds_allowed = 0;
2690 	}
2691 
2692 	spa->spa_missing_tvds_allowed =
2693 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2694 
2695 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2696 	error = vdev_open(spa->spa_root_vdev);
2697 	spa_config_exit(spa, SCL_ALL, FTAG);
2698 
2699 	if (spa->spa_missing_tvds != 0) {
2700 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2701 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2702 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2703 			/*
2704 			 * Although theoretically we could allow users to open
2705 			 * incomplete pools in RW mode, we'd need to add a lot
2706 			 * of extra logic (e.g. adjust pool space to account
2707 			 * for missing vdevs).
2708 			 * This limitation also prevents users from accidentally
2709 			 * opening the pool in RW mode during data recovery and
2710 			 * damaging it further.
2711 			 */
2712 			spa_load_note(spa, "pools with missing top-level "
2713 			    "vdevs can only be opened in read-only mode.");
2714 			error = SET_ERROR(ENXIO);
2715 		} else {
2716 			spa_load_note(spa, "current settings allow for maximum "
2717 			    "%lld missing top-level vdevs at this stage.",
2718 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2719 		}
2720 	}
2721 	if (error != 0) {
2722 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2723 		    error);
2724 	}
2725 	if (spa->spa_missing_tvds != 0 || error != 0)
2726 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2727 
2728 	return (error);
2729 }
2730 
2731 /*
2732  * We need to validate the vdev labels against the configuration that
2733  * we have in hand. This function is called twice: first with an untrusted
2734  * config, then with a trusted config. The validation is more strict when the
2735  * config is trusted.
2736  */
2737 static int
2738 spa_ld_validate_vdevs(spa_t *spa)
2739 {
2740 	int error = 0;
2741 	vdev_t *rvd = spa->spa_root_vdev;
2742 
2743 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2744 	error = vdev_validate(rvd);
2745 	spa_config_exit(spa, SCL_ALL, FTAG);
2746 
2747 	if (error != 0) {
2748 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2749 		return (error);
2750 	}
2751 
2752 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2753 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2754 		    "some vdevs");
2755 		vdev_dbgmsg_print_tree(rvd, 2);
2756 		return (SET_ERROR(ENXIO));
2757 	}
2758 
2759 	return (0);
2760 }
2761 
2762 static void
2763 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2764 {
2765 	spa->spa_state = POOL_STATE_ACTIVE;
2766 	spa->spa_ubsync = spa->spa_uberblock;
2767 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2768 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2769 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2770 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2771 	spa->spa_claim_max_txg = spa->spa_first_txg;
2772 	spa->spa_prev_software_version = ub->ub_software_version;
2773 }
2774 
2775 static int
2776 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2777 {
2778 	vdev_t *rvd = spa->spa_root_vdev;
2779 	nvlist_t *label;
2780 	uberblock_t *ub = &spa->spa_uberblock;
2781 	boolean_t activity_check = B_FALSE;
2782 
2783 	/*
2784 	 * If we are opening the checkpointed state of the pool by
2785 	 * rewinding to it, at this point we will have written the
2786 	 * checkpointed uberblock to the vdev labels, so searching
2787 	 * the labels will find the right uberblock.  However, if
2788 	 * we are opening the checkpointed state read-only, we have
2789 	 * not modified the labels. Therefore, we must ignore the
2790 	 * labels and continue using the spa_uberblock that was set
2791 	 * by spa_ld_checkpoint_rewind.
2792 	 *
2793 	 * Note that it would be fine to ignore the labels when
2794 	 * rewinding (opening writeable) as well. However, if we
2795 	 * crash just after writing the labels, we will end up
2796 	 * searching the labels. Doing so in the common case means
2797 	 * that this code path gets exercised normally, rather than
2798 	 * just in the edge case.
2799 	 */
2800 	if (ub->ub_checkpoint_txg != 0 &&
2801 	    spa_importing_readonly_checkpoint(spa)) {
2802 		spa_ld_select_uberblock_done(spa, ub);
2803 		return (0);
2804 	}
2805 
2806 	/*
2807 	 * Find the best uberblock.
2808 	 */
2809 	vdev_uberblock_load(rvd, ub, &label);
2810 
2811 	/*
2812 	 * If we weren't able to find a single valid uberblock, return failure.
2813 	 */
2814 	if (ub->ub_txg == 0) {
2815 		nvlist_free(label);
2816 		spa_load_failed(spa, "no valid uberblock found");
2817 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2818 	}
2819 
2820 	spa_load_note(spa, "using uberblock with txg=%llu",
2821 	    (u_longlong_t)ub->ub_txg);
2822 
2823 	/*
2824 	 * For pools which have the multihost property on determine if the
2825 	 * pool is truly inactive and can be safely imported.  Prevent
2826 	 * hosts which don't have a hostid set from importing the pool.
2827 	 */
2828 	activity_check = spa_activity_check_required(spa, ub, label,
2829 	    spa->spa_config);
2830 	if (activity_check) {
2831 		if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2832 		    spa_get_hostid() == 0) {
2833 			nvlist_free(label);
2834 			fnvlist_add_uint64(spa->spa_load_info,
2835 			    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2836 			return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2837 		}
2838 
2839 		int error = spa_activity_check(spa, ub, spa->spa_config);
2840 		if (error) {
2841 			nvlist_free(label);
2842 			return (error);
2843 		}
2844 
2845 		fnvlist_add_uint64(spa->spa_load_info,
2846 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2847 		fnvlist_add_uint64(spa->spa_load_info,
2848 		    ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2849 	}
2850 
2851 	/*
2852 	 * If the pool has an unsupported version we can't open it.
2853 	 */
2854 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2855 		nvlist_free(label);
2856 		spa_load_failed(spa, "version %llu is not supported",
2857 		    (u_longlong_t)ub->ub_version);
2858 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2859 	}
2860 
2861 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2862 		nvlist_t *features;
2863 
2864 		/*
2865 		 * If we weren't able to find what's necessary for reading the
2866 		 * MOS in the label, return failure.
2867 		 */
2868 		if (label == NULL) {
2869 			spa_load_failed(spa, "label config unavailable");
2870 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2871 			    ENXIO));
2872 		}
2873 
2874 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2875 		    &features) != 0) {
2876 			nvlist_free(label);
2877 			spa_load_failed(spa, "invalid label: '%s' missing",
2878 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2879 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2880 			    ENXIO));
2881 		}
2882 
2883 		/*
2884 		 * Update our in-core representation with the definitive values
2885 		 * from the label.
2886 		 */
2887 		nvlist_free(spa->spa_label_features);
2888 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2889 	}
2890 
2891 	nvlist_free(label);
2892 
2893 	/*
2894 	 * Look through entries in the label nvlist's features_for_read. If
2895 	 * there is a feature listed there which we don't understand then we
2896 	 * cannot open a pool.
2897 	 */
2898 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2899 		nvlist_t *unsup_feat;
2900 
2901 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2902 		    0);
2903 
2904 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2905 		    NULL); nvp != NULL;
2906 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2907 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2908 				VERIFY(nvlist_add_string(unsup_feat,
2909 				    nvpair_name(nvp), "") == 0);
2910 			}
2911 		}
2912 
2913 		if (!nvlist_empty(unsup_feat)) {
2914 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2915 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2916 			nvlist_free(unsup_feat);
2917 			spa_load_failed(spa, "some features are unsupported");
2918 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2919 			    ENOTSUP));
2920 		}
2921 
2922 		nvlist_free(unsup_feat);
2923 	}
2924 
2925 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2926 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2927 		spa_try_repair(spa, spa->spa_config);
2928 		spa_config_exit(spa, SCL_ALL, FTAG);
2929 		nvlist_free(spa->spa_config_splitting);
2930 		spa->spa_config_splitting = NULL;
2931 	}
2932 
2933 	/*
2934 	 * Initialize internal SPA structures.
2935 	 */
2936 	spa_ld_select_uberblock_done(spa, ub);
2937 
2938 	return (0);
2939 }
2940 
2941 static int
2942 spa_ld_open_rootbp(spa_t *spa)
2943 {
2944 	int error = 0;
2945 	vdev_t *rvd = spa->spa_root_vdev;
2946 
2947 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2948 	if (error != 0) {
2949 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2950 		    "[error=%d]", error);
2951 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2952 	}
2953 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2954 
2955 	return (0);
2956 }
2957 
2958 static int
2959 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2960     boolean_t reloading)
2961 {
2962 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2963 	nvlist_t *nv, *mos_config, *policy;
2964 	int error = 0, copy_error;
2965 	uint64_t healthy_tvds, healthy_tvds_mos;
2966 	uint64_t mos_config_txg;
2967 
2968 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2969 	    != 0)
2970 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2971 
2972 	/*
2973 	 * If we're assembling a pool from a split, the config provided is
2974 	 * already trusted so there is nothing to do.
2975 	 */
2976 	if (type == SPA_IMPORT_ASSEMBLE)
2977 		return (0);
2978 
2979 	healthy_tvds = spa_healthy_core_tvds(spa);
2980 
2981 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2982 	    != 0) {
2983 		spa_load_failed(spa, "unable to retrieve MOS config");
2984 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2985 	}
2986 
2987 	/*
2988 	 * If we are doing an open, pool owner wasn't verified yet, thus do
2989 	 * the verification here.
2990 	 */
2991 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2992 		error = spa_verify_host(spa, mos_config);
2993 		if (error != 0) {
2994 			nvlist_free(mos_config);
2995 			return (error);
2996 		}
2997 	}
2998 
2999 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3000 
3001 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3002 
3003 	/*
3004 	 * Build a new vdev tree from the trusted config
3005 	 */
3006 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3007 
3008 	/*
3009 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3010 	 * obtained by scanning /dev/dsk, then it will have the right vdev
3011 	 * paths. We update the trusted MOS config with this information.
3012 	 * We first try to copy the paths with vdev_copy_path_strict, which
3013 	 * succeeds only when both configs have exactly the same vdev tree.
3014 	 * If that fails, we fall back to a more flexible method that has a
3015 	 * best effort policy.
3016 	 */
3017 	copy_error = vdev_copy_path_strict(rvd, mrvd);
3018 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3019 		spa_load_note(spa, "provided vdev tree:");
3020 		vdev_dbgmsg_print_tree(rvd, 2);
3021 		spa_load_note(spa, "MOS vdev tree:");
3022 		vdev_dbgmsg_print_tree(mrvd, 2);
3023 	}
3024 	if (copy_error != 0) {
3025 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3026 		    "back to vdev_copy_path_relaxed");
3027 		vdev_copy_path_relaxed(rvd, mrvd);
3028 	}
3029 
3030 	vdev_close(rvd);
3031 	vdev_free(rvd);
3032 	spa->spa_root_vdev = mrvd;
3033 	rvd = mrvd;
3034 	spa_config_exit(spa, SCL_ALL, FTAG);
3035 
3036 	/*
3037 	 * We will use spa_config if we decide to reload the spa or if spa_load
3038 	 * fails and we rewind. We must thus regenerate the config using the
3039 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3040 	 * pass settings on how to load the pool and is not stored in the MOS.
3041 	 * We copy it over to our new, trusted config.
3042 	 */
3043 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
3044 	    ZPOOL_CONFIG_POOL_TXG);
3045 	nvlist_free(mos_config);
3046 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3047 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3048 	    &policy) == 0)
3049 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3050 	spa_config_set(spa, mos_config);
3051 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3052 
3053 	/*
3054 	 * Now that we got the config from the MOS, we should be more strict
3055 	 * in checking blkptrs and can make assumptions about the consistency
3056 	 * of the vdev tree. spa_trust_config must be set to true before opening
3057 	 * vdevs in order for them to be writeable.
3058 	 */
3059 	spa->spa_trust_config = B_TRUE;
3060 
3061 	/*
3062 	 * Open and validate the new vdev tree
3063 	 */
3064 	error = spa_ld_open_vdevs(spa);
3065 	if (error != 0)
3066 		return (error);
3067 
3068 	error = spa_ld_validate_vdevs(spa);
3069 	if (error != 0)
3070 		return (error);
3071 
3072 	if (copy_error != 0 || spa_load_print_vdev_tree) {
3073 		spa_load_note(spa, "final vdev tree:");
3074 		vdev_dbgmsg_print_tree(rvd, 2);
3075 	}
3076 
3077 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3078 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3079 		/*
3080 		 * Sanity check to make sure that we are indeed loading the
3081 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3082 		 * in the config provided and they happened to be the only ones
3083 		 * to have the latest uberblock, we could involuntarily perform
3084 		 * an extreme rewind.
3085 		 */
3086 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
3087 		if (healthy_tvds_mos - healthy_tvds >=
3088 		    SPA_SYNC_MIN_VDEVS) {
3089 			spa_load_note(spa, "config provided misses too many "
3090 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
3091 			    (u_longlong_t)healthy_tvds,
3092 			    (u_longlong_t)healthy_tvds_mos);
3093 			spa_load_note(spa, "vdev tree:");
3094 			vdev_dbgmsg_print_tree(rvd, 2);
3095 			if (reloading) {
3096 				spa_load_failed(spa, "config was already "
3097 				    "provided from MOS. Aborting.");
3098 				return (spa_vdev_err(rvd,
3099 				    VDEV_AUX_CORRUPT_DATA, EIO));
3100 			}
3101 			spa_load_note(spa, "spa must be reloaded using MOS "
3102 			    "config");
3103 			return (SET_ERROR(EAGAIN));
3104 		}
3105 	}
3106 
3107 	error = spa_check_for_missing_logs(spa);
3108 	if (error != 0)
3109 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3110 
3111 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3112 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3113 		    "guid sum (%llu != %llu)",
3114 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3115 		    (u_longlong_t)rvd->vdev_guid_sum);
3116 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3117 		    ENXIO));
3118 	}
3119 
3120 	return (0);
3121 }
3122 
3123 static int
3124 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3125 {
3126 	int error = 0;
3127 	vdev_t *rvd = spa->spa_root_vdev;
3128 
3129 	/*
3130 	 * Everything that we read before spa_remove_init() must be stored
3131 	 * on concreted vdevs.  Therefore we do this as early as possible.
3132 	 */
3133 	error = spa_remove_init(spa);
3134 	if (error != 0) {
3135 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3136 		    error);
3137 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3138 	}
3139 
3140 	/*
3141 	 * Retrieve information needed to condense indirect vdev mappings.
3142 	 */
3143 	error = spa_condense_init(spa);
3144 	if (error != 0) {
3145 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3146 		    error);
3147 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3148 	}
3149 
3150 	return (0);
3151 }
3152 
3153 static int
3154 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3155 {
3156 	int error = 0;
3157 	vdev_t *rvd = spa->spa_root_vdev;
3158 
3159 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3160 		boolean_t missing_feat_read = B_FALSE;
3161 		nvlist_t *unsup_feat, *enabled_feat;
3162 
3163 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3164 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3165 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3166 		}
3167 
3168 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3169 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3170 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3171 		}
3172 
3173 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3174 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3175 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3176 		}
3177 
3178 		enabled_feat = fnvlist_alloc();
3179 		unsup_feat = fnvlist_alloc();
3180 
3181 		if (!spa_features_check(spa, B_FALSE,
3182 		    unsup_feat, enabled_feat))
3183 			missing_feat_read = B_TRUE;
3184 
3185 		if (spa_writeable(spa) ||
3186 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3187 			if (!spa_features_check(spa, B_TRUE,
3188 			    unsup_feat, enabled_feat)) {
3189 				*missing_feat_writep = B_TRUE;
3190 			}
3191 		}
3192 
3193 		fnvlist_add_nvlist(spa->spa_load_info,
3194 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3195 
3196 		if (!nvlist_empty(unsup_feat)) {
3197 			fnvlist_add_nvlist(spa->spa_load_info,
3198 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3199 		}
3200 
3201 		fnvlist_free(enabled_feat);
3202 		fnvlist_free(unsup_feat);
3203 
3204 		if (!missing_feat_read) {
3205 			fnvlist_add_boolean(spa->spa_load_info,
3206 			    ZPOOL_CONFIG_CAN_RDONLY);
3207 		}
3208 
3209 		/*
3210 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3211 		 * twofold: to determine whether the pool is available for
3212 		 * import in read-write mode and (if it is not) whether the
3213 		 * pool is available for import in read-only mode. If the pool
3214 		 * is available for import in read-write mode, it is displayed
3215 		 * as available in userland; if it is not available for import
3216 		 * in read-only mode, it is displayed as unavailable in
3217 		 * userland. If the pool is available for import in read-only
3218 		 * mode but not read-write mode, it is displayed as unavailable
3219 		 * in userland with a special note that the pool is actually
3220 		 * available for open in read-only mode.
3221 		 *
3222 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3223 		 * missing a feature for write, we must first determine whether
3224 		 * the pool can be opened read-only before returning to
3225 		 * userland in order to know whether to display the
3226 		 * abovementioned note.
3227 		 */
3228 		if (missing_feat_read || (*missing_feat_writep &&
3229 		    spa_writeable(spa))) {
3230 			spa_load_failed(spa, "pool uses unsupported features");
3231 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3232 			    ENOTSUP));
3233 		}
3234 
3235 		/*
3236 		 * Load refcounts for ZFS features from disk into an in-memory
3237 		 * cache during SPA initialization.
3238 		 */
3239 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3240 			uint64_t refcount;
3241 
3242 			error = feature_get_refcount_from_disk(spa,
3243 			    &spa_feature_table[i], &refcount);
3244 			if (error == 0) {
3245 				spa->spa_feat_refcount_cache[i] = refcount;
3246 			} else if (error == ENOTSUP) {
3247 				spa->spa_feat_refcount_cache[i] =
3248 				    SPA_FEATURE_DISABLED;
3249 			} else {
3250 				spa_load_failed(spa, "error getting refcount "
3251 				    "for feature %s [error=%d]",
3252 				    spa_feature_table[i].fi_guid, error);
3253 				return (spa_vdev_err(rvd,
3254 				    VDEV_AUX_CORRUPT_DATA, EIO));
3255 			}
3256 		}
3257 	}
3258 
3259 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3260 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3261 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3262 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3263 	}
3264 
3265 	return (0);
3266 }
3267 
3268 static int
3269 spa_ld_load_special_directories(spa_t *spa)
3270 {
3271 	int error = 0;
3272 	vdev_t *rvd = spa->spa_root_vdev;
3273 
3274 	spa->spa_is_initializing = B_TRUE;
3275 	error = dsl_pool_open(spa->spa_dsl_pool);
3276 	spa->spa_is_initializing = B_FALSE;
3277 	if (error != 0) {
3278 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3279 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3280 	}
3281 
3282 	return (0);
3283 }
3284 
3285 static int
3286 spa_ld_get_props(spa_t *spa)
3287 {
3288 	int error = 0;
3289 	uint64_t obj;
3290 	vdev_t *rvd = spa->spa_root_vdev;
3291 
3292 	/* Grab the secret checksum salt from the MOS. */
3293 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3294 	    DMU_POOL_CHECKSUM_SALT, 1,
3295 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3296 	    spa->spa_cksum_salt.zcs_bytes);
3297 	if (error == ENOENT) {
3298 		/* Generate a new salt for subsequent use */
3299 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3300 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3301 	} else if (error != 0) {
3302 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3303 		    "MOS [error=%d]", error);
3304 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3305 	}
3306 
3307 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3308 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3309 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3310 	if (error != 0) {
3311 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3312 		    "[error=%d]", error);
3313 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3314 	}
3315 
3316 	/*
3317 	 * Load the bit that tells us to use the new accounting function
3318 	 * (raid-z deflation).  If we have an older pool, this will not
3319 	 * be present.
3320 	 */
3321 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3322 	if (error != 0 && error != ENOENT)
3323 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3324 
3325 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3326 	    &spa->spa_creation_version, B_FALSE);
3327 	if (error != 0 && error != ENOENT)
3328 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3329 
3330 	/*
3331 	 * Load the persistent error log.  If we have an older pool, this will
3332 	 * not be present.
3333 	 */
3334 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3335 	    B_FALSE);
3336 	if (error != 0 && error != ENOENT)
3337 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3338 
3339 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3340 	    &spa->spa_errlog_scrub, B_FALSE);
3341 	if (error != 0 && error != ENOENT)
3342 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3343 
3344 	/*
3345 	 * Load the history object.  If we have an older pool, this
3346 	 * will not be present.
3347 	 */
3348 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3349 	if (error != 0 && error != ENOENT)
3350 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3351 
3352 	/*
3353 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3354 	 * be present; in this case, defer its creation to a later time to
3355 	 * avoid dirtying the MOS this early / out of sync context. See
3356 	 * spa_sync_config_object.
3357 	 */
3358 
3359 	/* The sentinel is only available in the MOS config. */
3360 	nvlist_t *mos_config;
3361 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3362 		spa_load_failed(spa, "unable to retrieve MOS config");
3363 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3364 	}
3365 
3366 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3367 	    &spa->spa_all_vdev_zaps, B_FALSE);
3368 
3369 	if (error == ENOENT) {
3370 		VERIFY(!nvlist_exists(mos_config,
3371 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3372 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3373 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3374 	} else if (error != 0) {
3375 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3376 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3377 		/*
3378 		 * An older version of ZFS overwrote the sentinel value, so
3379 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3380 		 * destruction to later; see spa_sync_config_object.
3381 		 */
3382 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3383 		/*
3384 		 * We're assuming that no vdevs have had their ZAPs created
3385 		 * before this. Better be sure of it.
3386 		 */
3387 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3388 	}
3389 	nvlist_free(mos_config);
3390 
3391 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3392 
3393 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3394 	    B_FALSE);
3395 	if (error && error != ENOENT)
3396 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3397 
3398 	if (error == 0) {
3399 		uint64_t autoreplace;
3400 
3401 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3402 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3403 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3404 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3405 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3406 		spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3407 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3408 		    &spa->spa_dedup_ditto);
3409 
3410 		spa->spa_autoreplace = (autoreplace != 0);
3411 	}
3412 
3413 	/*
3414 	 * If we are importing a pool with missing top-level vdevs,
3415 	 * we enforce that the pool doesn't panic or get suspended on
3416 	 * error since the likelihood of missing data is extremely high.
3417 	 */
3418 	if (spa->spa_missing_tvds > 0 &&
3419 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3420 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3421 		spa_load_note(spa, "forcing failmode to 'continue' "
3422 		    "as some top level vdevs are missing");
3423 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3424 	}
3425 
3426 	return (0);
3427 }
3428 
3429 static int
3430 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3431 {
3432 	int error = 0;
3433 	vdev_t *rvd = spa->spa_root_vdev;
3434 
3435 	/*
3436 	 * If we're assembling the pool from the split-off vdevs of
3437 	 * an existing pool, we don't want to attach the spares & cache
3438 	 * devices.
3439 	 */
3440 
3441 	/*
3442 	 * Load any hot spares for this pool.
3443 	 */
3444 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3445 	    B_FALSE);
3446 	if (error != 0 && error != ENOENT)
3447 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3448 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3449 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3450 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3451 		    &spa->spa_spares.sav_config) != 0) {
3452 			spa_load_failed(spa, "error loading spares nvlist");
3453 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3454 		}
3455 
3456 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3457 		spa_load_spares(spa);
3458 		spa_config_exit(spa, SCL_ALL, FTAG);
3459 	} else if (error == 0) {
3460 		spa->spa_spares.sav_sync = B_TRUE;
3461 	}
3462 
3463 	/*
3464 	 * Load any level 2 ARC devices for this pool.
3465 	 */
3466 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3467 	    &spa->spa_l2cache.sav_object, B_FALSE);
3468 	if (error != 0 && error != ENOENT)
3469 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3470 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3471 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3472 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3473 		    &spa->spa_l2cache.sav_config) != 0) {
3474 			spa_load_failed(spa, "error loading l2cache nvlist");
3475 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3476 		}
3477 
3478 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3479 		spa_load_l2cache(spa);
3480 		spa_config_exit(spa, SCL_ALL, FTAG);
3481 	} else if (error == 0) {
3482 		spa->spa_l2cache.sav_sync = B_TRUE;
3483 	}
3484 
3485 	return (0);
3486 }
3487 
3488 static int
3489 spa_ld_load_vdev_metadata(spa_t *spa)
3490 {
3491 	int error = 0;
3492 	vdev_t *rvd = spa->spa_root_vdev;
3493 
3494 	/*
3495 	 * If the 'multihost' property is set, then never allow a pool to
3496 	 * be imported when the system hostid is zero.  The exception to
3497 	 * this rule is zdb which is always allowed to access pools.
3498 	 */
3499 	if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3500 	    (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3501 		fnvlist_add_uint64(spa->spa_load_info,
3502 		    ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3503 		return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3504 	}
3505 
3506 	/*
3507 	 * If the 'autoreplace' property is set, then post a resource notifying
3508 	 * the ZFS DE that it should not issue any faults for unopenable
3509 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3510 	 * unopenable vdevs so that the normal autoreplace handler can take
3511 	 * over.
3512 	 */
3513 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3514 		spa_check_removed(spa->spa_root_vdev);
3515 		/*
3516 		 * For the import case, this is done in spa_import(), because
3517 		 * at this point we're using the spare definitions from
3518 		 * the MOS config, not necessarily from the userland config.
3519 		 */
3520 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3521 			spa_aux_check_removed(&spa->spa_spares);
3522 			spa_aux_check_removed(&spa->spa_l2cache);
3523 		}
3524 	}
3525 
3526 	/*
3527 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3528 	 */
3529 	error = vdev_load(rvd);
3530 	if (error != 0) {
3531 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3532 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3533 	}
3534 
3535 	/*
3536 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3537 	 */
3538 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3539 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3540 	spa_config_exit(spa, SCL_ALL, FTAG);
3541 
3542 	return (0);
3543 }
3544 
3545 static int
3546 spa_ld_load_dedup_tables(spa_t *spa)
3547 {
3548 	int error = 0;
3549 	vdev_t *rvd = spa->spa_root_vdev;
3550 
3551 	error = ddt_load(spa);
3552 	if (error != 0) {
3553 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3554 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3555 	}
3556 
3557 	return (0);
3558 }
3559 
3560 static int
3561 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3562 {
3563 	vdev_t *rvd = spa->spa_root_vdev;
3564 
3565 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3566 		boolean_t missing = spa_check_logs(spa);
3567 		if (missing) {
3568 			if (spa->spa_missing_tvds != 0) {
3569 				spa_load_note(spa, "spa_check_logs failed "
3570 				    "so dropping the logs");
3571 			} else {
3572 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3573 				spa_load_failed(spa, "spa_check_logs failed");
3574 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3575 				    ENXIO));
3576 			}
3577 		}
3578 	}
3579 
3580 	return (0);
3581 }
3582 
3583 static int
3584 spa_ld_verify_pool_data(spa_t *spa)
3585 {
3586 	int error = 0;
3587 	vdev_t *rvd = spa->spa_root_vdev;
3588 
3589 	/*
3590 	 * We've successfully opened the pool, verify that we're ready
3591 	 * to start pushing transactions.
3592 	 */
3593 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3594 		error = spa_load_verify(spa);
3595 		if (error != 0) {
3596 			spa_load_failed(spa, "spa_load_verify failed "
3597 			    "[error=%d]", error);
3598 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3599 			    error));
3600 		}
3601 	}
3602 
3603 	return (0);
3604 }
3605 
3606 static void
3607 spa_ld_claim_log_blocks(spa_t *spa)
3608 {
3609 	dmu_tx_t *tx;
3610 	dsl_pool_t *dp = spa_get_dsl(spa);
3611 
3612 	/*
3613 	 * Claim log blocks that haven't been committed yet.
3614 	 * This must all happen in a single txg.
3615 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3616 	 * invoked from zil_claim_log_block()'s i/o done callback.
3617 	 * Price of rollback is that we abandon the log.
3618 	 */
3619 	spa->spa_claiming = B_TRUE;
3620 
3621 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3622 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3623 	    zil_claim, tx, DS_FIND_CHILDREN);
3624 	dmu_tx_commit(tx);
3625 
3626 	spa->spa_claiming = B_FALSE;
3627 
3628 	spa_set_log_state(spa, SPA_LOG_GOOD);
3629 }
3630 
3631 static void
3632 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3633     boolean_t update_config_cache)
3634 {
3635 	vdev_t *rvd = spa->spa_root_vdev;
3636 	int need_update = B_FALSE;
3637 
3638 	/*
3639 	 * If the config cache is stale, or we have uninitialized
3640 	 * metaslabs (see spa_vdev_add()), then update the config.
3641 	 *
3642 	 * If this is a verbatim import, trust the current
3643 	 * in-core spa_config and update the disk labels.
3644 	 */
3645 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3646 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3647 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3648 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3649 		need_update = B_TRUE;
3650 
3651 	for (int c = 0; c < rvd->vdev_children; c++)
3652 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3653 			need_update = B_TRUE;
3654 
3655 	/*
3656 	 * Update the config cache asychronously in case we're the
3657 	 * root pool, in which case the config cache isn't writable yet.
3658 	 */
3659 	if (need_update)
3660 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3661 }
3662 
3663 static void
3664 spa_ld_prepare_for_reload(spa_t *spa)
3665 {
3666 	int mode = spa->spa_mode;
3667 	int async_suspended = spa->spa_async_suspended;
3668 
3669 	spa_unload(spa);
3670 	spa_deactivate(spa);
3671 	spa_activate(spa, mode);
3672 
3673 	/*
3674 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3675 	 * spa_unload(). We want to restore it back to the original value before
3676 	 * returning as we might be calling spa_async_resume() later.
3677 	 */
3678 	spa->spa_async_suspended = async_suspended;
3679 }
3680 
3681 static int
3682 spa_ld_read_checkpoint_txg(spa_t *spa)
3683 {
3684 	uberblock_t checkpoint;
3685 	int error = 0;
3686 
3687 	ASSERT0(spa->spa_checkpoint_txg);
3688 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3689 
3690 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3691 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3692 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3693 
3694 	if (error == ENOENT)
3695 		return (0);
3696 
3697 	if (error != 0)
3698 		return (error);
3699 
3700 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3701 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3702 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3703 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3704 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3705 
3706 	return (0);
3707 }
3708 
3709 static int
3710 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3711 {
3712 	int error = 0;
3713 
3714 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3715 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3716 
3717 	/*
3718 	 * Never trust the config that is provided unless we are assembling
3719 	 * a pool following a split.
3720 	 * This means don't trust blkptrs and the vdev tree in general. This
3721 	 * also effectively puts the spa in read-only mode since
3722 	 * spa_writeable() checks for spa_trust_config to be true.
3723 	 * We will later load a trusted config from the MOS.
3724 	 */
3725 	if (type != SPA_IMPORT_ASSEMBLE)
3726 		spa->spa_trust_config = B_FALSE;
3727 
3728 	/*
3729 	 * Parse the config provided to create a vdev tree.
3730 	 */
3731 	error = spa_ld_parse_config(spa, type);
3732 	if (error != 0)
3733 		return (error);
3734 
3735 	/*
3736 	 * Now that we have the vdev tree, try to open each vdev. This involves
3737 	 * opening the underlying physical device, retrieving its geometry and
3738 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3739 	 * based on the success of those operations. After this we'll be ready
3740 	 * to read from the vdevs.
3741 	 */
3742 	error = spa_ld_open_vdevs(spa);
3743 	if (error != 0)
3744 		return (error);
3745 
3746 	/*
3747 	 * Read the label of each vdev and make sure that the GUIDs stored
3748 	 * there match the GUIDs in the config provided.
3749 	 * If we're assembling a new pool that's been split off from an
3750 	 * existing pool, the labels haven't yet been updated so we skip
3751 	 * validation for now.
3752 	 */
3753 	if (type != SPA_IMPORT_ASSEMBLE) {
3754 		error = spa_ld_validate_vdevs(spa);
3755 		if (error != 0)
3756 			return (error);
3757 	}
3758 
3759 	/*
3760 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3761 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3762 	 * get the list of features required to read blkptrs in the MOS from
3763 	 * the vdev label with the best uberblock and verify that our version
3764 	 * of zfs supports them all.
3765 	 */
3766 	error = spa_ld_select_uberblock(spa, type);
3767 	if (error != 0)
3768 		return (error);
3769 
3770 	/*
3771 	 * Pass that uberblock to the dsl_pool layer which will open the root
3772 	 * blkptr. This blkptr points to the latest version of the MOS and will
3773 	 * allow us to read its contents.
3774 	 */
3775 	error = spa_ld_open_rootbp(spa);
3776 	if (error != 0)
3777 		return (error);
3778 
3779 	return (0);
3780 }
3781 
3782 static int
3783 spa_ld_checkpoint_rewind(spa_t *spa)
3784 {
3785 	uberblock_t checkpoint;
3786 	int error = 0;
3787 
3788 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3789 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3790 
3791 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3792 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3793 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3794 
3795 	if (error != 0) {
3796 		spa_load_failed(spa, "unable to retrieve checkpointed "
3797 		    "uberblock from the MOS config [error=%d]", error);
3798 
3799 		if (error == ENOENT)
3800 			error = ZFS_ERR_NO_CHECKPOINT;
3801 
3802 		return (error);
3803 	}
3804 
3805 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3806 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3807 
3808 	/*
3809 	 * We need to update the txg and timestamp of the checkpointed
3810 	 * uberblock to be higher than the latest one. This ensures that
3811 	 * the checkpointed uberblock is selected if we were to close and
3812 	 * reopen the pool right after we've written it in the vdev labels.
3813 	 * (also see block comment in vdev_uberblock_compare)
3814 	 */
3815 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3816 	checkpoint.ub_timestamp = gethrestime_sec();
3817 
3818 	/*
3819 	 * Set current uberblock to be the checkpointed uberblock.
3820 	 */
3821 	spa->spa_uberblock = checkpoint;
3822 
3823 	/*
3824 	 * If we are doing a normal rewind, then the pool is open for
3825 	 * writing and we sync the "updated" checkpointed uberblock to
3826 	 * disk. Once this is done, we've basically rewound the whole
3827 	 * pool and there is no way back.
3828 	 *
3829 	 * There are cases when we don't want to attempt and sync the
3830 	 * checkpointed uberblock to disk because we are opening a
3831 	 * pool as read-only. Specifically, verifying the checkpointed
3832 	 * state with zdb, and importing the checkpointed state to get
3833 	 * a "preview" of its content.
3834 	 */
3835 	if (spa_writeable(spa)) {
3836 		vdev_t *rvd = spa->spa_root_vdev;
3837 
3838 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3839 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3840 		int svdcount = 0;
3841 		int children = rvd->vdev_children;
3842 		int c0 = spa_get_random(children);
3843 
3844 		for (int c = 0; c < children; c++) {
3845 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3846 
3847 			/* Stop when revisiting the first vdev */
3848 			if (c > 0 && svd[0] == vd)
3849 				break;
3850 
3851 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3852 			    !vdev_is_concrete(vd))
3853 				continue;
3854 
3855 			svd[svdcount++] = vd;
3856 			if (svdcount == SPA_SYNC_MIN_VDEVS)
3857 				break;
3858 		}
3859 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3860 		if (error == 0)
3861 			spa->spa_last_synced_guid = rvd->vdev_guid;
3862 		spa_config_exit(spa, SCL_ALL, FTAG);
3863 
3864 		if (error != 0) {
3865 			spa_load_failed(spa, "failed to write checkpointed "
3866 			    "uberblock to the vdev labels [error=%d]", error);
3867 			return (error);
3868 		}
3869 	}
3870 
3871 	return (0);
3872 }
3873 
3874 static int
3875 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3876     boolean_t *update_config_cache)
3877 {
3878 	int error;
3879 
3880 	/*
3881 	 * Parse the config for pool, open and validate vdevs,
3882 	 * select an uberblock, and use that uberblock to open
3883 	 * the MOS.
3884 	 */
3885 	error = spa_ld_mos_init(spa, type);
3886 	if (error != 0)
3887 		return (error);
3888 
3889 	/*
3890 	 * Retrieve the trusted config stored in the MOS and use it to create
3891 	 * a new, exact version of the vdev tree, then reopen all vdevs.
3892 	 */
3893 	error = spa_ld_trusted_config(spa, type, B_FALSE);
3894 	if (error == EAGAIN) {
3895 		if (update_config_cache != NULL)
3896 			*update_config_cache = B_TRUE;
3897 
3898 		/*
3899 		 * Redo the loading process with the trusted config if it is
3900 		 * too different from the untrusted config.
3901 		 */
3902 		spa_ld_prepare_for_reload(spa);
3903 		spa_load_note(spa, "RELOADING");
3904 		error = spa_ld_mos_init(spa, type);
3905 		if (error != 0)
3906 			return (error);
3907 
3908 		error = spa_ld_trusted_config(spa, type, B_TRUE);
3909 		if (error != 0)
3910 			return (error);
3911 
3912 	} else if (error != 0) {
3913 		return (error);
3914 	}
3915 
3916 	return (0);
3917 }
3918 
3919 /*
3920  * Load an existing storage pool, using the config provided. This config
3921  * describes which vdevs are part of the pool and is later validated against
3922  * partial configs present in each vdev's label and an entire copy of the
3923  * config stored in the MOS.
3924  */
3925 static int
3926 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3927 {
3928 	int error = 0;
3929 	boolean_t missing_feat_write = B_FALSE;
3930 	boolean_t checkpoint_rewind =
3931 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3932 	boolean_t update_config_cache = B_FALSE;
3933 
3934 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3935 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3936 
3937 	spa_load_note(spa, "LOADING");
3938 
3939 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3940 	if (error != 0)
3941 		return (error);
3942 
3943 	/*
3944 	 * If we are rewinding to the checkpoint then we need to repeat
3945 	 * everything we've done so far in this function but this time
3946 	 * selecting the checkpointed uberblock and using that to open
3947 	 * the MOS.
3948 	 */
3949 	if (checkpoint_rewind) {
3950 		/*
3951 		 * If we are rewinding to the checkpoint update config cache
3952 		 * anyway.
3953 		 */
3954 		update_config_cache = B_TRUE;
3955 
3956 		/*
3957 		 * Extract the checkpointed uberblock from the current MOS
3958 		 * and use this as the pool's uberblock from now on. If the
3959 		 * pool is imported as writeable we also write the checkpoint
3960 		 * uberblock to the labels, making the rewind permanent.
3961 		 */
3962 		error = spa_ld_checkpoint_rewind(spa);
3963 		if (error != 0)
3964 			return (error);
3965 
3966 		/*
3967 		 * Redo the loading process process again with the
3968 		 * checkpointed uberblock.
3969 		 */
3970 		spa_ld_prepare_for_reload(spa);
3971 		spa_load_note(spa, "LOADING checkpointed uberblock");
3972 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3973 		if (error != 0)
3974 			return (error);
3975 	}
3976 
3977 	/*
3978 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3979 	 */
3980 	error = spa_ld_read_checkpoint_txg(spa);
3981 	if (error != 0)
3982 		return (error);
3983 
3984 	/*
3985 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3986 	 * from the pool and their contents were re-mapped to other vdevs. Note
3987 	 * that everything that we read before this step must have been
3988 	 * rewritten on concrete vdevs after the last device removal was
3989 	 * initiated. Otherwise we could be reading from indirect vdevs before
3990 	 * we have loaded their mappings.
3991 	 */
3992 	error = spa_ld_open_indirect_vdev_metadata(spa);
3993 	if (error != 0)
3994 		return (error);
3995 
3996 	/*
3997 	 * Retrieve the full list of active features from the MOS and check if
3998 	 * they are all supported.
3999 	 */
4000 	error = spa_ld_check_features(spa, &missing_feat_write);
4001 	if (error != 0)
4002 		return (error);
4003 
4004 	/*
4005 	 * Load several special directories from the MOS needed by the dsl_pool
4006 	 * layer.
4007 	 */
4008 	error = spa_ld_load_special_directories(spa);
4009 	if (error != 0)
4010 		return (error);
4011 
4012 	/*
4013 	 * Retrieve pool properties from the MOS.
4014 	 */
4015 	error = spa_ld_get_props(spa);
4016 	if (error != 0)
4017 		return (error);
4018 
4019 	/*
4020 	 * Retrieve the list of auxiliary devices - cache devices and spares -
4021 	 * and open them.
4022 	 */
4023 	error = spa_ld_open_aux_vdevs(spa, type);
4024 	if (error != 0)
4025 		return (error);
4026 
4027 	/*
4028 	 * Load the metadata for all vdevs. Also check if unopenable devices
4029 	 * should be autoreplaced.
4030 	 */
4031 	error = spa_ld_load_vdev_metadata(spa);
4032 	if (error != 0)
4033 		return (error);
4034 
4035 	error = spa_ld_load_dedup_tables(spa);
4036 	if (error != 0)
4037 		return (error);
4038 
4039 	/*
4040 	 * Verify the logs now to make sure we don't have any unexpected errors
4041 	 * when we claim log blocks later.
4042 	 */
4043 	error = spa_ld_verify_logs(spa, type, ereport);
4044 	if (error != 0)
4045 		return (error);
4046 
4047 	if (missing_feat_write) {
4048 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4049 
4050 		/*
4051 		 * At this point, we know that we can open the pool in
4052 		 * read-only mode but not read-write mode. We now have enough
4053 		 * information and can return to userland.
4054 		 */
4055 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4056 		    ENOTSUP));
4057 	}
4058 
4059 	/*
4060 	 * Traverse the last txgs to make sure the pool was left off in a safe
4061 	 * state. When performing an extreme rewind, we verify the whole pool,
4062 	 * which can take a very long time.
4063 	 */
4064 	error = spa_ld_verify_pool_data(spa);
4065 	if (error != 0)
4066 		return (error);
4067 
4068 	/*
4069 	 * Calculate the deflated space for the pool. This must be done before
4070 	 * we write anything to the pool because we'd need to update the space
4071 	 * accounting using the deflated sizes.
4072 	 */
4073 	spa_update_dspace(spa);
4074 
4075 	/*
4076 	 * We have now retrieved all the information we needed to open the
4077 	 * pool. If we are importing the pool in read-write mode, a few
4078 	 * additional steps must be performed to finish the import.
4079 	 */
4080 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4081 	    spa->spa_load_max_txg == UINT64_MAX)) {
4082 		uint64_t config_cache_txg = spa->spa_config_txg;
4083 
4084 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4085 
4086 		/*
4087 		 * In case of a checkpoint rewind, log the original txg
4088 		 * of the checkpointed uberblock.
4089 		 */
4090 		if (checkpoint_rewind) {
4091 			spa_history_log_internal(spa, "checkpoint rewind",
4092 			    NULL, "rewound state to txg=%llu",
4093 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4094 		}
4095 
4096 		/*
4097 		 * Traverse the ZIL and claim all blocks.
4098 		 */
4099 		spa_ld_claim_log_blocks(spa);
4100 
4101 		/*
4102 		 * Kick-off the syncing thread.
4103 		 */
4104 		spa->spa_sync_on = B_TRUE;
4105 		txg_sync_start(spa->spa_dsl_pool);
4106 		mmp_thread_start(spa);
4107 
4108 		/*
4109 		 * Wait for all claims to sync.  We sync up to the highest
4110 		 * claimed log block birth time so that claimed log blocks
4111 		 * don't appear to be from the future.  spa_claim_max_txg
4112 		 * will have been set for us by ZIL traversal operations
4113 		 * performed above.
4114 		 */
4115 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4116 
4117 		/*
4118 		 * Check if we need to request an update of the config. On the
4119 		 * next sync, we would update the config stored in vdev labels
4120 		 * and the cachefile (by default /etc/zfs/zpool.cache).
4121 		 */
4122 		spa_ld_check_for_config_update(spa, config_cache_txg,
4123 		    update_config_cache);
4124 
4125 		/*
4126 		 * Check all DTLs to see if anything needs resilvering.
4127 		 */
4128 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4129 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4130 			spa_async_request(spa, SPA_ASYNC_RESILVER);
4131 
4132 		/*
4133 		 * Log the fact that we booted up (so that we can detect if
4134 		 * we rebooted in the middle of an operation).
4135 		 */
4136 		spa_history_log_version(spa, "open");
4137 
4138 		spa_restart_removal(spa);
4139 		spa_spawn_aux_threads(spa);
4140 
4141 		/*
4142 		 * Delete any inconsistent datasets.
4143 		 *
4144 		 * Note:
4145 		 * Since we may be issuing deletes for clones here,
4146 		 * we make sure to do so after we've spawned all the
4147 		 * auxiliary threads above (from which the livelist
4148 		 * deletion zthr is part of).
4149 		 */
4150 		(void) dmu_objset_find(spa_name(spa),
4151 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4152 
4153 		/*
4154 		 * Clean up any stale temporary dataset userrefs.
4155 		 */
4156 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4157 
4158 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4159 		vdev_initialize_restart(spa->spa_root_vdev);
4160 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4161 	}
4162 
4163 	spa_load_note(spa, "LOADED");
4164 
4165 	return (0);
4166 }
4167 
4168 static int
4169 spa_load_retry(spa_t *spa, spa_load_state_t state)
4170 {
4171 	int mode = spa->spa_mode;
4172 
4173 	spa_unload(spa);
4174 	spa_deactivate(spa);
4175 
4176 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4177 
4178 	spa_activate(spa, mode);
4179 	spa_async_suspend(spa);
4180 
4181 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4182 	    (u_longlong_t)spa->spa_load_max_txg);
4183 
4184 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4185 }
4186 
4187 /*
4188  * If spa_load() fails this function will try loading prior txg's. If
4189  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4190  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4191  * function will not rewind the pool and will return the same error as
4192  * spa_load().
4193  */
4194 static int
4195 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4196     int rewind_flags)
4197 {
4198 	nvlist_t *loadinfo = NULL;
4199 	nvlist_t *config = NULL;
4200 	int load_error, rewind_error;
4201 	uint64_t safe_rewind_txg;
4202 	uint64_t min_txg;
4203 
4204 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4205 		spa->spa_load_max_txg = spa->spa_load_txg;
4206 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4207 	} else {
4208 		spa->spa_load_max_txg = max_request;
4209 		if (max_request != UINT64_MAX)
4210 			spa->spa_extreme_rewind = B_TRUE;
4211 	}
4212 
4213 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4214 	if (load_error == 0)
4215 		return (0);
4216 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4217 		/*
4218 		 * When attempting checkpoint-rewind on a pool with no
4219 		 * checkpoint, we should not attempt to load uberblocks
4220 		 * from previous txgs when spa_load fails.
4221 		 */
4222 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4223 		return (load_error);
4224 	}
4225 
4226 	if (spa->spa_root_vdev != NULL)
4227 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4228 
4229 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4230 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4231 
4232 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4233 		nvlist_free(config);
4234 		return (load_error);
4235 	}
4236 
4237 	if (state == SPA_LOAD_RECOVER) {
4238 		/* Price of rolling back is discarding txgs, including log */
4239 		spa_set_log_state(spa, SPA_LOG_CLEAR);
4240 	} else {
4241 		/*
4242 		 * If we aren't rolling back save the load info from our first
4243 		 * import attempt so that we can restore it after attempting
4244 		 * to rewind.
4245 		 */
4246 		loadinfo = spa->spa_load_info;
4247 		spa->spa_load_info = fnvlist_alloc();
4248 	}
4249 
4250 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4251 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4252 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4253 	    TXG_INITIAL : safe_rewind_txg;
4254 
4255 	/*
4256 	 * Continue as long as we're finding errors, we're still within
4257 	 * the acceptable rewind range, and we're still finding uberblocks
4258 	 */
4259 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4260 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4261 		if (spa->spa_load_max_txg < safe_rewind_txg)
4262 			spa->spa_extreme_rewind = B_TRUE;
4263 		rewind_error = spa_load_retry(spa, state);
4264 	}
4265 
4266 	spa->spa_extreme_rewind = B_FALSE;
4267 	spa->spa_load_max_txg = UINT64_MAX;
4268 
4269 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4270 		spa_config_set(spa, config);
4271 	else
4272 		nvlist_free(config);
4273 
4274 	if (state == SPA_LOAD_RECOVER) {
4275 		ASSERT3P(loadinfo, ==, NULL);
4276 		return (rewind_error);
4277 	} else {
4278 		/* Store the rewind info as part of the initial load info */
4279 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4280 		    spa->spa_load_info);
4281 
4282 		/* Restore the initial load info */
4283 		fnvlist_free(spa->spa_load_info);
4284 		spa->spa_load_info = loadinfo;
4285 
4286 		return (load_error);
4287 	}
4288 }
4289 
4290 /*
4291  * Pool Open/Import
4292  *
4293  * The import case is identical to an open except that the configuration is sent
4294  * down from userland, instead of grabbed from the configuration cache.  For the
4295  * case of an open, the pool configuration will exist in the
4296  * POOL_STATE_UNINITIALIZED state.
4297  *
4298  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4299  * the same time open the pool, without having to keep around the spa_t in some
4300  * ambiguous state.
4301  */
4302 static int
4303 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4304     nvlist_t **config)
4305 {
4306 	spa_t *spa;
4307 	spa_load_state_t state = SPA_LOAD_OPEN;
4308 	int error;
4309 	int locked = B_FALSE;
4310 
4311 	*spapp = NULL;
4312 
4313 	/*
4314 	 * As disgusting as this is, we need to support recursive calls to this
4315 	 * function because dsl_dir_open() is called during spa_load(), and ends
4316 	 * up calling spa_open() again.  The real fix is to figure out how to
4317 	 * avoid dsl_dir_open() calling this in the first place.
4318 	 */
4319 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4320 		mutex_enter(&spa_namespace_lock);
4321 		locked = B_TRUE;
4322 	}
4323 
4324 	if ((spa = spa_lookup(pool)) == NULL) {
4325 		if (locked)
4326 			mutex_exit(&spa_namespace_lock);
4327 		return (SET_ERROR(ENOENT));
4328 	}
4329 
4330 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4331 		zpool_load_policy_t policy;
4332 
4333 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4334 		    &policy);
4335 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4336 			state = SPA_LOAD_RECOVER;
4337 
4338 		spa_activate(spa, spa_mode_global);
4339 
4340 		if (state != SPA_LOAD_RECOVER)
4341 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4342 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4343 
4344 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4345 		error = spa_load_best(spa, state, policy.zlp_txg,
4346 		    policy.zlp_rewind);
4347 
4348 		if (error == EBADF) {
4349 			/*
4350 			 * If vdev_validate() returns failure (indicated by
4351 			 * EBADF), it indicates that one of the vdevs indicates
4352 			 * that the pool has been exported or destroyed.  If
4353 			 * this is the case, the config cache is out of sync and
4354 			 * we should remove the pool from the namespace.
4355 			 */
4356 			spa_unload(spa);
4357 			spa_deactivate(spa);
4358 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4359 			spa_remove(spa);
4360 			if (locked)
4361 				mutex_exit(&spa_namespace_lock);
4362 			return (SET_ERROR(ENOENT));
4363 		}
4364 
4365 		if (error) {
4366 			/*
4367 			 * We can't open the pool, but we still have useful
4368 			 * information: the state of each vdev after the
4369 			 * attempted vdev_open().  Return this to the user.
4370 			 */
4371 			if (config != NULL && spa->spa_config) {
4372 				VERIFY(nvlist_dup(spa->spa_config, config,
4373 				    KM_SLEEP) == 0);
4374 				VERIFY(nvlist_add_nvlist(*config,
4375 				    ZPOOL_CONFIG_LOAD_INFO,
4376 				    spa->spa_load_info) == 0);
4377 			}
4378 			spa_unload(spa);
4379 			spa_deactivate(spa);
4380 			spa->spa_last_open_failed = error;
4381 			if (locked)
4382 				mutex_exit(&spa_namespace_lock);
4383 			*spapp = NULL;
4384 			return (error);
4385 		}
4386 	}
4387 
4388 	spa_open_ref(spa, tag);
4389 
4390 	if (config != NULL)
4391 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4392 
4393 	/*
4394 	 * If we've recovered the pool, pass back any information we
4395 	 * gathered while doing the load.
4396 	 */
4397 	if (state == SPA_LOAD_RECOVER) {
4398 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4399 		    spa->spa_load_info) == 0);
4400 	}
4401 
4402 	if (locked) {
4403 		spa->spa_last_open_failed = 0;
4404 		spa->spa_last_ubsync_txg = 0;
4405 		spa->spa_load_txg = 0;
4406 		mutex_exit(&spa_namespace_lock);
4407 	}
4408 
4409 	*spapp = spa;
4410 
4411 	return (0);
4412 }
4413 
4414 int
4415 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4416     nvlist_t **config)
4417 {
4418 	return (spa_open_common(name, spapp, tag, policy, config));
4419 }
4420 
4421 int
4422 spa_open(const char *name, spa_t **spapp, void *tag)
4423 {
4424 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4425 }
4426 
4427 /*
4428  * Lookup the given spa_t, incrementing the inject count in the process,
4429  * preventing it from being exported or destroyed.
4430  */
4431 spa_t *
4432 spa_inject_addref(char *name)
4433 {
4434 	spa_t *spa;
4435 
4436 	mutex_enter(&spa_namespace_lock);
4437 	if ((spa = spa_lookup(name)) == NULL) {
4438 		mutex_exit(&spa_namespace_lock);
4439 		return (NULL);
4440 	}
4441 	spa->spa_inject_ref++;
4442 	mutex_exit(&spa_namespace_lock);
4443 
4444 	return (spa);
4445 }
4446 
4447 void
4448 spa_inject_delref(spa_t *spa)
4449 {
4450 	mutex_enter(&spa_namespace_lock);
4451 	spa->spa_inject_ref--;
4452 	mutex_exit(&spa_namespace_lock);
4453 }
4454 
4455 /*
4456  * Add spares device information to the nvlist.
4457  */
4458 static void
4459 spa_add_spares(spa_t *spa, nvlist_t *config)
4460 {
4461 	nvlist_t **spares;
4462 	uint_t i, nspares;
4463 	nvlist_t *nvroot;
4464 	uint64_t guid;
4465 	vdev_stat_t *vs;
4466 	uint_t vsc;
4467 	uint64_t pool;
4468 
4469 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4470 
4471 	if (spa->spa_spares.sav_count == 0)
4472 		return;
4473 
4474 	VERIFY(nvlist_lookup_nvlist(config,
4475 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4476 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4477 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4478 	if (nspares != 0) {
4479 		VERIFY(nvlist_add_nvlist_array(nvroot,
4480 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4481 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4482 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4483 
4484 		/*
4485 		 * Go through and find any spares which have since been
4486 		 * repurposed as an active spare.  If this is the case, update
4487 		 * their status appropriately.
4488 		 */
4489 		for (i = 0; i < nspares; i++) {
4490 			VERIFY(nvlist_lookup_uint64(spares[i],
4491 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4492 			if (spa_spare_exists(guid, &pool, NULL) &&
4493 			    pool != 0ULL) {
4494 				VERIFY(nvlist_lookup_uint64_array(
4495 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4496 				    (uint64_t **)&vs, &vsc) == 0);
4497 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4498 				vs->vs_aux = VDEV_AUX_SPARED;
4499 			}
4500 		}
4501 	}
4502 }
4503 
4504 /*
4505  * Add l2cache device information to the nvlist, including vdev stats.
4506  */
4507 static void
4508 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4509 {
4510 	nvlist_t **l2cache;
4511 	uint_t i, j, nl2cache;
4512 	nvlist_t *nvroot;
4513 	uint64_t guid;
4514 	vdev_t *vd;
4515 	vdev_stat_t *vs;
4516 	uint_t vsc;
4517 
4518 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4519 
4520 	if (spa->spa_l2cache.sav_count == 0)
4521 		return;
4522 
4523 	VERIFY(nvlist_lookup_nvlist(config,
4524 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4525 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4526 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4527 	if (nl2cache != 0) {
4528 		VERIFY(nvlist_add_nvlist_array(nvroot,
4529 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4530 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4531 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4532 
4533 		/*
4534 		 * Update level 2 cache device stats.
4535 		 */
4536 
4537 		for (i = 0; i < nl2cache; i++) {
4538 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4539 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4540 
4541 			vd = NULL;
4542 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4543 				if (guid ==
4544 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4545 					vd = spa->spa_l2cache.sav_vdevs[j];
4546 					break;
4547 				}
4548 			}
4549 			ASSERT(vd != NULL);
4550 
4551 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4552 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4553 			    == 0);
4554 			vdev_get_stats(vd, vs);
4555 		}
4556 	}
4557 }
4558 
4559 static void
4560 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4561 {
4562 	nvlist_t *features;
4563 	zap_cursor_t zc;
4564 	zap_attribute_t za;
4565 
4566 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4567 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4568 
4569 	if (spa->spa_feat_for_read_obj != 0) {
4570 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4571 		    spa->spa_feat_for_read_obj);
4572 		    zap_cursor_retrieve(&zc, &za) == 0;
4573 		    zap_cursor_advance(&zc)) {
4574 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4575 			    za.za_num_integers == 1);
4576 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4577 			    za.za_first_integer));
4578 		}
4579 		zap_cursor_fini(&zc);
4580 	}
4581 
4582 	if (spa->spa_feat_for_write_obj != 0) {
4583 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4584 		    spa->spa_feat_for_write_obj);
4585 		    zap_cursor_retrieve(&zc, &za) == 0;
4586 		    zap_cursor_advance(&zc)) {
4587 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4588 			    za.za_num_integers == 1);
4589 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4590 			    za.za_first_integer));
4591 		}
4592 		zap_cursor_fini(&zc);
4593 	}
4594 
4595 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4596 	    features) == 0);
4597 	nvlist_free(features);
4598 }
4599 
4600 int
4601 spa_get_stats(const char *name, nvlist_t **config,
4602     char *altroot, size_t buflen)
4603 {
4604 	int error;
4605 	spa_t *spa;
4606 
4607 	*config = NULL;
4608 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4609 
4610 	if (spa != NULL) {
4611 		/*
4612 		 * This still leaves a window of inconsistency where the spares
4613 		 * or l2cache devices could change and the config would be
4614 		 * self-inconsistent.
4615 		 */
4616 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4617 
4618 		if (*config != NULL) {
4619 			uint64_t loadtimes[2];
4620 
4621 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4622 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4623 			VERIFY(nvlist_add_uint64_array(*config,
4624 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4625 
4626 			VERIFY(nvlist_add_uint64(*config,
4627 			    ZPOOL_CONFIG_ERRCOUNT,
4628 			    spa_get_errlog_size(spa)) == 0);
4629 
4630 			if (spa_suspended(spa)) {
4631 				VERIFY(nvlist_add_uint64(*config,
4632 				    ZPOOL_CONFIG_SUSPENDED,
4633 				    spa->spa_failmode) == 0);
4634 				VERIFY(nvlist_add_uint64(*config,
4635 				    ZPOOL_CONFIG_SUSPENDED_REASON,
4636 				    spa->spa_suspended) == 0);
4637 			}
4638 
4639 			spa_add_spares(spa, *config);
4640 			spa_add_l2cache(spa, *config);
4641 			spa_add_feature_stats(spa, *config);
4642 		}
4643 	}
4644 
4645 	/*
4646 	 * We want to get the alternate root even for faulted pools, so we cheat
4647 	 * and call spa_lookup() directly.
4648 	 */
4649 	if (altroot) {
4650 		if (spa == NULL) {
4651 			mutex_enter(&spa_namespace_lock);
4652 			spa = spa_lookup(name);
4653 			if (spa)
4654 				spa_altroot(spa, altroot, buflen);
4655 			else
4656 				altroot[0] = '\0';
4657 			spa = NULL;
4658 			mutex_exit(&spa_namespace_lock);
4659 		} else {
4660 			spa_altroot(spa, altroot, buflen);
4661 		}
4662 	}
4663 
4664 	if (spa != NULL) {
4665 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4666 		spa_close(spa, FTAG);
4667 	}
4668 
4669 	return (error);
4670 }
4671 
4672 /*
4673  * Validate that the auxiliary device array is well formed.  We must have an
4674  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4675  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4676  * specified, as long as they are well-formed.
4677  */
4678 static int
4679 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4680     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4681     vdev_labeltype_t label)
4682 {
4683 	nvlist_t **dev;
4684 	uint_t i, ndev;
4685 	vdev_t *vd;
4686 	int error;
4687 
4688 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4689 
4690 	/*
4691 	 * It's acceptable to have no devs specified.
4692 	 */
4693 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4694 		return (0);
4695 
4696 	if (ndev == 0)
4697 		return (SET_ERROR(EINVAL));
4698 
4699 	/*
4700 	 * Make sure the pool is formatted with a version that supports this
4701 	 * device type.
4702 	 */
4703 	if (spa_version(spa) < version)
4704 		return (SET_ERROR(ENOTSUP));
4705 
4706 	/*
4707 	 * Set the pending device list so we correctly handle device in-use
4708 	 * checking.
4709 	 */
4710 	sav->sav_pending = dev;
4711 	sav->sav_npending = ndev;
4712 
4713 	for (i = 0; i < ndev; i++) {
4714 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4715 		    mode)) != 0)
4716 			goto out;
4717 
4718 		if (!vd->vdev_ops->vdev_op_leaf) {
4719 			vdev_free(vd);
4720 			error = SET_ERROR(EINVAL);
4721 			goto out;
4722 		}
4723 
4724 		vd->vdev_top = vd;
4725 
4726 		if ((error = vdev_open(vd)) == 0 &&
4727 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4728 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4729 			    vd->vdev_guid) == 0);
4730 		}
4731 
4732 		vdev_free(vd);
4733 
4734 		if (error &&
4735 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4736 			goto out;
4737 		else
4738 			error = 0;
4739 	}
4740 
4741 out:
4742 	sav->sav_pending = NULL;
4743 	sav->sav_npending = 0;
4744 	return (error);
4745 }
4746 
4747 static int
4748 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4749 {
4750 	int error;
4751 
4752 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4753 
4754 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4755 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4756 	    VDEV_LABEL_SPARE)) != 0) {
4757 		return (error);
4758 	}
4759 
4760 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4761 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4762 	    VDEV_LABEL_L2CACHE));
4763 }
4764 
4765 static void
4766 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4767     const char *config)
4768 {
4769 	int i;
4770 
4771 	if (sav->sav_config != NULL) {
4772 		nvlist_t **olddevs;
4773 		uint_t oldndevs;
4774 		nvlist_t **newdevs;
4775 
4776 		/*
4777 		 * Generate new dev list by concatentating with the
4778 		 * current dev list.
4779 		 */
4780 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4781 		    &olddevs, &oldndevs) == 0);
4782 
4783 		newdevs = kmem_alloc(sizeof (void *) *
4784 		    (ndevs + oldndevs), KM_SLEEP);
4785 		for (i = 0; i < oldndevs; i++)
4786 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4787 			    KM_SLEEP) == 0);
4788 		for (i = 0; i < ndevs; i++)
4789 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4790 			    KM_SLEEP) == 0);
4791 
4792 		VERIFY(nvlist_remove(sav->sav_config, config,
4793 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4794 
4795 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4796 		    config, newdevs, ndevs + oldndevs) == 0);
4797 		for (i = 0; i < oldndevs + ndevs; i++)
4798 			nvlist_free(newdevs[i]);
4799 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4800 	} else {
4801 		/*
4802 		 * Generate a new dev list.
4803 		 */
4804 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4805 		    KM_SLEEP) == 0);
4806 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4807 		    devs, ndevs) == 0);
4808 	}
4809 }
4810 
4811 /*
4812  * Stop and drop level 2 ARC devices
4813  */
4814 void
4815 spa_l2cache_drop(spa_t *spa)
4816 {
4817 	vdev_t *vd;
4818 	int i;
4819 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4820 
4821 	for (i = 0; i < sav->sav_count; i++) {
4822 		uint64_t pool;
4823 
4824 		vd = sav->sav_vdevs[i];
4825 		ASSERT(vd != NULL);
4826 
4827 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4828 		    pool != 0ULL && l2arc_vdev_present(vd))
4829 			l2arc_remove_vdev(vd);
4830 	}
4831 }
4832 
4833 /*
4834  * Pool Creation
4835  */
4836 int
4837 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4838     nvlist_t *zplprops)
4839 {
4840 	spa_t *spa;
4841 	char *altroot = NULL;
4842 	vdev_t *rvd;
4843 	dsl_pool_t *dp;
4844 	dmu_tx_t *tx;
4845 	int error = 0;
4846 	uint64_t txg = TXG_INITIAL;
4847 	nvlist_t **spares, **l2cache;
4848 	uint_t nspares, nl2cache;
4849 	uint64_t version, obj;
4850 	boolean_t has_features;
4851 	char *poolname;
4852 	nvlist_t *nvl;
4853 
4854 	if (props == NULL ||
4855 	    nvlist_lookup_string(props,
4856 	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
4857 		poolname = (char *)pool;
4858 
4859 	/*
4860 	 * If this pool already exists, return failure.
4861 	 */
4862 	mutex_enter(&spa_namespace_lock);
4863 	if (spa_lookup(poolname) != NULL) {
4864 		mutex_exit(&spa_namespace_lock);
4865 		return (SET_ERROR(EEXIST));
4866 	}
4867 
4868 	/*
4869 	 * Allocate a new spa_t structure.
4870 	 */
4871 	nvl = fnvlist_alloc();
4872 	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4873 	(void) nvlist_lookup_string(props,
4874 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4875 	spa = spa_add(poolname, nvl, altroot);
4876 	fnvlist_free(nvl);
4877 	spa_activate(spa, spa_mode_global);
4878 
4879 	if (props && (error = spa_prop_validate(spa, props))) {
4880 		spa_deactivate(spa);
4881 		spa_remove(spa);
4882 		mutex_exit(&spa_namespace_lock);
4883 		return (error);
4884 	}
4885 
4886 	/*
4887 	 * Temporary pool names should never be written to disk.
4888 	 */
4889 	if (poolname != pool)
4890 		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4891 
4892 	has_features = B_FALSE;
4893 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4894 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4895 		if (zpool_prop_feature(nvpair_name(elem)))
4896 			has_features = B_TRUE;
4897 	}
4898 
4899 	if (has_features || nvlist_lookup_uint64(props,
4900 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4901 		version = SPA_VERSION;
4902 	}
4903 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4904 
4905 	spa->spa_first_txg = txg;
4906 	spa->spa_uberblock.ub_txg = txg - 1;
4907 	spa->spa_uberblock.ub_version = version;
4908 	spa->spa_ubsync = spa->spa_uberblock;
4909 	spa->spa_load_state = SPA_LOAD_CREATE;
4910 	spa->spa_removing_phys.sr_state = DSS_NONE;
4911 	spa->spa_removing_phys.sr_removing_vdev = -1;
4912 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4913 	spa->spa_indirect_vdevs_loaded = B_TRUE;
4914 
4915 	/*
4916 	 * Create "The Godfather" zio to hold all async IOs
4917 	 */
4918 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4919 	    KM_SLEEP);
4920 	for (int i = 0; i < max_ncpus; i++) {
4921 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4922 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4923 		    ZIO_FLAG_GODFATHER);
4924 	}
4925 
4926 	/*
4927 	 * Create the root vdev.
4928 	 */
4929 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4930 
4931 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4932 
4933 	ASSERT(error != 0 || rvd != NULL);
4934 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4935 
4936 	if (error == 0 && !zfs_allocatable_devs(nvroot))
4937 		error = SET_ERROR(EINVAL);
4938 
4939 	if (error == 0 &&
4940 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4941 	    (error = spa_validate_aux(spa, nvroot, txg,
4942 	    VDEV_ALLOC_ADD)) == 0) {
4943 		/*
4944 		 * instantiate the metaslab groups (this will dirty the vdevs)
4945 		 * we can no longer error exit past this point
4946 		 */
4947 		for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
4948 			vdev_t *vd = rvd->vdev_child[c];
4949 
4950 			vdev_metaslab_set_size(vd);
4951 			vdev_expand(vd, txg);
4952 		}
4953 	}
4954 
4955 	spa_config_exit(spa, SCL_ALL, FTAG);
4956 
4957 	if (error != 0) {
4958 		spa_unload(spa);
4959 		spa_deactivate(spa);
4960 		spa_remove(spa);
4961 		mutex_exit(&spa_namespace_lock);
4962 		return (error);
4963 	}
4964 
4965 	/*
4966 	 * Get the list of spares, if specified.
4967 	 */
4968 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4969 	    &spares, &nspares) == 0) {
4970 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4971 		    KM_SLEEP) == 0);
4972 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4973 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4974 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4975 		spa_load_spares(spa);
4976 		spa_config_exit(spa, SCL_ALL, FTAG);
4977 		spa->spa_spares.sav_sync = B_TRUE;
4978 	}
4979 
4980 	/*
4981 	 * Get the list of level 2 cache devices, if specified.
4982 	 */
4983 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4984 	    &l2cache, &nl2cache) == 0) {
4985 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4986 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4987 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4988 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4989 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4990 		spa_load_l2cache(spa);
4991 		spa_config_exit(spa, SCL_ALL, FTAG);
4992 		spa->spa_l2cache.sav_sync = B_TRUE;
4993 	}
4994 
4995 	spa->spa_is_initializing = B_TRUE;
4996 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4997 	spa->spa_meta_objset = dp->dp_meta_objset;
4998 	spa->spa_is_initializing = B_FALSE;
4999 
5000 	/*
5001 	 * Create DDTs (dedup tables).
5002 	 */
5003 	ddt_create(spa);
5004 
5005 	spa_update_dspace(spa);
5006 
5007 	tx = dmu_tx_create_assigned(dp, txg);
5008 
5009 	/*
5010 	 * Create the pool config object.
5011 	 */
5012 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5013 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5014 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5015 
5016 	if (zap_add(spa->spa_meta_objset,
5017 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5018 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5019 		cmn_err(CE_PANIC, "failed to add pool config");
5020 	}
5021 
5022 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
5023 		spa_feature_create_zap_objects(spa, tx);
5024 
5025 	if (zap_add(spa->spa_meta_objset,
5026 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5027 	    sizeof (uint64_t), 1, &version, tx) != 0) {
5028 		cmn_err(CE_PANIC, "failed to add pool version");
5029 	}
5030 
5031 	/* Newly created pools with the right version are always deflated. */
5032 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5033 		spa->spa_deflate = TRUE;
5034 		if (zap_add(spa->spa_meta_objset,
5035 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5036 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5037 			cmn_err(CE_PANIC, "failed to add deflate");
5038 		}
5039 	}
5040 
5041 	/*
5042 	 * Create the deferred-free bpobj.  Turn off compression
5043 	 * because sync-to-convergence takes longer if the blocksize
5044 	 * keeps changing.
5045 	 */
5046 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5047 	dmu_object_set_compress(spa->spa_meta_objset, obj,
5048 	    ZIO_COMPRESS_OFF, tx);
5049 	if (zap_add(spa->spa_meta_objset,
5050 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5051 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
5052 		cmn_err(CE_PANIC, "failed to add bpobj");
5053 	}
5054 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5055 	    spa->spa_meta_objset, obj));
5056 
5057 	/*
5058 	 * Create the pool's history object.
5059 	 */
5060 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
5061 		spa_history_create_obj(spa, tx);
5062 
5063 	/*
5064 	 * Generate some random noise for salted checksums to operate on.
5065 	 */
5066 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5067 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
5068 
5069 	/*
5070 	 * Set pool properties.
5071 	 */
5072 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5073 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5074 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5075 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5076 	spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5077 
5078 	if (props != NULL) {
5079 		spa_configfile_set(spa, props, B_FALSE);
5080 		spa_sync_props(props, tx);
5081 	}
5082 
5083 	dmu_tx_commit(tx);
5084 
5085 	spa->spa_sync_on = B_TRUE;
5086 	txg_sync_start(spa->spa_dsl_pool);
5087 	mmp_thread_start(spa);
5088 
5089 	/*
5090 	 * We explicitly wait for the first transaction to complete so that our
5091 	 * bean counters are appropriately updated.
5092 	 */
5093 	txg_wait_synced(spa->spa_dsl_pool, txg);
5094 
5095 	spa_spawn_aux_threads(spa);
5096 
5097 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
5098 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5099 
5100 	spa_history_log_version(spa, "create");
5101 
5102 	/*
5103 	 * Don't count references from objsets that are already closed
5104 	 * and are making their way through the eviction process.
5105 	 */
5106 	spa_evicting_os_wait(spa);
5107 	spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5108 	spa->spa_load_state = SPA_LOAD_NONE;
5109 
5110 	mutex_exit(&spa_namespace_lock);
5111 
5112 	return (0);
5113 }
5114 
5115 #ifdef _KERNEL
5116 /*
5117  * Get the root pool information from the root disk, then import the root pool
5118  * during the system boot up time.
5119  */
5120 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
5121 
5122 static nvlist_t *
5123 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
5124 {
5125 	nvlist_t *config;
5126 	nvlist_t *nvtop, *nvroot;
5127 	uint64_t pgid;
5128 
5129 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
5130 		return (NULL);
5131 
5132 	/*
5133 	 * Add this top-level vdev to the child array.
5134 	 */
5135 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5136 	    &nvtop) == 0);
5137 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5138 	    &pgid) == 0);
5139 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5140 
5141 	/*
5142 	 * Put this pool's top-level vdevs into a root vdev.
5143 	 */
5144 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5145 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5146 	    VDEV_TYPE_ROOT) == 0);
5147 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5148 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5149 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5150 	    &nvtop, 1) == 0);
5151 
5152 	/*
5153 	 * Replace the existing vdev_tree with the new root vdev in
5154 	 * this pool's configuration (remove the old, add the new).
5155 	 */
5156 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5157 	nvlist_free(nvroot);
5158 	return (config);
5159 }
5160 
5161 /*
5162  * Walk the vdev tree and see if we can find a device with "better"
5163  * configuration. A configuration is "better" if the label on that
5164  * device has a more recent txg.
5165  */
5166 static void
5167 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5168 {
5169 	for (int c = 0; c < vd->vdev_children; c++)
5170 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5171 
5172 	if (vd->vdev_ops->vdev_op_leaf) {
5173 		nvlist_t *label;
5174 		uint64_t label_txg;
5175 
5176 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5177 		    &label) != 0)
5178 			return;
5179 
5180 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5181 		    &label_txg) == 0);
5182 
5183 		/*
5184 		 * Do we have a better boot device?
5185 		 */
5186 		if (label_txg > *txg) {
5187 			*txg = label_txg;
5188 			*avd = vd;
5189 		}
5190 		nvlist_free(label);
5191 	}
5192 }
5193 
5194 /*
5195  * Import a root pool.
5196  *
5197  * For x86. devpath_list will consist of devid and/or physpath name of
5198  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5199  * The GRUB "findroot" command will return the vdev we should boot.
5200  *
5201  * For Sparc, devpath_list consists the physpath name of the booting device
5202  * no matter the rootpool is a single device pool or a mirrored pool.
5203  * e.g.
5204  *	"/pci@1f,0/ide@d/disk@0,0:a"
5205  */
5206 int
5207 spa_import_rootpool(char *devpath, char *devid)
5208 {
5209 	spa_t *spa;
5210 	vdev_t *rvd, *bvd, *avd = NULL;
5211 	nvlist_t *config, *nvtop;
5212 	uint64_t guid, txg;
5213 	char *pname;
5214 	int error;
5215 
5216 	/*
5217 	 * Read the label from the boot device and generate a configuration.
5218 	 */
5219 	config = spa_generate_rootconf(devpath, devid, &guid);
5220 #if defined(_OBP) && defined(_KERNEL)
5221 	if (config == NULL) {
5222 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5223 			/* iscsi boot */
5224 			get_iscsi_bootpath_phy(devpath);
5225 			config = spa_generate_rootconf(devpath, devid, &guid);
5226 		}
5227 	}
5228 #endif
5229 	if (config == NULL) {
5230 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5231 		    devpath);
5232 		return (SET_ERROR(EIO));
5233 	}
5234 
5235 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5236 	    &pname) == 0);
5237 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5238 
5239 	mutex_enter(&spa_namespace_lock);
5240 	if ((spa = spa_lookup(pname)) != NULL) {
5241 		/*
5242 		 * Remove the existing root pool from the namespace so that we
5243 		 * can replace it with the correct config we just read in.
5244 		 */
5245 		spa_remove(spa);
5246 	}
5247 
5248 	spa = spa_add(pname, config, NULL);
5249 	spa->spa_is_root = B_TRUE;
5250 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5251 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5252 	    &spa->spa_ubsync.ub_version) != 0)
5253 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5254 
5255 	/*
5256 	 * Build up a vdev tree based on the boot device's label config.
5257 	 */
5258 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5259 	    &nvtop) == 0);
5260 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5261 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5262 	    VDEV_ALLOC_ROOTPOOL);
5263 	spa_config_exit(spa, SCL_ALL, FTAG);
5264 	if (error) {
5265 		mutex_exit(&spa_namespace_lock);
5266 		nvlist_free(config);
5267 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5268 		    pname);
5269 		return (error);
5270 	}
5271 
5272 	/*
5273 	 * Get the boot vdev.
5274 	 */
5275 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5276 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5277 		    (u_longlong_t)guid);
5278 		error = SET_ERROR(ENOENT);
5279 		goto out;
5280 	}
5281 
5282 	/*
5283 	 * Determine if there is a better boot device.
5284 	 */
5285 	avd = bvd;
5286 	spa_alt_rootvdev(rvd, &avd, &txg);
5287 	if (avd != bvd) {
5288 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5289 		    "try booting from '%s'", avd->vdev_path);
5290 		error = SET_ERROR(EINVAL);
5291 		goto out;
5292 	}
5293 
5294 	/*
5295 	 * If the boot device is part of a spare vdev then ensure that
5296 	 * we're booting off the active spare.
5297 	 */
5298 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5299 	    !bvd->vdev_isspare) {
5300 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5301 		    "try booting from '%s'",
5302 		    bvd->vdev_parent->
5303 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5304 		error = SET_ERROR(EINVAL);
5305 		goto out;
5306 	}
5307 
5308 	error = 0;
5309 out:
5310 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5311 	vdev_free(rvd);
5312 	spa_config_exit(spa, SCL_ALL, FTAG);
5313 	mutex_exit(&spa_namespace_lock);
5314 
5315 	nvlist_free(config);
5316 	return (error);
5317 }
5318 
5319 #endif
5320 
5321 /*
5322  * Import a non-root pool into the system.
5323  */
5324 int
5325 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5326 {
5327 	spa_t *spa;
5328 	char *altroot = NULL;
5329 	spa_load_state_t state = SPA_LOAD_IMPORT;
5330 	zpool_load_policy_t policy;
5331 	uint64_t mode = spa_mode_global;
5332 	uint64_t readonly = B_FALSE;
5333 	int error;
5334 	nvlist_t *nvroot;
5335 	nvlist_t **spares, **l2cache;
5336 	uint_t nspares, nl2cache;
5337 
5338 	/*
5339 	 * If a pool with this name exists, return failure.
5340 	 */
5341 	mutex_enter(&spa_namespace_lock);
5342 	if (spa_lookup(pool) != NULL) {
5343 		mutex_exit(&spa_namespace_lock);
5344 		return (SET_ERROR(EEXIST));
5345 	}
5346 
5347 	/*
5348 	 * Create and initialize the spa structure.
5349 	 */
5350 	(void) nvlist_lookup_string(props,
5351 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5352 	(void) nvlist_lookup_uint64(props,
5353 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5354 	if (readonly)
5355 		mode = FREAD;
5356 	spa = spa_add(pool, config, altroot);
5357 	spa->spa_import_flags = flags;
5358 
5359 	/*
5360 	 * Verbatim import - Take a pool and insert it into the namespace
5361 	 * as if it had been loaded at boot.
5362 	 */
5363 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5364 		if (props != NULL)
5365 			spa_configfile_set(spa, props, B_FALSE);
5366 
5367 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5368 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5369 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5370 		mutex_exit(&spa_namespace_lock);
5371 		return (0);
5372 	}
5373 
5374 	spa_activate(spa, mode);
5375 
5376 	/*
5377 	 * Don't start async tasks until we know everything is healthy.
5378 	 */
5379 	spa_async_suspend(spa);
5380 
5381 	zpool_get_load_policy(config, &policy);
5382 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5383 		state = SPA_LOAD_RECOVER;
5384 
5385 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5386 
5387 	if (state != SPA_LOAD_RECOVER) {
5388 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5389 		zfs_dbgmsg("spa_import: importing %s", pool);
5390 	} else {
5391 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5392 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5393 	}
5394 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5395 
5396 	/*
5397 	 * Propagate anything learned while loading the pool and pass it
5398 	 * back to caller (i.e. rewind info, missing devices, etc).
5399 	 */
5400 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5401 	    spa->spa_load_info) == 0);
5402 
5403 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5404 	/*
5405 	 * Toss any existing sparelist, as it doesn't have any validity
5406 	 * anymore, and conflicts with spa_has_spare().
5407 	 */
5408 	if (spa->spa_spares.sav_config) {
5409 		nvlist_free(spa->spa_spares.sav_config);
5410 		spa->spa_spares.sav_config = NULL;
5411 		spa_load_spares(spa);
5412 	}
5413 	if (spa->spa_l2cache.sav_config) {
5414 		nvlist_free(spa->spa_l2cache.sav_config);
5415 		spa->spa_l2cache.sav_config = NULL;
5416 		spa_load_l2cache(spa);
5417 	}
5418 
5419 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5420 	    &nvroot) == 0);
5421 	if (error == 0)
5422 		error = spa_validate_aux(spa, nvroot, -1ULL,
5423 		    VDEV_ALLOC_SPARE);
5424 	if (error == 0)
5425 		error = spa_validate_aux(spa, nvroot, -1ULL,
5426 		    VDEV_ALLOC_L2CACHE);
5427 	spa_config_exit(spa, SCL_ALL, FTAG);
5428 
5429 	if (props != NULL)
5430 		spa_configfile_set(spa, props, B_FALSE);
5431 
5432 	if (error != 0 || (props && spa_writeable(spa) &&
5433 	    (error = spa_prop_set(spa, props)))) {
5434 		spa_unload(spa);
5435 		spa_deactivate(spa);
5436 		spa_remove(spa);
5437 		mutex_exit(&spa_namespace_lock);
5438 		return (error);
5439 	}
5440 
5441 	spa_async_resume(spa);
5442 
5443 	/*
5444 	 * Override any spares and level 2 cache devices as specified by
5445 	 * the user, as these may have correct device names/devids, etc.
5446 	 */
5447 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5448 	    &spares, &nspares) == 0) {
5449 		if (spa->spa_spares.sav_config)
5450 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5451 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5452 		else
5453 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5454 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5455 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5456 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5457 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5458 		spa_load_spares(spa);
5459 		spa_config_exit(spa, SCL_ALL, FTAG);
5460 		spa->spa_spares.sav_sync = B_TRUE;
5461 	}
5462 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5463 	    &l2cache, &nl2cache) == 0) {
5464 		if (spa->spa_l2cache.sav_config)
5465 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5466 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5467 		else
5468 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5469 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5470 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5471 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5472 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5473 		spa_load_l2cache(spa);
5474 		spa_config_exit(spa, SCL_ALL, FTAG);
5475 		spa->spa_l2cache.sav_sync = B_TRUE;
5476 	}
5477 
5478 	/*
5479 	 * Check for any removed devices.
5480 	 */
5481 	if (spa->spa_autoreplace) {
5482 		spa_aux_check_removed(&spa->spa_spares);
5483 		spa_aux_check_removed(&spa->spa_l2cache);
5484 	}
5485 
5486 	if (spa_writeable(spa)) {
5487 		/*
5488 		 * Update the config cache to include the newly-imported pool.
5489 		 */
5490 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5491 	}
5492 
5493 	/*
5494 	 * It's possible that the pool was expanded while it was exported.
5495 	 * We kick off an async task to handle this for us.
5496 	 */
5497 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5498 
5499 	spa_history_log_version(spa, "import");
5500 
5501 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5502 
5503 	mutex_exit(&spa_namespace_lock);
5504 
5505 	return (0);
5506 }
5507 
5508 nvlist_t *
5509 spa_tryimport(nvlist_t *tryconfig)
5510 {
5511 	nvlist_t *config = NULL;
5512 	char *poolname, *cachefile;
5513 	spa_t *spa;
5514 	uint64_t state;
5515 	int error;
5516 	zpool_load_policy_t policy;
5517 
5518 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5519 		return (NULL);
5520 
5521 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5522 		return (NULL);
5523 
5524 	/*
5525 	 * Create and initialize the spa structure.
5526 	 */
5527 	mutex_enter(&spa_namespace_lock);
5528 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5529 	spa_activate(spa, FREAD);
5530 
5531 	/*
5532 	 * Rewind pool if a max txg was provided.
5533 	 */
5534 	zpool_get_load_policy(spa->spa_config, &policy);
5535 	if (policy.zlp_txg != UINT64_MAX) {
5536 		spa->spa_load_max_txg = policy.zlp_txg;
5537 		spa->spa_extreme_rewind = B_TRUE;
5538 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5539 		    poolname, (longlong_t)policy.zlp_txg);
5540 	} else {
5541 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5542 	}
5543 
5544 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5545 	    == 0) {
5546 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5547 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5548 	} else {
5549 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5550 	}
5551 
5552 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5553 
5554 	/*
5555 	 * If 'tryconfig' was at least parsable, return the current config.
5556 	 */
5557 	if (spa->spa_root_vdev != NULL) {
5558 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5559 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5560 		    poolname) == 0);
5561 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5562 		    state) == 0);
5563 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5564 		    spa->spa_uberblock.ub_timestamp) == 0);
5565 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5566 		    spa->spa_load_info) == 0);
5567 
5568 		/*
5569 		 * If the bootfs property exists on this pool then we
5570 		 * copy it out so that external consumers can tell which
5571 		 * pools are bootable.
5572 		 */
5573 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5574 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5575 
5576 			/*
5577 			 * We have to play games with the name since the
5578 			 * pool was opened as TRYIMPORT_NAME.
5579 			 */
5580 			if (dsl_dsobj_to_dsname(spa_name(spa),
5581 			    spa->spa_bootfs, tmpname) == 0) {
5582 				char *cp;
5583 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5584 
5585 				cp = strchr(tmpname, '/');
5586 				if (cp == NULL) {
5587 					(void) strlcpy(dsname, tmpname,
5588 					    MAXPATHLEN);
5589 				} else {
5590 					(void) snprintf(dsname, MAXPATHLEN,
5591 					    "%s/%s", poolname, ++cp);
5592 				}
5593 				VERIFY(nvlist_add_string(config,
5594 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5595 				kmem_free(dsname, MAXPATHLEN);
5596 			}
5597 			kmem_free(tmpname, MAXPATHLEN);
5598 		}
5599 
5600 		/*
5601 		 * Add the list of hot spares and level 2 cache devices.
5602 		 */
5603 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5604 		spa_add_spares(spa, config);
5605 		spa_add_l2cache(spa, config);
5606 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5607 	}
5608 
5609 	spa_unload(spa);
5610 	spa_deactivate(spa);
5611 	spa_remove(spa);
5612 	mutex_exit(&spa_namespace_lock);
5613 
5614 	return (config);
5615 }
5616 
5617 /*
5618  * Pool export/destroy
5619  *
5620  * The act of destroying or exporting a pool is very simple.  We make sure there
5621  * is no more pending I/O and any references to the pool are gone.  Then, we
5622  * update the pool state and sync all the labels to disk, removing the
5623  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5624  * we don't sync the labels or remove the configuration cache.
5625  */
5626 static int
5627 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5628     boolean_t force, boolean_t hardforce)
5629 {
5630 	spa_t *spa;
5631 
5632 	if (oldconfig)
5633 		*oldconfig = NULL;
5634 
5635 	if (!(spa_mode_global & FWRITE))
5636 		return (SET_ERROR(EROFS));
5637 
5638 	mutex_enter(&spa_namespace_lock);
5639 	if ((spa = spa_lookup(pool)) == NULL) {
5640 		mutex_exit(&spa_namespace_lock);
5641 		return (SET_ERROR(ENOENT));
5642 	}
5643 
5644 	/*
5645 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5646 	 * reacquire the namespace lock, and see if we can export.
5647 	 */
5648 	spa_open_ref(spa, FTAG);
5649 	mutex_exit(&spa_namespace_lock);
5650 	spa_async_suspend(spa);
5651 	mutex_enter(&spa_namespace_lock);
5652 	spa_close(spa, FTAG);
5653 
5654 	/*
5655 	 * The pool will be in core if it's openable,
5656 	 * in which case we can modify its state.
5657 	 */
5658 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5659 
5660 		/*
5661 		 * Objsets may be open only because they're dirty, so we
5662 		 * have to force it to sync before checking spa_refcnt.
5663 		 */
5664 		txg_wait_synced(spa->spa_dsl_pool, 0);
5665 		spa_evicting_os_wait(spa);
5666 
5667 		/*
5668 		 * A pool cannot be exported or destroyed if there are active
5669 		 * references.  If we are resetting a pool, allow references by
5670 		 * fault injection handlers.
5671 		 */
5672 		if (!spa_refcount_zero(spa) ||
5673 		    (spa->spa_inject_ref != 0 &&
5674 		    new_state != POOL_STATE_UNINITIALIZED)) {
5675 			spa_async_resume(spa);
5676 			mutex_exit(&spa_namespace_lock);
5677 			return (SET_ERROR(EBUSY));
5678 		}
5679 
5680 		/*
5681 		 * A pool cannot be exported if it has an active shared spare.
5682 		 * This is to prevent other pools stealing the active spare
5683 		 * from an exported pool. At user's own will, such pool can
5684 		 * be forcedly exported.
5685 		 */
5686 		if (!force && new_state == POOL_STATE_EXPORTED &&
5687 		    spa_has_active_shared_spare(spa)) {
5688 			spa_async_resume(spa);
5689 			mutex_exit(&spa_namespace_lock);
5690 			return (SET_ERROR(EXDEV));
5691 		}
5692 
5693 		/*
5694 		 * We're about to export or destroy this pool. Make sure
5695 		 * we stop all initializtion activity here before we
5696 		 * set the spa_final_txg. This will ensure that all
5697 		 * dirty data resulting from the initialization is
5698 		 * committed to disk before we unload the pool.
5699 		 */
5700 		if (spa->spa_root_vdev != NULL) {
5701 			vdev_initialize_stop_all(spa->spa_root_vdev,
5702 			    VDEV_INITIALIZE_ACTIVE);
5703 		}
5704 
5705 		/*
5706 		 * We want this to be reflected on every label,
5707 		 * so mark them all dirty.  spa_unload() will do the
5708 		 * final sync that pushes these changes out.
5709 		 */
5710 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5711 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5712 			spa->spa_state = new_state;
5713 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5714 			    TXG_DEFER_SIZE + 1;
5715 			vdev_config_dirty(spa->spa_root_vdev);
5716 			spa_config_exit(spa, SCL_ALL, FTAG);
5717 		}
5718 	}
5719 
5720 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5721 
5722 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5723 		spa_unload(spa);
5724 		spa_deactivate(spa);
5725 	}
5726 
5727 	if (oldconfig && spa->spa_config)
5728 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5729 
5730 	if (new_state != POOL_STATE_UNINITIALIZED) {
5731 		if (!hardforce)
5732 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5733 		spa_remove(spa);
5734 	}
5735 	mutex_exit(&spa_namespace_lock);
5736 
5737 	return (0);
5738 }
5739 
5740 /*
5741  * Destroy a storage pool.
5742  */
5743 int
5744 spa_destroy(char *pool)
5745 {
5746 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5747 	    B_FALSE, B_FALSE));
5748 }
5749 
5750 /*
5751  * Export a storage pool.
5752  */
5753 int
5754 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5755     boolean_t hardforce)
5756 {
5757 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5758 	    force, hardforce));
5759 }
5760 
5761 /*
5762  * Similar to spa_export(), this unloads the spa_t without actually removing it
5763  * from the namespace in any way.
5764  */
5765 int
5766 spa_reset(char *pool)
5767 {
5768 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5769 	    B_FALSE, B_FALSE));
5770 }
5771 
5772 /*
5773  * ==========================================================================
5774  * Device manipulation
5775  * ==========================================================================
5776  */
5777 
5778 /*
5779  * Add a device to a storage pool.
5780  */
5781 int
5782 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5783 {
5784 	uint64_t txg, id;
5785 	int error;
5786 	vdev_t *rvd = spa->spa_root_vdev;
5787 	vdev_t *vd, *tvd;
5788 	nvlist_t **spares, **l2cache;
5789 	uint_t nspares, nl2cache;
5790 
5791 	ASSERT(spa_writeable(spa));
5792 
5793 	txg = spa_vdev_enter(spa);
5794 
5795 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5796 	    VDEV_ALLOC_ADD)) != 0)
5797 		return (spa_vdev_exit(spa, NULL, txg, error));
5798 
5799 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5800 
5801 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5802 	    &nspares) != 0)
5803 		nspares = 0;
5804 
5805 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5806 	    &nl2cache) != 0)
5807 		nl2cache = 0;
5808 
5809 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5810 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5811 
5812 	if (vd->vdev_children != 0 &&
5813 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5814 		return (spa_vdev_exit(spa, vd, txg, error));
5815 
5816 	/*
5817 	 * We must validate the spares and l2cache devices after checking the
5818 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5819 	 */
5820 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5821 		return (spa_vdev_exit(spa, vd, txg, error));
5822 
5823 	/*
5824 	 * If we are in the middle of a device removal, we can only add
5825 	 * devices which match the existing devices in the pool.
5826 	 * If we are in the middle of a removal, or have some indirect
5827 	 * vdevs, we can not add raidz toplevels.
5828 	 */
5829 	if (spa->spa_vdev_removal != NULL ||
5830 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5831 		for (int c = 0; c < vd->vdev_children; c++) {
5832 			tvd = vd->vdev_child[c];
5833 			if (spa->spa_vdev_removal != NULL &&
5834 			    tvd->vdev_ashift != spa->spa_max_ashift) {
5835 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5836 			}
5837 			/* Fail if top level vdev is raidz */
5838 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5839 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5840 			}
5841 			/*
5842 			 * Need the top level mirror to be
5843 			 * a mirror of leaf vdevs only
5844 			 */
5845 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5846 				for (uint64_t cid = 0;
5847 				    cid < tvd->vdev_children; cid++) {
5848 					vdev_t *cvd = tvd->vdev_child[cid];
5849 					if (!cvd->vdev_ops->vdev_op_leaf) {
5850 						return (spa_vdev_exit(spa, vd,
5851 						    txg, EINVAL));
5852 					}
5853 				}
5854 			}
5855 		}
5856 	}
5857 
5858 	for (int c = 0; c < vd->vdev_children; c++) {
5859 
5860 		/*
5861 		 * Set the vdev id to the first hole, if one exists.
5862 		 */
5863 		for (id = 0; id < rvd->vdev_children; id++) {
5864 			if (rvd->vdev_child[id]->vdev_ishole) {
5865 				vdev_free(rvd->vdev_child[id]);
5866 				break;
5867 			}
5868 		}
5869 		tvd = vd->vdev_child[c];
5870 		vdev_remove_child(vd, tvd);
5871 		tvd->vdev_id = id;
5872 		vdev_add_child(rvd, tvd);
5873 		vdev_config_dirty(tvd);
5874 	}
5875 
5876 	if (nspares != 0) {
5877 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5878 		    ZPOOL_CONFIG_SPARES);
5879 		spa_load_spares(spa);
5880 		spa->spa_spares.sav_sync = B_TRUE;
5881 	}
5882 
5883 	if (nl2cache != 0) {
5884 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5885 		    ZPOOL_CONFIG_L2CACHE);
5886 		spa_load_l2cache(spa);
5887 		spa->spa_l2cache.sav_sync = B_TRUE;
5888 	}
5889 
5890 	/*
5891 	 * We have to be careful when adding new vdevs to an existing pool.
5892 	 * If other threads start allocating from these vdevs before we
5893 	 * sync the config cache, and we lose power, then upon reboot we may
5894 	 * fail to open the pool because there are DVAs that the config cache
5895 	 * can't translate.  Therefore, we first add the vdevs without
5896 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5897 	 * and then let spa_config_update() initialize the new metaslabs.
5898 	 *
5899 	 * spa_load() checks for added-but-not-initialized vdevs, so that
5900 	 * if we lose power at any point in this sequence, the remaining
5901 	 * steps will be completed the next time we load the pool.
5902 	 */
5903 	(void) spa_vdev_exit(spa, vd, txg, 0);
5904 
5905 	mutex_enter(&spa_namespace_lock);
5906 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5907 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5908 	mutex_exit(&spa_namespace_lock);
5909 
5910 	return (0);
5911 }
5912 
5913 /*
5914  * Attach a device to a mirror.  The arguments are the path to any device
5915  * in the mirror, and the nvroot for the new device.  If the path specifies
5916  * a device that is not mirrored, we automatically insert the mirror vdev.
5917  *
5918  * If 'replacing' is specified, the new device is intended to replace the
5919  * existing device; in this case the two devices are made into their own
5920  * mirror using the 'replacing' vdev, which is functionally identical to
5921  * the mirror vdev (it actually reuses all the same ops) but has a few
5922  * extra rules: you can't attach to it after it's been created, and upon
5923  * completion of resilvering, the first disk (the one being replaced)
5924  * is automatically detached.
5925  */
5926 int
5927 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5928 {
5929 	uint64_t txg, dtl_max_txg;
5930 	vdev_t *rvd = spa->spa_root_vdev;
5931 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5932 	vdev_ops_t *pvops;
5933 	char *oldvdpath, *newvdpath;
5934 	int newvd_isspare;
5935 	int error;
5936 
5937 	ASSERT(spa_writeable(spa));
5938 
5939 	txg = spa_vdev_enter(spa);
5940 
5941 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5942 
5943 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5944 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5945 		error = (spa_has_checkpoint(spa)) ?
5946 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5947 		return (spa_vdev_exit(spa, NULL, txg, error));
5948 	}
5949 
5950 	if (spa->spa_vdev_removal != NULL)
5951 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5952 
5953 	if (oldvd == NULL)
5954 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5955 
5956 	if (!oldvd->vdev_ops->vdev_op_leaf)
5957 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5958 
5959 	pvd = oldvd->vdev_parent;
5960 
5961 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5962 	    VDEV_ALLOC_ATTACH)) != 0)
5963 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5964 
5965 	if (newrootvd->vdev_children != 1)
5966 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5967 
5968 	newvd = newrootvd->vdev_child[0];
5969 
5970 	if (!newvd->vdev_ops->vdev_op_leaf)
5971 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5972 
5973 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5974 		return (spa_vdev_exit(spa, newrootvd, txg, error));
5975 
5976 	/*
5977 	 * Spares can't replace logs
5978 	 */
5979 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5980 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5981 
5982 	if (!replacing) {
5983 		/*
5984 		 * For attach, the only allowable parent is a mirror or the root
5985 		 * vdev.
5986 		 */
5987 		if (pvd->vdev_ops != &vdev_mirror_ops &&
5988 		    pvd->vdev_ops != &vdev_root_ops)
5989 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5990 
5991 		pvops = &vdev_mirror_ops;
5992 	} else {
5993 		/*
5994 		 * Active hot spares can only be replaced by inactive hot
5995 		 * spares.
5996 		 */
5997 		if (pvd->vdev_ops == &vdev_spare_ops &&
5998 		    oldvd->vdev_isspare &&
5999 		    !spa_has_spare(spa, newvd->vdev_guid))
6000 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6001 
6002 		/*
6003 		 * If the source is a hot spare, and the parent isn't already a
6004 		 * spare, then we want to create a new hot spare.  Otherwise, we
6005 		 * want to create a replacing vdev.  The user is not allowed to
6006 		 * attach to a spared vdev child unless the 'isspare' state is
6007 		 * the same (spare replaces spare, non-spare replaces
6008 		 * non-spare).
6009 		 */
6010 		if (pvd->vdev_ops == &vdev_replacing_ops &&
6011 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6012 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6013 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6014 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6015 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6016 		}
6017 
6018 		if (newvd->vdev_isspare)
6019 			pvops = &vdev_spare_ops;
6020 		else
6021 			pvops = &vdev_replacing_ops;
6022 	}
6023 
6024 	/*
6025 	 * Make sure the new device is big enough.
6026 	 */
6027 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6028 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6029 
6030 	/*
6031 	 * The new device cannot have a higher alignment requirement
6032 	 * than the top-level vdev.
6033 	 */
6034 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6035 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6036 
6037 	/*
6038 	 * If this is an in-place replacement, update oldvd's path and devid
6039 	 * to make it distinguishable from newvd, and unopenable from now on.
6040 	 */
6041 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6042 		spa_strfree(oldvd->vdev_path);
6043 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6044 		    KM_SLEEP);
6045 		(void) sprintf(oldvd->vdev_path, "%s/%s",
6046 		    newvd->vdev_path, "old");
6047 		if (oldvd->vdev_devid != NULL) {
6048 			spa_strfree(oldvd->vdev_devid);
6049 			oldvd->vdev_devid = NULL;
6050 		}
6051 	}
6052 
6053 	/* mark the device being resilvered */
6054 	newvd->vdev_resilver_txg = txg;
6055 
6056 	/*
6057 	 * If the parent is not a mirror, or if we're replacing, insert the new
6058 	 * mirror/replacing/spare vdev above oldvd.
6059 	 */
6060 	if (pvd->vdev_ops != pvops)
6061 		pvd = vdev_add_parent(oldvd, pvops);
6062 
6063 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6064 	ASSERT(pvd->vdev_ops == pvops);
6065 	ASSERT(oldvd->vdev_parent == pvd);
6066 
6067 	/*
6068 	 * Extract the new device from its root and add it to pvd.
6069 	 */
6070 	vdev_remove_child(newrootvd, newvd);
6071 	newvd->vdev_id = pvd->vdev_children;
6072 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6073 	vdev_add_child(pvd, newvd);
6074 
6075 	tvd = newvd->vdev_top;
6076 	ASSERT(pvd->vdev_top == tvd);
6077 	ASSERT(tvd->vdev_parent == rvd);
6078 
6079 	vdev_config_dirty(tvd);
6080 
6081 	/*
6082 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6083 	 * for any dmu_sync-ed blocks.  It will propagate upward when
6084 	 * spa_vdev_exit() calls vdev_dtl_reassess().
6085 	 */
6086 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6087 
6088 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6089 	    dtl_max_txg - TXG_INITIAL);
6090 
6091 	if (newvd->vdev_isspare) {
6092 		spa_spare_activate(newvd);
6093 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6094 	}
6095 
6096 	oldvdpath = spa_strdup(oldvd->vdev_path);
6097 	newvdpath = spa_strdup(newvd->vdev_path);
6098 	newvd_isspare = newvd->vdev_isspare;
6099 
6100 	/*
6101 	 * Mark newvd's DTL dirty in this txg.
6102 	 */
6103 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6104 
6105 	/*
6106 	 * Schedule the resilver to restart in the future. We do this to
6107 	 * ensure that dmu_sync-ed blocks have been stitched into the
6108 	 * respective datasets.
6109 	 */
6110 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6111 
6112 	if (spa->spa_bootfs)
6113 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6114 
6115 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6116 
6117 	/*
6118 	 * Commit the config
6119 	 */
6120 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6121 
6122 	spa_history_log_internal(spa, "vdev attach", NULL,
6123 	    "%s vdev=%s %s vdev=%s",
6124 	    replacing && newvd_isspare ? "spare in" :
6125 	    replacing ? "replace" : "attach", newvdpath,
6126 	    replacing ? "for" : "to", oldvdpath);
6127 
6128 	spa_strfree(oldvdpath);
6129 	spa_strfree(newvdpath);
6130 
6131 	return (0);
6132 }
6133 
6134 /*
6135  * Detach a device from a mirror or replacing vdev.
6136  *
6137  * If 'replace_done' is specified, only detach if the parent
6138  * is a replacing vdev.
6139  */
6140 int
6141 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6142 {
6143 	uint64_t txg;
6144 	int error;
6145 	vdev_t *rvd = spa->spa_root_vdev;
6146 	vdev_t *vd, *pvd, *cvd, *tvd;
6147 	boolean_t unspare = B_FALSE;
6148 	uint64_t unspare_guid = 0;
6149 	char *vdpath;
6150 
6151 	ASSERT(spa_writeable(spa));
6152 
6153 	txg = spa_vdev_enter(spa);
6154 
6155 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6156 
6157 	/*
6158 	 * Besides being called directly from the userland through the
6159 	 * ioctl interface, spa_vdev_detach() can be potentially called
6160 	 * at the end of spa_vdev_resilver_done().
6161 	 *
6162 	 * In the regular case, when we have a checkpoint this shouldn't
6163 	 * happen as we never empty the DTLs of a vdev during the scrub
6164 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6165 	 * should never get here when we have a checkpoint.
6166 	 *
6167 	 * That said, even in a case when we checkpoint the pool exactly
6168 	 * as spa_vdev_resilver_done() calls this function everything
6169 	 * should be fine as the resilver will return right away.
6170 	 */
6171 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6172 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6173 		error = (spa_has_checkpoint(spa)) ?
6174 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6175 		return (spa_vdev_exit(spa, NULL, txg, error));
6176 	}
6177 
6178 	if (vd == NULL)
6179 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6180 
6181 	if (!vd->vdev_ops->vdev_op_leaf)
6182 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6183 
6184 	pvd = vd->vdev_parent;
6185 
6186 	/*
6187 	 * If the parent/child relationship is not as expected, don't do it.
6188 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6189 	 * vdev that's replacing B with C.  The user's intent in replacing
6190 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6191 	 * the replace by detaching C, the expected behavior is to end up
6192 	 * M(A,B).  But suppose that right after deciding to detach C,
6193 	 * the replacement of B completes.  We would have M(A,C), and then
6194 	 * ask to detach C, which would leave us with just A -- not what
6195 	 * the user wanted.  To prevent this, we make sure that the
6196 	 * parent/child relationship hasn't changed -- in this example,
6197 	 * that C's parent is still the replacing vdev R.
6198 	 */
6199 	if (pvd->vdev_guid != pguid && pguid != 0)
6200 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6201 
6202 	/*
6203 	 * Only 'replacing' or 'spare' vdevs can be replaced.
6204 	 */
6205 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6206 	    pvd->vdev_ops != &vdev_spare_ops)
6207 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6208 
6209 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6210 	    spa_version(spa) >= SPA_VERSION_SPARES);
6211 
6212 	/*
6213 	 * Only mirror, replacing, and spare vdevs support detach.
6214 	 */
6215 	if (pvd->vdev_ops != &vdev_replacing_ops &&
6216 	    pvd->vdev_ops != &vdev_mirror_ops &&
6217 	    pvd->vdev_ops != &vdev_spare_ops)
6218 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6219 
6220 	/*
6221 	 * If this device has the only valid copy of some data,
6222 	 * we cannot safely detach it.
6223 	 */
6224 	if (vdev_dtl_required(vd))
6225 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6226 
6227 	ASSERT(pvd->vdev_children >= 2);
6228 
6229 	/*
6230 	 * If we are detaching the second disk from a replacing vdev, then
6231 	 * check to see if we changed the original vdev's path to have "/old"
6232 	 * at the end in spa_vdev_attach().  If so, undo that change now.
6233 	 */
6234 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6235 	    vd->vdev_path != NULL) {
6236 		size_t len = strlen(vd->vdev_path);
6237 
6238 		for (int c = 0; c < pvd->vdev_children; c++) {
6239 			cvd = pvd->vdev_child[c];
6240 
6241 			if (cvd == vd || cvd->vdev_path == NULL)
6242 				continue;
6243 
6244 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6245 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6246 				spa_strfree(cvd->vdev_path);
6247 				cvd->vdev_path = spa_strdup(vd->vdev_path);
6248 				break;
6249 			}
6250 		}
6251 	}
6252 
6253 	/*
6254 	 * If we are detaching the original disk from a spare, then it implies
6255 	 * that the spare should become a real disk, and be removed from the
6256 	 * active spare list for the pool.
6257 	 */
6258 	if (pvd->vdev_ops == &vdev_spare_ops &&
6259 	    vd->vdev_id == 0 &&
6260 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6261 		unspare = B_TRUE;
6262 
6263 	/*
6264 	 * Erase the disk labels so the disk can be used for other things.
6265 	 * This must be done after all other error cases are handled,
6266 	 * but before we disembowel vd (so we can still do I/O to it).
6267 	 * But if we can't do it, don't treat the error as fatal --
6268 	 * it may be that the unwritability of the disk is the reason
6269 	 * it's being detached!
6270 	 */
6271 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6272 
6273 	/*
6274 	 * Remove vd from its parent and compact the parent's children.
6275 	 */
6276 	vdev_remove_child(pvd, vd);
6277 	vdev_compact_children(pvd);
6278 
6279 	/*
6280 	 * Remember one of the remaining children so we can get tvd below.
6281 	 */
6282 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6283 
6284 	/*
6285 	 * If we need to remove the remaining child from the list of hot spares,
6286 	 * do it now, marking the vdev as no longer a spare in the process.
6287 	 * We must do this before vdev_remove_parent(), because that can
6288 	 * change the GUID if it creates a new toplevel GUID.  For a similar
6289 	 * reason, we must remove the spare now, in the same txg as the detach;
6290 	 * otherwise someone could attach a new sibling, change the GUID, and
6291 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6292 	 */
6293 	if (unspare) {
6294 		ASSERT(cvd->vdev_isspare);
6295 		spa_spare_remove(cvd);
6296 		unspare_guid = cvd->vdev_guid;
6297 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6298 		cvd->vdev_unspare = B_TRUE;
6299 	}
6300 
6301 	/*
6302 	 * If the parent mirror/replacing vdev only has one child,
6303 	 * the parent is no longer needed.  Remove it from the tree.
6304 	 */
6305 	if (pvd->vdev_children == 1) {
6306 		if (pvd->vdev_ops == &vdev_spare_ops)
6307 			cvd->vdev_unspare = B_FALSE;
6308 		vdev_remove_parent(cvd);
6309 	}
6310 
6311 
6312 	/*
6313 	 * We don't set tvd until now because the parent we just removed
6314 	 * may have been the previous top-level vdev.
6315 	 */
6316 	tvd = cvd->vdev_top;
6317 	ASSERT(tvd->vdev_parent == rvd);
6318 
6319 	/*
6320 	 * Reevaluate the parent vdev state.
6321 	 */
6322 	vdev_propagate_state(cvd);
6323 
6324 	/*
6325 	 * If the 'autoexpand' property is set on the pool then automatically
6326 	 * try to expand the size of the pool. For example if the device we
6327 	 * just detached was smaller than the others, it may be possible to
6328 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6329 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6330 	 */
6331 	if (spa->spa_autoexpand) {
6332 		vdev_reopen(tvd);
6333 		vdev_expand(tvd, txg);
6334 	}
6335 
6336 	vdev_config_dirty(tvd);
6337 
6338 	/*
6339 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6340 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6341 	 * But first make sure we're not on any *other* txg's DTL list, to
6342 	 * prevent vd from being accessed after it's freed.
6343 	 */
6344 	vdpath = spa_strdup(vd->vdev_path);
6345 	for (int t = 0; t < TXG_SIZE; t++)
6346 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6347 	vd->vdev_detached = B_TRUE;
6348 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6349 
6350 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6351 
6352 	/* hang on to the spa before we release the lock */
6353 	spa_open_ref(spa, FTAG);
6354 
6355 	error = spa_vdev_exit(spa, vd, txg, 0);
6356 
6357 	spa_history_log_internal(spa, "detach", NULL,
6358 	    "vdev=%s", vdpath);
6359 	spa_strfree(vdpath);
6360 
6361 	/*
6362 	 * If this was the removal of the original device in a hot spare vdev,
6363 	 * then we want to go through and remove the device from the hot spare
6364 	 * list of every other pool.
6365 	 */
6366 	if (unspare) {
6367 		spa_t *altspa = NULL;
6368 
6369 		mutex_enter(&spa_namespace_lock);
6370 		while ((altspa = spa_next(altspa)) != NULL) {
6371 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6372 			    altspa == spa)
6373 				continue;
6374 
6375 			spa_open_ref(altspa, FTAG);
6376 			mutex_exit(&spa_namespace_lock);
6377 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6378 			mutex_enter(&spa_namespace_lock);
6379 			spa_close(altspa, FTAG);
6380 		}
6381 		mutex_exit(&spa_namespace_lock);
6382 
6383 		/* search the rest of the vdevs for spares to remove */
6384 		spa_vdev_resilver_done(spa);
6385 	}
6386 
6387 	/* all done with the spa; OK to release */
6388 	mutex_enter(&spa_namespace_lock);
6389 	spa_close(spa, FTAG);
6390 	mutex_exit(&spa_namespace_lock);
6391 
6392 	return (error);
6393 }
6394 
6395 int
6396 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6397 {
6398 	/*
6399 	 * We hold the namespace lock through the whole function
6400 	 * to prevent any changes to the pool while we're starting or
6401 	 * stopping initialization. The config and state locks are held so that
6402 	 * we can properly assess the vdev state before we commit to
6403 	 * the initializing operation.
6404 	 */
6405 	mutex_enter(&spa_namespace_lock);
6406 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6407 
6408 	/* Look up vdev and ensure it's a leaf. */
6409 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6410 	if (vd == NULL || vd->vdev_detached) {
6411 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6412 		mutex_exit(&spa_namespace_lock);
6413 		return (SET_ERROR(ENODEV));
6414 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6415 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6416 		mutex_exit(&spa_namespace_lock);
6417 		return (SET_ERROR(EINVAL));
6418 	} else if (!vdev_writeable(vd)) {
6419 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6420 		mutex_exit(&spa_namespace_lock);
6421 		return (SET_ERROR(EROFS));
6422 	}
6423 	mutex_enter(&vd->vdev_initialize_lock);
6424 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6425 
6426 	/*
6427 	 * When we activate an initialize action we check to see
6428 	 * if the vdev_initialize_thread is NULL. We do this instead
6429 	 * of using the vdev_initialize_state since there might be
6430 	 * a previous initialization process which has completed but
6431 	 * the thread is not exited.
6432 	 */
6433 	if (cmd_type == POOL_INITIALIZE_DO &&
6434 	    (vd->vdev_initialize_thread != NULL ||
6435 	    vd->vdev_top->vdev_removing)) {
6436 		mutex_exit(&vd->vdev_initialize_lock);
6437 		mutex_exit(&spa_namespace_lock);
6438 		return (SET_ERROR(EBUSY));
6439 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6440 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6441 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6442 		mutex_exit(&vd->vdev_initialize_lock);
6443 		mutex_exit(&spa_namespace_lock);
6444 		return (SET_ERROR(ESRCH));
6445 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6446 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6447 		mutex_exit(&vd->vdev_initialize_lock);
6448 		mutex_exit(&spa_namespace_lock);
6449 		return (SET_ERROR(ESRCH));
6450 	}
6451 
6452 	switch (cmd_type) {
6453 	case POOL_INITIALIZE_DO:
6454 		vdev_initialize(vd);
6455 		break;
6456 	case POOL_INITIALIZE_CANCEL:
6457 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6458 		break;
6459 	case POOL_INITIALIZE_SUSPEND:
6460 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6461 		break;
6462 	default:
6463 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6464 	}
6465 	mutex_exit(&vd->vdev_initialize_lock);
6466 
6467 	/* Sync out the initializing state */
6468 	txg_wait_synced(spa->spa_dsl_pool, 0);
6469 	mutex_exit(&spa_namespace_lock);
6470 
6471 	return (0);
6472 }
6473 
6474 
6475 /*
6476  * Split a set of devices from their mirrors, and create a new pool from them.
6477  */
6478 int
6479 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6480     nvlist_t *props, boolean_t exp)
6481 {
6482 	int error = 0;
6483 	uint64_t txg, *glist;
6484 	spa_t *newspa;
6485 	uint_t c, children, lastlog;
6486 	nvlist_t **child, *nvl, *tmp;
6487 	dmu_tx_t *tx;
6488 	char *altroot = NULL;
6489 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6490 	boolean_t activate_slog;
6491 
6492 	ASSERT(spa_writeable(spa));
6493 
6494 	txg = spa_vdev_enter(spa);
6495 
6496 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6497 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6498 		error = (spa_has_checkpoint(spa)) ?
6499 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6500 		return (spa_vdev_exit(spa, NULL, txg, error));
6501 	}
6502 
6503 	/* clear the log and flush everything up to now */
6504 	activate_slog = spa_passivate_log(spa);
6505 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6506 	error = spa_reset_logs(spa);
6507 	txg = spa_vdev_config_enter(spa);
6508 
6509 	if (activate_slog)
6510 		spa_activate_log(spa);
6511 
6512 	if (error != 0)
6513 		return (spa_vdev_exit(spa, NULL, txg, error));
6514 
6515 	/* check new spa name before going any further */
6516 	if (spa_lookup(newname) != NULL)
6517 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6518 
6519 	/*
6520 	 * scan through all the children to ensure they're all mirrors
6521 	 */
6522 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6523 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6524 	    &children) != 0)
6525 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6526 
6527 	/* first, check to ensure we've got the right child count */
6528 	rvd = spa->spa_root_vdev;
6529 	lastlog = 0;
6530 	for (c = 0; c < rvd->vdev_children; c++) {
6531 		vdev_t *vd = rvd->vdev_child[c];
6532 
6533 		/* don't count the holes & logs as children */
6534 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6535 			if (lastlog == 0)
6536 				lastlog = c;
6537 			continue;
6538 		}
6539 
6540 		lastlog = 0;
6541 	}
6542 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6543 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6544 
6545 	/* next, ensure no spare or cache devices are part of the split */
6546 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6547 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6548 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6549 
6550 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6551 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6552 
6553 	/* then, loop over each vdev and validate it */
6554 	for (c = 0; c < children; c++) {
6555 		uint64_t is_hole = 0;
6556 
6557 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6558 		    &is_hole);
6559 
6560 		if (is_hole != 0) {
6561 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6562 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6563 				continue;
6564 			} else {
6565 				error = SET_ERROR(EINVAL);
6566 				break;
6567 			}
6568 		}
6569 
6570 		/* which disk is going to be split? */
6571 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6572 		    &glist[c]) != 0) {
6573 			error = SET_ERROR(EINVAL);
6574 			break;
6575 		}
6576 
6577 		/* look it up in the spa */
6578 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6579 		if (vml[c] == NULL) {
6580 			error = SET_ERROR(ENODEV);
6581 			break;
6582 		}
6583 
6584 		/* make sure there's nothing stopping the split */
6585 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6586 		    vml[c]->vdev_islog ||
6587 		    !vdev_is_concrete(vml[c]) ||
6588 		    vml[c]->vdev_isspare ||
6589 		    vml[c]->vdev_isl2cache ||
6590 		    !vdev_writeable(vml[c]) ||
6591 		    vml[c]->vdev_children != 0 ||
6592 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6593 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6594 			error = SET_ERROR(EINVAL);
6595 			break;
6596 		}
6597 
6598 		if (vdev_dtl_required(vml[c])) {
6599 			error = SET_ERROR(EBUSY);
6600 			break;
6601 		}
6602 
6603 		/* we need certain info from the top level */
6604 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6605 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6606 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6607 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6608 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6609 		    vml[c]->vdev_top->vdev_asize) == 0);
6610 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6611 		    vml[c]->vdev_top->vdev_ashift) == 0);
6612 
6613 		/* transfer per-vdev ZAPs */
6614 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6615 		VERIFY0(nvlist_add_uint64(child[c],
6616 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6617 
6618 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6619 		VERIFY0(nvlist_add_uint64(child[c],
6620 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6621 		    vml[c]->vdev_parent->vdev_top_zap));
6622 	}
6623 
6624 	if (error != 0) {
6625 		kmem_free(vml, children * sizeof (vdev_t *));
6626 		kmem_free(glist, children * sizeof (uint64_t));
6627 		return (spa_vdev_exit(spa, NULL, txg, error));
6628 	}
6629 
6630 	/* stop writers from using the disks */
6631 	for (c = 0; c < children; c++) {
6632 		if (vml[c] != NULL)
6633 			vml[c]->vdev_offline = B_TRUE;
6634 	}
6635 	vdev_reopen(spa->spa_root_vdev);
6636 
6637 	/*
6638 	 * Temporarily record the splitting vdevs in the spa config.  This
6639 	 * will disappear once the config is regenerated.
6640 	 */
6641 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6642 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6643 	    glist, children) == 0);
6644 	kmem_free(glist, children * sizeof (uint64_t));
6645 
6646 	mutex_enter(&spa->spa_props_lock);
6647 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6648 	    nvl) == 0);
6649 	mutex_exit(&spa->spa_props_lock);
6650 	spa->spa_config_splitting = nvl;
6651 	vdev_config_dirty(spa->spa_root_vdev);
6652 
6653 	/* configure and create the new pool */
6654 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6655 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6656 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6657 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6658 	    spa_version(spa)) == 0);
6659 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6660 	    spa->spa_config_txg) == 0);
6661 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6662 	    spa_generate_guid(NULL)) == 0);
6663 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6664 	(void) nvlist_lookup_string(props,
6665 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6666 
6667 	/* add the new pool to the namespace */
6668 	newspa = spa_add(newname, config, altroot);
6669 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6670 	newspa->spa_config_txg = spa->spa_config_txg;
6671 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6672 
6673 	/* release the spa config lock, retaining the namespace lock */
6674 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6675 
6676 	if (zio_injection_enabled)
6677 		zio_handle_panic_injection(spa, FTAG, 1);
6678 
6679 	spa_activate(newspa, spa_mode_global);
6680 	spa_async_suspend(newspa);
6681 
6682 	for (c = 0; c < children; c++) {
6683 		if (vml[c] != NULL) {
6684 			/*
6685 			 * Temporarily stop the initializing activity. We set
6686 			 * the state to ACTIVE so that we know to resume
6687 			 * the initializing once the split has completed.
6688 			 */
6689 			mutex_enter(&vml[c]->vdev_initialize_lock);
6690 			vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6691 			mutex_exit(&vml[c]->vdev_initialize_lock);
6692 		}
6693 	}
6694 
6695 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6696 
6697 	/* create the new pool from the disks of the original pool */
6698 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6699 	if (error)
6700 		goto out;
6701 
6702 	/* if that worked, generate a real config for the new pool */
6703 	if (newspa->spa_root_vdev != NULL) {
6704 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6705 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6706 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6707 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6708 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6709 		    B_TRUE));
6710 	}
6711 
6712 	/* set the props */
6713 	if (props != NULL) {
6714 		spa_configfile_set(newspa, props, B_FALSE);
6715 		error = spa_prop_set(newspa, props);
6716 		if (error)
6717 			goto out;
6718 	}
6719 
6720 	/* flush everything */
6721 	txg = spa_vdev_config_enter(newspa);
6722 	vdev_config_dirty(newspa->spa_root_vdev);
6723 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6724 
6725 	if (zio_injection_enabled)
6726 		zio_handle_panic_injection(spa, FTAG, 2);
6727 
6728 	spa_async_resume(newspa);
6729 
6730 	/* finally, update the original pool's config */
6731 	txg = spa_vdev_config_enter(spa);
6732 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6733 	error = dmu_tx_assign(tx, TXG_WAIT);
6734 	if (error != 0)
6735 		dmu_tx_abort(tx);
6736 	for (c = 0; c < children; c++) {
6737 		if (vml[c] != NULL) {
6738 			vdev_split(vml[c]);
6739 			if (error == 0)
6740 				spa_history_log_internal(spa, "detach", tx,
6741 				    "vdev=%s", vml[c]->vdev_path);
6742 
6743 			vdev_free(vml[c]);
6744 		}
6745 	}
6746 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6747 	vdev_config_dirty(spa->spa_root_vdev);
6748 	spa->spa_config_splitting = NULL;
6749 	nvlist_free(nvl);
6750 	if (error == 0)
6751 		dmu_tx_commit(tx);
6752 	(void) spa_vdev_exit(spa, NULL, txg, 0);
6753 
6754 	if (zio_injection_enabled)
6755 		zio_handle_panic_injection(spa, FTAG, 3);
6756 
6757 	/* split is complete; log a history record */
6758 	spa_history_log_internal(newspa, "split", NULL,
6759 	    "from pool %s", spa_name(spa));
6760 
6761 	kmem_free(vml, children * sizeof (vdev_t *));
6762 
6763 	/* if we're not going to mount the filesystems in userland, export */
6764 	if (exp)
6765 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6766 		    B_FALSE, B_FALSE);
6767 
6768 	return (error);
6769 
6770 out:
6771 	spa_unload(newspa);
6772 	spa_deactivate(newspa);
6773 	spa_remove(newspa);
6774 
6775 	txg = spa_vdev_config_enter(spa);
6776 
6777 	/* re-online all offlined disks */
6778 	for (c = 0; c < children; c++) {
6779 		if (vml[c] != NULL)
6780 			vml[c]->vdev_offline = B_FALSE;
6781 	}
6782 
6783 	/* restart initializing disks as necessary */
6784 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6785 
6786 	vdev_reopen(spa->spa_root_vdev);
6787 
6788 	nvlist_free(spa->spa_config_splitting);
6789 	spa->spa_config_splitting = NULL;
6790 	(void) spa_vdev_exit(spa, NULL, txg, error);
6791 
6792 	kmem_free(vml, children * sizeof (vdev_t *));
6793 	return (error);
6794 }
6795 
6796 /*
6797  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6798  * currently spared, so we can detach it.
6799  */
6800 static vdev_t *
6801 spa_vdev_resilver_done_hunt(vdev_t *vd)
6802 {
6803 	vdev_t *newvd, *oldvd;
6804 
6805 	for (int c = 0; c < vd->vdev_children; c++) {
6806 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6807 		if (oldvd != NULL)
6808 			return (oldvd);
6809 	}
6810 
6811 	/*
6812 	 * Check for a completed replacement.  We always consider the first
6813 	 * vdev in the list to be the oldest vdev, and the last one to be
6814 	 * the newest (see spa_vdev_attach() for how that works).  In
6815 	 * the case where the newest vdev is faulted, we will not automatically
6816 	 * remove it after a resilver completes.  This is OK as it will require
6817 	 * user intervention to determine which disk the admin wishes to keep.
6818 	 */
6819 	if (vd->vdev_ops == &vdev_replacing_ops) {
6820 		ASSERT(vd->vdev_children > 1);
6821 
6822 		newvd = vd->vdev_child[vd->vdev_children - 1];
6823 		oldvd = vd->vdev_child[0];
6824 
6825 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6826 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6827 		    !vdev_dtl_required(oldvd))
6828 			return (oldvd);
6829 	}
6830 
6831 	/*
6832 	 * Check for a completed resilver with the 'unspare' flag set.
6833 	 * Also potentially update faulted state.
6834 	 */
6835 	if (vd->vdev_ops == &vdev_spare_ops) {
6836 		vdev_t *first = vd->vdev_child[0];
6837 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6838 
6839 		if (last->vdev_unspare) {
6840 			oldvd = first;
6841 			newvd = last;
6842 		} else if (first->vdev_unspare) {
6843 			oldvd = last;
6844 			newvd = first;
6845 		} else {
6846 			oldvd = NULL;
6847 		}
6848 
6849 		if (oldvd != NULL &&
6850 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6851 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6852 		    !vdev_dtl_required(oldvd))
6853 			return (oldvd);
6854 
6855 		vdev_propagate_state(vd);
6856 
6857 		/*
6858 		 * If there are more than two spares attached to a disk,
6859 		 * and those spares are not required, then we want to
6860 		 * attempt to free them up now so that they can be used
6861 		 * by other pools.  Once we're back down to a single
6862 		 * disk+spare, we stop removing them.
6863 		 */
6864 		if (vd->vdev_children > 2) {
6865 			newvd = vd->vdev_child[1];
6866 
6867 			if (newvd->vdev_isspare && last->vdev_isspare &&
6868 			    vdev_dtl_empty(last, DTL_MISSING) &&
6869 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6870 			    !vdev_dtl_required(newvd))
6871 				return (newvd);
6872 		}
6873 	}
6874 
6875 	return (NULL);
6876 }
6877 
6878 static void
6879 spa_vdev_resilver_done(spa_t *spa)
6880 {
6881 	vdev_t *vd, *pvd, *ppvd;
6882 	uint64_t guid, sguid, pguid, ppguid;
6883 
6884 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6885 
6886 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6887 		pvd = vd->vdev_parent;
6888 		ppvd = pvd->vdev_parent;
6889 		guid = vd->vdev_guid;
6890 		pguid = pvd->vdev_guid;
6891 		ppguid = ppvd->vdev_guid;
6892 		sguid = 0;
6893 		/*
6894 		 * If we have just finished replacing a hot spared device, then
6895 		 * we need to detach the parent's first child (the original hot
6896 		 * spare) as well.
6897 		 */
6898 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6899 		    ppvd->vdev_children == 2) {
6900 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6901 			sguid = ppvd->vdev_child[1]->vdev_guid;
6902 		}
6903 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6904 
6905 		spa_config_exit(spa, SCL_ALL, FTAG);
6906 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6907 			return;
6908 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6909 			return;
6910 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6911 	}
6912 
6913 	spa_config_exit(spa, SCL_ALL, FTAG);
6914 }
6915 
6916 /*
6917  * Update the stored path or FRU for this vdev.
6918  */
6919 int
6920 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6921     boolean_t ispath)
6922 {
6923 	vdev_t *vd;
6924 	boolean_t sync = B_FALSE;
6925 
6926 	ASSERT(spa_writeable(spa));
6927 
6928 	spa_vdev_state_enter(spa, SCL_ALL);
6929 
6930 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6931 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6932 
6933 	if (!vd->vdev_ops->vdev_op_leaf)
6934 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6935 
6936 	if (ispath) {
6937 		if (strcmp(value, vd->vdev_path) != 0) {
6938 			spa_strfree(vd->vdev_path);
6939 			vd->vdev_path = spa_strdup(value);
6940 			sync = B_TRUE;
6941 		}
6942 	} else {
6943 		if (vd->vdev_fru == NULL) {
6944 			vd->vdev_fru = spa_strdup(value);
6945 			sync = B_TRUE;
6946 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6947 			spa_strfree(vd->vdev_fru);
6948 			vd->vdev_fru = spa_strdup(value);
6949 			sync = B_TRUE;
6950 		}
6951 	}
6952 
6953 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6954 }
6955 
6956 int
6957 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6958 {
6959 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6960 }
6961 
6962 int
6963 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6964 {
6965 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6966 }
6967 
6968 /*
6969  * ==========================================================================
6970  * SPA Scanning
6971  * ==========================================================================
6972  */
6973 int
6974 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6975 {
6976 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6977 
6978 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6979 		return (SET_ERROR(EBUSY));
6980 
6981 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6982 }
6983 
6984 int
6985 spa_scan_stop(spa_t *spa)
6986 {
6987 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6988 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6989 		return (SET_ERROR(EBUSY));
6990 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6991 }
6992 
6993 int
6994 spa_scan(spa_t *spa, pool_scan_func_t func)
6995 {
6996 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6997 
6998 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6999 		return (SET_ERROR(ENOTSUP));
7000 
7001 	/*
7002 	 * If a resilver was requested, but there is no DTL on a
7003 	 * writeable leaf device, we have nothing to do.
7004 	 */
7005 	if (func == POOL_SCAN_RESILVER &&
7006 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7007 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7008 		return (0);
7009 	}
7010 
7011 	return (dsl_scan(spa->spa_dsl_pool, func));
7012 }
7013 
7014 /*
7015  * ==========================================================================
7016  * SPA async task processing
7017  * ==========================================================================
7018  */
7019 
7020 static void
7021 spa_async_remove(spa_t *spa, vdev_t *vd)
7022 {
7023 	if (vd->vdev_remove_wanted) {
7024 		vd->vdev_remove_wanted = B_FALSE;
7025 		vd->vdev_delayed_close = B_FALSE;
7026 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7027 
7028 		/*
7029 		 * We want to clear the stats, but we don't want to do a full
7030 		 * vdev_clear() as that will cause us to throw away
7031 		 * degraded/faulted state as well as attempt to reopen the
7032 		 * device, all of which is a waste.
7033 		 */
7034 		vd->vdev_stat.vs_read_errors = 0;
7035 		vd->vdev_stat.vs_write_errors = 0;
7036 		vd->vdev_stat.vs_checksum_errors = 0;
7037 
7038 		vdev_state_dirty(vd->vdev_top);
7039 	}
7040 
7041 	for (int c = 0; c < vd->vdev_children; c++)
7042 		spa_async_remove(spa, vd->vdev_child[c]);
7043 }
7044 
7045 static void
7046 spa_async_probe(spa_t *spa, vdev_t *vd)
7047 {
7048 	if (vd->vdev_probe_wanted) {
7049 		vd->vdev_probe_wanted = B_FALSE;
7050 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7051 	}
7052 
7053 	for (int c = 0; c < vd->vdev_children; c++)
7054 		spa_async_probe(spa, vd->vdev_child[c]);
7055 }
7056 
7057 static void
7058 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7059 {
7060 	sysevent_id_t eid;
7061 	nvlist_t *attr;
7062 	char *physpath;
7063 
7064 	if (!spa->spa_autoexpand)
7065 		return;
7066 
7067 	for (int c = 0; c < vd->vdev_children; c++) {
7068 		vdev_t *cvd = vd->vdev_child[c];
7069 		spa_async_autoexpand(spa, cvd);
7070 	}
7071 
7072 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7073 		return;
7074 
7075 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7076 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7077 
7078 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7079 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7080 
7081 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7082 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
7083 
7084 	nvlist_free(attr);
7085 	kmem_free(physpath, MAXPATHLEN);
7086 }
7087 
7088 static void
7089 spa_async_thread(void *arg)
7090 {
7091 	spa_t *spa = (spa_t *)arg;
7092 	int tasks;
7093 
7094 	ASSERT(spa->spa_sync_on);
7095 
7096 	mutex_enter(&spa->spa_async_lock);
7097 	tasks = spa->spa_async_tasks;
7098 	spa->spa_async_tasks = 0;
7099 	mutex_exit(&spa->spa_async_lock);
7100 
7101 	/*
7102 	 * See if the config needs to be updated.
7103 	 */
7104 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7105 		uint64_t old_space, new_space;
7106 
7107 		mutex_enter(&spa_namespace_lock);
7108 		old_space = metaslab_class_get_space(spa_normal_class(spa));
7109 		old_space += metaslab_class_get_space(spa_special_class(spa));
7110 		old_space += metaslab_class_get_space(spa_dedup_class(spa));
7111 
7112 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7113 
7114 		new_space = metaslab_class_get_space(spa_normal_class(spa));
7115 		new_space += metaslab_class_get_space(spa_special_class(spa));
7116 		new_space += metaslab_class_get_space(spa_dedup_class(spa));
7117 		mutex_exit(&spa_namespace_lock);
7118 
7119 		/*
7120 		 * If the pool grew as a result of the config update,
7121 		 * then log an internal history event.
7122 		 */
7123 		if (new_space != old_space) {
7124 			spa_history_log_internal(spa, "vdev online", NULL,
7125 			    "pool '%s' size: %llu(+%llu)",
7126 			    spa_name(spa), new_space, new_space - old_space);
7127 		}
7128 	}
7129 
7130 	/*
7131 	 * See if any devices need to be marked REMOVED.
7132 	 */
7133 	if (tasks & SPA_ASYNC_REMOVE) {
7134 		spa_vdev_state_enter(spa, SCL_NONE);
7135 		spa_async_remove(spa, spa->spa_root_vdev);
7136 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7137 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7138 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7139 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7140 		(void) spa_vdev_state_exit(spa, NULL, 0);
7141 	}
7142 
7143 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7144 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7145 		spa_async_autoexpand(spa, spa->spa_root_vdev);
7146 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7147 	}
7148 
7149 	/*
7150 	 * See if any devices need to be probed.
7151 	 */
7152 	if (tasks & SPA_ASYNC_PROBE) {
7153 		spa_vdev_state_enter(spa, SCL_NONE);
7154 		spa_async_probe(spa, spa->spa_root_vdev);
7155 		(void) spa_vdev_state_exit(spa, NULL, 0);
7156 	}
7157 
7158 	/*
7159 	 * If any devices are done replacing, detach them.
7160 	 */
7161 	if (tasks & SPA_ASYNC_RESILVER_DONE)
7162 		spa_vdev_resilver_done(spa);
7163 
7164 	/*
7165 	 * Kick off a resilver.
7166 	 */
7167 	if (tasks & SPA_ASYNC_RESILVER)
7168 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
7169 
7170 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7171 		mutex_enter(&spa_namespace_lock);
7172 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7173 		vdev_initialize_restart(spa->spa_root_vdev);
7174 		spa_config_exit(spa, SCL_CONFIG, FTAG);
7175 		mutex_exit(&spa_namespace_lock);
7176 	}
7177 
7178 	/*
7179 	 * Let the world know that we're done.
7180 	 */
7181 	mutex_enter(&spa->spa_async_lock);
7182 	spa->spa_async_thread = NULL;
7183 	cv_broadcast(&spa->spa_async_cv);
7184 	mutex_exit(&spa->spa_async_lock);
7185 	thread_exit();
7186 }
7187 
7188 void
7189 spa_async_suspend(spa_t *spa)
7190 {
7191 	mutex_enter(&spa->spa_async_lock);
7192 	spa->spa_async_suspended++;
7193 	while (spa->spa_async_thread != NULL)
7194 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7195 	mutex_exit(&spa->spa_async_lock);
7196 
7197 	spa_vdev_remove_suspend(spa);
7198 
7199 	zthr_t *condense_thread = spa->spa_condense_zthr;
7200 	if (condense_thread != NULL && zthr_isrunning(condense_thread))
7201 		VERIFY0(zthr_cancel(condense_thread));
7202 
7203 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7204 	if (discard_thread != NULL && zthr_isrunning(discard_thread))
7205 		VERIFY0(zthr_cancel(discard_thread));
7206 }
7207 
7208 void
7209 spa_async_resume(spa_t *spa)
7210 {
7211 	mutex_enter(&spa->spa_async_lock);
7212 	ASSERT(spa->spa_async_suspended != 0);
7213 	spa->spa_async_suspended--;
7214 	mutex_exit(&spa->spa_async_lock);
7215 	spa_restart_removal(spa);
7216 
7217 	zthr_t *condense_thread = spa->spa_condense_zthr;
7218 	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
7219 		zthr_resume(condense_thread);
7220 
7221 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7222 	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
7223 		zthr_resume(discard_thread);
7224 }
7225 
7226 static boolean_t
7227 spa_async_tasks_pending(spa_t *spa)
7228 {
7229 	uint_t non_config_tasks;
7230 	uint_t config_task;
7231 	boolean_t config_task_suspended;
7232 
7233 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7234 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7235 	if (spa->spa_ccw_fail_time == 0) {
7236 		config_task_suspended = B_FALSE;
7237 	} else {
7238 		config_task_suspended =
7239 		    (gethrtime() - spa->spa_ccw_fail_time) <
7240 		    (zfs_ccw_retry_interval * NANOSEC);
7241 	}
7242 
7243 	return (non_config_tasks || (config_task && !config_task_suspended));
7244 }
7245 
7246 static void
7247 spa_async_dispatch(spa_t *spa)
7248 {
7249 	mutex_enter(&spa->spa_async_lock);
7250 	if (spa_async_tasks_pending(spa) &&
7251 	    !spa->spa_async_suspended &&
7252 	    spa->spa_async_thread == NULL &&
7253 	    rootdir != NULL)
7254 		spa->spa_async_thread = thread_create(NULL, 0,
7255 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7256 	mutex_exit(&spa->spa_async_lock);
7257 }
7258 
7259 void
7260 spa_async_request(spa_t *spa, int task)
7261 {
7262 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7263 	mutex_enter(&spa->spa_async_lock);
7264 	spa->spa_async_tasks |= task;
7265 	mutex_exit(&spa->spa_async_lock);
7266 }
7267 
7268 /*
7269  * ==========================================================================
7270  * SPA syncing routines
7271  * ==========================================================================
7272  */
7273 
7274 static int
7275 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7276 {
7277 	bpobj_t *bpo = arg;
7278 	bpobj_enqueue(bpo, bp, tx);
7279 	return (0);
7280 }
7281 
7282 static int
7283 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7284 {
7285 	zio_t *zio = arg;
7286 
7287 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7288 	    zio->io_flags));
7289 	return (0);
7290 }
7291 
7292 /*
7293  * Note: this simple function is not inlined to make it easier to dtrace the
7294  * amount of time spent syncing frees.
7295  */
7296 static void
7297 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7298 {
7299 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7300 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7301 	VERIFY(zio_wait(zio) == 0);
7302 }
7303 
7304 /*
7305  * Note: this simple function is not inlined to make it easier to dtrace the
7306  * amount of time spent syncing deferred frees.
7307  */
7308 static void
7309 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7310 {
7311 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7312 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7313 	    spa_free_sync_cb, zio, tx), ==, 0);
7314 	VERIFY0(zio_wait(zio));
7315 }
7316 
7317 
7318 static void
7319 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7320 {
7321 	char *packed = NULL;
7322 	size_t bufsize;
7323 	size_t nvsize = 0;
7324 	dmu_buf_t *db;
7325 
7326 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7327 
7328 	/*
7329 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7330 	 * information.  This avoids the dmu_buf_will_dirty() path and
7331 	 * saves us a pre-read to get data we don't actually care about.
7332 	 */
7333 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7334 	packed = kmem_alloc(bufsize, KM_SLEEP);
7335 
7336 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7337 	    KM_SLEEP) == 0);
7338 	bzero(packed + nvsize, bufsize - nvsize);
7339 
7340 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7341 
7342 	kmem_free(packed, bufsize);
7343 
7344 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7345 	dmu_buf_will_dirty(db, tx);
7346 	*(uint64_t *)db->db_data = nvsize;
7347 	dmu_buf_rele(db, FTAG);
7348 }
7349 
7350 static void
7351 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7352     const char *config, const char *entry)
7353 {
7354 	nvlist_t *nvroot;
7355 	nvlist_t **list;
7356 	int i;
7357 
7358 	if (!sav->sav_sync)
7359 		return;
7360 
7361 	/*
7362 	 * Update the MOS nvlist describing the list of available devices.
7363 	 * spa_validate_aux() will have already made sure this nvlist is
7364 	 * valid and the vdevs are labeled appropriately.
7365 	 */
7366 	if (sav->sav_object == 0) {
7367 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7368 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7369 		    sizeof (uint64_t), tx);
7370 		VERIFY(zap_update(spa->spa_meta_objset,
7371 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7372 		    &sav->sav_object, tx) == 0);
7373 	}
7374 
7375 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7376 	if (sav->sav_count == 0) {
7377 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7378 	} else {
7379 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7380 		for (i = 0; i < sav->sav_count; i++)
7381 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7382 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7383 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7384 		    sav->sav_count) == 0);
7385 		for (i = 0; i < sav->sav_count; i++)
7386 			nvlist_free(list[i]);
7387 		kmem_free(list, sav->sav_count * sizeof (void *));
7388 	}
7389 
7390 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7391 	nvlist_free(nvroot);
7392 
7393 	sav->sav_sync = B_FALSE;
7394 }
7395 
7396 /*
7397  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7398  * The all-vdev ZAP must be empty.
7399  */
7400 static void
7401 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7402 {
7403 	spa_t *spa = vd->vdev_spa;
7404 	if (vd->vdev_top_zap != 0) {
7405 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7406 		    vd->vdev_top_zap, tx));
7407 	}
7408 	if (vd->vdev_leaf_zap != 0) {
7409 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7410 		    vd->vdev_leaf_zap, tx));
7411 	}
7412 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7413 		spa_avz_build(vd->vdev_child[i], avz, tx);
7414 	}
7415 }
7416 
7417 static void
7418 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7419 {
7420 	nvlist_t *config;
7421 
7422 	/*
7423 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7424 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7425 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7426 	 * need to rebuild the AVZ although the config may not be dirty.
7427 	 */
7428 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7429 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7430 		return;
7431 
7432 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7433 
7434 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7435 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7436 	    spa->spa_all_vdev_zaps != 0);
7437 
7438 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7439 		/* Make and build the new AVZ */
7440 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7441 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7442 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7443 
7444 		/* Diff old AVZ with new one */
7445 		zap_cursor_t zc;
7446 		zap_attribute_t za;
7447 
7448 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7449 		    spa->spa_all_vdev_zaps);
7450 		    zap_cursor_retrieve(&zc, &za) == 0;
7451 		    zap_cursor_advance(&zc)) {
7452 			uint64_t vdzap = za.za_first_integer;
7453 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7454 			    vdzap) == ENOENT) {
7455 				/*
7456 				 * ZAP is listed in old AVZ but not in new one;
7457 				 * destroy it
7458 				 */
7459 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7460 				    tx));
7461 			}
7462 		}
7463 
7464 		zap_cursor_fini(&zc);
7465 
7466 		/* Destroy the old AVZ */
7467 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7468 		    spa->spa_all_vdev_zaps, tx));
7469 
7470 		/* Replace the old AVZ in the dir obj with the new one */
7471 		VERIFY0(zap_update(spa->spa_meta_objset,
7472 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7473 		    sizeof (new_avz), 1, &new_avz, tx));
7474 
7475 		spa->spa_all_vdev_zaps = new_avz;
7476 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7477 		zap_cursor_t zc;
7478 		zap_attribute_t za;
7479 
7480 		/* Walk through the AVZ and destroy all listed ZAPs */
7481 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7482 		    spa->spa_all_vdev_zaps);
7483 		    zap_cursor_retrieve(&zc, &za) == 0;
7484 		    zap_cursor_advance(&zc)) {
7485 			uint64_t zap = za.za_first_integer;
7486 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7487 		}
7488 
7489 		zap_cursor_fini(&zc);
7490 
7491 		/* Destroy and unlink the AVZ itself */
7492 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7493 		    spa->spa_all_vdev_zaps, tx));
7494 		VERIFY0(zap_remove(spa->spa_meta_objset,
7495 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7496 		spa->spa_all_vdev_zaps = 0;
7497 	}
7498 
7499 	if (spa->spa_all_vdev_zaps == 0) {
7500 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7501 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7502 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7503 	}
7504 	spa->spa_avz_action = AVZ_ACTION_NONE;
7505 
7506 	/* Create ZAPs for vdevs that don't have them. */
7507 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7508 
7509 	config = spa_config_generate(spa, spa->spa_root_vdev,
7510 	    dmu_tx_get_txg(tx), B_FALSE);
7511 
7512 	/*
7513 	 * If we're upgrading the spa version then make sure that
7514 	 * the config object gets updated with the correct version.
7515 	 */
7516 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7517 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7518 		    spa->spa_uberblock.ub_version);
7519 
7520 	spa_config_exit(spa, SCL_STATE, FTAG);
7521 
7522 	nvlist_free(spa->spa_config_syncing);
7523 	spa->spa_config_syncing = config;
7524 
7525 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7526 }
7527 
7528 static void
7529 spa_sync_version(void *arg, dmu_tx_t *tx)
7530 {
7531 	uint64_t *versionp = arg;
7532 	uint64_t version = *versionp;
7533 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7534 
7535 	/*
7536 	 * Setting the version is special cased when first creating the pool.
7537 	 */
7538 	ASSERT(tx->tx_txg != TXG_INITIAL);
7539 
7540 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7541 	ASSERT(version >= spa_version(spa));
7542 
7543 	spa->spa_uberblock.ub_version = version;
7544 	vdev_config_dirty(spa->spa_root_vdev);
7545 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7546 }
7547 
7548 /*
7549  * Set zpool properties.
7550  */
7551 static void
7552 spa_sync_props(void *arg, dmu_tx_t *tx)
7553 {
7554 	nvlist_t *nvp = arg;
7555 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7556 	objset_t *mos = spa->spa_meta_objset;
7557 	nvpair_t *elem = NULL;
7558 
7559 	mutex_enter(&spa->spa_props_lock);
7560 
7561 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7562 		uint64_t intval;
7563 		char *strval, *fname;
7564 		zpool_prop_t prop;
7565 		const char *propname;
7566 		zprop_type_t proptype;
7567 		spa_feature_t fid;
7568 
7569 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7570 		case ZPOOL_PROP_INVAL:
7571 			/*
7572 			 * We checked this earlier in spa_prop_validate().
7573 			 */
7574 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7575 
7576 			fname = strchr(nvpair_name(elem), '@') + 1;
7577 			VERIFY0(zfeature_lookup_name(fname, &fid));
7578 
7579 			spa_feature_enable(spa, fid, tx);
7580 			spa_history_log_internal(spa, "set", tx,
7581 			    "%s=enabled", nvpair_name(elem));
7582 			break;
7583 
7584 		case ZPOOL_PROP_VERSION:
7585 			intval = fnvpair_value_uint64(elem);
7586 			/*
7587 			 * The version is synced seperatly before other
7588 			 * properties and should be correct by now.
7589 			 */
7590 			ASSERT3U(spa_version(spa), >=, intval);
7591 			break;
7592 
7593 		case ZPOOL_PROP_ALTROOT:
7594 			/*
7595 			 * 'altroot' is a non-persistent property. It should
7596 			 * have been set temporarily at creation or import time.
7597 			 */
7598 			ASSERT(spa->spa_root != NULL);
7599 			break;
7600 
7601 		case ZPOOL_PROP_READONLY:
7602 		case ZPOOL_PROP_CACHEFILE:
7603 			/*
7604 			 * 'readonly' and 'cachefile' are also non-persisitent
7605 			 * properties.
7606 			 */
7607 			break;
7608 		case ZPOOL_PROP_COMMENT:
7609 			strval = fnvpair_value_string(elem);
7610 			if (spa->spa_comment != NULL)
7611 				spa_strfree(spa->spa_comment);
7612 			spa->spa_comment = spa_strdup(strval);
7613 			/*
7614 			 * We need to dirty the configuration on all the vdevs
7615 			 * so that their labels get updated.  It's unnecessary
7616 			 * to do this for pool creation since the vdev's
7617 			 * configuratoin has already been dirtied.
7618 			 */
7619 			if (tx->tx_txg != TXG_INITIAL)
7620 				vdev_config_dirty(spa->spa_root_vdev);
7621 			spa_history_log_internal(spa, "set", tx,
7622 			    "%s=%s", nvpair_name(elem), strval);
7623 			break;
7624 		default:
7625 			/*
7626 			 * Set pool property values in the poolprops mos object.
7627 			 */
7628 			if (spa->spa_pool_props_object == 0) {
7629 				spa->spa_pool_props_object =
7630 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7631 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7632 				    tx);
7633 			}
7634 
7635 			/* normalize the property name */
7636 			propname = zpool_prop_to_name(prop);
7637 			proptype = zpool_prop_get_type(prop);
7638 
7639 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7640 				ASSERT(proptype == PROP_TYPE_STRING);
7641 				strval = fnvpair_value_string(elem);
7642 				VERIFY0(zap_update(mos,
7643 				    spa->spa_pool_props_object, propname,
7644 				    1, strlen(strval) + 1, strval, tx));
7645 				spa_history_log_internal(spa, "set", tx,
7646 				    "%s=%s", nvpair_name(elem), strval);
7647 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7648 				intval = fnvpair_value_uint64(elem);
7649 
7650 				if (proptype == PROP_TYPE_INDEX) {
7651 					const char *unused;
7652 					VERIFY0(zpool_prop_index_to_string(
7653 					    prop, intval, &unused));
7654 				}
7655 				VERIFY0(zap_update(mos,
7656 				    spa->spa_pool_props_object, propname,
7657 				    8, 1, &intval, tx));
7658 				spa_history_log_internal(spa, "set", tx,
7659 				    "%s=%lld", nvpair_name(elem), intval);
7660 			} else {
7661 				ASSERT(0); /* not allowed */
7662 			}
7663 
7664 			switch (prop) {
7665 			case ZPOOL_PROP_DELEGATION:
7666 				spa->spa_delegation = intval;
7667 				break;
7668 			case ZPOOL_PROP_BOOTFS:
7669 				spa->spa_bootfs = intval;
7670 				break;
7671 			case ZPOOL_PROP_FAILUREMODE:
7672 				spa->spa_failmode = intval;
7673 				break;
7674 			case ZPOOL_PROP_AUTOEXPAND:
7675 				spa->spa_autoexpand = intval;
7676 				if (tx->tx_txg != TXG_INITIAL)
7677 					spa_async_request(spa,
7678 					    SPA_ASYNC_AUTOEXPAND);
7679 				break;
7680 			case ZPOOL_PROP_MULTIHOST:
7681 				spa->spa_multihost = intval;
7682 				break;
7683 			case ZPOOL_PROP_DEDUPDITTO:
7684 				spa->spa_dedup_ditto = intval;
7685 				break;
7686 			default:
7687 				break;
7688 			}
7689 		}
7690 
7691 	}
7692 
7693 	mutex_exit(&spa->spa_props_lock);
7694 }
7695 
7696 /*
7697  * Perform one-time upgrade on-disk changes.  spa_version() does not
7698  * reflect the new version this txg, so there must be no changes this
7699  * txg to anything that the upgrade code depends on after it executes.
7700  * Therefore this must be called after dsl_pool_sync() does the sync
7701  * tasks.
7702  */
7703 static void
7704 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7705 {
7706 	dsl_pool_t *dp = spa->spa_dsl_pool;
7707 
7708 	ASSERT(spa->spa_sync_pass == 1);
7709 
7710 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7711 
7712 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7713 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7714 		dsl_pool_create_origin(dp, tx);
7715 
7716 		/* Keeping the origin open increases spa_minref */
7717 		spa->spa_minref += 3;
7718 	}
7719 
7720 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7721 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7722 		dsl_pool_upgrade_clones(dp, tx);
7723 	}
7724 
7725 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7726 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7727 		dsl_pool_upgrade_dir_clones(dp, tx);
7728 
7729 		/* Keeping the freedir open increases spa_minref */
7730 		spa->spa_minref += 3;
7731 	}
7732 
7733 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7734 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7735 		spa_feature_create_zap_objects(spa, tx);
7736 	}
7737 
7738 	/*
7739 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7740 	 * when possibility to use lz4 compression for metadata was added
7741 	 * Old pools that have this feature enabled must be upgraded to have
7742 	 * this feature active
7743 	 */
7744 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7745 		boolean_t lz4_en = spa_feature_is_enabled(spa,
7746 		    SPA_FEATURE_LZ4_COMPRESS);
7747 		boolean_t lz4_ac = spa_feature_is_active(spa,
7748 		    SPA_FEATURE_LZ4_COMPRESS);
7749 
7750 		if (lz4_en && !lz4_ac)
7751 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7752 	}
7753 
7754 	/*
7755 	 * If we haven't written the salt, do so now.  Note that the
7756 	 * feature may not be activated yet, but that's fine since
7757 	 * the presence of this ZAP entry is backwards compatible.
7758 	 */
7759 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7760 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7761 		VERIFY0(zap_add(spa->spa_meta_objset,
7762 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7763 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7764 		    spa->spa_cksum_salt.zcs_bytes, tx));
7765 	}
7766 
7767 	rrw_exit(&dp->dp_config_rwlock, FTAG);
7768 }
7769 
7770 static void
7771 vdev_indirect_state_sync_verify(vdev_t *vd)
7772 {
7773 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7774 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7775 
7776 	if (vd->vdev_ops == &vdev_indirect_ops) {
7777 		ASSERT(vim != NULL);
7778 		ASSERT(vib != NULL);
7779 	}
7780 
7781 	if (vdev_obsolete_sm_object(vd) != 0) {
7782 		ASSERT(vd->vdev_obsolete_sm != NULL);
7783 		ASSERT(vd->vdev_removing ||
7784 		    vd->vdev_ops == &vdev_indirect_ops);
7785 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7786 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7787 
7788 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7789 		    space_map_object(vd->vdev_obsolete_sm));
7790 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7791 		    space_map_allocated(vd->vdev_obsolete_sm));
7792 	}
7793 	ASSERT(vd->vdev_obsolete_segments != NULL);
7794 
7795 	/*
7796 	 * Since frees / remaps to an indirect vdev can only
7797 	 * happen in syncing context, the obsolete segments
7798 	 * tree must be empty when we start syncing.
7799 	 */
7800 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7801 }
7802 
7803 /*
7804  * Sync the specified transaction group.  New blocks may be dirtied as
7805  * part of the process, so we iterate until it converges.
7806  */
7807 void
7808 spa_sync(spa_t *spa, uint64_t txg)
7809 {
7810 	dsl_pool_t *dp = spa->spa_dsl_pool;
7811 	objset_t *mos = spa->spa_meta_objset;
7812 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7813 	metaslab_class_t *normal = spa_normal_class(spa);
7814 	metaslab_class_t *special = spa_special_class(spa);
7815 	metaslab_class_t *dedup = spa_dedup_class(spa);
7816 	vdev_t *rvd = spa->spa_root_vdev;
7817 	vdev_t *vd;
7818 	dmu_tx_t *tx;
7819 	int error;
7820 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7821 	    zfs_vdev_queue_depth_pct / 100;
7822 
7823 	VERIFY(spa_writeable(spa));
7824 
7825 	/*
7826 	 * Wait for i/os issued in open context that need to complete
7827 	 * before this txg syncs.
7828 	 */
7829 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7830 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7831 	    ZIO_FLAG_CANFAIL);
7832 
7833 	/*
7834 	 * Lock out configuration changes.
7835 	 */
7836 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7837 
7838 	spa->spa_syncing_txg = txg;
7839 	spa->spa_sync_pass = 0;
7840 
7841 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7842 		mutex_enter(&spa->spa_alloc_locks[i]);
7843 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7844 		mutex_exit(&spa->spa_alloc_locks[i]);
7845 	}
7846 
7847 	/*
7848 	 * If there are any pending vdev state changes, convert them
7849 	 * into config changes that go out with this transaction group.
7850 	 */
7851 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7852 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7853 		/*
7854 		 * We need the write lock here because, for aux vdevs,
7855 		 * calling vdev_config_dirty() modifies sav_config.
7856 		 * This is ugly and will become unnecessary when we
7857 		 * eliminate the aux vdev wart by integrating all vdevs
7858 		 * into the root vdev tree.
7859 		 */
7860 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7861 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7862 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7863 			vdev_state_clean(vd);
7864 			vdev_config_dirty(vd);
7865 		}
7866 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7867 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7868 	}
7869 	spa_config_exit(spa, SCL_STATE, FTAG);
7870 
7871 	tx = dmu_tx_create_assigned(dp, txg);
7872 
7873 	spa->spa_sync_starttime = gethrtime();
7874 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7875 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7876 
7877 	/*
7878 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7879 	 * set spa_deflate if we have no raid-z vdevs.
7880 	 */
7881 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7882 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7883 		int i;
7884 
7885 		for (i = 0; i < rvd->vdev_children; i++) {
7886 			vd = rvd->vdev_child[i];
7887 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7888 				break;
7889 		}
7890 		if (i == rvd->vdev_children) {
7891 			spa->spa_deflate = TRUE;
7892 			VERIFY(0 == zap_add(spa->spa_meta_objset,
7893 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7894 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7895 		}
7896 	}
7897 
7898 	/*
7899 	 * Set the top-level vdev's max queue depth. Evaluate each
7900 	 * top-level's async write queue depth in case it changed.
7901 	 * The max queue depth will not change in the middle of syncing
7902 	 * out this txg.
7903 	 */
7904 	uint64_t slots_per_allocator = 0;
7905 	for (int c = 0; c < rvd->vdev_children; c++) {
7906 		vdev_t *tvd = rvd->vdev_child[c];
7907 		metaslab_group_t *mg = tvd->vdev_mg;
7908 		metaslab_class_t *mc;
7909 
7910 		if (mg == NULL || !metaslab_group_initialized(mg))
7911 			continue;
7912 
7913 		mc = mg->mg_class;
7914 		if (mc != normal && mc != special && mc != dedup)
7915 			continue;
7916 
7917 		/*
7918 		 * It is safe to do a lock-free check here because only async
7919 		 * allocations look at mg_max_alloc_queue_depth, and async
7920 		 * allocations all happen from spa_sync().
7921 		 */
7922 		for (int i = 0; i < spa->spa_alloc_count; i++)
7923 			ASSERT0(zfs_refcount_count(
7924 			    &(mg->mg_alloc_queue_depth[i])));
7925 		mg->mg_max_alloc_queue_depth = max_queue_depth;
7926 
7927 		for (int i = 0; i < spa->spa_alloc_count; i++) {
7928 			mg->mg_cur_max_alloc_queue_depth[i] =
7929 			    zfs_vdev_def_queue_depth;
7930 		}
7931 		slots_per_allocator += zfs_vdev_def_queue_depth;
7932 	}
7933 
7934 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7935 		ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
7936 		ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
7937 		ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
7938 		normal->mc_alloc_max_slots[i] = slots_per_allocator;
7939 		special->mc_alloc_max_slots[i] = slots_per_allocator;
7940 		dedup->mc_alloc_max_slots[i] = slots_per_allocator;
7941 	}
7942 	normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7943 	special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7944 	dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7945 
7946 	for (int c = 0; c < rvd->vdev_children; c++) {
7947 		vdev_t *vd = rvd->vdev_child[c];
7948 		vdev_indirect_state_sync_verify(vd);
7949 
7950 		if (vdev_indirect_should_condense(vd)) {
7951 			spa_condense_indirect_start_sync(vd, tx);
7952 			break;
7953 		}
7954 	}
7955 
7956 	/*
7957 	 * Iterate to convergence.
7958 	 */
7959 	do {
7960 		int pass = ++spa->spa_sync_pass;
7961 
7962 		spa_sync_config_object(spa, tx);
7963 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7964 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7965 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7966 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7967 		spa_errlog_sync(spa, txg);
7968 		dsl_pool_sync(dp, txg);
7969 
7970 		if (pass < zfs_sync_pass_deferred_free) {
7971 			spa_sync_frees(spa, free_bpl, tx);
7972 		} else {
7973 			/*
7974 			 * We can not defer frees in pass 1, because
7975 			 * we sync the deferred frees later in pass 1.
7976 			 */
7977 			ASSERT3U(pass, >, 1);
7978 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
7979 			    &spa->spa_deferred_bpobj, tx);
7980 		}
7981 
7982 		ddt_sync(spa, txg);
7983 		dsl_scan_sync(dp, tx);
7984 
7985 		if (spa->spa_vdev_removal != NULL)
7986 			svr_sync(spa, tx);
7987 
7988 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7989 		    != NULL)
7990 			vdev_sync(vd, txg);
7991 
7992 		if (pass == 1) {
7993 			spa_sync_upgrades(spa, tx);
7994 			ASSERT3U(txg, >=,
7995 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7996 			/*
7997 			 * Note: We need to check if the MOS is dirty
7998 			 * because we could have marked the MOS dirty
7999 			 * without updating the uberblock (e.g. if we
8000 			 * have sync tasks but no dirty user data).  We
8001 			 * need to check the uberblock's rootbp because
8002 			 * it is updated if we have synced out dirty
8003 			 * data (though in this case the MOS will most
8004 			 * likely also be dirty due to second order
8005 			 * effects, we don't want to rely on that here).
8006 			 */
8007 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8008 			    !dmu_objset_is_dirty(mos, txg)) {
8009 				/*
8010 				 * Nothing changed on the first pass,
8011 				 * therefore this TXG is a no-op.  Avoid
8012 				 * syncing deferred frees, so that we
8013 				 * can keep this TXG as a no-op.
8014 				 */
8015 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
8016 				    txg));
8017 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8018 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8019 				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
8020 				    txg));
8021 				break;
8022 			}
8023 			spa_sync_deferred_frees(spa, tx);
8024 		}
8025 
8026 	} while (dmu_objset_is_dirty(mos, txg));
8027 
8028 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8029 		/*
8030 		 * Make sure that the number of ZAPs for all the vdevs matches
8031 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8032 		 * called if the config is dirty; otherwise there may be
8033 		 * outstanding AVZ operations that weren't completed in
8034 		 * spa_sync_config_object.
8035 		 */
8036 		uint64_t all_vdev_zap_entry_count;
8037 		ASSERT0(zap_count(spa->spa_meta_objset,
8038 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8039 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8040 		    all_vdev_zap_entry_count);
8041 	}
8042 
8043 	if (spa->spa_vdev_removal != NULL) {
8044 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8045 	}
8046 
8047 	/*
8048 	 * Rewrite the vdev configuration (which includes the uberblock)
8049 	 * to commit the transaction group.
8050 	 *
8051 	 * If there are no dirty vdevs, we sync the uberblock to a few
8052 	 * random top-level vdevs that are known to be visible in the
8053 	 * config cache (see spa_vdev_add() for a complete description).
8054 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
8055 	 */
8056 	for (;;) {
8057 		/*
8058 		 * We hold SCL_STATE to prevent vdev open/close/etc.
8059 		 * while we're attempting to write the vdev labels.
8060 		 */
8061 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8062 
8063 		if (list_is_empty(&spa->spa_config_dirty_list)) {
8064 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8065 			int svdcount = 0;
8066 			int children = rvd->vdev_children;
8067 			int c0 = spa_get_random(children);
8068 
8069 			for (int c = 0; c < children; c++) {
8070 				vd = rvd->vdev_child[(c0 + c) % children];
8071 
8072 				/* Stop when revisiting the first vdev */
8073 				if (c > 0 && svd[0] == vd)
8074 					break;
8075 
8076 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
8077 				    !vdev_is_concrete(vd))
8078 					continue;
8079 
8080 				svd[svdcount++] = vd;
8081 				if (svdcount == SPA_SYNC_MIN_VDEVS)
8082 					break;
8083 			}
8084 			error = vdev_config_sync(svd, svdcount, txg);
8085 		} else {
8086 			error = vdev_config_sync(rvd->vdev_child,
8087 			    rvd->vdev_children, txg);
8088 		}
8089 
8090 		if (error == 0)
8091 			spa->spa_last_synced_guid = rvd->vdev_guid;
8092 
8093 		spa_config_exit(spa, SCL_STATE, FTAG);
8094 
8095 		if (error == 0)
8096 			break;
8097 		zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8098 		zio_resume_wait(spa);
8099 	}
8100 	dmu_tx_commit(tx);
8101 
8102 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8103 
8104 	/*
8105 	 * Clear the dirty config list.
8106 	 */
8107 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8108 		vdev_config_clean(vd);
8109 
8110 	/*
8111 	 * Now that the new config has synced transactionally,
8112 	 * let it become visible to the config cache.
8113 	 */
8114 	if (spa->spa_config_syncing != NULL) {
8115 		spa_config_set(spa, spa->spa_config_syncing);
8116 		spa->spa_config_txg = txg;
8117 		spa->spa_config_syncing = NULL;
8118 	}
8119 
8120 	dsl_pool_sync_done(dp, txg);
8121 
8122 	for (int i = 0; i < spa->spa_alloc_count; i++) {
8123 		mutex_enter(&spa->spa_alloc_locks[i]);
8124 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8125 		mutex_exit(&spa->spa_alloc_locks[i]);
8126 	}
8127 
8128 	/*
8129 	 * Update usable space statistics.
8130 	 */
8131 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8132 	    != NULL)
8133 		vdev_sync_done(vd, txg);
8134 
8135 	spa_update_dspace(spa);
8136 
8137 	/*
8138 	 * It had better be the case that we didn't dirty anything
8139 	 * since vdev_config_sync().
8140 	 */
8141 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8142 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8143 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8144 
8145 	while (zfs_pause_spa_sync)
8146 		delay(1);
8147 
8148 	spa->spa_sync_pass = 0;
8149 
8150 	/*
8151 	 * Update the last synced uberblock here. We want to do this at
8152 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8153 	 * will be guaranteed that all the processing associated with
8154 	 * that txg has been completed.
8155 	 */
8156 	spa->spa_ubsync = spa->spa_uberblock;
8157 	spa_config_exit(spa, SCL_CONFIG, FTAG);
8158 
8159 	spa_handle_ignored_writes(spa);
8160 
8161 	/*
8162 	 * If any async tasks have been requested, kick them off.
8163 	 */
8164 	spa_async_dispatch(spa);
8165 }
8166 
8167 /*
8168  * Sync all pools.  We don't want to hold the namespace lock across these
8169  * operations, so we take a reference on the spa_t and drop the lock during the
8170  * sync.
8171  */
8172 void
8173 spa_sync_allpools(void)
8174 {
8175 	spa_t *spa = NULL;
8176 	mutex_enter(&spa_namespace_lock);
8177 	while ((spa = spa_next(spa)) != NULL) {
8178 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8179 		    !spa_writeable(spa) || spa_suspended(spa))
8180 			continue;
8181 		spa_open_ref(spa, FTAG);
8182 		mutex_exit(&spa_namespace_lock);
8183 		txg_wait_synced(spa_get_dsl(spa), 0);
8184 		mutex_enter(&spa_namespace_lock);
8185 		spa_close(spa, FTAG);
8186 	}
8187 	mutex_exit(&spa_namespace_lock);
8188 }
8189 
8190 /*
8191  * ==========================================================================
8192  * Miscellaneous routines
8193  * ==========================================================================
8194  */
8195 
8196 /*
8197  * Remove all pools in the system.
8198  */
8199 void
8200 spa_evict_all(void)
8201 {
8202 	spa_t *spa;
8203 
8204 	/*
8205 	 * Remove all cached state.  All pools should be closed now,
8206 	 * so every spa in the AVL tree should be unreferenced.
8207 	 */
8208 	mutex_enter(&spa_namespace_lock);
8209 	while ((spa = spa_next(NULL)) != NULL) {
8210 		/*
8211 		 * Stop async tasks.  The async thread may need to detach
8212 		 * a device that's been replaced, which requires grabbing
8213 		 * spa_namespace_lock, so we must drop it here.
8214 		 */
8215 		spa_open_ref(spa, FTAG);
8216 		mutex_exit(&spa_namespace_lock);
8217 		spa_async_suspend(spa);
8218 		mutex_enter(&spa_namespace_lock);
8219 		spa_close(spa, FTAG);
8220 
8221 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8222 			spa_unload(spa);
8223 			spa_deactivate(spa);
8224 		}
8225 		spa_remove(spa);
8226 	}
8227 	mutex_exit(&spa_namespace_lock);
8228 }
8229 
8230 vdev_t *
8231 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8232 {
8233 	vdev_t *vd;
8234 	int i;
8235 
8236 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8237 		return (vd);
8238 
8239 	if (aux) {
8240 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8241 			vd = spa->spa_l2cache.sav_vdevs[i];
8242 			if (vd->vdev_guid == guid)
8243 				return (vd);
8244 		}
8245 
8246 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8247 			vd = spa->spa_spares.sav_vdevs[i];
8248 			if (vd->vdev_guid == guid)
8249 				return (vd);
8250 		}
8251 	}
8252 
8253 	return (NULL);
8254 }
8255 
8256 void
8257 spa_upgrade(spa_t *spa, uint64_t version)
8258 {
8259 	ASSERT(spa_writeable(spa));
8260 
8261 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8262 
8263 	/*
8264 	 * This should only be called for a non-faulted pool, and since a
8265 	 * future version would result in an unopenable pool, this shouldn't be
8266 	 * possible.
8267 	 */
8268 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8269 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8270 
8271 	spa->spa_uberblock.ub_version = version;
8272 	vdev_config_dirty(spa->spa_root_vdev);
8273 
8274 	spa_config_exit(spa, SCL_ALL, FTAG);
8275 
8276 	txg_wait_synced(spa_get_dsl(spa), 0);
8277 }
8278 
8279 boolean_t
8280 spa_has_spare(spa_t *spa, uint64_t guid)
8281 {
8282 	int i;
8283 	uint64_t spareguid;
8284 	spa_aux_vdev_t *sav = &spa->spa_spares;
8285 
8286 	for (i = 0; i < sav->sav_count; i++)
8287 		if (sav->sav_vdevs[i]->vdev_guid == guid)
8288 			return (B_TRUE);
8289 
8290 	for (i = 0; i < sav->sav_npending; i++) {
8291 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8292 		    &spareguid) == 0 && spareguid == guid)
8293 			return (B_TRUE);
8294 	}
8295 
8296 	return (B_FALSE);
8297 }
8298 
8299 /*
8300  * Check if a pool has an active shared spare device.
8301  * Note: reference count of an active spare is 2, as a spare and as a replace
8302  */
8303 static boolean_t
8304 spa_has_active_shared_spare(spa_t *spa)
8305 {
8306 	int i, refcnt;
8307 	uint64_t pool;
8308 	spa_aux_vdev_t *sav = &spa->spa_spares;
8309 
8310 	for (i = 0; i < sav->sav_count; i++) {
8311 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8312 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8313 		    refcnt > 2)
8314 			return (B_TRUE);
8315 	}
8316 
8317 	return (B_FALSE);
8318 }
8319 
8320 sysevent_t *
8321 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8322 {
8323 	sysevent_t		*ev = NULL;
8324 #ifdef _KERNEL
8325 	sysevent_attr_list_t	*attr = NULL;
8326 	sysevent_value_t	value;
8327 
8328 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8329 	    SE_SLEEP);
8330 	ASSERT(ev != NULL);
8331 
8332 	value.value_type = SE_DATA_TYPE_STRING;
8333 	value.value.sv_string = spa_name(spa);
8334 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8335 		goto done;
8336 
8337 	value.value_type = SE_DATA_TYPE_UINT64;
8338 	value.value.sv_uint64 = spa_guid(spa);
8339 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8340 		goto done;
8341 
8342 	if (vd) {
8343 		value.value_type = SE_DATA_TYPE_UINT64;
8344 		value.value.sv_uint64 = vd->vdev_guid;
8345 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8346 		    SE_SLEEP) != 0)
8347 			goto done;
8348 
8349 		if (vd->vdev_path) {
8350 			value.value_type = SE_DATA_TYPE_STRING;
8351 			value.value.sv_string = vd->vdev_path;
8352 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8353 			    &value, SE_SLEEP) != 0)
8354 				goto done;
8355 		}
8356 	}
8357 
8358 	if (hist_nvl != NULL) {
8359 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8360 	}
8361 
8362 	if (sysevent_attach_attributes(ev, attr) != 0)
8363 		goto done;
8364 	attr = NULL;
8365 
8366 done:
8367 	if (attr)
8368 		sysevent_free_attr(attr);
8369 
8370 #endif
8371 	return (ev);
8372 }
8373 
8374 void
8375 spa_event_post(sysevent_t *ev)
8376 {
8377 #ifdef _KERNEL
8378 	sysevent_id_t		eid;
8379 
8380 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8381 	sysevent_free(ev);
8382 #endif
8383 }
8384 
8385 void
8386 spa_event_discard(sysevent_t *ev)
8387 {
8388 #ifdef _KERNEL
8389 	sysevent_free(ev);
8390 #endif
8391 }
8392 
8393 /*
8394  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8395  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8396  * filled in from the spa and (optionally) the vdev and history nvl.  This
8397  * doesn't do anything in the userland libzpool, as we don't want consumers to
8398  * misinterpret ztest or zdb as real changes.
8399  */
8400 void
8401 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8402 {
8403 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8404 }
8405