spa.c revision bc758434fd3df659cb5caf3de6b1e90d9b23ee79
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/zio_compress.h>
39#include <sys/dmu.h>
40#include <sys/dmu_tx.h>
41#include <sys/zap.h>
42#include <sys/zil.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/uberblock_impl.h>
46#include <sys/txg.h>
47#include <sys/avl.h>
48#include <sys/dmu_traverse.h>
49#include <sys/dmu_objset.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dataset.h>
53#include <sys/dsl_dir.h>
54#include <sys/dsl_prop.h>
55#include <sys/dsl_synctask.h>
56#include <sys/fs/zfs.h>
57#include <sys/arc.h>
58#include <sys/callb.h>
59#include <sys/systeminfo.h>
60#include <sys/sunddi.h>
61#include <sys/spa_boot.h>
62#include <sys/zfs_ioctl.h>
63
64#ifdef	_KERNEL
65#include <sys/zone.h>
66#endif	/* _KERNEL */
67
68#include "zfs_prop.h"
69#include "zfs_comutil.h"
70
71enum zti_modes {
72	zti_mode_fixed,			/* value is # of threads (min 1) */
73	zti_mode_online_percent,	/* value is % of online CPUs */
74	zti_mode_tune,			/* fill from zio_taskq_tune_* */
75	zti_nmodes
76};
77
78#define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
79#define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
80#define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
81
82#define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
83
84typedef struct zio_taskq_info {
85	const char *zti_name;
86	struct {
87		enum zti_modes zti_mode;
88		uint_t zti_value;
89	} zti_nthreads[ZIO_TASKQ_TYPES];
90} zio_taskq_info_t;
91
92static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
93				"issue",		"intr"
94};
95
96const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
97	/*			ISSUE			INTR		*/
98	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
99	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
100	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
101	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
102	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104};
105
106enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
107uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
108
109static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
110static boolean_t spa_has_active_shared_spare(spa_t *spa);
111
112/*
113 * ==========================================================================
114 * SPA properties routines
115 * ==========================================================================
116 */
117
118/*
119 * Add a (source=src, propname=propval) list to an nvlist.
120 */
121static void
122spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
123    uint64_t intval, zprop_source_t src)
124{
125	const char *propname = zpool_prop_to_name(prop);
126	nvlist_t *propval;
127
128	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
129	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
130
131	if (strval != NULL)
132		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
133	else
134		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
135
136	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
137	nvlist_free(propval);
138}
139
140/*
141 * Get property values from the spa configuration.
142 */
143static void
144spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
145{
146	uint64_t size;
147	uint64_t used;
148	uint64_t cap, version;
149	zprop_source_t src = ZPROP_SRC_NONE;
150	spa_config_dirent_t *dp;
151
152	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
153
154	if (spa->spa_root_vdev != NULL) {
155		size = spa_get_space(spa);
156		used = spa_get_alloc(spa);
157		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
158		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
159		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
160		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
161		    size - used, src);
162
163		cap = (size == 0) ? 0 : (used * 100 / size);
164		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
165
166		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
167		    spa->spa_root_vdev->vdev_state, src);
168
169		version = spa_version(spa);
170		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
171			src = ZPROP_SRC_DEFAULT;
172		else
173			src = ZPROP_SRC_LOCAL;
174		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
175	}
176
177	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
178
179	if (spa->spa_root != NULL)
180		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
181		    0, ZPROP_SRC_LOCAL);
182
183	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
184		if (dp->scd_path == NULL) {
185			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
186			    "none", 0, ZPROP_SRC_LOCAL);
187		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
188			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
189			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
190		}
191	}
192}
193
194/*
195 * Get zpool property values.
196 */
197int
198spa_prop_get(spa_t *spa, nvlist_t **nvp)
199{
200	zap_cursor_t zc;
201	zap_attribute_t za;
202	objset_t *mos = spa->spa_meta_objset;
203	int err;
204
205	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
206
207	mutex_enter(&spa->spa_props_lock);
208
209	/*
210	 * Get properties from the spa config.
211	 */
212	spa_prop_get_config(spa, nvp);
213
214	/* If no pool property object, no more prop to get. */
215	if (spa->spa_pool_props_object == 0) {
216		mutex_exit(&spa->spa_props_lock);
217		return (0);
218	}
219
220	/*
221	 * Get properties from the MOS pool property object.
222	 */
223	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
224	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
225	    zap_cursor_advance(&zc)) {
226		uint64_t intval = 0;
227		char *strval = NULL;
228		zprop_source_t src = ZPROP_SRC_DEFAULT;
229		zpool_prop_t prop;
230
231		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
232			continue;
233
234		switch (za.za_integer_length) {
235		case 8:
236			/* integer property */
237			if (za.za_first_integer !=
238			    zpool_prop_default_numeric(prop))
239				src = ZPROP_SRC_LOCAL;
240
241			if (prop == ZPOOL_PROP_BOOTFS) {
242				dsl_pool_t *dp;
243				dsl_dataset_t *ds = NULL;
244
245				dp = spa_get_dsl(spa);
246				rw_enter(&dp->dp_config_rwlock, RW_READER);
247				if (err = dsl_dataset_hold_obj(dp,
248				    za.za_first_integer, FTAG, &ds)) {
249					rw_exit(&dp->dp_config_rwlock);
250					break;
251				}
252
253				strval = kmem_alloc(
254				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
255				    KM_SLEEP);
256				dsl_dataset_name(ds, strval);
257				dsl_dataset_rele(ds, FTAG);
258				rw_exit(&dp->dp_config_rwlock);
259			} else {
260				strval = NULL;
261				intval = za.za_first_integer;
262			}
263
264			spa_prop_add_list(*nvp, prop, strval, intval, src);
265
266			if (strval != NULL)
267				kmem_free(strval,
268				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
269
270			break;
271
272		case 1:
273			/* string property */
274			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
275			err = zap_lookup(mos, spa->spa_pool_props_object,
276			    za.za_name, 1, za.za_num_integers, strval);
277			if (err) {
278				kmem_free(strval, za.za_num_integers);
279				break;
280			}
281			spa_prop_add_list(*nvp, prop, strval, 0, src);
282			kmem_free(strval, za.za_num_integers);
283			break;
284
285		default:
286			break;
287		}
288	}
289	zap_cursor_fini(&zc);
290	mutex_exit(&spa->spa_props_lock);
291out:
292	if (err && err != ENOENT) {
293		nvlist_free(*nvp);
294		*nvp = NULL;
295		return (err);
296	}
297
298	return (0);
299}
300
301/*
302 * Validate the given pool properties nvlist and modify the list
303 * for the property values to be set.
304 */
305static int
306spa_prop_validate(spa_t *spa, nvlist_t *props)
307{
308	nvpair_t *elem;
309	int error = 0, reset_bootfs = 0;
310	uint64_t objnum;
311
312	elem = NULL;
313	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
314		zpool_prop_t prop;
315		char *propname, *strval;
316		uint64_t intval;
317		objset_t *os;
318		char *slash;
319
320		propname = nvpair_name(elem);
321
322		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323			return (EINVAL);
324
325		switch (prop) {
326		case ZPOOL_PROP_VERSION:
327			error = nvpair_value_uint64(elem, &intval);
328			if (!error &&
329			    (intval < spa_version(spa) || intval > SPA_VERSION))
330				error = EINVAL;
331			break;
332
333		case ZPOOL_PROP_DELEGATION:
334		case ZPOOL_PROP_AUTOREPLACE:
335		case ZPOOL_PROP_LISTSNAPS:
336		case ZPOOL_PROP_AUTOEXPAND:
337			error = nvpair_value_uint64(elem, &intval);
338			if (!error && intval > 1)
339				error = EINVAL;
340			break;
341
342		case ZPOOL_PROP_BOOTFS:
343			/*
344			 * If the pool version is less than SPA_VERSION_BOOTFS,
345			 * or the pool is still being created (version == 0),
346			 * the bootfs property cannot be set.
347			 */
348			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
349				error = ENOTSUP;
350				break;
351			}
352
353			/*
354			 * Make sure the vdev config is bootable
355			 */
356			if (!vdev_is_bootable(spa->spa_root_vdev)) {
357				error = ENOTSUP;
358				break;
359			}
360
361			reset_bootfs = 1;
362
363			error = nvpair_value_string(elem, &strval);
364
365			if (!error) {
366				uint64_t compress;
367
368				if (strval == NULL || strval[0] == '\0') {
369					objnum = zpool_prop_default_numeric(
370					    ZPOOL_PROP_BOOTFS);
371					break;
372				}
373
374				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
375				    DS_MODE_USER | DS_MODE_READONLY, &os))
376					break;
377
378				/* We don't support gzip bootable datasets */
379				if ((error = dsl_prop_get_integer(strval,
380				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
381				    &compress, NULL)) == 0 &&
382				    !BOOTFS_COMPRESS_VALID(compress)) {
383					error = ENOTSUP;
384				} else {
385					objnum = dmu_objset_id(os);
386				}
387				dmu_objset_close(os);
388			}
389			break;
390
391		case ZPOOL_PROP_FAILUREMODE:
392			error = nvpair_value_uint64(elem, &intval);
393			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
394			    intval > ZIO_FAILURE_MODE_PANIC))
395				error = EINVAL;
396
397			/*
398			 * This is a special case which only occurs when
399			 * the pool has completely failed. This allows
400			 * the user to change the in-core failmode property
401			 * without syncing it out to disk (I/Os might
402			 * currently be blocked). We do this by returning
403			 * EIO to the caller (spa_prop_set) to trick it
404			 * into thinking we encountered a property validation
405			 * error.
406			 */
407			if (!error && spa_suspended(spa)) {
408				spa->spa_failmode = intval;
409				error = EIO;
410			}
411			break;
412
413		case ZPOOL_PROP_CACHEFILE:
414			if ((error = nvpair_value_string(elem, &strval)) != 0)
415				break;
416
417			if (strval[0] == '\0')
418				break;
419
420			if (strcmp(strval, "none") == 0)
421				break;
422
423			if (strval[0] != '/') {
424				error = EINVAL;
425				break;
426			}
427
428			slash = strrchr(strval, '/');
429			ASSERT(slash != NULL);
430
431			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
432			    strcmp(slash, "/..") == 0)
433				error = EINVAL;
434			break;
435		}
436
437		if (error)
438			break;
439	}
440
441	if (!error && reset_bootfs) {
442		error = nvlist_remove(props,
443		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
444
445		if (!error) {
446			error = nvlist_add_uint64(props,
447			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
448		}
449	}
450
451	return (error);
452}
453
454void
455spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
456{
457	char *cachefile;
458	spa_config_dirent_t *dp;
459
460	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
461	    &cachefile) != 0)
462		return;
463
464	dp = kmem_alloc(sizeof (spa_config_dirent_t),
465	    KM_SLEEP);
466
467	if (cachefile[0] == '\0')
468		dp->scd_path = spa_strdup(spa_config_path);
469	else if (strcmp(cachefile, "none") == 0)
470		dp->scd_path = NULL;
471	else
472		dp->scd_path = spa_strdup(cachefile);
473
474	list_insert_head(&spa->spa_config_list, dp);
475	if (need_sync)
476		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
477}
478
479int
480spa_prop_set(spa_t *spa, nvlist_t *nvp)
481{
482	int error;
483	nvpair_t *elem;
484	boolean_t need_sync = B_FALSE;
485	zpool_prop_t prop;
486
487	if ((error = spa_prop_validate(spa, nvp)) != 0)
488		return (error);
489
490	elem = NULL;
491	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
492		if ((prop = zpool_name_to_prop(
493		    nvpair_name(elem))) == ZPROP_INVAL)
494			return (EINVAL);
495
496		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
497			continue;
498
499		need_sync = B_TRUE;
500		break;
501	}
502
503	if (need_sync)
504		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
505		    spa, nvp, 3));
506	else
507		return (0);
508}
509
510/*
511 * If the bootfs property value is dsobj, clear it.
512 */
513void
514spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
515{
516	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
517		VERIFY(zap_remove(spa->spa_meta_objset,
518		    spa->spa_pool_props_object,
519		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
520		spa->spa_bootfs = 0;
521	}
522}
523
524/*
525 * ==========================================================================
526 * SPA state manipulation (open/create/destroy/import/export)
527 * ==========================================================================
528 */
529
530static int
531spa_error_entry_compare(const void *a, const void *b)
532{
533	spa_error_entry_t *sa = (spa_error_entry_t *)a;
534	spa_error_entry_t *sb = (spa_error_entry_t *)b;
535	int ret;
536
537	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
538	    sizeof (zbookmark_t));
539
540	if (ret < 0)
541		return (-1);
542	else if (ret > 0)
543		return (1);
544	else
545		return (0);
546}
547
548/*
549 * Utility function which retrieves copies of the current logs and
550 * re-initializes them in the process.
551 */
552void
553spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
554{
555	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
556
557	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
558	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
559
560	avl_create(&spa->spa_errlist_scrub,
561	    spa_error_entry_compare, sizeof (spa_error_entry_t),
562	    offsetof(spa_error_entry_t, se_avl));
563	avl_create(&spa->spa_errlist_last,
564	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565	    offsetof(spa_error_entry_t, se_avl));
566}
567
568/*
569 * Activate an uninitialized pool.
570 */
571static void
572spa_activate(spa_t *spa, int mode)
573{
574	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
575
576	spa->spa_state = POOL_STATE_ACTIVE;
577	spa->spa_mode = mode;
578
579	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
580	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
581
582	for (int t = 0; t < ZIO_TYPES; t++) {
583		const zio_taskq_info_t *ztip = &zio_taskqs[t];
584		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
585			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
586			uint_t value = ztip->zti_nthreads[q].zti_value;
587			char name[32];
588
589			(void) snprintf(name, sizeof (name),
590			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
591
592			if (mode == zti_mode_tune) {
593				mode = zio_taskq_tune_mode;
594				value = zio_taskq_tune_value;
595				if (mode == zti_mode_tune)
596					mode = zti_mode_online_percent;
597			}
598
599			switch (mode) {
600			case zti_mode_fixed:
601				ASSERT3U(value, >=, 1);
602				value = MAX(value, 1);
603
604				spa->spa_zio_taskq[t][q] = taskq_create(name,
605				    value, maxclsyspri, 50, INT_MAX,
606				    TASKQ_PREPOPULATE);
607				break;
608
609			case zti_mode_online_percent:
610				spa->spa_zio_taskq[t][q] = taskq_create(name,
611				    value, maxclsyspri, 50, INT_MAX,
612				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
613				break;
614
615			case zti_mode_tune:
616			default:
617				panic("unrecognized mode for "
618				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
619				    "in spa_activate()",
620				    t, q, mode, value);
621				break;
622			}
623		}
624	}
625
626	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
627	    offsetof(vdev_t, vdev_config_dirty_node));
628	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
629	    offsetof(vdev_t, vdev_state_dirty_node));
630
631	txg_list_create(&spa->spa_vdev_txg_list,
632	    offsetof(struct vdev, vdev_txg_node));
633
634	avl_create(&spa->spa_errlist_scrub,
635	    spa_error_entry_compare, sizeof (spa_error_entry_t),
636	    offsetof(spa_error_entry_t, se_avl));
637	avl_create(&spa->spa_errlist_last,
638	    spa_error_entry_compare, sizeof (spa_error_entry_t),
639	    offsetof(spa_error_entry_t, se_avl));
640}
641
642/*
643 * Opposite of spa_activate().
644 */
645static void
646spa_deactivate(spa_t *spa)
647{
648	ASSERT(spa->spa_sync_on == B_FALSE);
649	ASSERT(spa->spa_dsl_pool == NULL);
650	ASSERT(spa->spa_root_vdev == NULL);
651	ASSERT(spa->spa_async_zio_root == NULL);
652	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
653
654	txg_list_destroy(&spa->spa_vdev_txg_list);
655
656	list_destroy(&spa->spa_config_dirty_list);
657	list_destroy(&spa->spa_state_dirty_list);
658
659	for (int t = 0; t < ZIO_TYPES; t++) {
660		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
661			taskq_destroy(spa->spa_zio_taskq[t][q]);
662			spa->spa_zio_taskq[t][q] = NULL;
663		}
664	}
665
666	metaslab_class_destroy(spa->spa_normal_class);
667	spa->spa_normal_class = NULL;
668
669	metaslab_class_destroy(spa->spa_log_class);
670	spa->spa_log_class = NULL;
671
672	/*
673	 * If this was part of an import or the open otherwise failed, we may
674	 * still have errors left in the queues.  Empty them just in case.
675	 */
676	spa_errlog_drain(spa);
677
678	avl_destroy(&spa->spa_errlist_scrub);
679	avl_destroy(&spa->spa_errlist_last);
680
681	spa->spa_state = POOL_STATE_UNINITIALIZED;
682}
683
684/*
685 * Verify a pool configuration, and construct the vdev tree appropriately.  This
686 * will create all the necessary vdevs in the appropriate layout, with each vdev
687 * in the CLOSED state.  This will prep the pool before open/creation/import.
688 * All vdev validation is done by the vdev_alloc() routine.
689 */
690static int
691spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
692    uint_t id, int atype)
693{
694	nvlist_t **child;
695	uint_t children;
696	int error;
697
698	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
699		return (error);
700
701	if ((*vdp)->vdev_ops->vdev_op_leaf)
702		return (0);
703
704	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
705	    &child, &children);
706
707	if (error == ENOENT)
708		return (0);
709
710	if (error) {
711		vdev_free(*vdp);
712		*vdp = NULL;
713		return (EINVAL);
714	}
715
716	for (int c = 0; c < children; c++) {
717		vdev_t *vd;
718		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
719		    atype)) != 0) {
720			vdev_free(*vdp);
721			*vdp = NULL;
722			return (error);
723		}
724	}
725
726	ASSERT(*vdp != NULL);
727
728	return (0);
729}
730
731/*
732 * Opposite of spa_load().
733 */
734static void
735spa_unload(spa_t *spa)
736{
737	int i;
738
739	ASSERT(MUTEX_HELD(&spa_namespace_lock));
740
741	/*
742	 * Stop async tasks.
743	 */
744	spa_async_suspend(spa);
745
746	/*
747	 * Stop syncing.
748	 */
749	if (spa->spa_sync_on) {
750		txg_sync_stop(spa->spa_dsl_pool);
751		spa->spa_sync_on = B_FALSE;
752	}
753
754	/*
755	 * Wait for any outstanding async I/O to complete.
756	 */
757	if (spa->spa_async_zio_root != NULL) {
758		(void) zio_wait(spa->spa_async_zio_root);
759		spa->spa_async_zio_root = NULL;
760	}
761
762	/*
763	 * Close the dsl pool.
764	 */
765	if (spa->spa_dsl_pool) {
766		dsl_pool_close(spa->spa_dsl_pool);
767		spa->spa_dsl_pool = NULL;
768	}
769
770	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
771
772	/*
773	 * Drop and purge level 2 cache
774	 */
775	spa_l2cache_drop(spa);
776
777	/*
778	 * Close all vdevs.
779	 */
780	if (spa->spa_root_vdev)
781		vdev_free(spa->spa_root_vdev);
782	ASSERT(spa->spa_root_vdev == NULL);
783
784	for (i = 0; i < spa->spa_spares.sav_count; i++)
785		vdev_free(spa->spa_spares.sav_vdevs[i]);
786	if (spa->spa_spares.sav_vdevs) {
787		kmem_free(spa->spa_spares.sav_vdevs,
788		    spa->spa_spares.sav_count * sizeof (void *));
789		spa->spa_spares.sav_vdevs = NULL;
790	}
791	if (spa->spa_spares.sav_config) {
792		nvlist_free(spa->spa_spares.sav_config);
793		spa->spa_spares.sav_config = NULL;
794	}
795	spa->spa_spares.sav_count = 0;
796
797	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
798		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
799	if (spa->spa_l2cache.sav_vdevs) {
800		kmem_free(spa->spa_l2cache.sav_vdevs,
801		    spa->spa_l2cache.sav_count * sizeof (void *));
802		spa->spa_l2cache.sav_vdevs = NULL;
803	}
804	if (spa->spa_l2cache.sav_config) {
805		nvlist_free(spa->spa_l2cache.sav_config);
806		spa->spa_l2cache.sav_config = NULL;
807	}
808	spa->spa_l2cache.sav_count = 0;
809
810	spa->spa_async_suspended = 0;
811
812	spa_config_exit(spa, SCL_ALL, FTAG);
813}
814
815/*
816 * Load (or re-load) the current list of vdevs describing the active spares for
817 * this pool.  When this is called, we have some form of basic information in
818 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
819 * then re-generate a more complete list including status information.
820 */
821static void
822spa_load_spares(spa_t *spa)
823{
824	nvlist_t **spares;
825	uint_t nspares;
826	int i;
827	vdev_t *vd, *tvd;
828
829	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
830
831	/*
832	 * First, close and free any existing spare vdevs.
833	 */
834	for (i = 0; i < spa->spa_spares.sav_count; i++) {
835		vd = spa->spa_spares.sav_vdevs[i];
836
837		/* Undo the call to spa_activate() below */
838		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
839		    B_FALSE)) != NULL && tvd->vdev_isspare)
840			spa_spare_remove(tvd);
841		vdev_close(vd);
842		vdev_free(vd);
843	}
844
845	if (spa->spa_spares.sav_vdevs)
846		kmem_free(spa->spa_spares.sav_vdevs,
847		    spa->spa_spares.sav_count * sizeof (void *));
848
849	if (spa->spa_spares.sav_config == NULL)
850		nspares = 0;
851	else
852		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
853		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
854
855	spa->spa_spares.sav_count = (int)nspares;
856	spa->spa_spares.sav_vdevs = NULL;
857
858	if (nspares == 0)
859		return;
860
861	/*
862	 * Construct the array of vdevs, opening them to get status in the
863	 * process.   For each spare, there is potentially two different vdev_t
864	 * structures associated with it: one in the list of spares (used only
865	 * for basic validation purposes) and one in the active vdev
866	 * configuration (if it's spared in).  During this phase we open and
867	 * validate each vdev on the spare list.  If the vdev also exists in the
868	 * active configuration, then we also mark this vdev as an active spare.
869	 */
870	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
871	    KM_SLEEP);
872	for (i = 0; i < spa->spa_spares.sav_count; i++) {
873		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
874		    VDEV_ALLOC_SPARE) == 0);
875		ASSERT(vd != NULL);
876
877		spa->spa_spares.sav_vdevs[i] = vd;
878
879		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
880		    B_FALSE)) != NULL) {
881			if (!tvd->vdev_isspare)
882				spa_spare_add(tvd);
883
884			/*
885			 * We only mark the spare active if we were successfully
886			 * able to load the vdev.  Otherwise, importing a pool
887			 * with a bad active spare would result in strange
888			 * behavior, because multiple pool would think the spare
889			 * is actively in use.
890			 *
891			 * There is a vulnerability here to an equally bizarre
892			 * circumstance, where a dead active spare is later
893			 * brought back to life (onlined or otherwise).  Given
894			 * the rarity of this scenario, and the extra complexity
895			 * it adds, we ignore the possibility.
896			 */
897			if (!vdev_is_dead(tvd))
898				spa_spare_activate(tvd);
899		}
900
901		vd->vdev_top = vd;
902		vd->vdev_aux = &spa->spa_spares;
903
904		if (vdev_open(vd) != 0)
905			continue;
906
907		if (vdev_validate_aux(vd) == 0)
908			spa_spare_add(vd);
909	}
910
911	/*
912	 * Recompute the stashed list of spares, with status information
913	 * this time.
914	 */
915	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
916	    DATA_TYPE_NVLIST_ARRAY) == 0);
917
918	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
919	    KM_SLEEP);
920	for (i = 0; i < spa->spa_spares.sav_count; i++)
921		spares[i] = vdev_config_generate(spa,
922		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
923	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
924	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
925	for (i = 0; i < spa->spa_spares.sav_count; i++)
926		nvlist_free(spares[i]);
927	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
928}
929
930/*
931 * Load (or re-load) the current list of vdevs describing the active l2cache for
932 * this pool.  When this is called, we have some form of basic information in
933 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
934 * then re-generate a more complete list including status information.
935 * Devices which are already active have their details maintained, and are
936 * not re-opened.
937 */
938static void
939spa_load_l2cache(spa_t *spa)
940{
941	nvlist_t **l2cache;
942	uint_t nl2cache;
943	int i, j, oldnvdevs;
944	uint64_t guid;
945	vdev_t *vd, **oldvdevs, **newvdevs;
946	spa_aux_vdev_t *sav = &spa->spa_l2cache;
947
948	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
949
950	if (sav->sav_config != NULL) {
951		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
952		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
953		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
954	} else {
955		nl2cache = 0;
956	}
957
958	oldvdevs = sav->sav_vdevs;
959	oldnvdevs = sav->sav_count;
960	sav->sav_vdevs = NULL;
961	sav->sav_count = 0;
962
963	/*
964	 * Process new nvlist of vdevs.
965	 */
966	for (i = 0; i < nl2cache; i++) {
967		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
968		    &guid) == 0);
969
970		newvdevs[i] = NULL;
971		for (j = 0; j < oldnvdevs; j++) {
972			vd = oldvdevs[j];
973			if (vd != NULL && guid == vd->vdev_guid) {
974				/*
975				 * Retain previous vdev for add/remove ops.
976				 */
977				newvdevs[i] = vd;
978				oldvdevs[j] = NULL;
979				break;
980			}
981		}
982
983		if (newvdevs[i] == NULL) {
984			/*
985			 * Create new vdev
986			 */
987			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
988			    VDEV_ALLOC_L2CACHE) == 0);
989			ASSERT(vd != NULL);
990			newvdevs[i] = vd;
991
992			/*
993			 * Commit this vdev as an l2cache device,
994			 * even if it fails to open.
995			 */
996			spa_l2cache_add(vd);
997
998			vd->vdev_top = vd;
999			vd->vdev_aux = sav;
1000
1001			spa_l2cache_activate(vd);
1002
1003			if (vdev_open(vd) != 0)
1004				continue;
1005
1006			(void) vdev_validate_aux(vd);
1007
1008			if (!vdev_is_dead(vd))
1009				l2arc_add_vdev(spa, vd);
1010		}
1011	}
1012
1013	/*
1014	 * Purge vdevs that were dropped
1015	 */
1016	for (i = 0; i < oldnvdevs; i++) {
1017		uint64_t pool;
1018
1019		vd = oldvdevs[i];
1020		if (vd != NULL) {
1021			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1022			    pool != 0ULL && l2arc_vdev_present(vd))
1023				l2arc_remove_vdev(vd);
1024			(void) vdev_close(vd);
1025			spa_l2cache_remove(vd);
1026		}
1027	}
1028
1029	if (oldvdevs)
1030		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1031
1032	if (sav->sav_config == NULL)
1033		goto out;
1034
1035	sav->sav_vdevs = newvdevs;
1036	sav->sav_count = (int)nl2cache;
1037
1038	/*
1039	 * Recompute the stashed list of l2cache devices, with status
1040	 * information this time.
1041	 */
1042	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1043	    DATA_TYPE_NVLIST_ARRAY) == 0);
1044
1045	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1046	for (i = 0; i < sav->sav_count; i++)
1047		l2cache[i] = vdev_config_generate(spa,
1048		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1049	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1050	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1051out:
1052	for (i = 0; i < sav->sav_count; i++)
1053		nvlist_free(l2cache[i]);
1054	if (sav->sav_count)
1055		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1056}
1057
1058static int
1059load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1060{
1061	dmu_buf_t *db;
1062	char *packed = NULL;
1063	size_t nvsize = 0;
1064	int error;
1065	*value = NULL;
1066
1067	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1068	nvsize = *(uint64_t *)db->db_data;
1069	dmu_buf_rele(db, FTAG);
1070
1071	packed = kmem_alloc(nvsize, KM_SLEEP);
1072	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1073	    DMU_READ_PREFETCH);
1074	if (error == 0)
1075		error = nvlist_unpack(packed, nvsize, value, 0);
1076	kmem_free(packed, nvsize);
1077
1078	return (error);
1079}
1080
1081/*
1082 * Checks to see if the given vdev could not be opened, in which case we post a
1083 * sysevent to notify the autoreplace code that the device has been removed.
1084 */
1085static void
1086spa_check_removed(vdev_t *vd)
1087{
1088	for (int c = 0; c < vd->vdev_children; c++)
1089		spa_check_removed(vd->vdev_child[c]);
1090
1091	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1092		zfs_post_autoreplace(vd->vdev_spa, vd);
1093		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1094	}
1095}
1096
1097/*
1098 * Load the slog device state from the config object since it's possible
1099 * that the label does not contain the most up-to-date information.
1100 */
1101void
1102spa_load_log_state(spa_t *spa)
1103{
1104	nvlist_t *nv, *nvroot, **child;
1105	uint64_t is_log;
1106	uint_t children;
1107	vdev_t *rvd = spa->spa_root_vdev;
1108
1109	VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1110	VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1111	VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1112	    &child, &children) == 0);
1113
1114	for (int c = 0; c < children; c++) {
1115		vdev_t *tvd = rvd->vdev_child[c];
1116
1117		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1118		    &is_log) == 0 && is_log)
1119			vdev_load_log_state(tvd, child[c]);
1120	}
1121	nvlist_free(nv);
1122}
1123
1124/*
1125 * Check for missing log devices
1126 */
1127int
1128spa_check_logs(spa_t *spa)
1129{
1130	switch (spa->spa_log_state) {
1131	case SPA_LOG_MISSING:
1132		/* need to recheck in case slog has been restored */
1133	case SPA_LOG_UNKNOWN:
1134		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1135		    DS_FIND_CHILDREN)) {
1136			spa->spa_log_state = SPA_LOG_MISSING;
1137			return (1);
1138		}
1139		break;
1140	}
1141	return (0);
1142}
1143
1144/*
1145 * Load an existing storage pool, using the pool's builtin spa_config as a
1146 * source of configuration information.
1147 */
1148static int
1149spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1150{
1151	int error = 0;
1152	nvlist_t *nvroot = NULL;
1153	vdev_t *rvd;
1154	uberblock_t *ub = &spa->spa_uberblock;
1155	uint64_t config_cache_txg = spa->spa_config_txg;
1156	uint64_t pool_guid;
1157	uint64_t version;
1158	uint64_t autoreplace = 0;
1159	int orig_mode = spa->spa_mode;
1160	char *ereport = FM_EREPORT_ZFS_POOL;
1161
1162	/*
1163	 * If this is an untrusted config, access the pool in read-only mode.
1164	 * This prevents things like resilvering recently removed devices.
1165	 */
1166	if (!mosconfig)
1167		spa->spa_mode = FREAD;
1168
1169	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1170
1171	spa->spa_load_state = state;
1172
1173	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1174	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1175		error = EINVAL;
1176		goto out;
1177	}
1178
1179	/*
1180	 * Versioning wasn't explicitly added to the label until later, so if
1181	 * it's not present treat it as the initial version.
1182	 */
1183	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1184		version = SPA_VERSION_INITIAL;
1185
1186	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1187	    &spa->spa_config_txg);
1188
1189	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1190	    spa_guid_exists(pool_guid, 0)) {
1191		error = EEXIST;
1192		goto out;
1193	}
1194
1195	spa->spa_load_guid = pool_guid;
1196
1197	/*
1198	 * Create "The Godfather" zio to hold all async IOs
1199	 */
1200	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1201	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1202
1203	/*
1204	 * Parse the configuration into a vdev tree.  We explicitly set the
1205	 * value that will be returned by spa_version() since parsing the
1206	 * configuration requires knowing the version number.
1207	 */
1208	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1209	spa->spa_ubsync.ub_version = version;
1210	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1211	spa_config_exit(spa, SCL_ALL, FTAG);
1212
1213	if (error != 0)
1214		goto out;
1215
1216	ASSERT(spa->spa_root_vdev == rvd);
1217	ASSERT(spa_guid(spa) == pool_guid);
1218
1219	/*
1220	 * Try to open all vdevs, loading each label in the process.
1221	 */
1222	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1223	error = vdev_open(rvd);
1224	spa_config_exit(spa, SCL_ALL, FTAG);
1225	if (error != 0)
1226		goto out;
1227
1228	/*
1229	 * We need to validate the vdev labels against the configuration that
1230	 * we have in hand, which is dependent on the setting of mosconfig. If
1231	 * mosconfig is true then we're validating the vdev labels based on
1232	 * that config. Otherwise, we're validating against the cached config
1233	 * (zpool.cache) that was read when we loaded the zfs module, and then
1234	 * later we will recursively call spa_load() and validate against
1235	 * the vdev config.
1236	 */
1237	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238	error = vdev_validate(rvd);
1239	spa_config_exit(spa, SCL_ALL, FTAG);
1240	if (error != 0)
1241		goto out;
1242
1243	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1244		error = ENXIO;
1245		goto out;
1246	}
1247
1248	/*
1249	 * Find the best uberblock.
1250	 */
1251	vdev_uberblock_load(NULL, rvd, ub);
1252
1253	/*
1254	 * If we weren't able to find a single valid uberblock, return failure.
1255	 */
1256	if (ub->ub_txg == 0) {
1257		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258		    VDEV_AUX_CORRUPT_DATA);
1259		error = ENXIO;
1260		goto out;
1261	}
1262
1263	/*
1264	 * If the pool is newer than the code, we can't open it.
1265	 */
1266	if (ub->ub_version > SPA_VERSION) {
1267		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268		    VDEV_AUX_VERSION_NEWER);
1269		error = ENOTSUP;
1270		goto out;
1271	}
1272
1273	/*
1274	 * If the vdev guid sum doesn't match the uberblock, we have an
1275	 * incomplete configuration.
1276	 */
1277	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1278		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1279		    VDEV_AUX_BAD_GUID_SUM);
1280		error = ENXIO;
1281		goto out;
1282	}
1283
1284	/*
1285	 * Initialize internal SPA structures.
1286	 */
1287	spa->spa_state = POOL_STATE_ACTIVE;
1288	spa->spa_ubsync = spa->spa_uberblock;
1289	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1290	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1291	if (error) {
1292		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1293		    VDEV_AUX_CORRUPT_DATA);
1294		goto out;
1295	}
1296	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1297
1298	if (zap_lookup(spa->spa_meta_objset,
1299	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1300	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1301		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302		    VDEV_AUX_CORRUPT_DATA);
1303		error = EIO;
1304		goto out;
1305	}
1306
1307	if (!mosconfig) {
1308		nvlist_t *newconfig;
1309		uint64_t hostid;
1310
1311		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1312			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313			    VDEV_AUX_CORRUPT_DATA);
1314			error = EIO;
1315			goto out;
1316		}
1317
1318		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1319		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1320			char *hostname;
1321			unsigned long myhostid = 0;
1322
1323			VERIFY(nvlist_lookup_string(newconfig,
1324			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1325
1326#ifdef	_KERNEL
1327			myhostid = zone_get_hostid(NULL);
1328#else	/* _KERNEL */
1329			/*
1330			 * We're emulating the system's hostid in userland, so
1331			 * we can't use zone_get_hostid().
1332			 */
1333			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1334#endif	/* _KERNEL */
1335			if (hostid != 0 && myhostid != 0 &&
1336			    hostid != myhostid) {
1337				cmn_err(CE_WARN, "pool '%s' could not be "
1338				    "loaded as it was last accessed by "
1339				    "another system (host: %s hostid: 0x%lx). "
1340				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1341				    spa_name(spa), hostname,
1342				    (unsigned long)hostid);
1343				error = EBADF;
1344				goto out;
1345			}
1346		}
1347
1348		spa_config_set(spa, newconfig);
1349		spa_unload(spa);
1350		spa_deactivate(spa);
1351		spa_activate(spa, orig_mode);
1352
1353		return (spa_load(spa, newconfig, state, B_TRUE));
1354	}
1355
1356	if (zap_lookup(spa->spa_meta_objset,
1357	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1358	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1359		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360		    VDEV_AUX_CORRUPT_DATA);
1361		error = EIO;
1362		goto out;
1363	}
1364
1365	/*
1366	 * Load the bit that tells us to use the new accounting function
1367	 * (raid-z deflation).  If we have an older pool, this will not
1368	 * be present.
1369	 */
1370	error = zap_lookup(spa->spa_meta_objset,
1371	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1372	    sizeof (uint64_t), 1, &spa->spa_deflate);
1373	if (error != 0 && error != ENOENT) {
1374		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375		    VDEV_AUX_CORRUPT_DATA);
1376		error = EIO;
1377		goto out;
1378	}
1379
1380	/*
1381	 * Load the persistent error log.  If we have an older pool, this will
1382	 * not be present.
1383	 */
1384	error = zap_lookup(spa->spa_meta_objset,
1385	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1386	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1387	if (error != 0 && error != ENOENT) {
1388		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1389		    VDEV_AUX_CORRUPT_DATA);
1390		error = EIO;
1391		goto out;
1392	}
1393
1394	error = zap_lookup(spa->spa_meta_objset,
1395	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1396	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1397	if (error != 0 && error != ENOENT) {
1398		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1399		    VDEV_AUX_CORRUPT_DATA);
1400		error = EIO;
1401		goto out;
1402	}
1403
1404	/*
1405	 * Load the history object.  If we have an older pool, this
1406	 * will not be present.
1407	 */
1408	error = zap_lookup(spa->spa_meta_objset,
1409	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1410	    sizeof (uint64_t), 1, &spa->spa_history);
1411	if (error != 0 && error != ENOENT) {
1412		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1413		    VDEV_AUX_CORRUPT_DATA);
1414		error = EIO;
1415		goto out;
1416	}
1417
1418	/*
1419	 * Load any hot spares for this pool.
1420	 */
1421	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1422	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1423	if (error != 0 && error != ENOENT) {
1424		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425		    VDEV_AUX_CORRUPT_DATA);
1426		error = EIO;
1427		goto out;
1428	}
1429	if (error == 0) {
1430		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1431		if (load_nvlist(spa, spa->spa_spares.sav_object,
1432		    &spa->spa_spares.sav_config) != 0) {
1433			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1434			    VDEV_AUX_CORRUPT_DATA);
1435			error = EIO;
1436			goto out;
1437		}
1438
1439		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1440		spa_load_spares(spa);
1441		spa_config_exit(spa, SCL_ALL, FTAG);
1442	}
1443
1444	/*
1445	 * Load any level 2 ARC devices for this pool.
1446	 */
1447	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1449	    &spa->spa_l2cache.sav_object);
1450	if (error != 0 && error != ENOENT) {
1451		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452		    VDEV_AUX_CORRUPT_DATA);
1453		error = EIO;
1454		goto out;
1455	}
1456	if (error == 0) {
1457		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1458		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1459		    &spa->spa_l2cache.sav_config) != 0) {
1460			vdev_set_state(rvd, B_TRUE,
1461			    VDEV_STATE_CANT_OPEN,
1462			    VDEV_AUX_CORRUPT_DATA);
1463			error = EIO;
1464			goto out;
1465		}
1466
1467		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1468		spa_load_l2cache(spa);
1469		spa_config_exit(spa, SCL_ALL, FTAG);
1470	}
1471
1472	spa_load_log_state(spa);
1473
1474	if (spa_check_logs(spa)) {
1475		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1476		    VDEV_AUX_BAD_LOG);
1477		error = ENXIO;
1478		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1479		goto out;
1480	}
1481
1482
1483	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1484
1485	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1486	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1487
1488	if (error && error != ENOENT) {
1489		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1490		    VDEV_AUX_CORRUPT_DATA);
1491		error = EIO;
1492		goto out;
1493	}
1494
1495	if (error == 0) {
1496		(void) zap_lookup(spa->spa_meta_objset,
1497		    spa->spa_pool_props_object,
1498		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1499		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1500		(void) zap_lookup(spa->spa_meta_objset,
1501		    spa->spa_pool_props_object,
1502		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1503		    sizeof (uint64_t), 1, &autoreplace);
1504		(void) zap_lookup(spa->spa_meta_objset,
1505		    spa->spa_pool_props_object,
1506		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1507		    sizeof (uint64_t), 1, &spa->spa_delegation);
1508		(void) zap_lookup(spa->spa_meta_objset,
1509		    spa->spa_pool_props_object,
1510		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1511		    sizeof (uint64_t), 1, &spa->spa_failmode);
1512		(void) zap_lookup(spa->spa_meta_objset,
1513		    spa->spa_pool_props_object,
1514		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1515		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1516	}
1517
1518	/*
1519	 * If the 'autoreplace' property is set, then post a resource notifying
1520	 * the ZFS DE that it should not issue any faults for unopenable
1521	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1522	 * unopenable vdevs so that the normal autoreplace handler can take
1523	 * over.
1524	 */
1525	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1526		spa_check_removed(spa->spa_root_vdev);
1527
1528	/*
1529	 * Load the vdev state for all toplevel vdevs.
1530	 */
1531	vdev_load(rvd);
1532
1533	/*
1534	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1535	 */
1536	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1537	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1538	spa_config_exit(spa, SCL_ALL, FTAG);
1539
1540	/*
1541	 * Check the state of the root vdev.  If it can't be opened, it
1542	 * indicates one or more toplevel vdevs are faulted.
1543	 */
1544	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1545		error = ENXIO;
1546		goto out;
1547	}
1548
1549	if (spa_writeable(spa)) {
1550		dmu_tx_t *tx;
1551		int need_update = B_FALSE;
1552
1553		ASSERT(state != SPA_LOAD_TRYIMPORT);
1554
1555		/*
1556		 * Claim log blocks that haven't been committed yet.
1557		 * This must all happen in a single txg.
1558		 */
1559		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1560		    spa_first_txg(spa));
1561		(void) dmu_objset_find(spa_name(spa),
1562		    zil_claim, tx, DS_FIND_CHILDREN);
1563		dmu_tx_commit(tx);
1564
1565		spa->spa_log_state = SPA_LOG_GOOD;
1566		spa->spa_sync_on = B_TRUE;
1567		txg_sync_start(spa->spa_dsl_pool);
1568
1569		/*
1570		 * Wait for all claims to sync.
1571		 */
1572		txg_wait_synced(spa->spa_dsl_pool, 0);
1573
1574		/*
1575		 * If the config cache is stale, or we have uninitialized
1576		 * metaslabs (see spa_vdev_add()), then update the config.
1577		 *
1578		 * If spa_load_verbatim is true, trust the current
1579		 * in-core spa_config and update the disk labels.
1580		 */
1581		if (config_cache_txg != spa->spa_config_txg ||
1582		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim)
1583			need_update = B_TRUE;
1584
1585		for (int c = 0; c < rvd->vdev_children; c++)
1586			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1587				need_update = B_TRUE;
1588
1589		/*
1590		 * Update the config cache asychronously in case we're the
1591		 * root pool, in which case the config cache isn't writable yet.
1592		 */
1593		if (need_update)
1594			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1595
1596		/*
1597		 * Check all DTLs to see if anything needs resilvering.
1598		 */
1599		if (vdev_resilver_needed(rvd, NULL, NULL))
1600			spa_async_request(spa, SPA_ASYNC_RESILVER);
1601	}
1602
1603	error = 0;
1604out:
1605	spa->spa_minref = refcount_count(&spa->spa_refcount);
1606	if (error && error != EBADF)
1607		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1608	spa->spa_load_state = SPA_LOAD_NONE;
1609	spa->spa_ena = 0;
1610
1611	return (error);
1612}
1613
1614/*
1615 * Pool Open/Import
1616 *
1617 * The import case is identical to an open except that the configuration is sent
1618 * down from userland, instead of grabbed from the configuration cache.  For the
1619 * case of an open, the pool configuration will exist in the
1620 * POOL_STATE_UNINITIALIZED state.
1621 *
1622 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1623 * the same time open the pool, without having to keep around the spa_t in some
1624 * ambiguous state.
1625 */
1626static int
1627spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1628{
1629	spa_t *spa;
1630	int error;
1631	int locked = B_FALSE;
1632
1633	*spapp = NULL;
1634
1635	/*
1636	 * As disgusting as this is, we need to support recursive calls to this
1637	 * function because dsl_dir_open() is called during spa_load(), and ends
1638	 * up calling spa_open() again.  The real fix is to figure out how to
1639	 * avoid dsl_dir_open() calling this in the first place.
1640	 */
1641	if (mutex_owner(&spa_namespace_lock) != curthread) {
1642		mutex_enter(&spa_namespace_lock);
1643		locked = B_TRUE;
1644	}
1645
1646	if ((spa = spa_lookup(pool)) == NULL) {
1647		if (locked)
1648			mutex_exit(&spa_namespace_lock);
1649		return (ENOENT);
1650	}
1651	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1652
1653		spa_activate(spa, spa_mode_global);
1654
1655		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1656
1657		if (error == EBADF) {
1658			/*
1659			 * If vdev_validate() returns failure (indicated by
1660			 * EBADF), it indicates that one of the vdevs indicates
1661			 * that the pool has been exported or destroyed.  If
1662			 * this is the case, the config cache is out of sync and
1663			 * we should remove the pool from the namespace.
1664			 */
1665			spa_unload(spa);
1666			spa_deactivate(spa);
1667			spa_config_sync(spa, B_TRUE, B_TRUE);
1668			spa_remove(spa);
1669			if (locked)
1670				mutex_exit(&spa_namespace_lock);
1671			return (ENOENT);
1672		}
1673
1674		if (error) {
1675			/*
1676			 * We can't open the pool, but we still have useful
1677			 * information: the state of each vdev after the
1678			 * attempted vdev_open().  Return this to the user.
1679			 */
1680			if (config != NULL && spa->spa_root_vdev != NULL)
1681				*config = spa_config_generate(spa, NULL, -1ULL,
1682				    B_TRUE);
1683			spa_unload(spa);
1684			spa_deactivate(spa);
1685			spa->spa_last_open_failed = B_TRUE;
1686			if (locked)
1687				mutex_exit(&spa_namespace_lock);
1688			*spapp = NULL;
1689			return (error);
1690		} else {
1691			spa->spa_last_open_failed = B_FALSE;
1692		}
1693	}
1694
1695	spa_open_ref(spa, tag);
1696
1697	if (locked)
1698		mutex_exit(&spa_namespace_lock);
1699
1700	*spapp = spa;
1701
1702	if (config != NULL)
1703		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1704
1705	return (0);
1706}
1707
1708int
1709spa_open(const char *name, spa_t **spapp, void *tag)
1710{
1711	return (spa_open_common(name, spapp, tag, NULL));
1712}
1713
1714/*
1715 * Lookup the given spa_t, incrementing the inject count in the process,
1716 * preventing it from being exported or destroyed.
1717 */
1718spa_t *
1719spa_inject_addref(char *name)
1720{
1721	spa_t *spa;
1722
1723	mutex_enter(&spa_namespace_lock);
1724	if ((spa = spa_lookup(name)) == NULL) {
1725		mutex_exit(&spa_namespace_lock);
1726		return (NULL);
1727	}
1728	spa->spa_inject_ref++;
1729	mutex_exit(&spa_namespace_lock);
1730
1731	return (spa);
1732}
1733
1734void
1735spa_inject_delref(spa_t *spa)
1736{
1737	mutex_enter(&spa_namespace_lock);
1738	spa->spa_inject_ref--;
1739	mutex_exit(&spa_namespace_lock);
1740}
1741
1742/*
1743 * Add spares device information to the nvlist.
1744 */
1745static void
1746spa_add_spares(spa_t *spa, nvlist_t *config)
1747{
1748	nvlist_t **spares;
1749	uint_t i, nspares;
1750	nvlist_t *nvroot;
1751	uint64_t guid;
1752	vdev_stat_t *vs;
1753	uint_t vsc;
1754	uint64_t pool;
1755
1756	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1757
1758	if (spa->spa_spares.sav_count == 0)
1759		return;
1760
1761	VERIFY(nvlist_lookup_nvlist(config,
1762	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1763	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1764	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1765	if (nspares != 0) {
1766		VERIFY(nvlist_add_nvlist_array(nvroot,
1767		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1768		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1769		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1770
1771		/*
1772		 * Go through and find any spares which have since been
1773		 * repurposed as an active spare.  If this is the case, update
1774		 * their status appropriately.
1775		 */
1776		for (i = 0; i < nspares; i++) {
1777			VERIFY(nvlist_lookup_uint64(spares[i],
1778			    ZPOOL_CONFIG_GUID, &guid) == 0);
1779			if (spa_spare_exists(guid, &pool, NULL) &&
1780			    pool != 0ULL) {
1781				VERIFY(nvlist_lookup_uint64_array(
1782				    spares[i], ZPOOL_CONFIG_STATS,
1783				    (uint64_t **)&vs, &vsc) == 0);
1784				vs->vs_state = VDEV_STATE_CANT_OPEN;
1785				vs->vs_aux = VDEV_AUX_SPARED;
1786			}
1787		}
1788	}
1789}
1790
1791/*
1792 * Add l2cache device information to the nvlist, including vdev stats.
1793 */
1794static void
1795spa_add_l2cache(spa_t *spa, nvlist_t *config)
1796{
1797	nvlist_t **l2cache;
1798	uint_t i, j, nl2cache;
1799	nvlist_t *nvroot;
1800	uint64_t guid;
1801	vdev_t *vd;
1802	vdev_stat_t *vs;
1803	uint_t vsc;
1804
1805	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1806
1807	if (spa->spa_l2cache.sav_count == 0)
1808		return;
1809
1810	VERIFY(nvlist_lookup_nvlist(config,
1811	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1812	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1813	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1814	if (nl2cache != 0) {
1815		VERIFY(nvlist_add_nvlist_array(nvroot,
1816		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1817		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1818		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1819
1820		/*
1821		 * Update level 2 cache device stats.
1822		 */
1823
1824		for (i = 0; i < nl2cache; i++) {
1825			VERIFY(nvlist_lookup_uint64(l2cache[i],
1826			    ZPOOL_CONFIG_GUID, &guid) == 0);
1827
1828			vd = NULL;
1829			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1830				if (guid ==
1831				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1832					vd = spa->spa_l2cache.sav_vdevs[j];
1833					break;
1834				}
1835			}
1836			ASSERT(vd != NULL);
1837
1838			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1839			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1840			vdev_get_stats(vd, vs);
1841		}
1842	}
1843}
1844
1845int
1846spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1847{
1848	int error;
1849	spa_t *spa;
1850
1851	*config = NULL;
1852	error = spa_open_common(name, &spa, FTAG, config);
1853
1854	if (spa != NULL) {
1855		/*
1856		 * This still leaves a window of inconsistency where the spares
1857		 * or l2cache devices could change and the config would be
1858		 * self-inconsistent.
1859		 */
1860		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1861
1862		if (*config != NULL) {
1863			VERIFY(nvlist_add_uint64(*config,
1864			    ZPOOL_CONFIG_ERRCOUNT,
1865			    spa_get_errlog_size(spa)) == 0);
1866
1867			if (spa_suspended(spa))
1868				VERIFY(nvlist_add_uint64(*config,
1869				    ZPOOL_CONFIG_SUSPENDED,
1870				    spa->spa_failmode) == 0);
1871
1872			spa_add_spares(spa, *config);
1873			spa_add_l2cache(spa, *config);
1874		}
1875	}
1876
1877	/*
1878	 * We want to get the alternate root even for faulted pools, so we cheat
1879	 * and call spa_lookup() directly.
1880	 */
1881	if (altroot) {
1882		if (spa == NULL) {
1883			mutex_enter(&spa_namespace_lock);
1884			spa = spa_lookup(name);
1885			if (spa)
1886				spa_altroot(spa, altroot, buflen);
1887			else
1888				altroot[0] = '\0';
1889			spa = NULL;
1890			mutex_exit(&spa_namespace_lock);
1891		} else {
1892			spa_altroot(spa, altroot, buflen);
1893		}
1894	}
1895
1896	if (spa != NULL) {
1897		spa_config_exit(spa, SCL_CONFIG, FTAG);
1898		spa_close(spa, FTAG);
1899	}
1900
1901	return (error);
1902}
1903
1904/*
1905 * Validate that the auxiliary device array is well formed.  We must have an
1906 * array of nvlists, each which describes a valid leaf vdev.  If this is an
1907 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1908 * specified, as long as they are well-formed.
1909 */
1910static int
1911spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1912    spa_aux_vdev_t *sav, const char *config, uint64_t version,
1913    vdev_labeltype_t label)
1914{
1915	nvlist_t **dev;
1916	uint_t i, ndev;
1917	vdev_t *vd;
1918	int error;
1919
1920	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1921
1922	/*
1923	 * It's acceptable to have no devs specified.
1924	 */
1925	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1926		return (0);
1927
1928	if (ndev == 0)
1929		return (EINVAL);
1930
1931	/*
1932	 * Make sure the pool is formatted with a version that supports this
1933	 * device type.
1934	 */
1935	if (spa_version(spa) < version)
1936		return (ENOTSUP);
1937
1938	/*
1939	 * Set the pending device list so we correctly handle device in-use
1940	 * checking.
1941	 */
1942	sav->sav_pending = dev;
1943	sav->sav_npending = ndev;
1944
1945	for (i = 0; i < ndev; i++) {
1946		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1947		    mode)) != 0)
1948			goto out;
1949
1950		if (!vd->vdev_ops->vdev_op_leaf) {
1951			vdev_free(vd);
1952			error = EINVAL;
1953			goto out;
1954		}
1955
1956		/*
1957		 * The L2ARC currently only supports disk devices in
1958		 * kernel context.  For user-level testing, we allow it.
1959		 */
1960#ifdef _KERNEL
1961		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1962		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1963			error = ENOTBLK;
1964			goto out;
1965		}
1966#endif
1967		vd->vdev_top = vd;
1968
1969		if ((error = vdev_open(vd)) == 0 &&
1970		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1971			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1972			    vd->vdev_guid) == 0);
1973		}
1974
1975		vdev_free(vd);
1976
1977		if (error &&
1978		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1979			goto out;
1980		else
1981			error = 0;
1982	}
1983
1984out:
1985	sav->sav_pending = NULL;
1986	sav->sav_npending = 0;
1987	return (error);
1988}
1989
1990static int
1991spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1992{
1993	int error;
1994
1995	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1996
1997	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1998	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1999	    VDEV_LABEL_SPARE)) != 0) {
2000		return (error);
2001	}
2002
2003	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2004	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2005	    VDEV_LABEL_L2CACHE));
2006}
2007
2008static void
2009spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2010    const char *config)
2011{
2012	int i;
2013
2014	if (sav->sav_config != NULL) {
2015		nvlist_t **olddevs;
2016		uint_t oldndevs;
2017		nvlist_t **newdevs;
2018
2019		/*
2020		 * Generate new dev list by concatentating with the
2021		 * current dev list.
2022		 */
2023		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2024		    &olddevs, &oldndevs) == 0);
2025
2026		newdevs = kmem_alloc(sizeof (void *) *
2027		    (ndevs + oldndevs), KM_SLEEP);
2028		for (i = 0; i < oldndevs; i++)
2029			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2030			    KM_SLEEP) == 0);
2031		for (i = 0; i < ndevs; i++)
2032			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2033			    KM_SLEEP) == 0);
2034
2035		VERIFY(nvlist_remove(sav->sav_config, config,
2036		    DATA_TYPE_NVLIST_ARRAY) == 0);
2037
2038		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2039		    config, newdevs, ndevs + oldndevs) == 0);
2040		for (i = 0; i < oldndevs + ndevs; i++)
2041			nvlist_free(newdevs[i]);
2042		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2043	} else {
2044		/*
2045		 * Generate a new dev list.
2046		 */
2047		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2048		    KM_SLEEP) == 0);
2049		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2050		    devs, ndevs) == 0);
2051	}
2052}
2053
2054/*
2055 * Stop and drop level 2 ARC devices
2056 */
2057void
2058spa_l2cache_drop(spa_t *spa)
2059{
2060	vdev_t *vd;
2061	int i;
2062	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2063
2064	for (i = 0; i < sav->sav_count; i++) {
2065		uint64_t pool;
2066
2067		vd = sav->sav_vdevs[i];
2068		ASSERT(vd != NULL);
2069
2070		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2071		    pool != 0ULL && l2arc_vdev_present(vd))
2072			l2arc_remove_vdev(vd);
2073		if (vd->vdev_isl2cache)
2074			spa_l2cache_remove(vd);
2075		vdev_clear_stats(vd);
2076		(void) vdev_close(vd);
2077	}
2078}
2079
2080/*
2081 * Pool Creation
2082 */
2083int
2084spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2085    const char *history_str, nvlist_t *zplprops)
2086{
2087	spa_t *spa;
2088	char *altroot = NULL;
2089	vdev_t *rvd;
2090	dsl_pool_t *dp;
2091	dmu_tx_t *tx;
2092	int error = 0;
2093	uint64_t txg = TXG_INITIAL;
2094	nvlist_t **spares, **l2cache;
2095	uint_t nspares, nl2cache;
2096	uint64_t version;
2097
2098	/*
2099	 * If this pool already exists, return failure.
2100	 */
2101	mutex_enter(&spa_namespace_lock);
2102	if (spa_lookup(pool) != NULL) {
2103		mutex_exit(&spa_namespace_lock);
2104		return (EEXIST);
2105	}
2106
2107	/*
2108	 * Allocate a new spa_t structure.
2109	 */
2110	(void) nvlist_lookup_string(props,
2111	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2112	spa = spa_add(pool, altroot);
2113	spa_activate(spa, spa_mode_global);
2114
2115	spa->spa_uberblock.ub_txg = txg - 1;
2116
2117	if (props && (error = spa_prop_validate(spa, props))) {
2118		spa_deactivate(spa);
2119		spa_remove(spa);
2120		mutex_exit(&spa_namespace_lock);
2121		return (error);
2122	}
2123
2124	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2125	    &version) != 0)
2126		version = SPA_VERSION;
2127	ASSERT(version <= SPA_VERSION);
2128	spa->spa_uberblock.ub_version = version;
2129	spa->spa_ubsync = spa->spa_uberblock;
2130
2131	/*
2132	 * Create "The Godfather" zio to hold all async IOs
2133	 */
2134	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2135	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2136
2137	/*
2138	 * Create the root vdev.
2139	 */
2140	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141
2142	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2143
2144	ASSERT(error != 0 || rvd != NULL);
2145	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2146
2147	if (error == 0 && !zfs_allocatable_devs(nvroot))
2148		error = EINVAL;
2149
2150	if (error == 0 &&
2151	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2152	    (error = spa_validate_aux(spa, nvroot, txg,
2153	    VDEV_ALLOC_ADD)) == 0) {
2154		for (int c = 0; c < rvd->vdev_children; c++) {
2155			vdev_metaslab_set_size(rvd->vdev_child[c]);
2156			vdev_expand(rvd->vdev_child[c], txg);
2157		}
2158	}
2159
2160	spa_config_exit(spa, SCL_ALL, FTAG);
2161
2162	if (error != 0) {
2163		spa_unload(spa);
2164		spa_deactivate(spa);
2165		spa_remove(spa);
2166		mutex_exit(&spa_namespace_lock);
2167		return (error);
2168	}
2169
2170	/*
2171	 * Get the list of spares, if specified.
2172	 */
2173	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2174	    &spares, &nspares) == 0) {
2175		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2176		    KM_SLEEP) == 0);
2177		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2178		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2179		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2180		spa_load_spares(spa);
2181		spa_config_exit(spa, SCL_ALL, FTAG);
2182		spa->spa_spares.sav_sync = B_TRUE;
2183	}
2184
2185	/*
2186	 * Get the list of level 2 cache devices, if specified.
2187	 */
2188	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2189	    &l2cache, &nl2cache) == 0) {
2190		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2191		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2192		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2193		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2194		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195		spa_load_l2cache(spa);
2196		spa_config_exit(spa, SCL_ALL, FTAG);
2197		spa->spa_l2cache.sav_sync = B_TRUE;
2198	}
2199
2200	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2201	spa->spa_meta_objset = dp->dp_meta_objset;
2202
2203	tx = dmu_tx_create_assigned(dp, txg);
2204
2205	/*
2206	 * Create the pool config object.
2207	 */
2208	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2209	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2210	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2211
2212	if (zap_add(spa->spa_meta_objset,
2213	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2214	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2215		cmn_err(CE_PANIC, "failed to add pool config");
2216	}
2217
2218	/* Newly created pools with the right version are always deflated. */
2219	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2220		spa->spa_deflate = TRUE;
2221		if (zap_add(spa->spa_meta_objset,
2222		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2223		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2224			cmn_err(CE_PANIC, "failed to add deflate");
2225		}
2226	}
2227
2228	/*
2229	 * Create the deferred-free bplist object.  Turn off compression
2230	 * because sync-to-convergence takes longer if the blocksize
2231	 * keeps changing.
2232	 */
2233	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2234	    1 << 14, tx);
2235	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2236	    ZIO_COMPRESS_OFF, tx);
2237
2238	if (zap_add(spa->spa_meta_objset,
2239	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2240	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2241		cmn_err(CE_PANIC, "failed to add bplist");
2242	}
2243
2244	/*
2245	 * Create the pool's history object.
2246	 */
2247	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2248		spa_history_create_obj(spa, tx);
2249
2250	/*
2251	 * Set pool properties.
2252	 */
2253	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2254	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2255	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2256	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2257	if (props != NULL) {
2258		spa_configfile_set(spa, props, B_FALSE);
2259		spa_sync_props(spa, props, CRED(), tx);
2260	}
2261
2262	dmu_tx_commit(tx);
2263
2264	spa->spa_sync_on = B_TRUE;
2265	txg_sync_start(spa->spa_dsl_pool);
2266
2267	/*
2268	 * We explicitly wait for the first transaction to complete so that our
2269	 * bean counters are appropriately updated.
2270	 */
2271	txg_wait_synced(spa->spa_dsl_pool, txg);
2272
2273	spa_config_sync(spa, B_FALSE, B_TRUE);
2274
2275	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2276		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2277	spa_history_log_version(spa, LOG_POOL_CREATE);
2278
2279	spa->spa_minref = refcount_count(&spa->spa_refcount);
2280
2281	mutex_exit(&spa_namespace_lock);
2282
2283	return (0);
2284}
2285
2286#ifdef _KERNEL
2287/*
2288 * Get the root pool information from the root disk, then import the root pool
2289 * during the system boot up time.
2290 */
2291extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2292
2293static nvlist_t *
2294spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2295{
2296	nvlist_t *config;
2297	nvlist_t *nvtop, *nvroot;
2298	uint64_t pgid;
2299
2300	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2301		return (NULL);
2302
2303	/*
2304	 * Add this top-level vdev to the child array.
2305	 */
2306	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2307	    &nvtop) == 0);
2308	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2309	    &pgid) == 0);
2310	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2311
2312	/*
2313	 * Put this pool's top-level vdevs into a root vdev.
2314	 */
2315	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2316	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2317	    VDEV_TYPE_ROOT) == 0);
2318	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2319	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2320	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2321	    &nvtop, 1) == 0);
2322
2323	/*
2324	 * Replace the existing vdev_tree with the new root vdev in
2325	 * this pool's configuration (remove the old, add the new).
2326	 */
2327	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2328	nvlist_free(nvroot);
2329	return (config);
2330}
2331
2332/*
2333 * Walk the vdev tree and see if we can find a device with "better"
2334 * configuration. A configuration is "better" if the label on that
2335 * device has a more recent txg.
2336 */
2337static void
2338spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2339{
2340	for (int c = 0; c < vd->vdev_children; c++)
2341		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2342
2343	if (vd->vdev_ops->vdev_op_leaf) {
2344		nvlist_t *label;
2345		uint64_t label_txg;
2346
2347		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2348		    &label) != 0)
2349			return;
2350
2351		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2352		    &label_txg) == 0);
2353
2354		/*
2355		 * Do we have a better boot device?
2356		 */
2357		if (label_txg > *txg) {
2358			*txg = label_txg;
2359			*avd = vd;
2360		}
2361		nvlist_free(label);
2362	}
2363}
2364
2365/*
2366 * Import a root pool.
2367 *
2368 * For x86. devpath_list will consist of devid and/or physpath name of
2369 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2370 * The GRUB "findroot" command will return the vdev we should boot.
2371 *
2372 * For Sparc, devpath_list consists the physpath name of the booting device
2373 * no matter the rootpool is a single device pool or a mirrored pool.
2374 * e.g.
2375 *	"/pci@1f,0/ide@d/disk@0,0:a"
2376 */
2377int
2378spa_import_rootpool(char *devpath, char *devid)
2379{
2380	spa_t *spa;
2381	vdev_t *rvd, *bvd, *avd = NULL;
2382	nvlist_t *config, *nvtop;
2383	uint64_t guid, txg;
2384	char *pname;
2385	int error;
2386
2387	/*
2388	 * Read the label from the boot device and generate a configuration.
2389	 */
2390	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2391		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2392		    devpath);
2393		return (EIO);
2394	}
2395
2396	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2397	    &pname) == 0);
2398	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2399
2400	mutex_enter(&spa_namespace_lock);
2401	if ((spa = spa_lookup(pname)) != NULL) {
2402		/*
2403		 * Remove the existing root pool from the namespace so that we
2404		 * can replace it with the correct config we just read in.
2405		 */
2406		spa_remove(spa);
2407	}
2408
2409	spa = spa_add(pname, NULL);
2410	spa->spa_is_root = B_TRUE;
2411	spa->spa_load_verbatim = B_TRUE;
2412
2413	/*
2414	 * Build up a vdev tree based on the boot device's label config.
2415	 */
2416	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2417	    &nvtop) == 0);
2418	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2419	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2420	    VDEV_ALLOC_ROOTPOOL);
2421	spa_config_exit(spa, SCL_ALL, FTAG);
2422	if (error) {
2423		mutex_exit(&spa_namespace_lock);
2424		nvlist_free(config);
2425		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2426		    pname);
2427		return (error);
2428	}
2429
2430	/*
2431	 * Get the boot vdev.
2432	 */
2433	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2434		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2435		    (u_longlong_t)guid);
2436		error = ENOENT;
2437		goto out;
2438	}
2439
2440	/*
2441	 * Determine if there is a better boot device.
2442	 */
2443	avd = bvd;
2444	spa_alt_rootvdev(rvd, &avd, &txg);
2445	if (avd != bvd) {
2446		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2447		    "try booting from '%s'", avd->vdev_path);
2448		error = EINVAL;
2449		goto out;
2450	}
2451
2452	/*
2453	 * If the boot device is part of a spare vdev then ensure that
2454	 * we're booting off the active spare.
2455	 */
2456	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2457	    !bvd->vdev_isspare) {
2458		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2459		    "try booting from '%s'",
2460		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2461		error = EINVAL;
2462		goto out;
2463	}
2464
2465	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2466	error = 0;
2467	spa_history_log_version(spa, LOG_POOL_IMPORT);
2468out:
2469	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2470	vdev_free(rvd);
2471	spa_config_exit(spa, SCL_ALL, FTAG);
2472	mutex_exit(&spa_namespace_lock);
2473
2474	nvlist_free(config);
2475	return (error);
2476}
2477
2478#endif
2479
2480/*
2481 * Take a pool and insert it into the namespace as if it had been loaded at
2482 * boot.
2483 */
2484int
2485spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2486{
2487	spa_t *spa;
2488	char *altroot = NULL;
2489
2490	mutex_enter(&spa_namespace_lock);
2491	if (spa_lookup(pool) != NULL) {
2492		mutex_exit(&spa_namespace_lock);
2493		return (EEXIST);
2494	}
2495
2496	(void) nvlist_lookup_string(props,
2497	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2498	spa = spa_add(pool, altroot);
2499
2500	spa->spa_load_verbatim = B_TRUE;
2501
2502	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2503
2504	if (props != NULL)
2505		spa_configfile_set(spa, props, B_FALSE);
2506
2507	spa_config_sync(spa, B_FALSE, B_TRUE);
2508
2509	mutex_exit(&spa_namespace_lock);
2510	spa_history_log_version(spa, LOG_POOL_IMPORT);
2511
2512	return (0);
2513}
2514
2515/*
2516 * Import a non-root pool into the system.
2517 */
2518int
2519spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2520{
2521	spa_t *spa;
2522	char *altroot = NULL;
2523	int error;
2524	nvlist_t *nvroot;
2525	nvlist_t **spares, **l2cache;
2526	uint_t nspares, nl2cache;
2527
2528	/*
2529	 * If a pool with this name exists, return failure.
2530	 */
2531	mutex_enter(&spa_namespace_lock);
2532	if ((spa = spa_lookup(pool)) != NULL) {
2533		mutex_exit(&spa_namespace_lock);
2534		return (EEXIST);
2535	}
2536
2537	/*
2538	 * Create and initialize the spa structure.
2539	 */
2540	(void) nvlist_lookup_string(props,
2541	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2542	spa = spa_add(pool, altroot);
2543	spa_activate(spa, spa_mode_global);
2544
2545	/*
2546	 * Don't start async tasks until we know everything is healthy.
2547	 */
2548	spa_async_suspend(spa);
2549
2550	/*
2551	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2552	 * because the user-supplied config is actually the one to trust when
2553	 * doing an import.
2554	 */
2555	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2556
2557	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2558	/*
2559	 * Toss any existing sparelist, as it doesn't have any validity
2560	 * anymore, and conflicts with spa_has_spare().
2561	 */
2562	if (spa->spa_spares.sav_config) {
2563		nvlist_free(spa->spa_spares.sav_config);
2564		spa->spa_spares.sav_config = NULL;
2565		spa_load_spares(spa);
2566	}
2567	if (spa->spa_l2cache.sav_config) {
2568		nvlist_free(spa->spa_l2cache.sav_config);
2569		spa->spa_l2cache.sav_config = NULL;
2570		spa_load_l2cache(spa);
2571	}
2572
2573	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2574	    &nvroot) == 0);
2575	if (error == 0)
2576		error = spa_validate_aux(spa, nvroot, -1ULL,
2577		    VDEV_ALLOC_SPARE);
2578	if (error == 0)
2579		error = spa_validate_aux(spa, nvroot, -1ULL,
2580		    VDEV_ALLOC_L2CACHE);
2581	spa_config_exit(spa, SCL_ALL, FTAG);
2582
2583	if (props != NULL)
2584		spa_configfile_set(spa, props, B_FALSE);
2585
2586	if (error != 0 || (props && spa_writeable(spa) &&
2587	    (error = spa_prop_set(spa, props)))) {
2588		spa_unload(spa);
2589		spa_deactivate(spa);
2590		spa_remove(spa);
2591		mutex_exit(&spa_namespace_lock);
2592		return (error);
2593	}
2594
2595	spa_async_resume(spa);
2596
2597	/*
2598	 * Override any spares and level 2 cache devices as specified by
2599	 * the user, as these may have correct device names/devids, etc.
2600	 */
2601	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2602	    &spares, &nspares) == 0) {
2603		if (spa->spa_spares.sav_config)
2604			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2605			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2606		else
2607			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2608			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2609		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2610		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2611		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2612		spa_load_spares(spa);
2613		spa_config_exit(spa, SCL_ALL, FTAG);
2614		spa->spa_spares.sav_sync = B_TRUE;
2615	}
2616	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2617	    &l2cache, &nl2cache) == 0) {
2618		if (spa->spa_l2cache.sav_config)
2619			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2620			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2621		else
2622			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2623			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2624		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2625		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2626		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2627		spa_load_l2cache(spa);
2628		spa_config_exit(spa, SCL_ALL, FTAG);
2629		spa->spa_l2cache.sav_sync = B_TRUE;
2630	}
2631
2632	if (spa_writeable(spa)) {
2633		/*
2634		 * Update the config cache to include the newly-imported pool.
2635		 */
2636		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2637	}
2638
2639	/*
2640	 * It's possible that the pool was expanded while it was exported.
2641	 * We kick off an async task to handle this for us.
2642	 */
2643	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2644
2645	mutex_exit(&spa_namespace_lock);
2646	spa_history_log_version(spa, LOG_POOL_IMPORT);
2647
2648	return (0);
2649}
2650
2651
2652/*
2653 * This (illegal) pool name is used when temporarily importing a spa_t in order
2654 * to get the vdev stats associated with the imported devices.
2655 */
2656#define	TRYIMPORT_NAME	"$import"
2657
2658nvlist_t *
2659spa_tryimport(nvlist_t *tryconfig)
2660{
2661	nvlist_t *config = NULL;
2662	char *poolname;
2663	spa_t *spa;
2664	uint64_t state;
2665	int error;
2666
2667	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2668		return (NULL);
2669
2670	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2671		return (NULL);
2672
2673	/*
2674	 * Create and initialize the spa structure.
2675	 */
2676	mutex_enter(&spa_namespace_lock);
2677	spa = spa_add(TRYIMPORT_NAME, NULL);
2678	spa_activate(spa, FREAD);
2679
2680	/*
2681	 * Pass off the heavy lifting to spa_load().
2682	 * Pass TRUE for mosconfig because the user-supplied config
2683	 * is actually the one to trust when doing an import.
2684	 */
2685	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2686
2687	/*
2688	 * If 'tryconfig' was at least parsable, return the current config.
2689	 */
2690	if (spa->spa_root_vdev != NULL) {
2691		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2692		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2693		    poolname) == 0);
2694		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2695		    state) == 0);
2696		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2697		    spa->spa_uberblock.ub_timestamp) == 0);
2698
2699		/*
2700		 * If the bootfs property exists on this pool then we
2701		 * copy it out so that external consumers can tell which
2702		 * pools are bootable.
2703		 */
2704		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2705			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2706
2707			/*
2708			 * We have to play games with the name since the
2709			 * pool was opened as TRYIMPORT_NAME.
2710			 */
2711			if (dsl_dsobj_to_dsname(spa_name(spa),
2712			    spa->spa_bootfs, tmpname) == 0) {
2713				char *cp;
2714				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2715
2716				cp = strchr(tmpname, '/');
2717				if (cp == NULL) {
2718					(void) strlcpy(dsname, tmpname,
2719					    MAXPATHLEN);
2720				} else {
2721					(void) snprintf(dsname, MAXPATHLEN,
2722					    "%s/%s", poolname, ++cp);
2723				}
2724				VERIFY(nvlist_add_string(config,
2725				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2726				kmem_free(dsname, MAXPATHLEN);
2727			}
2728			kmem_free(tmpname, MAXPATHLEN);
2729		}
2730
2731		/*
2732		 * Add the list of hot spares and level 2 cache devices.
2733		 */
2734		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2735		spa_add_spares(spa, config);
2736		spa_add_l2cache(spa, config);
2737		spa_config_exit(spa, SCL_CONFIG, FTAG);
2738	}
2739
2740	spa_unload(spa);
2741	spa_deactivate(spa);
2742	spa_remove(spa);
2743	mutex_exit(&spa_namespace_lock);
2744
2745	return (config);
2746}
2747
2748/*
2749 * Pool export/destroy
2750 *
2751 * The act of destroying or exporting a pool is very simple.  We make sure there
2752 * is no more pending I/O and any references to the pool are gone.  Then, we
2753 * update the pool state and sync all the labels to disk, removing the
2754 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2755 * we don't sync the labels or remove the configuration cache.
2756 */
2757static int
2758spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2759    boolean_t force, boolean_t hardforce)
2760{
2761	spa_t *spa;
2762
2763	if (oldconfig)
2764		*oldconfig = NULL;
2765
2766	if (!(spa_mode_global & FWRITE))
2767		return (EROFS);
2768
2769	mutex_enter(&spa_namespace_lock);
2770	if ((spa = spa_lookup(pool)) == NULL) {
2771		mutex_exit(&spa_namespace_lock);
2772		return (ENOENT);
2773	}
2774
2775	/*
2776	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2777	 * reacquire the namespace lock, and see if we can export.
2778	 */
2779	spa_open_ref(spa, FTAG);
2780	mutex_exit(&spa_namespace_lock);
2781	spa_async_suspend(spa);
2782	mutex_enter(&spa_namespace_lock);
2783	spa_close(spa, FTAG);
2784
2785	/*
2786	 * The pool will be in core if it's openable,
2787	 * in which case we can modify its state.
2788	 */
2789	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2790		/*
2791		 * Objsets may be open only because they're dirty, so we
2792		 * have to force it to sync before checking spa_refcnt.
2793		 */
2794		txg_wait_synced(spa->spa_dsl_pool, 0);
2795
2796		/*
2797		 * A pool cannot be exported or destroyed if there are active
2798		 * references.  If we are resetting a pool, allow references by
2799		 * fault injection handlers.
2800		 */
2801		if (!spa_refcount_zero(spa) ||
2802		    (spa->spa_inject_ref != 0 &&
2803		    new_state != POOL_STATE_UNINITIALIZED)) {
2804			spa_async_resume(spa);
2805			mutex_exit(&spa_namespace_lock);
2806			return (EBUSY);
2807		}
2808
2809		/*
2810		 * A pool cannot be exported if it has an active shared spare.
2811		 * This is to prevent other pools stealing the active spare
2812		 * from an exported pool. At user's own will, such pool can
2813		 * be forcedly exported.
2814		 */
2815		if (!force && new_state == POOL_STATE_EXPORTED &&
2816		    spa_has_active_shared_spare(spa)) {
2817			spa_async_resume(spa);
2818			mutex_exit(&spa_namespace_lock);
2819			return (EXDEV);
2820		}
2821
2822		/*
2823		 * We want this to be reflected on every label,
2824		 * so mark them all dirty.  spa_unload() will do the
2825		 * final sync that pushes these changes out.
2826		 */
2827		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2828			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2829			spa->spa_state = new_state;
2830			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2831			vdev_config_dirty(spa->spa_root_vdev);
2832			spa_config_exit(spa, SCL_ALL, FTAG);
2833		}
2834	}
2835
2836	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2837
2838	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2839		spa_unload(spa);
2840		spa_deactivate(spa);
2841	}
2842
2843	if (oldconfig && spa->spa_config)
2844		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2845
2846	if (new_state != POOL_STATE_UNINITIALIZED) {
2847		if (!hardforce)
2848			spa_config_sync(spa, B_TRUE, B_TRUE);
2849		spa_remove(spa);
2850	}
2851	mutex_exit(&spa_namespace_lock);
2852
2853	return (0);
2854}
2855
2856/*
2857 * Destroy a storage pool.
2858 */
2859int
2860spa_destroy(char *pool)
2861{
2862	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2863	    B_FALSE, B_FALSE));
2864}
2865
2866/*
2867 * Export a storage pool.
2868 */
2869int
2870spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2871    boolean_t hardforce)
2872{
2873	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2874	    force, hardforce));
2875}
2876
2877/*
2878 * Similar to spa_export(), this unloads the spa_t without actually removing it
2879 * from the namespace in any way.
2880 */
2881int
2882spa_reset(char *pool)
2883{
2884	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2885	    B_FALSE, B_FALSE));
2886}
2887
2888/*
2889 * ==========================================================================
2890 * Device manipulation
2891 * ==========================================================================
2892 */
2893
2894/*
2895 * Add a device to a storage pool.
2896 */
2897int
2898spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2899{
2900	uint64_t txg;
2901	int error;
2902	vdev_t *rvd = spa->spa_root_vdev;
2903	vdev_t *vd, *tvd;
2904	nvlist_t **spares, **l2cache;
2905	uint_t nspares, nl2cache;
2906
2907	txg = spa_vdev_enter(spa);
2908
2909	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2910	    VDEV_ALLOC_ADD)) != 0)
2911		return (spa_vdev_exit(spa, NULL, txg, error));
2912
2913	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2914
2915	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2916	    &nspares) != 0)
2917		nspares = 0;
2918
2919	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2920	    &nl2cache) != 0)
2921		nl2cache = 0;
2922
2923	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2924		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2925
2926	if (vd->vdev_children != 0 &&
2927	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2928		return (spa_vdev_exit(spa, vd, txg, error));
2929
2930	/*
2931	 * We must validate the spares and l2cache devices after checking the
2932	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2933	 */
2934	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2935		return (spa_vdev_exit(spa, vd, txg, error));
2936
2937	/*
2938	 * Transfer each new top-level vdev from vd to rvd.
2939	 */
2940	for (int c = 0; c < vd->vdev_children; c++) {
2941		tvd = vd->vdev_child[c];
2942		vdev_remove_child(vd, tvd);
2943		tvd->vdev_id = rvd->vdev_children;
2944		vdev_add_child(rvd, tvd);
2945		vdev_config_dirty(tvd);
2946	}
2947
2948	if (nspares != 0) {
2949		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2950		    ZPOOL_CONFIG_SPARES);
2951		spa_load_spares(spa);
2952		spa->spa_spares.sav_sync = B_TRUE;
2953	}
2954
2955	if (nl2cache != 0) {
2956		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2957		    ZPOOL_CONFIG_L2CACHE);
2958		spa_load_l2cache(spa);
2959		spa->spa_l2cache.sav_sync = B_TRUE;
2960	}
2961
2962	/*
2963	 * We have to be careful when adding new vdevs to an existing pool.
2964	 * If other threads start allocating from these vdevs before we
2965	 * sync the config cache, and we lose power, then upon reboot we may
2966	 * fail to open the pool because there are DVAs that the config cache
2967	 * can't translate.  Therefore, we first add the vdevs without
2968	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2969	 * and then let spa_config_update() initialize the new metaslabs.
2970	 *
2971	 * spa_load() checks for added-but-not-initialized vdevs, so that
2972	 * if we lose power at any point in this sequence, the remaining
2973	 * steps will be completed the next time we load the pool.
2974	 */
2975	(void) spa_vdev_exit(spa, vd, txg, 0);
2976
2977	mutex_enter(&spa_namespace_lock);
2978	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2979	mutex_exit(&spa_namespace_lock);
2980
2981	return (0);
2982}
2983
2984/*
2985 * Attach a device to a mirror.  The arguments are the path to any device
2986 * in the mirror, and the nvroot for the new device.  If the path specifies
2987 * a device that is not mirrored, we automatically insert the mirror vdev.
2988 *
2989 * If 'replacing' is specified, the new device is intended to replace the
2990 * existing device; in this case the two devices are made into their own
2991 * mirror using the 'replacing' vdev, which is functionally identical to
2992 * the mirror vdev (it actually reuses all the same ops) but has a few
2993 * extra rules: you can't attach to it after it's been created, and upon
2994 * completion of resilvering, the first disk (the one being replaced)
2995 * is automatically detached.
2996 */
2997int
2998spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2999{
3000	uint64_t txg, open_txg;
3001	vdev_t *rvd = spa->spa_root_vdev;
3002	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3003	vdev_ops_t *pvops;
3004	char *oldvdpath, *newvdpath;
3005	int newvd_isspare;
3006	int error;
3007
3008	txg = spa_vdev_enter(spa);
3009
3010	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3011
3012	if (oldvd == NULL)
3013		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3014
3015	if (!oldvd->vdev_ops->vdev_op_leaf)
3016		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3017
3018	pvd = oldvd->vdev_parent;
3019
3020	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3021	    VDEV_ALLOC_ADD)) != 0)
3022		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3023
3024	if (newrootvd->vdev_children != 1)
3025		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3026
3027	newvd = newrootvd->vdev_child[0];
3028
3029	if (!newvd->vdev_ops->vdev_op_leaf)
3030		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3031
3032	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3033		return (spa_vdev_exit(spa, newrootvd, txg, error));
3034
3035	/*
3036	 * Spares can't replace logs
3037	 */
3038	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3039		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3040
3041	if (!replacing) {
3042		/*
3043		 * For attach, the only allowable parent is a mirror or the root
3044		 * vdev.
3045		 */
3046		if (pvd->vdev_ops != &vdev_mirror_ops &&
3047		    pvd->vdev_ops != &vdev_root_ops)
3048			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3049
3050		pvops = &vdev_mirror_ops;
3051	} else {
3052		/*
3053		 * Active hot spares can only be replaced by inactive hot
3054		 * spares.
3055		 */
3056		if (pvd->vdev_ops == &vdev_spare_ops &&
3057		    pvd->vdev_child[1] == oldvd &&
3058		    !spa_has_spare(spa, newvd->vdev_guid))
3059			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3060
3061		/*
3062		 * If the source is a hot spare, and the parent isn't already a
3063		 * spare, then we want to create a new hot spare.  Otherwise, we
3064		 * want to create a replacing vdev.  The user is not allowed to
3065		 * attach to a spared vdev child unless the 'isspare' state is
3066		 * the same (spare replaces spare, non-spare replaces
3067		 * non-spare).
3068		 */
3069		if (pvd->vdev_ops == &vdev_replacing_ops)
3070			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3071		else if (pvd->vdev_ops == &vdev_spare_ops &&
3072		    newvd->vdev_isspare != oldvd->vdev_isspare)
3073			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3074		else if (pvd->vdev_ops != &vdev_spare_ops &&
3075		    newvd->vdev_isspare)
3076			pvops = &vdev_spare_ops;
3077		else
3078			pvops = &vdev_replacing_ops;
3079	}
3080
3081	/*
3082	 * Make sure the new device is big enough.
3083	 */
3084	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3085		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3086
3087	/*
3088	 * The new device cannot have a higher alignment requirement
3089	 * than the top-level vdev.
3090	 */
3091	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3092		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3093
3094	/*
3095	 * If this is an in-place replacement, update oldvd's path and devid
3096	 * to make it distinguishable from newvd, and unopenable from now on.
3097	 */
3098	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3099		spa_strfree(oldvd->vdev_path);
3100		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3101		    KM_SLEEP);
3102		(void) sprintf(oldvd->vdev_path, "%s/%s",
3103		    newvd->vdev_path, "old");
3104		if (oldvd->vdev_devid != NULL) {
3105			spa_strfree(oldvd->vdev_devid);
3106			oldvd->vdev_devid = NULL;
3107		}
3108	}
3109
3110	/*
3111	 * If the parent is not a mirror, or if we're replacing, insert the new
3112	 * mirror/replacing/spare vdev above oldvd.
3113	 */
3114	if (pvd->vdev_ops != pvops)
3115		pvd = vdev_add_parent(oldvd, pvops);
3116
3117	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3118	ASSERT(pvd->vdev_ops == pvops);
3119	ASSERT(oldvd->vdev_parent == pvd);
3120
3121	/*
3122	 * Extract the new device from its root and add it to pvd.
3123	 */
3124	vdev_remove_child(newrootvd, newvd);
3125	newvd->vdev_id = pvd->vdev_children;
3126	vdev_add_child(pvd, newvd);
3127
3128	tvd = newvd->vdev_top;
3129	ASSERT(pvd->vdev_top == tvd);
3130	ASSERT(tvd->vdev_parent == rvd);
3131
3132	vdev_config_dirty(tvd);
3133
3134	/*
3135	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3136	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3137	 */
3138	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3139
3140	vdev_dtl_dirty(newvd, DTL_MISSING,
3141	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3142
3143	if (newvd->vdev_isspare) {
3144		spa_spare_activate(newvd);
3145		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3146	}
3147
3148	oldvdpath = spa_strdup(oldvd->vdev_path);
3149	newvdpath = spa_strdup(newvd->vdev_path);
3150	newvd_isspare = newvd->vdev_isspare;
3151
3152	/*
3153	 * Mark newvd's DTL dirty in this txg.
3154	 */
3155	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3156
3157	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3158
3159	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3160	    CRED(),  "%s vdev=%s %s vdev=%s",
3161	    replacing && newvd_isspare ? "spare in" :
3162	    replacing ? "replace" : "attach", newvdpath,
3163	    replacing ? "for" : "to", oldvdpath);
3164
3165	spa_strfree(oldvdpath);
3166	spa_strfree(newvdpath);
3167
3168	/*
3169	 * Kick off a resilver to update newvd.
3170	 */
3171	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3172
3173	return (0);
3174}
3175
3176/*
3177 * Detach a device from a mirror or replacing vdev.
3178 * If 'replace_done' is specified, only detach if the parent
3179 * is a replacing vdev.
3180 */
3181int
3182spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3183{
3184	uint64_t txg;
3185	int error;
3186	vdev_t *rvd = spa->spa_root_vdev;
3187	vdev_t *vd, *pvd, *cvd, *tvd;
3188	boolean_t unspare = B_FALSE;
3189	uint64_t unspare_guid;
3190	size_t len;
3191
3192	txg = spa_vdev_enter(spa);
3193
3194	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3195
3196	if (vd == NULL)
3197		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3198
3199	if (!vd->vdev_ops->vdev_op_leaf)
3200		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3201
3202	pvd = vd->vdev_parent;
3203
3204	/*
3205	 * If the parent/child relationship is not as expected, don't do it.
3206	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3207	 * vdev that's replacing B with C.  The user's intent in replacing
3208	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3209	 * the replace by detaching C, the expected behavior is to end up
3210	 * M(A,B).  But suppose that right after deciding to detach C,
3211	 * the replacement of B completes.  We would have M(A,C), and then
3212	 * ask to detach C, which would leave us with just A -- not what
3213	 * the user wanted.  To prevent this, we make sure that the
3214	 * parent/child relationship hasn't changed -- in this example,
3215	 * that C's parent is still the replacing vdev R.
3216	 */
3217	if (pvd->vdev_guid != pguid && pguid != 0)
3218		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3219
3220	/*
3221	 * If replace_done is specified, only remove this device if it's
3222	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3223	 * disk can be removed.
3224	 */
3225	if (replace_done) {
3226		if (pvd->vdev_ops == &vdev_replacing_ops) {
3227			if (vd->vdev_id != 0)
3228				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3229		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3230			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3231		}
3232	}
3233
3234	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3235	    spa_version(spa) >= SPA_VERSION_SPARES);
3236
3237	/*
3238	 * Only mirror, replacing, and spare vdevs support detach.
3239	 */
3240	if (pvd->vdev_ops != &vdev_replacing_ops &&
3241	    pvd->vdev_ops != &vdev_mirror_ops &&
3242	    pvd->vdev_ops != &vdev_spare_ops)
3243		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3244
3245	/*
3246	 * If this device has the only valid copy of some data,
3247	 * we cannot safely detach it.
3248	 */
3249	if (vdev_dtl_required(vd))
3250		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3251
3252	ASSERT(pvd->vdev_children >= 2);
3253
3254	/*
3255	 * If we are detaching the second disk from a replacing vdev, then
3256	 * check to see if we changed the original vdev's path to have "/old"
3257	 * at the end in spa_vdev_attach().  If so, undo that change now.
3258	 */
3259	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3260	    pvd->vdev_child[0]->vdev_path != NULL &&
3261	    pvd->vdev_child[1]->vdev_path != NULL) {
3262		ASSERT(pvd->vdev_child[1] == vd);
3263		cvd = pvd->vdev_child[0];
3264		len = strlen(vd->vdev_path);
3265		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3266		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3267			spa_strfree(cvd->vdev_path);
3268			cvd->vdev_path = spa_strdup(vd->vdev_path);
3269		}
3270	}
3271
3272	/*
3273	 * If we are detaching the original disk from a spare, then it implies
3274	 * that the spare should become a real disk, and be removed from the
3275	 * active spare list for the pool.
3276	 */
3277	if (pvd->vdev_ops == &vdev_spare_ops &&
3278	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3279		unspare = B_TRUE;
3280
3281	/*
3282	 * Erase the disk labels so the disk can be used for other things.
3283	 * This must be done after all other error cases are handled,
3284	 * but before we disembowel vd (so we can still do I/O to it).
3285	 * But if we can't do it, don't treat the error as fatal --
3286	 * it may be that the unwritability of the disk is the reason
3287	 * it's being detached!
3288	 */
3289	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3290
3291	/*
3292	 * Remove vd from its parent and compact the parent's children.
3293	 */
3294	vdev_remove_child(pvd, vd);
3295	vdev_compact_children(pvd);
3296
3297	/*
3298	 * Remember one of the remaining children so we can get tvd below.
3299	 */
3300	cvd = pvd->vdev_child[0];
3301
3302	/*
3303	 * If we need to remove the remaining child from the list of hot spares,
3304	 * do it now, marking the vdev as no longer a spare in the process.
3305	 * We must do this before vdev_remove_parent(), because that can
3306	 * change the GUID if it creates a new toplevel GUID.  For a similar
3307	 * reason, we must remove the spare now, in the same txg as the detach;
3308	 * otherwise someone could attach a new sibling, change the GUID, and
3309	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3310	 */
3311	if (unspare) {
3312		ASSERT(cvd->vdev_isspare);
3313		spa_spare_remove(cvd);
3314		unspare_guid = cvd->vdev_guid;
3315		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3316	}
3317
3318	/*
3319	 * If the parent mirror/replacing vdev only has one child,
3320	 * the parent is no longer needed.  Remove it from the tree.
3321	 */
3322	if (pvd->vdev_children == 1)
3323		vdev_remove_parent(cvd);
3324
3325	/*
3326	 * We don't set tvd until now because the parent we just removed
3327	 * may have been the previous top-level vdev.
3328	 */
3329	tvd = cvd->vdev_top;
3330	ASSERT(tvd->vdev_parent == rvd);
3331
3332	/*
3333	 * Reevaluate the parent vdev state.
3334	 */
3335	vdev_propagate_state(cvd);
3336
3337	/*
3338	 * If the 'autoexpand' property is set on the pool then automatically
3339	 * try to expand the size of the pool. For example if the device we
3340	 * just detached was smaller than the others, it may be possible to
3341	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3342	 * first so that we can obtain the updated sizes of the leaf vdevs.
3343	 */
3344	if (spa->spa_autoexpand) {
3345		vdev_reopen(tvd);
3346		vdev_expand(tvd, txg);
3347	}
3348
3349	vdev_config_dirty(tvd);
3350
3351	/*
3352	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3353	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3354	 * But first make sure we're not on any *other* txg's DTL list, to
3355	 * prevent vd from being accessed after it's freed.
3356	 */
3357	for (int t = 0; t < TXG_SIZE; t++)
3358		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3359	vd->vdev_detached = B_TRUE;
3360	vdev_dirty(tvd, VDD_DTL, vd, txg);
3361
3362	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3363
3364	error = spa_vdev_exit(spa, vd, txg, 0);
3365
3366	/*
3367	 * If this was the removal of the original device in a hot spare vdev,
3368	 * then we want to go through and remove the device from the hot spare
3369	 * list of every other pool.
3370	 */
3371	if (unspare) {
3372		spa_t *myspa = spa;
3373		spa = NULL;
3374		mutex_enter(&spa_namespace_lock);
3375		while ((spa = spa_next(spa)) != NULL) {
3376			if (spa->spa_state != POOL_STATE_ACTIVE)
3377				continue;
3378			if (spa == myspa)
3379				continue;
3380			spa_open_ref(spa, FTAG);
3381			mutex_exit(&spa_namespace_lock);
3382			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3383			mutex_enter(&spa_namespace_lock);
3384			spa_close(spa, FTAG);
3385		}
3386		mutex_exit(&spa_namespace_lock);
3387	}
3388
3389	return (error);
3390}
3391
3392static nvlist_t *
3393spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3394{
3395	for (int i = 0; i < count; i++) {
3396		uint64_t guid;
3397
3398		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3399		    &guid) == 0);
3400
3401		if (guid == target_guid)
3402			return (nvpp[i]);
3403	}
3404
3405	return (NULL);
3406}
3407
3408static void
3409spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3410	nvlist_t *dev_to_remove)
3411{
3412	nvlist_t **newdev = NULL;
3413
3414	if (count > 1)
3415		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3416
3417	for (int i = 0, j = 0; i < count; i++) {
3418		if (dev[i] == dev_to_remove)
3419			continue;
3420		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3421	}
3422
3423	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3424	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3425
3426	for (int i = 0; i < count - 1; i++)
3427		nvlist_free(newdev[i]);
3428
3429	if (count > 1)
3430		kmem_free(newdev, (count - 1) * sizeof (void *));
3431}
3432
3433/*
3434 * Remove a device from the pool.  Currently, this supports removing only hot
3435 * spares and level 2 ARC devices.
3436 */
3437int
3438spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3439{
3440	vdev_t *vd;
3441	nvlist_t **spares, **l2cache, *nv;
3442	uint_t nspares, nl2cache;
3443	uint64_t txg = 0;
3444	int error = 0;
3445	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3446
3447	if (!locked)
3448		txg = spa_vdev_enter(spa);
3449
3450	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3451
3452	if (spa->spa_spares.sav_vdevs != NULL &&
3453	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3454	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3455	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3456		/*
3457		 * Only remove the hot spare if it's not currently in use
3458		 * in this pool.
3459		 */
3460		if (vd == NULL || unspare) {
3461			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3462			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3463			spa_load_spares(spa);
3464			spa->spa_spares.sav_sync = B_TRUE;
3465		} else {
3466			error = EBUSY;
3467		}
3468	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3469	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3470	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3471	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3472		/*
3473		 * Cache devices can always be removed.
3474		 */
3475		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3476		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3477		spa_load_l2cache(spa);
3478		spa->spa_l2cache.sav_sync = B_TRUE;
3479	} else if (vd != NULL) {
3480		/*
3481		 * Normal vdevs cannot be removed (yet).
3482		 */
3483		error = ENOTSUP;
3484	} else {
3485		/*
3486		 * There is no vdev of any kind with the specified guid.
3487		 */
3488		error = ENOENT;
3489	}
3490
3491	if (!locked)
3492		return (spa_vdev_exit(spa, NULL, txg, error));
3493
3494	return (error);
3495}
3496
3497/*
3498 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3499 * current spared, so we can detach it.
3500 */
3501static vdev_t *
3502spa_vdev_resilver_done_hunt(vdev_t *vd)
3503{
3504	vdev_t *newvd, *oldvd;
3505
3506	for (int c = 0; c < vd->vdev_children; c++) {
3507		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3508		if (oldvd != NULL)
3509			return (oldvd);
3510	}
3511
3512	/*
3513	 * Check for a completed replacement.
3514	 */
3515	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3516		oldvd = vd->vdev_child[0];
3517		newvd = vd->vdev_child[1];
3518
3519		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3520		    !vdev_dtl_required(oldvd))
3521			return (oldvd);
3522	}
3523
3524	/*
3525	 * Check for a completed resilver with the 'unspare' flag set.
3526	 */
3527	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3528		newvd = vd->vdev_child[0];
3529		oldvd = vd->vdev_child[1];
3530
3531		if (newvd->vdev_unspare &&
3532		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3533		    !vdev_dtl_required(oldvd)) {
3534			newvd->vdev_unspare = 0;
3535			return (oldvd);
3536		}
3537	}
3538
3539	return (NULL);
3540}
3541
3542static void
3543spa_vdev_resilver_done(spa_t *spa)
3544{
3545	vdev_t *vd, *pvd, *ppvd;
3546	uint64_t guid, sguid, pguid, ppguid;
3547
3548	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3549
3550	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3551		pvd = vd->vdev_parent;
3552		ppvd = pvd->vdev_parent;
3553		guid = vd->vdev_guid;
3554		pguid = pvd->vdev_guid;
3555		ppguid = ppvd->vdev_guid;
3556		sguid = 0;
3557		/*
3558		 * If we have just finished replacing a hot spared device, then
3559		 * we need to detach the parent's first child (the original hot
3560		 * spare) as well.
3561		 */
3562		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3563			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3564			ASSERT(ppvd->vdev_children == 2);
3565			sguid = ppvd->vdev_child[1]->vdev_guid;
3566		}
3567		spa_config_exit(spa, SCL_ALL, FTAG);
3568		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3569			return;
3570		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3571			return;
3572		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3573	}
3574
3575	spa_config_exit(spa, SCL_ALL, FTAG);
3576}
3577
3578/*
3579 * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3580 * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3581 */
3582int
3583spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3584    boolean_t ispath)
3585{
3586	vdev_t *vd;
3587	uint64_t txg;
3588
3589	txg = spa_vdev_enter(spa);
3590
3591	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3592		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3593
3594	if (!vd->vdev_ops->vdev_op_leaf)
3595		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3596
3597	if (ispath) {
3598		spa_strfree(vd->vdev_path);
3599		vd->vdev_path = spa_strdup(value);
3600	} else {
3601		if (vd->vdev_fru != NULL)
3602			spa_strfree(vd->vdev_fru);
3603		vd->vdev_fru = spa_strdup(value);
3604	}
3605
3606	vdev_config_dirty(vd->vdev_top);
3607
3608	return (spa_vdev_exit(spa, NULL, txg, 0));
3609}
3610
3611int
3612spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3613{
3614	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3615}
3616
3617int
3618spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3619{
3620	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3621}
3622
3623/*
3624 * ==========================================================================
3625 * SPA Scrubbing
3626 * ==========================================================================
3627 */
3628
3629int
3630spa_scrub(spa_t *spa, pool_scrub_type_t type)
3631{
3632	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3633
3634	if ((uint_t)type >= POOL_SCRUB_TYPES)
3635		return (ENOTSUP);
3636
3637	/*
3638	 * If a resilver was requested, but there is no DTL on a
3639	 * writeable leaf device, we have nothing to do.
3640	 */
3641	if (type == POOL_SCRUB_RESILVER &&
3642	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3643		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3644		return (0);
3645	}
3646
3647	if (type == POOL_SCRUB_EVERYTHING &&
3648	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3649	    spa->spa_dsl_pool->dp_scrub_isresilver)
3650		return (EBUSY);
3651
3652	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3653		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3654	} else if (type == POOL_SCRUB_NONE) {
3655		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3656	} else {
3657		return (EINVAL);
3658	}
3659}
3660
3661/*
3662 * ==========================================================================
3663 * SPA async task processing
3664 * ==========================================================================
3665 */
3666
3667static void
3668spa_async_remove(spa_t *spa, vdev_t *vd)
3669{
3670	if (vd->vdev_remove_wanted) {
3671		vd->vdev_remove_wanted = 0;
3672		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3673		vdev_clear(spa, vd);
3674		vdev_state_dirty(vd->vdev_top);
3675	}
3676
3677	for (int c = 0; c < vd->vdev_children; c++)
3678		spa_async_remove(spa, vd->vdev_child[c]);
3679}
3680
3681static void
3682spa_async_probe(spa_t *spa, vdev_t *vd)
3683{
3684	if (vd->vdev_probe_wanted) {
3685		vd->vdev_probe_wanted = 0;
3686		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3687	}
3688
3689	for (int c = 0; c < vd->vdev_children; c++)
3690		spa_async_probe(spa, vd->vdev_child[c]);
3691}
3692
3693static void
3694spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3695{
3696	sysevent_id_t eid;
3697	nvlist_t *attr;
3698	char *physpath;
3699
3700	if (!spa->spa_autoexpand)
3701		return;
3702
3703	for (int c = 0; c < vd->vdev_children; c++) {
3704		vdev_t *cvd = vd->vdev_child[c];
3705		spa_async_autoexpand(spa, cvd);
3706	}
3707
3708	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3709		return;
3710
3711	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3712	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3713
3714	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3715	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3716
3717	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3718	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3719
3720	nvlist_free(attr);
3721	kmem_free(physpath, MAXPATHLEN);
3722}
3723
3724static void
3725spa_async_thread(spa_t *spa)
3726{
3727	int tasks;
3728
3729	ASSERT(spa->spa_sync_on);
3730
3731	mutex_enter(&spa->spa_async_lock);
3732	tasks = spa->spa_async_tasks;
3733	spa->spa_async_tasks = 0;
3734	mutex_exit(&spa->spa_async_lock);
3735
3736	/*
3737	 * See if the config needs to be updated.
3738	 */
3739	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3740		uint64_t oldsz, space_update;
3741
3742		mutex_enter(&spa_namespace_lock);
3743		oldsz = spa_get_space(spa);
3744		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3745		space_update = spa_get_space(spa) - oldsz;
3746		mutex_exit(&spa_namespace_lock);
3747
3748		/*
3749		 * If the pool grew as a result of the config update,
3750		 * then log an internal history event.
3751		 */
3752		if (space_update) {
3753			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3754			    spa, NULL, CRED(),
3755			    "pool '%s' size: %llu(+%llu)",
3756			    spa_name(spa), spa_get_space(spa),
3757			    space_update);
3758		}
3759	}
3760
3761	/*
3762	 * See if any devices need to be marked REMOVED.
3763	 */
3764	if (tasks & SPA_ASYNC_REMOVE) {
3765		spa_vdev_state_enter(spa);
3766		spa_async_remove(spa, spa->spa_root_vdev);
3767		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3768			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3769		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3770			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3771		(void) spa_vdev_state_exit(spa, NULL, 0);
3772	}
3773
3774	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3775		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3776		spa_async_autoexpand(spa, spa->spa_root_vdev);
3777		spa_config_exit(spa, SCL_CONFIG, FTAG);
3778	}
3779
3780	/*
3781	 * See if any devices need to be probed.
3782	 */
3783	if (tasks & SPA_ASYNC_PROBE) {
3784		spa_vdev_state_enter(spa);
3785		spa_async_probe(spa, spa->spa_root_vdev);
3786		(void) spa_vdev_state_exit(spa, NULL, 0);
3787	}
3788
3789	/*
3790	 * If any devices are done replacing, detach them.
3791	 */
3792	if (tasks & SPA_ASYNC_RESILVER_DONE)
3793		spa_vdev_resilver_done(spa);
3794
3795	/*
3796	 * Kick off a resilver.
3797	 */
3798	if (tasks & SPA_ASYNC_RESILVER)
3799		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3800
3801	/*
3802	 * Let the world know that we're done.
3803	 */
3804	mutex_enter(&spa->spa_async_lock);
3805	spa->spa_async_thread = NULL;
3806	cv_broadcast(&spa->spa_async_cv);
3807	mutex_exit(&spa->spa_async_lock);
3808	thread_exit();
3809}
3810
3811void
3812spa_async_suspend(spa_t *spa)
3813{
3814	mutex_enter(&spa->spa_async_lock);
3815	spa->spa_async_suspended++;
3816	while (spa->spa_async_thread != NULL)
3817		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3818	mutex_exit(&spa->spa_async_lock);
3819}
3820
3821void
3822spa_async_resume(spa_t *spa)
3823{
3824	mutex_enter(&spa->spa_async_lock);
3825	ASSERT(spa->spa_async_suspended != 0);
3826	spa->spa_async_suspended--;
3827	mutex_exit(&spa->spa_async_lock);
3828}
3829
3830static void
3831spa_async_dispatch(spa_t *spa)
3832{
3833	mutex_enter(&spa->spa_async_lock);
3834	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3835	    spa->spa_async_thread == NULL &&
3836	    rootdir != NULL && !vn_is_readonly(rootdir))
3837		spa->spa_async_thread = thread_create(NULL, 0,
3838		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3839	mutex_exit(&spa->spa_async_lock);
3840}
3841
3842void
3843spa_async_request(spa_t *spa, int task)
3844{
3845	mutex_enter(&spa->spa_async_lock);
3846	spa->spa_async_tasks |= task;
3847	mutex_exit(&spa->spa_async_lock);
3848}
3849
3850/*
3851 * ==========================================================================
3852 * SPA syncing routines
3853 * ==========================================================================
3854 */
3855
3856static void
3857spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3858{
3859	bplist_t *bpl = &spa->spa_sync_bplist;
3860	dmu_tx_t *tx;
3861	blkptr_t blk;
3862	uint64_t itor = 0;
3863	zio_t *zio;
3864	int error;
3865	uint8_t c = 1;
3866
3867	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3868
3869	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3870		ASSERT(blk.blk_birth < txg);
3871		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3872		    ZIO_FLAG_MUSTSUCCEED));
3873	}
3874
3875	error = zio_wait(zio);
3876	ASSERT3U(error, ==, 0);
3877
3878	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3879	bplist_vacate(bpl, tx);
3880
3881	/*
3882	 * Pre-dirty the first block so we sync to convergence faster.
3883	 * (Usually only the first block is needed.)
3884	 */
3885	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3886	dmu_tx_commit(tx);
3887}
3888
3889static void
3890spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3891{
3892	char *packed = NULL;
3893	size_t bufsize;
3894	size_t nvsize = 0;
3895	dmu_buf_t *db;
3896
3897	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3898
3899	/*
3900	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3901	 * information.  This avoids the dbuf_will_dirty() path and
3902	 * saves us a pre-read to get data we don't actually care about.
3903	 */
3904	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3905	packed = kmem_alloc(bufsize, KM_SLEEP);
3906
3907	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3908	    KM_SLEEP) == 0);
3909	bzero(packed + nvsize, bufsize - nvsize);
3910
3911	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3912
3913	kmem_free(packed, bufsize);
3914
3915	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3916	dmu_buf_will_dirty(db, tx);
3917	*(uint64_t *)db->db_data = nvsize;
3918	dmu_buf_rele(db, FTAG);
3919}
3920
3921static void
3922spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3923    const char *config, const char *entry)
3924{
3925	nvlist_t *nvroot;
3926	nvlist_t **list;
3927	int i;
3928
3929	if (!sav->sav_sync)
3930		return;
3931
3932	/*
3933	 * Update the MOS nvlist describing the list of available devices.
3934	 * spa_validate_aux() will have already made sure this nvlist is
3935	 * valid and the vdevs are labeled appropriately.
3936	 */
3937	if (sav->sav_object == 0) {
3938		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3939		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3940		    sizeof (uint64_t), tx);
3941		VERIFY(zap_update(spa->spa_meta_objset,
3942		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3943		    &sav->sav_object, tx) == 0);
3944	}
3945
3946	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3947	if (sav->sav_count == 0) {
3948		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3949	} else {
3950		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3951		for (i = 0; i < sav->sav_count; i++)
3952			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3953			    B_FALSE, B_FALSE, B_TRUE);
3954		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3955		    sav->sav_count) == 0);
3956		for (i = 0; i < sav->sav_count; i++)
3957			nvlist_free(list[i]);
3958		kmem_free(list, sav->sav_count * sizeof (void *));
3959	}
3960
3961	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3962	nvlist_free(nvroot);
3963
3964	sav->sav_sync = B_FALSE;
3965}
3966
3967static void
3968spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3969{
3970	nvlist_t *config;
3971
3972	if (list_is_empty(&spa->spa_config_dirty_list))
3973		return;
3974
3975	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3976
3977	config = spa_config_generate(spa, spa->spa_root_vdev,
3978	    dmu_tx_get_txg(tx), B_FALSE);
3979
3980	spa_config_exit(spa, SCL_STATE, FTAG);
3981
3982	if (spa->spa_config_syncing)
3983		nvlist_free(spa->spa_config_syncing);
3984	spa->spa_config_syncing = config;
3985
3986	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3987}
3988
3989/*
3990 * Set zpool properties.
3991 */
3992static void
3993spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3994{
3995	spa_t *spa = arg1;
3996	objset_t *mos = spa->spa_meta_objset;
3997	nvlist_t *nvp = arg2;
3998	nvpair_t *elem;
3999	uint64_t intval;
4000	char *strval;
4001	zpool_prop_t prop;
4002	const char *propname;
4003	zprop_type_t proptype;
4004
4005	mutex_enter(&spa->spa_props_lock);
4006
4007	elem = NULL;
4008	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4009		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4010		case ZPOOL_PROP_VERSION:
4011			/*
4012			 * Only set version for non-zpool-creation cases
4013			 * (set/import). spa_create() needs special care
4014			 * for version setting.
4015			 */
4016			if (tx->tx_txg != TXG_INITIAL) {
4017				VERIFY(nvpair_value_uint64(elem,
4018				    &intval) == 0);
4019				ASSERT(intval <= SPA_VERSION);
4020				ASSERT(intval >= spa_version(spa));
4021				spa->spa_uberblock.ub_version = intval;
4022				vdev_config_dirty(spa->spa_root_vdev);
4023			}
4024			break;
4025
4026		case ZPOOL_PROP_ALTROOT:
4027			/*
4028			 * 'altroot' is a non-persistent property. It should
4029			 * have been set temporarily at creation or import time.
4030			 */
4031			ASSERT(spa->spa_root != NULL);
4032			break;
4033
4034		case ZPOOL_PROP_CACHEFILE:
4035			/*
4036			 * 'cachefile' is also a non-persisitent property.
4037			 */
4038			break;
4039		default:
4040			/*
4041			 * Set pool property values in the poolprops mos object.
4042			 */
4043			if (spa->spa_pool_props_object == 0) {
4044				objset_t *mos = spa->spa_meta_objset;
4045
4046				VERIFY((spa->spa_pool_props_object =
4047				    zap_create(mos, DMU_OT_POOL_PROPS,
4048				    DMU_OT_NONE, 0, tx)) > 0);
4049
4050				VERIFY(zap_update(mos,
4051				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4052				    8, 1, &spa->spa_pool_props_object, tx)
4053				    == 0);
4054			}
4055
4056			/* normalize the property name */
4057			propname = zpool_prop_to_name(prop);
4058			proptype = zpool_prop_get_type(prop);
4059
4060			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4061				ASSERT(proptype == PROP_TYPE_STRING);
4062				VERIFY(nvpair_value_string(elem, &strval) == 0);
4063				VERIFY(zap_update(mos,
4064				    spa->spa_pool_props_object, propname,
4065				    1, strlen(strval) + 1, strval, tx) == 0);
4066
4067			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4068				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4069
4070				if (proptype == PROP_TYPE_INDEX) {
4071					const char *unused;
4072					VERIFY(zpool_prop_index_to_string(
4073					    prop, intval, &unused) == 0);
4074				}
4075				VERIFY(zap_update(mos,
4076				    spa->spa_pool_props_object, propname,
4077				    8, 1, &intval, tx) == 0);
4078			} else {
4079				ASSERT(0); /* not allowed */
4080			}
4081
4082			switch (prop) {
4083			case ZPOOL_PROP_DELEGATION:
4084				spa->spa_delegation = intval;
4085				break;
4086			case ZPOOL_PROP_BOOTFS:
4087				spa->spa_bootfs = intval;
4088				break;
4089			case ZPOOL_PROP_FAILUREMODE:
4090				spa->spa_failmode = intval;
4091				break;
4092			case ZPOOL_PROP_AUTOEXPAND:
4093				spa->spa_autoexpand = intval;
4094				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4095				break;
4096			default:
4097				break;
4098			}
4099		}
4100
4101		/* log internal history if this is not a zpool create */
4102		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4103		    tx->tx_txg != TXG_INITIAL) {
4104			spa_history_internal_log(LOG_POOL_PROPSET,
4105			    spa, tx, cr, "%s %lld %s",
4106			    nvpair_name(elem), intval, spa_name(spa));
4107		}
4108	}
4109
4110	mutex_exit(&spa->spa_props_lock);
4111}
4112
4113/*
4114 * Sync the specified transaction group.  New blocks may be dirtied as
4115 * part of the process, so we iterate until it converges.
4116 */
4117void
4118spa_sync(spa_t *spa, uint64_t txg)
4119{
4120	dsl_pool_t *dp = spa->spa_dsl_pool;
4121	objset_t *mos = spa->spa_meta_objset;
4122	bplist_t *bpl = &spa->spa_sync_bplist;
4123	vdev_t *rvd = spa->spa_root_vdev;
4124	vdev_t *vd;
4125	dmu_tx_t *tx;
4126	int dirty_vdevs;
4127	int error;
4128
4129	/*
4130	 * Lock out configuration changes.
4131	 */
4132	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4133
4134	spa->spa_syncing_txg = txg;
4135	spa->spa_sync_pass = 0;
4136
4137	/*
4138	 * If there are any pending vdev state changes, convert them
4139	 * into config changes that go out with this transaction group.
4140	 */
4141	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4142	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4143		/*
4144		 * We need the write lock here because, for aux vdevs,
4145		 * calling vdev_config_dirty() modifies sav_config.
4146		 * This is ugly and will become unnecessary when we
4147		 * eliminate the aux vdev wart by integrating all vdevs
4148		 * into the root vdev tree.
4149		 */
4150		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4151		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4152		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4153			vdev_state_clean(vd);
4154			vdev_config_dirty(vd);
4155		}
4156		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4157		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4158	}
4159	spa_config_exit(spa, SCL_STATE, FTAG);
4160
4161	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4162
4163	tx = dmu_tx_create_assigned(dp, txg);
4164
4165	/*
4166	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4167	 * set spa_deflate if we have no raid-z vdevs.
4168	 */
4169	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4170	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4171		int i;
4172
4173		for (i = 0; i < rvd->vdev_children; i++) {
4174			vd = rvd->vdev_child[i];
4175			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4176				break;
4177		}
4178		if (i == rvd->vdev_children) {
4179			spa->spa_deflate = TRUE;
4180			VERIFY(0 == zap_add(spa->spa_meta_objset,
4181			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4182			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4183		}
4184	}
4185
4186	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4187	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4188		dsl_pool_create_origin(dp, tx);
4189
4190		/* Keeping the origin open increases spa_minref */
4191		spa->spa_minref += 3;
4192	}
4193
4194	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4195	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4196		dsl_pool_upgrade_clones(dp, tx);
4197	}
4198
4199	/*
4200	 * If anything has changed in this txg, push the deferred frees
4201	 * from the previous txg.  If not, leave them alone so that we
4202	 * don't generate work on an otherwise idle system.
4203	 */
4204	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4205	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4206	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4207		spa_sync_deferred_frees(spa, txg);
4208
4209	/*
4210	 * Iterate to convergence.
4211	 */
4212	do {
4213		spa->spa_sync_pass++;
4214
4215		spa_sync_config_object(spa, tx);
4216		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4217		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4218		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4219		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4220		spa_errlog_sync(spa, txg);
4221		dsl_pool_sync(dp, txg);
4222
4223		dirty_vdevs = 0;
4224		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4225			vdev_sync(vd, txg);
4226			dirty_vdevs++;
4227		}
4228
4229		bplist_sync(bpl, tx);
4230	} while (dirty_vdevs);
4231
4232	bplist_close(bpl);
4233
4234	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4235
4236	/*
4237	 * Rewrite the vdev configuration (which includes the uberblock)
4238	 * to commit the transaction group.
4239	 *
4240	 * If there are no dirty vdevs, we sync the uberblock to a few
4241	 * random top-level vdevs that are known to be visible in the
4242	 * config cache (see spa_vdev_add() for a complete description).
4243	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4244	 */
4245	for (;;) {
4246		/*
4247		 * We hold SCL_STATE to prevent vdev open/close/etc.
4248		 * while we're attempting to write the vdev labels.
4249		 */
4250		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4251
4252		if (list_is_empty(&spa->spa_config_dirty_list)) {
4253			vdev_t *svd[SPA_DVAS_PER_BP];
4254			int svdcount = 0;
4255			int children = rvd->vdev_children;
4256			int c0 = spa_get_random(children);
4257
4258			for (int c = 0; c < children; c++) {
4259				vd = rvd->vdev_child[(c0 + c) % children];
4260				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4261					continue;
4262				svd[svdcount++] = vd;
4263				if (svdcount == SPA_DVAS_PER_BP)
4264					break;
4265			}
4266			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4267			if (error != 0)
4268				error = vdev_config_sync(svd, svdcount, txg,
4269				    B_TRUE);
4270		} else {
4271			error = vdev_config_sync(rvd->vdev_child,
4272			    rvd->vdev_children, txg, B_FALSE);
4273			if (error != 0)
4274				error = vdev_config_sync(rvd->vdev_child,
4275				    rvd->vdev_children, txg, B_TRUE);
4276		}
4277
4278		spa_config_exit(spa, SCL_STATE, FTAG);
4279
4280		if (error == 0)
4281			break;
4282		zio_suspend(spa, NULL);
4283		zio_resume_wait(spa);
4284	}
4285	dmu_tx_commit(tx);
4286
4287	/*
4288	 * Clear the dirty config list.
4289	 */
4290	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4291		vdev_config_clean(vd);
4292
4293	/*
4294	 * Now that the new config has synced transactionally,
4295	 * let it become visible to the config cache.
4296	 */
4297	if (spa->spa_config_syncing != NULL) {
4298		spa_config_set(spa, spa->spa_config_syncing);
4299		spa->spa_config_txg = txg;
4300		spa->spa_config_syncing = NULL;
4301	}
4302
4303	spa->spa_ubsync = spa->spa_uberblock;
4304
4305	/*
4306	 * Clean up the ZIL records for the synced txg.
4307	 */
4308	dsl_pool_zil_clean(dp);
4309
4310	/*
4311	 * Update usable space statistics.
4312	 */
4313	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4314		vdev_sync_done(vd, txg);
4315
4316	/*
4317	 * It had better be the case that we didn't dirty anything
4318	 * since vdev_config_sync().
4319	 */
4320	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4321	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4322	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4323	ASSERT(bpl->bpl_queue == NULL);
4324
4325	spa_config_exit(spa, SCL_CONFIG, FTAG);
4326
4327	/*
4328	 * If any async tasks have been requested, kick them off.
4329	 */
4330	spa_async_dispatch(spa);
4331}
4332
4333/*
4334 * Sync all pools.  We don't want to hold the namespace lock across these
4335 * operations, so we take a reference on the spa_t and drop the lock during the
4336 * sync.
4337 */
4338void
4339spa_sync_allpools(void)
4340{
4341	spa_t *spa = NULL;
4342	mutex_enter(&spa_namespace_lock);
4343	while ((spa = spa_next(spa)) != NULL) {
4344		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4345			continue;
4346		spa_open_ref(spa, FTAG);
4347		mutex_exit(&spa_namespace_lock);
4348		txg_wait_synced(spa_get_dsl(spa), 0);
4349		mutex_enter(&spa_namespace_lock);
4350		spa_close(spa, FTAG);
4351	}
4352	mutex_exit(&spa_namespace_lock);
4353}
4354
4355/*
4356 * ==========================================================================
4357 * Miscellaneous routines
4358 * ==========================================================================
4359 */
4360
4361/*
4362 * Remove all pools in the system.
4363 */
4364void
4365spa_evict_all(void)
4366{
4367	spa_t *spa;
4368
4369	/*
4370	 * Remove all cached state.  All pools should be closed now,
4371	 * so every spa in the AVL tree should be unreferenced.
4372	 */
4373	mutex_enter(&spa_namespace_lock);
4374	while ((spa = spa_next(NULL)) != NULL) {
4375		/*
4376		 * Stop async tasks.  The async thread may need to detach
4377		 * a device that's been replaced, which requires grabbing
4378		 * spa_namespace_lock, so we must drop it here.
4379		 */
4380		spa_open_ref(spa, FTAG);
4381		mutex_exit(&spa_namespace_lock);
4382		spa_async_suspend(spa);
4383		mutex_enter(&spa_namespace_lock);
4384		spa_close(spa, FTAG);
4385
4386		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4387			spa_unload(spa);
4388			spa_deactivate(spa);
4389		}
4390		spa_remove(spa);
4391	}
4392	mutex_exit(&spa_namespace_lock);
4393}
4394
4395vdev_t *
4396spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4397{
4398	vdev_t *vd;
4399	int i;
4400
4401	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4402		return (vd);
4403
4404	if (aux) {
4405		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4406			vd = spa->spa_l2cache.sav_vdevs[i];
4407			if (vd->vdev_guid == guid)
4408				return (vd);
4409		}
4410
4411		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4412			vd = spa->spa_spares.sav_vdevs[i];
4413			if (vd->vdev_guid == guid)
4414				return (vd);
4415		}
4416	}
4417
4418	return (NULL);
4419}
4420
4421void
4422spa_upgrade(spa_t *spa, uint64_t version)
4423{
4424	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4425
4426	/*
4427	 * This should only be called for a non-faulted pool, and since a
4428	 * future version would result in an unopenable pool, this shouldn't be
4429	 * possible.
4430	 */
4431	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4432	ASSERT(version >= spa->spa_uberblock.ub_version);
4433
4434	spa->spa_uberblock.ub_version = version;
4435	vdev_config_dirty(spa->spa_root_vdev);
4436
4437	spa_config_exit(spa, SCL_ALL, FTAG);
4438
4439	txg_wait_synced(spa_get_dsl(spa), 0);
4440}
4441
4442boolean_t
4443spa_has_spare(spa_t *spa, uint64_t guid)
4444{
4445	int i;
4446	uint64_t spareguid;
4447	spa_aux_vdev_t *sav = &spa->spa_spares;
4448
4449	for (i = 0; i < sav->sav_count; i++)
4450		if (sav->sav_vdevs[i]->vdev_guid == guid)
4451			return (B_TRUE);
4452
4453	for (i = 0; i < sav->sav_npending; i++) {
4454		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4455		    &spareguid) == 0 && spareguid == guid)
4456			return (B_TRUE);
4457	}
4458
4459	return (B_FALSE);
4460}
4461
4462/*
4463 * Check if a pool has an active shared spare device.
4464 * Note: reference count of an active spare is 2, as a spare and as a replace
4465 */
4466static boolean_t
4467spa_has_active_shared_spare(spa_t *spa)
4468{
4469	int i, refcnt;
4470	uint64_t pool;
4471	spa_aux_vdev_t *sav = &spa->spa_spares;
4472
4473	for (i = 0; i < sav->sav_count; i++) {
4474		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4475		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4476		    refcnt > 2)
4477			return (B_TRUE);
4478	}
4479
4480	return (B_FALSE);
4481}
4482
4483/*
4484 * Post a sysevent corresponding to the given event.  The 'name' must be one of
4485 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4486 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4487 * in the userland libzpool, as we don't want consumers to misinterpret ztest
4488 * or zdb as real changes.
4489 */
4490void
4491spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4492{
4493#ifdef _KERNEL
4494	sysevent_t		*ev;
4495	sysevent_attr_list_t	*attr = NULL;
4496	sysevent_value_t	value;
4497	sysevent_id_t		eid;
4498
4499	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4500	    SE_SLEEP);
4501
4502	value.value_type = SE_DATA_TYPE_STRING;
4503	value.value.sv_string = spa_name(spa);
4504	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4505		goto done;
4506
4507	value.value_type = SE_DATA_TYPE_UINT64;
4508	value.value.sv_uint64 = spa_guid(spa);
4509	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4510		goto done;
4511
4512	if (vd) {
4513		value.value_type = SE_DATA_TYPE_UINT64;
4514		value.value.sv_uint64 = vd->vdev_guid;
4515		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4516		    SE_SLEEP) != 0)
4517			goto done;
4518
4519		if (vd->vdev_path) {
4520			value.value_type = SE_DATA_TYPE_STRING;
4521			value.value.sv_string = vd->vdev_path;
4522			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4523			    &value, SE_SLEEP) != 0)
4524				goto done;
4525		}
4526	}
4527
4528	if (sysevent_attach_attributes(ev, attr) != 0)
4529		goto done;
4530	attr = NULL;
4531
4532	(void) log_sysevent(ev, SE_SLEEP, &eid);
4533
4534done:
4535	if (attr)
4536		sysevent_free_attr(attr);
4537	sysevent_free(ev);
4538#endif
4539}
4540