xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision ade2c828)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2018 Joyent, Inc.
31  * Copyright (c) 2017 Datto Inc.
32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33  */
34 
35 /*
36  * SPA: Storage Pool Allocator
37  *
38  * This file contains all the routines used when modifying on-disk SPA state.
39  * This includes opening, importing, destroying, exporting a pool, and syncing a
40  * pool.
41  */
42 
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/metaslab.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/uberblock_impl.h>
61 #include <sys/txg.h>
62 #include <sys/avl.h>
63 #include <sys/bpobj.h>
64 #include <sys/dmu_traverse.h>
65 #include <sys/dmu_objset.h>
66 #include <sys/unique.h>
67 #include <sys/dsl_pool.h>
68 #include <sys/dsl_dataset.h>
69 #include <sys/dsl_dir.h>
70 #include <sys/dsl_prop.h>
71 #include <sys/dsl_synctask.h>
72 #include <sys/fs/zfs.h>
73 #include <sys/arc.h>
74 #include <sys/callb.h>
75 #include <sys/systeminfo.h>
76 #include <sys/spa_boot.h>
77 #include <sys/zfs_ioctl.h>
78 #include <sys/dsl_scan.h>
79 #include <sys/zfeature.h>
80 #include <sys/dsl_destroy.h>
81 #include <sys/abd.h>
82 
83 #ifdef	_KERNEL
84 #include <sys/bootprops.h>
85 #include <sys/callb.h>
86 #include <sys/cpupart.h>
87 #include <sys/pool.h>
88 #include <sys/sysdc.h>
89 #include <sys/zone.h>
90 #endif	/* _KERNEL */
91 
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
94 
95 /*
96  * The interval, in seconds, at which failed configuration cache file writes
97  * should be retried.
98  */
99 int zfs_ccw_retry_interval = 300;
100 
101 typedef enum zti_modes {
102 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
103 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
104 	ZTI_MODE_NULL,			/* don't create a taskq */
105 	ZTI_NMODES
106 } zti_modes_t;
107 
108 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
109 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
110 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
111 
112 #define	ZTI_N(n)	ZTI_P(n, 1)
113 #define	ZTI_ONE		ZTI_N(1)
114 
115 typedef struct zio_taskq_info {
116 	zti_modes_t zti_mode;
117 	uint_t zti_value;
118 	uint_t zti_count;
119 } zio_taskq_info_t;
120 
121 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
122 	"issue", "issue_high", "intr", "intr_high"
123 };
124 
125 /*
126  * This table defines the taskq settings for each ZFS I/O type. When
127  * initializing a pool, we use this table to create an appropriately sized
128  * taskq. Some operations are low volume and therefore have a small, static
129  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
130  * macros. Other operations process a large amount of data; the ZTI_BATCH
131  * macro causes us to create a taskq oriented for throughput. Some operations
132  * are so high frequency and short-lived that the taskq itself can become a a
133  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
134  * additional degree of parallelism specified by the number of threads per-
135  * taskq and the number of taskqs; when dispatching an event in this case, the
136  * particular taskq is chosen at random.
137  *
138  * The different taskq priorities are to handle the different contexts (issue
139  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
140  * need to be handled with minimum delay.
141  */
142 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
143 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
144 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
145 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
146 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
147 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
149 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
150 };
151 
152 static void spa_sync_version(void *arg, dmu_tx_t *tx);
153 static void spa_sync_props(void *arg, dmu_tx_t *tx);
154 static boolean_t spa_has_active_shared_spare(spa_t *spa);
155 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
156 static void spa_vdev_resilver_done(spa_t *spa);
157 
158 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
159 id_t		zio_taskq_psrset_bind = PS_NONE;
160 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
161 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
162 
163 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
164 extern int	zfs_sync_pass_deferred_free;
165 
166 /*
167  * Report any spa_load_verify errors found, but do not fail spa_load.
168  * This is used by zdb to analyze non-idle pools.
169  */
170 boolean_t	spa_load_verify_dryrun = B_FALSE;
171 
172 /*
173  * This (illegal) pool name is used when temporarily importing a spa_t in order
174  * to get the vdev stats associated with the imported devices.
175  */
176 #define	TRYIMPORT_NAME	"$import"
177 
178 /*
179  * For debugging purposes: print out vdev tree during pool import.
180  */
181 boolean_t	spa_load_print_vdev_tree = B_FALSE;
182 
183 /*
184  * A non-zero value for zfs_max_missing_tvds means that we allow importing
185  * pools with missing top-level vdevs. This is strictly intended for advanced
186  * pool recovery cases since missing data is almost inevitable. Pools with
187  * missing devices can only be imported read-only for safety reasons, and their
188  * fail-mode will be automatically set to "continue".
189  *
190  * With 1 missing vdev we should be able to import the pool and mount all
191  * datasets. User data that was not modified after the missing device has been
192  * added should be recoverable. This means that snapshots created prior to the
193  * addition of that device should be completely intact.
194  *
195  * With 2 missing vdevs, some datasets may fail to mount since there are
196  * dataset statistics that are stored as regular metadata. Some data might be
197  * recoverable if those vdevs were added recently.
198  *
199  * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
200  * may be missing entirely. Chances of data recovery are very low. Note that
201  * there are also risks of performing an inadvertent rewind as we might be
202  * missing all the vdevs with the latest uberblocks.
203  */
204 uint64_t	zfs_max_missing_tvds = 0;
205 
206 /*
207  * The parameters below are similar to zfs_max_missing_tvds but are only
208  * intended for a preliminary open of the pool with an untrusted config which
209  * might be incomplete or out-dated.
210  *
211  * We are more tolerant for pools opened from a cachefile since we could have
212  * an out-dated cachefile where a device removal was not registered.
213  * We could have set the limit arbitrarily high but in the case where devices
214  * are really missing we would want to return the proper error codes; we chose
215  * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
216  * and we get a chance to retrieve the trusted config.
217  */
218 uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
219 
220 /*
221  * In the case where config was assembled by scanning device paths (/dev/dsks
222  * by default) we are less tolerant since all the existing devices should have
223  * been detected and we want spa_load to return the right error codes.
224  */
225 uint64_t	zfs_max_missing_tvds_scan = 0;
226 
227 /*
228  * Debugging aid that pauses spa_sync() towards the end.
229  */
230 boolean_t	zfs_pause_spa_sync = B_FALSE;
231 
232 /*
233  * ==========================================================================
234  * SPA properties routines
235  * ==========================================================================
236  */
237 
238 /*
239  * Add a (source=src, propname=propval) list to an nvlist.
240  */
241 static void
242 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
243     uint64_t intval, zprop_source_t src)
244 {
245 	const char *propname = zpool_prop_to_name(prop);
246 	nvlist_t *propval;
247 
248 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
249 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
250 
251 	if (strval != NULL)
252 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
253 	else
254 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
255 
256 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
257 	nvlist_free(propval);
258 }
259 
260 /*
261  * Get property values from the spa configuration.
262  */
263 static void
264 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
265 {
266 	vdev_t *rvd = spa->spa_root_vdev;
267 	dsl_pool_t *pool = spa->spa_dsl_pool;
268 	uint64_t size, alloc, cap, version;
269 	zprop_source_t src = ZPROP_SRC_NONE;
270 	spa_config_dirent_t *dp;
271 	metaslab_class_t *mc = spa_normal_class(spa);
272 
273 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
274 
275 	if (rvd != NULL) {
276 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
277 		size = metaslab_class_get_space(spa_normal_class(spa));
278 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
280 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
281 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
282 		    size - alloc, src);
283 		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
284 		    spa->spa_checkpoint_info.sci_dspace, src);
285 
286 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
287 		    metaslab_class_fragmentation(mc), src);
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
289 		    metaslab_class_expandable_space(mc), src);
290 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
291 		    (spa_mode(spa) == FREAD), src);
292 
293 		cap = (size == 0) ? 0 : (alloc * 100 / size);
294 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
295 
296 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
297 		    ddt_get_pool_dedup_ratio(spa), src);
298 
299 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
300 		    rvd->vdev_state, src);
301 
302 		version = spa_version(spa);
303 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
304 			src = ZPROP_SRC_DEFAULT;
305 		else
306 			src = ZPROP_SRC_LOCAL;
307 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
308 	}
309 
310 	if (pool != NULL) {
311 		/*
312 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
313 		 * when opening pools before this version freedir will be NULL.
314 		 */
315 		if (pool->dp_free_dir != NULL) {
316 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
317 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
318 			    src);
319 		} else {
320 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
321 			    NULL, 0, src);
322 		}
323 
324 		if (pool->dp_leak_dir != NULL) {
325 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
326 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
327 			    src);
328 		} else {
329 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
330 			    NULL, 0, src);
331 		}
332 	}
333 
334 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
335 
336 	if (spa->spa_comment != NULL) {
337 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
338 		    0, ZPROP_SRC_LOCAL);
339 	}
340 
341 	if (spa->spa_root != NULL)
342 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
343 		    0, ZPROP_SRC_LOCAL);
344 
345 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
346 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
347 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
348 	} else {
349 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
350 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
351 	}
352 
353 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
354 		if (dp->scd_path == NULL) {
355 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
356 			    "none", 0, ZPROP_SRC_LOCAL);
357 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
358 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
359 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
360 		}
361 	}
362 }
363 
364 /*
365  * Get zpool property values.
366  */
367 int
368 spa_prop_get(spa_t *spa, nvlist_t **nvp)
369 {
370 	objset_t *mos = spa->spa_meta_objset;
371 	zap_cursor_t zc;
372 	zap_attribute_t za;
373 	int err;
374 
375 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
376 
377 	mutex_enter(&spa->spa_props_lock);
378 
379 	/*
380 	 * Get properties from the spa config.
381 	 */
382 	spa_prop_get_config(spa, nvp);
383 
384 	/* If no pool property object, no more prop to get. */
385 	if (mos == NULL || spa->spa_pool_props_object == 0) {
386 		mutex_exit(&spa->spa_props_lock);
387 		return (0);
388 	}
389 
390 	/*
391 	 * Get properties from the MOS pool property object.
392 	 */
393 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
394 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
395 	    zap_cursor_advance(&zc)) {
396 		uint64_t intval = 0;
397 		char *strval = NULL;
398 		zprop_source_t src = ZPROP_SRC_DEFAULT;
399 		zpool_prop_t prop;
400 
401 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
402 			continue;
403 
404 		switch (za.za_integer_length) {
405 		case 8:
406 			/* integer property */
407 			if (za.za_first_integer !=
408 			    zpool_prop_default_numeric(prop))
409 				src = ZPROP_SRC_LOCAL;
410 
411 			if (prop == ZPOOL_PROP_BOOTFS) {
412 				dsl_pool_t *dp;
413 				dsl_dataset_t *ds = NULL;
414 
415 				dp = spa_get_dsl(spa);
416 				dsl_pool_config_enter(dp, FTAG);
417 				err = dsl_dataset_hold_obj(dp,
418 				    za.za_first_integer, FTAG, &ds);
419 				if (err != 0) {
420 					dsl_pool_config_exit(dp, FTAG);
421 					break;
422 				}
423 
424 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
425 				    KM_SLEEP);
426 				dsl_dataset_name(ds, strval);
427 				dsl_dataset_rele(ds, FTAG);
428 				dsl_pool_config_exit(dp, FTAG);
429 			} else {
430 				strval = NULL;
431 				intval = za.za_first_integer;
432 			}
433 
434 			spa_prop_add_list(*nvp, prop, strval, intval, src);
435 
436 			if (strval != NULL)
437 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
438 
439 			break;
440 
441 		case 1:
442 			/* string property */
443 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
444 			err = zap_lookup(mos, spa->spa_pool_props_object,
445 			    za.za_name, 1, za.za_num_integers, strval);
446 			if (err) {
447 				kmem_free(strval, za.za_num_integers);
448 				break;
449 			}
450 			spa_prop_add_list(*nvp, prop, strval, 0, src);
451 			kmem_free(strval, za.za_num_integers);
452 			break;
453 
454 		default:
455 			break;
456 		}
457 	}
458 	zap_cursor_fini(&zc);
459 	mutex_exit(&spa->spa_props_lock);
460 out:
461 	if (err && err != ENOENT) {
462 		nvlist_free(*nvp);
463 		*nvp = NULL;
464 		return (err);
465 	}
466 
467 	return (0);
468 }
469 
470 /*
471  * Validate the given pool properties nvlist and modify the list
472  * for the property values to be set.
473  */
474 static int
475 spa_prop_validate(spa_t *spa, nvlist_t *props)
476 {
477 	nvpair_t *elem;
478 	int error = 0, reset_bootfs = 0;
479 	uint64_t objnum = 0;
480 	boolean_t has_feature = B_FALSE;
481 
482 	elem = NULL;
483 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
484 		uint64_t intval;
485 		char *strval, *slash, *check, *fname;
486 		const char *propname = nvpair_name(elem);
487 		zpool_prop_t prop = zpool_name_to_prop(propname);
488 
489 		switch (prop) {
490 		case ZPOOL_PROP_INVAL:
491 			if (!zpool_prop_feature(propname)) {
492 				error = SET_ERROR(EINVAL);
493 				break;
494 			}
495 
496 			/*
497 			 * Sanitize the input.
498 			 */
499 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
500 				error = SET_ERROR(EINVAL);
501 				break;
502 			}
503 
504 			if (nvpair_value_uint64(elem, &intval) != 0) {
505 				error = SET_ERROR(EINVAL);
506 				break;
507 			}
508 
509 			if (intval != 0) {
510 				error = SET_ERROR(EINVAL);
511 				break;
512 			}
513 
514 			fname = strchr(propname, '@') + 1;
515 			if (zfeature_lookup_name(fname, NULL) != 0) {
516 				error = SET_ERROR(EINVAL);
517 				break;
518 			}
519 
520 			has_feature = B_TRUE;
521 			break;
522 
523 		case ZPOOL_PROP_VERSION:
524 			error = nvpair_value_uint64(elem, &intval);
525 			if (!error &&
526 			    (intval < spa_version(spa) ||
527 			    intval > SPA_VERSION_BEFORE_FEATURES ||
528 			    has_feature))
529 				error = SET_ERROR(EINVAL);
530 			break;
531 
532 		case ZPOOL_PROP_DELEGATION:
533 		case ZPOOL_PROP_AUTOREPLACE:
534 		case ZPOOL_PROP_LISTSNAPS:
535 		case ZPOOL_PROP_AUTOEXPAND:
536 			error = nvpair_value_uint64(elem, &intval);
537 			if (!error && intval > 1)
538 				error = SET_ERROR(EINVAL);
539 			break;
540 
541 		case ZPOOL_PROP_BOOTFS:
542 			/*
543 			 * If the pool version is less than SPA_VERSION_BOOTFS,
544 			 * or the pool is still being created (version == 0),
545 			 * the bootfs property cannot be set.
546 			 */
547 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
548 				error = SET_ERROR(ENOTSUP);
549 				break;
550 			}
551 
552 			/*
553 			 * Make sure the vdev config is bootable
554 			 */
555 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
556 				error = SET_ERROR(ENOTSUP);
557 				break;
558 			}
559 
560 			reset_bootfs = 1;
561 
562 			error = nvpair_value_string(elem, &strval);
563 
564 			if (!error) {
565 				objset_t *os;
566 				uint64_t propval;
567 
568 				if (strval == NULL || strval[0] == '\0') {
569 					objnum = zpool_prop_default_numeric(
570 					    ZPOOL_PROP_BOOTFS);
571 					break;
572 				}
573 
574 				error = dmu_objset_hold(strval, FTAG, &os);
575 				if (error != 0)
576 					break;
577 
578 				/*
579 				 * Must be ZPL, and its property settings
580 				 * must be supported by GRUB (compression
581 				 * is not gzip, and large blocks are not used).
582 				 */
583 
584 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
585 					error = SET_ERROR(ENOTSUP);
586 				} else if ((error =
587 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
588 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
589 				    &propval)) == 0 &&
590 				    !BOOTFS_COMPRESS_VALID(propval)) {
591 					error = SET_ERROR(ENOTSUP);
592 				} else {
593 					objnum = dmu_objset_id(os);
594 				}
595 				dmu_objset_rele(os, FTAG);
596 			}
597 			break;
598 
599 		case ZPOOL_PROP_FAILUREMODE:
600 			error = nvpair_value_uint64(elem, &intval);
601 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
602 			    intval > ZIO_FAILURE_MODE_PANIC))
603 				error = SET_ERROR(EINVAL);
604 
605 			/*
606 			 * This is a special case which only occurs when
607 			 * the pool has completely failed. This allows
608 			 * the user to change the in-core failmode property
609 			 * without syncing it out to disk (I/Os might
610 			 * currently be blocked). We do this by returning
611 			 * EIO to the caller (spa_prop_set) to trick it
612 			 * into thinking we encountered a property validation
613 			 * error.
614 			 */
615 			if (!error && spa_suspended(spa)) {
616 				spa->spa_failmode = intval;
617 				error = SET_ERROR(EIO);
618 			}
619 			break;
620 
621 		case ZPOOL_PROP_CACHEFILE:
622 			if ((error = nvpair_value_string(elem, &strval)) != 0)
623 				break;
624 
625 			if (strval[0] == '\0')
626 				break;
627 
628 			if (strcmp(strval, "none") == 0)
629 				break;
630 
631 			if (strval[0] != '/') {
632 				error = SET_ERROR(EINVAL);
633 				break;
634 			}
635 
636 			slash = strrchr(strval, '/');
637 			ASSERT(slash != NULL);
638 
639 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
640 			    strcmp(slash, "/..") == 0)
641 				error = SET_ERROR(EINVAL);
642 			break;
643 
644 		case ZPOOL_PROP_COMMENT:
645 			if ((error = nvpair_value_string(elem, &strval)) != 0)
646 				break;
647 			for (check = strval; *check != '\0'; check++) {
648 				/*
649 				 * The kernel doesn't have an easy isprint()
650 				 * check.  For this kernel check, we merely
651 				 * check ASCII apart from DEL.  Fix this if
652 				 * there is an easy-to-use kernel isprint().
653 				 */
654 				if (*check >= 0x7f) {
655 					error = SET_ERROR(EINVAL);
656 					break;
657 				}
658 			}
659 			if (strlen(strval) > ZPROP_MAX_COMMENT)
660 				error = E2BIG;
661 			break;
662 
663 		case ZPOOL_PROP_DEDUPDITTO:
664 			if (spa_version(spa) < SPA_VERSION_DEDUP)
665 				error = SET_ERROR(ENOTSUP);
666 			else
667 				error = nvpair_value_uint64(elem, &intval);
668 			if (error == 0 &&
669 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
670 				error = SET_ERROR(EINVAL);
671 			break;
672 		}
673 
674 		if (error)
675 			break;
676 	}
677 
678 	if (!error && reset_bootfs) {
679 		error = nvlist_remove(props,
680 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
681 
682 		if (!error) {
683 			error = nvlist_add_uint64(props,
684 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
685 		}
686 	}
687 
688 	return (error);
689 }
690 
691 void
692 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
693 {
694 	char *cachefile;
695 	spa_config_dirent_t *dp;
696 
697 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
698 	    &cachefile) != 0)
699 		return;
700 
701 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
702 	    KM_SLEEP);
703 
704 	if (cachefile[0] == '\0')
705 		dp->scd_path = spa_strdup(spa_config_path);
706 	else if (strcmp(cachefile, "none") == 0)
707 		dp->scd_path = NULL;
708 	else
709 		dp->scd_path = spa_strdup(cachefile);
710 
711 	list_insert_head(&spa->spa_config_list, dp);
712 	if (need_sync)
713 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
714 }
715 
716 int
717 spa_prop_set(spa_t *spa, nvlist_t *nvp)
718 {
719 	int error;
720 	nvpair_t *elem = NULL;
721 	boolean_t need_sync = B_FALSE;
722 
723 	if ((error = spa_prop_validate(spa, nvp)) != 0)
724 		return (error);
725 
726 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
727 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
728 
729 		if (prop == ZPOOL_PROP_CACHEFILE ||
730 		    prop == ZPOOL_PROP_ALTROOT ||
731 		    prop == ZPOOL_PROP_READONLY)
732 			continue;
733 
734 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
735 			uint64_t ver;
736 
737 			if (prop == ZPOOL_PROP_VERSION) {
738 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
739 			} else {
740 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
741 				ver = SPA_VERSION_FEATURES;
742 				need_sync = B_TRUE;
743 			}
744 
745 			/* Save time if the version is already set. */
746 			if (ver == spa_version(spa))
747 				continue;
748 
749 			/*
750 			 * In addition to the pool directory object, we might
751 			 * create the pool properties object, the features for
752 			 * read object, the features for write object, or the
753 			 * feature descriptions object.
754 			 */
755 			error = dsl_sync_task(spa->spa_name, NULL,
756 			    spa_sync_version, &ver,
757 			    6, ZFS_SPACE_CHECK_RESERVED);
758 			if (error)
759 				return (error);
760 			continue;
761 		}
762 
763 		need_sync = B_TRUE;
764 		break;
765 	}
766 
767 	if (need_sync) {
768 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
769 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
770 	}
771 
772 	return (0);
773 }
774 
775 /*
776  * If the bootfs property value is dsobj, clear it.
777  */
778 void
779 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
780 {
781 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
782 		VERIFY(zap_remove(spa->spa_meta_objset,
783 		    spa->spa_pool_props_object,
784 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
785 		spa->spa_bootfs = 0;
786 	}
787 }
788 
789 /*ARGSUSED*/
790 static int
791 spa_change_guid_check(void *arg, dmu_tx_t *tx)
792 {
793 	uint64_t *newguid = arg;
794 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
795 	vdev_t *rvd = spa->spa_root_vdev;
796 	uint64_t vdev_state;
797 
798 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
799 		int error = (spa_has_checkpoint(spa)) ?
800 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
801 		return (SET_ERROR(error));
802 	}
803 
804 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
805 	vdev_state = rvd->vdev_state;
806 	spa_config_exit(spa, SCL_STATE, FTAG);
807 
808 	if (vdev_state != VDEV_STATE_HEALTHY)
809 		return (SET_ERROR(ENXIO));
810 
811 	ASSERT3U(spa_guid(spa), !=, *newguid);
812 
813 	return (0);
814 }
815 
816 static void
817 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
818 {
819 	uint64_t *newguid = arg;
820 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
821 	uint64_t oldguid;
822 	vdev_t *rvd = spa->spa_root_vdev;
823 
824 	oldguid = spa_guid(spa);
825 
826 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
827 	rvd->vdev_guid = *newguid;
828 	rvd->vdev_guid_sum += (*newguid - oldguid);
829 	vdev_config_dirty(rvd);
830 	spa_config_exit(spa, SCL_STATE, FTAG);
831 
832 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
833 	    oldguid, *newguid);
834 }
835 
836 /*
837  * Change the GUID for the pool.  This is done so that we can later
838  * re-import a pool built from a clone of our own vdevs.  We will modify
839  * the root vdev's guid, our own pool guid, and then mark all of our
840  * vdevs dirty.  Note that we must make sure that all our vdevs are
841  * online when we do this, or else any vdevs that weren't present
842  * would be orphaned from our pool.  We are also going to issue a
843  * sysevent to update any watchers.
844  */
845 int
846 spa_change_guid(spa_t *spa)
847 {
848 	int error;
849 	uint64_t guid;
850 
851 	mutex_enter(&spa->spa_vdev_top_lock);
852 	mutex_enter(&spa_namespace_lock);
853 	guid = spa_generate_guid(NULL);
854 
855 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
856 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
857 
858 	if (error == 0) {
859 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
860 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
861 	}
862 
863 	mutex_exit(&spa_namespace_lock);
864 	mutex_exit(&spa->spa_vdev_top_lock);
865 
866 	return (error);
867 }
868 
869 /*
870  * ==========================================================================
871  * SPA state manipulation (open/create/destroy/import/export)
872  * ==========================================================================
873  */
874 
875 static int
876 spa_error_entry_compare(const void *a, const void *b)
877 {
878 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
879 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
880 	int ret;
881 
882 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
883 	    sizeof (zbookmark_phys_t));
884 
885 	if (ret < 0)
886 		return (-1);
887 	else if (ret > 0)
888 		return (1);
889 	else
890 		return (0);
891 }
892 
893 /*
894  * Utility function which retrieves copies of the current logs and
895  * re-initializes them in the process.
896  */
897 void
898 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
899 {
900 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
901 
902 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
903 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
904 
905 	avl_create(&spa->spa_errlist_scrub,
906 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
907 	    offsetof(spa_error_entry_t, se_avl));
908 	avl_create(&spa->spa_errlist_last,
909 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
910 	    offsetof(spa_error_entry_t, se_avl));
911 }
912 
913 static void
914 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
915 {
916 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
917 	enum zti_modes mode = ztip->zti_mode;
918 	uint_t value = ztip->zti_value;
919 	uint_t count = ztip->zti_count;
920 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
921 	char name[32];
922 	uint_t flags = 0;
923 	boolean_t batch = B_FALSE;
924 
925 	if (mode == ZTI_MODE_NULL) {
926 		tqs->stqs_count = 0;
927 		tqs->stqs_taskq = NULL;
928 		return;
929 	}
930 
931 	ASSERT3U(count, >, 0);
932 
933 	tqs->stqs_count = count;
934 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
935 
936 	switch (mode) {
937 	case ZTI_MODE_FIXED:
938 		ASSERT3U(value, >=, 1);
939 		value = MAX(value, 1);
940 		break;
941 
942 	case ZTI_MODE_BATCH:
943 		batch = B_TRUE;
944 		flags |= TASKQ_THREADS_CPU_PCT;
945 		value = zio_taskq_batch_pct;
946 		break;
947 
948 	default:
949 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
950 		    "spa_activate()",
951 		    zio_type_name[t], zio_taskq_types[q], mode, value);
952 		break;
953 	}
954 
955 	for (uint_t i = 0; i < count; i++) {
956 		taskq_t *tq;
957 
958 		if (count > 1) {
959 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
960 			    zio_type_name[t], zio_taskq_types[q], i);
961 		} else {
962 			(void) snprintf(name, sizeof (name), "%s_%s",
963 			    zio_type_name[t], zio_taskq_types[q]);
964 		}
965 
966 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
967 			if (batch)
968 				flags |= TASKQ_DC_BATCH;
969 
970 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
971 			    spa->spa_proc, zio_taskq_basedc, flags);
972 		} else {
973 			pri_t pri = maxclsyspri;
974 			/*
975 			 * The write issue taskq can be extremely CPU
976 			 * intensive.  Run it at slightly lower priority
977 			 * than the other taskqs.
978 			 */
979 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
980 				pri--;
981 
982 			tq = taskq_create_proc(name, value, pri, 50,
983 			    INT_MAX, spa->spa_proc, flags);
984 		}
985 
986 		tqs->stqs_taskq[i] = tq;
987 	}
988 }
989 
990 static void
991 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
992 {
993 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
994 
995 	if (tqs->stqs_taskq == NULL) {
996 		ASSERT0(tqs->stqs_count);
997 		return;
998 	}
999 
1000 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1001 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1002 		taskq_destroy(tqs->stqs_taskq[i]);
1003 	}
1004 
1005 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1006 	tqs->stqs_taskq = NULL;
1007 }
1008 
1009 /*
1010  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1011  * Note that a type may have multiple discrete taskqs to avoid lock contention
1012  * on the taskq itself. In that case we choose which taskq at random by using
1013  * the low bits of gethrtime().
1014  */
1015 void
1016 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1017     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1018 {
1019 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1020 	taskq_t *tq;
1021 
1022 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1023 	ASSERT3U(tqs->stqs_count, !=, 0);
1024 
1025 	if (tqs->stqs_count == 1) {
1026 		tq = tqs->stqs_taskq[0];
1027 	} else {
1028 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1029 	}
1030 
1031 	taskq_dispatch_ent(tq, func, arg, flags, ent);
1032 }
1033 
1034 static void
1035 spa_create_zio_taskqs(spa_t *spa)
1036 {
1037 	for (int t = 0; t < ZIO_TYPES; t++) {
1038 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1039 			spa_taskqs_init(spa, t, q);
1040 		}
1041 	}
1042 }
1043 
1044 #ifdef _KERNEL
1045 static void
1046 spa_thread(void *arg)
1047 {
1048 	callb_cpr_t cprinfo;
1049 
1050 	spa_t *spa = arg;
1051 	user_t *pu = PTOU(curproc);
1052 
1053 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1054 	    spa->spa_name);
1055 
1056 	ASSERT(curproc != &p0);
1057 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1058 	    "zpool-%s", spa->spa_name);
1059 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1060 
1061 	/* bind this thread to the requested psrset */
1062 	if (zio_taskq_psrset_bind != PS_NONE) {
1063 		pool_lock();
1064 		mutex_enter(&cpu_lock);
1065 		mutex_enter(&pidlock);
1066 		mutex_enter(&curproc->p_lock);
1067 
1068 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1069 		    0, NULL, NULL) == 0)  {
1070 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1071 		} else {
1072 			cmn_err(CE_WARN,
1073 			    "Couldn't bind process for zfs pool \"%s\" to "
1074 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1075 		}
1076 
1077 		mutex_exit(&curproc->p_lock);
1078 		mutex_exit(&pidlock);
1079 		mutex_exit(&cpu_lock);
1080 		pool_unlock();
1081 	}
1082 
1083 	if (zio_taskq_sysdc) {
1084 		sysdc_thread_enter(curthread, 100, 0);
1085 	}
1086 
1087 	spa->spa_proc = curproc;
1088 	spa->spa_did = curthread->t_did;
1089 
1090 	spa_create_zio_taskqs(spa);
1091 
1092 	mutex_enter(&spa->spa_proc_lock);
1093 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1094 
1095 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1096 	cv_broadcast(&spa->spa_proc_cv);
1097 
1098 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1099 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1100 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1101 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1102 
1103 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1104 	spa->spa_proc_state = SPA_PROC_GONE;
1105 	spa->spa_proc = &p0;
1106 	cv_broadcast(&spa->spa_proc_cv);
1107 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1108 
1109 	mutex_enter(&curproc->p_lock);
1110 	lwp_exit();
1111 }
1112 #endif
1113 
1114 /*
1115  * Activate an uninitialized pool.
1116  */
1117 static void
1118 spa_activate(spa_t *spa, int mode)
1119 {
1120 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1121 
1122 	spa->spa_state = POOL_STATE_ACTIVE;
1123 	spa->spa_mode = mode;
1124 
1125 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1126 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1127 
1128 	/* Try to create a covering process */
1129 	mutex_enter(&spa->spa_proc_lock);
1130 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1131 	ASSERT(spa->spa_proc == &p0);
1132 	spa->spa_did = 0;
1133 
1134 	/* Only create a process if we're going to be around a while. */
1135 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1136 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1137 		    NULL, 0) == 0) {
1138 			spa->spa_proc_state = SPA_PROC_CREATED;
1139 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1140 				cv_wait(&spa->spa_proc_cv,
1141 				    &spa->spa_proc_lock);
1142 			}
1143 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1144 			ASSERT(spa->spa_proc != &p0);
1145 			ASSERT(spa->spa_did != 0);
1146 		} else {
1147 #ifdef _KERNEL
1148 			cmn_err(CE_WARN,
1149 			    "Couldn't create process for zfs pool \"%s\"\n",
1150 			    spa->spa_name);
1151 #endif
1152 		}
1153 	}
1154 	mutex_exit(&spa->spa_proc_lock);
1155 
1156 	/* If we didn't create a process, we need to create our taskqs. */
1157 	if (spa->spa_proc == &p0) {
1158 		spa_create_zio_taskqs(spa);
1159 	}
1160 
1161 	for (size_t i = 0; i < TXG_SIZE; i++) {
1162 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1163 		    ZIO_FLAG_CANFAIL);
1164 	}
1165 
1166 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1167 	    offsetof(vdev_t, vdev_config_dirty_node));
1168 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1169 	    offsetof(objset_t, os_evicting_node));
1170 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1171 	    offsetof(vdev_t, vdev_state_dirty_node));
1172 
1173 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1174 	    offsetof(struct vdev, vdev_txg_node));
1175 
1176 	avl_create(&spa->spa_errlist_scrub,
1177 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1178 	    offsetof(spa_error_entry_t, se_avl));
1179 	avl_create(&spa->spa_errlist_last,
1180 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1181 	    offsetof(spa_error_entry_t, se_avl));
1182 }
1183 
1184 /*
1185  * Opposite of spa_activate().
1186  */
1187 static void
1188 spa_deactivate(spa_t *spa)
1189 {
1190 	ASSERT(spa->spa_sync_on == B_FALSE);
1191 	ASSERT(spa->spa_dsl_pool == NULL);
1192 	ASSERT(spa->spa_root_vdev == NULL);
1193 	ASSERT(spa->spa_async_zio_root == NULL);
1194 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1195 
1196 	spa_evicting_os_wait(spa);
1197 
1198 	txg_list_destroy(&spa->spa_vdev_txg_list);
1199 
1200 	list_destroy(&spa->spa_config_dirty_list);
1201 	list_destroy(&spa->spa_evicting_os_list);
1202 	list_destroy(&spa->spa_state_dirty_list);
1203 
1204 	for (int t = 0; t < ZIO_TYPES; t++) {
1205 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1206 			spa_taskqs_fini(spa, t, q);
1207 		}
1208 	}
1209 
1210 	for (size_t i = 0; i < TXG_SIZE; i++) {
1211 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1212 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1213 		spa->spa_txg_zio[i] = NULL;
1214 	}
1215 
1216 	metaslab_class_destroy(spa->spa_normal_class);
1217 	spa->spa_normal_class = NULL;
1218 
1219 	metaslab_class_destroy(spa->spa_log_class);
1220 	spa->spa_log_class = NULL;
1221 
1222 	/*
1223 	 * If this was part of an import or the open otherwise failed, we may
1224 	 * still have errors left in the queues.  Empty them just in case.
1225 	 */
1226 	spa_errlog_drain(spa);
1227 
1228 	avl_destroy(&spa->spa_errlist_scrub);
1229 	avl_destroy(&spa->spa_errlist_last);
1230 
1231 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1232 
1233 	mutex_enter(&spa->spa_proc_lock);
1234 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1235 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1236 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1237 		cv_broadcast(&spa->spa_proc_cv);
1238 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1239 			ASSERT(spa->spa_proc != &p0);
1240 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1241 		}
1242 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1243 		spa->spa_proc_state = SPA_PROC_NONE;
1244 	}
1245 	ASSERT(spa->spa_proc == &p0);
1246 	mutex_exit(&spa->spa_proc_lock);
1247 
1248 	/*
1249 	 * We want to make sure spa_thread() has actually exited the ZFS
1250 	 * module, so that the module can't be unloaded out from underneath
1251 	 * it.
1252 	 */
1253 	if (spa->spa_did != 0) {
1254 		thread_join(spa->spa_did);
1255 		spa->spa_did = 0;
1256 	}
1257 }
1258 
1259 /*
1260  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1261  * will create all the necessary vdevs in the appropriate layout, with each vdev
1262  * in the CLOSED state.  This will prep the pool before open/creation/import.
1263  * All vdev validation is done by the vdev_alloc() routine.
1264  */
1265 static int
1266 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1267     uint_t id, int atype)
1268 {
1269 	nvlist_t **child;
1270 	uint_t children;
1271 	int error;
1272 
1273 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1274 		return (error);
1275 
1276 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1277 		return (0);
1278 
1279 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1280 	    &child, &children);
1281 
1282 	if (error == ENOENT)
1283 		return (0);
1284 
1285 	if (error) {
1286 		vdev_free(*vdp);
1287 		*vdp = NULL;
1288 		return (SET_ERROR(EINVAL));
1289 	}
1290 
1291 	for (int c = 0; c < children; c++) {
1292 		vdev_t *vd;
1293 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1294 		    atype)) != 0) {
1295 			vdev_free(*vdp);
1296 			*vdp = NULL;
1297 			return (error);
1298 		}
1299 	}
1300 
1301 	ASSERT(*vdp != NULL);
1302 
1303 	return (0);
1304 }
1305 
1306 /*
1307  * Opposite of spa_load().
1308  */
1309 static void
1310 spa_unload(spa_t *spa)
1311 {
1312 	int i;
1313 
1314 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1315 
1316 	spa_load_note(spa, "UNLOADING");
1317 
1318 	/*
1319 	 * Stop async tasks.
1320 	 */
1321 	spa_async_suspend(spa);
1322 
1323 	if (spa->spa_root_vdev) {
1324 		vdev_initialize_stop_all(spa->spa_root_vdev,
1325 		    VDEV_INITIALIZE_ACTIVE);
1326 	}
1327 
1328 	/*
1329 	 * Stop syncing.
1330 	 */
1331 	if (spa->spa_sync_on) {
1332 		txg_sync_stop(spa->spa_dsl_pool);
1333 		spa->spa_sync_on = B_FALSE;
1334 	}
1335 
1336 	/*
1337 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1338 	 * to call it earlier, before we wait for async i/o to complete.
1339 	 * This ensures that there is no async metaslab prefetching, by
1340 	 * calling taskq_wait(mg_taskq).
1341 	 */
1342 	if (spa->spa_root_vdev != NULL) {
1343 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1344 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1345 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1346 		spa_config_exit(spa, SCL_ALL, spa);
1347 	}
1348 
1349 	/*
1350 	 * Wait for any outstanding async I/O to complete.
1351 	 */
1352 	if (spa->spa_async_zio_root != NULL) {
1353 		for (int i = 0; i < max_ncpus; i++)
1354 			(void) zio_wait(spa->spa_async_zio_root[i]);
1355 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1356 		spa->spa_async_zio_root = NULL;
1357 	}
1358 
1359 	if (spa->spa_vdev_removal != NULL) {
1360 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1361 		spa->spa_vdev_removal = NULL;
1362 	}
1363 
1364 	if (spa->spa_condense_zthr != NULL) {
1365 		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1366 		zthr_destroy(spa->spa_condense_zthr);
1367 		spa->spa_condense_zthr = NULL;
1368 	}
1369 
1370 	if (spa->spa_checkpoint_discard_zthr != NULL) {
1371 		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1372 		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1373 		spa->spa_checkpoint_discard_zthr = NULL;
1374 	}
1375 
1376 	spa_condense_fini(spa);
1377 
1378 	bpobj_close(&spa->spa_deferred_bpobj);
1379 
1380 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1381 
1382 	/*
1383 	 * Close all vdevs.
1384 	 */
1385 	if (spa->spa_root_vdev)
1386 		vdev_free(spa->spa_root_vdev);
1387 	ASSERT(spa->spa_root_vdev == NULL);
1388 
1389 	/*
1390 	 * Close the dsl pool.
1391 	 */
1392 	if (spa->spa_dsl_pool) {
1393 		dsl_pool_close(spa->spa_dsl_pool);
1394 		spa->spa_dsl_pool = NULL;
1395 		spa->spa_meta_objset = NULL;
1396 	}
1397 
1398 	ddt_unload(spa);
1399 
1400 	/*
1401 	 * Drop and purge level 2 cache
1402 	 */
1403 	spa_l2cache_drop(spa);
1404 
1405 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1407 	if (spa->spa_spares.sav_vdevs) {
1408 		kmem_free(spa->spa_spares.sav_vdevs,
1409 		    spa->spa_spares.sav_count * sizeof (void *));
1410 		spa->spa_spares.sav_vdevs = NULL;
1411 	}
1412 	if (spa->spa_spares.sav_config) {
1413 		nvlist_free(spa->spa_spares.sav_config);
1414 		spa->spa_spares.sav_config = NULL;
1415 	}
1416 	spa->spa_spares.sav_count = 0;
1417 
1418 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1419 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1420 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1421 	}
1422 	if (spa->spa_l2cache.sav_vdevs) {
1423 		kmem_free(spa->spa_l2cache.sav_vdevs,
1424 		    spa->spa_l2cache.sav_count * sizeof (void *));
1425 		spa->spa_l2cache.sav_vdevs = NULL;
1426 	}
1427 	if (spa->spa_l2cache.sav_config) {
1428 		nvlist_free(spa->spa_l2cache.sav_config);
1429 		spa->spa_l2cache.sav_config = NULL;
1430 	}
1431 	spa->spa_l2cache.sav_count = 0;
1432 
1433 	spa->spa_async_suspended = 0;
1434 
1435 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1436 
1437 	if (spa->spa_comment != NULL) {
1438 		spa_strfree(spa->spa_comment);
1439 		spa->spa_comment = NULL;
1440 	}
1441 
1442 	spa_config_exit(spa, SCL_ALL, spa);
1443 }
1444 
1445 /*
1446  * Load (or re-load) the current list of vdevs describing the active spares for
1447  * this pool.  When this is called, we have some form of basic information in
1448  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1449  * then re-generate a more complete list including status information.
1450  */
1451 void
1452 spa_load_spares(spa_t *spa)
1453 {
1454 	nvlist_t **spares;
1455 	uint_t nspares;
1456 	int i;
1457 	vdev_t *vd, *tvd;
1458 
1459 #ifndef _KERNEL
1460 	/*
1461 	 * zdb opens both the current state of the pool and the
1462 	 * checkpointed state (if present), with a different spa_t.
1463 	 *
1464 	 * As spare vdevs are shared among open pools, we skip loading
1465 	 * them when we load the checkpointed state of the pool.
1466 	 */
1467 	if (!spa_writeable(spa))
1468 		return;
1469 #endif
1470 
1471 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1472 
1473 	/*
1474 	 * First, close and free any existing spare vdevs.
1475 	 */
1476 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1477 		vd = spa->spa_spares.sav_vdevs[i];
1478 
1479 		/* Undo the call to spa_activate() below */
1480 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1481 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1482 			spa_spare_remove(tvd);
1483 		vdev_close(vd);
1484 		vdev_free(vd);
1485 	}
1486 
1487 	if (spa->spa_spares.sav_vdevs)
1488 		kmem_free(spa->spa_spares.sav_vdevs,
1489 		    spa->spa_spares.sav_count * sizeof (void *));
1490 
1491 	if (spa->spa_spares.sav_config == NULL)
1492 		nspares = 0;
1493 	else
1494 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1495 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1496 
1497 	spa->spa_spares.sav_count = (int)nspares;
1498 	spa->spa_spares.sav_vdevs = NULL;
1499 
1500 	if (nspares == 0)
1501 		return;
1502 
1503 	/*
1504 	 * Construct the array of vdevs, opening them to get status in the
1505 	 * process.   For each spare, there is potentially two different vdev_t
1506 	 * structures associated with it: one in the list of spares (used only
1507 	 * for basic validation purposes) and one in the active vdev
1508 	 * configuration (if it's spared in).  During this phase we open and
1509 	 * validate each vdev on the spare list.  If the vdev also exists in the
1510 	 * active configuration, then we also mark this vdev as an active spare.
1511 	 */
1512 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1513 	    KM_SLEEP);
1514 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1515 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1516 		    VDEV_ALLOC_SPARE) == 0);
1517 		ASSERT(vd != NULL);
1518 
1519 		spa->spa_spares.sav_vdevs[i] = vd;
1520 
1521 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1522 		    B_FALSE)) != NULL) {
1523 			if (!tvd->vdev_isspare)
1524 				spa_spare_add(tvd);
1525 
1526 			/*
1527 			 * We only mark the spare active if we were successfully
1528 			 * able to load the vdev.  Otherwise, importing a pool
1529 			 * with a bad active spare would result in strange
1530 			 * behavior, because multiple pool would think the spare
1531 			 * is actively in use.
1532 			 *
1533 			 * There is a vulnerability here to an equally bizarre
1534 			 * circumstance, where a dead active spare is later
1535 			 * brought back to life (onlined or otherwise).  Given
1536 			 * the rarity of this scenario, and the extra complexity
1537 			 * it adds, we ignore the possibility.
1538 			 */
1539 			if (!vdev_is_dead(tvd))
1540 				spa_spare_activate(tvd);
1541 		}
1542 
1543 		vd->vdev_top = vd;
1544 		vd->vdev_aux = &spa->spa_spares;
1545 
1546 		if (vdev_open(vd) != 0)
1547 			continue;
1548 
1549 		if (vdev_validate_aux(vd) == 0)
1550 			spa_spare_add(vd);
1551 	}
1552 
1553 	/*
1554 	 * Recompute the stashed list of spares, with status information
1555 	 * this time.
1556 	 */
1557 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1558 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1559 
1560 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1561 	    KM_SLEEP);
1562 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1563 		spares[i] = vdev_config_generate(spa,
1564 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1565 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1566 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1567 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1568 		nvlist_free(spares[i]);
1569 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1570 }
1571 
1572 /*
1573  * Load (or re-load) the current list of vdevs describing the active l2cache for
1574  * this pool.  When this is called, we have some form of basic information in
1575  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1576  * then re-generate a more complete list including status information.
1577  * Devices which are already active have their details maintained, and are
1578  * not re-opened.
1579  */
1580 void
1581 spa_load_l2cache(spa_t *spa)
1582 {
1583 	nvlist_t **l2cache;
1584 	uint_t nl2cache;
1585 	int i, j, oldnvdevs;
1586 	uint64_t guid;
1587 	vdev_t *vd, **oldvdevs, **newvdevs;
1588 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1589 
1590 #ifndef _KERNEL
1591 	/*
1592 	 * zdb opens both the current state of the pool and the
1593 	 * checkpointed state (if present), with a different spa_t.
1594 	 *
1595 	 * As L2 caches are part of the ARC which is shared among open
1596 	 * pools, we skip loading them when we load the checkpointed
1597 	 * state of the pool.
1598 	 */
1599 	if (!spa_writeable(spa))
1600 		return;
1601 #endif
1602 
1603 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1604 
1605 	if (sav->sav_config != NULL) {
1606 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1607 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1608 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1609 	} else {
1610 		nl2cache = 0;
1611 		newvdevs = NULL;
1612 	}
1613 
1614 	oldvdevs = sav->sav_vdevs;
1615 	oldnvdevs = sav->sav_count;
1616 	sav->sav_vdevs = NULL;
1617 	sav->sav_count = 0;
1618 
1619 	/*
1620 	 * Process new nvlist of vdevs.
1621 	 */
1622 	for (i = 0; i < nl2cache; i++) {
1623 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1624 		    &guid) == 0);
1625 
1626 		newvdevs[i] = NULL;
1627 		for (j = 0; j < oldnvdevs; j++) {
1628 			vd = oldvdevs[j];
1629 			if (vd != NULL && guid == vd->vdev_guid) {
1630 				/*
1631 				 * Retain previous vdev for add/remove ops.
1632 				 */
1633 				newvdevs[i] = vd;
1634 				oldvdevs[j] = NULL;
1635 				break;
1636 			}
1637 		}
1638 
1639 		if (newvdevs[i] == NULL) {
1640 			/*
1641 			 * Create new vdev
1642 			 */
1643 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1644 			    VDEV_ALLOC_L2CACHE) == 0);
1645 			ASSERT(vd != NULL);
1646 			newvdevs[i] = vd;
1647 
1648 			/*
1649 			 * Commit this vdev as an l2cache device,
1650 			 * even if it fails to open.
1651 			 */
1652 			spa_l2cache_add(vd);
1653 
1654 			vd->vdev_top = vd;
1655 			vd->vdev_aux = sav;
1656 
1657 			spa_l2cache_activate(vd);
1658 
1659 			if (vdev_open(vd) != 0)
1660 				continue;
1661 
1662 			(void) vdev_validate_aux(vd);
1663 
1664 			if (!vdev_is_dead(vd))
1665 				l2arc_add_vdev(spa, vd);
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * Purge vdevs that were dropped
1671 	 */
1672 	for (i = 0; i < oldnvdevs; i++) {
1673 		uint64_t pool;
1674 
1675 		vd = oldvdevs[i];
1676 		if (vd != NULL) {
1677 			ASSERT(vd->vdev_isl2cache);
1678 
1679 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1680 			    pool != 0ULL && l2arc_vdev_present(vd))
1681 				l2arc_remove_vdev(vd);
1682 			vdev_clear_stats(vd);
1683 			vdev_free(vd);
1684 		}
1685 	}
1686 
1687 	if (oldvdevs)
1688 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1689 
1690 	if (sav->sav_config == NULL)
1691 		goto out;
1692 
1693 	sav->sav_vdevs = newvdevs;
1694 	sav->sav_count = (int)nl2cache;
1695 
1696 	/*
1697 	 * Recompute the stashed list of l2cache devices, with status
1698 	 * information this time.
1699 	 */
1700 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1701 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1702 
1703 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1704 	for (i = 0; i < sav->sav_count; i++)
1705 		l2cache[i] = vdev_config_generate(spa,
1706 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1707 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1708 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1709 out:
1710 	for (i = 0; i < sav->sav_count; i++)
1711 		nvlist_free(l2cache[i]);
1712 	if (sav->sav_count)
1713 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1714 }
1715 
1716 static int
1717 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1718 {
1719 	dmu_buf_t *db;
1720 	char *packed = NULL;
1721 	size_t nvsize = 0;
1722 	int error;
1723 	*value = NULL;
1724 
1725 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1726 	if (error != 0)
1727 		return (error);
1728 
1729 	nvsize = *(uint64_t *)db->db_data;
1730 	dmu_buf_rele(db, FTAG);
1731 
1732 	packed = kmem_alloc(nvsize, KM_SLEEP);
1733 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1734 	    DMU_READ_PREFETCH);
1735 	if (error == 0)
1736 		error = nvlist_unpack(packed, nvsize, value, 0);
1737 	kmem_free(packed, nvsize);
1738 
1739 	return (error);
1740 }
1741 
1742 /*
1743  * Concrete top-level vdevs that are not missing and are not logs. At every
1744  * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1745  */
1746 static uint64_t
1747 spa_healthy_core_tvds(spa_t *spa)
1748 {
1749 	vdev_t *rvd = spa->spa_root_vdev;
1750 	uint64_t tvds = 0;
1751 
1752 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1753 		vdev_t *vd = rvd->vdev_child[i];
1754 		if (vd->vdev_islog)
1755 			continue;
1756 		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1757 			tvds++;
1758 	}
1759 
1760 	return (tvds);
1761 }
1762 
1763 /*
1764  * Checks to see if the given vdev could not be opened, in which case we post a
1765  * sysevent to notify the autoreplace code that the device has been removed.
1766  */
1767 static void
1768 spa_check_removed(vdev_t *vd)
1769 {
1770 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1771 		spa_check_removed(vd->vdev_child[c]);
1772 
1773 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1774 	    vdev_is_concrete(vd)) {
1775 		zfs_post_autoreplace(vd->vdev_spa, vd);
1776 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1777 	}
1778 }
1779 
1780 static int
1781 spa_check_for_missing_logs(spa_t *spa)
1782 {
1783 	vdev_t *rvd = spa->spa_root_vdev;
1784 
1785 	/*
1786 	 * If we're doing a normal import, then build up any additional
1787 	 * diagnostic information about missing log devices.
1788 	 * We'll pass this up to the user for further processing.
1789 	 */
1790 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1791 		nvlist_t **child, *nv;
1792 		uint64_t idx = 0;
1793 
1794 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1795 		    KM_SLEEP);
1796 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1797 
1798 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1799 			vdev_t *tvd = rvd->vdev_child[c];
1800 
1801 			/*
1802 			 * We consider a device as missing only if it failed
1803 			 * to open (i.e. offline or faulted is not considered
1804 			 * as missing).
1805 			 */
1806 			if (tvd->vdev_islog &&
1807 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1808 				child[idx++] = vdev_config_generate(spa, tvd,
1809 				    B_FALSE, VDEV_CONFIG_MISSING);
1810 			}
1811 		}
1812 
1813 		if (idx > 0) {
1814 			fnvlist_add_nvlist_array(nv,
1815 			    ZPOOL_CONFIG_CHILDREN, child, idx);
1816 			fnvlist_add_nvlist(spa->spa_load_info,
1817 			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1818 
1819 			for (uint64_t i = 0; i < idx; i++)
1820 				nvlist_free(child[i]);
1821 		}
1822 		nvlist_free(nv);
1823 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1824 
1825 		if (idx > 0) {
1826 			spa_load_failed(spa, "some log devices are missing");
1827 			vdev_dbgmsg_print_tree(rvd, 2);
1828 			return (SET_ERROR(ENXIO));
1829 		}
1830 	} else {
1831 		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1832 			vdev_t *tvd = rvd->vdev_child[c];
1833 
1834 			if (tvd->vdev_islog &&
1835 			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1836 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1837 				spa_load_note(spa, "some log devices are "
1838 				    "missing, ZIL is dropped.");
1839 				vdev_dbgmsg_print_tree(rvd, 2);
1840 				break;
1841 			}
1842 		}
1843 	}
1844 
1845 	return (0);
1846 }
1847 
1848 /*
1849  * Check for missing log devices
1850  */
1851 static boolean_t
1852 spa_check_logs(spa_t *spa)
1853 {
1854 	boolean_t rv = B_FALSE;
1855 	dsl_pool_t *dp = spa_get_dsl(spa);
1856 
1857 	switch (spa->spa_log_state) {
1858 	case SPA_LOG_MISSING:
1859 		/* need to recheck in case slog has been restored */
1860 	case SPA_LOG_UNKNOWN:
1861 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1862 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1863 		if (rv)
1864 			spa_set_log_state(spa, SPA_LOG_MISSING);
1865 		break;
1866 	}
1867 	return (rv);
1868 }
1869 
1870 static boolean_t
1871 spa_passivate_log(spa_t *spa)
1872 {
1873 	vdev_t *rvd = spa->spa_root_vdev;
1874 	boolean_t slog_found = B_FALSE;
1875 
1876 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1877 
1878 	if (!spa_has_slogs(spa))
1879 		return (B_FALSE);
1880 
1881 	for (int c = 0; c < rvd->vdev_children; c++) {
1882 		vdev_t *tvd = rvd->vdev_child[c];
1883 		metaslab_group_t *mg = tvd->vdev_mg;
1884 
1885 		if (tvd->vdev_islog) {
1886 			metaslab_group_passivate(mg);
1887 			slog_found = B_TRUE;
1888 		}
1889 	}
1890 
1891 	return (slog_found);
1892 }
1893 
1894 static void
1895 spa_activate_log(spa_t *spa)
1896 {
1897 	vdev_t *rvd = spa->spa_root_vdev;
1898 
1899 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1900 
1901 	for (int c = 0; c < rvd->vdev_children; c++) {
1902 		vdev_t *tvd = rvd->vdev_child[c];
1903 		metaslab_group_t *mg = tvd->vdev_mg;
1904 
1905 		if (tvd->vdev_islog)
1906 			metaslab_group_activate(mg);
1907 	}
1908 }
1909 
1910 int
1911 spa_reset_logs(spa_t *spa)
1912 {
1913 	int error;
1914 
1915 	error = dmu_objset_find(spa_name(spa), zil_reset,
1916 	    NULL, DS_FIND_CHILDREN);
1917 	if (error == 0) {
1918 		/*
1919 		 * We successfully offlined the log device, sync out the
1920 		 * current txg so that the "stubby" block can be removed
1921 		 * by zil_sync().
1922 		 */
1923 		txg_wait_synced(spa->spa_dsl_pool, 0);
1924 	}
1925 	return (error);
1926 }
1927 
1928 static void
1929 spa_aux_check_removed(spa_aux_vdev_t *sav)
1930 {
1931 	for (int i = 0; i < sav->sav_count; i++)
1932 		spa_check_removed(sav->sav_vdevs[i]);
1933 }
1934 
1935 void
1936 spa_claim_notify(zio_t *zio)
1937 {
1938 	spa_t *spa = zio->io_spa;
1939 
1940 	if (zio->io_error)
1941 		return;
1942 
1943 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1944 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1945 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1946 	mutex_exit(&spa->spa_props_lock);
1947 }
1948 
1949 typedef struct spa_load_error {
1950 	uint64_t	sle_meta_count;
1951 	uint64_t	sle_data_count;
1952 } spa_load_error_t;
1953 
1954 static void
1955 spa_load_verify_done(zio_t *zio)
1956 {
1957 	blkptr_t *bp = zio->io_bp;
1958 	spa_load_error_t *sle = zio->io_private;
1959 	dmu_object_type_t type = BP_GET_TYPE(bp);
1960 	int error = zio->io_error;
1961 	spa_t *spa = zio->io_spa;
1962 
1963 	abd_free(zio->io_abd);
1964 	if (error) {
1965 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1966 		    type != DMU_OT_INTENT_LOG)
1967 			atomic_inc_64(&sle->sle_meta_count);
1968 		else
1969 			atomic_inc_64(&sle->sle_data_count);
1970 	}
1971 
1972 	mutex_enter(&spa->spa_scrub_lock);
1973 	spa->spa_scrub_inflight--;
1974 	cv_broadcast(&spa->spa_scrub_io_cv);
1975 	mutex_exit(&spa->spa_scrub_lock);
1976 }
1977 
1978 /*
1979  * Maximum number of concurrent scrub i/os to create while verifying
1980  * a pool while importing it.
1981  */
1982 int spa_load_verify_maxinflight = 10000;
1983 boolean_t spa_load_verify_metadata = B_TRUE;
1984 boolean_t spa_load_verify_data = B_TRUE;
1985 
1986 /*ARGSUSED*/
1987 static int
1988 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1989     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1990 {
1991 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1992 		return (0);
1993 	/*
1994 	 * Note: normally this routine will not be called if
1995 	 * spa_load_verify_metadata is not set.  However, it may be useful
1996 	 * to manually set the flag after the traversal has begun.
1997 	 */
1998 	if (!spa_load_verify_metadata)
1999 		return (0);
2000 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2001 		return (0);
2002 
2003 	zio_t *rio = arg;
2004 	size_t size = BP_GET_PSIZE(bp);
2005 
2006 	mutex_enter(&spa->spa_scrub_lock);
2007 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2008 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2009 	spa->spa_scrub_inflight++;
2010 	mutex_exit(&spa->spa_scrub_lock);
2011 
2012 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2013 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2014 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2015 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2016 	return (0);
2017 }
2018 
2019 /* ARGSUSED */
2020 int
2021 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2022 {
2023 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2024 		return (SET_ERROR(ENAMETOOLONG));
2025 
2026 	return (0);
2027 }
2028 
2029 static int
2030 spa_load_verify(spa_t *spa)
2031 {
2032 	zio_t *rio;
2033 	spa_load_error_t sle = { 0 };
2034 	zpool_load_policy_t policy;
2035 	boolean_t verify_ok = B_FALSE;
2036 	int error = 0;
2037 
2038 	zpool_get_load_policy(spa->spa_config, &policy);
2039 
2040 	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2041 		return (0);
2042 
2043 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2044 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2045 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2046 	    DS_FIND_CHILDREN);
2047 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2048 	if (error != 0)
2049 		return (error);
2050 
2051 	rio = zio_root(spa, NULL, &sle,
2052 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2053 
2054 	if (spa_load_verify_metadata) {
2055 		if (spa->spa_extreme_rewind) {
2056 			spa_load_note(spa, "performing a complete scan of the "
2057 			    "pool since extreme rewind is on. This may take "
2058 			    "a very long time.\n  (spa_load_verify_data=%u, "
2059 			    "spa_load_verify_metadata=%u)",
2060 			    spa_load_verify_data, spa_load_verify_metadata);
2061 		}
2062 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2063 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2064 		    spa_load_verify_cb, rio);
2065 	}
2066 
2067 	(void) zio_wait(rio);
2068 
2069 	spa->spa_load_meta_errors = sle.sle_meta_count;
2070 	spa->spa_load_data_errors = sle.sle_data_count;
2071 
2072 	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2073 		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2074 		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2075 		    (u_longlong_t)sle.sle_data_count);
2076 	}
2077 
2078 	if (spa_load_verify_dryrun ||
2079 	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2080 	    sle.sle_data_count <= policy.zlp_maxdata)) {
2081 		int64_t loss = 0;
2082 
2083 		verify_ok = B_TRUE;
2084 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2085 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2086 
2087 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2088 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2089 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2090 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2091 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2092 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2093 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2094 	} else {
2095 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2096 	}
2097 
2098 	if (spa_load_verify_dryrun)
2099 		return (0);
2100 
2101 	if (error) {
2102 		if (error != ENXIO && error != EIO)
2103 			error = SET_ERROR(EIO);
2104 		return (error);
2105 	}
2106 
2107 	return (verify_ok ? 0 : EIO);
2108 }
2109 
2110 /*
2111  * Find a value in the pool props object.
2112  */
2113 static void
2114 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2115 {
2116 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2117 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2118 }
2119 
2120 /*
2121  * Find a value in the pool directory object.
2122  */
2123 static int
2124 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2125 {
2126 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2127 	    name, sizeof (uint64_t), 1, val);
2128 
2129 	if (error != 0 && (error != ENOENT || log_enoent)) {
2130 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2131 		    "[error=%d]", name, error);
2132 	}
2133 
2134 	return (error);
2135 }
2136 
2137 static int
2138 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2139 {
2140 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2141 	return (SET_ERROR(err));
2142 }
2143 
2144 static void
2145 spa_spawn_aux_threads(spa_t *spa)
2146 {
2147 	ASSERT(spa_writeable(spa));
2148 
2149 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2150 
2151 	spa_start_indirect_condensing_thread(spa);
2152 
2153 	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2154 	spa->spa_checkpoint_discard_zthr =
2155 	    zthr_create(spa_checkpoint_discard_thread_check,
2156 	    spa_checkpoint_discard_thread, spa);
2157 }
2158 
2159 /*
2160  * Fix up config after a partly-completed split.  This is done with the
2161  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2162  * pool have that entry in their config, but only the splitting one contains
2163  * a list of all the guids of the vdevs that are being split off.
2164  *
2165  * This function determines what to do with that list: either rejoin
2166  * all the disks to the pool, or complete the splitting process.  To attempt
2167  * the rejoin, each disk that is offlined is marked online again, and
2168  * we do a reopen() call.  If the vdev label for every disk that was
2169  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2170  * then we call vdev_split() on each disk, and complete the split.
2171  *
2172  * Otherwise we leave the config alone, with all the vdevs in place in
2173  * the original pool.
2174  */
2175 static void
2176 spa_try_repair(spa_t *spa, nvlist_t *config)
2177 {
2178 	uint_t extracted;
2179 	uint64_t *glist;
2180 	uint_t i, gcount;
2181 	nvlist_t *nvl;
2182 	vdev_t **vd;
2183 	boolean_t attempt_reopen;
2184 
2185 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2186 		return;
2187 
2188 	/* check that the config is complete */
2189 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2190 	    &glist, &gcount) != 0)
2191 		return;
2192 
2193 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2194 
2195 	/* attempt to online all the vdevs & validate */
2196 	attempt_reopen = B_TRUE;
2197 	for (i = 0; i < gcount; i++) {
2198 		if (glist[i] == 0)	/* vdev is hole */
2199 			continue;
2200 
2201 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2202 		if (vd[i] == NULL) {
2203 			/*
2204 			 * Don't bother attempting to reopen the disks;
2205 			 * just do the split.
2206 			 */
2207 			attempt_reopen = B_FALSE;
2208 		} else {
2209 			/* attempt to re-online it */
2210 			vd[i]->vdev_offline = B_FALSE;
2211 		}
2212 	}
2213 
2214 	if (attempt_reopen) {
2215 		vdev_reopen(spa->spa_root_vdev);
2216 
2217 		/* check each device to see what state it's in */
2218 		for (extracted = 0, i = 0; i < gcount; i++) {
2219 			if (vd[i] != NULL &&
2220 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2221 				break;
2222 			++extracted;
2223 		}
2224 	}
2225 
2226 	/*
2227 	 * If every disk has been moved to the new pool, or if we never
2228 	 * even attempted to look at them, then we split them off for
2229 	 * good.
2230 	 */
2231 	if (!attempt_reopen || gcount == extracted) {
2232 		for (i = 0; i < gcount; i++)
2233 			if (vd[i] != NULL)
2234 				vdev_split(vd[i]);
2235 		vdev_reopen(spa->spa_root_vdev);
2236 	}
2237 
2238 	kmem_free(vd, gcount * sizeof (vdev_t *));
2239 }
2240 
2241 static int
2242 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2243 {
2244 	char *ereport = FM_EREPORT_ZFS_POOL;
2245 	int error;
2246 
2247 	spa->spa_load_state = state;
2248 
2249 	gethrestime(&spa->spa_loaded_ts);
2250 	error = spa_load_impl(spa, type, &ereport);
2251 
2252 	/*
2253 	 * Don't count references from objsets that are already closed
2254 	 * and are making their way through the eviction process.
2255 	 */
2256 	spa_evicting_os_wait(spa);
2257 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2258 	if (error) {
2259 		if (error != EEXIST) {
2260 			spa->spa_loaded_ts.tv_sec = 0;
2261 			spa->spa_loaded_ts.tv_nsec = 0;
2262 		}
2263 		if (error != EBADF) {
2264 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2265 		}
2266 	}
2267 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2268 	spa->spa_ena = 0;
2269 
2270 	return (error);
2271 }
2272 
2273 /*
2274  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2275  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2276  * spa's per-vdev ZAP list.
2277  */
2278 static uint64_t
2279 vdev_count_verify_zaps(vdev_t *vd)
2280 {
2281 	spa_t *spa = vd->vdev_spa;
2282 	uint64_t total = 0;
2283 	if (vd->vdev_top_zap != 0) {
2284 		total++;
2285 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2286 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2287 	}
2288 	if (vd->vdev_leaf_zap != 0) {
2289 		total++;
2290 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2291 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2292 	}
2293 
2294 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2295 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2296 	}
2297 
2298 	return (total);
2299 }
2300 
2301 static int
2302 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2303 {
2304 	uint64_t hostid;
2305 	char *hostname;
2306 	uint64_t myhostid = 0;
2307 
2308 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2309 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2310 		hostname = fnvlist_lookup_string(mos_config,
2311 		    ZPOOL_CONFIG_HOSTNAME);
2312 
2313 		myhostid = zone_get_hostid(NULL);
2314 
2315 		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2316 			cmn_err(CE_WARN, "pool '%s' could not be "
2317 			    "loaded as it was last accessed by "
2318 			    "another system (host: %s hostid: 0x%llx). "
2319 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2320 			    spa_name(spa), hostname, (u_longlong_t)hostid);
2321 			spa_load_failed(spa, "hostid verification failed: pool "
2322 			    "last accessed by host: %s (hostid: 0x%llx)",
2323 			    hostname, (u_longlong_t)hostid);
2324 			return (SET_ERROR(EBADF));
2325 		}
2326 	}
2327 
2328 	return (0);
2329 }
2330 
2331 static int
2332 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2333 {
2334 	int error = 0;
2335 	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2336 	int parse;
2337 	vdev_t *rvd;
2338 	uint64_t pool_guid;
2339 	char *comment;
2340 
2341 	/*
2342 	 * Versioning wasn't explicitly added to the label until later, so if
2343 	 * it's not present treat it as the initial version.
2344 	 */
2345 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2346 	    &spa->spa_ubsync.ub_version) != 0)
2347 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2348 
2349 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2350 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2351 		    ZPOOL_CONFIG_POOL_GUID);
2352 		return (SET_ERROR(EINVAL));
2353 	}
2354 
2355 	/*
2356 	 * If we are doing an import, ensure that the pool is not already
2357 	 * imported by checking if its pool guid already exists in the
2358 	 * spa namespace.
2359 	 *
2360 	 * The only case that we allow an already imported pool to be
2361 	 * imported again, is when the pool is checkpointed and we want to
2362 	 * look at its checkpointed state from userland tools like zdb.
2363 	 */
2364 #ifdef _KERNEL
2365 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2366 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2367 	    spa_guid_exists(pool_guid, 0)) {
2368 #else
2369 	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2370 	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2371 	    spa_guid_exists(pool_guid, 0) &&
2372 	    !spa_importing_readonly_checkpoint(spa)) {
2373 #endif
2374 		spa_load_failed(spa, "a pool with guid %llu is already open",
2375 		    (u_longlong_t)pool_guid);
2376 		return (SET_ERROR(EEXIST));
2377 	}
2378 
2379 	spa->spa_config_guid = pool_guid;
2380 
2381 	nvlist_free(spa->spa_load_info);
2382 	spa->spa_load_info = fnvlist_alloc();
2383 
2384 	ASSERT(spa->spa_comment == NULL);
2385 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2386 		spa->spa_comment = spa_strdup(comment);
2387 
2388 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2389 	    &spa->spa_config_txg);
2390 
2391 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2392 		spa->spa_config_splitting = fnvlist_dup(nvl);
2393 
2394 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2395 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2396 		    ZPOOL_CONFIG_VDEV_TREE);
2397 		return (SET_ERROR(EINVAL));
2398 	}
2399 
2400 	/*
2401 	 * Create "The Godfather" zio to hold all async IOs
2402 	 */
2403 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2404 	    KM_SLEEP);
2405 	for (int i = 0; i < max_ncpus; i++) {
2406 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2407 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2408 		    ZIO_FLAG_GODFATHER);
2409 	}
2410 
2411 	/*
2412 	 * Parse the configuration into a vdev tree.  We explicitly set the
2413 	 * value that will be returned by spa_version() since parsing the
2414 	 * configuration requires knowing the version number.
2415 	 */
2416 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2417 	parse = (type == SPA_IMPORT_EXISTING ?
2418 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2419 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2420 	spa_config_exit(spa, SCL_ALL, FTAG);
2421 
2422 	if (error != 0) {
2423 		spa_load_failed(spa, "unable to parse config [error=%d]",
2424 		    error);
2425 		return (error);
2426 	}
2427 
2428 	ASSERT(spa->spa_root_vdev == rvd);
2429 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2430 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2431 
2432 	if (type != SPA_IMPORT_ASSEMBLE) {
2433 		ASSERT(spa_guid(spa) == pool_guid);
2434 	}
2435 
2436 	return (0);
2437 }
2438 
2439 /*
2440  * Recursively open all vdevs in the vdev tree. This function is called twice:
2441  * first with the untrusted config, then with the trusted config.
2442  */
2443 static int
2444 spa_ld_open_vdevs(spa_t *spa)
2445 {
2446 	int error = 0;
2447 
2448 	/*
2449 	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2450 	 * missing/unopenable for the root vdev to be still considered openable.
2451 	 */
2452 	if (spa->spa_trust_config) {
2453 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2454 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2455 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2456 	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2457 		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2458 	} else {
2459 		spa->spa_missing_tvds_allowed = 0;
2460 	}
2461 
2462 	spa->spa_missing_tvds_allowed =
2463 	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2464 
2465 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2466 	error = vdev_open(spa->spa_root_vdev);
2467 	spa_config_exit(spa, SCL_ALL, FTAG);
2468 
2469 	if (spa->spa_missing_tvds != 0) {
2470 		spa_load_note(spa, "vdev tree has %lld missing top-level "
2471 		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2472 		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2473 			/*
2474 			 * Although theoretically we could allow users to open
2475 			 * incomplete pools in RW mode, we'd need to add a lot
2476 			 * of extra logic (e.g. adjust pool space to account
2477 			 * for missing vdevs).
2478 			 * This limitation also prevents users from accidentally
2479 			 * opening the pool in RW mode during data recovery and
2480 			 * damaging it further.
2481 			 */
2482 			spa_load_note(spa, "pools with missing top-level "
2483 			    "vdevs can only be opened in read-only mode.");
2484 			error = SET_ERROR(ENXIO);
2485 		} else {
2486 			spa_load_note(spa, "current settings allow for maximum "
2487 			    "%lld missing top-level vdevs at this stage.",
2488 			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2489 		}
2490 	}
2491 	if (error != 0) {
2492 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2493 		    error);
2494 	}
2495 	if (spa->spa_missing_tvds != 0 || error != 0)
2496 		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2497 
2498 	return (error);
2499 }
2500 
2501 /*
2502  * We need to validate the vdev labels against the configuration that
2503  * we have in hand. This function is called twice: first with an untrusted
2504  * config, then with a trusted config. The validation is more strict when the
2505  * config is trusted.
2506  */
2507 static int
2508 spa_ld_validate_vdevs(spa_t *spa)
2509 {
2510 	int error = 0;
2511 	vdev_t *rvd = spa->spa_root_vdev;
2512 
2513 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2514 	error = vdev_validate(rvd);
2515 	spa_config_exit(spa, SCL_ALL, FTAG);
2516 
2517 	if (error != 0) {
2518 		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2519 		return (error);
2520 	}
2521 
2522 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2523 		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2524 		    "some vdevs");
2525 		vdev_dbgmsg_print_tree(rvd, 2);
2526 		return (SET_ERROR(ENXIO));
2527 	}
2528 
2529 	return (0);
2530 }
2531 
2532 static void
2533 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2534 {
2535 	spa->spa_state = POOL_STATE_ACTIVE;
2536 	spa->spa_ubsync = spa->spa_uberblock;
2537 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2538 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2539 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2540 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2541 	spa->spa_claim_max_txg = spa->spa_first_txg;
2542 	spa->spa_prev_software_version = ub->ub_software_version;
2543 }
2544 
2545 static int
2546 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2547 {
2548 	vdev_t *rvd = spa->spa_root_vdev;
2549 	nvlist_t *label;
2550 	uberblock_t *ub = &spa->spa_uberblock;
2551 
2552 	/*
2553 	 * If we are opening the checkpointed state of the pool by
2554 	 * rewinding to it, at this point we will have written the
2555 	 * checkpointed uberblock to the vdev labels, so searching
2556 	 * the labels will find the right uberblock.  However, if
2557 	 * we are opening the checkpointed state read-only, we have
2558 	 * not modified the labels. Therefore, we must ignore the
2559 	 * labels and continue using the spa_uberblock that was set
2560 	 * by spa_ld_checkpoint_rewind.
2561 	 *
2562 	 * Note that it would be fine to ignore the labels when
2563 	 * rewinding (opening writeable) as well. However, if we
2564 	 * crash just after writing the labels, we will end up
2565 	 * searching the labels. Doing so in the common case means
2566 	 * that this code path gets exercised normally, rather than
2567 	 * just in the edge case.
2568 	 */
2569 	if (ub->ub_checkpoint_txg != 0 &&
2570 	    spa_importing_readonly_checkpoint(spa)) {
2571 		spa_ld_select_uberblock_done(spa, ub);
2572 		return (0);
2573 	}
2574 
2575 	/*
2576 	 * Find the best uberblock.
2577 	 */
2578 	vdev_uberblock_load(rvd, ub, &label);
2579 
2580 	/*
2581 	 * If we weren't able to find a single valid uberblock, return failure.
2582 	 */
2583 	if (ub->ub_txg == 0) {
2584 		nvlist_free(label);
2585 		spa_load_failed(spa, "no valid uberblock found");
2586 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2587 	}
2588 
2589 	spa_load_note(spa, "using uberblock with txg=%llu",
2590 	    (u_longlong_t)ub->ub_txg);
2591 
2592 	/*
2593 	 * If the pool has an unsupported version we can't open it.
2594 	 */
2595 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2596 		nvlist_free(label);
2597 		spa_load_failed(spa, "version %llu is not supported",
2598 		    (u_longlong_t)ub->ub_version);
2599 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2600 	}
2601 
2602 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2603 		nvlist_t *features;
2604 
2605 		/*
2606 		 * If we weren't able to find what's necessary for reading the
2607 		 * MOS in the label, return failure.
2608 		 */
2609 		if (label == NULL) {
2610 			spa_load_failed(spa, "label config unavailable");
2611 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2612 			    ENXIO));
2613 		}
2614 
2615 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2616 		    &features) != 0) {
2617 			nvlist_free(label);
2618 			spa_load_failed(spa, "invalid label: '%s' missing",
2619 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2620 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2621 			    ENXIO));
2622 		}
2623 
2624 		/*
2625 		 * Update our in-core representation with the definitive values
2626 		 * from the label.
2627 		 */
2628 		nvlist_free(spa->spa_label_features);
2629 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2630 	}
2631 
2632 	nvlist_free(label);
2633 
2634 	/*
2635 	 * Look through entries in the label nvlist's features_for_read. If
2636 	 * there is a feature listed there which we don't understand then we
2637 	 * cannot open a pool.
2638 	 */
2639 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2640 		nvlist_t *unsup_feat;
2641 
2642 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2643 		    0);
2644 
2645 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2646 		    NULL); nvp != NULL;
2647 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2648 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2649 				VERIFY(nvlist_add_string(unsup_feat,
2650 				    nvpair_name(nvp), "") == 0);
2651 			}
2652 		}
2653 
2654 		if (!nvlist_empty(unsup_feat)) {
2655 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2656 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2657 			nvlist_free(unsup_feat);
2658 			spa_load_failed(spa, "some features are unsupported");
2659 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2660 			    ENOTSUP));
2661 		}
2662 
2663 		nvlist_free(unsup_feat);
2664 	}
2665 
2666 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2667 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2668 		spa_try_repair(spa, spa->spa_config);
2669 		spa_config_exit(spa, SCL_ALL, FTAG);
2670 		nvlist_free(spa->spa_config_splitting);
2671 		spa->spa_config_splitting = NULL;
2672 	}
2673 
2674 	/*
2675 	 * Initialize internal SPA structures.
2676 	 */
2677 	spa_ld_select_uberblock_done(spa, ub);
2678 
2679 	return (0);
2680 }
2681 
2682 static int
2683 spa_ld_open_rootbp(spa_t *spa)
2684 {
2685 	int error = 0;
2686 	vdev_t *rvd = spa->spa_root_vdev;
2687 
2688 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2689 	if (error != 0) {
2690 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2691 		    "[error=%d]", error);
2692 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2693 	}
2694 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2695 
2696 	return (0);
2697 }
2698 
2699 static int
2700 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2701     boolean_t reloading)
2702 {
2703 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2704 	nvlist_t *nv, *mos_config, *policy;
2705 	int error = 0, copy_error;
2706 	uint64_t healthy_tvds, healthy_tvds_mos;
2707 	uint64_t mos_config_txg;
2708 
2709 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2710 	    != 0)
2711 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2712 
2713 	/*
2714 	 * If we're assembling a pool from a split, the config provided is
2715 	 * already trusted so there is nothing to do.
2716 	 */
2717 	if (type == SPA_IMPORT_ASSEMBLE)
2718 		return (0);
2719 
2720 	healthy_tvds = spa_healthy_core_tvds(spa);
2721 
2722 	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2723 	    != 0) {
2724 		spa_load_failed(spa, "unable to retrieve MOS config");
2725 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2726 	}
2727 
2728 	/*
2729 	 * If we are doing an open, pool owner wasn't verified yet, thus do
2730 	 * the verification here.
2731 	 */
2732 	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2733 		error = spa_verify_host(spa, mos_config);
2734 		if (error != 0) {
2735 			nvlist_free(mos_config);
2736 			return (error);
2737 		}
2738 	}
2739 
2740 	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2741 
2742 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2743 
2744 	/*
2745 	 * Build a new vdev tree from the trusted config
2746 	 */
2747 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2748 
2749 	/*
2750 	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2751 	 * obtained by scanning /dev/dsk, then it will have the right vdev
2752 	 * paths. We update the trusted MOS config with this information.
2753 	 * We first try to copy the paths with vdev_copy_path_strict, which
2754 	 * succeeds only when both configs have exactly the same vdev tree.
2755 	 * If that fails, we fall back to a more flexible method that has a
2756 	 * best effort policy.
2757 	 */
2758 	copy_error = vdev_copy_path_strict(rvd, mrvd);
2759 	if (copy_error != 0 || spa_load_print_vdev_tree) {
2760 		spa_load_note(spa, "provided vdev tree:");
2761 		vdev_dbgmsg_print_tree(rvd, 2);
2762 		spa_load_note(spa, "MOS vdev tree:");
2763 		vdev_dbgmsg_print_tree(mrvd, 2);
2764 	}
2765 	if (copy_error != 0) {
2766 		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2767 		    "back to vdev_copy_path_relaxed");
2768 		vdev_copy_path_relaxed(rvd, mrvd);
2769 	}
2770 
2771 	vdev_close(rvd);
2772 	vdev_free(rvd);
2773 	spa->spa_root_vdev = mrvd;
2774 	rvd = mrvd;
2775 	spa_config_exit(spa, SCL_ALL, FTAG);
2776 
2777 	/*
2778 	 * We will use spa_config if we decide to reload the spa or if spa_load
2779 	 * fails and we rewind. We must thus regenerate the config using the
2780 	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2781 	 * pass settings on how to load the pool and is not stored in the MOS.
2782 	 * We copy it over to our new, trusted config.
2783 	 */
2784 	mos_config_txg = fnvlist_lookup_uint64(mos_config,
2785 	    ZPOOL_CONFIG_POOL_TXG);
2786 	nvlist_free(mos_config);
2787 	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2788 	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2789 	    &policy) == 0)
2790 		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2791 	spa_config_set(spa, mos_config);
2792 	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2793 
2794 	/*
2795 	 * Now that we got the config from the MOS, we should be more strict
2796 	 * in checking blkptrs and can make assumptions about the consistency
2797 	 * of the vdev tree. spa_trust_config must be set to true before opening
2798 	 * vdevs in order for them to be writeable.
2799 	 */
2800 	spa->spa_trust_config = B_TRUE;
2801 
2802 	/*
2803 	 * Open and validate the new vdev tree
2804 	 */
2805 	error = spa_ld_open_vdevs(spa);
2806 	if (error != 0)
2807 		return (error);
2808 
2809 	error = spa_ld_validate_vdevs(spa);
2810 	if (error != 0)
2811 		return (error);
2812 
2813 	if (copy_error != 0 || spa_load_print_vdev_tree) {
2814 		spa_load_note(spa, "final vdev tree:");
2815 		vdev_dbgmsg_print_tree(rvd, 2);
2816 	}
2817 
2818 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2819 	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2820 		/*
2821 		 * Sanity check to make sure that we are indeed loading the
2822 		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2823 		 * in the config provided and they happened to be the only ones
2824 		 * to have the latest uberblock, we could involuntarily perform
2825 		 * an extreme rewind.
2826 		 */
2827 		healthy_tvds_mos = spa_healthy_core_tvds(spa);
2828 		if (healthy_tvds_mos - healthy_tvds >=
2829 		    SPA_SYNC_MIN_VDEVS) {
2830 			spa_load_note(spa, "config provided misses too many "
2831 			    "top-level vdevs compared to MOS (%lld vs %lld). ",
2832 			    (u_longlong_t)healthy_tvds,
2833 			    (u_longlong_t)healthy_tvds_mos);
2834 			spa_load_note(spa, "vdev tree:");
2835 			vdev_dbgmsg_print_tree(rvd, 2);
2836 			if (reloading) {
2837 				spa_load_failed(spa, "config was already "
2838 				    "provided from MOS. Aborting.");
2839 				return (spa_vdev_err(rvd,
2840 				    VDEV_AUX_CORRUPT_DATA, EIO));
2841 			}
2842 			spa_load_note(spa, "spa must be reloaded using MOS "
2843 			    "config");
2844 			return (SET_ERROR(EAGAIN));
2845 		}
2846 	}
2847 
2848 	error = spa_check_for_missing_logs(spa);
2849 	if (error != 0)
2850 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2851 
2852 	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2853 		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2854 		    "guid sum (%llu != %llu)",
2855 		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2856 		    (u_longlong_t)rvd->vdev_guid_sum);
2857 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2858 		    ENXIO));
2859 	}
2860 
2861 	return (0);
2862 }
2863 
2864 static int
2865 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2866 {
2867 	int error = 0;
2868 	vdev_t *rvd = spa->spa_root_vdev;
2869 
2870 	/*
2871 	 * Everything that we read before spa_remove_init() must be stored
2872 	 * on concreted vdevs.  Therefore we do this as early as possible.
2873 	 */
2874 	error = spa_remove_init(spa);
2875 	if (error != 0) {
2876 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2877 		    error);
2878 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2879 	}
2880 
2881 	/*
2882 	 * Retrieve information needed to condense indirect vdev mappings.
2883 	 */
2884 	error = spa_condense_init(spa);
2885 	if (error != 0) {
2886 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2887 		    error);
2888 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2889 	}
2890 
2891 	return (0);
2892 }
2893 
2894 static int
2895 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2896 {
2897 	int error = 0;
2898 	vdev_t *rvd = spa->spa_root_vdev;
2899 
2900 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2901 		boolean_t missing_feat_read = B_FALSE;
2902 		nvlist_t *unsup_feat, *enabled_feat;
2903 
2904 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2905 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2906 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2907 		}
2908 
2909 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2910 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2911 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2912 		}
2913 
2914 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2915 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2916 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2917 		}
2918 
2919 		enabled_feat = fnvlist_alloc();
2920 		unsup_feat = fnvlist_alloc();
2921 
2922 		if (!spa_features_check(spa, B_FALSE,
2923 		    unsup_feat, enabled_feat))
2924 			missing_feat_read = B_TRUE;
2925 
2926 		if (spa_writeable(spa) ||
2927 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2928 			if (!spa_features_check(spa, B_TRUE,
2929 			    unsup_feat, enabled_feat)) {
2930 				*missing_feat_writep = B_TRUE;
2931 			}
2932 		}
2933 
2934 		fnvlist_add_nvlist(spa->spa_load_info,
2935 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2936 
2937 		if (!nvlist_empty(unsup_feat)) {
2938 			fnvlist_add_nvlist(spa->spa_load_info,
2939 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2940 		}
2941 
2942 		fnvlist_free(enabled_feat);
2943 		fnvlist_free(unsup_feat);
2944 
2945 		if (!missing_feat_read) {
2946 			fnvlist_add_boolean(spa->spa_load_info,
2947 			    ZPOOL_CONFIG_CAN_RDONLY);
2948 		}
2949 
2950 		/*
2951 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2952 		 * twofold: to determine whether the pool is available for
2953 		 * import in read-write mode and (if it is not) whether the
2954 		 * pool is available for import in read-only mode. If the pool
2955 		 * is available for import in read-write mode, it is displayed
2956 		 * as available in userland; if it is not available for import
2957 		 * in read-only mode, it is displayed as unavailable in
2958 		 * userland. If the pool is available for import in read-only
2959 		 * mode but not read-write mode, it is displayed as unavailable
2960 		 * in userland with a special note that the pool is actually
2961 		 * available for open in read-only mode.
2962 		 *
2963 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2964 		 * missing a feature for write, we must first determine whether
2965 		 * the pool can be opened read-only before returning to
2966 		 * userland in order to know whether to display the
2967 		 * abovementioned note.
2968 		 */
2969 		if (missing_feat_read || (*missing_feat_writep &&
2970 		    spa_writeable(spa))) {
2971 			spa_load_failed(spa, "pool uses unsupported features");
2972 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2973 			    ENOTSUP));
2974 		}
2975 
2976 		/*
2977 		 * Load refcounts for ZFS features from disk into an in-memory
2978 		 * cache during SPA initialization.
2979 		 */
2980 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2981 			uint64_t refcount;
2982 
2983 			error = feature_get_refcount_from_disk(spa,
2984 			    &spa_feature_table[i], &refcount);
2985 			if (error == 0) {
2986 				spa->spa_feat_refcount_cache[i] = refcount;
2987 			} else if (error == ENOTSUP) {
2988 				spa->spa_feat_refcount_cache[i] =
2989 				    SPA_FEATURE_DISABLED;
2990 			} else {
2991 				spa_load_failed(spa, "error getting refcount "
2992 				    "for feature %s [error=%d]",
2993 				    spa_feature_table[i].fi_guid, error);
2994 				return (spa_vdev_err(rvd,
2995 				    VDEV_AUX_CORRUPT_DATA, EIO));
2996 			}
2997 		}
2998 	}
2999 
3000 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3001 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3002 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3003 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3004 	}
3005 
3006 	return (0);
3007 }
3008 
3009 static int
3010 spa_ld_load_special_directories(spa_t *spa)
3011 {
3012 	int error = 0;
3013 	vdev_t *rvd = spa->spa_root_vdev;
3014 
3015 	spa->spa_is_initializing = B_TRUE;
3016 	error = dsl_pool_open(spa->spa_dsl_pool);
3017 	spa->spa_is_initializing = B_FALSE;
3018 	if (error != 0) {
3019 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3020 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3021 	}
3022 
3023 	return (0);
3024 }
3025 
3026 static int
3027 spa_ld_get_props(spa_t *spa)
3028 {
3029 	int error = 0;
3030 	uint64_t obj;
3031 	vdev_t *rvd = spa->spa_root_vdev;
3032 
3033 	/* Grab the secret checksum salt from the MOS. */
3034 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3035 	    DMU_POOL_CHECKSUM_SALT, 1,
3036 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3037 	    spa->spa_cksum_salt.zcs_bytes);
3038 	if (error == ENOENT) {
3039 		/* Generate a new salt for subsequent use */
3040 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3041 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3042 	} else if (error != 0) {
3043 		spa_load_failed(spa, "unable to retrieve checksum salt from "
3044 		    "MOS [error=%d]", error);
3045 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3046 	}
3047 
3048 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3049 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3050 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3051 	if (error != 0) {
3052 		spa_load_failed(spa, "error opening deferred-frees bpobj "
3053 		    "[error=%d]", error);
3054 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3055 	}
3056 
3057 	/*
3058 	 * Load the bit that tells us to use the new accounting function
3059 	 * (raid-z deflation).  If we have an older pool, this will not
3060 	 * be present.
3061 	 */
3062 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3063 	if (error != 0 && error != ENOENT)
3064 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3065 
3066 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3067 	    &spa->spa_creation_version, B_FALSE);
3068 	if (error != 0 && error != ENOENT)
3069 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3070 
3071 	/*
3072 	 * Load the persistent error log.  If we have an older pool, this will
3073 	 * not be present.
3074 	 */
3075 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3076 	    B_FALSE);
3077 	if (error != 0 && error != ENOENT)
3078 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3079 
3080 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3081 	    &spa->spa_errlog_scrub, B_FALSE);
3082 	if (error != 0 && error != ENOENT)
3083 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3084 
3085 	/*
3086 	 * Load the history object.  If we have an older pool, this
3087 	 * will not be present.
3088 	 */
3089 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3090 	if (error != 0 && error != ENOENT)
3091 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3092 
3093 	/*
3094 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3095 	 * be present; in this case, defer its creation to a later time to
3096 	 * avoid dirtying the MOS this early / out of sync context. See
3097 	 * spa_sync_config_object.
3098 	 */
3099 
3100 	/* The sentinel is only available in the MOS config. */
3101 	nvlist_t *mos_config;
3102 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3103 		spa_load_failed(spa, "unable to retrieve MOS config");
3104 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3105 	}
3106 
3107 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3108 	    &spa->spa_all_vdev_zaps, B_FALSE);
3109 
3110 	if (error == ENOENT) {
3111 		VERIFY(!nvlist_exists(mos_config,
3112 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3113 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3114 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3115 	} else if (error != 0) {
3116 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3117 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3118 		/*
3119 		 * An older version of ZFS overwrote the sentinel value, so
3120 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3121 		 * destruction to later; see spa_sync_config_object.
3122 		 */
3123 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3124 		/*
3125 		 * We're assuming that no vdevs have had their ZAPs created
3126 		 * before this. Better be sure of it.
3127 		 */
3128 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3129 	}
3130 	nvlist_free(mos_config);
3131 
3132 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3133 
3134 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3135 	    B_FALSE);
3136 	if (error && error != ENOENT)
3137 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3138 
3139 	if (error == 0) {
3140 		uint64_t autoreplace;
3141 
3142 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3143 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3144 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3145 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3146 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3147 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3148 		    &spa->spa_dedup_ditto);
3149 
3150 		spa->spa_autoreplace = (autoreplace != 0);
3151 	}
3152 
3153 	/*
3154 	 * If we are importing a pool with missing top-level vdevs,
3155 	 * we enforce that the pool doesn't panic or get suspended on
3156 	 * error since the likelihood of missing data is extremely high.
3157 	 */
3158 	if (spa->spa_missing_tvds > 0 &&
3159 	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3160 	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3161 		spa_load_note(spa, "forcing failmode to 'continue' "
3162 		    "as some top level vdevs are missing");
3163 		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3164 	}
3165 
3166 	return (0);
3167 }
3168 
3169 static int
3170 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3171 {
3172 	int error = 0;
3173 	vdev_t *rvd = spa->spa_root_vdev;
3174 
3175 	/*
3176 	 * If we're assembling the pool from the split-off vdevs of
3177 	 * an existing pool, we don't want to attach the spares & cache
3178 	 * devices.
3179 	 */
3180 
3181 	/*
3182 	 * Load any hot spares for this pool.
3183 	 */
3184 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3185 	    B_FALSE);
3186 	if (error != 0 && error != ENOENT)
3187 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3188 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3189 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3190 		if (load_nvlist(spa, spa->spa_spares.sav_object,
3191 		    &spa->spa_spares.sav_config) != 0) {
3192 			spa_load_failed(spa, "error loading spares nvlist");
3193 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3194 		}
3195 
3196 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3197 		spa_load_spares(spa);
3198 		spa_config_exit(spa, SCL_ALL, FTAG);
3199 	} else if (error == 0) {
3200 		spa->spa_spares.sav_sync = B_TRUE;
3201 	}
3202 
3203 	/*
3204 	 * Load any level 2 ARC devices for this pool.
3205 	 */
3206 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3207 	    &spa->spa_l2cache.sav_object, B_FALSE);
3208 	if (error != 0 && error != ENOENT)
3209 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3210 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3211 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3212 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3213 		    &spa->spa_l2cache.sav_config) != 0) {
3214 			spa_load_failed(spa, "error loading l2cache nvlist");
3215 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3216 		}
3217 
3218 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3219 		spa_load_l2cache(spa);
3220 		spa_config_exit(spa, SCL_ALL, FTAG);
3221 	} else if (error == 0) {
3222 		spa->spa_l2cache.sav_sync = B_TRUE;
3223 	}
3224 
3225 	return (0);
3226 }
3227 
3228 static int
3229 spa_ld_load_vdev_metadata(spa_t *spa)
3230 {
3231 	int error = 0;
3232 	vdev_t *rvd = spa->spa_root_vdev;
3233 
3234 	/*
3235 	 * If the 'autoreplace' property is set, then post a resource notifying
3236 	 * the ZFS DE that it should not issue any faults for unopenable
3237 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3238 	 * unopenable vdevs so that the normal autoreplace handler can take
3239 	 * over.
3240 	 */
3241 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3242 		spa_check_removed(spa->spa_root_vdev);
3243 		/*
3244 		 * For the import case, this is done in spa_import(), because
3245 		 * at this point we're using the spare definitions from
3246 		 * the MOS config, not necessarily from the userland config.
3247 		 */
3248 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3249 			spa_aux_check_removed(&spa->spa_spares);
3250 			spa_aux_check_removed(&spa->spa_l2cache);
3251 		}
3252 	}
3253 
3254 	/*
3255 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3256 	 */
3257 	error = vdev_load(rvd);
3258 	if (error != 0) {
3259 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3260 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3261 	}
3262 
3263 	/*
3264 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3265 	 */
3266 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3267 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3268 	spa_config_exit(spa, SCL_ALL, FTAG);
3269 
3270 	return (0);
3271 }
3272 
3273 static int
3274 spa_ld_load_dedup_tables(spa_t *spa)
3275 {
3276 	int error = 0;
3277 	vdev_t *rvd = spa->spa_root_vdev;
3278 
3279 	error = ddt_load(spa);
3280 	if (error != 0) {
3281 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3282 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3283 	}
3284 
3285 	return (0);
3286 }
3287 
3288 static int
3289 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3290 {
3291 	vdev_t *rvd = spa->spa_root_vdev;
3292 
3293 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3294 		boolean_t missing = spa_check_logs(spa);
3295 		if (missing) {
3296 			if (spa->spa_missing_tvds != 0) {
3297 				spa_load_note(spa, "spa_check_logs failed "
3298 				    "so dropping the logs");
3299 			} else {
3300 				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3301 				spa_load_failed(spa, "spa_check_logs failed");
3302 				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3303 				    ENXIO));
3304 			}
3305 		}
3306 	}
3307 
3308 	return (0);
3309 }
3310 
3311 static int
3312 spa_ld_verify_pool_data(spa_t *spa)
3313 {
3314 	int error = 0;
3315 	vdev_t *rvd = spa->spa_root_vdev;
3316 
3317 	/*
3318 	 * We've successfully opened the pool, verify that we're ready
3319 	 * to start pushing transactions.
3320 	 */
3321 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3322 		error = spa_load_verify(spa);
3323 		if (error != 0) {
3324 			spa_load_failed(spa, "spa_load_verify failed "
3325 			    "[error=%d]", error);
3326 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3327 			    error));
3328 		}
3329 	}
3330 
3331 	return (0);
3332 }
3333 
3334 static void
3335 spa_ld_claim_log_blocks(spa_t *spa)
3336 {
3337 	dmu_tx_t *tx;
3338 	dsl_pool_t *dp = spa_get_dsl(spa);
3339 
3340 	/*
3341 	 * Claim log blocks that haven't been committed yet.
3342 	 * This must all happen in a single txg.
3343 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3344 	 * invoked from zil_claim_log_block()'s i/o done callback.
3345 	 * Price of rollback is that we abandon the log.
3346 	 */
3347 	spa->spa_claiming = B_TRUE;
3348 
3349 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3350 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3351 	    zil_claim, tx, DS_FIND_CHILDREN);
3352 	dmu_tx_commit(tx);
3353 
3354 	spa->spa_claiming = B_FALSE;
3355 
3356 	spa_set_log_state(spa, SPA_LOG_GOOD);
3357 }
3358 
3359 static void
3360 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3361     boolean_t update_config_cache)
3362 {
3363 	vdev_t *rvd = spa->spa_root_vdev;
3364 	int need_update = B_FALSE;
3365 
3366 	/*
3367 	 * If the config cache is stale, or we have uninitialized
3368 	 * metaslabs (see spa_vdev_add()), then update the config.
3369 	 *
3370 	 * If this is a verbatim import, trust the current
3371 	 * in-core spa_config and update the disk labels.
3372 	 */
3373 	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3374 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3375 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3376 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3377 		need_update = B_TRUE;
3378 
3379 	for (int c = 0; c < rvd->vdev_children; c++)
3380 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3381 			need_update = B_TRUE;
3382 
3383 	/*
3384 	 * Update the config cache asychronously in case we're the
3385 	 * root pool, in which case the config cache isn't writable yet.
3386 	 */
3387 	if (need_update)
3388 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3389 }
3390 
3391 static void
3392 spa_ld_prepare_for_reload(spa_t *spa)
3393 {
3394 	int mode = spa->spa_mode;
3395 	int async_suspended = spa->spa_async_suspended;
3396 
3397 	spa_unload(spa);
3398 	spa_deactivate(spa);
3399 	spa_activate(spa, mode);
3400 
3401 	/*
3402 	 * We save the value of spa_async_suspended as it gets reset to 0 by
3403 	 * spa_unload(). We want to restore it back to the original value before
3404 	 * returning as we might be calling spa_async_resume() later.
3405 	 */
3406 	spa->spa_async_suspended = async_suspended;
3407 }
3408 
3409 static int
3410 spa_ld_read_checkpoint_txg(spa_t *spa)
3411 {
3412 	uberblock_t checkpoint;
3413 	int error = 0;
3414 
3415 	ASSERT0(spa->spa_checkpoint_txg);
3416 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3417 
3418 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3419 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3420 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3421 
3422 	if (error == ENOENT)
3423 		return (0);
3424 
3425 	if (error != 0)
3426 		return (error);
3427 
3428 	ASSERT3U(checkpoint.ub_txg, !=, 0);
3429 	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3430 	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3431 	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3432 	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3433 
3434 	return (0);
3435 }
3436 
3437 static int
3438 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3439 {
3440 	int error = 0;
3441 
3442 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3443 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3444 
3445 	/*
3446 	 * Never trust the config that is provided unless we are assembling
3447 	 * a pool following a split.
3448 	 * This means don't trust blkptrs and the vdev tree in general. This
3449 	 * also effectively puts the spa in read-only mode since
3450 	 * spa_writeable() checks for spa_trust_config to be true.
3451 	 * We will later load a trusted config from the MOS.
3452 	 */
3453 	if (type != SPA_IMPORT_ASSEMBLE)
3454 		spa->spa_trust_config = B_FALSE;
3455 
3456 	/*
3457 	 * Parse the config provided to create a vdev tree.
3458 	 */
3459 	error = spa_ld_parse_config(spa, type);
3460 	if (error != 0)
3461 		return (error);
3462 
3463 	/*
3464 	 * Now that we have the vdev tree, try to open each vdev. This involves
3465 	 * opening the underlying physical device, retrieving its geometry and
3466 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3467 	 * based on the success of those operations. After this we'll be ready
3468 	 * to read from the vdevs.
3469 	 */
3470 	error = spa_ld_open_vdevs(spa);
3471 	if (error != 0)
3472 		return (error);
3473 
3474 	/*
3475 	 * Read the label of each vdev and make sure that the GUIDs stored
3476 	 * there match the GUIDs in the config provided.
3477 	 * If we're assembling a new pool that's been split off from an
3478 	 * existing pool, the labels haven't yet been updated so we skip
3479 	 * validation for now.
3480 	 */
3481 	if (type != SPA_IMPORT_ASSEMBLE) {
3482 		error = spa_ld_validate_vdevs(spa);
3483 		if (error != 0)
3484 			return (error);
3485 	}
3486 
3487 	/*
3488 	 * Read all vdev labels to find the best uberblock (i.e. latest,
3489 	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3490 	 * get the list of features required to read blkptrs in the MOS from
3491 	 * the vdev label with the best uberblock and verify that our version
3492 	 * of zfs supports them all.
3493 	 */
3494 	error = spa_ld_select_uberblock(spa, type);
3495 	if (error != 0)
3496 		return (error);
3497 
3498 	/*
3499 	 * Pass that uberblock to the dsl_pool layer which will open the root
3500 	 * blkptr. This blkptr points to the latest version of the MOS and will
3501 	 * allow us to read its contents.
3502 	 */
3503 	error = spa_ld_open_rootbp(spa);
3504 	if (error != 0)
3505 		return (error);
3506 
3507 	return (0);
3508 }
3509 
3510 static int
3511 spa_ld_checkpoint_rewind(spa_t *spa)
3512 {
3513 	uberblock_t checkpoint;
3514 	int error = 0;
3515 
3516 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3517 	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3518 
3519 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3520 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3521 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3522 
3523 	if (error != 0) {
3524 		spa_load_failed(spa, "unable to retrieve checkpointed "
3525 		    "uberblock from the MOS config [error=%d]", error);
3526 
3527 		if (error == ENOENT)
3528 			error = ZFS_ERR_NO_CHECKPOINT;
3529 
3530 		return (error);
3531 	}
3532 
3533 	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3534 	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3535 
3536 	/*
3537 	 * We need to update the txg and timestamp of the checkpointed
3538 	 * uberblock to be higher than the latest one. This ensures that
3539 	 * the checkpointed uberblock is selected if we were to close and
3540 	 * reopen the pool right after we've written it in the vdev labels.
3541 	 * (also see block comment in vdev_uberblock_compare)
3542 	 */
3543 	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3544 	checkpoint.ub_timestamp = gethrestime_sec();
3545 
3546 	/*
3547 	 * Set current uberblock to be the checkpointed uberblock.
3548 	 */
3549 	spa->spa_uberblock = checkpoint;
3550 
3551 	/*
3552 	 * If we are doing a normal rewind, then the pool is open for
3553 	 * writing and we sync the "updated" checkpointed uberblock to
3554 	 * disk. Once this is done, we've basically rewound the whole
3555 	 * pool and there is no way back.
3556 	 *
3557 	 * There are cases when we don't want to attempt and sync the
3558 	 * checkpointed uberblock to disk because we are opening a
3559 	 * pool as read-only. Specifically, verifying the checkpointed
3560 	 * state with zdb, and importing the checkpointed state to get
3561 	 * a "preview" of its content.
3562 	 */
3563 	if (spa_writeable(spa)) {
3564 		vdev_t *rvd = spa->spa_root_vdev;
3565 
3566 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3567 		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3568 		int svdcount = 0;
3569 		int children = rvd->vdev_children;
3570 		int c0 = spa_get_random(children);
3571 
3572 		for (int c = 0; c < children; c++) {
3573 			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3574 
3575 			/* Stop when revisiting the first vdev */
3576 			if (c > 0 && svd[0] == vd)
3577 				break;
3578 
3579 			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3580 			    !vdev_is_concrete(vd))
3581 				continue;
3582 
3583 			svd[svdcount++] = vd;
3584 			if (svdcount == SPA_SYNC_MIN_VDEVS)
3585 				break;
3586 		}
3587 		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3588 		if (error == 0)
3589 			spa->spa_last_synced_guid = rvd->vdev_guid;
3590 		spa_config_exit(spa, SCL_ALL, FTAG);
3591 
3592 		if (error != 0) {
3593 			spa_load_failed(spa, "failed to write checkpointed "
3594 			    "uberblock to the vdev labels [error=%d]", error);
3595 			return (error);
3596 		}
3597 	}
3598 
3599 	return (0);
3600 }
3601 
3602 static int
3603 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3604     boolean_t *update_config_cache)
3605 {
3606 	int error;
3607 
3608 	/*
3609 	 * Parse the config for pool, open and validate vdevs,
3610 	 * select an uberblock, and use that uberblock to open
3611 	 * the MOS.
3612 	 */
3613 	error = spa_ld_mos_init(spa, type);
3614 	if (error != 0)
3615 		return (error);
3616 
3617 	/*
3618 	 * Retrieve the trusted config stored in the MOS and use it to create
3619 	 * a new, exact version of the vdev tree, then reopen all vdevs.
3620 	 */
3621 	error = spa_ld_trusted_config(spa, type, B_FALSE);
3622 	if (error == EAGAIN) {
3623 		if (update_config_cache != NULL)
3624 			*update_config_cache = B_TRUE;
3625 
3626 		/*
3627 		 * Redo the loading process with the trusted config if it is
3628 		 * too different from the untrusted config.
3629 		 */
3630 		spa_ld_prepare_for_reload(spa);
3631 		spa_load_note(spa, "RELOADING");
3632 		error = spa_ld_mos_init(spa, type);
3633 		if (error != 0)
3634 			return (error);
3635 
3636 		error = spa_ld_trusted_config(spa, type, B_TRUE);
3637 		if (error != 0)
3638 			return (error);
3639 
3640 	} else if (error != 0) {
3641 		return (error);
3642 	}
3643 
3644 	return (0);
3645 }
3646 
3647 /*
3648  * Load an existing storage pool, using the config provided. This config
3649  * describes which vdevs are part of the pool and is later validated against
3650  * partial configs present in each vdev's label and an entire copy of the
3651  * config stored in the MOS.
3652  */
3653 static int
3654 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3655 {
3656 	int error = 0;
3657 	boolean_t missing_feat_write = B_FALSE;
3658 	boolean_t checkpoint_rewind =
3659 	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3660 	boolean_t update_config_cache = B_FALSE;
3661 
3662 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3663 	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3664 
3665 	spa_load_note(spa, "LOADING");
3666 
3667 	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3668 	if (error != 0)
3669 		return (error);
3670 
3671 	/*
3672 	 * If we are rewinding to the checkpoint then we need to repeat
3673 	 * everything we've done so far in this function but this time
3674 	 * selecting the checkpointed uberblock and using that to open
3675 	 * the MOS.
3676 	 */
3677 	if (checkpoint_rewind) {
3678 		/*
3679 		 * If we are rewinding to the checkpoint update config cache
3680 		 * anyway.
3681 		 */
3682 		update_config_cache = B_TRUE;
3683 
3684 		/*
3685 		 * Extract the checkpointed uberblock from the current MOS
3686 		 * and use this as the pool's uberblock from now on. If the
3687 		 * pool is imported as writeable we also write the checkpoint
3688 		 * uberblock to the labels, making the rewind permanent.
3689 		 */
3690 		error = spa_ld_checkpoint_rewind(spa);
3691 		if (error != 0)
3692 			return (error);
3693 
3694 		/*
3695 		 * Redo the loading process process again with the
3696 		 * checkpointed uberblock.
3697 		 */
3698 		spa_ld_prepare_for_reload(spa);
3699 		spa_load_note(spa, "LOADING checkpointed uberblock");
3700 		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3701 		if (error != 0)
3702 			return (error);
3703 	}
3704 
3705 	/*
3706 	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3707 	 */
3708 	error = spa_ld_read_checkpoint_txg(spa);
3709 	if (error != 0)
3710 		return (error);
3711 
3712 	/*
3713 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3714 	 * from the pool and their contents were re-mapped to other vdevs. Note
3715 	 * that everything that we read before this step must have been
3716 	 * rewritten on concrete vdevs after the last device removal was
3717 	 * initiated. Otherwise we could be reading from indirect vdevs before
3718 	 * we have loaded their mappings.
3719 	 */
3720 	error = spa_ld_open_indirect_vdev_metadata(spa);
3721 	if (error != 0)
3722 		return (error);
3723 
3724 	/*
3725 	 * Retrieve the full list of active features from the MOS and check if
3726 	 * they are all supported.
3727 	 */
3728 	error = spa_ld_check_features(spa, &missing_feat_write);
3729 	if (error != 0)
3730 		return (error);
3731 
3732 	/*
3733 	 * Load several special directories from the MOS needed by the dsl_pool
3734 	 * layer.
3735 	 */
3736 	error = spa_ld_load_special_directories(spa);
3737 	if (error != 0)
3738 		return (error);
3739 
3740 	/*
3741 	 * Retrieve pool properties from the MOS.
3742 	 */
3743 	error = spa_ld_get_props(spa);
3744 	if (error != 0)
3745 		return (error);
3746 
3747 	/*
3748 	 * Retrieve the list of auxiliary devices - cache devices and spares -
3749 	 * and open them.
3750 	 */
3751 	error = spa_ld_open_aux_vdevs(spa, type);
3752 	if (error != 0)
3753 		return (error);
3754 
3755 	/*
3756 	 * Load the metadata for all vdevs. Also check if unopenable devices
3757 	 * should be autoreplaced.
3758 	 */
3759 	error = spa_ld_load_vdev_metadata(spa);
3760 	if (error != 0)
3761 		return (error);
3762 
3763 	error = spa_ld_load_dedup_tables(spa);
3764 	if (error != 0)
3765 		return (error);
3766 
3767 	/*
3768 	 * Verify the logs now to make sure we don't have any unexpected errors
3769 	 * when we claim log blocks later.
3770 	 */
3771 	error = spa_ld_verify_logs(spa, type, ereport);
3772 	if (error != 0)
3773 		return (error);
3774 
3775 	if (missing_feat_write) {
3776 		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3777 
3778 		/*
3779 		 * At this point, we know that we can open the pool in
3780 		 * read-only mode but not read-write mode. We now have enough
3781 		 * information and can return to userland.
3782 		 */
3783 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3784 		    ENOTSUP));
3785 	}
3786 
3787 	/*
3788 	 * Traverse the last txgs to make sure the pool was left off in a safe
3789 	 * state. When performing an extreme rewind, we verify the whole pool,
3790 	 * which can take a very long time.
3791 	 */
3792 	error = spa_ld_verify_pool_data(spa);
3793 	if (error != 0)
3794 		return (error);
3795 
3796 	/*
3797 	 * Calculate the deflated space for the pool. This must be done before
3798 	 * we write anything to the pool because we'd need to update the space
3799 	 * accounting using the deflated sizes.
3800 	 */
3801 	spa_update_dspace(spa);
3802 
3803 	/*
3804 	 * We have now retrieved all the information we needed to open the
3805 	 * pool. If we are importing the pool in read-write mode, a few
3806 	 * additional steps must be performed to finish the import.
3807 	 */
3808 	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3809 	    spa->spa_load_max_txg == UINT64_MAX)) {
3810 		uint64_t config_cache_txg = spa->spa_config_txg;
3811 
3812 		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3813 
3814 		/*
3815 		 * In case of a checkpoint rewind, log the original txg
3816 		 * of the checkpointed uberblock.
3817 		 */
3818 		if (checkpoint_rewind) {
3819 			spa_history_log_internal(spa, "checkpoint rewind",
3820 			    NULL, "rewound state to txg=%llu",
3821 			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3822 		}
3823 
3824 		/*
3825 		 * Traverse the ZIL and claim all blocks.
3826 		 */
3827 		spa_ld_claim_log_blocks(spa);
3828 
3829 		/*
3830 		 * Kick-off the syncing thread.
3831 		 */
3832 		spa->spa_sync_on = B_TRUE;
3833 		txg_sync_start(spa->spa_dsl_pool);
3834 
3835 		/*
3836 		 * Wait for all claims to sync.  We sync up to the highest
3837 		 * claimed log block birth time so that claimed log blocks
3838 		 * don't appear to be from the future.  spa_claim_max_txg
3839 		 * will have been set for us by ZIL traversal operations
3840 		 * performed above.
3841 		 */
3842 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3843 
3844 		/*
3845 		 * Check if we need to request an update of the config. On the
3846 		 * next sync, we would update the config stored in vdev labels
3847 		 * and the cachefile (by default /etc/zfs/zpool.cache).
3848 		 */
3849 		spa_ld_check_for_config_update(spa, config_cache_txg,
3850 		    update_config_cache);
3851 
3852 		/*
3853 		 * Check all DTLs to see if anything needs resilvering.
3854 		 */
3855 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3856 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3857 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3858 
3859 		/*
3860 		 * Log the fact that we booted up (so that we can detect if
3861 		 * we rebooted in the middle of an operation).
3862 		 */
3863 		spa_history_log_version(spa, "open");
3864 
3865 		spa_restart_removal(spa);
3866 		spa_spawn_aux_threads(spa);
3867 
3868 		/*
3869 		 * Delete any inconsistent datasets.
3870 		 *
3871 		 * Note:
3872 		 * Since we may be issuing deletes for clones here,
3873 		 * we make sure to do so after we've spawned all the
3874 		 * auxiliary threads above (from which the livelist
3875 		 * deletion zthr is part of).
3876 		 */
3877 		(void) dmu_objset_find(spa_name(spa),
3878 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3879 
3880 		/*
3881 		 * Clean up any stale temporary dataset userrefs.
3882 		 */
3883 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3884 
3885 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3886 		vdev_initialize_restart(spa->spa_root_vdev);
3887 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3888 	}
3889 
3890 	spa_load_note(spa, "LOADED");
3891 
3892 	return (0);
3893 }
3894 
3895 static int
3896 spa_load_retry(spa_t *spa, spa_load_state_t state)
3897 {
3898 	int mode = spa->spa_mode;
3899 
3900 	spa_unload(spa);
3901 	spa_deactivate(spa);
3902 
3903 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3904 
3905 	spa_activate(spa, mode);
3906 	spa_async_suspend(spa);
3907 
3908 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3909 	    (u_longlong_t)spa->spa_load_max_txg);
3910 
3911 	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3912 }
3913 
3914 /*
3915  * If spa_load() fails this function will try loading prior txg's. If
3916  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3917  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3918  * function will not rewind the pool and will return the same error as
3919  * spa_load().
3920  */
3921 static int
3922 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3923     int rewind_flags)
3924 {
3925 	nvlist_t *loadinfo = NULL;
3926 	nvlist_t *config = NULL;
3927 	int load_error, rewind_error;
3928 	uint64_t safe_rewind_txg;
3929 	uint64_t min_txg;
3930 
3931 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3932 		spa->spa_load_max_txg = spa->spa_load_txg;
3933 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3934 	} else {
3935 		spa->spa_load_max_txg = max_request;
3936 		if (max_request != UINT64_MAX)
3937 			spa->spa_extreme_rewind = B_TRUE;
3938 	}
3939 
3940 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3941 	if (load_error == 0)
3942 		return (0);
3943 	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
3944 		/*
3945 		 * When attempting checkpoint-rewind on a pool with no
3946 		 * checkpoint, we should not attempt to load uberblocks
3947 		 * from previous txgs when spa_load fails.
3948 		 */
3949 		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3950 		return (load_error);
3951 	}
3952 
3953 	if (spa->spa_root_vdev != NULL)
3954 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3955 
3956 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3957 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3958 
3959 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3960 		nvlist_free(config);
3961 		return (load_error);
3962 	}
3963 
3964 	if (state == SPA_LOAD_RECOVER) {
3965 		/* Price of rolling back is discarding txgs, including log */
3966 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3967 	} else {
3968 		/*
3969 		 * If we aren't rolling back save the load info from our first
3970 		 * import attempt so that we can restore it after attempting
3971 		 * to rewind.
3972 		 */
3973 		loadinfo = spa->spa_load_info;
3974 		spa->spa_load_info = fnvlist_alloc();
3975 	}
3976 
3977 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3978 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3979 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3980 	    TXG_INITIAL : safe_rewind_txg;
3981 
3982 	/*
3983 	 * Continue as long as we're finding errors, we're still within
3984 	 * the acceptable rewind range, and we're still finding uberblocks
3985 	 */
3986 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3987 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3988 		if (spa->spa_load_max_txg < safe_rewind_txg)
3989 			spa->spa_extreme_rewind = B_TRUE;
3990 		rewind_error = spa_load_retry(spa, state);
3991 	}
3992 
3993 	spa->spa_extreme_rewind = B_FALSE;
3994 	spa->spa_load_max_txg = UINT64_MAX;
3995 
3996 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3997 		spa_config_set(spa, config);
3998 	else
3999 		nvlist_free(config);
4000 
4001 	if (state == SPA_LOAD_RECOVER) {
4002 		ASSERT3P(loadinfo, ==, NULL);
4003 		return (rewind_error);
4004 	} else {
4005 		/* Store the rewind info as part of the initial load info */
4006 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4007 		    spa->spa_load_info);
4008 
4009 		/* Restore the initial load info */
4010 		fnvlist_free(spa->spa_load_info);
4011 		spa->spa_load_info = loadinfo;
4012 
4013 		return (load_error);
4014 	}
4015 }
4016 
4017 /*
4018  * Pool Open/Import
4019  *
4020  * The import case is identical to an open except that the configuration is sent
4021  * down from userland, instead of grabbed from the configuration cache.  For the
4022  * case of an open, the pool configuration will exist in the
4023  * POOL_STATE_UNINITIALIZED state.
4024  *
4025  * The stats information (gen/count/ustats) is used to gather vdev statistics at
4026  * the same time open the pool, without having to keep around the spa_t in some
4027  * ambiguous state.
4028  */
4029 static int
4030 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4031     nvlist_t **config)
4032 {
4033 	spa_t *spa;
4034 	spa_load_state_t state = SPA_LOAD_OPEN;
4035 	int error;
4036 	int locked = B_FALSE;
4037 
4038 	*spapp = NULL;
4039 
4040 	/*
4041 	 * As disgusting as this is, we need to support recursive calls to this
4042 	 * function because dsl_dir_open() is called during spa_load(), and ends
4043 	 * up calling spa_open() again.  The real fix is to figure out how to
4044 	 * avoid dsl_dir_open() calling this in the first place.
4045 	 */
4046 	if (mutex_owner(&spa_namespace_lock) != curthread) {
4047 		mutex_enter(&spa_namespace_lock);
4048 		locked = B_TRUE;
4049 	}
4050 
4051 	if ((spa = spa_lookup(pool)) == NULL) {
4052 		if (locked)
4053 			mutex_exit(&spa_namespace_lock);
4054 		return (SET_ERROR(ENOENT));
4055 	}
4056 
4057 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4058 		zpool_load_policy_t policy;
4059 
4060 		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4061 		    &policy);
4062 		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4063 			state = SPA_LOAD_RECOVER;
4064 
4065 		spa_activate(spa, spa_mode_global);
4066 
4067 		if (state != SPA_LOAD_RECOVER)
4068 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4069 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4070 
4071 		zfs_dbgmsg("spa_open_common: opening %s", pool);
4072 		error = spa_load_best(spa, state, policy.zlp_txg,
4073 		    policy.zlp_rewind);
4074 
4075 		if (error == EBADF) {
4076 			/*
4077 			 * If vdev_validate() returns failure (indicated by
4078 			 * EBADF), it indicates that one of the vdevs indicates
4079 			 * that the pool has been exported or destroyed.  If
4080 			 * this is the case, the config cache is out of sync and
4081 			 * we should remove the pool from the namespace.
4082 			 */
4083 			spa_unload(spa);
4084 			spa_deactivate(spa);
4085 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4086 			spa_remove(spa);
4087 			if (locked)
4088 				mutex_exit(&spa_namespace_lock);
4089 			return (SET_ERROR(ENOENT));
4090 		}
4091 
4092 		if (error) {
4093 			/*
4094 			 * We can't open the pool, but we still have useful
4095 			 * information: the state of each vdev after the
4096 			 * attempted vdev_open().  Return this to the user.
4097 			 */
4098 			if (config != NULL && spa->spa_config) {
4099 				VERIFY(nvlist_dup(spa->spa_config, config,
4100 				    KM_SLEEP) == 0);
4101 				VERIFY(nvlist_add_nvlist(*config,
4102 				    ZPOOL_CONFIG_LOAD_INFO,
4103 				    spa->spa_load_info) == 0);
4104 			}
4105 			spa_unload(spa);
4106 			spa_deactivate(spa);
4107 			spa->spa_last_open_failed = error;
4108 			if (locked)
4109 				mutex_exit(&spa_namespace_lock);
4110 			*spapp = NULL;
4111 			return (error);
4112 		}
4113 	}
4114 
4115 	spa_open_ref(spa, tag);
4116 
4117 	if (config != NULL)
4118 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4119 
4120 	/*
4121 	 * If we've recovered the pool, pass back any information we
4122 	 * gathered while doing the load.
4123 	 */
4124 	if (state == SPA_LOAD_RECOVER) {
4125 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4126 		    spa->spa_load_info) == 0);
4127 	}
4128 
4129 	if (locked) {
4130 		spa->spa_last_open_failed = 0;
4131 		spa->spa_last_ubsync_txg = 0;
4132 		spa->spa_load_txg = 0;
4133 		mutex_exit(&spa_namespace_lock);
4134 	}
4135 
4136 	*spapp = spa;
4137 
4138 	return (0);
4139 }
4140 
4141 int
4142 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4143     nvlist_t **config)
4144 {
4145 	return (spa_open_common(name, spapp, tag, policy, config));
4146 }
4147 
4148 int
4149 spa_open(const char *name, spa_t **spapp, void *tag)
4150 {
4151 	return (spa_open_common(name, spapp, tag, NULL, NULL));
4152 }
4153 
4154 /*
4155  * Lookup the given spa_t, incrementing the inject count in the process,
4156  * preventing it from being exported or destroyed.
4157  */
4158 spa_t *
4159 spa_inject_addref(char *name)
4160 {
4161 	spa_t *spa;
4162 
4163 	mutex_enter(&spa_namespace_lock);
4164 	if ((spa = spa_lookup(name)) == NULL) {
4165 		mutex_exit(&spa_namespace_lock);
4166 		return (NULL);
4167 	}
4168 	spa->spa_inject_ref++;
4169 	mutex_exit(&spa_namespace_lock);
4170 
4171 	return (spa);
4172 }
4173 
4174 void
4175 spa_inject_delref(spa_t *spa)
4176 {
4177 	mutex_enter(&spa_namespace_lock);
4178 	spa->spa_inject_ref--;
4179 	mutex_exit(&spa_namespace_lock);
4180 }
4181 
4182 /*
4183  * Add spares device information to the nvlist.
4184  */
4185 static void
4186 spa_add_spares(spa_t *spa, nvlist_t *config)
4187 {
4188 	nvlist_t **spares;
4189 	uint_t i, nspares;
4190 	nvlist_t *nvroot;
4191 	uint64_t guid;
4192 	vdev_stat_t *vs;
4193 	uint_t vsc;
4194 	uint64_t pool;
4195 
4196 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4197 
4198 	if (spa->spa_spares.sav_count == 0)
4199 		return;
4200 
4201 	VERIFY(nvlist_lookup_nvlist(config,
4202 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4203 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4204 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4205 	if (nspares != 0) {
4206 		VERIFY(nvlist_add_nvlist_array(nvroot,
4207 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4208 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4209 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4210 
4211 		/*
4212 		 * Go through and find any spares which have since been
4213 		 * repurposed as an active spare.  If this is the case, update
4214 		 * their status appropriately.
4215 		 */
4216 		for (i = 0; i < nspares; i++) {
4217 			VERIFY(nvlist_lookup_uint64(spares[i],
4218 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4219 			if (spa_spare_exists(guid, &pool, NULL) &&
4220 			    pool != 0ULL) {
4221 				VERIFY(nvlist_lookup_uint64_array(
4222 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4223 				    (uint64_t **)&vs, &vsc) == 0);
4224 				vs->vs_state = VDEV_STATE_CANT_OPEN;
4225 				vs->vs_aux = VDEV_AUX_SPARED;
4226 			}
4227 		}
4228 	}
4229 }
4230 
4231 /*
4232  * Add l2cache device information to the nvlist, including vdev stats.
4233  */
4234 static void
4235 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4236 {
4237 	nvlist_t **l2cache;
4238 	uint_t i, j, nl2cache;
4239 	nvlist_t *nvroot;
4240 	uint64_t guid;
4241 	vdev_t *vd;
4242 	vdev_stat_t *vs;
4243 	uint_t vsc;
4244 
4245 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4246 
4247 	if (spa->spa_l2cache.sav_count == 0)
4248 		return;
4249 
4250 	VERIFY(nvlist_lookup_nvlist(config,
4251 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4252 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4253 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4254 	if (nl2cache != 0) {
4255 		VERIFY(nvlist_add_nvlist_array(nvroot,
4256 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4257 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4258 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4259 
4260 		/*
4261 		 * Update level 2 cache device stats.
4262 		 */
4263 
4264 		for (i = 0; i < nl2cache; i++) {
4265 			VERIFY(nvlist_lookup_uint64(l2cache[i],
4266 			    ZPOOL_CONFIG_GUID, &guid) == 0);
4267 
4268 			vd = NULL;
4269 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4270 				if (guid ==
4271 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4272 					vd = spa->spa_l2cache.sav_vdevs[j];
4273 					break;
4274 				}
4275 			}
4276 			ASSERT(vd != NULL);
4277 
4278 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4279 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4280 			    == 0);
4281 			vdev_get_stats(vd, vs);
4282 		}
4283 	}
4284 }
4285 
4286 static void
4287 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4288 {
4289 	nvlist_t *features;
4290 	zap_cursor_t zc;
4291 	zap_attribute_t za;
4292 
4293 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4294 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4295 
4296 	if (spa->spa_feat_for_read_obj != 0) {
4297 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4298 		    spa->spa_feat_for_read_obj);
4299 		    zap_cursor_retrieve(&zc, &za) == 0;
4300 		    zap_cursor_advance(&zc)) {
4301 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4302 			    za.za_num_integers == 1);
4303 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4304 			    za.za_first_integer));
4305 		}
4306 		zap_cursor_fini(&zc);
4307 	}
4308 
4309 	if (spa->spa_feat_for_write_obj != 0) {
4310 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4311 		    spa->spa_feat_for_write_obj);
4312 		    zap_cursor_retrieve(&zc, &za) == 0;
4313 		    zap_cursor_advance(&zc)) {
4314 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4315 			    za.za_num_integers == 1);
4316 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4317 			    za.za_first_integer));
4318 		}
4319 		zap_cursor_fini(&zc);
4320 	}
4321 
4322 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4323 	    features) == 0);
4324 	nvlist_free(features);
4325 }
4326 
4327 int
4328 spa_get_stats(const char *name, nvlist_t **config,
4329     char *altroot, size_t buflen)
4330 {
4331 	int error;
4332 	spa_t *spa;
4333 
4334 	*config = NULL;
4335 	error = spa_open_common(name, &spa, FTAG, NULL, config);
4336 
4337 	if (spa != NULL) {
4338 		/*
4339 		 * This still leaves a window of inconsistency where the spares
4340 		 * or l2cache devices could change and the config would be
4341 		 * self-inconsistent.
4342 		 */
4343 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4344 
4345 		if (*config != NULL) {
4346 			uint64_t loadtimes[2];
4347 
4348 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4349 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4350 			VERIFY(nvlist_add_uint64_array(*config,
4351 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4352 
4353 			VERIFY(nvlist_add_uint64(*config,
4354 			    ZPOOL_CONFIG_ERRCOUNT,
4355 			    spa_get_errlog_size(spa)) == 0);
4356 
4357 			if (spa_suspended(spa))
4358 				VERIFY(nvlist_add_uint64(*config,
4359 				    ZPOOL_CONFIG_SUSPENDED,
4360 				    spa->spa_failmode) == 0);
4361 
4362 			spa_add_spares(spa, *config);
4363 			spa_add_l2cache(spa, *config);
4364 			spa_add_feature_stats(spa, *config);
4365 		}
4366 	}
4367 
4368 	/*
4369 	 * We want to get the alternate root even for faulted pools, so we cheat
4370 	 * and call spa_lookup() directly.
4371 	 */
4372 	if (altroot) {
4373 		if (spa == NULL) {
4374 			mutex_enter(&spa_namespace_lock);
4375 			spa = spa_lookup(name);
4376 			if (spa)
4377 				spa_altroot(spa, altroot, buflen);
4378 			else
4379 				altroot[0] = '\0';
4380 			spa = NULL;
4381 			mutex_exit(&spa_namespace_lock);
4382 		} else {
4383 			spa_altroot(spa, altroot, buflen);
4384 		}
4385 	}
4386 
4387 	if (spa != NULL) {
4388 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4389 		spa_close(spa, FTAG);
4390 	}
4391 
4392 	return (error);
4393 }
4394 
4395 /*
4396  * Validate that the auxiliary device array is well formed.  We must have an
4397  * array of nvlists, each which describes a valid leaf vdev.  If this is an
4398  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4399  * specified, as long as they are well-formed.
4400  */
4401 static int
4402 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4403     spa_aux_vdev_t *sav, const char *config, uint64_t version,
4404     vdev_labeltype_t label)
4405 {
4406 	nvlist_t **dev;
4407 	uint_t i, ndev;
4408 	vdev_t *vd;
4409 	int error;
4410 
4411 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4412 
4413 	/*
4414 	 * It's acceptable to have no devs specified.
4415 	 */
4416 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4417 		return (0);
4418 
4419 	if (ndev == 0)
4420 		return (SET_ERROR(EINVAL));
4421 
4422 	/*
4423 	 * Make sure the pool is formatted with a version that supports this
4424 	 * device type.
4425 	 */
4426 	if (spa_version(spa) < version)
4427 		return (SET_ERROR(ENOTSUP));
4428 
4429 	/*
4430 	 * Set the pending device list so we correctly handle device in-use
4431 	 * checking.
4432 	 */
4433 	sav->sav_pending = dev;
4434 	sav->sav_npending = ndev;
4435 
4436 	for (i = 0; i < ndev; i++) {
4437 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4438 		    mode)) != 0)
4439 			goto out;
4440 
4441 		if (!vd->vdev_ops->vdev_op_leaf) {
4442 			vdev_free(vd);
4443 			error = SET_ERROR(EINVAL);
4444 			goto out;
4445 		}
4446 
4447 		/*
4448 		 * The L2ARC currently only supports disk devices in
4449 		 * kernel context.  For user-level testing, we allow it.
4450 		 */
4451 #ifdef _KERNEL
4452 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4453 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4454 			error = SET_ERROR(ENOTBLK);
4455 			vdev_free(vd);
4456 			goto out;
4457 		}
4458 #endif
4459 		vd->vdev_top = vd;
4460 
4461 		if ((error = vdev_open(vd)) == 0 &&
4462 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4463 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4464 			    vd->vdev_guid) == 0);
4465 		}
4466 
4467 		vdev_free(vd);
4468 
4469 		if (error &&
4470 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4471 			goto out;
4472 		else
4473 			error = 0;
4474 	}
4475 
4476 out:
4477 	sav->sav_pending = NULL;
4478 	sav->sav_npending = 0;
4479 	return (error);
4480 }
4481 
4482 static int
4483 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4484 {
4485 	int error;
4486 
4487 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4488 
4489 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4490 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4491 	    VDEV_LABEL_SPARE)) != 0) {
4492 		return (error);
4493 	}
4494 
4495 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4496 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4497 	    VDEV_LABEL_L2CACHE));
4498 }
4499 
4500 static void
4501 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4502     const char *config)
4503 {
4504 	int i;
4505 
4506 	if (sav->sav_config != NULL) {
4507 		nvlist_t **olddevs;
4508 		uint_t oldndevs;
4509 		nvlist_t **newdevs;
4510 
4511 		/*
4512 		 * Generate new dev list by concatentating with the
4513 		 * current dev list.
4514 		 */
4515 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4516 		    &olddevs, &oldndevs) == 0);
4517 
4518 		newdevs = kmem_alloc(sizeof (void *) *
4519 		    (ndevs + oldndevs), KM_SLEEP);
4520 		for (i = 0; i < oldndevs; i++)
4521 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4522 			    KM_SLEEP) == 0);
4523 		for (i = 0; i < ndevs; i++)
4524 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4525 			    KM_SLEEP) == 0);
4526 
4527 		VERIFY(nvlist_remove(sav->sav_config, config,
4528 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4529 
4530 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4531 		    config, newdevs, ndevs + oldndevs) == 0);
4532 		for (i = 0; i < oldndevs + ndevs; i++)
4533 			nvlist_free(newdevs[i]);
4534 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4535 	} else {
4536 		/*
4537 		 * Generate a new dev list.
4538 		 */
4539 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4540 		    KM_SLEEP) == 0);
4541 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4542 		    devs, ndevs) == 0);
4543 	}
4544 }
4545 
4546 /*
4547  * Stop and drop level 2 ARC devices
4548  */
4549 void
4550 spa_l2cache_drop(spa_t *spa)
4551 {
4552 	vdev_t *vd;
4553 	int i;
4554 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4555 
4556 	for (i = 0; i < sav->sav_count; i++) {
4557 		uint64_t pool;
4558 
4559 		vd = sav->sav_vdevs[i];
4560 		ASSERT(vd != NULL);
4561 
4562 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4563 		    pool != 0ULL && l2arc_vdev_present(vd))
4564 			l2arc_remove_vdev(vd);
4565 	}
4566 }
4567 
4568 /*
4569  * Pool Creation
4570  */
4571 int
4572 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4573     nvlist_t *zplprops)
4574 {
4575 	spa_t *spa;
4576 	char *altroot = NULL;
4577 	vdev_t *rvd;
4578 	dsl_pool_t *dp;
4579 	dmu_tx_t *tx;
4580 	int error = 0;
4581 	uint64_t txg = TXG_INITIAL;
4582 	nvlist_t **spares, **l2cache;
4583 	uint_t nspares, nl2cache;
4584 	uint64_t version, obj;
4585 	boolean_t has_features;
4586 
4587 	/*
4588 	 * If this pool already exists, return failure.
4589 	 */
4590 	mutex_enter(&spa_namespace_lock);
4591 	if (spa_lookup(pool) != NULL) {
4592 		mutex_exit(&spa_namespace_lock);
4593 		return (SET_ERROR(EEXIST));
4594 	}
4595 
4596 	/*
4597 	 * Allocate a new spa_t structure.
4598 	 */
4599 	(void) nvlist_lookup_string(props,
4600 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4601 	spa = spa_add(pool, NULL, altroot);
4602 	spa_activate(spa, spa_mode_global);
4603 
4604 	if (props && (error = spa_prop_validate(spa, props))) {
4605 		spa_deactivate(spa);
4606 		spa_remove(spa);
4607 		mutex_exit(&spa_namespace_lock);
4608 		return (error);
4609 	}
4610 
4611 	has_features = B_FALSE;
4612 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4613 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4614 		if (zpool_prop_feature(nvpair_name(elem)))
4615 			has_features = B_TRUE;
4616 	}
4617 
4618 	if (has_features || nvlist_lookup_uint64(props,
4619 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4620 		version = SPA_VERSION;
4621 	}
4622 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4623 
4624 	spa->spa_first_txg = txg;
4625 	spa->spa_uberblock.ub_txg = txg - 1;
4626 	spa->spa_uberblock.ub_version = version;
4627 	spa->spa_ubsync = spa->spa_uberblock;
4628 	spa->spa_load_state = SPA_LOAD_CREATE;
4629 	spa->spa_removing_phys.sr_state = DSS_NONE;
4630 	spa->spa_removing_phys.sr_removing_vdev = -1;
4631 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4632 
4633 	/*
4634 	 * Create "The Godfather" zio to hold all async IOs
4635 	 */
4636 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4637 	    KM_SLEEP);
4638 	for (int i = 0; i < max_ncpus; i++) {
4639 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4640 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4641 		    ZIO_FLAG_GODFATHER);
4642 	}
4643 
4644 	/*
4645 	 * Create the root vdev.
4646 	 */
4647 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4648 
4649 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4650 
4651 	ASSERT(error != 0 || rvd != NULL);
4652 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4653 
4654 	if (error == 0 && !zfs_allocatable_devs(nvroot))
4655 		error = SET_ERROR(EINVAL);
4656 
4657 	if (error == 0 &&
4658 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4659 	    (error = spa_validate_aux(spa, nvroot, txg,
4660 	    VDEV_ALLOC_ADD)) == 0) {
4661 		for (int c = 0; c < rvd->vdev_children; c++) {
4662 			vdev_metaslab_set_size(rvd->vdev_child[c]);
4663 			vdev_expand(rvd->vdev_child[c], txg);
4664 		}
4665 	}
4666 
4667 	spa_config_exit(spa, SCL_ALL, FTAG);
4668 
4669 	if (error != 0) {
4670 		spa_unload(spa);
4671 		spa_deactivate(spa);
4672 		spa_remove(spa);
4673 		mutex_exit(&spa_namespace_lock);
4674 		return (error);
4675 	}
4676 
4677 	/*
4678 	 * Get the list of spares, if specified.
4679 	 */
4680 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4681 	    &spares, &nspares) == 0) {
4682 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4683 		    KM_SLEEP) == 0);
4684 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4685 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4686 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4687 		spa_load_spares(spa);
4688 		spa_config_exit(spa, SCL_ALL, FTAG);
4689 		spa->spa_spares.sav_sync = B_TRUE;
4690 	}
4691 
4692 	/*
4693 	 * Get the list of level 2 cache devices, if specified.
4694 	 */
4695 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4696 	    &l2cache, &nl2cache) == 0) {
4697 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4698 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4699 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4700 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4701 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4702 		spa_load_l2cache(spa);
4703 		spa_config_exit(spa, SCL_ALL, FTAG);
4704 		spa->spa_l2cache.sav_sync = B_TRUE;
4705 	}
4706 
4707 	spa->spa_is_initializing = B_TRUE;
4708 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4709 	spa->spa_meta_objset = dp->dp_meta_objset;
4710 	spa->spa_is_initializing = B_FALSE;
4711 
4712 	/*
4713 	 * Create DDTs (dedup tables).
4714 	 */
4715 	ddt_create(spa);
4716 
4717 	spa_update_dspace(spa);
4718 
4719 	tx = dmu_tx_create_assigned(dp, txg);
4720 
4721 	/*
4722 	 * Create the pool config object.
4723 	 */
4724 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4725 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4726 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4727 
4728 	if (zap_add(spa->spa_meta_objset,
4729 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4730 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4731 		cmn_err(CE_PANIC, "failed to add pool config");
4732 	}
4733 
4734 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4735 		spa_feature_create_zap_objects(spa, tx);
4736 
4737 	if (zap_add(spa->spa_meta_objset,
4738 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4739 	    sizeof (uint64_t), 1, &version, tx) != 0) {
4740 		cmn_err(CE_PANIC, "failed to add pool version");
4741 	}
4742 
4743 	/* Newly created pools with the right version are always deflated. */
4744 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4745 		spa->spa_deflate = TRUE;
4746 		if (zap_add(spa->spa_meta_objset,
4747 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4748 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4749 			cmn_err(CE_PANIC, "failed to add deflate");
4750 		}
4751 	}
4752 
4753 	/*
4754 	 * Create the deferred-free bpobj.  Turn off compression
4755 	 * because sync-to-convergence takes longer if the blocksize
4756 	 * keeps changing.
4757 	 */
4758 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4759 	dmu_object_set_compress(spa->spa_meta_objset, obj,
4760 	    ZIO_COMPRESS_OFF, tx);
4761 	if (zap_add(spa->spa_meta_objset,
4762 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4763 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4764 		cmn_err(CE_PANIC, "failed to add bpobj");
4765 	}
4766 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4767 	    spa->spa_meta_objset, obj));
4768 
4769 	/*
4770 	 * Create the pool's history object.
4771 	 */
4772 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4773 		spa_history_create_obj(spa, tx);
4774 
4775 	/*
4776 	 * Generate some random noise for salted checksums to operate on.
4777 	 */
4778 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4779 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4780 
4781 	/*
4782 	 * Set pool properties.
4783 	 */
4784 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4785 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4786 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4787 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4788 
4789 	if (props != NULL) {
4790 		spa_configfile_set(spa, props, B_FALSE);
4791 		spa_sync_props(props, tx);
4792 	}
4793 
4794 	dmu_tx_commit(tx);
4795 
4796 	spa->spa_sync_on = B_TRUE;
4797 	txg_sync_start(spa->spa_dsl_pool);
4798 
4799 	/*
4800 	 * We explicitly wait for the first transaction to complete so that our
4801 	 * bean counters are appropriately updated.
4802 	 */
4803 	txg_wait_synced(spa->spa_dsl_pool, txg);
4804 
4805 	spa_spawn_aux_threads(spa);
4806 
4807 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4808 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4809 
4810 	spa_history_log_version(spa, "create");
4811 
4812 	/*
4813 	 * Don't count references from objsets that are already closed
4814 	 * and are making their way through the eviction process.
4815 	 */
4816 	spa_evicting_os_wait(spa);
4817 	spa->spa_minref = refcount_count(&spa->spa_refcount);
4818 	spa->spa_load_state = SPA_LOAD_NONE;
4819 
4820 	mutex_exit(&spa_namespace_lock);
4821 
4822 	return (0);
4823 }
4824 
4825 #ifdef _KERNEL
4826 /*
4827  * Get the root pool information from the root disk, then import the root pool
4828  * during the system boot up time.
4829  */
4830 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4831 
4832 static nvlist_t *
4833 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4834 {
4835 	nvlist_t *config;
4836 	nvlist_t *nvtop, *nvroot;
4837 	uint64_t pgid;
4838 
4839 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4840 		return (NULL);
4841 
4842 	/*
4843 	 * Add this top-level vdev to the child array.
4844 	 */
4845 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4846 	    &nvtop) == 0);
4847 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4848 	    &pgid) == 0);
4849 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4850 
4851 	/*
4852 	 * Put this pool's top-level vdevs into a root vdev.
4853 	 */
4854 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4855 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4856 	    VDEV_TYPE_ROOT) == 0);
4857 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4858 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4859 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4860 	    &nvtop, 1) == 0);
4861 
4862 	/*
4863 	 * Replace the existing vdev_tree with the new root vdev in
4864 	 * this pool's configuration (remove the old, add the new).
4865 	 */
4866 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4867 	nvlist_free(nvroot);
4868 	return (config);
4869 }
4870 
4871 /*
4872  * Walk the vdev tree and see if we can find a device with "better"
4873  * configuration. A configuration is "better" if the label on that
4874  * device has a more recent txg.
4875  */
4876 static void
4877 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4878 {
4879 	for (int c = 0; c < vd->vdev_children; c++)
4880 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4881 
4882 	if (vd->vdev_ops->vdev_op_leaf) {
4883 		nvlist_t *label;
4884 		uint64_t label_txg;
4885 
4886 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4887 		    &label) != 0)
4888 			return;
4889 
4890 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4891 		    &label_txg) == 0);
4892 
4893 		/*
4894 		 * Do we have a better boot device?
4895 		 */
4896 		if (label_txg > *txg) {
4897 			*txg = label_txg;
4898 			*avd = vd;
4899 		}
4900 		nvlist_free(label);
4901 	}
4902 }
4903 
4904 /*
4905  * Import a root pool.
4906  *
4907  * For x86. devpath_list will consist of devid and/or physpath name of
4908  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4909  * The GRUB "findroot" command will return the vdev we should boot.
4910  *
4911  * For Sparc, devpath_list consists the physpath name of the booting device
4912  * no matter the rootpool is a single device pool or a mirrored pool.
4913  * e.g.
4914  *	"/pci@1f,0/ide@d/disk@0,0:a"
4915  */
4916 int
4917 spa_import_rootpool(char *devpath, char *devid)
4918 {
4919 	spa_t *spa;
4920 	vdev_t *rvd, *bvd, *avd = NULL;
4921 	nvlist_t *config, *nvtop;
4922 	uint64_t guid, txg;
4923 	char *pname;
4924 	int error;
4925 
4926 	/*
4927 	 * Read the label from the boot device and generate a configuration.
4928 	 */
4929 	config = spa_generate_rootconf(devpath, devid, &guid);
4930 #if defined(_OBP) && defined(_KERNEL)
4931 	if (config == NULL) {
4932 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4933 			/* iscsi boot */
4934 			get_iscsi_bootpath_phy(devpath);
4935 			config = spa_generate_rootconf(devpath, devid, &guid);
4936 		}
4937 	}
4938 #endif
4939 	if (config == NULL) {
4940 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4941 		    devpath);
4942 		return (SET_ERROR(EIO));
4943 	}
4944 
4945 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4946 	    &pname) == 0);
4947 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4948 
4949 	mutex_enter(&spa_namespace_lock);
4950 	if ((spa = spa_lookup(pname)) != NULL) {
4951 		/*
4952 		 * Remove the existing root pool from the namespace so that we
4953 		 * can replace it with the correct config we just read in.
4954 		 */
4955 		spa_remove(spa);
4956 	}
4957 
4958 	spa = spa_add(pname, config, NULL);
4959 	spa->spa_is_root = B_TRUE;
4960 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4961 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4962 	    &spa->spa_ubsync.ub_version) != 0)
4963 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4964 
4965 	/*
4966 	 * Build up a vdev tree based on the boot device's label config.
4967 	 */
4968 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4969 	    &nvtop) == 0);
4970 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4971 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4972 	    VDEV_ALLOC_ROOTPOOL);
4973 	spa_config_exit(spa, SCL_ALL, FTAG);
4974 	if (error) {
4975 		mutex_exit(&spa_namespace_lock);
4976 		nvlist_free(config);
4977 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4978 		    pname);
4979 		return (error);
4980 	}
4981 
4982 	/*
4983 	 * Get the boot vdev.
4984 	 */
4985 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4986 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4987 		    (u_longlong_t)guid);
4988 		error = SET_ERROR(ENOENT);
4989 		goto out;
4990 	}
4991 
4992 	/*
4993 	 * Determine if there is a better boot device.
4994 	 */
4995 	avd = bvd;
4996 	spa_alt_rootvdev(rvd, &avd, &txg);
4997 	if (avd != bvd) {
4998 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4999 		    "try booting from '%s'", avd->vdev_path);
5000 		error = SET_ERROR(EINVAL);
5001 		goto out;
5002 	}
5003 
5004 	/*
5005 	 * If the boot device is part of a spare vdev then ensure that
5006 	 * we're booting off the active spare.
5007 	 */
5008 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5009 	    !bvd->vdev_isspare) {
5010 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5011 		    "try booting from '%s'",
5012 		    bvd->vdev_parent->
5013 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5014 		error = SET_ERROR(EINVAL);
5015 		goto out;
5016 	}
5017 
5018 	error = 0;
5019 out:
5020 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5021 	vdev_free(rvd);
5022 	spa_config_exit(spa, SCL_ALL, FTAG);
5023 	mutex_exit(&spa_namespace_lock);
5024 
5025 	nvlist_free(config);
5026 	return (error);
5027 }
5028 
5029 #endif
5030 
5031 /*
5032  * Import a non-root pool into the system.
5033  */
5034 int
5035 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5036 {
5037 	spa_t *spa;
5038 	char *altroot = NULL;
5039 	spa_load_state_t state = SPA_LOAD_IMPORT;
5040 	zpool_load_policy_t policy;
5041 	uint64_t mode = spa_mode_global;
5042 	uint64_t readonly = B_FALSE;
5043 	int error;
5044 	nvlist_t *nvroot;
5045 	nvlist_t **spares, **l2cache;
5046 	uint_t nspares, nl2cache;
5047 
5048 	/*
5049 	 * If a pool with this name exists, return failure.
5050 	 */
5051 	mutex_enter(&spa_namespace_lock);
5052 	if (spa_lookup(pool) != NULL) {
5053 		mutex_exit(&spa_namespace_lock);
5054 		return (SET_ERROR(EEXIST));
5055 	}
5056 
5057 	/*
5058 	 * Create and initialize the spa structure.
5059 	 */
5060 	(void) nvlist_lookup_string(props,
5061 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5062 	(void) nvlist_lookup_uint64(props,
5063 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5064 	if (readonly)
5065 		mode = FREAD;
5066 	spa = spa_add(pool, config, altroot);
5067 	spa->spa_import_flags = flags;
5068 
5069 	/*
5070 	 * Verbatim import - Take a pool and insert it into the namespace
5071 	 * as if it had been loaded at boot.
5072 	 */
5073 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5074 		if (props != NULL)
5075 			spa_configfile_set(spa, props, B_FALSE);
5076 
5077 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5078 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5079 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5080 		mutex_exit(&spa_namespace_lock);
5081 		return (0);
5082 	}
5083 
5084 	spa_activate(spa, mode);
5085 
5086 	/*
5087 	 * Don't start async tasks until we know everything is healthy.
5088 	 */
5089 	spa_async_suspend(spa);
5090 
5091 	zpool_get_load_policy(config, &policy);
5092 	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5093 		state = SPA_LOAD_RECOVER;
5094 
5095 	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5096 
5097 	if (state != SPA_LOAD_RECOVER) {
5098 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5099 		zfs_dbgmsg("spa_import: importing %s", pool);
5100 	} else {
5101 		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5102 		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5103 	}
5104 	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5105 
5106 	/*
5107 	 * Propagate anything learned while loading the pool and pass it
5108 	 * back to caller (i.e. rewind info, missing devices, etc).
5109 	 */
5110 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5111 	    spa->spa_load_info) == 0);
5112 
5113 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5114 	/*
5115 	 * Toss any existing sparelist, as it doesn't have any validity
5116 	 * anymore, and conflicts with spa_has_spare().
5117 	 */
5118 	if (spa->spa_spares.sav_config) {
5119 		nvlist_free(spa->spa_spares.sav_config);
5120 		spa->spa_spares.sav_config = NULL;
5121 		spa_load_spares(spa);
5122 	}
5123 	if (spa->spa_l2cache.sav_config) {
5124 		nvlist_free(spa->spa_l2cache.sav_config);
5125 		spa->spa_l2cache.sav_config = NULL;
5126 		spa_load_l2cache(spa);
5127 	}
5128 
5129 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5130 	    &nvroot) == 0);
5131 	if (error == 0)
5132 		error = spa_validate_aux(spa, nvroot, -1ULL,
5133 		    VDEV_ALLOC_SPARE);
5134 	if (error == 0)
5135 		error = spa_validate_aux(spa, nvroot, -1ULL,
5136 		    VDEV_ALLOC_L2CACHE);
5137 	spa_config_exit(spa, SCL_ALL, FTAG);
5138 
5139 	if (props != NULL)
5140 		spa_configfile_set(spa, props, B_FALSE);
5141 
5142 	if (error != 0 || (props && spa_writeable(spa) &&
5143 	    (error = spa_prop_set(spa, props)))) {
5144 		spa_unload(spa);
5145 		spa_deactivate(spa);
5146 		spa_remove(spa);
5147 		mutex_exit(&spa_namespace_lock);
5148 		return (error);
5149 	}
5150 
5151 	spa_async_resume(spa);
5152 
5153 	/*
5154 	 * Override any spares and level 2 cache devices as specified by
5155 	 * the user, as these may have correct device names/devids, etc.
5156 	 */
5157 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5158 	    &spares, &nspares) == 0) {
5159 		if (spa->spa_spares.sav_config)
5160 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5161 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5162 		else
5163 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5164 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5165 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5166 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5167 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5168 		spa_load_spares(spa);
5169 		spa_config_exit(spa, SCL_ALL, FTAG);
5170 		spa->spa_spares.sav_sync = B_TRUE;
5171 	}
5172 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5173 	    &l2cache, &nl2cache) == 0) {
5174 		if (spa->spa_l2cache.sav_config)
5175 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5176 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5177 		else
5178 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5179 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5180 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5181 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5182 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5183 		spa_load_l2cache(spa);
5184 		spa_config_exit(spa, SCL_ALL, FTAG);
5185 		spa->spa_l2cache.sav_sync = B_TRUE;
5186 	}
5187 
5188 	/*
5189 	 * Check for any removed devices.
5190 	 */
5191 	if (spa->spa_autoreplace) {
5192 		spa_aux_check_removed(&spa->spa_spares);
5193 		spa_aux_check_removed(&spa->spa_l2cache);
5194 	}
5195 
5196 	if (spa_writeable(spa)) {
5197 		/*
5198 		 * Update the config cache to include the newly-imported pool.
5199 		 */
5200 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5201 	}
5202 
5203 	/*
5204 	 * It's possible that the pool was expanded while it was exported.
5205 	 * We kick off an async task to handle this for us.
5206 	 */
5207 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5208 
5209 	spa_history_log_version(spa, "import");
5210 
5211 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5212 
5213 	mutex_exit(&spa_namespace_lock);
5214 
5215 	return (0);
5216 }
5217 
5218 nvlist_t *
5219 spa_tryimport(nvlist_t *tryconfig)
5220 {
5221 	nvlist_t *config = NULL;
5222 	char *poolname, *cachefile;
5223 	spa_t *spa;
5224 	uint64_t state;
5225 	int error;
5226 	zpool_load_policy_t policy;
5227 
5228 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5229 		return (NULL);
5230 
5231 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5232 		return (NULL);
5233 
5234 	/*
5235 	 * Create and initialize the spa structure.
5236 	 */
5237 	mutex_enter(&spa_namespace_lock);
5238 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5239 	spa_activate(spa, FREAD);
5240 
5241 	/*
5242 	 * Rewind pool if a max txg was provided.
5243 	 */
5244 	zpool_get_load_policy(spa->spa_config, &policy);
5245 	if (policy.zlp_txg != UINT64_MAX) {
5246 		spa->spa_load_max_txg = policy.zlp_txg;
5247 		spa->spa_extreme_rewind = B_TRUE;
5248 		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5249 		    poolname, (longlong_t)policy.zlp_txg);
5250 	} else {
5251 		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5252 	}
5253 
5254 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5255 	    == 0) {
5256 		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5257 		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5258 	} else {
5259 		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5260 	}
5261 
5262 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5263 
5264 	/*
5265 	 * If 'tryconfig' was at least parsable, return the current config.
5266 	 */
5267 	if (spa->spa_root_vdev != NULL) {
5268 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5269 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5270 		    poolname) == 0);
5271 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5272 		    state) == 0);
5273 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5274 		    spa->spa_uberblock.ub_timestamp) == 0);
5275 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5276 		    spa->spa_load_info) == 0);
5277 
5278 		/*
5279 		 * If the bootfs property exists on this pool then we
5280 		 * copy it out so that external consumers can tell which
5281 		 * pools are bootable.
5282 		 */
5283 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5284 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5285 
5286 			/*
5287 			 * We have to play games with the name since the
5288 			 * pool was opened as TRYIMPORT_NAME.
5289 			 */
5290 			if (dsl_dsobj_to_dsname(spa_name(spa),
5291 			    spa->spa_bootfs, tmpname) == 0) {
5292 				char *cp;
5293 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5294 
5295 				cp = strchr(tmpname, '/');
5296 				if (cp == NULL) {
5297 					(void) strlcpy(dsname, tmpname,
5298 					    MAXPATHLEN);
5299 				} else {
5300 					(void) snprintf(dsname, MAXPATHLEN,
5301 					    "%s/%s", poolname, ++cp);
5302 				}
5303 				VERIFY(nvlist_add_string(config,
5304 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5305 				kmem_free(dsname, MAXPATHLEN);
5306 			}
5307 			kmem_free(tmpname, MAXPATHLEN);
5308 		}
5309 
5310 		/*
5311 		 * Add the list of hot spares and level 2 cache devices.
5312 		 */
5313 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5314 		spa_add_spares(spa, config);
5315 		spa_add_l2cache(spa, config);
5316 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5317 	}
5318 
5319 	spa_unload(spa);
5320 	spa_deactivate(spa);
5321 	spa_remove(spa);
5322 	mutex_exit(&spa_namespace_lock);
5323 
5324 	return (config);
5325 }
5326 
5327 /*
5328  * Pool export/destroy
5329  *
5330  * The act of destroying or exporting a pool is very simple.  We make sure there
5331  * is no more pending I/O and any references to the pool are gone.  Then, we
5332  * update the pool state and sync all the labels to disk, removing the
5333  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5334  * we don't sync the labels or remove the configuration cache.
5335  */
5336 static int
5337 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5338     boolean_t force, boolean_t hardforce)
5339 {
5340 	spa_t *spa;
5341 
5342 	if (oldconfig)
5343 		*oldconfig = NULL;
5344 
5345 	if (!(spa_mode_global & FWRITE))
5346 		return (SET_ERROR(EROFS));
5347 
5348 	mutex_enter(&spa_namespace_lock);
5349 	if ((spa = spa_lookup(pool)) == NULL) {
5350 		mutex_exit(&spa_namespace_lock);
5351 		return (SET_ERROR(ENOENT));
5352 	}
5353 
5354 	/*
5355 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5356 	 * reacquire the namespace lock, and see if we can export.
5357 	 */
5358 	spa_open_ref(spa, FTAG);
5359 	mutex_exit(&spa_namespace_lock);
5360 	spa_async_suspend(spa);
5361 	mutex_enter(&spa_namespace_lock);
5362 	spa_close(spa, FTAG);
5363 
5364 	/*
5365 	 * The pool will be in core if it's openable,
5366 	 * in which case we can modify its state.
5367 	 */
5368 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5369 
5370 		/*
5371 		 * Objsets may be open only because they're dirty, so we
5372 		 * have to force it to sync before checking spa_refcnt.
5373 		 */
5374 		txg_wait_synced(spa->spa_dsl_pool, 0);
5375 		spa_evicting_os_wait(spa);
5376 
5377 		/*
5378 		 * A pool cannot be exported or destroyed if there are active
5379 		 * references.  If we are resetting a pool, allow references by
5380 		 * fault injection handlers.
5381 		 */
5382 		if (!spa_refcount_zero(spa) ||
5383 		    (spa->spa_inject_ref != 0 &&
5384 		    new_state != POOL_STATE_UNINITIALIZED)) {
5385 			spa_async_resume(spa);
5386 			mutex_exit(&spa_namespace_lock);
5387 			return (SET_ERROR(EBUSY));
5388 		}
5389 
5390 		/*
5391 		 * A pool cannot be exported if it has an active shared spare.
5392 		 * This is to prevent other pools stealing the active spare
5393 		 * from an exported pool. At user's own will, such pool can
5394 		 * be forcedly exported.
5395 		 */
5396 		if (!force && new_state == POOL_STATE_EXPORTED &&
5397 		    spa_has_active_shared_spare(spa)) {
5398 			spa_async_resume(spa);
5399 			mutex_exit(&spa_namespace_lock);
5400 			return (SET_ERROR(EXDEV));
5401 		}
5402 
5403 		/*
5404 		 * We're about to export or destroy this pool. Make sure
5405 		 * we stop all initializtion activity here before we
5406 		 * set the spa_final_txg. This will ensure that all
5407 		 * dirty data resulting from the initialization is
5408 		 * committed to disk before we unload the pool.
5409 		 */
5410 		if (spa->spa_root_vdev != NULL) {
5411 			vdev_initialize_stop_all(spa->spa_root_vdev,
5412 			    VDEV_INITIALIZE_ACTIVE);
5413 		}
5414 
5415 		/*
5416 		 * We want this to be reflected on every label,
5417 		 * so mark them all dirty.  spa_unload() will do the
5418 		 * final sync that pushes these changes out.
5419 		 */
5420 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5421 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5422 			spa->spa_state = new_state;
5423 			spa->spa_final_txg = spa_last_synced_txg(spa) +
5424 			    TXG_DEFER_SIZE + 1;
5425 			vdev_config_dirty(spa->spa_root_vdev);
5426 			spa_config_exit(spa, SCL_ALL, FTAG);
5427 		}
5428 	}
5429 
5430 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5431 
5432 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5433 		spa_unload(spa);
5434 		spa_deactivate(spa);
5435 	}
5436 
5437 	if (oldconfig && spa->spa_config)
5438 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5439 
5440 	if (new_state != POOL_STATE_UNINITIALIZED) {
5441 		if (!hardforce)
5442 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5443 		spa_remove(spa);
5444 	}
5445 	mutex_exit(&spa_namespace_lock);
5446 
5447 	return (0);
5448 }
5449 
5450 /*
5451  * Destroy a storage pool.
5452  */
5453 int
5454 spa_destroy(char *pool)
5455 {
5456 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5457 	    B_FALSE, B_FALSE));
5458 }
5459 
5460 /*
5461  * Export a storage pool.
5462  */
5463 int
5464 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5465     boolean_t hardforce)
5466 {
5467 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5468 	    force, hardforce));
5469 }
5470 
5471 /*
5472  * Similar to spa_export(), this unloads the spa_t without actually removing it
5473  * from the namespace in any way.
5474  */
5475 int
5476 spa_reset(char *pool)
5477 {
5478 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5479 	    B_FALSE, B_FALSE));
5480 }
5481 
5482 /*
5483  * ==========================================================================
5484  * Device manipulation
5485  * ==========================================================================
5486  */
5487 
5488 /*
5489  * Add a device to a storage pool.
5490  */
5491 int
5492 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5493 {
5494 	uint64_t txg, id;
5495 	int error;
5496 	vdev_t *rvd = spa->spa_root_vdev;
5497 	vdev_t *vd, *tvd;
5498 	nvlist_t **spares, **l2cache;
5499 	uint_t nspares, nl2cache;
5500 
5501 	ASSERT(spa_writeable(spa));
5502 
5503 	txg = spa_vdev_enter(spa);
5504 
5505 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5506 	    VDEV_ALLOC_ADD)) != 0)
5507 		return (spa_vdev_exit(spa, NULL, txg, error));
5508 
5509 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5510 
5511 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5512 	    &nspares) != 0)
5513 		nspares = 0;
5514 
5515 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5516 	    &nl2cache) != 0)
5517 		nl2cache = 0;
5518 
5519 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5520 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5521 
5522 	if (vd->vdev_children != 0 &&
5523 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5524 		return (spa_vdev_exit(spa, vd, txg, error));
5525 
5526 	/*
5527 	 * We must validate the spares and l2cache devices after checking the
5528 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5529 	 */
5530 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5531 		return (spa_vdev_exit(spa, vd, txg, error));
5532 
5533 	/*
5534 	 * If we are in the middle of a device removal, we can only add
5535 	 * devices which match the existing devices in the pool.
5536 	 * If we are in the middle of a removal, or have some indirect
5537 	 * vdevs, we can not add raidz toplevels.
5538 	 */
5539 	if (spa->spa_vdev_removal != NULL ||
5540 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5541 		for (int c = 0; c < vd->vdev_children; c++) {
5542 			tvd = vd->vdev_child[c];
5543 			if (spa->spa_vdev_removal != NULL &&
5544 			    tvd->vdev_ashift != spa->spa_max_ashift) {
5545 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5546 			}
5547 			/* Fail if top level vdev is raidz */
5548 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5549 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5550 			}
5551 			/*
5552 			 * Need the top level mirror to be
5553 			 * a mirror of leaf vdevs only
5554 			 */
5555 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5556 				for (uint64_t cid = 0;
5557 				    cid < tvd->vdev_children; cid++) {
5558 					vdev_t *cvd = tvd->vdev_child[cid];
5559 					if (!cvd->vdev_ops->vdev_op_leaf) {
5560 						return (spa_vdev_exit(spa, vd,
5561 						    txg, EINVAL));
5562 					}
5563 				}
5564 			}
5565 		}
5566 	}
5567 
5568 	for (int c = 0; c < vd->vdev_children; c++) {
5569 
5570 		/*
5571 		 * Set the vdev id to the first hole, if one exists.
5572 		 */
5573 		for (id = 0; id < rvd->vdev_children; id++) {
5574 			if (rvd->vdev_child[id]->vdev_ishole) {
5575 				vdev_free(rvd->vdev_child[id]);
5576 				break;
5577 			}
5578 		}
5579 		tvd = vd->vdev_child[c];
5580 		vdev_remove_child(vd, tvd);
5581 		tvd->vdev_id = id;
5582 		vdev_add_child(rvd, tvd);
5583 		vdev_config_dirty(tvd);
5584 	}
5585 
5586 	if (nspares != 0) {
5587 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5588 		    ZPOOL_CONFIG_SPARES);
5589 		spa_load_spares(spa);
5590 		spa->spa_spares.sav_sync = B_TRUE;
5591 	}
5592 
5593 	if (nl2cache != 0) {
5594 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5595 		    ZPOOL_CONFIG_L2CACHE);
5596 		spa_load_l2cache(spa);
5597 		spa->spa_l2cache.sav_sync = B_TRUE;
5598 	}
5599 
5600 	/*
5601 	 * We have to be careful when adding new vdevs to an existing pool.
5602 	 * If other threads start allocating from these vdevs before we
5603 	 * sync the config cache, and we lose power, then upon reboot we may
5604 	 * fail to open the pool because there are DVAs that the config cache
5605 	 * can't translate.  Therefore, we first add the vdevs without
5606 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5607 	 * and then let spa_config_update() initialize the new metaslabs.
5608 	 *
5609 	 * spa_load() checks for added-but-not-initialized vdevs, so that
5610 	 * if we lose power at any point in this sequence, the remaining
5611 	 * steps will be completed the next time we load the pool.
5612 	 */
5613 	(void) spa_vdev_exit(spa, vd, txg, 0);
5614 
5615 	mutex_enter(&spa_namespace_lock);
5616 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5617 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5618 	mutex_exit(&spa_namespace_lock);
5619 
5620 	return (0);
5621 }
5622 
5623 /*
5624  * Attach a device to a mirror.  The arguments are the path to any device
5625  * in the mirror, and the nvroot for the new device.  If the path specifies
5626  * a device that is not mirrored, we automatically insert the mirror vdev.
5627  *
5628  * If 'replacing' is specified, the new device is intended to replace the
5629  * existing device; in this case the two devices are made into their own
5630  * mirror using the 'replacing' vdev, which is functionally identical to
5631  * the mirror vdev (it actually reuses all the same ops) but has a few
5632  * extra rules: you can't attach to it after it's been created, and upon
5633  * completion of resilvering, the first disk (the one being replaced)
5634  * is automatically detached.
5635  */
5636 int
5637 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5638 {
5639 	uint64_t txg, dtl_max_txg;
5640 	vdev_t *rvd = spa->spa_root_vdev;
5641 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5642 	vdev_ops_t *pvops;
5643 	char *oldvdpath, *newvdpath;
5644 	int newvd_isspare;
5645 	int error;
5646 
5647 	ASSERT(spa_writeable(spa));
5648 
5649 	txg = spa_vdev_enter(spa);
5650 
5651 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5652 
5653 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5654 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5655 		error = (spa_has_checkpoint(spa)) ?
5656 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5657 		return (spa_vdev_exit(spa, NULL, txg, error));
5658 	}
5659 
5660 	if (spa->spa_vdev_removal != NULL)
5661 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5662 
5663 	if (oldvd == NULL)
5664 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5665 
5666 	if (!oldvd->vdev_ops->vdev_op_leaf)
5667 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5668 
5669 	pvd = oldvd->vdev_parent;
5670 
5671 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5672 	    VDEV_ALLOC_ATTACH)) != 0)
5673 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5674 
5675 	if (newrootvd->vdev_children != 1)
5676 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5677 
5678 	newvd = newrootvd->vdev_child[0];
5679 
5680 	if (!newvd->vdev_ops->vdev_op_leaf)
5681 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5682 
5683 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5684 		return (spa_vdev_exit(spa, newrootvd, txg, error));
5685 
5686 	/*
5687 	 * Spares can't replace logs
5688 	 */
5689 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5690 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5691 
5692 	if (!replacing) {
5693 		/*
5694 		 * For attach, the only allowable parent is a mirror or the root
5695 		 * vdev.
5696 		 */
5697 		if (pvd->vdev_ops != &vdev_mirror_ops &&
5698 		    pvd->vdev_ops != &vdev_root_ops)
5699 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5700 
5701 		pvops = &vdev_mirror_ops;
5702 	} else {
5703 		/*
5704 		 * Active hot spares can only be replaced by inactive hot
5705 		 * spares.
5706 		 */
5707 		if (pvd->vdev_ops == &vdev_spare_ops &&
5708 		    oldvd->vdev_isspare &&
5709 		    !spa_has_spare(spa, newvd->vdev_guid))
5710 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5711 
5712 		/*
5713 		 * If the source is a hot spare, and the parent isn't already a
5714 		 * spare, then we want to create a new hot spare.  Otherwise, we
5715 		 * want to create a replacing vdev.  The user is not allowed to
5716 		 * attach to a spared vdev child unless the 'isspare' state is
5717 		 * the same (spare replaces spare, non-spare replaces
5718 		 * non-spare).
5719 		 */
5720 		if (pvd->vdev_ops == &vdev_replacing_ops &&
5721 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5722 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5723 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
5724 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
5725 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5726 		}
5727 
5728 		if (newvd->vdev_isspare)
5729 			pvops = &vdev_spare_ops;
5730 		else
5731 			pvops = &vdev_replacing_ops;
5732 	}
5733 
5734 	/*
5735 	 * Make sure the new device is big enough.
5736 	 */
5737 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5738 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5739 
5740 	/*
5741 	 * The new device cannot have a higher alignment requirement
5742 	 * than the top-level vdev.
5743 	 */
5744 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5745 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5746 
5747 	/*
5748 	 * If this is an in-place replacement, update oldvd's path and devid
5749 	 * to make it distinguishable from newvd, and unopenable from now on.
5750 	 */
5751 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5752 		spa_strfree(oldvd->vdev_path);
5753 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5754 		    KM_SLEEP);
5755 		(void) sprintf(oldvd->vdev_path, "%s/%s",
5756 		    newvd->vdev_path, "old");
5757 		if (oldvd->vdev_devid != NULL) {
5758 			spa_strfree(oldvd->vdev_devid);
5759 			oldvd->vdev_devid = NULL;
5760 		}
5761 	}
5762 
5763 	/* mark the device being resilvered */
5764 	newvd->vdev_resilver_txg = txg;
5765 
5766 	/*
5767 	 * If the parent is not a mirror, or if we're replacing, insert the new
5768 	 * mirror/replacing/spare vdev above oldvd.
5769 	 */
5770 	if (pvd->vdev_ops != pvops)
5771 		pvd = vdev_add_parent(oldvd, pvops);
5772 
5773 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
5774 	ASSERT(pvd->vdev_ops == pvops);
5775 	ASSERT(oldvd->vdev_parent == pvd);
5776 
5777 	/*
5778 	 * Extract the new device from its root and add it to pvd.
5779 	 */
5780 	vdev_remove_child(newrootvd, newvd);
5781 	newvd->vdev_id = pvd->vdev_children;
5782 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
5783 	vdev_add_child(pvd, newvd);
5784 
5785 	tvd = newvd->vdev_top;
5786 	ASSERT(pvd->vdev_top == tvd);
5787 	ASSERT(tvd->vdev_parent == rvd);
5788 
5789 	vdev_config_dirty(tvd);
5790 
5791 	/*
5792 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5793 	 * for any dmu_sync-ed blocks.  It will propagate upward when
5794 	 * spa_vdev_exit() calls vdev_dtl_reassess().
5795 	 */
5796 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5797 
5798 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5799 	    dtl_max_txg - TXG_INITIAL);
5800 
5801 	if (newvd->vdev_isspare) {
5802 		spa_spare_activate(newvd);
5803 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5804 	}
5805 
5806 	oldvdpath = spa_strdup(oldvd->vdev_path);
5807 	newvdpath = spa_strdup(newvd->vdev_path);
5808 	newvd_isspare = newvd->vdev_isspare;
5809 
5810 	/*
5811 	 * Mark newvd's DTL dirty in this txg.
5812 	 */
5813 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5814 
5815 	/*
5816 	 * Schedule the resilver to restart in the future. We do this to
5817 	 * ensure that dmu_sync-ed blocks have been stitched into the
5818 	 * respective datasets.
5819 	 */
5820 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5821 
5822 	if (spa->spa_bootfs)
5823 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5824 
5825 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5826 
5827 	/*
5828 	 * Commit the config
5829 	 */
5830 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5831 
5832 	spa_history_log_internal(spa, "vdev attach", NULL,
5833 	    "%s vdev=%s %s vdev=%s",
5834 	    replacing && newvd_isspare ? "spare in" :
5835 	    replacing ? "replace" : "attach", newvdpath,
5836 	    replacing ? "for" : "to", oldvdpath);
5837 
5838 	spa_strfree(oldvdpath);
5839 	spa_strfree(newvdpath);
5840 
5841 	return (0);
5842 }
5843 
5844 /*
5845  * Detach a device from a mirror or replacing vdev.
5846  *
5847  * If 'replace_done' is specified, only detach if the parent
5848  * is a replacing vdev.
5849  */
5850 int
5851 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5852 {
5853 	uint64_t txg;
5854 	int error;
5855 	vdev_t *rvd = spa->spa_root_vdev;
5856 	vdev_t *vd, *pvd, *cvd, *tvd;
5857 	boolean_t unspare = B_FALSE;
5858 	uint64_t unspare_guid = 0;
5859 	char *vdpath;
5860 
5861 	ASSERT(spa_writeable(spa));
5862 
5863 	txg = spa_vdev_enter(spa);
5864 
5865 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5866 
5867 	/*
5868 	 * Besides being called directly from the userland through the
5869 	 * ioctl interface, spa_vdev_detach() can be potentially called
5870 	 * at the end of spa_vdev_resilver_done().
5871 	 *
5872 	 * In the regular case, when we have a checkpoint this shouldn't
5873 	 * happen as we never empty the DTLs of a vdev during the scrub
5874 	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
5875 	 * should never get here when we have a checkpoint.
5876 	 *
5877 	 * That said, even in a case when we checkpoint the pool exactly
5878 	 * as spa_vdev_resilver_done() calls this function everything
5879 	 * should be fine as the resilver will return right away.
5880 	 */
5881 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5882 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5883 		error = (spa_has_checkpoint(spa)) ?
5884 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5885 		return (spa_vdev_exit(spa, NULL, txg, error));
5886 	}
5887 
5888 	if (vd == NULL)
5889 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5890 
5891 	if (!vd->vdev_ops->vdev_op_leaf)
5892 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5893 
5894 	pvd = vd->vdev_parent;
5895 
5896 	/*
5897 	 * If the parent/child relationship is not as expected, don't do it.
5898 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5899 	 * vdev that's replacing B with C.  The user's intent in replacing
5900 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5901 	 * the replace by detaching C, the expected behavior is to end up
5902 	 * M(A,B).  But suppose that right after deciding to detach C,
5903 	 * the replacement of B completes.  We would have M(A,C), and then
5904 	 * ask to detach C, which would leave us with just A -- not what
5905 	 * the user wanted.  To prevent this, we make sure that the
5906 	 * parent/child relationship hasn't changed -- in this example,
5907 	 * that C's parent is still the replacing vdev R.
5908 	 */
5909 	if (pvd->vdev_guid != pguid && pguid != 0)
5910 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5911 
5912 	/*
5913 	 * Only 'replacing' or 'spare' vdevs can be replaced.
5914 	 */
5915 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5916 	    pvd->vdev_ops != &vdev_spare_ops)
5917 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5918 
5919 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5920 	    spa_version(spa) >= SPA_VERSION_SPARES);
5921 
5922 	/*
5923 	 * Only mirror, replacing, and spare vdevs support detach.
5924 	 */
5925 	if (pvd->vdev_ops != &vdev_replacing_ops &&
5926 	    pvd->vdev_ops != &vdev_mirror_ops &&
5927 	    pvd->vdev_ops != &vdev_spare_ops)
5928 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5929 
5930 	/*
5931 	 * If this device has the only valid copy of some data,
5932 	 * we cannot safely detach it.
5933 	 */
5934 	if (vdev_dtl_required(vd))
5935 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5936 
5937 	ASSERT(pvd->vdev_children >= 2);
5938 
5939 	/*
5940 	 * If we are detaching the second disk from a replacing vdev, then
5941 	 * check to see if we changed the original vdev's path to have "/old"
5942 	 * at the end in spa_vdev_attach().  If so, undo that change now.
5943 	 */
5944 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5945 	    vd->vdev_path != NULL) {
5946 		size_t len = strlen(vd->vdev_path);
5947 
5948 		for (int c = 0; c < pvd->vdev_children; c++) {
5949 			cvd = pvd->vdev_child[c];
5950 
5951 			if (cvd == vd || cvd->vdev_path == NULL)
5952 				continue;
5953 
5954 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5955 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5956 				spa_strfree(cvd->vdev_path);
5957 				cvd->vdev_path = spa_strdup(vd->vdev_path);
5958 				break;
5959 			}
5960 		}
5961 	}
5962 
5963 	/*
5964 	 * If we are detaching the original disk from a spare, then it implies
5965 	 * that the spare should become a real disk, and be removed from the
5966 	 * active spare list for the pool.
5967 	 */
5968 	if (pvd->vdev_ops == &vdev_spare_ops &&
5969 	    vd->vdev_id == 0 &&
5970 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5971 		unspare = B_TRUE;
5972 
5973 	/*
5974 	 * Erase the disk labels so the disk can be used for other things.
5975 	 * This must be done after all other error cases are handled,
5976 	 * but before we disembowel vd (so we can still do I/O to it).
5977 	 * But if we can't do it, don't treat the error as fatal --
5978 	 * it may be that the unwritability of the disk is the reason
5979 	 * it's being detached!
5980 	 */
5981 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5982 
5983 	/*
5984 	 * Remove vd from its parent and compact the parent's children.
5985 	 */
5986 	vdev_remove_child(pvd, vd);
5987 	vdev_compact_children(pvd);
5988 
5989 	/*
5990 	 * Remember one of the remaining children so we can get tvd below.
5991 	 */
5992 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5993 
5994 	/*
5995 	 * If we need to remove the remaining child from the list of hot spares,
5996 	 * do it now, marking the vdev as no longer a spare in the process.
5997 	 * We must do this before vdev_remove_parent(), because that can
5998 	 * change the GUID if it creates a new toplevel GUID.  For a similar
5999 	 * reason, we must remove the spare now, in the same txg as the detach;
6000 	 * otherwise someone could attach a new sibling, change the GUID, and
6001 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6002 	 */
6003 	if (unspare) {
6004 		ASSERT(cvd->vdev_isspare);
6005 		spa_spare_remove(cvd);
6006 		unspare_guid = cvd->vdev_guid;
6007 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6008 		cvd->vdev_unspare = B_TRUE;
6009 	}
6010 
6011 	/*
6012 	 * If the parent mirror/replacing vdev only has one child,
6013 	 * the parent is no longer needed.  Remove it from the tree.
6014 	 */
6015 	if (pvd->vdev_children == 1) {
6016 		if (pvd->vdev_ops == &vdev_spare_ops)
6017 			cvd->vdev_unspare = B_FALSE;
6018 		vdev_remove_parent(cvd);
6019 	}
6020 
6021 
6022 	/*
6023 	 * We don't set tvd until now because the parent we just removed
6024 	 * may have been the previous top-level vdev.
6025 	 */
6026 	tvd = cvd->vdev_top;
6027 	ASSERT(tvd->vdev_parent == rvd);
6028 
6029 	/*
6030 	 * Reevaluate the parent vdev state.
6031 	 */
6032 	vdev_propagate_state(cvd);
6033 
6034 	/*
6035 	 * If the 'autoexpand' property is set on the pool then automatically
6036 	 * try to expand the size of the pool. For example if the device we
6037 	 * just detached was smaller than the others, it may be possible to
6038 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6039 	 * first so that we can obtain the updated sizes of the leaf vdevs.
6040 	 */
6041 	if (spa->spa_autoexpand) {
6042 		vdev_reopen(tvd);
6043 		vdev_expand(tvd, txg);
6044 	}
6045 
6046 	vdev_config_dirty(tvd);
6047 
6048 	/*
6049 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6050 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6051 	 * But first make sure we're not on any *other* txg's DTL list, to
6052 	 * prevent vd from being accessed after it's freed.
6053 	 */
6054 	vdpath = spa_strdup(vd->vdev_path);
6055 	for (int t = 0; t < TXG_SIZE; t++)
6056 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6057 	vd->vdev_detached = B_TRUE;
6058 	vdev_dirty(tvd, VDD_DTL, vd, txg);
6059 
6060 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6061 
6062 	/* hang on to the spa before we release the lock */
6063 	spa_open_ref(spa, FTAG);
6064 
6065 	error = spa_vdev_exit(spa, vd, txg, 0);
6066 
6067 	spa_history_log_internal(spa, "detach", NULL,
6068 	    "vdev=%s", vdpath);
6069 	spa_strfree(vdpath);
6070 
6071 	/*
6072 	 * If this was the removal of the original device in a hot spare vdev,
6073 	 * then we want to go through and remove the device from the hot spare
6074 	 * list of every other pool.
6075 	 */
6076 	if (unspare) {
6077 		spa_t *altspa = NULL;
6078 
6079 		mutex_enter(&spa_namespace_lock);
6080 		while ((altspa = spa_next(altspa)) != NULL) {
6081 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6082 			    altspa == spa)
6083 				continue;
6084 
6085 			spa_open_ref(altspa, FTAG);
6086 			mutex_exit(&spa_namespace_lock);
6087 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6088 			mutex_enter(&spa_namespace_lock);
6089 			spa_close(altspa, FTAG);
6090 		}
6091 		mutex_exit(&spa_namespace_lock);
6092 
6093 		/* search the rest of the vdevs for spares to remove */
6094 		spa_vdev_resilver_done(spa);
6095 	}
6096 
6097 	/* all done with the spa; OK to release */
6098 	mutex_enter(&spa_namespace_lock);
6099 	spa_close(spa, FTAG);
6100 	mutex_exit(&spa_namespace_lock);
6101 
6102 	return (error);
6103 }
6104 
6105 int
6106 spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6107 {
6108 	/*
6109 	 * We hold the namespace lock through the whole function
6110 	 * to prevent any changes to the pool while we're starting or
6111 	 * stopping initialization. The config and state locks are held so that
6112 	 * we can properly assess the vdev state before we commit to
6113 	 * the initializing operation.
6114 	 */
6115 	mutex_enter(&spa_namespace_lock);
6116 	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6117 
6118 	/* Look up vdev and ensure it's a leaf. */
6119 	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6120 	if (vd == NULL || vd->vdev_detached) {
6121 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6122 		mutex_exit(&spa_namespace_lock);
6123 		return (SET_ERROR(ENODEV));
6124 	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6125 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6126 		mutex_exit(&spa_namespace_lock);
6127 		return (SET_ERROR(EINVAL));
6128 	} else if (!vdev_writeable(vd)) {
6129 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6130 		mutex_exit(&spa_namespace_lock);
6131 		return (SET_ERROR(EROFS));
6132 	}
6133 	mutex_enter(&vd->vdev_initialize_lock);
6134 	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6135 
6136 	/*
6137 	 * When we activate an initialize action we check to see
6138 	 * if the vdev_initialize_thread is NULL. We do this instead
6139 	 * of using the vdev_initialize_state since there might be
6140 	 * a previous initialization process which has completed but
6141 	 * the thread is not exited.
6142 	 */
6143 	if (cmd_type == POOL_INITIALIZE_DO &&
6144 	    (vd->vdev_initialize_thread != NULL ||
6145 	    vd->vdev_top->vdev_removing)) {
6146 		mutex_exit(&vd->vdev_initialize_lock);
6147 		mutex_exit(&spa_namespace_lock);
6148 		return (SET_ERROR(EBUSY));
6149 	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6150 	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6151 	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6152 		mutex_exit(&vd->vdev_initialize_lock);
6153 		mutex_exit(&spa_namespace_lock);
6154 		return (SET_ERROR(ESRCH));
6155 	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6156 	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6157 		mutex_exit(&vd->vdev_initialize_lock);
6158 		mutex_exit(&spa_namespace_lock);
6159 		return (SET_ERROR(ESRCH));
6160 	}
6161 
6162 	switch (cmd_type) {
6163 	case POOL_INITIALIZE_DO:
6164 		vdev_initialize(vd);
6165 		break;
6166 	case POOL_INITIALIZE_CANCEL:
6167 		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6168 		break;
6169 	case POOL_INITIALIZE_SUSPEND:
6170 		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6171 		break;
6172 	default:
6173 		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6174 	}
6175 	mutex_exit(&vd->vdev_initialize_lock);
6176 
6177 	/* Sync out the initializing state */
6178 	txg_wait_synced(spa->spa_dsl_pool, 0);
6179 	mutex_exit(&spa_namespace_lock);
6180 
6181 	return (0);
6182 }
6183 
6184 
6185 /*
6186  * Split a set of devices from their mirrors, and create a new pool from them.
6187  */
6188 int
6189 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6190     nvlist_t *props, boolean_t exp)
6191 {
6192 	int error = 0;
6193 	uint64_t txg, *glist;
6194 	spa_t *newspa;
6195 	uint_t c, children, lastlog;
6196 	nvlist_t **child, *nvl, *tmp;
6197 	dmu_tx_t *tx;
6198 	char *altroot = NULL;
6199 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6200 	boolean_t activate_slog;
6201 
6202 	ASSERT(spa_writeable(spa));
6203 
6204 	txg = spa_vdev_enter(spa);
6205 
6206 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6207 	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6208 		error = (spa_has_checkpoint(spa)) ?
6209 		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6210 		return (spa_vdev_exit(spa, NULL, txg, error));
6211 	}
6212 
6213 	/* clear the log and flush everything up to now */
6214 	activate_slog = spa_passivate_log(spa);
6215 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6216 	error = spa_reset_logs(spa);
6217 	txg = spa_vdev_config_enter(spa);
6218 
6219 	if (activate_slog)
6220 		spa_activate_log(spa);
6221 
6222 	if (error != 0)
6223 		return (spa_vdev_exit(spa, NULL, txg, error));
6224 
6225 	/* check new spa name before going any further */
6226 	if (spa_lookup(newname) != NULL)
6227 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6228 
6229 	/*
6230 	 * scan through all the children to ensure they're all mirrors
6231 	 */
6232 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6233 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6234 	    &children) != 0)
6235 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6236 
6237 	/* first, check to ensure we've got the right child count */
6238 	rvd = spa->spa_root_vdev;
6239 	lastlog = 0;
6240 	for (c = 0; c < rvd->vdev_children; c++) {
6241 		vdev_t *vd = rvd->vdev_child[c];
6242 
6243 		/* don't count the holes & logs as children */
6244 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6245 			if (lastlog == 0)
6246 				lastlog = c;
6247 			continue;
6248 		}
6249 
6250 		lastlog = 0;
6251 	}
6252 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6253 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6254 
6255 	/* next, ensure no spare or cache devices are part of the split */
6256 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6257 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6258 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6259 
6260 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6261 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6262 
6263 	/* then, loop over each vdev and validate it */
6264 	for (c = 0; c < children; c++) {
6265 		uint64_t is_hole = 0;
6266 
6267 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6268 		    &is_hole);
6269 
6270 		if (is_hole != 0) {
6271 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6272 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6273 				continue;
6274 			} else {
6275 				error = SET_ERROR(EINVAL);
6276 				break;
6277 			}
6278 		}
6279 
6280 		/* which disk is going to be split? */
6281 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6282 		    &glist[c]) != 0) {
6283 			error = SET_ERROR(EINVAL);
6284 			break;
6285 		}
6286 
6287 		/* look it up in the spa */
6288 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6289 		if (vml[c] == NULL) {
6290 			error = SET_ERROR(ENODEV);
6291 			break;
6292 		}
6293 
6294 		/* make sure there's nothing stopping the split */
6295 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6296 		    vml[c]->vdev_islog ||
6297 		    !vdev_is_concrete(vml[c]) ||
6298 		    vml[c]->vdev_isspare ||
6299 		    vml[c]->vdev_isl2cache ||
6300 		    !vdev_writeable(vml[c]) ||
6301 		    vml[c]->vdev_children != 0 ||
6302 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6303 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6304 			error = SET_ERROR(EINVAL);
6305 			break;
6306 		}
6307 
6308 		if (vdev_dtl_required(vml[c])) {
6309 			error = SET_ERROR(EBUSY);
6310 			break;
6311 		}
6312 
6313 		/* we need certain info from the top level */
6314 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6315 		    vml[c]->vdev_top->vdev_ms_array) == 0);
6316 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6317 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6318 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6319 		    vml[c]->vdev_top->vdev_asize) == 0);
6320 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6321 		    vml[c]->vdev_top->vdev_ashift) == 0);
6322 
6323 		/* transfer per-vdev ZAPs */
6324 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6325 		VERIFY0(nvlist_add_uint64(child[c],
6326 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6327 
6328 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6329 		VERIFY0(nvlist_add_uint64(child[c],
6330 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6331 		    vml[c]->vdev_parent->vdev_top_zap));
6332 	}
6333 
6334 	if (error != 0) {
6335 		kmem_free(vml, children * sizeof (vdev_t *));
6336 		kmem_free(glist, children * sizeof (uint64_t));
6337 		return (spa_vdev_exit(spa, NULL, txg, error));
6338 	}
6339 
6340 	/* stop writers from using the disks */
6341 	for (c = 0; c < children; c++) {
6342 		if (vml[c] != NULL)
6343 			vml[c]->vdev_offline = B_TRUE;
6344 	}
6345 	vdev_reopen(spa->spa_root_vdev);
6346 
6347 	/*
6348 	 * Temporarily record the splitting vdevs in the spa config.  This
6349 	 * will disappear once the config is regenerated.
6350 	 */
6351 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6352 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6353 	    glist, children) == 0);
6354 	kmem_free(glist, children * sizeof (uint64_t));
6355 
6356 	mutex_enter(&spa->spa_props_lock);
6357 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6358 	    nvl) == 0);
6359 	mutex_exit(&spa->spa_props_lock);
6360 	spa->spa_config_splitting = nvl;
6361 	vdev_config_dirty(spa->spa_root_vdev);
6362 
6363 	/* configure and create the new pool */
6364 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6365 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6366 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6367 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6368 	    spa_version(spa)) == 0);
6369 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6370 	    spa->spa_config_txg) == 0);
6371 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6372 	    spa_generate_guid(NULL)) == 0);
6373 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6374 	(void) nvlist_lookup_string(props,
6375 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6376 
6377 	/* add the new pool to the namespace */
6378 	newspa = spa_add(newname, config, altroot);
6379 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6380 	newspa->spa_config_txg = spa->spa_config_txg;
6381 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6382 
6383 	/* release the spa config lock, retaining the namespace lock */
6384 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6385 
6386 	if (zio_injection_enabled)
6387 		zio_handle_panic_injection(spa, FTAG, 1);
6388 
6389 	spa_activate(newspa, spa_mode_global);
6390 	spa_async_suspend(newspa);
6391 
6392 	for (c = 0; c < children; c++) {
6393 		if (vml[c] != NULL) {
6394 			/*
6395 			 * Temporarily stop the initializing activity. We set
6396 			 * the state to ACTIVE so that we know to resume
6397 			 * the initializing once the split has completed.
6398 			 */
6399 			mutex_enter(&vml[c]->vdev_initialize_lock);
6400 			vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6401 			mutex_exit(&vml[c]->vdev_initialize_lock);
6402 		}
6403 	}
6404 
6405 	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6406 
6407 	/* create the new pool from the disks of the original pool */
6408 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6409 	if (error)
6410 		goto out;
6411 
6412 	/* if that worked, generate a real config for the new pool */
6413 	if (newspa->spa_root_vdev != NULL) {
6414 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6415 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6416 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6417 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6418 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6419 		    B_TRUE));
6420 	}
6421 
6422 	/* set the props */
6423 	if (props != NULL) {
6424 		spa_configfile_set(newspa, props, B_FALSE);
6425 		error = spa_prop_set(newspa, props);
6426 		if (error)
6427 			goto out;
6428 	}
6429 
6430 	/* flush everything */
6431 	txg = spa_vdev_config_enter(newspa);
6432 	vdev_config_dirty(newspa->spa_root_vdev);
6433 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6434 
6435 	if (zio_injection_enabled)
6436 		zio_handle_panic_injection(spa, FTAG, 2);
6437 
6438 	spa_async_resume(newspa);
6439 
6440 	/* finally, update the original pool's config */
6441 	txg = spa_vdev_config_enter(spa);
6442 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6443 	error = dmu_tx_assign(tx, TXG_WAIT);
6444 	if (error != 0)
6445 		dmu_tx_abort(tx);
6446 	for (c = 0; c < children; c++) {
6447 		if (vml[c] != NULL) {
6448 			vdev_split(vml[c]);
6449 			if (error == 0)
6450 				spa_history_log_internal(spa, "detach", tx,
6451 				    "vdev=%s", vml[c]->vdev_path);
6452 
6453 			vdev_free(vml[c]);
6454 		}
6455 	}
6456 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6457 	vdev_config_dirty(spa->spa_root_vdev);
6458 	spa->spa_config_splitting = NULL;
6459 	nvlist_free(nvl);
6460 	if (error == 0)
6461 		dmu_tx_commit(tx);
6462 	(void) spa_vdev_exit(spa, NULL, txg, 0);
6463 
6464 	if (zio_injection_enabled)
6465 		zio_handle_panic_injection(spa, FTAG, 3);
6466 
6467 	/* split is complete; log a history record */
6468 	spa_history_log_internal(newspa, "split", NULL,
6469 	    "from pool %s", spa_name(spa));
6470 
6471 	kmem_free(vml, children * sizeof (vdev_t *));
6472 
6473 	/* if we're not going to mount the filesystems in userland, export */
6474 	if (exp)
6475 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6476 		    B_FALSE, B_FALSE);
6477 
6478 	return (error);
6479 
6480 out:
6481 	spa_unload(newspa);
6482 	spa_deactivate(newspa);
6483 	spa_remove(newspa);
6484 
6485 	txg = spa_vdev_config_enter(spa);
6486 
6487 	/* re-online all offlined disks */
6488 	for (c = 0; c < children; c++) {
6489 		if (vml[c] != NULL)
6490 			vml[c]->vdev_offline = B_FALSE;
6491 	}
6492 
6493 	/* restart initializing disks as necessary */
6494 	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6495 
6496 	vdev_reopen(spa->spa_root_vdev);
6497 
6498 	nvlist_free(spa->spa_config_splitting);
6499 	spa->spa_config_splitting = NULL;
6500 	(void) spa_vdev_exit(spa, NULL, txg, error);
6501 
6502 	kmem_free(vml, children * sizeof (vdev_t *));
6503 	return (error);
6504 }
6505 
6506 /*
6507  * Find any device that's done replacing, or a vdev marked 'unspare' that's
6508  * currently spared, so we can detach it.
6509  */
6510 static vdev_t *
6511 spa_vdev_resilver_done_hunt(vdev_t *vd)
6512 {
6513 	vdev_t *newvd, *oldvd;
6514 
6515 	for (int c = 0; c < vd->vdev_children; c++) {
6516 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6517 		if (oldvd != NULL)
6518 			return (oldvd);
6519 	}
6520 
6521 	/*
6522 	 * Check for a completed replacement.  We always consider the first
6523 	 * vdev in the list to be the oldest vdev, and the last one to be
6524 	 * the newest (see spa_vdev_attach() for how that works).  In
6525 	 * the case where the newest vdev is faulted, we will not automatically
6526 	 * remove it after a resilver completes.  This is OK as it will require
6527 	 * user intervention to determine which disk the admin wishes to keep.
6528 	 */
6529 	if (vd->vdev_ops == &vdev_replacing_ops) {
6530 		ASSERT(vd->vdev_children > 1);
6531 
6532 		newvd = vd->vdev_child[vd->vdev_children - 1];
6533 		oldvd = vd->vdev_child[0];
6534 
6535 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6536 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6537 		    !vdev_dtl_required(oldvd))
6538 			return (oldvd);
6539 	}
6540 
6541 	/*
6542 	 * Check for a completed resilver with the 'unspare' flag set.
6543 	 * Also potentially update faulted state.
6544 	 */
6545 	if (vd->vdev_ops == &vdev_spare_ops) {
6546 		vdev_t *first = vd->vdev_child[0];
6547 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6548 
6549 		if (last->vdev_unspare) {
6550 			oldvd = first;
6551 			newvd = last;
6552 		} else if (first->vdev_unspare) {
6553 			oldvd = last;
6554 			newvd = first;
6555 		} else {
6556 			oldvd = NULL;
6557 		}
6558 
6559 		if (oldvd != NULL &&
6560 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6561 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6562 		    !vdev_dtl_required(oldvd))
6563 			return (oldvd);
6564 
6565 		vdev_propagate_state(vd);
6566 
6567 		/*
6568 		 * If there are more than two spares attached to a disk,
6569 		 * and those spares are not required, then we want to
6570 		 * attempt to free them up now so that they can be used
6571 		 * by other pools.  Once we're back down to a single
6572 		 * disk+spare, we stop removing them.
6573 		 */
6574 		if (vd->vdev_children > 2) {
6575 			newvd = vd->vdev_child[1];
6576 
6577 			if (newvd->vdev_isspare && last->vdev_isspare &&
6578 			    vdev_dtl_empty(last, DTL_MISSING) &&
6579 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6580 			    !vdev_dtl_required(newvd))
6581 				return (newvd);
6582 		}
6583 	}
6584 
6585 	return (NULL);
6586 }
6587 
6588 static void
6589 spa_vdev_resilver_done(spa_t *spa)
6590 {
6591 	vdev_t *vd, *pvd, *ppvd;
6592 	uint64_t guid, sguid, pguid, ppguid;
6593 
6594 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6595 
6596 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6597 		pvd = vd->vdev_parent;
6598 		ppvd = pvd->vdev_parent;
6599 		guid = vd->vdev_guid;
6600 		pguid = pvd->vdev_guid;
6601 		ppguid = ppvd->vdev_guid;
6602 		sguid = 0;
6603 		/*
6604 		 * If we have just finished replacing a hot spared device, then
6605 		 * we need to detach the parent's first child (the original hot
6606 		 * spare) as well.
6607 		 */
6608 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6609 		    ppvd->vdev_children == 2) {
6610 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6611 			sguid = ppvd->vdev_child[1]->vdev_guid;
6612 		}
6613 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6614 
6615 		spa_config_exit(spa, SCL_ALL, FTAG);
6616 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6617 			return;
6618 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6619 			return;
6620 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6621 	}
6622 
6623 	spa_config_exit(spa, SCL_ALL, FTAG);
6624 }
6625 
6626 /*
6627  * Update the stored path or FRU for this vdev.
6628  */
6629 int
6630 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6631     boolean_t ispath)
6632 {
6633 	vdev_t *vd;
6634 	boolean_t sync = B_FALSE;
6635 
6636 	ASSERT(spa_writeable(spa));
6637 
6638 	spa_vdev_state_enter(spa, SCL_ALL);
6639 
6640 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6641 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6642 
6643 	if (!vd->vdev_ops->vdev_op_leaf)
6644 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6645 
6646 	if (ispath) {
6647 		if (strcmp(value, vd->vdev_path) != 0) {
6648 			spa_strfree(vd->vdev_path);
6649 			vd->vdev_path = spa_strdup(value);
6650 			sync = B_TRUE;
6651 		}
6652 	} else {
6653 		if (vd->vdev_fru == NULL) {
6654 			vd->vdev_fru = spa_strdup(value);
6655 			sync = B_TRUE;
6656 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6657 			spa_strfree(vd->vdev_fru);
6658 			vd->vdev_fru = spa_strdup(value);
6659 			sync = B_TRUE;
6660 		}
6661 	}
6662 
6663 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6664 }
6665 
6666 int
6667 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6668 {
6669 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6670 }
6671 
6672 int
6673 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6674 {
6675 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6676 }
6677 
6678 /*
6679  * ==========================================================================
6680  * SPA Scanning
6681  * ==========================================================================
6682  */
6683 int
6684 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6685 {
6686 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6687 
6688 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6689 		return (SET_ERROR(EBUSY));
6690 
6691 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6692 }
6693 
6694 int
6695 spa_scan_stop(spa_t *spa)
6696 {
6697 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6698 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6699 		return (SET_ERROR(EBUSY));
6700 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6701 }
6702 
6703 int
6704 spa_scan(spa_t *spa, pool_scan_func_t func)
6705 {
6706 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6707 
6708 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6709 		return (SET_ERROR(ENOTSUP));
6710 
6711 	/*
6712 	 * If a resilver was requested, but there is no DTL on a
6713 	 * writeable leaf device, we have nothing to do.
6714 	 */
6715 	if (func == POOL_SCAN_RESILVER &&
6716 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6717 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6718 		return (0);
6719 	}
6720 
6721 	return (dsl_scan(spa->spa_dsl_pool, func));
6722 }
6723 
6724 /*
6725  * ==========================================================================
6726  * SPA async task processing
6727  * ==========================================================================
6728  */
6729 
6730 static void
6731 spa_async_remove(spa_t *spa, vdev_t *vd)
6732 {
6733 	if (vd->vdev_remove_wanted) {
6734 		vd->vdev_remove_wanted = B_FALSE;
6735 		vd->vdev_delayed_close = B_FALSE;
6736 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6737 
6738 		/*
6739 		 * We want to clear the stats, but we don't want to do a full
6740 		 * vdev_clear() as that will cause us to throw away
6741 		 * degraded/faulted state as well as attempt to reopen the
6742 		 * device, all of which is a waste.
6743 		 */
6744 		vd->vdev_stat.vs_read_errors = 0;
6745 		vd->vdev_stat.vs_write_errors = 0;
6746 		vd->vdev_stat.vs_checksum_errors = 0;
6747 
6748 		vdev_state_dirty(vd->vdev_top);
6749 	}
6750 
6751 	for (int c = 0; c < vd->vdev_children; c++)
6752 		spa_async_remove(spa, vd->vdev_child[c]);
6753 }
6754 
6755 static void
6756 spa_async_probe(spa_t *spa, vdev_t *vd)
6757 {
6758 	if (vd->vdev_probe_wanted) {
6759 		vd->vdev_probe_wanted = B_FALSE;
6760 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6761 	}
6762 
6763 	for (int c = 0; c < vd->vdev_children; c++)
6764 		spa_async_probe(spa, vd->vdev_child[c]);
6765 }
6766 
6767 static void
6768 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6769 {
6770 	sysevent_id_t eid;
6771 	nvlist_t *attr;
6772 	char *physpath;
6773 
6774 	if (!spa->spa_autoexpand)
6775 		return;
6776 
6777 	for (int c = 0; c < vd->vdev_children; c++) {
6778 		vdev_t *cvd = vd->vdev_child[c];
6779 		spa_async_autoexpand(spa, cvd);
6780 	}
6781 
6782 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6783 		return;
6784 
6785 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6786 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6787 
6788 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6789 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6790 
6791 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6792 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6793 
6794 	nvlist_free(attr);
6795 	kmem_free(physpath, MAXPATHLEN);
6796 }
6797 
6798 static void
6799 spa_async_thread(void *arg)
6800 {
6801 	spa_t *spa = (spa_t *)arg;
6802 	int tasks;
6803 
6804 	ASSERT(spa->spa_sync_on);
6805 
6806 	mutex_enter(&spa->spa_async_lock);
6807 	tasks = spa->spa_async_tasks;
6808 	spa->spa_async_tasks = 0;
6809 	mutex_exit(&spa->spa_async_lock);
6810 
6811 	/*
6812 	 * See if the config needs to be updated.
6813 	 */
6814 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6815 		uint64_t old_space, new_space;
6816 
6817 		mutex_enter(&spa_namespace_lock);
6818 		old_space = metaslab_class_get_space(spa_normal_class(spa));
6819 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6820 		new_space = metaslab_class_get_space(spa_normal_class(spa));
6821 		mutex_exit(&spa_namespace_lock);
6822 
6823 		/*
6824 		 * If the pool grew as a result of the config update,
6825 		 * then log an internal history event.
6826 		 */
6827 		if (new_space != old_space) {
6828 			spa_history_log_internal(spa, "vdev online", NULL,
6829 			    "pool '%s' size: %llu(+%llu)",
6830 			    spa_name(spa), new_space, new_space - old_space);
6831 		}
6832 	}
6833 
6834 	/*
6835 	 * See if any devices need to be marked REMOVED.
6836 	 */
6837 	if (tasks & SPA_ASYNC_REMOVE) {
6838 		spa_vdev_state_enter(spa, SCL_NONE);
6839 		spa_async_remove(spa, spa->spa_root_vdev);
6840 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6841 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6842 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6843 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6844 		(void) spa_vdev_state_exit(spa, NULL, 0);
6845 	}
6846 
6847 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6848 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6849 		spa_async_autoexpand(spa, spa->spa_root_vdev);
6850 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6851 	}
6852 
6853 	/*
6854 	 * See if any devices need to be probed.
6855 	 */
6856 	if (tasks & SPA_ASYNC_PROBE) {
6857 		spa_vdev_state_enter(spa, SCL_NONE);
6858 		spa_async_probe(spa, spa->spa_root_vdev);
6859 		(void) spa_vdev_state_exit(spa, NULL, 0);
6860 	}
6861 
6862 	/*
6863 	 * If any devices are done replacing, detach them.
6864 	 */
6865 	if (tasks & SPA_ASYNC_RESILVER_DONE)
6866 		spa_vdev_resilver_done(spa);
6867 
6868 	/*
6869 	 * Kick off a resilver.
6870 	 */
6871 	if (tasks & SPA_ASYNC_RESILVER)
6872 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6873 
6874 	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
6875 		mutex_enter(&spa_namespace_lock);
6876 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6877 		vdev_initialize_restart(spa->spa_root_vdev);
6878 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6879 		mutex_exit(&spa_namespace_lock);
6880 	}
6881 
6882 	/*
6883 	 * Let the world know that we're done.
6884 	 */
6885 	mutex_enter(&spa->spa_async_lock);
6886 	spa->spa_async_thread = NULL;
6887 	cv_broadcast(&spa->spa_async_cv);
6888 	mutex_exit(&spa->spa_async_lock);
6889 	thread_exit();
6890 }
6891 
6892 void
6893 spa_async_suspend(spa_t *spa)
6894 {
6895 	mutex_enter(&spa->spa_async_lock);
6896 	spa->spa_async_suspended++;
6897 	while (spa->spa_async_thread != NULL)
6898 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6899 	mutex_exit(&spa->spa_async_lock);
6900 
6901 	spa_vdev_remove_suspend(spa);
6902 
6903 	zthr_t *condense_thread = spa->spa_condense_zthr;
6904 	if (condense_thread != NULL && zthr_isrunning(condense_thread))
6905 		VERIFY0(zthr_cancel(condense_thread));
6906 
6907 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6908 	if (discard_thread != NULL && zthr_isrunning(discard_thread))
6909 		VERIFY0(zthr_cancel(discard_thread));
6910 }
6911 
6912 void
6913 spa_async_resume(spa_t *spa)
6914 {
6915 	mutex_enter(&spa->spa_async_lock);
6916 	ASSERT(spa->spa_async_suspended != 0);
6917 	spa->spa_async_suspended--;
6918 	mutex_exit(&spa->spa_async_lock);
6919 	spa_restart_removal(spa);
6920 
6921 	zthr_t *condense_thread = spa->spa_condense_zthr;
6922 	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6923 		zthr_resume(condense_thread);
6924 
6925 	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
6926 	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
6927 		zthr_resume(discard_thread);
6928 }
6929 
6930 static boolean_t
6931 spa_async_tasks_pending(spa_t *spa)
6932 {
6933 	uint_t non_config_tasks;
6934 	uint_t config_task;
6935 	boolean_t config_task_suspended;
6936 
6937 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6938 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6939 	if (spa->spa_ccw_fail_time == 0) {
6940 		config_task_suspended = B_FALSE;
6941 	} else {
6942 		config_task_suspended =
6943 		    (gethrtime() - spa->spa_ccw_fail_time) <
6944 		    (zfs_ccw_retry_interval * NANOSEC);
6945 	}
6946 
6947 	return (non_config_tasks || (config_task && !config_task_suspended));
6948 }
6949 
6950 static void
6951 spa_async_dispatch(spa_t *spa)
6952 {
6953 	mutex_enter(&spa->spa_async_lock);
6954 	if (spa_async_tasks_pending(spa) &&
6955 	    !spa->spa_async_suspended &&
6956 	    spa->spa_async_thread == NULL &&
6957 	    rootdir != NULL)
6958 		spa->spa_async_thread = thread_create(NULL, 0,
6959 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6960 	mutex_exit(&spa->spa_async_lock);
6961 }
6962 
6963 void
6964 spa_async_request(spa_t *spa, int task)
6965 {
6966 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6967 	mutex_enter(&spa->spa_async_lock);
6968 	spa->spa_async_tasks |= task;
6969 	mutex_exit(&spa->spa_async_lock);
6970 }
6971 
6972 /*
6973  * ==========================================================================
6974  * SPA syncing routines
6975  * ==========================================================================
6976  */
6977 
6978 static int
6979 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6980 {
6981 	bpobj_t *bpo = arg;
6982 	bpobj_enqueue(bpo, bp, tx);
6983 	return (0);
6984 }
6985 
6986 static int
6987 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6988 {
6989 	zio_t *zio = arg;
6990 
6991 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6992 	    zio->io_flags));
6993 	return (0);
6994 }
6995 
6996 /*
6997  * Note: this simple function is not inlined to make it easier to dtrace the
6998  * amount of time spent syncing frees.
6999  */
7000 static void
7001 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7002 {
7003 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7004 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7005 	VERIFY(zio_wait(zio) == 0);
7006 }
7007 
7008 /*
7009  * Note: this simple function is not inlined to make it easier to dtrace the
7010  * amount of time spent syncing deferred frees.
7011  */
7012 static void
7013 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7014 {
7015 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7016 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7017 	    spa_free_sync_cb, zio, tx), ==, 0);
7018 	VERIFY0(zio_wait(zio));
7019 }
7020 
7021 
7022 static void
7023 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7024 {
7025 	char *packed = NULL;
7026 	size_t bufsize;
7027 	size_t nvsize = 0;
7028 	dmu_buf_t *db;
7029 
7030 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7031 
7032 	/*
7033 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7034 	 * information.  This avoids the dmu_buf_will_dirty() path and
7035 	 * saves us a pre-read to get data we don't actually care about.
7036 	 */
7037 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7038 	packed = kmem_alloc(bufsize, KM_SLEEP);
7039 
7040 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7041 	    KM_SLEEP) == 0);
7042 	bzero(packed + nvsize, bufsize - nvsize);
7043 
7044 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7045 
7046 	kmem_free(packed, bufsize);
7047 
7048 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7049 	dmu_buf_will_dirty(db, tx);
7050 	*(uint64_t *)db->db_data = nvsize;
7051 	dmu_buf_rele(db, FTAG);
7052 }
7053 
7054 static void
7055 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7056     const char *config, const char *entry)
7057 {
7058 	nvlist_t *nvroot;
7059 	nvlist_t **list;
7060 	int i;
7061 
7062 	if (!sav->sav_sync)
7063 		return;
7064 
7065 	/*
7066 	 * Update the MOS nvlist describing the list of available devices.
7067 	 * spa_validate_aux() will have already made sure this nvlist is
7068 	 * valid and the vdevs are labeled appropriately.
7069 	 */
7070 	if (sav->sav_object == 0) {
7071 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7072 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7073 		    sizeof (uint64_t), tx);
7074 		VERIFY(zap_update(spa->spa_meta_objset,
7075 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7076 		    &sav->sav_object, tx) == 0);
7077 	}
7078 
7079 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7080 	if (sav->sav_count == 0) {
7081 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7082 	} else {
7083 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7084 		for (i = 0; i < sav->sav_count; i++)
7085 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7086 			    B_FALSE, VDEV_CONFIG_L2CACHE);
7087 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7088 		    sav->sav_count) == 0);
7089 		for (i = 0; i < sav->sav_count; i++)
7090 			nvlist_free(list[i]);
7091 		kmem_free(list, sav->sav_count * sizeof (void *));
7092 	}
7093 
7094 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7095 	nvlist_free(nvroot);
7096 
7097 	sav->sav_sync = B_FALSE;
7098 }
7099 
7100 /*
7101  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7102  * The all-vdev ZAP must be empty.
7103  */
7104 static void
7105 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7106 {
7107 	spa_t *spa = vd->vdev_spa;
7108 	if (vd->vdev_top_zap != 0) {
7109 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7110 		    vd->vdev_top_zap, tx));
7111 	}
7112 	if (vd->vdev_leaf_zap != 0) {
7113 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7114 		    vd->vdev_leaf_zap, tx));
7115 	}
7116 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7117 		spa_avz_build(vd->vdev_child[i], avz, tx);
7118 	}
7119 }
7120 
7121 static void
7122 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7123 {
7124 	nvlist_t *config;
7125 
7126 	/*
7127 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7128 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7129 	 * Similarly, if the pool is being assembled (e.g. after a split), we
7130 	 * need to rebuild the AVZ although the config may not be dirty.
7131 	 */
7132 	if (list_is_empty(&spa->spa_config_dirty_list) &&
7133 	    spa->spa_avz_action == AVZ_ACTION_NONE)
7134 		return;
7135 
7136 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7137 
7138 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7139 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7140 	    spa->spa_all_vdev_zaps != 0);
7141 
7142 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7143 		/* Make and build the new AVZ */
7144 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7145 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7146 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7147 
7148 		/* Diff old AVZ with new one */
7149 		zap_cursor_t zc;
7150 		zap_attribute_t za;
7151 
7152 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7153 		    spa->spa_all_vdev_zaps);
7154 		    zap_cursor_retrieve(&zc, &za) == 0;
7155 		    zap_cursor_advance(&zc)) {
7156 			uint64_t vdzap = za.za_first_integer;
7157 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7158 			    vdzap) == ENOENT) {
7159 				/*
7160 				 * ZAP is listed in old AVZ but not in new one;
7161 				 * destroy it
7162 				 */
7163 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7164 				    tx));
7165 			}
7166 		}
7167 
7168 		zap_cursor_fini(&zc);
7169 
7170 		/* Destroy the old AVZ */
7171 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7172 		    spa->spa_all_vdev_zaps, tx));
7173 
7174 		/* Replace the old AVZ in the dir obj with the new one */
7175 		VERIFY0(zap_update(spa->spa_meta_objset,
7176 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7177 		    sizeof (new_avz), 1, &new_avz, tx));
7178 
7179 		spa->spa_all_vdev_zaps = new_avz;
7180 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7181 		zap_cursor_t zc;
7182 		zap_attribute_t za;
7183 
7184 		/* Walk through the AVZ and destroy all listed ZAPs */
7185 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7186 		    spa->spa_all_vdev_zaps);
7187 		    zap_cursor_retrieve(&zc, &za) == 0;
7188 		    zap_cursor_advance(&zc)) {
7189 			uint64_t zap = za.za_first_integer;
7190 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7191 		}
7192 
7193 		zap_cursor_fini(&zc);
7194 
7195 		/* Destroy and unlink the AVZ itself */
7196 		VERIFY0(zap_destroy(spa->spa_meta_objset,
7197 		    spa->spa_all_vdev_zaps, tx));
7198 		VERIFY0(zap_remove(spa->spa_meta_objset,
7199 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7200 		spa->spa_all_vdev_zaps = 0;
7201 	}
7202 
7203 	if (spa->spa_all_vdev_zaps == 0) {
7204 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7205 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7206 		    DMU_POOL_VDEV_ZAP_MAP, tx);
7207 	}
7208 	spa->spa_avz_action = AVZ_ACTION_NONE;
7209 
7210 	/* Create ZAPs for vdevs that don't have them. */
7211 	vdev_construct_zaps(spa->spa_root_vdev, tx);
7212 
7213 	config = spa_config_generate(spa, spa->spa_root_vdev,
7214 	    dmu_tx_get_txg(tx), B_FALSE);
7215 
7216 	/*
7217 	 * If we're upgrading the spa version then make sure that
7218 	 * the config object gets updated with the correct version.
7219 	 */
7220 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7221 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7222 		    spa->spa_uberblock.ub_version);
7223 
7224 	spa_config_exit(spa, SCL_STATE, FTAG);
7225 
7226 	nvlist_free(spa->spa_config_syncing);
7227 	spa->spa_config_syncing = config;
7228 
7229 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7230 }
7231 
7232 static void
7233 spa_sync_version(void *arg, dmu_tx_t *tx)
7234 {
7235 	uint64_t *versionp = arg;
7236 	uint64_t version = *versionp;
7237 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7238 
7239 	/*
7240 	 * Setting the version is special cased when first creating the pool.
7241 	 */
7242 	ASSERT(tx->tx_txg != TXG_INITIAL);
7243 
7244 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7245 	ASSERT(version >= spa_version(spa));
7246 
7247 	spa->spa_uberblock.ub_version = version;
7248 	vdev_config_dirty(spa->spa_root_vdev);
7249 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7250 }
7251 
7252 /*
7253  * Set zpool properties.
7254  */
7255 static void
7256 spa_sync_props(void *arg, dmu_tx_t *tx)
7257 {
7258 	nvlist_t *nvp = arg;
7259 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7260 	objset_t *mos = spa->spa_meta_objset;
7261 	nvpair_t *elem = NULL;
7262 
7263 	mutex_enter(&spa->spa_props_lock);
7264 
7265 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7266 		uint64_t intval;
7267 		char *strval, *fname;
7268 		zpool_prop_t prop;
7269 		const char *propname;
7270 		zprop_type_t proptype;
7271 		spa_feature_t fid;
7272 
7273 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7274 		case ZPOOL_PROP_INVAL:
7275 			/*
7276 			 * We checked this earlier in spa_prop_validate().
7277 			 */
7278 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7279 
7280 			fname = strchr(nvpair_name(elem), '@') + 1;
7281 			VERIFY0(zfeature_lookup_name(fname, &fid));
7282 
7283 			spa_feature_enable(spa, fid, tx);
7284 			spa_history_log_internal(spa, "set", tx,
7285 			    "%s=enabled", nvpair_name(elem));
7286 			break;
7287 
7288 		case ZPOOL_PROP_VERSION:
7289 			intval = fnvpair_value_uint64(elem);
7290 			/*
7291 			 * The version is synced seperatly before other
7292 			 * properties and should be correct by now.
7293 			 */
7294 			ASSERT3U(spa_version(spa), >=, intval);
7295 			break;
7296 
7297 		case ZPOOL_PROP_ALTROOT:
7298 			/*
7299 			 * 'altroot' is a non-persistent property. It should
7300 			 * have been set temporarily at creation or import time.
7301 			 */
7302 			ASSERT(spa->spa_root != NULL);
7303 			break;
7304 
7305 		case ZPOOL_PROP_READONLY:
7306 		case ZPOOL_PROP_CACHEFILE:
7307 			/*
7308 			 * 'readonly' and 'cachefile' are also non-persisitent
7309 			 * properties.
7310 			 */
7311 			break;
7312 		case ZPOOL_PROP_COMMENT:
7313 			strval = fnvpair_value_string(elem);
7314 			if (spa->spa_comment != NULL)
7315 				spa_strfree(spa->spa_comment);
7316 			spa->spa_comment = spa_strdup(strval);
7317 			/*
7318 			 * We need to dirty the configuration on all the vdevs
7319 			 * so that their labels get updated.  It's unnecessary
7320 			 * to do this for pool creation since the vdev's
7321 			 * configuratoin has already been dirtied.
7322 			 */
7323 			if (tx->tx_txg != TXG_INITIAL)
7324 				vdev_config_dirty(spa->spa_root_vdev);
7325 			spa_history_log_internal(spa, "set", tx,
7326 			    "%s=%s", nvpair_name(elem), strval);
7327 			break;
7328 		default:
7329 			/*
7330 			 * Set pool property values in the poolprops mos object.
7331 			 */
7332 			if (spa->spa_pool_props_object == 0) {
7333 				spa->spa_pool_props_object =
7334 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7335 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7336 				    tx);
7337 			}
7338 
7339 			/* normalize the property name */
7340 			propname = zpool_prop_to_name(prop);
7341 			proptype = zpool_prop_get_type(prop);
7342 
7343 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7344 				ASSERT(proptype == PROP_TYPE_STRING);
7345 				strval = fnvpair_value_string(elem);
7346 				VERIFY0(zap_update(mos,
7347 				    spa->spa_pool_props_object, propname,
7348 				    1, strlen(strval) + 1, strval, tx));
7349 				spa_history_log_internal(spa, "set", tx,
7350 				    "%s=%s", nvpair_name(elem), strval);
7351 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7352 				intval = fnvpair_value_uint64(elem);
7353 
7354 				if (proptype == PROP_TYPE_INDEX) {
7355 					const char *unused;
7356 					VERIFY0(zpool_prop_index_to_string(
7357 					    prop, intval, &unused));
7358 				}
7359 				VERIFY0(zap_update(mos,
7360 				    spa->spa_pool_props_object, propname,
7361 				    8, 1, &intval, tx));
7362 				spa_history_log_internal(spa, "set", tx,
7363 				    "%s=%lld", nvpair_name(elem), intval);
7364 			} else {
7365 				ASSERT(0); /* not allowed */
7366 			}
7367 
7368 			switch (prop) {
7369 			case ZPOOL_PROP_DELEGATION:
7370 				spa->spa_delegation = intval;
7371 				break;
7372 			case ZPOOL_PROP_BOOTFS:
7373 				spa->spa_bootfs = intval;
7374 				break;
7375 			case ZPOOL_PROP_FAILUREMODE:
7376 				spa->spa_failmode = intval;
7377 				break;
7378 			case ZPOOL_PROP_AUTOEXPAND:
7379 				spa->spa_autoexpand = intval;
7380 				if (tx->tx_txg != TXG_INITIAL)
7381 					spa_async_request(spa,
7382 					    SPA_ASYNC_AUTOEXPAND);
7383 				break;
7384 			case ZPOOL_PROP_DEDUPDITTO:
7385 				spa->spa_dedup_ditto = intval;
7386 				break;
7387 			default:
7388 				break;
7389 			}
7390 		}
7391 
7392 	}
7393 
7394 	mutex_exit(&spa->spa_props_lock);
7395 }
7396 
7397 /*
7398  * Perform one-time upgrade on-disk changes.  spa_version() does not
7399  * reflect the new version this txg, so there must be no changes this
7400  * txg to anything that the upgrade code depends on after it executes.
7401  * Therefore this must be called after dsl_pool_sync() does the sync
7402  * tasks.
7403  */
7404 static void
7405 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7406 {
7407 	dsl_pool_t *dp = spa->spa_dsl_pool;
7408 
7409 	ASSERT(spa->spa_sync_pass == 1);
7410 
7411 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7412 
7413 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7414 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7415 		dsl_pool_create_origin(dp, tx);
7416 
7417 		/* Keeping the origin open increases spa_minref */
7418 		spa->spa_minref += 3;
7419 	}
7420 
7421 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7422 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7423 		dsl_pool_upgrade_clones(dp, tx);
7424 	}
7425 
7426 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7427 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7428 		dsl_pool_upgrade_dir_clones(dp, tx);
7429 
7430 		/* Keeping the freedir open increases spa_minref */
7431 		spa->spa_minref += 3;
7432 	}
7433 
7434 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7435 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7436 		spa_feature_create_zap_objects(spa, tx);
7437 	}
7438 
7439 	/*
7440 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7441 	 * when possibility to use lz4 compression for metadata was added
7442 	 * Old pools that have this feature enabled must be upgraded to have
7443 	 * this feature active
7444 	 */
7445 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7446 		boolean_t lz4_en = spa_feature_is_enabled(spa,
7447 		    SPA_FEATURE_LZ4_COMPRESS);
7448 		boolean_t lz4_ac = spa_feature_is_active(spa,
7449 		    SPA_FEATURE_LZ4_COMPRESS);
7450 
7451 		if (lz4_en && !lz4_ac)
7452 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7453 	}
7454 
7455 	/*
7456 	 * If we haven't written the salt, do so now.  Note that the
7457 	 * feature may not be activated yet, but that's fine since
7458 	 * the presence of this ZAP entry is backwards compatible.
7459 	 */
7460 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7461 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7462 		VERIFY0(zap_add(spa->spa_meta_objset,
7463 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7464 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7465 		    spa->spa_cksum_salt.zcs_bytes, tx));
7466 	}
7467 
7468 	rrw_exit(&dp->dp_config_rwlock, FTAG);
7469 }
7470 
7471 static void
7472 vdev_indirect_state_sync_verify(vdev_t *vd)
7473 {
7474 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7475 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7476 
7477 	if (vd->vdev_ops == &vdev_indirect_ops) {
7478 		ASSERT(vim != NULL);
7479 		ASSERT(vib != NULL);
7480 	}
7481 
7482 	if (vdev_obsolete_sm_object(vd) != 0) {
7483 		ASSERT(vd->vdev_obsolete_sm != NULL);
7484 		ASSERT(vd->vdev_removing ||
7485 		    vd->vdev_ops == &vdev_indirect_ops);
7486 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7487 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7488 
7489 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7490 		    space_map_object(vd->vdev_obsolete_sm));
7491 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7492 		    space_map_allocated(vd->vdev_obsolete_sm));
7493 	}
7494 	ASSERT(vd->vdev_obsolete_segments != NULL);
7495 
7496 	/*
7497 	 * Since frees / remaps to an indirect vdev can only
7498 	 * happen in syncing context, the obsolete segments
7499 	 * tree must be empty when we start syncing.
7500 	 */
7501 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7502 }
7503 
7504 /*
7505  * Sync the specified transaction group.  New blocks may be dirtied as
7506  * part of the process, so we iterate until it converges.
7507  */
7508 void
7509 spa_sync(spa_t *spa, uint64_t txg)
7510 {
7511 	dsl_pool_t *dp = spa->spa_dsl_pool;
7512 	objset_t *mos = spa->spa_meta_objset;
7513 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7514 	vdev_t *rvd = spa->spa_root_vdev;
7515 	vdev_t *vd;
7516 	dmu_tx_t *tx;
7517 	int error;
7518 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7519 	    zfs_vdev_queue_depth_pct / 100;
7520 
7521 	VERIFY(spa_writeable(spa));
7522 
7523 	/*
7524 	 * Wait for i/os issued in open context that need to complete
7525 	 * before this txg syncs.
7526 	 */
7527 	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7528 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7529 	    ZIO_FLAG_CANFAIL);
7530 
7531 	/*
7532 	 * Lock out configuration changes.
7533 	 */
7534 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7535 
7536 	spa->spa_syncing_txg = txg;
7537 	spa->spa_sync_pass = 0;
7538 
7539 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7540 		mutex_enter(&spa->spa_alloc_locks[i]);
7541 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7542 		mutex_exit(&spa->spa_alloc_locks[i]);
7543 	}
7544 
7545 	/*
7546 	 * If there are any pending vdev state changes, convert them
7547 	 * into config changes that go out with this transaction group.
7548 	 */
7549 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7550 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7551 		/*
7552 		 * We need the write lock here because, for aux vdevs,
7553 		 * calling vdev_config_dirty() modifies sav_config.
7554 		 * This is ugly and will become unnecessary when we
7555 		 * eliminate the aux vdev wart by integrating all vdevs
7556 		 * into the root vdev tree.
7557 		 */
7558 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7559 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7560 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7561 			vdev_state_clean(vd);
7562 			vdev_config_dirty(vd);
7563 		}
7564 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7565 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7566 	}
7567 	spa_config_exit(spa, SCL_STATE, FTAG);
7568 
7569 	tx = dmu_tx_create_assigned(dp, txg);
7570 
7571 	spa->spa_sync_starttime = gethrtime();
7572 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7573 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7574 
7575 	/*
7576 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7577 	 * set spa_deflate if we have no raid-z vdevs.
7578 	 */
7579 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7580 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7581 		int i;
7582 
7583 		for (i = 0; i < rvd->vdev_children; i++) {
7584 			vd = rvd->vdev_child[i];
7585 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7586 				break;
7587 		}
7588 		if (i == rvd->vdev_children) {
7589 			spa->spa_deflate = TRUE;
7590 			VERIFY(0 == zap_add(spa->spa_meta_objset,
7591 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7592 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7593 		}
7594 	}
7595 
7596 	/*
7597 	 * Set the top-level vdev's max queue depth. Evaluate each
7598 	 * top-level's async write queue depth in case it changed.
7599 	 * The max queue depth will not change in the middle of syncing
7600 	 * out this txg.
7601 	 */
7602 	uint64_t slots_per_allocator = 0;
7603 	for (int c = 0; c < rvd->vdev_children; c++) {
7604 		vdev_t *tvd = rvd->vdev_child[c];
7605 		metaslab_group_t *mg = tvd->vdev_mg;
7606 
7607 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7608 		    !metaslab_group_initialized(mg))
7609 			continue;
7610 
7611 		/*
7612 		 * It is safe to do a lock-free check here because only async
7613 		 * allocations look at mg_max_alloc_queue_depth, and async
7614 		 * allocations all happen from spa_sync().
7615 		 */
7616 		for (int i = 0; i < spa->spa_alloc_count; i++)
7617 			ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i])));
7618 		mg->mg_max_alloc_queue_depth = max_queue_depth;
7619 
7620 		for (int i = 0; i < spa->spa_alloc_count; i++) {
7621 			mg->mg_cur_max_alloc_queue_depth[i] =
7622 			    zfs_vdev_def_queue_depth;
7623 		}
7624 		slots_per_allocator += zfs_vdev_def_queue_depth;
7625 	}
7626 	metaslab_class_t *mc = spa_normal_class(spa);
7627 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7628 		ASSERT0(refcount_count(&mc->mc_alloc_slots[i]));
7629 		mc->mc_alloc_max_slots[i] = slots_per_allocator;
7630 	}
7631 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7632 
7633 	for (int c = 0; c < rvd->vdev_children; c++) {
7634 		vdev_t *vd = rvd->vdev_child[c];
7635 		vdev_indirect_state_sync_verify(vd);
7636 
7637 		if (vdev_indirect_should_condense(vd)) {
7638 			spa_condense_indirect_start_sync(vd, tx);
7639 			break;
7640 		}
7641 	}
7642 
7643 	/*
7644 	 * Iterate to convergence.
7645 	 */
7646 	do {
7647 		int pass = ++spa->spa_sync_pass;
7648 
7649 		spa_sync_config_object(spa, tx);
7650 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7651 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7652 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7653 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7654 		spa_errlog_sync(spa, txg);
7655 		dsl_pool_sync(dp, txg);
7656 
7657 		if (pass < zfs_sync_pass_deferred_free) {
7658 			spa_sync_frees(spa, free_bpl, tx);
7659 		} else {
7660 			/*
7661 			 * We can not defer frees in pass 1, because
7662 			 * we sync the deferred frees later in pass 1.
7663 			 */
7664 			ASSERT3U(pass, >, 1);
7665 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
7666 			    &spa->spa_deferred_bpobj, tx);
7667 		}
7668 
7669 		ddt_sync(spa, txg);
7670 		dsl_scan_sync(dp, tx);
7671 
7672 		if (spa->spa_vdev_removal != NULL)
7673 			svr_sync(spa, tx);
7674 
7675 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7676 		    != NULL)
7677 			vdev_sync(vd, txg);
7678 
7679 		if (pass == 1) {
7680 			spa_sync_upgrades(spa, tx);
7681 			ASSERT3U(txg, >=,
7682 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7683 			/*
7684 			 * Note: We need to check if the MOS is dirty
7685 			 * because we could have marked the MOS dirty
7686 			 * without updating the uberblock (e.g. if we
7687 			 * have sync tasks but no dirty user data).  We
7688 			 * need to check the uberblock's rootbp because
7689 			 * it is updated if we have synced out dirty
7690 			 * data (though in this case the MOS will most
7691 			 * likely also be dirty due to second order
7692 			 * effects, we don't want to rely on that here).
7693 			 */
7694 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7695 			    !dmu_objset_is_dirty(mos, txg)) {
7696 				/*
7697 				 * Nothing changed on the first pass,
7698 				 * therefore this TXG is a no-op.  Avoid
7699 				 * syncing deferred frees, so that we
7700 				 * can keep this TXG as a no-op.
7701 				 */
7702 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7703 				    txg));
7704 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7705 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7706 				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7707 				    txg));
7708 				break;
7709 			}
7710 			spa_sync_deferred_frees(spa, tx);
7711 		}
7712 
7713 	} while (dmu_objset_is_dirty(mos, txg));
7714 
7715 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7716 		/*
7717 		 * Make sure that the number of ZAPs for all the vdevs matches
7718 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7719 		 * called if the config is dirty; otherwise there may be
7720 		 * outstanding AVZ operations that weren't completed in
7721 		 * spa_sync_config_object.
7722 		 */
7723 		uint64_t all_vdev_zap_entry_count;
7724 		ASSERT0(zap_count(spa->spa_meta_objset,
7725 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7726 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7727 		    all_vdev_zap_entry_count);
7728 	}
7729 
7730 	if (spa->spa_vdev_removal != NULL) {
7731 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7732 	}
7733 
7734 	/*
7735 	 * Rewrite the vdev configuration (which includes the uberblock)
7736 	 * to commit the transaction group.
7737 	 *
7738 	 * If there are no dirty vdevs, we sync the uberblock to a few
7739 	 * random top-level vdevs that are known to be visible in the
7740 	 * config cache (see spa_vdev_add() for a complete description).
7741 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7742 	 */
7743 	for (;;) {
7744 		/*
7745 		 * We hold SCL_STATE to prevent vdev open/close/etc.
7746 		 * while we're attempting to write the vdev labels.
7747 		 */
7748 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7749 
7750 		if (list_is_empty(&spa->spa_config_dirty_list)) {
7751 			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7752 			int svdcount = 0;
7753 			int children = rvd->vdev_children;
7754 			int c0 = spa_get_random(children);
7755 
7756 			for (int c = 0; c < children; c++) {
7757 				vd = rvd->vdev_child[(c0 + c) % children];
7758 
7759 				/* Stop when revisiting the first vdev */
7760 				if (c > 0 && svd[0] == vd)
7761 					break;
7762 
7763 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7764 				    !vdev_is_concrete(vd))
7765 					continue;
7766 
7767 				svd[svdcount++] = vd;
7768 				if (svdcount == SPA_SYNC_MIN_VDEVS)
7769 					break;
7770 			}
7771 			error = vdev_config_sync(svd, svdcount, txg);
7772 		} else {
7773 			error = vdev_config_sync(rvd->vdev_child,
7774 			    rvd->vdev_children, txg);
7775 		}
7776 
7777 		if (error == 0)
7778 			spa->spa_last_synced_guid = rvd->vdev_guid;
7779 
7780 		spa_config_exit(spa, SCL_STATE, FTAG);
7781 
7782 		if (error == 0)
7783 			break;
7784 		zio_suspend(spa, NULL);
7785 		zio_resume_wait(spa);
7786 	}
7787 	dmu_tx_commit(tx);
7788 
7789 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7790 
7791 	/*
7792 	 * Clear the dirty config list.
7793 	 */
7794 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7795 		vdev_config_clean(vd);
7796 
7797 	/*
7798 	 * Now that the new config has synced transactionally,
7799 	 * let it become visible to the config cache.
7800 	 */
7801 	if (spa->spa_config_syncing != NULL) {
7802 		spa_config_set(spa, spa->spa_config_syncing);
7803 		spa->spa_config_txg = txg;
7804 		spa->spa_config_syncing = NULL;
7805 	}
7806 
7807 	dsl_pool_sync_done(dp, txg);
7808 
7809 	for (int i = 0; i < spa->spa_alloc_count; i++) {
7810 		mutex_enter(&spa->spa_alloc_locks[i]);
7811 		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7812 		mutex_exit(&spa->spa_alloc_locks[i]);
7813 	}
7814 
7815 	/*
7816 	 * Update usable space statistics.
7817 	 */
7818 	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7819 	    != NULL)
7820 		vdev_sync_done(vd, txg);
7821 
7822 	spa_update_dspace(spa);
7823 
7824 	/*
7825 	 * It had better be the case that we didn't dirty anything
7826 	 * since vdev_config_sync().
7827 	 */
7828 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7829 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7830 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7831 
7832 	while (zfs_pause_spa_sync)
7833 		delay(1);
7834 
7835 	spa->spa_sync_pass = 0;
7836 
7837 	/*
7838 	 * Update the last synced uberblock here. We want to do this at
7839 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7840 	 * will be guaranteed that all the processing associated with
7841 	 * that txg has been completed.
7842 	 */
7843 	spa->spa_ubsync = spa->spa_uberblock;
7844 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7845 
7846 	spa_handle_ignored_writes(spa);
7847 
7848 	/*
7849 	 * If any async tasks have been requested, kick them off.
7850 	 */
7851 	spa_async_dispatch(spa);
7852 }
7853 
7854 /*
7855  * Sync all pools.  We don't want to hold the namespace lock across these
7856  * operations, so we take a reference on the spa_t and drop the lock during the
7857  * sync.
7858  */
7859 void
7860 spa_sync_allpools(void)
7861 {
7862 	spa_t *spa = NULL;
7863 	mutex_enter(&spa_namespace_lock);
7864 	while ((spa = spa_next(spa)) != NULL) {
7865 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7866 		    !spa_writeable(spa) || spa_suspended(spa))
7867 			continue;
7868 		spa_open_ref(spa, FTAG);
7869 		mutex_exit(&spa_namespace_lock);
7870 		txg_wait_synced(spa_get_dsl(spa), 0);
7871 		mutex_enter(&spa_namespace_lock);
7872 		spa_close(spa, FTAG);
7873 	}
7874 	mutex_exit(&spa_namespace_lock);
7875 }
7876 
7877 /*
7878  * ==========================================================================
7879  * Miscellaneous routines
7880  * ==========================================================================
7881  */
7882 
7883 /*
7884  * Remove all pools in the system.
7885  */
7886 void
7887 spa_evict_all(void)
7888 {
7889 	spa_t *spa;
7890 
7891 	/*
7892 	 * Remove all cached state.  All pools should be closed now,
7893 	 * so every spa in the AVL tree should be unreferenced.
7894 	 */
7895 	mutex_enter(&spa_namespace_lock);
7896 	while ((spa = spa_next(NULL)) != NULL) {
7897 		/*
7898 		 * Stop async tasks.  The async thread may need to detach
7899 		 * a device that's been replaced, which requires grabbing
7900 		 * spa_namespace_lock, so we must drop it here.
7901 		 */
7902 		spa_open_ref(spa, FTAG);
7903 		mutex_exit(&spa_namespace_lock);
7904 		spa_async_suspend(spa);
7905 		mutex_enter(&spa_namespace_lock);
7906 		spa_close(spa, FTAG);
7907 
7908 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7909 			spa_unload(spa);
7910 			spa_deactivate(spa);
7911 		}
7912 		spa_remove(spa);
7913 	}
7914 	mutex_exit(&spa_namespace_lock);
7915 }
7916 
7917 vdev_t *
7918 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7919 {
7920 	vdev_t *vd;
7921 	int i;
7922 
7923 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7924 		return (vd);
7925 
7926 	if (aux) {
7927 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7928 			vd = spa->spa_l2cache.sav_vdevs[i];
7929 			if (vd->vdev_guid == guid)
7930 				return (vd);
7931 		}
7932 
7933 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7934 			vd = spa->spa_spares.sav_vdevs[i];
7935 			if (vd->vdev_guid == guid)
7936 				return (vd);
7937 		}
7938 	}
7939 
7940 	return (NULL);
7941 }
7942 
7943 void
7944 spa_upgrade(spa_t *spa, uint64_t version)
7945 {
7946 	ASSERT(spa_writeable(spa));
7947 
7948 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7949 
7950 	/*
7951 	 * This should only be called for a non-faulted pool, and since a
7952 	 * future version would result in an unopenable pool, this shouldn't be
7953 	 * possible.
7954 	 */
7955 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7956 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7957 
7958 	spa->spa_uberblock.ub_version = version;
7959 	vdev_config_dirty(spa->spa_root_vdev);
7960 
7961 	spa_config_exit(spa, SCL_ALL, FTAG);
7962 
7963 	txg_wait_synced(spa_get_dsl(spa), 0);
7964 }
7965 
7966 boolean_t
7967 spa_has_spare(spa_t *spa, uint64_t guid)
7968 {
7969 	int i;
7970 	uint64_t spareguid;
7971 	spa_aux_vdev_t *sav = &spa->spa_spares;
7972 
7973 	for (i = 0; i < sav->sav_count; i++)
7974 		if (sav->sav_vdevs[i]->vdev_guid == guid)
7975 			return (B_TRUE);
7976 
7977 	for (i = 0; i < sav->sav_npending; i++) {
7978 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7979 		    &spareguid) == 0 && spareguid == guid)
7980 			return (B_TRUE);
7981 	}
7982 
7983 	return (B_FALSE);
7984 }
7985 
7986 /*
7987  * Check if a pool has an active shared spare device.
7988  * Note: reference count of an active spare is 2, as a spare and as a replace
7989  */
7990 static boolean_t
7991 spa_has_active_shared_spare(spa_t *spa)
7992 {
7993 	int i, refcnt;
7994 	uint64_t pool;
7995 	spa_aux_vdev_t *sav = &spa->spa_spares;
7996 
7997 	for (i = 0; i < sav->sav_count; i++) {
7998 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7999 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8000 		    refcnt > 2)
8001 			return (B_TRUE);
8002 	}
8003 
8004 	return (B_FALSE);
8005 }
8006 
8007 sysevent_t *
8008 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8009 {
8010 	sysevent_t		*ev = NULL;
8011 #ifdef _KERNEL
8012 	sysevent_attr_list_t	*attr = NULL;
8013 	sysevent_value_t	value;
8014 
8015 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8016 	    SE_SLEEP);
8017 	ASSERT(ev != NULL);
8018 
8019 	value.value_type = SE_DATA_TYPE_STRING;
8020 	value.value.sv_string = spa_name(spa);
8021 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8022 		goto done;
8023 
8024 	value.value_type = SE_DATA_TYPE_UINT64;
8025 	value.value.sv_uint64 = spa_guid(spa);
8026 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8027 		goto done;
8028 
8029 	if (vd) {
8030 		value.value_type = SE_DATA_TYPE_UINT64;
8031 		value.value.sv_uint64 = vd->vdev_guid;
8032 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8033 		    SE_SLEEP) != 0)
8034 			goto done;
8035 
8036 		if (vd->vdev_path) {
8037 			value.value_type = SE_DATA_TYPE_STRING;
8038 			value.value.sv_string = vd->vdev_path;
8039 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8040 			    &value, SE_SLEEP) != 0)
8041 				goto done;
8042 		}
8043 	}
8044 
8045 	if (hist_nvl != NULL) {
8046 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8047 	}
8048 
8049 	if (sysevent_attach_attributes(ev, attr) != 0)
8050 		goto done;
8051 	attr = NULL;
8052 
8053 done:
8054 	if (attr)
8055 		sysevent_free_attr(attr);
8056 
8057 #endif
8058 	return (ev);
8059 }
8060 
8061 void
8062 spa_event_post(sysevent_t *ev)
8063 {
8064 #ifdef _KERNEL
8065 	sysevent_id_t		eid;
8066 
8067 	(void) log_sysevent(ev, SE_SLEEP, &eid);
8068 	sysevent_free(ev);
8069 #endif
8070 }
8071 
8072 void
8073 spa_event_discard(sysevent_t *ev)
8074 {
8075 #ifdef _KERNEL
8076 	sysevent_free(ev);
8077 #endif
8078 }
8079 
8080 /*
8081  * Post a sysevent corresponding to the given event.  The 'name' must be one of
8082  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8083  * filled in from the spa and (optionally) the vdev and history nvl.  This
8084  * doesn't do anything in the userland libzpool, as we don't want consumers to
8085  * misinterpret ztest or zdb as real changes.
8086  */
8087 void
8088 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8089 {
8090 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8091 }
8092