xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision b693757a2e07699c354cbc85e1ab83b588553262)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_synctask.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/arc.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 
65 #ifdef	_KERNEL
66 #include <sys/zone.h>
67 #endif	/* _KERNEL */
68 
69 #include "zfs_prop.h"
70 #include "zfs_comutil.h"
71 
72 enum zti_modes {
73 	zti_mode_fixed,			/* value is # of threads (min 1) */
74 	zti_mode_online_percent,	/* value is % of online CPUs */
75 	zti_mode_tune,			/* fill from zio_taskq_tune_* */
76 	zti_nmodes
77 };
78 
79 #define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
80 #define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
81 #define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
82 
83 #define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
84 
85 typedef struct zio_taskq_info {
86 	const char *zti_name;
87 	struct {
88 		enum zti_modes zti_mode;
89 		uint_t zti_value;
90 	} zti_nthreads[ZIO_TASKQ_TYPES];
91 } zio_taskq_info_t;
92 
93 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
94 				"issue",		"intr"
95 };
96 
97 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
98 	/*			ISSUE			INTR		*/
99 	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
100 	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
101 	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
102 	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103 	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104 	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
105 };
106 
107 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
108 uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
109 
110 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
111 static boolean_t spa_has_active_shared_spare(spa_t *spa);
112 
113 /*
114  * ==========================================================================
115  * SPA properties routines
116  * ==========================================================================
117  */
118 
119 /*
120  * Add a (source=src, propname=propval) list to an nvlist.
121  */
122 static void
123 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
124     uint64_t intval, zprop_source_t src)
125 {
126 	const char *propname = zpool_prop_to_name(prop);
127 	nvlist_t *propval;
128 
129 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
130 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
131 
132 	if (strval != NULL)
133 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
134 	else
135 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
136 
137 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
138 	nvlist_free(propval);
139 }
140 
141 /*
142  * Get property values from the spa configuration.
143  */
144 static void
145 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
146 {
147 	uint64_t size;
148 	uint64_t used;
149 	uint64_t cap, version;
150 	zprop_source_t src = ZPROP_SRC_NONE;
151 	spa_config_dirent_t *dp;
152 
153 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
154 
155 	if (spa->spa_root_vdev != NULL) {
156 		size = spa_get_space(spa);
157 		used = spa_get_alloc(spa);
158 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
159 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
160 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
161 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
162 		    size - used, src);
163 
164 		cap = (size == 0) ? 0 : (used * 100 / size);
165 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
166 
167 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
168 		    spa->spa_root_vdev->vdev_state, src);
169 
170 		version = spa_version(spa);
171 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
172 			src = ZPROP_SRC_DEFAULT;
173 		else
174 			src = ZPROP_SRC_LOCAL;
175 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
176 	}
177 
178 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
179 
180 	if (spa->spa_root != NULL)
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
182 		    0, ZPROP_SRC_LOCAL);
183 
184 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
185 		if (dp->scd_path == NULL) {
186 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
187 			    "none", 0, ZPROP_SRC_LOCAL);
188 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
189 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
190 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
191 		}
192 	}
193 }
194 
195 /*
196  * Get zpool property values.
197  */
198 int
199 spa_prop_get(spa_t *spa, nvlist_t **nvp)
200 {
201 	zap_cursor_t zc;
202 	zap_attribute_t za;
203 	objset_t *mos = spa->spa_meta_objset;
204 	int err;
205 
206 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
207 
208 	mutex_enter(&spa->spa_props_lock);
209 
210 	/*
211 	 * Get properties from the spa config.
212 	 */
213 	spa_prop_get_config(spa, nvp);
214 
215 	/* If no pool property object, no more prop to get. */
216 	if (spa->spa_pool_props_object == 0) {
217 		mutex_exit(&spa->spa_props_lock);
218 		return (0);
219 	}
220 
221 	/*
222 	 * Get properties from the MOS pool property object.
223 	 */
224 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
225 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
226 	    zap_cursor_advance(&zc)) {
227 		uint64_t intval = 0;
228 		char *strval = NULL;
229 		zprop_source_t src = ZPROP_SRC_DEFAULT;
230 		zpool_prop_t prop;
231 
232 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
233 			continue;
234 
235 		switch (za.za_integer_length) {
236 		case 8:
237 			/* integer property */
238 			if (za.za_first_integer !=
239 			    zpool_prop_default_numeric(prop))
240 				src = ZPROP_SRC_LOCAL;
241 
242 			if (prop == ZPOOL_PROP_BOOTFS) {
243 				dsl_pool_t *dp;
244 				dsl_dataset_t *ds = NULL;
245 
246 				dp = spa_get_dsl(spa);
247 				rw_enter(&dp->dp_config_rwlock, RW_READER);
248 				if (err = dsl_dataset_hold_obj(dp,
249 				    za.za_first_integer, FTAG, &ds)) {
250 					rw_exit(&dp->dp_config_rwlock);
251 					break;
252 				}
253 
254 				strval = kmem_alloc(
255 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
256 				    KM_SLEEP);
257 				dsl_dataset_name(ds, strval);
258 				dsl_dataset_rele(ds, FTAG);
259 				rw_exit(&dp->dp_config_rwlock);
260 			} else {
261 				strval = NULL;
262 				intval = za.za_first_integer;
263 			}
264 
265 			spa_prop_add_list(*nvp, prop, strval, intval, src);
266 
267 			if (strval != NULL)
268 				kmem_free(strval,
269 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
270 
271 			break;
272 
273 		case 1:
274 			/* string property */
275 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
276 			err = zap_lookup(mos, spa->spa_pool_props_object,
277 			    za.za_name, 1, za.za_num_integers, strval);
278 			if (err) {
279 				kmem_free(strval, za.za_num_integers);
280 				break;
281 			}
282 			spa_prop_add_list(*nvp, prop, strval, 0, src);
283 			kmem_free(strval, za.za_num_integers);
284 			break;
285 
286 		default:
287 			break;
288 		}
289 	}
290 	zap_cursor_fini(&zc);
291 	mutex_exit(&spa->spa_props_lock);
292 out:
293 	if (err && err != ENOENT) {
294 		nvlist_free(*nvp);
295 		*nvp = NULL;
296 		return (err);
297 	}
298 
299 	return (0);
300 }
301 
302 /*
303  * Validate the given pool properties nvlist and modify the list
304  * for the property values to be set.
305  */
306 static int
307 spa_prop_validate(spa_t *spa, nvlist_t *props)
308 {
309 	nvpair_t *elem;
310 	int error = 0, reset_bootfs = 0;
311 	uint64_t objnum;
312 
313 	elem = NULL;
314 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
315 		zpool_prop_t prop;
316 		char *propname, *strval;
317 		uint64_t intval;
318 		objset_t *os;
319 		char *slash;
320 
321 		propname = nvpair_name(elem);
322 
323 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
324 			return (EINVAL);
325 
326 		switch (prop) {
327 		case ZPOOL_PROP_VERSION:
328 			error = nvpair_value_uint64(elem, &intval);
329 			if (!error &&
330 			    (intval < spa_version(spa) || intval > SPA_VERSION))
331 				error = EINVAL;
332 			break;
333 
334 		case ZPOOL_PROP_DELEGATION:
335 		case ZPOOL_PROP_AUTOREPLACE:
336 		case ZPOOL_PROP_LISTSNAPS:
337 		case ZPOOL_PROP_AUTOEXPAND:
338 			error = nvpair_value_uint64(elem, &intval);
339 			if (!error && intval > 1)
340 				error = EINVAL;
341 			break;
342 
343 		case ZPOOL_PROP_BOOTFS:
344 			/*
345 			 * If the pool version is less than SPA_VERSION_BOOTFS,
346 			 * or the pool is still being created (version == 0),
347 			 * the bootfs property cannot be set.
348 			 */
349 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
350 				error = ENOTSUP;
351 				break;
352 			}
353 
354 			/*
355 			 * Make sure the vdev config is bootable
356 			 */
357 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
358 				error = ENOTSUP;
359 				break;
360 			}
361 
362 			reset_bootfs = 1;
363 
364 			error = nvpair_value_string(elem, &strval);
365 
366 			if (!error) {
367 				uint64_t compress;
368 
369 				if (strval == NULL || strval[0] == '\0') {
370 					objnum = zpool_prop_default_numeric(
371 					    ZPOOL_PROP_BOOTFS);
372 					break;
373 				}
374 
375 				if (error = dmu_objset_hold(strval, FTAG, &os))
376 					break;
377 
378 				/* Must be ZPL and not gzip compressed. */
379 
380 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
381 					error = ENOTSUP;
382 				} else if ((error = dsl_prop_get_integer(strval,
383 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
384 				    &compress, NULL)) == 0 &&
385 				    !BOOTFS_COMPRESS_VALID(compress)) {
386 					error = ENOTSUP;
387 				} else {
388 					objnum = dmu_objset_id(os);
389 				}
390 				dmu_objset_rele(os, FTAG);
391 			}
392 			break;
393 
394 		case ZPOOL_PROP_FAILUREMODE:
395 			error = nvpair_value_uint64(elem, &intval);
396 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
397 			    intval > ZIO_FAILURE_MODE_PANIC))
398 				error = EINVAL;
399 
400 			/*
401 			 * This is a special case which only occurs when
402 			 * the pool has completely failed. This allows
403 			 * the user to change the in-core failmode property
404 			 * without syncing it out to disk (I/Os might
405 			 * currently be blocked). We do this by returning
406 			 * EIO to the caller (spa_prop_set) to trick it
407 			 * into thinking we encountered a property validation
408 			 * error.
409 			 */
410 			if (!error && spa_suspended(spa)) {
411 				spa->spa_failmode = intval;
412 				error = EIO;
413 			}
414 			break;
415 
416 		case ZPOOL_PROP_CACHEFILE:
417 			if ((error = nvpair_value_string(elem, &strval)) != 0)
418 				break;
419 
420 			if (strval[0] == '\0')
421 				break;
422 
423 			if (strcmp(strval, "none") == 0)
424 				break;
425 
426 			if (strval[0] != '/') {
427 				error = EINVAL;
428 				break;
429 			}
430 
431 			slash = strrchr(strval, '/');
432 			ASSERT(slash != NULL);
433 
434 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
435 			    strcmp(slash, "/..") == 0)
436 				error = EINVAL;
437 			break;
438 		}
439 
440 		if (error)
441 			break;
442 	}
443 
444 	if (!error && reset_bootfs) {
445 		error = nvlist_remove(props,
446 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
447 
448 		if (!error) {
449 			error = nvlist_add_uint64(props,
450 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
451 		}
452 	}
453 
454 	return (error);
455 }
456 
457 void
458 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
459 {
460 	char *cachefile;
461 	spa_config_dirent_t *dp;
462 
463 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
464 	    &cachefile) != 0)
465 		return;
466 
467 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
468 	    KM_SLEEP);
469 
470 	if (cachefile[0] == '\0')
471 		dp->scd_path = spa_strdup(spa_config_path);
472 	else if (strcmp(cachefile, "none") == 0)
473 		dp->scd_path = NULL;
474 	else
475 		dp->scd_path = spa_strdup(cachefile);
476 
477 	list_insert_head(&spa->spa_config_list, dp);
478 	if (need_sync)
479 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
480 }
481 
482 int
483 spa_prop_set(spa_t *spa, nvlist_t *nvp)
484 {
485 	int error;
486 	nvpair_t *elem;
487 	boolean_t need_sync = B_FALSE;
488 	zpool_prop_t prop;
489 
490 	if ((error = spa_prop_validate(spa, nvp)) != 0)
491 		return (error);
492 
493 	elem = NULL;
494 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
495 		if ((prop = zpool_name_to_prop(
496 		    nvpair_name(elem))) == ZPROP_INVAL)
497 			return (EINVAL);
498 
499 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
500 			continue;
501 
502 		need_sync = B_TRUE;
503 		break;
504 	}
505 
506 	if (need_sync)
507 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
508 		    spa, nvp, 3));
509 	else
510 		return (0);
511 }
512 
513 /*
514  * If the bootfs property value is dsobj, clear it.
515  */
516 void
517 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
518 {
519 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
520 		VERIFY(zap_remove(spa->spa_meta_objset,
521 		    spa->spa_pool_props_object,
522 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
523 		spa->spa_bootfs = 0;
524 	}
525 }
526 
527 /*
528  * ==========================================================================
529  * SPA state manipulation (open/create/destroy/import/export)
530  * ==========================================================================
531  */
532 
533 static int
534 spa_error_entry_compare(const void *a, const void *b)
535 {
536 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
537 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
538 	int ret;
539 
540 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
541 	    sizeof (zbookmark_t));
542 
543 	if (ret < 0)
544 		return (-1);
545 	else if (ret > 0)
546 		return (1);
547 	else
548 		return (0);
549 }
550 
551 /*
552  * Utility function which retrieves copies of the current logs and
553  * re-initializes them in the process.
554  */
555 void
556 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
557 {
558 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
559 
560 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
561 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
562 
563 	avl_create(&spa->spa_errlist_scrub,
564 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565 	    offsetof(spa_error_entry_t, se_avl));
566 	avl_create(&spa->spa_errlist_last,
567 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
568 	    offsetof(spa_error_entry_t, se_avl));
569 }
570 
571 /*
572  * Activate an uninitialized pool.
573  */
574 static void
575 spa_activate(spa_t *spa, int mode)
576 {
577 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
578 
579 	spa->spa_state = POOL_STATE_ACTIVE;
580 	spa->spa_mode = mode;
581 
582 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
583 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
584 
585 	for (int t = 0; t < ZIO_TYPES; t++) {
586 		const zio_taskq_info_t *ztip = &zio_taskqs[t];
587 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
588 			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
589 			uint_t value = ztip->zti_nthreads[q].zti_value;
590 			char name[32];
591 
592 			(void) snprintf(name, sizeof (name),
593 			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
594 
595 			if (mode == zti_mode_tune) {
596 				mode = zio_taskq_tune_mode;
597 				value = zio_taskq_tune_value;
598 				if (mode == zti_mode_tune)
599 					mode = zti_mode_online_percent;
600 			}
601 
602 			switch (mode) {
603 			case zti_mode_fixed:
604 				ASSERT3U(value, >=, 1);
605 				value = MAX(value, 1);
606 
607 				spa->spa_zio_taskq[t][q] = taskq_create(name,
608 				    value, maxclsyspri, 50, INT_MAX,
609 				    TASKQ_PREPOPULATE);
610 				break;
611 
612 			case zti_mode_online_percent:
613 				spa->spa_zio_taskq[t][q] = taskq_create(name,
614 				    value, maxclsyspri, 50, INT_MAX,
615 				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
616 				break;
617 
618 			case zti_mode_tune:
619 			default:
620 				panic("unrecognized mode for "
621 				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
622 				    "in spa_activate()",
623 				    t, q, mode, value);
624 				break;
625 			}
626 		}
627 	}
628 
629 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
630 	    offsetof(vdev_t, vdev_config_dirty_node));
631 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
632 	    offsetof(vdev_t, vdev_state_dirty_node));
633 
634 	txg_list_create(&spa->spa_vdev_txg_list,
635 	    offsetof(struct vdev, vdev_txg_node));
636 
637 	avl_create(&spa->spa_errlist_scrub,
638 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
639 	    offsetof(spa_error_entry_t, se_avl));
640 	avl_create(&spa->spa_errlist_last,
641 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
642 	    offsetof(spa_error_entry_t, se_avl));
643 }
644 
645 /*
646  * Opposite of spa_activate().
647  */
648 static void
649 spa_deactivate(spa_t *spa)
650 {
651 	ASSERT(spa->spa_sync_on == B_FALSE);
652 	ASSERT(spa->spa_dsl_pool == NULL);
653 	ASSERT(spa->spa_root_vdev == NULL);
654 	ASSERT(spa->spa_async_zio_root == NULL);
655 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
656 
657 	txg_list_destroy(&spa->spa_vdev_txg_list);
658 
659 	list_destroy(&spa->spa_config_dirty_list);
660 	list_destroy(&spa->spa_state_dirty_list);
661 
662 	for (int t = 0; t < ZIO_TYPES; t++) {
663 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
664 			taskq_destroy(spa->spa_zio_taskq[t][q]);
665 			spa->spa_zio_taskq[t][q] = NULL;
666 		}
667 	}
668 
669 	metaslab_class_destroy(spa->spa_normal_class);
670 	spa->spa_normal_class = NULL;
671 
672 	metaslab_class_destroy(spa->spa_log_class);
673 	spa->spa_log_class = NULL;
674 
675 	/*
676 	 * If this was part of an import or the open otherwise failed, we may
677 	 * still have errors left in the queues.  Empty them just in case.
678 	 */
679 	spa_errlog_drain(spa);
680 
681 	avl_destroy(&spa->spa_errlist_scrub);
682 	avl_destroy(&spa->spa_errlist_last);
683 
684 	spa->spa_state = POOL_STATE_UNINITIALIZED;
685 }
686 
687 /*
688  * Verify a pool configuration, and construct the vdev tree appropriately.  This
689  * will create all the necessary vdevs in the appropriate layout, with each vdev
690  * in the CLOSED state.  This will prep the pool before open/creation/import.
691  * All vdev validation is done by the vdev_alloc() routine.
692  */
693 static int
694 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
695     uint_t id, int atype)
696 {
697 	nvlist_t **child;
698 	uint_t children;
699 	int error;
700 
701 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
702 		return (error);
703 
704 	if ((*vdp)->vdev_ops->vdev_op_leaf)
705 		return (0);
706 
707 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
708 	    &child, &children);
709 
710 	if (error == ENOENT)
711 		return (0);
712 
713 	if (error) {
714 		vdev_free(*vdp);
715 		*vdp = NULL;
716 		return (EINVAL);
717 	}
718 
719 	for (int c = 0; c < children; c++) {
720 		vdev_t *vd;
721 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
722 		    atype)) != 0) {
723 			vdev_free(*vdp);
724 			*vdp = NULL;
725 			return (error);
726 		}
727 	}
728 
729 	ASSERT(*vdp != NULL);
730 
731 	return (0);
732 }
733 
734 /*
735  * Opposite of spa_load().
736  */
737 static void
738 spa_unload(spa_t *spa)
739 {
740 	int i;
741 
742 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
743 
744 	/*
745 	 * Stop async tasks.
746 	 */
747 	spa_async_suspend(spa);
748 
749 	/*
750 	 * Stop syncing.
751 	 */
752 	if (spa->spa_sync_on) {
753 		txg_sync_stop(spa->spa_dsl_pool);
754 		spa->spa_sync_on = B_FALSE;
755 	}
756 
757 	/*
758 	 * Wait for any outstanding async I/O to complete.
759 	 */
760 	if (spa->spa_async_zio_root != NULL) {
761 		(void) zio_wait(spa->spa_async_zio_root);
762 		spa->spa_async_zio_root = NULL;
763 	}
764 
765 	/*
766 	 * Close the dsl pool.
767 	 */
768 	if (spa->spa_dsl_pool) {
769 		dsl_pool_close(spa->spa_dsl_pool);
770 		spa->spa_dsl_pool = NULL;
771 	}
772 
773 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
774 
775 	/*
776 	 * Drop and purge level 2 cache
777 	 */
778 	spa_l2cache_drop(spa);
779 
780 	/*
781 	 * Close all vdevs.
782 	 */
783 	if (spa->spa_root_vdev)
784 		vdev_free(spa->spa_root_vdev);
785 	ASSERT(spa->spa_root_vdev == NULL);
786 
787 	for (i = 0; i < spa->spa_spares.sav_count; i++)
788 		vdev_free(spa->spa_spares.sav_vdevs[i]);
789 	if (spa->spa_spares.sav_vdevs) {
790 		kmem_free(spa->spa_spares.sav_vdevs,
791 		    spa->spa_spares.sav_count * sizeof (void *));
792 		spa->spa_spares.sav_vdevs = NULL;
793 	}
794 	if (spa->spa_spares.sav_config) {
795 		nvlist_free(spa->spa_spares.sav_config);
796 		spa->spa_spares.sav_config = NULL;
797 	}
798 	spa->spa_spares.sav_count = 0;
799 
800 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
801 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
802 	if (spa->spa_l2cache.sav_vdevs) {
803 		kmem_free(spa->spa_l2cache.sav_vdevs,
804 		    spa->spa_l2cache.sav_count * sizeof (void *));
805 		spa->spa_l2cache.sav_vdevs = NULL;
806 	}
807 	if (spa->spa_l2cache.sav_config) {
808 		nvlist_free(spa->spa_l2cache.sav_config);
809 		spa->spa_l2cache.sav_config = NULL;
810 	}
811 	spa->spa_l2cache.sav_count = 0;
812 
813 	spa->spa_async_suspended = 0;
814 
815 	spa_config_exit(spa, SCL_ALL, FTAG);
816 }
817 
818 /*
819  * Load (or re-load) the current list of vdevs describing the active spares for
820  * this pool.  When this is called, we have some form of basic information in
821  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
822  * then re-generate a more complete list including status information.
823  */
824 static void
825 spa_load_spares(spa_t *spa)
826 {
827 	nvlist_t **spares;
828 	uint_t nspares;
829 	int i;
830 	vdev_t *vd, *tvd;
831 
832 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
833 
834 	/*
835 	 * First, close and free any existing spare vdevs.
836 	 */
837 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
838 		vd = spa->spa_spares.sav_vdevs[i];
839 
840 		/* Undo the call to spa_activate() below */
841 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
842 		    B_FALSE)) != NULL && tvd->vdev_isspare)
843 			spa_spare_remove(tvd);
844 		vdev_close(vd);
845 		vdev_free(vd);
846 	}
847 
848 	if (spa->spa_spares.sav_vdevs)
849 		kmem_free(spa->spa_spares.sav_vdevs,
850 		    spa->spa_spares.sav_count * sizeof (void *));
851 
852 	if (spa->spa_spares.sav_config == NULL)
853 		nspares = 0;
854 	else
855 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
856 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
857 
858 	spa->spa_spares.sav_count = (int)nspares;
859 	spa->spa_spares.sav_vdevs = NULL;
860 
861 	if (nspares == 0)
862 		return;
863 
864 	/*
865 	 * Construct the array of vdevs, opening them to get status in the
866 	 * process.   For each spare, there is potentially two different vdev_t
867 	 * structures associated with it: one in the list of spares (used only
868 	 * for basic validation purposes) and one in the active vdev
869 	 * configuration (if it's spared in).  During this phase we open and
870 	 * validate each vdev on the spare list.  If the vdev also exists in the
871 	 * active configuration, then we also mark this vdev as an active spare.
872 	 */
873 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
874 	    KM_SLEEP);
875 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
876 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
877 		    VDEV_ALLOC_SPARE) == 0);
878 		ASSERT(vd != NULL);
879 
880 		spa->spa_spares.sav_vdevs[i] = vd;
881 
882 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
883 		    B_FALSE)) != NULL) {
884 			if (!tvd->vdev_isspare)
885 				spa_spare_add(tvd);
886 
887 			/*
888 			 * We only mark the spare active if we were successfully
889 			 * able to load the vdev.  Otherwise, importing a pool
890 			 * with a bad active spare would result in strange
891 			 * behavior, because multiple pool would think the spare
892 			 * is actively in use.
893 			 *
894 			 * There is a vulnerability here to an equally bizarre
895 			 * circumstance, where a dead active spare is later
896 			 * brought back to life (onlined or otherwise).  Given
897 			 * the rarity of this scenario, and the extra complexity
898 			 * it adds, we ignore the possibility.
899 			 */
900 			if (!vdev_is_dead(tvd))
901 				spa_spare_activate(tvd);
902 		}
903 
904 		vd->vdev_top = vd;
905 		vd->vdev_aux = &spa->spa_spares;
906 
907 		if (vdev_open(vd) != 0)
908 			continue;
909 
910 		if (vdev_validate_aux(vd) == 0)
911 			spa_spare_add(vd);
912 	}
913 
914 	/*
915 	 * Recompute the stashed list of spares, with status information
916 	 * this time.
917 	 */
918 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
919 	    DATA_TYPE_NVLIST_ARRAY) == 0);
920 
921 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
922 	    KM_SLEEP);
923 	for (i = 0; i < spa->spa_spares.sav_count; i++)
924 		spares[i] = vdev_config_generate(spa,
925 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
926 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
927 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
928 	for (i = 0; i < spa->spa_spares.sav_count; i++)
929 		nvlist_free(spares[i]);
930 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
931 }
932 
933 /*
934  * Load (or re-load) the current list of vdevs describing the active l2cache for
935  * this pool.  When this is called, we have some form of basic information in
936  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
937  * then re-generate a more complete list including status information.
938  * Devices which are already active have their details maintained, and are
939  * not re-opened.
940  */
941 static void
942 spa_load_l2cache(spa_t *spa)
943 {
944 	nvlist_t **l2cache;
945 	uint_t nl2cache;
946 	int i, j, oldnvdevs;
947 	uint64_t guid;
948 	vdev_t *vd, **oldvdevs, **newvdevs;
949 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
950 
951 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
952 
953 	if (sav->sav_config != NULL) {
954 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
955 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
956 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
957 	} else {
958 		nl2cache = 0;
959 	}
960 
961 	oldvdevs = sav->sav_vdevs;
962 	oldnvdevs = sav->sav_count;
963 	sav->sav_vdevs = NULL;
964 	sav->sav_count = 0;
965 
966 	/*
967 	 * Process new nvlist of vdevs.
968 	 */
969 	for (i = 0; i < nl2cache; i++) {
970 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
971 		    &guid) == 0);
972 
973 		newvdevs[i] = NULL;
974 		for (j = 0; j < oldnvdevs; j++) {
975 			vd = oldvdevs[j];
976 			if (vd != NULL && guid == vd->vdev_guid) {
977 				/*
978 				 * Retain previous vdev for add/remove ops.
979 				 */
980 				newvdevs[i] = vd;
981 				oldvdevs[j] = NULL;
982 				break;
983 			}
984 		}
985 
986 		if (newvdevs[i] == NULL) {
987 			/*
988 			 * Create new vdev
989 			 */
990 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
991 			    VDEV_ALLOC_L2CACHE) == 0);
992 			ASSERT(vd != NULL);
993 			newvdevs[i] = vd;
994 
995 			/*
996 			 * Commit this vdev as an l2cache device,
997 			 * even if it fails to open.
998 			 */
999 			spa_l2cache_add(vd);
1000 
1001 			vd->vdev_top = vd;
1002 			vd->vdev_aux = sav;
1003 
1004 			spa_l2cache_activate(vd);
1005 
1006 			if (vdev_open(vd) != 0)
1007 				continue;
1008 
1009 			(void) vdev_validate_aux(vd);
1010 
1011 			if (!vdev_is_dead(vd))
1012 				l2arc_add_vdev(spa, vd);
1013 		}
1014 	}
1015 
1016 	/*
1017 	 * Purge vdevs that were dropped
1018 	 */
1019 	for (i = 0; i < oldnvdevs; i++) {
1020 		uint64_t pool;
1021 
1022 		vd = oldvdevs[i];
1023 		if (vd != NULL) {
1024 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1025 			    pool != 0ULL && l2arc_vdev_present(vd))
1026 				l2arc_remove_vdev(vd);
1027 			(void) vdev_close(vd);
1028 			spa_l2cache_remove(vd);
1029 		}
1030 	}
1031 
1032 	if (oldvdevs)
1033 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1034 
1035 	if (sav->sav_config == NULL)
1036 		goto out;
1037 
1038 	sav->sav_vdevs = newvdevs;
1039 	sav->sav_count = (int)nl2cache;
1040 
1041 	/*
1042 	 * Recompute the stashed list of l2cache devices, with status
1043 	 * information this time.
1044 	 */
1045 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1046 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1047 
1048 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1049 	for (i = 0; i < sav->sav_count; i++)
1050 		l2cache[i] = vdev_config_generate(spa,
1051 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1052 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1053 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1054 out:
1055 	for (i = 0; i < sav->sav_count; i++)
1056 		nvlist_free(l2cache[i]);
1057 	if (sav->sav_count)
1058 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1059 }
1060 
1061 static int
1062 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1063 {
1064 	dmu_buf_t *db;
1065 	char *packed = NULL;
1066 	size_t nvsize = 0;
1067 	int error;
1068 	*value = NULL;
1069 
1070 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1071 	nvsize = *(uint64_t *)db->db_data;
1072 	dmu_buf_rele(db, FTAG);
1073 
1074 	packed = kmem_alloc(nvsize, KM_SLEEP);
1075 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1076 	    DMU_READ_PREFETCH);
1077 	if (error == 0)
1078 		error = nvlist_unpack(packed, nvsize, value, 0);
1079 	kmem_free(packed, nvsize);
1080 
1081 	return (error);
1082 }
1083 
1084 /*
1085  * Checks to see if the given vdev could not be opened, in which case we post a
1086  * sysevent to notify the autoreplace code that the device has been removed.
1087  */
1088 static void
1089 spa_check_removed(vdev_t *vd)
1090 {
1091 	for (int c = 0; c < vd->vdev_children; c++)
1092 		spa_check_removed(vd->vdev_child[c]);
1093 
1094 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1095 		zfs_post_autoreplace(vd->vdev_spa, vd);
1096 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1097 	}
1098 }
1099 
1100 /*
1101  * Load the slog device state from the config object since it's possible
1102  * that the label does not contain the most up-to-date information.
1103  */
1104 void
1105 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1106 {
1107 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1108 
1109 	/*
1110 	 * Load the original root vdev tree from the passed config.
1111 	 */
1112 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1113 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1114 
1115 	for (int c = 0; c < rvd->vdev_children; c++) {
1116 		vdev_t *cvd = rvd->vdev_child[c];
1117 		if (cvd->vdev_islog)
1118 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1119 	}
1120 	vdev_free(ovd);
1121 	spa_config_exit(spa, SCL_ALL, FTAG);
1122 }
1123 
1124 /*
1125  * Check for missing log devices
1126  */
1127 int
1128 spa_check_logs(spa_t *spa)
1129 {
1130 	switch (spa->spa_log_state) {
1131 	case SPA_LOG_MISSING:
1132 		/* need to recheck in case slog has been restored */
1133 	case SPA_LOG_UNKNOWN:
1134 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1135 		    DS_FIND_CHILDREN)) {
1136 			spa->spa_log_state = SPA_LOG_MISSING;
1137 			return (1);
1138 		}
1139 		break;
1140 	}
1141 	return (0);
1142 }
1143 
1144 static void
1145 spa_aux_check_removed(spa_aux_vdev_t *sav)
1146 {
1147 	int i;
1148 
1149 	for (i = 0; i < sav->sav_count; i++)
1150 		spa_check_removed(sav->sav_vdevs[i]);
1151 }
1152 
1153 /*
1154  * Load an existing storage pool, using the pool's builtin spa_config as a
1155  * source of configuration information.
1156  */
1157 static int
1158 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1159 {
1160 	int error = 0;
1161 	nvlist_t *nvconfig, *nvroot = NULL;
1162 	vdev_t *rvd;
1163 	uberblock_t *ub = &spa->spa_uberblock;
1164 	uint64_t config_cache_txg = spa->spa_config_txg;
1165 	uint64_t pool_guid;
1166 	uint64_t version;
1167 	uint64_t autoreplace = 0;
1168 	int orig_mode = spa->spa_mode;
1169 	char *ereport = FM_EREPORT_ZFS_POOL;
1170 
1171 	/*
1172 	 * If this is an untrusted config, access the pool in read-only mode.
1173 	 * This prevents things like resilvering recently removed devices.
1174 	 */
1175 	if (!mosconfig)
1176 		spa->spa_mode = FREAD;
1177 
1178 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1179 
1180 	spa->spa_load_state = state;
1181 
1182 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1183 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1184 		error = EINVAL;
1185 		goto out;
1186 	}
1187 
1188 	/*
1189 	 * Versioning wasn't explicitly added to the label until later, so if
1190 	 * it's not present treat it as the initial version.
1191 	 */
1192 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1193 		version = SPA_VERSION_INITIAL;
1194 
1195 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1196 	    &spa->spa_config_txg);
1197 
1198 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1199 	    spa_guid_exists(pool_guid, 0)) {
1200 		error = EEXIST;
1201 		goto out;
1202 	}
1203 
1204 	spa->spa_load_guid = pool_guid;
1205 
1206 	/*
1207 	 * Create "The Godfather" zio to hold all async IOs
1208 	 */
1209 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1210 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1211 
1212 	/*
1213 	 * Parse the configuration into a vdev tree.  We explicitly set the
1214 	 * value that will be returned by spa_version() since parsing the
1215 	 * configuration requires knowing the version number.
1216 	 */
1217 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1218 	spa->spa_ubsync.ub_version = version;
1219 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1220 	spa_config_exit(spa, SCL_ALL, FTAG);
1221 
1222 	if (error != 0)
1223 		goto out;
1224 
1225 	ASSERT(spa->spa_root_vdev == rvd);
1226 	ASSERT(spa_guid(spa) == pool_guid);
1227 
1228 	/*
1229 	 * Try to open all vdevs, loading each label in the process.
1230 	 */
1231 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1232 	error = vdev_open(rvd);
1233 	spa_config_exit(spa, SCL_ALL, FTAG);
1234 	if (error != 0)
1235 		goto out;
1236 
1237 	/*
1238 	 * We need to validate the vdev labels against the configuration that
1239 	 * we have in hand, which is dependent on the setting of mosconfig. If
1240 	 * mosconfig is true then we're validating the vdev labels based on
1241 	 * that config. Otherwise, we're validating against the cached config
1242 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1243 	 * later we will recursively call spa_load() and validate against
1244 	 * the vdev config.
1245 	 */
1246 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1247 	error = vdev_validate(rvd);
1248 	spa_config_exit(spa, SCL_ALL, FTAG);
1249 	if (error != 0)
1250 		goto out;
1251 
1252 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1253 		error = ENXIO;
1254 		goto out;
1255 	}
1256 
1257 	/*
1258 	 * Find the best uberblock.
1259 	 */
1260 	vdev_uberblock_load(NULL, rvd, ub);
1261 
1262 	/*
1263 	 * If we weren't able to find a single valid uberblock, return failure.
1264 	 */
1265 	if (ub->ub_txg == 0) {
1266 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267 		    VDEV_AUX_CORRUPT_DATA);
1268 		error = ENXIO;
1269 		goto out;
1270 	}
1271 
1272 	/*
1273 	 * If the pool is newer than the code, we can't open it.
1274 	 */
1275 	if (ub->ub_version > SPA_VERSION) {
1276 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1277 		    VDEV_AUX_VERSION_NEWER);
1278 		error = ENOTSUP;
1279 		goto out;
1280 	}
1281 
1282 	/*
1283 	 * If the vdev guid sum doesn't match the uberblock, we have an
1284 	 * incomplete configuration.
1285 	 */
1286 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1287 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1288 		    VDEV_AUX_BAD_GUID_SUM);
1289 		error = ENXIO;
1290 		goto out;
1291 	}
1292 
1293 	/*
1294 	 * Initialize internal SPA structures.
1295 	 */
1296 	spa->spa_state = POOL_STATE_ACTIVE;
1297 	spa->spa_ubsync = spa->spa_uberblock;
1298 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1299 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1300 	if (error) {
1301 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302 		    VDEV_AUX_CORRUPT_DATA);
1303 		goto out;
1304 	}
1305 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1306 
1307 	if (zap_lookup(spa->spa_meta_objset,
1308 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1309 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1310 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311 		    VDEV_AUX_CORRUPT_DATA);
1312 		error = EIO;
1313 		goto out;
1314 	}
1315 
1316 	if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) {
1317 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1318 		    VDEV_AUX_CORRUPT_DATA);
1319 		error = EIO;
1320 		goto out;
1321 	}
1322 
1323 	if (!mosconfig) {
1324 		uint64_t hostid;
1325 
1326 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1327 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1328 			char *hostname;
1329 			unsigned long myhostid = 0;
1330 
1331 			VERIFY(nvlist_lookup_string(nvconfig,
1332 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1333 
1334 #ifdef	_KERNEL
1335 			myhostid = zone_get_hostid(NULL);
1336 #else	/* _KERNEL */
1337 			/*
1338 			 * We're emulating the system's hostid in userland, so
1339 			 * we can't use zone_get_hostid().
1340 			 */
1341 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1342 #endif	/* _KERNEL */
1343 			if (hostid != 0 && myhostid != 0 &&
1344 			    hostid != myhostid) {
1345 				cmn_err(CE_WARN, "pool '%s' could not be "
1346 				    "loaded as it was last accessed by "
1347 				    "another system (host: %s hostid: 0x%lx). "
1348 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1349 				    spa_name(spa), hostname,
1350 				    (unsigned long)hostid);
1351 				error = EBADF;
1352 				goto out;
1353 			}
1354 		}
1355 
1356 		spa_config_set(spa, nvconfig);
1357 		spa_unload(spa);
1358 		spa_deactivate(spa);
1359 		spa_activate(spa, orig_mode);
1360 
1361 		return (spa_load(spa, nvconfig, state, B_TRUE));
1362 	}
1363 
1364 	if (zap_lookup(spa->spa_meta_objset,
1365 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1366 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1367 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1368 		    VDEV_AUX_CORRUPT_DATA);
1369 		error = EIO;
1370 		goto out;
1371 	}
1372 
1373 	/*
1374 	 * Load the bit that tells us to use the new accounting function
1375 	 * (raid-z deflation).  If we have an older pool, this will not
1376 	 * be present.
1377 	 */
1378 	error = zap_lookup(spa->spa_meta_objset,
1379 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1380 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1381 	if (error != 0 && error != ENOENT) {
1382 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1383 		    VDEV_AUX_CORRUPT_DATA);
1384 		error = EIO;
1385 		goto out;
1386 	}
1387 
1388 	/*
1389 	 * Load the persistent error log.  If we have an older pool, this will
1390 	 * not be present.
1391 	 */
1392 	error = zap_lookup(spa->spa_meta_objset,
1393 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1394 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1395 	if (error != 0 && error != ENOENT) {
1396 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1397 		    VDEV_AUX_CORRUPT_DATA);
1398 		error = EIO;
1399 		goto out;
1400 	}
1401 
1402 	error = zap_lookup(spa->spa_meta_objset,
1403 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1404 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1405 	if (error != 0 && error != ENOENT) {
1406 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1407 		    VDEV_AUX_CORRUPT_DATA);
1408 		error = EIO;
1409 		goto out;
1410 	}
1411 
1412 	/*
1413 	 * Load the history object.  If we have an older pool, this
1414 	 * will not be present.
1415 	 */
1416 	error = zap_lookup(spa->spa_meta_objset,
1417 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1418 	    sizeof (uint64_t), 1, &spa->spa_history);
1419 	if (error != 0 && error != ENOENT) {
1420 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1421 		    VDEV_AUX_CORRUPT_DATA);
1422 		error = EIO;
1423 		goto out;
1424 	}
1425 
1426 	/*
1427 	 * Load any hot spares for this pool.
1428 	 */
1429 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1430 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1431 	if (error != 0 && error != ENOENT) {
1432 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1433 		    VDEV_AUX_CORRUPT_DATA);
1434 		error = EIO;
1435 		goto out;
1436 	}
1437 	if (error == 0) {
1438 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1439 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1440 		    &spa->spa_spares.sav_config) != 0) {
1441 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1442 			    VDEV_AUX_CORRUPT_DATA);
1443 			error = EIO;
1444 			goto out;
1445 		}
1446 
1447 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1448 		spa_load_spares(spa);
1449 		spa_config_exit(spa, SCL_ALL, FTAG);
1450 	}
1451 
1452 	/*
1453 	 * Load any level 2 ARC devices for this pool.
1454 	 */
1455 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1456 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1457 	    &spa->spa_l2cache.sav_object);
1458 	if (error != 0 && error != ENOENT) {
1459 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1460 		    VDEV_AUX_CORRUPT_DATA);
1461 		error = EIO;
1462 		goto out;
1463 	}
1464 	if (error == 0) {
1465 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1466 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1467 		    &spa->spa_l2cache.sav_config) != 0) {
1468 			vdev_set_state(rvd, B_TRUE,
1469 			    VDEV_STATE_CANT_OPEN,
1470 			    VDEV_AUX_CORRUPT_DATA);
1471 			error = EIO;
1472 			goto out;
1473 		}
1474 
1475 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1476 		spa_load_l2cache(spa);
1477 		spa_config_exit(spa, SCL_ALL, FTAG);
1478 	}
1479 
1480 	VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
1481 	    &nvroot) == 0);
1482 	spa_load_log_state(spa, nvroot);
1483 	nvlist_free(nvconfig);
1484 
1485 	if (spa_check_logs(spa)) {
1486 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1487 		    VDEV_AUX_BAD_LOG);
1488 		error = ENXIO;
1489 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1490 		goto out;
1491 	}
1492 
1493 
1494 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1495 
1496 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1497 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1498 
1499 	if (error && error != ENOENT) {
1500 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1501 		    VDEV_AUX_CORRUPT_DATA);
1502 		error = EIO;
1503 		goto out;
1504 	}
1505 
1506 	if (error == 0) {
1507 		(void) zap_lookup(spa->spa_meta_objset,
1508 		    spa->spa_pool_props_object,
1509 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1510 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1511 		(void) zap_lookup(spa->spa_meta_objset,
1512 		    spa->spa_pool_props_object,
1513 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1514 		    sizeof (uint64_t), 1, &autoreplace);
1515 		spa->spa_autoreplace = (autoreplace != 0);
1516 		(void) zap_lookup(spa->spa_meta_objset,
1517 		    spa->spa_pool_props_object,
1518 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1519 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1520 		(void) zap_lookup(spa->spa_meta_objset,
1521 		    spa->spa_pool_props_object,
1522 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1523 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1524 		(void) zap_lookup(spa->spa_meta_objset,
1525 		    spa->spa_pool_props_object,
1526 		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1527 		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1528 	}
1529 
1530 	/*
1531 	 * If the 'autoreplace' property is set, then post a resource notifying
1532 	 * the ZFS DE that it should not issue any faults for unopenable
1533 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1534 	 * unopenable vdevs so that the normal autoreplace handler can take
1535 	 * over.
1536 	 */
1537 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1538 		spa_check_removed(spa->spa_root_vdev);
1539 		/*
1540 		 * For the import case, this is done in spa_import(), because
1541 		 * at this point we're using the spare definitions from
1542 		 * the MOS config, not necessarily from the userland config.
1543 		 */
1544 		if (state != SPA_LOAD_IMPORT) {
1545 			spa_aux_check_removed(&spa->spa_spares);
1546 			spa_aux_check_removed(&spa->spa_l2cache);
1547 		}
1548 	}
1549 
1550 	/*
1551 	 * Load the vdev state for all toplevel vdevs.
1552 	 */
1553 	vdev_load(rvd);
1554 
1555 	/*
1556 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1557 	 */
1558 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1559 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1560 	spa_config_exit(spa, SCL_ALL, FTAG);
1561 
1562 	/*
1563 	 * Check the state of the root vdev.  If it can't be opened, it
1564 	 * indicates one or more toplevel vdevs are faulted.
1565 	 */
1566 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1567 		error = ENXIO;
1568 		goto out;
1569 	}
1570 
1571 	if (spa_writeable(spa)) {
1572 		dmu_tx_t *tx;
1573 		int need_update = B_FALSE;
1574 
1575 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1576 
1577 		/*
1578 		 * Claim log blocks that haven't been committed yet.
1579 		 * This must all happen in a single txg.
1580 		 */
1581 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1582 		    spa_first_txg(spa));
1583 		(void) dmu_objset_find(spa_name(spa),
1584 		    zil_claim, tx, DS_FIND_CHILDREN);
1585 		dmu_tx_commit(tx);
1586 
1587 		spa->spa_log_state = SPA_LOG_GOOD;
1588 		spa->spa_sync_on = B_TRUE;
1589 		txg_sync_start(spa->spa_dsl_pool);
1590 
1591 		/*
1592 		 * Wait for all claims to sync.
1593 		 */
1594 		txg_wait_synced(spa->spa_dsl_pool, 0);
1595 
1596 		/*
1597 		 * If the config cache is stale, or we have uninitialized
1598 		 * metaslabs (see spa_vdev_add()), then update the config.
1599 		 *
1600 		 * If spa_load_verbatim is true, trust the current
1601 		 * in-core spa_config and update the disk labels.
1602 		 */
1603 		if (config_cache_txg != spa->spa_config_txg ||
1604 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim)
1605 			need_update = B_TRUE;
1606 
1607 		for (int c = 0; c < rvd->vdev_children; c++)
1608 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1609 				need_update = B_TRUE;
1610 
1611 		/*
1612 		 * Update the config cache asychronously in case we're the
1613 		 * root pool, in which case the config cache isn't writable yet.
1614 		 */
1615 		if (need_update)
1616 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1617 
1618 		/*
1619 		 * Check all DTLs to see if anything needs resilvering.
1620 		 */
1621 		if (vdev_resilver_needed(rvd, NULL, NULL))
1622 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1623 
1624 		/*
1625 		 * Delete any inconsistent datasets.
1626 		 */
1627 		(void) dmu_objset_find(spa_name(spa),
1628 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
1629 
1630 		/*
1631 		 * Clean up any stale temporary dataset userrefs.
1632 		 */
1633 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
1634 	}
1635 
1636 	error = 0;
1637 out:
1638 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1639 	if (error && error != EBADF)
1640 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1641 	spa->spa_load_state = SPA_LOAD_NONE;
1642 	spa->spa_ena = 0;
1643 
1644 	return (error);
1645 }
1646 
1647 /*
1648  * Pool Open/Import
1649  *
1650  * The import case is identical to an open except that the configuration is sent
1651  * down from userland, instead of grabbed from the configuration cache.  For the
1652  * case of an open, the pool configuration will exist in the
1653  * POOL_STATE_UNINITIALIZED state.
1654  *
1655  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1656  * the same time open the pool, without having to keep around the spa_t in some
1657  * ambiguous state.
1658  */
1659 static int
1660 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1661 {
1662 	spa_t *spa;
1663 	int error;
1664 	int locked = B_FALSE;
1665 
1666 	*spapp = NULL;
1667 
1668 	/*
1669 	 * As disgusting as this is, we need to support recursive calls to this
1670 	 * function because dsl_dir_open() is called during spa_load(), and ends
1671 	 * up calling spa_open() again.  The real fix is to figure out how to
1672 	 * avoid dsl_dir_open() calling this in the first place.
1673 	 */
1674 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1675 		mutex_enter(&spa_namespace_lock);
1676 		locked = B_TRUE;
1677 	}
1678 
1679 	if ((spa = spa_lookup(pool)) == NULL) {
1680 		if (locked)
1681 			mutex_exit(&spa_namespace_lock);
1682 		return (ENOENT);
1683 	}
1684 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1685 
1686 		spa_activate(spa, spa_mode_global);
1687 
1688 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1689 
1690 		if (error == EBADF) {
1691 			/*
1692 			 * If vdev_validate() returns failure (indicated by
1693 			 * EBADF), it indicates that one of the vdevs indicates
1694 			 * that the pool has been exported or destroyed.  If
1695 			 * this is the case, the config cache is out of sync and
1696 			 * we should remove the pool from the namespace.
1697 			 */
1698 			spa_unload(spa);
1699 			spa_deactivate(spa);
1700 			spa_config_sync(spa, B_TRUE, B_TRUE);
1701 			spa_remove(spa);
1702 			if (locked)
1703 				mutex_exit(&spa_namespace_lock);
1704 			return (ENOENT);
1705 		}
1706 
1707 		if (error) {
1708 			/*
1709 			 * We can't open the pool, but we still have useful
1710 			 * information: the state of each vdev after the
1711 			 * attempted vdev_open().  Return this to the user.
1712 			 */
1713 			if (config != NULL && spa->spa_root_vdev != NULL)
1714 				*config = spa_config_generate(spa, NULL, -1ULL,
1715 				    B_TRUE);
1716 			spa_unload(spa);
1717 			spa_deactivate(spa);
1718 			spa->spa_last_open_failed = B_TRUE;
1719 			if (locked)
1720 				mutex_exit(&spa_namespace_lock);
1721 			*spapp = NULL;
1722 			return (error);
1723 		} else {
1724 			spa->spa_last_open_failed = B_FALSE;
1725 		}
1726 	}
1727 
1728 	spa_open_ref(spa, tag);
1729 
1730 	if (locked)
1731 		mutex_exit(&spa_namespace_lock);
1732 
1733 	*spapp = spa;
1734 
1735 	if (config != NULL)
1736 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1737 
1738 	return (0);
1739 }
1740 
1741 int
1742 spa_open(const char *name, spa_t **spapp, void *tag)
1743 {
1744 	return (spa_open_common(name, spapp, tag, NULL));
1745 }
1746 
1747 /*
1748  * Lookup the given spa_t, incrementing the inject count in the process,
1749  * preventing it from being exported or destroyed.
1750  */
1751 spa_t *
1752 spa_inject_addref(char *name)
1753 {
1754 	spa_t *spa;
1755 
1756 	mutex_enter(&spa_namespace_lock);
1757 	if ((spa = spa_lookup(name)) == NULL) {
1758 		mutex_exit(&spa_namespace_lock);
1759 		return (NULL);
1760 	}
1761 	spa->spa_inject_ref++;
1762 	mutex_exit(&spa_namespace_lock);
1763 
1764 	return (spa);
1765 }
1766 
1767 void
1768 spa_inject_delref(spa_t *spa)
1769 {
1770 	mutex_enter(&spa_namespace_lock);
1771 	spa->spa_inject_ref--;
1772 	mutex_exit(&spa_namespace_lock);
1773 }
1774 
1775 /*
1776  * Add spares device information to the nvlist.
1777  */
1778 static void
1779 spa_add_spares(spa_t *spa, nvlist_t *config)
1780 {
1781 	nvlist_t **spares;
1782 	uint_t i, nspares;
1783 	nvlist_t *nvroot;
1784 	uint64_t guid;
1785 	vdev_stat_t *vs;
1786 	uint_t vsc;
1787 	uint64_t pool;
1788 
1789 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1790 
1791 	if (spa->spa_spares.sav_count == 0)
1792 		return;
1793 
1794 	VERIFY(nvlist_lookup_nvlist(config,
1795 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1796 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1797 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1798 	if (nspares != 0) {
1799 		VERIFY(nvlist_add_nvlist_array(nvroot,
1800 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1801 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1802 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1803 
1804 		/*
1805 		 * Go through and find any spares which have since been
1806 		 * repurposed as an active spare.  If this is the case, update
1807 		 * their status appropriately.
1808 		 */
1809 		for (i = 0; i < nspares; i++) {
1810 			VERIFY(nvlist_lookup_uint64(spares[i],
1811 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1812 			if (spa_spare_exists(guid, &pool, NULL) &&
1813 			    pool != 0ULL) {
1814 				VERIFY(nvlist_lookup_uint64_array(
1815 				    spares[i], ZPOOL_CONFIG_STATS,
1816 				    (uint64_t **)&vs, &vsc) == 0);
1817 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1818 				vs->vs_aux = VDEV_AUX_SPARED;
1819 			}
1820 		}
1821 	}
1822 }
1823 
1824 /*
1825  * Add l2cache device information to the nvlist, including vdev stats.
1826  */
1827 static void
1828 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1829 {
1830 	nvlist_t **l2cache;
1831 	uint_t i, j, nl2cache;
1832 	nvlist_t *nvroot;
1833 	uint64_t guid;
1834 	vdev_t *vd;
1835 	vdev_stat_t *vs;
1836 	uint_t vsc;
1837 
1838 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1839 
1840 	if (spa->spa_l2cache.sav_count == 0)
1841 		return;
1842 
1843 	VERIFY(nvlist_lookup_nvlist(config,
1844 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1845 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1846 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1847 	if (nl2cache != 0) {
1848 		VERIFY(nvlist_add_nvlist_array(nvroot,
1849 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1850 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1851 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1852 
1853 		/*
1854 		 * Update level 2 cache device stats.
1855 		 */
1856 
1857 		for (i = 0; i < nl2cache; i++) {
1858 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1859 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1860 
1861 			vd = NULL;
1862 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1863 				if (guid ==
1864 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1865 					vd = spa->spa_l2cache.sav_vdevs[j];
1866 					break;
1867 				}
1868 			}
1869 			ASSERT(vd != NULL);
1870 
1871 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1872 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1873 			vdev_get_stats(vd, vs);
1874 		}
1875 	}
1876 }
1877 
1878 int
1879 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1880 {
1881 	int error;
1882 	spa_t *spa;
1883 
1884 	*config = NULL;
1885 	error = spa_open_common(name, &spa, FTAG, config);
1886 
1887 	if (spa != NULL) {
1888 		/*
1889 		 * This still leaves a window of inconsistency where the spares
1890 		 * or l2cache devices could change and the config would be
1891 		 * self-inconsistent.
1892 		 */
1893 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1894 
1895 		if (*config != NULL) {
1896 			VERIFY(nvlist_add_uint64(*config,
1897 			    ZPOOL_CONFIG_ERRCOUNT,
1898 			    spa_get_errlog_size(spa)) == 0);
1899 
1900 			if (spa_suspended(spa))
1901 				VERIFY(nvlist_add_uint64(*config,
1902 				    ZPOOL_CONFIG_SUSPENDED,
1903 				    spa->spa_failmode) == 0);
1904 
1905 			spa_add_spares(spa, *config);
1906 			spa_add_l2cache(spa, *config);
1907 		}
1908 	}
1909 
1910 	/*
1911 	 * We want to get the alternate root even for faulted pools, so we cheat
1912 	 * and call spa_lookup() directly.
1913 	 */
1914 	if (altroot) {
1915 		if (spa == NULL) {
1916 			mutex_enter(&spa_namespace_lock);
1917 			spa = spa_lookup(name);
1918 			if (spa)
1919 				spa_altroot(spa, altroot, buflen);
1920 			else
1921 				altroot[0] = '\0';
1922 			spa = NULL;
1923 			mutex_exit(&spa_namespace_lock);
1924 		} else {
1925 			spa_altroot(spa, altroot, buflen);
1926 		}
1927 	}
1928 
1929 	if (spa != NULL) {
1930 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1931 		spa_close(spa, FTAG);
1932 	}
1933 
1934 	return (error);
1935 }
1936 
1937 /*
1938  * Validate that the auxiliary device array is well formed.  We must have an
1939  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1940  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1941  * specified, as long as they are well-formed.
1942  */
1943 static int
1944 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1945     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1946     vdev_labeltype_t label)
1947 {
1948 	nvlist_t **dev;
1949 	uint_t i, ndev;
1950 	vdev_t *vd;
1951 	int error;
1952 
1953 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1954 
1955 	/*
1956 	 * It's acceptable to have no devs specified.
1957 	 */
1958 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1959 		return (0);
1960 
1961 	if (ndev == 0)
1962 		return (EINVAL);
1963 
1964 	/*
1965 	 * Make sure the pool is formatted with a version that supports this
1966 	 * device type.
1967 	 */
1968 	if (spa_version(spa) < version)
1969 		return (ENOTSUP);
1970 
1971 	/*
1972 	 * Set the pending device list so we correctly handle device in-use
1973 	 * checking.
1974 	 */
1975 	sav->sav_pending = dev;
1976 	sav->sav_npending = ndev;
1977 
1978 	for (i = 0; i < ndev; i++) {
1979 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1980 		    mode)) != 0)
1981 			goto out;
1982 
1983 		if (!vd->vdev_ops->vdev_op_leaf) {
1984 			vdev_free(vd);
1985 			error = EINVAL;
1986 			goto out;
1987 		}
1988 
1989 		/*
1990 		 * The L2ARC currently only supports disk devices in
1991 		 * kernel context.  For user-level testing, we allow it.
1992 		 */
1993 #ifdef _KERNEL
1994 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1995 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1996 			error = ENOTBLK;
1997 			goto out;
1998 		}
1999 #endif
2000 		vd->vdev_top = vd;
2001 
2002 		if ((error = vdev_open(vd)) == 0 &&
2003 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2004 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2005 			    vd->vdev_guid) == 0);
2006 		}
2007 
2008 		vdev_free(vd);
2009 
2010 		if (error &&
2011 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2012 			goto out;
2013 		else
2014 			error = 0;
2015 	}
2016 
2017 out:
2018 	sav->sav_pending = NULL;
2019 	sav->sav_npending = 0;
2020 	return (error);
2021 }
2022 
2023 static int
2024 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2025 {
2026 	int error;
2027 
2028 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2029 
2030 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2031 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2032 	    VDEV_LABEL_SPARE)) != 0) {
2033 		return (error);
2034 	}
2035 
2036 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2037 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2038 	    VDEV_LABEL_L2CACHE));
2039 }
2040 
2041 static void
2042 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2043     const char *config)
2044 {
2045 	int i;
2046 
2047 	if (sav->sav_config != NULL) {
2048 		nvlist_t **olddevs;
2049 		uint_t oldndevs;
2050 		nvlist_t **newdevs;
2051 
2052 		/*
2053 		 * Generate new dev list by concatentating with the
2054 		 * current dev list.
2055 		 */
2056 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2057 		    &olddevs, &oldndevs) == 0);
2058 
2059 		newdevs = kmem_alloc(sizeof (void *) *
2060 		    (ndevs + oldndevs), KM_SLEEP);
2061 		for (i = 0; i < oldndevs; i++)
2062 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2063 			    KM_SLEEP) == 0);
2064 		for (i = 0; i < ndevs; i++)
2065 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2066 			    KM_SLEEP) == 0);
2067 
2068 		VERIFY(nvlist_remove(sav->sav_config, config,
2069 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2070 
2071 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2072 		    config, newdevs, ndevs + oldndevs) == 0);
2073 		for (i = 0; i < oldndevs + ndevs; i++)
2074 			nvlist_free(newdevs[i]);
2075 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2076 	} else {
2077 		/*
2078 		 * Generate a new dev list.
2079 		 */
2080 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2081 		    KM_SLEEP) == 0);
2082 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2083 		    devs, ndevs) == 0);
2084 	}
2085 }
2086 
2087 /*
2088  * Stop and drop level 2 ARC devices
2089  */
2090 void
2091 spa_l2cache_drop(spa_t *spa)
2092 {
2093 	vdev_t *vd;
2094 	int i;
2095 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2096 
2097 	for (i = 0; i < sav->sav_count; i++) {
2098 		uint64_t pool;
2099 
2100 		vd = sav->sav_vdevs[i];
2101 		ASSERT(vd != NULL);
2102 
2103 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2104 		    pool != 0ULL && l2arc_vdev_present(vd))
2105 			l2arc_remove_vdev(vd);
2106 		if (vd->vdev_isl2cache)
2107 			spa_l2cache_remove(vd);
2108 		vdev_clear_stats(vd);
2109 		(void) vdev_close(vd);
2110 	}
2111 }
2112 
2113 /*
2114  * Pool Creation
2115  */
2116 int
2117 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2118     const char *history_str, nvlist_t *zplprops)
2119 {
2120 	spa_t *spa;
2121 	char *altroot = NULL;
2122 	vdev_t *rvd;
2123 	dsl_pool_t *dp;
2124 	dmu_tx_t *tx;
2125 	int error = 0;
2126 	uint64_t txg = TXG_INITIAL;
2127 	nvlist_t **spares, **l2cache;
2128 	uint_t nspares, nl2cache;
2129 	uint64_t version;
2130 
2131 	/*
2132 	 * If this pool already exists, return failure.
2133 	 */
2134 	mutex_enter(&spa_namespace_lock);
2135 	if (spa_lookup(pool) != NULL) {
2136 		mutex_exit(&spa_namespace_lock);
2137 		return (EEXIST);
2138 	}
2139 
2140 	/*
2141 	 * Allocate a new spa_t structure.
2142 	 */
2143 	(void) nvlist_lookup_string(props,
2144 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2145 	spa = spa_add(pool, altroot);
2146 	spa_activate(spa, spa_mode_global);
2147 
2148 	spa->spa_uberblock.ub_txg = txg - 1;
2149 
2150 	if (props && (error = spa_prop_validate(spa, props))) {
2151 		spa_deactivate(spa);
2152 		spa_remove(spa);
2153 		mutex_exit(&spa_namespace_lock);
2154 		return (error);
2155 	}
2156 
2157 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2158 	    &version) != 0)
2159 		version = SPA_VERSION;
2160 	ASSERT(version <= SPA_VERSION);
2161 	spa->spa_uberblock.ub_version = version;
2162 	spa->spa_ubsync = spa->spa_uberblock;
2163 
2164 	/*
2165 	 * Create "The Godfather" zio to hold all async IOs
2166 	 */
2167 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2168 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2169 
2170 	/*
2171 	 * Create the root vdev.
2172 	 */
2173 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2174 
2175 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2176 
2177 	ASSERT(error != 0 || rvd != NULL);
2178 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2179 
2180 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2181 		error = EINVAL;
2182 
2183 	if (error == 0 &&
2184 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2185 	    (error = spa_validate_aux(spa, nvroot, txg,
2186 	    VDEV_ALLOC_ADD)) == 0) {
2187 		for (int c = 0; c < rvd->vdev_children; c++) {
2188 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2189 			vdev_expand(rvd->vdev_child[c], txg);
2190 		}
2191 	}
2192 
2193 	spa_config_exit(spa, SCL_ALL, FTAG);
2194 
2195 	if (error != 0) {
2196 		spa_unload(spa);
2197 		spa_deactivate(spa);
2198 		spa_remove(spa);
2199 		mutex_exit(&spa_namespace_lock);
2200 		return (error);
2201 	}
2202 
2203 	/*
2204 	 * Get the list of spares, if specified.
2205 	 */
2206 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2207 	    &spares, &nspares) == 0) {
2208 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2209 		    KM_SLEEP) == 0);
2210 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2211 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2212 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2213 		spa_load_spares(spa);
2214 		spa_config_exit(spa, SCL_ALL, FTAG);
2215 		spa->spa_spares.sav_sync = B_TRUE;
2216 	}
2217 
2218 	/*
2219 	 * Get the list of level 2 cache devices, if specified.
2220 	 */
2221 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2222 	    &l2cache, &nl2cache) == 0) {
2223 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2224 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2225 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2226 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2227 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2228 		spa_load_l2cache(spa);
2229 		spa_config_exit(spa, SCL_ALL, FTAG);
2230 		spa->spa_l2cache.sav_sync = B_TRUE;
2231 	}
2232 
2233 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2234 	spa->spa_meta_objset = dp->dp_meta_objset;
2235 
2236 	tx = dmu_tx_create_assigned(dp, txg);
2237 
2238 	/*
2239 	 * Create the pool config object.
2240 	 */
2241 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2242 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2243 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2244 
2245 	if (zap_add(spa->spa_meta_objset,
2246 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2247 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2248 		cmn_err(CE_PANIC, "failed to add pool config");
2249 	}
2250 
2251 	/* Newly created pools with the right version are always deflated. */
2252 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2253 		spa->spa_deflate = TRUE;
2254 		if (zap_add(spa->spa_meta_objset,
2255 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2256 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2257 			cmn_err(CE_PANIC, "failed to add deflate");
2258 		}
2259 	}
2260 
2261 	/*
2262 	 * Create the deferred-free bplist object.  Turn off compression
2263 	 * because sync-to-convergence takes longer if the blocksize
2264 	 * keeps changing.
2265 	 */
2266 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2267 	    1 << 14, tx);
2268 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2269 	    ZIO_COMPRESS_OFF, tx);
2270 
2271 	if (zap_add(spa->spa_meta_objset,
2272 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2273 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2274 		cmn_err(CE_PANIC, "failed to add bplist");
2275 	}
2276 
2277 	/*
2278 	 * Create the pool's history object.
2279 	 */
2280 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2281 		spa_history_create_obj(spa, tx);
2282 
2283 	/*
2284 	 * Set pool properties.
2285 	 */
2286 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2287 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2288 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2289 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2290 	if (props != NULL) {
2291 		spa_configfile_set(spa, props, B_FALSE);
2292 		spa_sync_props(spa, props, CRED(), tx);
2293 	}
2294 
2295 	dmu_tx_commit(tx);
2296 
2297 	spa->spa_sync_on = B_TRUE;
2298 	txg_sync_start(spa->spa_dsl_pool);
2299 
2300 	/*
2301 	 * We explicitly wait for the first transaction to complete so that our
2302 	 * bean counters are appropriately updated.
2303 	 */
2304 	txg_wait_synced(spa->spa_dsl_pool, txg);
2305 
2306 	spa_config_sync(spa, B_FALSE, B_TRUE);
2307 
2308 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2309 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2310 	spa_history_log_version(spa, LOG_POOL_CREATE);
2311 
2312 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2313 
2314 	mutex_exit(&spa_namespace_lock);
2315 
2316 	return (0);
2317 }
2318 
2319 #ifdef _KERNEL
2320 /*
2321  * Get the root pool information from the root disk, then import the root pool
2322  * during the system boot up time.
2323  */
2324 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2325 
2326 static nvlist_t *
2327 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2328 {
2329 	nvlist_t *config;
2330 	nvlist_t *nvtop, *nvroot;
2331 	uint64_t pgid;
2332 
2333 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2334 		return (NULL);
2335 
2336 	/*
2337 	 * Add this top-level vdev to the child array.
2338 	 */
2339 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2340 	    &nvtop) == 0);
2341 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2342 	    &pgid) == 0);
2343 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2344 
2345 	/*
2346 	 * Put this pool's top-level vdevs into a root vdev.
2347 	 */
2348 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2349 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2350 	    VDEV_TYPE_ROOT) == 0);
2351 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2352 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2353 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2354 	    &nvtop, 1) == 0);
2355 
2356 	/*
2357 	 * Replace the existing vdev_tree with the new root vdev in
2358 	 * this pool's configuration (remove the old, add the new).
2359 	 */
2360 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2361 	nvlist_free(nvroot);
2362 	return (config);
2363 }
2364 
2365 /*
2366  * Walk the vdev tree and see if we can find a device with "better"
2367  * configuration. A configuration is "better" if the label on that
2368  * device has a more recent txg.
2369  */
2370 static void
2371 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2372 {
2373 	for (int c = 0; c < vd->vdev_children; c++)
2374 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2375 
2376 	if (vd->vdev_ops->vdev_op_leaf) {
2377 		nvlist_t *label;
2378 		uint64_t label_txg;
2379 
2380 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2381 		    &label) != 0)
2382 			return;
2383 
2384 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2385 		    &label_txg) == 0);
2386 
2387 		/*
2388 		 * Do we have a better boot device?
2389 		 */
2390 		if (label_txg > *txg) {
2391 			*txg = label_txg;
2392 			*avd = vd;
2393 		}
2394 		nvlist_free(label);
2395 	}
2396 }
2397 
2398 /*
2399  * Import a root pool.
2400  *
2401  * For x86. devpath_list will consist of devid and/or physpath name of
2402  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2403  * The GRUB "findroot" command will return the vdev we should boot.
2404  *
2405  * For Sparc, devpath_list consists the physpath name of the booting device
2406  * no matter the rootpool is a single device pool or a mirrored pool.
2407  * e.g.
2408  *	"/pci@1f,0/ide@d/disk@0,0:a"
2409  */
2410 int
2411 spa_import_rootpool(char *devpath, char *devid)
2412 {
2413 	spa_t *spa;
2414 	vdev_t *rvd, *bvd, *avd = NULL;
2415 	nvlist_t *config, *nvtop;
2416 	uint64_t guid, txg;
2417 	char *pname;
2418 	int error;
2419 
2420 	/*
2421 	 * Read the label from the boot device and generate a configuration.
2422 	 */
2423 	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2424 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2425 		    devpath);
2426 		return (EIO);
2427 	}
2428 
2429 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2430 	    &pname) == 0);
2431 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2432 
2433 	mutex_enter(&spa_namespace_lock);
2434 	if ((spa = spa_lookup(pname)) != NULL) {
2435 		/*
2436 		 * Remove the existing root pool from the namespace so that we
2437 		 * can replace it with the correct config we just read in.
2438 		 */
2439 		spa_remove(spa);
2440 	}
2441 
2442 	spa = spa_add(pname, NULL);
2443 	spa->spa_is_root = B_TRUE;
2444 	spa->spa_load_verbatim = B_TRUE;
2445 
2446 	/*
2447 	 * Build up a vdev tree based on the boot device's label config.
2448 	 */
2449 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2450 	    &nvtop) == 0);
2451 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2452 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2453 	    VDEV_ALLOC_ROOTPOOL);
2454 	spa_config_exit(spa, SCL_ALL, FTAG);
2455 	if (error) {
2456 		mutex_exit(&spa_namespace_lock);
2457 		nvlist_free(config);
2458 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2459 		    pname);
2460 		return (error);
2461 	}
2462 
2463 	/*
2464 	 * Get the boot vdev.
2465 	 */
2466 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2467 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2468 		    (u_longlong_t)guid);
2469 		error = ENOENT;
2470 		goto out;
2471 	}
2472 
2473 	/*
2474 	 * Determine if there is a better boot device.
2475 	 */
2476 	avd = bvd;
2477 	spa_alt_rootvdev(rvd, &avd, &txg);
2478 	if (avd != bvd) {
2479 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2480 		    "try booting from '%s'", avd->vdev_path);
2481 		error = EINVAL;
2482 		goto out;
2483 	}
2484 
2485 	/*
2486 	 * If the boot device is part of a spare vdev then ensure that
2487 	 * we're booting off the active spare.
2488 	 */
2489 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2490 	    !bvd->vdev_isspare) {
2491 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2492 		    "try booting from '%s'",
2493 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2494 		error = EINVAL;
2495 		goto out;
2496 	}
2497 
2498 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2499 	error = 0;
2500 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2501 out:
2502 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503 	vdev_free(rvd);
2504 	spa_config_exit(spa, SCL_ALL, FTAG);
2505 	mutex_exit(&spa_namespace_lock);
2506 
2507 	nvlist_free(config);
2508 	return (error);
2509 }
2510 
2511 #endif
2512 
2513 /*
2514  * Take a pool and insert it into the namespace as if it had been loaded at
2515  * boot.
2516  */
2517 int
2518 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2519 {
2520 	spa_t *spa;
2521 	char *altroot = NULL;
2522 
2523 	mutex_enter(&spa_namespace_lock);
2524 	if (spa_lookup(pool) != NULL) {
2525 		mutex_exit(&spa_namespace_lock);
2526 		return (EEXIST);
2527 	}
2528 
2529 	(void) nvlist_lookup_string(props,
2530 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2531 	spa = spa_add(pool, altroot);
2532 
2533 	spa->spa_load_verbatim = B_TRUE;
2534 
2535 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2536 
2537 	if (props != NULL)
2538 		spa_configfile_set(spa, props, B_FALSE);
2539 
2540 	spa_config_sync(spa, B_FALSE, B_TRUE);
2541 
2542 	mutex_exit(&spa_namespace_lock);
2543 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2544 
2545 	return (0);
2546 }
2547 
2548 /*
2549  * Import a non-root pool into the system.
2550  */
2551 int
2552 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2553 {
2554 	spa_t *spa;
2555 	char *altroot = NULL;
2556 	int error;
2557 	nvlist_t *nvroot;
2558 	nvlist_t **spares, **l2cache;
2559 	uint_t nspares, nl2cache;
2560 
2561 	/*
2562 	 * If a pool with this name exists, return failure.
2563 	 */
2564 	mutex_enter(&spa_namespace_lock);
2565 	if ((spa = spa_lookup(pool)) != NULL) {
2566 		mutex_exit(&spa_namespace_lock);
2567 		return (EEXIST);
2568 	}
2569 
2570 	/*
2571 	 * Create and initialize the spa structure.
2572 	 */
2573 	(void) nvlist_lookup_string(props,
2574 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2575 	spa = spa_add(pool, altroot);
2576 	spa_activate(spa, spa_mode_global);
2577 
2578 	/*
2579 	 * Don't start async tasks until we know everything is healthy.
2580 	 */
2581 	spa_async_suspend(spa);
2582 
2583 	/*
2584 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2585 	 * because the user-supplied config is actually the one to trust when
2586 	 * doing an import.
2587 	 */
2588 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2589 
2590 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2591 	/*
2592 	 * Toss any existing sparelist, as it doesn't have any validity
2593 	 * anymore, and conflicts with spa_has_spare().
2594 	 */
2595 	if (spa->spa_spares.sav_config) {
2596 		nvlist_free(spa->spa_spares.sav_config);
2597 		spa->spa_spares.sav_config = NULL;
2598 		spa_load_spares(spa);
2599 	}
2600 	if (spa->spa_l2cache.sav_config) {
2601 		nvlist_free(spa->spa_l2cache.sav_config);
2602 		spa->spa_l2cache.sav_config = NULL;
2603 		spa_load_l2cache(spa);
2604 	}
2605 
2606 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2607 	    &nvroot) == 0);
2608 	if (error == 0)
2609 		error = spa_validate_aux(spa, nvroot, -1ULL,
2610 		    VDEV_ALLOC_SPARE);
2611 	if (error == 0)
2612 		error = spa_validate_aux(spa, nvroot, -1ULL,
2613 		    VDEV_ALLOC_L2CACHE);
2614 	spa_config_exit(spa, SCL_ALL, FTAG);
2615 
2616 	if (props != NULL)
2617 		spa_configfile_set(spa, props, B_FALSE);
2618 
2619 	if (error != 0 || (props && spa_writeable(spa) &&
2620 	    (error = spa_prop_set(spa, props)))) {
2621 		spa_unload(spa);
2622 		spa_deactivate(spa);
2623 		spa_remove(spa);
2624 		mutex_exit(&spa_namespace_lock);
2625 		return (error);
2626 	}
2627 
2628 	spa_async_resume(spa);
2629 
2630 	/*
2631 	 * Override any spares and level 2 cache devices as specified by
2632 	 * the user, as these may have correct device names/devids, etc.
2633 	 */
2634 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2635 	    &spares, &nspares) == 0) {
2636 		if (spa->spa_spares.sav_config)
2637 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2638 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2639 		else
2640 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2641 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2642 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2643 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2644 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2645 		spa_load_spares(spa);
2646 		spa_config_exit(spa, SCL_ALL, FTAG);
2647 		spa->spa_spares.sav_sync = B_TRUE;
2648 	}
2649 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2650 	    &l2cache, &nl2cache) == 0) {
2651 		if (spa->spa_l2cache.sav_config)
2652 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2653 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2654 		else
2655 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2656 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2657 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2658 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2659 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2660 		spa_load_l2cache(spa);
2661 		spa_config_exit(spa, SCL_ALL, FTAG);
2662 		spa->spa_l2cache.sav_sync = B_TRUE;
2663 	}
2664 
2665 	/*
2666 	 * Check for any removed devices.
2667 	 */
2668 	if (spa->spa_autoreplace) {
2669 		spa_aux_check_removed(&spa->spa_spares);
2670 		spa_aux_check_removed(&spa->spa_l2cache);
2671 	}
2672 
2673 	if (spa_writeable(spa)) {
2674 		/*
2675 		 * Update the config cache to include the newly-imported pool.
2676 		 */
2677 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2678 	}
2679 
2680 	/*
2681 	 * It's possible that the pool was expanded while it was exported.
2682 	 * We kick off an async task to handle this for us.
2683 	 */
2684 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2685 
2686 	mutex_exit(&spa_namespace_lock);
2687 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2688 
2689 	return (0);
2690 }
2691 
2692 
2693 /*
2694  * This (illegal) pool name is used when temporarily importing a spa_t in order
2695  * to get the vdev stats associated with the imported devices.
2696  */
2697 #define	TRYIMPORT_NAME	"$import"
2698 
2699 nvlist_t *
2700 spa_tryimport(nvlist_t *tryconfig)
2701 {
2702 	nvlist_t *config = NULL;
2703 	char *poolname;
2704 	spa_t *spa;
2705 	uint64_t state;
2706 	int error;
2707 
2708 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2709 		return (NULL);
2710 
2711 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2712 		return (NULL);
2713 
2714 	/*
2715 	 * Create and initialize the spa structure.
2716 	 */
2717 	mutex_enter(&spa_namespace_lock);
2718 	spa = spa_add(TRYIMPORT_NAME, NULL);
2719 	spa_activate(spa, FREAD);
2720 
2721 	/*
2722 	 * Pass off the heavy lifting to spa_load().
2723 	 * Pass TRUE for mosconfig because the user-supplied config
2724 	 * is actually the one to trust when doing an import.
2725 	 */
2726 	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2727 
2728 	/*
2729 	 * If 'tryconfig' was at least parsable, return the current config.
2730 	 */
2731 	if (spa->spa_root_vdev != NULL) {
2732 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2733 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2734 		    poolname) == 0);
2735 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2736 		    state) == 0);
2737 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2738 		    spa->spa_uberblock.ub_timestamp) == 0);
2739 
2740 		/*
2741 		 * If the bootfs property exists on this pool then we
2742 		 * copy it out so that external consumers can tell which
2743 		 * pools are bootable.
2744 		 */
2745 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2746 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2747 
2748 			/*
2749 			 * We have to play games with the name since the
2750 			 * pool was opened as TRYIMPORT_NAME.
2751 			 */
2752 			if (dsl_dsobj_to_dsname(spa_name(spa),
2753 			    spa->spa_bootfs, tmpname) == 0) {
2754 				char *cp;
2755 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2756 
2757 				cp = strchr(tmpname, '/');
2758 				if (cp == NULL) {
2759 					(void) strlcpy(dsname, tmpname,
2760 					    MAXPATHLEN);
2761 				} else {
2762 					(void) snprintf(dsname, MAXPATHLEN,
2763 					    "%s/%s", poolname, ++cp);
2764 				}
2765 				VERIFY(nvlist_add_string(config,
2766 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2767 				kmem_free(dsname, MAXPATHLEN);
2768 			}
2769 			kmem_free(tmpname, MAXPATHLEN);
2770 		}
2771 
2772 		/*
2773 		 * Add the list of hot spares and level 2 cache devices.
2774 		 */
2775 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2776 		spa_add_spares(spa, config);
2777 		spa_add_l2cache(spa, config);
2778 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2779 	}
2780 
2781 	spa_unload(spa);
2782 	spa_deactivate(spa);
2783 	spa_remove(spa);
2784 	mutex_exit(&spa_namespace_lock);
2785 
2786 	return (config);
2787 }
2788 
2789 /*
2790  * Pool export/destroy
2791  *
2792  * The act of destroying or exporting a pool is very simple.  We make sure there
2793  * is no more pending I/O and any references to the pool are gone.  Then, we
2794  * update the pool state and sync all the labels to disk, removing the
2795  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2796  * we don't sync the labels or remove the configuration cache.
2797  */
2798 static int
2799 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2800     boolean_t force, boolean_t hardforce)
2801 {
2802 	spa_t *spa;
2803 
2804 	if (oldconfig)
2805 		*oldconfig = NULL;
2806 
2807 	if (!(spa_mode_global & FWRITE))
2808 		return (EROFS);
2809 
2810 	mutex_enter(&spa_namespace_lock);
2811 	if ((spa = spa_lookup(pool)) == NULL) {
2812 		mutex_exit(&spa_namespace_lock);
2813 		return (ENOENT);
2814 	}
2815 
2816 	/*
2817 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2818 	 * reacquire the namespace lock, and see if we can export.
2819 	 */
2820 	spa_open_ref(spa, FTAG);
2821 	mutex_exit(&spa_namespace_lock);
2822 	spa_async_suspend(spa);
2823 	mutex_enter(&spa_namespace_lock);
2824 	spa_close(spa, FTAG);
2825 
2826 	/*
2827 	 * The pool will be in core if it's openable,
2828 	 * in which case we can modify its state.
2829 	 */
2830 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2831 		/*
2832 		 * Objsets may be open only because they're dirty, so we
2833 		 * have to force it to sync before checking spa_refcnt.
2834 		 */
2835 		txg_wait_synced(spa->spa_dsl_pool, 0);
2836 
2837 		/*
2838 		 * A pool cannot be exported or destroyed if there are active
2839 		 * references.  If we are resetting a pool, allow references by
2840 		 * fault injection handlers.
2841 		 */
2842 		if (!spa_refcount_zero(spa) ||
2843 		    (spa->spa_inject_ref != 0 &&
2844 		    new_state != POOL_STATE_UNINITIALIZED)) {
2845 			spa_async_resume(spa);
2846 			mutex_exit(&spa_namespace_lock);
2847 			return (EBUSY);
2848 		}
2849 
2850 		/*
2851 		 * A pool cannot be exported if it has an active shared spare.
2852 		 * This is to prevent other pools stealing the active spare
2853 		 * from an exported pool. At user's own will, such pool can
2854 		 * be forcedly exported.
2855 		 */
2856 		if (!force && new_state == POOL_STATE_EXPORTED &&
2857 		    spa_has_active_shared_spare(spa)) {
2858 			spa_async_resume(spa);
2859 			mutex_exit(&spa_namespace_lock);
2860 			return (EXDEV);
2861 		}
2862 
2863 		/*
2864 		 * We want this to be reflected on every label,
2865 		 * so mark them all dirty.  spa_unload() will do the
2866 		 * final sync that pushes these changes out.
2867 		 */
2868 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2869 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2870 			spa->spa_state = new_state;
2871 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2872 			vdev_config_dirty(spa->spa_root_vdev);
2873 			spa_config_exit(spa, SCL_ALL, FTAG);
2874 		}
2875 	}
2876 
2877 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2878 
2879 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2880 		spa_unload(spa);
2881 		spa_deactivate(spa);
2882 	}
2883 
2884 	if (oldconfig && spa->spa_config)
2885 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2886 
2887 	if (new_state != POOL_STATE_UNINITIALIZED) {
2888 		if (!hardforce)
2889 			spa_config_sync(spa, B_TRUE, B_TRUE);
2890 		spa_remove(spa);
2891 	}
2892 	mutex_exit(&spa_namespace_lock);
2893 
2894 	return (0);
2895 }
2896 
2897 /*
2898  * Destroy a storage pool.
2899  */
2900 int
2901 spa_destroy(char *pool)
2902 {
2903 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2904 	    B_FALSE, B_FALSE));
2905 }
2906 
2907 /*
2908  * Export a storage pool.
2909  */
2910 int
2911 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2912     boolean_t hardforce)
2913 {
2914 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2915 	    force, hardforce));
2916 }
2917 
2918 /*
2919  * Similar to spa_export(), this unloads the spa_t without actually removing it
2920  * from the namespace in any way.
2921  */
2922 int
2923 spa_reset(char *pool)
2924 {
2925 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2926 	    B_FALSE, B_FALSE));
2927 }
2928 
2929 /*
2930  * ==========================================================================
2931  * Device manipulation
2932  * ==========================================================================
2933  */
2934 
2935 /*
2936  * Add a device to a storage pool.
2937  */
2938 int
2939 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2940 {
2941 	uint64_t txg, id;
2942 	int error;
2943 	vdev_t *rvd = spa->spa_root_vdev;
2944 	vdev_t *vd, *tvd;
2945 	nvlist_t **spares, **l2cache;
2946 	uint_t nspares, nl2cache;
2947 
2948 	txg = spa_vdev_enter(spa);
2949 
2950 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2951 	    VDEV_ALLOC_ADD)) != 0)
2952 		return (spa_vdev_exit(spa, NULL, txg, error));
2953 
2954 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2955 
2956 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2957 	    &nspares) != 0)
2958 		nspares = 0;
2959 
2960 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2961 	    &nl2cache) != 0)
2962 		nl2cache = 0;
2963 
2964 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2965 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2966 
2967 	if (vd->vdev_children != 0 &&
2968 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2969 		return (spa_vdev_exit(spa, vd, txg, error));
2970 
2971 	/*
2972 	 * We must validate the spares and l2cache devices after checking the
2973 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2974 	 */
2975 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2976 		return (spa_vdev_exit(spa, vd, txg, error));
2977 
2978 	/*
2979 	 * Transfer each new top-level vdev from vd to rvd.
2980 	 */
2981 	for (int c = 0; c < vd->vdev_children; c++) {
2982 
2983 		/*
2984 		 * Set the vdev id to the first hole, if one exists.
2985 		 */
2986 		for (id = 0; id < rvd->vdev_children; id++) {
2987 			if (rvd->vdev_child[id]->vdev_ishole) {
2988 				vdev_free(rvd->vdev_child[id]);
2989 				break;
2990 			}
2991 		}
2992 		tvd = vd->vdev_child[c];
2993 		vdev_remove_child(vd, tvd);
2994 		tvd->vdev_id = id;
2995 		vdev_add_child(rvd, tvd);
2996 		vdev_config_dirty(tvd);
2997 	}
2998 
2999 	if (nspares != 0) {
3000 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3001 		    ZPOOL_CONFIG_SPARES);
3002 		spa_load_spares(spa);
3003 		spa->spa_spares.sav_sync = B_TRUE;
3004 	}
3005 
3006 	if (nl2cache != 0) {
3007 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3008 		    ZPOOL_CONFIG_L2CACHE);
3009 		spa_load_l2cache(spa);
3010 		spa->spa_l2cache.sav_sync = B_TRUE;
3011 	}
3012 
3013 	/*
3014 	 * We have to be careful when adding new vdevs to an existing pool.
3015 	 * If other threads start allocating from these vdevs before we
3016 	 * sync the config cache, and we lose power, then upon reboot we may
3017 	 * fail to open the pool because there are DVAs that the config cache
3018 	 * can't translate.  Therefore, we first add the vdevs without
3019 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3020 	 * and then let spa_config_update() initialize the new metaslabs.
3021 	 *
3022 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3023 	 * if we lose power at any point in this sequence, the remaining
3024 	 * steps will be completed the next time we load the pool.
3025 	 */
3026 	(void) spa_vdev_exit(spa, vd, txg, 0);
3027 
3028 	mutex_enter(&spa_namespace_lock);
3029 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3030 	mutex_exit(&spa_namespace_lock);
3031 
3032 	return (0);
3033 }
3034 
3035 /*
3036  * Attach a device to a mirror.  The arguments are the path to any device
3037  * in the mirror, and the nvroot for the new device.  If the path specifies
3038  * a device that is not mirrored, we automatically insert the mirror vdev.
3039  *
3040  * If 'replacing' is specified, the new device is intended to replace the
3041  * existing device; in this case the two devices are made into their own
3042  * mirror using the 'replacing' vdev, which is functionally identical to
3043  * the mirror vdev (it actually reuses all the same ops) but has a few
3044  * extra rules: you can't attach to it after it's been created, and upon
3045  * completion of resilvering, the first disk (the one being replaced)
3046  * is automatically detached.
3047  */
3048 int
3049 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3050 {
3051 	uint64_t txg, open_txg;
3052 	vdev_t *rvd = spa->spa_root_vdev;
3053 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3054 	vdev_ops_t *pvops;
3055 	char *oldvdpath, *newvdpath;
3056 	int newvd_isspare;
3057 	int error;
3058 
3059 	txg = spa_vdev_enter(spa);
3060 
3061 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3062 
3063 	if (oldvd == NULL)
3064 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3065 
3066 	if (!oldvd->vdev_ops->vdev_op_leaf)
3067 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3068 
3069 	pvd = oldvd->vdev_parent;
3070 
3071 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3072 	    VDEV_ALLOC_ADD)) != 0)
3073 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3074 
3075 	if (newrootvd->vdev_children != 1)
3076 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3077 
3078 	newvd = newrootvd->vdev_child[0];
3079 
3080 	if (!newvd->vdev_ops->vdev_op_leaf)
3081 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3082 
3083 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3084 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3085 
3086 	/*
3087 	 * Spares can't replace logs
3088 	 */
3089 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3090 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3091 
3092 	if (!replacing) {
3093 		/*
3094 		 * For attach, the only allowable parent is a mirror or the root
3095 		 * vdev.
3096 		 */
3097 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3098 		    pvd->vdev_ops != &vdev_root_ops)
3099 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3100 
3101 		pvops = &vdev_mirror_ops;
3102 	} else {
3103 		/*
3104 		 * Active hot spares can only be replaced by inactive hot
3105 		 * spares.
3106 		 */
3107 		if (pvd->vdev_ops == &vdev_spare_ops &&
3108 		    pvd->vdev_child[1] == oldvd &&
3109 		    !spa_has_spare(spa, newvd->vdev_guid))
3110 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3111 
3112 		/*
3113 		 * If the source is a hot spare, and the parent isn't already a
3114 		 * spare, then we want to create a new hot spare.  Otherwise, we
3115 		 * want to create a replacing vdev.  The user is not allowed to
3116 		 * attach to a spared vdev child unless the 'isspare' state is
3117 		 * the same (spare replaces spare, non-spare replaces
3118 		 * non-spare).
3119 		 */
3120 		if (pvd->vdev_ops == &vdev_replacing_ops)
3121 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3122 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3123 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3124 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3125 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3126 		    newvd->vdev_isspare)
3127 			pvops = &vdev_spare_ops;
3128 		else
3129 			pvops = &vdev_replacing_ops;
3130 	}
3131 
3132 	/*
3133 	 * Make sure the new device is big enough.
3134 	 */
3135 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3136 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3137 
3138 	/*
3139 	 * The new device cannot have a higher alignment requirement
3140 	 * than the top-level vdev.
3141 	 */
3142 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3143 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3144 
3145 	/*
3146 	 * If this is an in-place replacement, update oldvd's path and devid
3147 	 * to make it distinguishable from newvd, and unopenable from now on.
3148 	 */
3149 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3150 		spa_strfree(oldvd->vdev_path);
3151 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3152 		    KM_SLEEP);
3153 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3154 		    newvd->vdev_path, "old");
3155 		if (oldvd->vdev_devid != NULL) {
3156 			spa_strfree(oldvd->vdev_devid);
3157 			oldvd->vdev_devid = NULL;
3158 		}
3159 	}
3160 
3161 	/*
3162 	 * If the parent is not a mirror, or if we're replacing, insert the new
3163 	 * mirror/replacing/spare vdev above oldvd.
3164 	 */
3165 	if (pvd->vdev_ops != pvops)
3166 		pvd = vdev_add_parent(oldvd, pvops);
3167 
3168 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3169 	ASSERT(pvd->vdev_ops == pvops);
3170 	ASSERT(oldvd->vdev_parent == pvd);
3171 
3172 	/*
3173 	 * Extract the new device from its root and add it to pvd.
3174 	 */
3175 	vdev_remove_child(newrootvd, newvd);
3176 	newvd->vdev_id = pvd->vdev_children;
3177 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3178 	vdev_add_child(pvd, newvd);
3179 
3180 	tvd = newvd->vdev_top;
3181 	ASSERT(pvd->vdev_top == tvd);
3182 	ASSERT(tvd->vdev_parent == rvd);
3183 
3184 	vdev_config_dirty(tvd);
3185 
3186 	/*
3187 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3188 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3189 	 */
3190 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3191 
3192 	vdev_dtl_dirty(newvd, DTL_MISSING,
3193 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3194 
3195 	if (newvd->vdev_isspare) {
3196 		spa_spare_activate(newvd);
3197 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3198 	}
3199 
3200 	oldvdpath = spa_strdup(oldvd->vdev_path);
3201 	newvdpath = spa_strdup(newvd->vdev_path);
3202 	newvd_isspare = newvd->vdev_isspare;
3203 
3204 	/*
3205 	 * Mark newvd's DTL dirty in this txg.
3206 	 */
3207 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3208 
3209 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3210 
3211 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3212 	    CRED(),  "%s vdev=%s %s vdev=%s",
3213 	    replacing && newvd_isspare ? "spare in" :
3214 	    replacing ? "replace" : "attach", newvdpath,
3215 	    replacing ? "for" : "to", oldvdpath);
3216 
3217 	spa_strfree(oldvdpath);
3218 	spa_strfree(newvdpath);
3219 
3220 	/*
3221 	 * Kick off a resilver to update newvd.
3222 	 */
3223 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3224 
3225 	return (0);
3226 }
3227 
3228 /*
3229  * Detach a device from a mirror or replacing vdev.
3230  * If 'replace_done' is specified, only detach if the parent
3231  * is a replacing vdev.
3232  */
3233 int
3234 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3235 {
3236 	uint64_t txg;
3237 	int error;
3238 	vdev_t *rvd = spa->spa_root_vdev;
3239 	vdev_t *vd, *pvd, *cvd, *tvd;
3240 	boolean_t unspare = B_FALSE;
3241 	uint64_t unspare_guid;
3242 	size_t len;
3243 
3244 	txg = spa_vdev_enter(spa);
3245 
3246 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3247 
3248 	if (vd == NULL)
3249 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3250 
3251 	if (!vd->vdev_ops->vdev_op_leaf)
3252 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3253 
3254 	pvd = vd->vdev_parent;
3255 
3256 	/*
3257 	 * If the parent/child relationship is not as expected, don't do it.
3258 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3259 	 * vdev that's replacing B with C.  The user's intent in replacing
3260 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3261 	 * the replace by detaching C, the expected behavior is to end up
3262 	 * M(A,B).  But suppose that right after deciding to detach C,
3263 	 * the replacement of B completes.  We would have M(A,C), and then
3264 	 * ask to detach C, which would leave us with just A -- not what
3265 	 * the user wanted.  To prevent this, we make sure that the
3266 	 * parent/child relationship hasn't changed -- in this example,
3267 	 * that C's parent is still the replacing vdev R.
3268 	 */
3269 	if (pvd->vdev_guid != pguid && pguid != 0)
3270 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3271 
3272 	/*
3273 	 * If replace_done is specified, only remove this device if it's
3274 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3275 	 * disk can be removed.
3276 	 */
3277 	if (replace_done) {
3278 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3279 			if (vd->vdev_id != 0)
3280 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3281 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3282 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3283 		}
3284 	}
3285 
3286 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3287 	    spa_version(spa) >= SPA_VERSION_SPARES);
3288 
3289 	/*
3290 	 * Only mirror, replacing, and spare vdevs support detach.
3291 	 */
3292 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3293 	    pvd->vdev_ops != &vdev_mirror_ops &&
3294 	    pvd->vdev_ops != &vdev_spare_ops)
3295 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3296 
3297 	/*
3298 	 * If this device has the only valid copy of some data,
3299 	 * we cannot safely detach it.
3300 	 */
3301 	if (vdev_dtl_required(vd))
3302 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3303 
3304 	ASSERT(pvd->vdev_children >= 2);
3305 
3306 	/*
3307 	 * If we are detaching the second disk from a replacing vdev, then
3308 	 * check to see if we changed the original vdev's path to have "/old"
3309 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3310 	 */
3311 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3312 	    pvd->vdev_child[0]->vdev_path != NULL &&
3313 	    pvd->vdev_child[1]->vdev_path != NULL) {
3314 		ASSERT(pvd->vdev_child[1] == vd);
3315 		cvd = pvd->vdev_child[0];
3316 		len = strlen(vd->vdev_path);
3317 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3318 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3319 			spa_strfree(cvd->vdev_path);
3320 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3321 		}
3322 	}
3323 
3324 	/*
3325 	 * If we are detaching the original disk from a spare, then it implies
3326 	 * that the spare should become a real disk, and be removed from the
3327 	 * active spare list for the pool.
3328 	 */
3329 	if (pvd->vdev_ops == &vdev_spare_ops &&
3330 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3331 		unspare = B_TRUE;
3332 
3333 	/*
3334 	 * Erase the disk labels so the disk can be used for other things.
3335 	 * This must be done after all other error cases are handled,
3336 	 * but before we disembowel vd (so we can still do I/O to it).
3337 	 * But if we can't do it, don't treat the error as fatal --
3338 	 * it may be that the unwritability of the disk is the reason
3339 	 * it's being detached!
3340 	 */
3341 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3342 
3343 	/*
3344 	 * Remove vd from its parent and compact the parent's children.
3345 	 */
3346 	vdev_remove_child(pvd, vd);
3347 	vdev_compact_children(pvd);
3348 
3349 	/*
3350 	 * Remember one of the remaining children so we can get tvd below.
3351 	 */
3352 	cvd = pvd->vdev_child[0];
3353 
3354 	/*
3355 	 * If we need to remove the remaining child from the list of hot spares,
3356 	 * do it now, marking the vdev as no longer a spare in the process.
3357 	 * We must do this before vdev_remove_parent(), because that can
3358 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3359 	 * reason, we must remove the spare now, in the same txg as the detach;
3360 	 * otherwise someone could attach a new sibling, change the GUID, and
3361 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3362 	 */
3363 	if (unspare) {
3364 		ASSERT(cvd->vdev_isspare);
3365 		spa_spare_remove(cvd);
3366 		unspare_guid = cvd->vdev_guid;
3367 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3368 	}
3369 
3370 	/*
3371 	 * If the parent mirror/replacing vdev only has one child,
3372 	 * the parent is no longer needed.  Remove it from the tree.
3373 	 */
3374 	if (pvd->vdev_children == 1)
3375 		vdev_remove_parent(cvd);
3376 
3377 	/*
3378 	 * We don't set tvd until now because the parent we just removed
3379 	 * may have been the previous top-level vdev.
3380 	 */
3381 	tvd = cvd->vdev_top;
3382 	ASSERT(tvd->vdev_parent == rvd);
3383 
3384 	/*
3385 	 * Reevaluate the parent vdev state.
3386 	 */
3387 	vdev_propagate_state(cvd);
3388 
3389 	/*
3390 	 * If the 'autoexpand' property is set on the pool then automatically
3391 	 * try to expand the size of the pool. For example if the device we
3392 	 * just detached was smaller than the others, it may be possible to
3393 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3394 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3395 	 */
3396 	if (spa->spa_autoexpand) {
3397 		vdev_reopen(tvd);
3398 		vdev_expand(tvd, txg);
3399 	}
3400 
3401 	vdev_config_dirty(tvd);
3402 
3403 	/*
3404 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3405 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3406 	 * But first make sure we're not on any *other* txg's DTL list, to
3407 	 * prevent vd from being accessed after it's freed.
3408 	 */
3409 	for (int t = 0; t < TXG_SIZE; t++)
3410 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3411 	vd->vdev_detached = B_TRUE;
3412 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3413 
3414 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3415 
3416 	error = spa_vdev_exit(spa, vd, txg, 0);
3417 
3418 	/*
3419 	 * If this was the removal of the original device in a hot spare vdev,
3420 	 * then we want to go through and remove the device from the hot spare
3421 	 * list of every other pool.
3422 	 */
3423 	if (unspare) {
3424 		spa_t *myspa = spa;
3425 		spa = NULL;
3426 		mutex_enter(&spa_namespace_lock);
3427 		while ((spa = spa_next(spa)) != NULL) {
3428 			if (spa->spa_state != POOL_STATE_ACTIVE)
3429 				continue;
3430 			if (spa == myspa)
3431 				continue;
3432 			spa_open_ref(spa, FTAG);
3433 			mutex_exit(&spa_namespace_lock);
3434 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3435 			mutex_enter(&spa_namespace_lock);
3436 			spa_close(spa, FTAG);
3437 		}
3438 		mutex_exit(&spa_namespace_lock);
3439 	}
3440 
3441 	return (error);
3442 }
3443 
3444 static nvlist_t *
3445 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3446 {
3447 	for (int i = 0; i < count; i++) {
3448 		uint64_t guid;
3449 
3450 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3451 		    &guid) == 0);
3452 
3453 		if (guid == target_guid)
3454 			return (nvpp[i]);
3455 	}
3456 
3457 	return (NULL);
3458 }
3459 
3460 static void
3461 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3462 	nvlist_t *dev_to_remove)
3463 {
3464 	nvlist_t **newdev = NULL;
3465 
3466 	if (count > 1)
3467 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3468 
3469 	for (int i = 0, j = 0; i < count; i++) {
3470 		if (dev[i] == dev_to_remove)
3471 			continue;
3472 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3473 	}
3474 
3475 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3476 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3477 
3478 	for (int i = 0; i < count - 1; i++)
3479 		nvlist_free(newdev[i]);
3480 
3481 	if (count > 1)
3482 		kmem_free(newdev, (count - 1) * sizeof (void *));
3483 }
3484 
3485 /*
3486  * Removing a device from the vdev namespace requires several steps
3487  * and can take a significant amount of time.  As a result we use
3488  * the spa_vdev_config_[enter/exit] functions which allow us to
3489  * grab and release the spa_config_lock while still holding the namespace
3490  * lock.  During each step the configuration is synced out.
3491  */
3492 
3493 /*
3494  * Initial phase of device removal - stop future allocations from this device.
3495  */
3496 void
3497 spa_vdev_remove_start(spa_t *spa, vdev_t *vd)
3498 {
3499 	metaslab_group_t *mg = vd->vdev_mg;
3500 
3501 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3502 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3503 
3504 	/*
3505 	 * Remove our vdev from the allocatable vdevs
3506 	 */
3507 	if (mg)
3508 		metaslab_class_remove(mg->mg_class, mg);
3509 }
3510 
3511 /*
3512  * Evacuate the device.
3513  */
3514 int
3515 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
3516 {
3517 	uint64_t txg;
3518 	int error;
3519 
3520 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3521 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3522 
3523 	/*
3524 	 * Evacuate the device.  We don't hold the config lock as writer
3525 	 * since we need to do I/O but we do keep the
3526 	 * spa_namespace_lock held.  Once this completes the device
3527 	 * should no longer have any blocks allocated on it.
3528 	 */
3529 	if (vd->vdev_islog) {
3530 		/*
3531 		 * Evacuate the device.
3532 		 */
3533 		if (error = dmu_objset_find(spa_name(spa),
3534 		    zil_vdev_offline, NULL, DS_FIND_CHILDREN)) {
3535 			uint64_t txg;
3536 
3537 			txg = spa_vdev_config_enter(spa);
3538 			metaslab_class_add(spa->spa_log_class,
3539 			    vd->vdev_mg);
3540 			return (spa_vdev_exit(spa, NULL, txg, error));
3541 		}
3542 		txg_wait_synced(spa_get_dsl(spa), 0);
3543 	}
3544 
3545 	/*
3546 	 * Remove any remaining MOS metadata associated with the device.
3547 	 */
3548 	txg = spa_vdev_config_enter(spa);
3549 	vd->vdev_removing = B_TRUE;
3550 	vdev_dirty(vd, 0, NULL, txg);
3551 	vdev_config_dirty(vd);
3552 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3553 
3554 	return (0);
3555 }
3556 
3557 /*
3558  * Complete the removal by cleaning up the namespace.
3559  */
3560 void
3561 spa_vdev_remove_done(spa_t *spa, vdev_t *vd)
3562 {
3563 	vdev_t *rvd = spa->spa_root_vdev;
3564 	metaslab_group_t *mg = vd->vdev_mg;
3565 	uint64_t id = vd->vdev_id;
3566 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
3567 
3568 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3569 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3570 
3571 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3572 	vdev_free(vd);
3573 
3574 	/*
3575 	 * It's possible that another thread is trying todo a spa_vdev_add()
3576 	 * at the same time we're trying remove it. As a result the
3577 	 * added vdev may not have initialized its metaslabs yet.
3578 	 */
3579 	if (mg != NULL)
3580 		metaslab_group_destroy(mg);
3581 
3582 	if (last_vdev) {
3583 		vdev_compact_children(rvd);
3584 	} else {
3585 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
3586 		vdev_add_child(rvd, vd);
3587 	}
3588 	vdev_config_dirty(rvd);
3589 
3590 	/*
3591 	 * Reassess the health of our root vdev.
3592 	 */
3593 	vdev_reopen(rvd);
3594 }
3595 
3596 /*
3597  * Remove a device from the pool.  Currently, this supports removing only hot
3598  * spares, slogs, and level 2 ARC devices.
3599  */
3600 int
3601 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3602 {
3603 	vdev_t *vd;
3604 	nvlist_t **spares, **l2cache, *nv;
3605 	uint64_t txg = 0;
3606 	uint_t nspares, nl2cache;
3607 	int error = 0;
3608 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3609 
3610 	if (!locked)
3611 		txg = spa_vdev_enter(spa);
3612 
3613 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3614 
3615 	if (spa->spa_spares.sav_vdevs != NULL &&
3616 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3617 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3618 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3619 		/*
3620 		 * Only remove the hot spare if it's not currently in use
3621 		 * in this pool.
3622 		 */
3623 		if (vd == NULL || unspare) {
3624 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3625 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3626 			spa_load_spares(spa);
3627 			spa->spa_spares.sav_sync = B_TRUE;
3628 		} else {
3629 			error = EBUSY;
3630 		}
3631 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3632 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3633 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3634 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3635 		/*
3636 		 * Cache devices can always be removed.
3637 		 */
3638 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3639 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3640 		spa_load_l2cache(spa);
3641 		spa->spa_l2cache.sav_sync = B_TRUE;
3642 	} else if (vd != NULL && vd->vdev_islog) {
3643 		ASSERT(!locked);
3644 
3645 		/*
3646 		 * XXX - Once we have bp-rewrite this should
3647 		 * become the common case.
3648 		 */
3649 
3650 		/*
3651 		 * 1. Stop allocations
3652 		 * 2. Evacuate the device (i.e. kill off stubby and
3653 		 *    metadata) and wait for it to complete (i.e. sync).
3654 		 * 3. Cleanup the vdev namespace.
3655 		 */
3656 		spa_vdev_remove_start(spa, vd);
3657 
3658 		spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3659 		if ((error = spa_vdev_remove_evacuate(spa, vd)) != 0)
3660 			return (error);
3661 		txg = spa_vdev_config_enter(spa);
3662 
3663 		spa_vdev_remove_done(spa, vd);
3664 
3665 	} else if (vd != NULL) {
3666 		/*
3667 		 * Normal vdevs cannot be removed (yet).
3668 		 */
3669 		error = ENOTSUP;
3670 	} else {
3671 		/*
3672 		 * There is no vdev of any kind with the specified guid.
3673 		 */
3674 		error = ENOENT;
3675 	}
3676 
3677 	if (!locked)
3678 		return (spa_vdev_exit(spa, NULL, txg, error));
3679 
3680 	return (error);
3681 }
3682 
3683 /*
3684  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3685  * current spared, so we can detach it.
3686  */
3687 static vdev_t *
3688 spa_vdev_resilver_done_hunt(vdev_t *vd)
3689 {
3690 	vdev_t *newvd, *oldvd;
3691 
3692 	for (int c = 0; c < vd->vdev_children; c++) {
3693 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3694 		if (oldvd != NULL)
3695 			return (oldvd);
3696 	}
3697 
3698 	/*
3699 	 * Check for a completed replacement.
3700 	 */
3701 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3702 		oldvd = vd->vdev_child[0];
3703 		newvd = vd->vdev_child[1];
3704 
3705 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3706 		    !vdev_dtl_required(oldvd))
3707 			return (oldvd);
3708 	}
3709 
3710 	/*
3711 	 * Check for a completed resilver with the 'unspare' flag set.
3712 	 */
3713 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3714 		newvd = vd->vdev_child[0];
3715 		oldvd = vd->vdev_child[1];
3716 
3717 		if (newvd->vdev_unspare &&
3718 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3719 		    !vdev_dtl_required(oldvd)) {
3720 			newvd->vdev_unspare = 0;
3721 			return (oldvd);
3722 		}
3723 	}
3724 
3725 	return (NULL);
3726 }
3727 
3728 static void
3729 spa_vdev_resilver_done(spa_t *spa)
3730 {
3731 	vdev_t *vd, *pvd, *ppvd;
3732 	uint64_t guid, sguid, pguid, ppguid;
3733 
3734 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3735 
3736 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3737 		pvd = vd->vdev_parent;
3738 		ppvd = pvd->vdev_parent;
3739 		guid = vd->vdev_guid;
3740 		pguid = pvd->vdev_guid;
3741 		ppguid = ppvd->vdev_guid;
3742 		sguid = 0;
3743 		/*
3744 		 * If we have just finished replacing a hot spared device, then
3745 		 * we need to detach the parent's first child (the original hot
3746 		 * spare) as well.
3747 		 */
3748 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3749 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3750 			ASSERT(ppvd->vdev_children == 2);
3751 			sguid = ppvd->vdev_child[1]->vdev_guid;
3752 		}
3753 		spa_config_exit(spa, SCL_ALL, FTAG);
3754 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3755 			return;
3756 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3757 			return;
3758 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3759 	}
3760 
3761 	spa_config_exit(spa, SCL_ALL, FTAG);
3762 }
3763 
3764 /*
3765  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3766  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3767  */
3768 int
3769 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3770     boolean_t ispath)
3771 {
3772 	vdev_t *vd;
3773 	uint64_t txg;
3774 
3775 	txg = spa_vdev_enter(spa);
3776 
3777 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3778 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3779 
3780 	if (!vd->vdev_ops->vdev_op_leaf)
3781 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3782 
3783 	if (ispath) {
3784 		spa_strfree(vd->vdev_path);
3785 		vd->vdev_path = spa_strdup(value);
3786 	} else {
3787 		if (vd->vdev_fru != NULL)
3788 			spa_strfree(vd->vdev_fru);
3789 		vd->vdev_fru = spa_strdup(value);
3790 	}
3791 
3792 	vdev_config_dirty(vd->vdev_top);
3793 
3794 	return (spa_vdev_exit(spa, NULL, txg, 0));
3795 }
3796 
3797 int
3798 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3799 {
3800 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3801 }
3802 
3803 int
3804 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3805 {
3806 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3807 }
3808 
3809 /*
3810  * ==========================================================================
3811  * SPA Scrubbing
3812  * ==========================================================================
3813  */
3814 
3815 int
3816 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3817 {
3818 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3819 
3820 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3821 		return (ENOTSUP);
3822 
3823 	/*
3824 	 * If a resilver was requested, but there is no DTL on a
3825 	 * writeable leaf device, we have nothing to do.
3826 	 */
3827 	if (type == POOL_SCRUB_RESILVER &&
3828 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3829 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3830 		return (0);
3831 	}
3832 
3833 	if (type == POOL_SCRUB_EVERYTHING &&
3834 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3835 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3836 		return (EBUSY);
3837 
3838 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3839 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3840 	} else if (type == POOL_SCRUB_NONE) {
3841 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3842 	} else {
3843 		return (EINVAL);
3844 	}
3845 }
3846 
3847 /*
3848  * ==========================================================================
3849  * SPA async task processing
3850  * ==========================================================================
3851  */
3852 
3853 static void
3854 spa_async_remove(spa_t *spa, vdev_t *vd)
3855 {
3856 	if (vd->vdev_remove_wanted) {
3857 		vd->vdev_remove_wanted = 0;
3858 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3859 
3860 		/*
3861 		 * We want to clear the stats, but we don't want to do a full
3862 		 * vdev_clear() as that will cause us to throw away
3863 		 * degraded/faulted state as well as attempt to reopen the
3864 		 * device, all of which is a waste.
3865 		 */
3866 		vd->vdev_stat.vs_read_errors = 0;
3867 		vd->vdev_stat.vs_write_errors = 0;
3868 		vd->vdev_stat.vs_checksum_errors = 0;
3869 
3870 		vdev_state_dirty(vd->vdev_top);
3871 	}
3872 
3873 	for (int c = 0; c < vd->vdev_children; c++)
3874 		spa_async_remove(spa, vd->vdev_child[c]);
3875 }
3876 
3877 static void
3878 spa_async_probe(spa_t *spa, vdev_t *vd)
3879 {
3880 	if (vd->vdev_probe_wanted) {
3881 		vd->vdev_probe_wanted = 0;
3882 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3883 	}
3884 
3885 	for (int c = 0; c < vd->vdev_children; c++)
3886 		spa_async_probe(spa, vd->vdev_child[c]);
3887 }
3888 
3889 static void
3890 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3891 {
3892 	sysevent_id_t eid;
3893 	nvlist_t *attr;
3894 	char *physpath;
3895 
3896 	if (!spa->spa_autoexpand)
3897 		return;
3898 
3899 	for (int c = 0; c < vd->vdev_children; c++) {
3900 		vdev_t *cvd = vd->vdev_child[c];
3901 		spa_async_autoexpand(spa, cvd);
3902 	}
3903 
3904 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3905 		return;
3906 
3907 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3908 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3909 
3910 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3911 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3912 
3913 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3914 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3915 
3916 	nvlist_free(attr);
3917 	kmem_free(physpath, MAXPATHLEN);
3918 }
3919 
3920 static void
3921 spa_async_thread(spa_t *spa)
3922 {
3923 	int tasks;
3924 
3925 	ASSERT(spa->spa_sync_on);
3926 
3927 	mutex_enter(&spa->spa_async_lock);
3928 	tasks = spa->spa_async_tasks;
3929 	spa->spa_async_tasks = 0;
3930 	mutex_exit(&spa->spa_async_lock);
3931 
3932 	/*
3933 	 * See if the config needs to be updated.
3934 	 */
3935 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3936 		uint64_t oldsz, space_update;
3937 
3938 		mutex_enter(&spa_namespace_lock);
3939 		oldsz = spa_get_space(spa);
3940 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3941 		space_update = spa_get_space(spa) - oldsz;
3942 		mutex_exit(&spa_namespace_lock);
3943 
3944 		/*
3945 		 * If the pool grew as a result of the config update,
3946 		 * then log an internal history event.
3947 		 */
3948 		if (space_update) {
3949 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3950 			    spa, NULL, CRED(),
3951 			    "pool '%s' size: %llu(+%llu)",
3952 			    spa_name(spa), spa_get_space(spa),
3953 			    space_update);
3954 		}
3955 	}
3956 
3957 	/*
3958 	 * See if any devices need to be marked REMOVED.
3959 	 */
3960 	if (tasks & SPA_ASYNC_REMOVE) {
3961 		spa_vdev_state_enter(spa);
3962 		spa_async_remove(spa, spa->spa_root_vdev);
3963 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3964 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3965 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3966 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3967 		(void) spa_vdev_state_exit(spa, NULL, 0);
3968 	}
3969 
3970 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3971 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3972 		spa_async_autoexpand(spa, spa->spa_root_vdev);
3973 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3974 	}
3975 
3976 	/*
3977 	 * See if any devices need to be probed.
3978 	 */
3979 	if (tasks & SPA_ASYNC_PROBE) {
3980 		spa_vdev_state_enter(spa);
3981 		spa_async_probe(spa, spa->spa_root_vdev);
3982 		(void) spa_vdev_state_exit(spa, NULL, 0);
3983 	}
3984 
3985 	/*
3986 	 * If any devices are done replacing, detach them.
3987 	 */
3988 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3989 		spa_vdev_resilver_done(spa);
3990 
3991 	/*
3992 	 * Kick off a resilver.
3993 	 */
3994 	if (tasks & SPA_ASYNC_RESILVER)
3995 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3996 
3997 	/*
3998 	 * Let the world know that we're done.
3999 	 */
4000 	mutex_enter(&spa->spa_async_lock);
4001 	spa->spa_async_thread = NULL;
4002 	cv_broadcast(&spa->spa_async_cv);
4003 	mutex_exit(&spa->spa_async_lock);
4004 	thread_exit();
4005 }
4006 
4007 void
4008 spa_async_suspend(spa_t *spa)
4009 {
4010 	mutex_enter(&spa->spa_async_lock);
4011 	spa->spa_async_suspended++;
4012 	while (spa->spa_async_thread != NULL)
4013 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4014 	mutex_exit(&spa->spa_async_lock);
4015 }
4016 
4017 void
4018 spa_async_resume(spa_t *spa)
4019 {
4020 	mutex_enter(&spa->spa_async_lock);
4021 	ASSERT(spa->spa_async_suspended != 0);
4022 	spa->spa_async_suspended--;
4023 	mutex_exit(&spa->spa_async_lock);
4024 }
4025 
4026 static void
4027 spa_async_dispatch(spa_t *spa)
4028 {
4029 	mutex_enter(&spa->spa_async_lock);
4030 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4031 	    spa->spa_async_thread == NULL &&
4032 	    rootdir != NULL && !vn_is_readonly(rootdir))
4033 		spa->spa_async_thread = thread_create(NULL, 0,
4034 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4035 	mutex_exit(&spa->spa_async_lock);
4036 }
4037 
4038 void
4039 spa_async_request(spa_t *spa, int task)
4040 {
4041 	mutex_enter(&spa->spa_async_lock);
4042 	spa->spa_async_tasks |= task;
4043 	mutex_exit(&spa->spa_async_lock);
4044 }
4045 
4046 /*
4047  * ==========================================================================
4048  * SPA syncing routines
4049  * ==========================================================================
4050  */
4051 
4052 static void
4053 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
4054 {
4055 	bplist_t *bpl = &spa->spa_sync_bplist;
4056 	dmu_tx_t *tx;
4057 	blkptr_t blk;
4058 	uint64_t itor = 0;
4059 	zio_t *zio;
4060 	int error;
4061 	uint8_t c = 1;
4062 
4063 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4064 
4065 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4066 		ASSERT(blk.blk_birth < txg);
4067 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
4068 		    ZIO_FLAG_MUSTSUCCEED));
4069 	}
4070 
4071 	error = zio_wait(zio);
4072 	ASSERT3U(error, ==, 0);
4073 
4074 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4075 	bplist_vacate(bpl, tx);
4076 
4077 	/*
4078 	 * Pre-dirty the first block so we sync to convergence faster.
4079 	 * (Usually only the first block is needed.)
4080 	 */
4081 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
4082 	dmu_tx_commit(tx);
4083 }
4084 
4085 static void
4086 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4087 {
4088 	char *packed = NULL;
4089 	size_t bufsize;
4090 	size_t nvsize = 0;
4091 	dmu_buf_t *db;
4092 
4093 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4094 
4095 	/*
4096 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4097 	 * information.  This avoids the dbuf_will_dirty() path and
4098 	 * saves us a pre-read to get data we don't actually care about.
4099 	 */
4100 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4101 	packed = kmem_alloc(bufsize, KM_SLEEP);
4102 
4103 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4104 	    KM_SLEEP) == 0);
4105 	bzero(packed + nvsize, bufsize - nvsize);
4106 
4107 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4108 
4109 	kmem_free(packed, bufsize);
4110 
4111 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4112 	dmu_buf_will_dirty(db, tx);
4113 	*(uint64_t *)db->db_data = nvsize;
4114 	dmu_buf_rele(db, FTAG);
4115 }
4116 
4117 static void
4118 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4119     const char *config, const char *entry)
4120 {
4121 	nvlist_t *nvroot;
4122 	nvlist_t **list;
4123 	int i;
4124 
4125 	if (!sav->sav_sync)
4126 		return;
4127 
4128 	/*
4129 	 * Update the MOS nvlist describing the list of available devices.
4130 	 * spa_validate_aux() will have already made sure this nvlist is
4131 	 * valid and the vdevs are labeled appropriately.
4132 	 */
4133 	if (sav->sav_object == 0) {
4134 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4135 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4136 		    sizeof (uint64_t), tx);
4137 		VERIFY(zap_update(spa->spa_meta_objset,
4138 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4139 		    &sav->sav_object, tx) == 0);
4140 	}
4141 
4142 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4143 	if (sav->sav_count == 0) {
4144 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4145 	} else {
4146 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
4147 		for (i = 0; i < sav->sav_count; i++)
4148 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
4149 			    B_FALSE, B_FALSE, B_TRUE);
4150 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
4151 		    sav->sav_count) == 0);
4152 		for (i = 0; i < sav->sav_count; i++)
4153 			nvlist_free(list[i]);
4154 		kmem_free(list, sav->sav_count * sizeof (void *));
4155 	}
4156 
4157 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
4158 	nvlist_free(nvroot);
4159 
4160 	sav->sav_sync = B_FALSE;
4161 }
4162 
4163 static void
4164 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
4165 {
4166 	nvlist_t *config;
4167 
4168 	if (list_is_empty(&spa->spa_config_dirty_list))
4169 		return;
4170 
4171 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4172 
4173 	config = spa_config_generate(spa, spa->spa_root_vdev,
4174 	    dmu_tx_get_txg(tx), B_FALSE);
4175 
4176 	spa_config_exit(spa, SCL_STATE, FTAG);
4177 
4178 	if (spa->spa_config_syncing)
4179 		nvlist_free(spa->spa_config_syncing);
4180 	spa->spa_config_syncing = config;
4181 
4182 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4183 }
4184 
4185 /*
4186  * Set zpool properties.
4187  */
4188 static void
4189 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4190 {
4191 	spa_t *spa = arg1;
4192 	objset_t *mos = spa->spa_meta_objset;
4193 	nvlist_t *nvp = arg2;
4194 	nvpair_t *elem;
4195 	uint64_t intval;
4196 	char *strval;
4197 	zpool_prop_t prop;
4198 	const char *propname;
4199 	zprop_type_t proptype;
4200 
4201 	mutex_enter(&spa->spa_props_lock);
4202 
4203 	elem = NULL;
4204 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4205 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4206 		case ZPOOL_PROP_VERSION:
4207 			/*
4208 			 * Only set version for non-zpool-creation cases
4209 			 * (set/import). spa_create() needs special care
4210 			 * for version setting.
4211 			 */
4212 			if (tx->tx_txg != TXG_INITIAL) {
4213 				VERIFY(nvpair_value_uint64(elem,
4214 				    &intval) == 0);
4215 				ASSERT(intval <= SPA_VERSION);
4216 				ASSERT(intval >= spa_version(spa));
4217 				spa->spa_uberblock.ub_version = intval;
4218 				vdev_config_dirty(spa->spa_root_vdev);
4219 			}
4220 			break;
4221 
4222 		case ZPOOL_PROP_ALTROOT:
4223 			/*
4224 			 * 'altroot' is a non-persistent property. It should
4225 			 * have been set temporarily at creation or import time.
4226 			 */
4227 			ASSERT(spa->spa_root != NULL);
4228 			break;
4229 
4230 		case ZPOOL_PROP_CACHEFILE:
4231 			/*
4232 			 * 'cachefile' is also a non-persisitent property.
4233 			 */
4234 			break;
4235 		default:
4236 			/*
4237 			 * Set pool property values in the poolprops mos object.
4238 			 */
4239 			if (spa->spa_pool_props_object == 0) {
4240 				objset_t *mos = spa->spa_meta_objset;
4241 
4242 				VERIFY((spa->spa_pool_props_object =
4243 				    zap_create(mos, DMU_OT_POOL_PROPS,
4244 				    DMU_OT_NONE, 0, tx)) > 0);
4245 
4246 				VERIFY(zap_update(mos,
4247 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4248 				    8, 1, &spa->spa_pool_props_object, tx)
4249 				    == 0);
4250 			}
4251 
4252 			/* normalize the property name */
4253 			propname = zpool_prop_to_name(prop);
4254 			proptype = zpool_prop_get_type(prop);
4255 
4256 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4257 				ASSERT(proptype == PROP_TYPE_STRING);
4258 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4259 				VERIFY(zap_update(mos,
4260 				    spa->spa_pool_props_object, propname,
4261 				    1, strlen(strval) + 1, strval, tx) == 0);
4262 
4263 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4264 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4265 
4266 				if (proptype == PROP_TYPE_INDEX) {
4267 					const char *unused;
4268 					VERIFY(zpool_prop_index_to_string(
4269 					    prop, intval, &unused) == 0);
4270 				}
4271 				VERIFY(zap_update(mos,
4272 				    spa->spa_pool_props_object, propname,
4273 				    8, 1, &intval, tx) == 0);
4274 			} else {
4275 				ASSERT(0); /* not allowed */
4276 			}
4277 
4278 			switch (prop) {
4279 			case ZPOOL_PROP_DELEGATION:
4280 				spa->spa_delegation = intval;
4281 				break;
4282 			case ZPOOL_PROP_BOOTFS:
4283 				spa->spa_bootfs = intval;
4284 				break;
4285 			case ZPOOL_PROP_FAILUREMODE:
4286 				spa->spa_failmode = intval;
4287 				break;
4288 			case ZPOOL_PROP_AUTOEXPAND:
4289 				spa->spa_autoexpand = intval;
4290 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4291 				break;
4292 			default:
4293 				break;
4294 			}
4295 		}
4296 
4297 		/* log internal history if this is not a zpool create */
4298 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4299 		    tx->tx_txg != TXG_INITIAL) {
4300 			spa_history_internal_log(LOG_POOL_PROPSET,
4301 			    spa, tx, cr, "%s %lld %s",
4302 			    nvpair_name(elem), intval, spa_name(spa));
4303 		}
4304 	}
4305 
4306 	mutex_exit(&spa->spa_props_lock);
4307 }
4308 
4309 /*
4310  * Sync the specified transaction group.  New blocks may be dirtied as
4311  * part of the process, so we iterate until it converges.
4312  */
4313 void
4314 spa_sync(spa_t *spa, uint64_t txg)
4315 {
4316 	dsl_pool_t *dp = spa->spa_dsl_pool;
4317 	objset_t *mos = spa->spa_meta_objset;
4318 	bplist_t *bpl = &spa->spa_sync_bplist;
4319 	vdev_t *rvd = spa->spa_root_vdev;
4320 	vdev_t *vd;
4321 	dmu_tx_t *tx;
4322 	int dirty_vdevs;
4323 	int error;
4324 
4325 	/*
4326 	 * Lock out configuration changes.
4327 	 */
4328 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4329 
4330 	spa->spa_syncing_txg = txg;
4331 	spa->spa_sync_pass = 0;
4332 
4333 	/*
4334 	 * If there are any pending vdev state changes, convert them
4335 	 * into config changes that go out with this transaction group.
4336 	 */
4337 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4338 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4339 		/*
4340 		 * We need the write lock here because, for aux vdevs,
4341 		 * calling vdev_config_dirty() modifies sav_config.
4342 		 * This is ugly and will become unnecessary when we
4343 		 * eliminate the aux vdev wart by integrating all vdevs
4344 		 * into the root vdev tree.
4345 		 */
4346 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4347 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4348 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4349 			vdev_state_clean(vd);
4350 			vdev_config_dirty(vd);
4351 		}
4352 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4353 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4354 	}
4355 	spa_config_exit(spa, SCL_STATE, FTAG);
4356 
4357 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4358 
4359 	tx = dmu_tx_create_assigned(dp, txg);
4360 
4361 	/*
4362 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4363 	 * set spa_deflate if we have no raid-z vdevs.
4364 	 */
4365 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4366 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4367 		int i;
4368 
4369 		for (i = 0; i < rvd->vdev_children; i++) {
4370 			vd = rvd->vdev_child[i];
4371 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4372 				break;
4373 		}
4374 		if (i == rvd->vdev_children) {
4375 			spa->spa_deflate = TRUE;
4376 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4377 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4378 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4379 		}
4380 	}
4381 
4382 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4383 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4384 		dsl_pool_create_origin(dp, tx);
4385 
4386 		/* Keeping the origin open increases spa_minref */
4387 		spa->spa_minref += 3;
4388 	}
4389 
4390 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4391 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4392 		dsl_pool_upgrade_clones(dp, tx);
4393 	}
4394 
4395 	/*
4396 	 * If anything has changed in this txg, push the deferred frees
4397 	 * from the previous txg.  If not, leave them alone so that we
4398 	 * don't generate work on an otherwise idle system.
4399 	 */
4400 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4401 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4402 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4403 		spa_sync_deferred_frees(spa, txg);
4404 
4405 	/*
4406 	 * Iterate to convergence.
4407 	 */
4408 	do {
4409 		spa->spa_sync_pass++;
4410 
4411 		spa_sync_config_object(spa, tx);
4412 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4413 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4414 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4415 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4416 		spa_errlog_sync(spa, txg);
4417 		dsl_pool_sync(dp, txg);
4418 
4419 		dirty_vdevs = 0;
4420 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4421 			vdev_sync(vd, txg);
4422 			dirty_vdevs++;
4423 		}
4424 
4425 		bplist_sync(bpl, tx);
4426 	} while (dirty_vdevs);
4427 
4428 	bplist_close(bpl);
4429 
4430 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4431 
4432 	/*
4433 	 * Rewrite the vdev configuration (which includes the uberblock)
4434 	 * to commit the transaction group.
4435 	 *
4436 	 * If there are no dirty vdevs, we sync the uberblock to a few
4437 	 * random top-level vdevs that are known to be visible in the
4438 	 * config cache (see spa_vdev_add() for a complete description).
4439 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4440 	 */
4441 	for (;;) {
4442 		/*
4443 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4444 		 * while we're attempting to write the vdev labels.
4445 		 */
4446 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4447 
4448 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4449 			vdev_t *svd[SPA_DVAS_PER_BP];
4450 			int svdcount = 0;
4451 			int children = rvd->vdev_children;
4452 			int c0 = spa_get_random(children);
4453 
4454 			for (int c = 0; c < children; c++) {
4455 				vd = rvd->vdev_child[(c0 + c) % children];
4456 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4457 					continue;
4458 				svd[svdcount++] = vd;
4459 				if (svdcount == SPA_DVAS_PER_BP)
4460 					break;
4461 			}
4462 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4463 			if (error != 0)
4464 				error = vdev_config_sync(svd, svdcount, txg,
4465 				    B_TRUE);
4466 		} else {
4467 			error = vdev_config_sync(rvd->vdev_child,
4468 			    rvd->vdev_children, txg, B_FALSE);
4469 			if (error != 0)
4470 				error = vdev_config_sync(rvd->vdev_child,
4471 				    rvd->vdev_children, txg, B_TRUE);
4472 		}
4473 
4474 		spa_config_exit(spa, SCL_STATE, FTAG);
4475 
4476 		if (error == 0)
4477 			break;
4478 		zio_suspend(spa, NULL);
4479 		zio_resume_wait(spa);
4480 	}
4481 	dmu_tx_commit(tx);
4482 
4483 	/*
4484 	 * Clear the dirty config list.
4485 	 */
4486 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4487 		vdev_config_clean(vd);
4488 
4489 	/*
4490 	 * Now that the new config has synced transactionally,
4491 	 * let it become visible to the config cache.
4492 	 */
4493 	if (spa->spa_config_syncing != NULL) {
4494 		spa_config_set(spa, spa->spa_config_syncing);
4495 		spa->spa_config_txg = txg;
4496 		spa->spa_config_syncing = NULL;
4497 	}
4498 
4499 	spa->spa_ubsync = spa->spa_uberblock;
4500 
4501 	/*
4502 	 * Clean up the ZIL records for the synced txg.
4503 	 */
4504 	dsl_pool_zil_clean(dp);
4505 
4506 	/*
4507 	 * Update usable space statistics.
4508 	 */
4509 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4510 		vdev_sync_done(vd, txg);
4511 
4512 	/*
4513 	 * It had better be the case that we didn't dirty anything
4514 	 * since vdev_config_sync().
4515 	 */
4516 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4517 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4518 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4519 	ASSERT(bpl->bpl_queue == NULL);
4520 
4521 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4522 
4523 	/*
4524 	 * If any async tasks have been requested, kick them off.
4525 	 */
4526 	spa_async_dispatch(spa);
4527 }
4528 
4529 /*
4530  * Sync all pools.  We don't want to hold the namespace lock across these
4531  * operations, so we take a reference on the spa_t and drop the lock during the
4532  * sync.
4533  */
4534 void
4535 spa_sync_allpools(void)
4536 {
4537 	spa_t *spa = NULL;
4538 	mutex_enter(&spa_namespace_lock);
4539 	while ((spa = spa_next(spa)) != NULL) {
4540 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4541 			continue;
4542 		spa_open_ref(spa, FTAG);
4543 		mutex_exit(&spa_namespace_lock);
4544 		txg_wait_synced(spa_get_dsl(spa), 0);
4545 		mutex_enter(&spa_namespace_lock);
4546 		spa_close(spa, FTAG);
4547 	}
4548 	mutex_exit(&spa_namespace_lock);
4549 }
4550 
4551 /*
4552  * ==========================================================================
4553  * Miscellaneous routines
4554  * ==========================================================================
4555  */
4556 
4557 /*
4558  * Remove all pools in the system.
4559  */
4560 void
4561 spa_evict_all(void)
4562 {
4563 	spa_t *spa;
4564 
4565 	/*
4566 	 * Remove all cached state.  All pools should be closed now,
4567 	 * so every spa in the AVL tree should be unreferenced.
4568 	 */
4569 	mutex_enter(&spa_namespace_lock);
4570 	while ((spa = spa_next(NULL)) != NULL) {
4571 		/*
4572 		 * Stop async tasks.  The async thread may need to detach
4573 		 * a device that's been replaced, which requires grabbing
4574 		 * spa_namespace_lock, so we must drop it here.
4575 		 */
4576 		spa_open_ref(spa, FTAG);
4577 		mutex_exit(&spa_namespace_lock);
4578 		spa_async_suspend(spa);
4579 		mutex_enter(&spa_namespace_lock);
4580 		spa_close(spa, FTAG);
4581 
4582 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4583 			spa_unload(spa);
4584 			spa_deactivate(spa);
4585 		}
4586 		spa_remove(spa);
4587 	}
4588 	mutex_exit(&spa_namespace_lock);
4589 }
4590 
4591 vdev_t *
4592 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4593 {
4594 	vdev_t *vd;
4595 	int i;
4596 
4597 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4598 		return (vd);
4599 
4600 	if (aux) {
4601 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4602 			vd = spa->spa_l2cache.sav_vdevs[i];
4603 			if (vd->vdev_guid == guid)
4604 				return (vd);
4605 		}
4606 
4607 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4608 			vd = spa->spa_spares.sav_vdevs[i];
4609 			if (vd->vdev_guid == guid)
4610 				return (vd);
4611 		}
4612 	}
4613 
4614 	return (NULL);
4615 }
4616 
4617 void
4618 spa_upgrade(spa_t *spa, uint64_t version)
4619 {
4620 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4621 
4622 	/*
4623 	 * This should only be called for a non-faulted pool, and since a
4624 	 * future version would result in an unopenable pool, this shouldn't be
4625 	 * possible.
4626 	 */
4627 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4628 	ASSERT(version >= spa->spa_uberblock.ub_version);
4629 
4630 	spa->spa_uberblock.ub_version = version;
4631 	vdev_config_dirty(spa->spa_root_vdev);
4632 
4633 	spa_config_exit(spa, SCL_ALL, FTAG);
4634 
4635 	txg_wait_synced(spa_get_dsl(spa), 0);
4636 }
4637 
4638 boolean_t
4639 spa_has_spare(spa_t *spa, uint64_t guid)
4640 {
4641 	int i;
4642 	uint64_t spareguid;
4643 	spa_aux_vdev_t *sav = &spa->spa_spares;
4644 
4645 	for (i = 0; i < sav->sav_count; i++)
4646 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4647 			return (B_TRUE);
4648 
4649 	for (i = 0; i < sav->sav_npending; i++) {
4650 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4651 		    &spareguid) == 0 && spareguid == guid)
4652 			return (B_TRUE);
4653 	}
4654 
4655 	return (B_FALSE);
4656 }
4657 
4658 /*
4659  * Check if a pool has an active shared spare device.
4660  * Note: reference count of an active spare is 2, as a spare and as a replace
4661  */
4662 static boolean_t
4663 spa_has_active_shared_spare(spa_t *spa)
4664 {
4665 	int i, refcnt;
4666 	uint64_t pool;
4667 	spa_aux_vdev_t *sav = &spa->spa_spares;
4668 
4669 	for (i = 0; i < sav->sav_count; i++) {
4670 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4671 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4672 		    refcnt > 2)
4673 			return (B_TRUE);
4674 	}
4675 
4676 	return (B_FALSE);
4677 }
4678 
4679 /*
4680  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4681  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4682  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4683  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4684  * or zdb as real changes.
4685  */
4686 void
4687 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4688 {
4689 #ifdef _KERNEL
4690 	sysevent_t		*ev;
4691 	sysevent_attr_list_t	*attr = NULL;
4692 	sysevent_value_t	value;
4693 	sysevent_id_t		eid;
4694 
4695 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4696 	    SE_SLEEP);
4697 
4698 	value.value_type = SE_DATA_TYPE_STRING;
4699 	value.value.sv_string = spa_name(spa);
4700 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4701 		goto done;
4702 
4703 	value.value_type = SE_DATA_TYPE_UINT64;
4704 	value.value.sv_uint64 = spa_guid(spa);
4705 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4706 		goto done;
4707 
4708 	if (vd) {
4709 		value.value_type = SE_DATA_TYPE_UINT64;
4710 		value.value.sv_uint64 = vd->vdev_guid;
4711 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4712 		    SE_SLEEP) != 0)
4713 			goto done;
4714 
4715 		if (vd->vdev_path) {
4716 			value.value_type = SE_DATA_TYPE_STRING;
4717 			value.value.sv_string = vd->vdev_path;
4718 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4719 			    &value, SE_SLEEP) != 0)
4720 				goto done;
4721 		}
4722 	}
4723 
4724 	if (sysevent_attach_attributes(ev, attr) != 0)
4725 		goto done;
4726 	attr = NULL;
4727 
4728 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4729 
4730 done:
4731 	if (attr)
4732 		sysevent_free_attr(attr);
4733 	sysevent_free(ev);
4734 #endif
4735 }
4736