xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 99653d4ee642c6528e88224f12409a5f23060994)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/callb.h>
57 
58 /*
59  * ==========================================================================
60  * SPA state manipulation (open/create/destroy/import/export)
61  * ==========================================================================
62  */
63 
64 static int
65 spa_error_entry_compare(const void *a, const void *b)
66 {
67 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
68 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
69 	int ret;
70 
71 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
72 	    sizeof (zbookmark_t));
73 
74 	if (ret < 0)
75 		return (-1);
76 	else if (ret > 0)
77 		return (1);
78 	else
79 		return (0);
80 }
81 
82 /*
83  * Utility function which retrieves copies of the current logs and
84  * re-initializes them in the process.
85  */
86 void
87 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
88 {
89 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
90 
91 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
92 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
93 
94 	avl_create(&spa->spa_errlist_scrub,
95 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
96 	    offsetof(spa_error_entry_t, se_avl));
97 	avl_create(&spa->spa_errlist_last,
98 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
99 	    offsetof(spa_error_entry_t, se_avl));
100 }
101 
102 /*
103  * Activate an uninitialized pool.
104  */
105 static void
106 spa_activate(spa_t *spa)
107 {
108 	int t;
109 
110 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
111 
112 	spa->spa_state = POOL_STATE_ACTIVE;
113 
114 	spa->spa_normal_class = metaslab_class_create();
115 
116 	for (t = 0; t < ZIO_TYPES; t++) {
117 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
118 		    8, maxclsyspri, 50, INT_MAX,
119 		    TASKQ_PREPOPULATE);
120 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
121 		    8, maxclsyspri, 50, INT_MAX,
122 		    TASKQ_PREPOPULATE);
123 	}
124 
125 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
126 
127 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
128 	    offsetof(vdev_t, vdev_dirty_node));
129 
130 	txg_list_create(&spa->spa_vdev_txg_list,
131 	    offsetof(struct vdev, vdev_txg_node));
132 
133 	avl_create(&spa->spa_errlist_scrub,
134 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
135 	    offsetof(spa_error_entry_t, se_avl));
136 	avl_create(&spa->spa_errlist_last,
137 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
138 	    offsetof(spa_error_entry_t, se_avl));
139 }
140 
141 /*
142  * Opposite of spa_activate().
143  */
144 static void
145 spa_deactivate(spa_t *spa)
146 {
147 	int t;
148 
149 	ASSERT(spa->spa_sync_on == B_FALSE);
150 	ASSERT(spa->spa_dsl_pool == NULL);
151 	ASSERT(spa->spa_root_vdev == NULL);
152 
153 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
154 
155 	txg_list_destroy(&spa->spa_vdev_txg_list);
156 
157 	list_destroy(&spa->spa_dirty_list);
158 
159 	rw_destroy(&spa->spa_traverse_lock);
160 
161 	for (t = 0; t < ZIO_TYPES; t++) {
162 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
163 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
164 		spa->spa_zio_issue_taskq[t] = NULL;
165 		spa->spa_zio_intr_taskq[t] = NULL;
166 	}
167 
168 	metaslab_class_destroy(spa->spa_normal_class);
169 	spa->spa_normal_class = NULL;
170 
171 	/*
172 	 * If this was part of an import or the open otherwise failed, we may
173 	 * still have errors left in the queues.  Empty them just in case.
174 	 */
175 	spa_errlog_drain(spa);
176 
177 	avl_destroy(&spa->spa_errlist_scrub);
178 	avl_destroy(&spa->spa_errlist_last);
179 
180 	spa->spa_state = POOL_STATE_UNINITIALIZED;
181 }
182 
183 /*
184  * Verify a pool configuration, and construct the vdev tree appropriately.  This
185  * will create all the necessary vdevs in the appropriate layout, with each vdev
186  * in the CLOSED state.  This will prep the pool before open/creation/import.
187  * All vdev validation is done by the vdev_alloc() routine.
188  */
189 static int
190 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
191     uint_t id, int atype)
192 {
193 	nvlist_t **child;
194 	uint_t c, children;
195 	int error;
196 
197 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
198 		return (error);
199 
200 	if ((*vdp)->vdev_ops->vdev_op_leaf)
201 		return (0);
202 
203 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
204 	    &child, &children) != 0) {
205 		vdev_free(*vdp);
206 		*vdp = NULL;
207 		return (EINVAL);
208 	}
209 
210 	for (c = 0; c < children; c++) {
211 		vdev_t *vd;
212 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
213 		    atype)) != 0) {
214 			vdev_free(*vdp);
215 			*vdp = NULL;
216 			return (error);
217 		}
218 	}
219 
220 	ASSERT(*vdp != NULL);
221 
222 	return (0);
223 }
224 
225 /*
226  * Opposite of spa_load().
227  */
228 static void
229 spa_unload(spa_t *spa)
230 {
231 	int i;
232 
233 	/*
234 	 * Stop async tasks.
235 	 */
236 	spa_async_suspend(spa);
237 
238 	/*
239 	 * Stop syncing.
240 	 */
241 	if (spa->spa_sync_on) {
242 		txg_sync_stop(spa->spa_dsl_pool);
243 		spa->spa_sync_on = B_FALSE;
244 	}
245 
246 	/*
247 	 * Wait for any outstanding prefetch I/O to complete.
248 	 */
249 	spa_config_enter(spa, RW_WRITER, FTAG);
250 	spa_config_exit(spa, FTAG);
251 
252 	/*
253 	 * Close the dsl pool.
254 	 */
255 	if (spa->spa_dsl_pool) {
256 		dsl_pool_close(spa->spa_dsl_pool);
257 		spa->spa_dsl_pool = NULL;
258 	}
259 
260 	/*
261 	 * Close all vdevs.
262 	 */
263 	if (spa->spa_root_vdev)
264 		vdev_free(spa->spa_root_vdev);
265 	ASSERT(spa->spa_root_vdev == NULL);
266 
267 	for (i = 0; i < spa->spa_nspares; i++)
268 		vdev_free(spa->spa_spares[i]);
269 	if (spa->spa_spares) {
270 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
271 		spa->spa_spares = NULL;
272 	}
273 	if (spa->spa_sparelist) {
274 		nvlist_free(spa->spa_sparelist);
275 		spa->spa_sparelist = NULL;
276 	}
277 
278 	spa->spa_async_suspended = 0;
279 }
280 
281 /*
282  * Load (or re-load) the current list of vdevs describing the active spares for
283  * this pool.  When this is called, we have some form of basic information in
284  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
285  * re-generate a more complete list including status information.
286  */
287 static void
288 spa_load_spares(spa_t *spa)
289 {
290 	nvlist_t **spares;
291 	uint_t nspares;
292 	int i;
293 
294 	/*
295 	 * First, close and free any existing spare vdevs.
296 	 */
297 	for (i = 0; i < spa->spa_nspares; i++) {
298 		vdev_close(spa->spa_spares[i]);
299 		vdev_free(spa->spa_spares[i]);
300 	}
301 	if (spa->spa_spares)
302 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
303 
304 	if (spa->spa_sparelist == NULL)
305 		nspares = 0;
306 	else
307 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
308 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
309 
310 	spa->spa_nspares = (int)nspares;
311 	spa->spa_spares = NULL;
312 
313 	if (nspares == 0)
314 		return;
315 
316 	/*
317 	 * Construct the array of vdevs, opening them to get status in the
318 	 * process.
319 	 */
320 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
321 	for (i = 0; i < spa->spa_nspares; i++) {
322 		vdev_t *vd;
323 
324 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
325 		    VDEV_ALLOC_SPARE) == 0);
326 		ASSERT(vd != NULL);
327 
328 		spa->spa_spares[i] = vd;
329 
330 		if (vdev_open(vd) != 0)
331 			continue;
332 
333 		vd->vdev_top = vd;
334 		(void) vdev_validate_spare(vd);
335 	}
336 
337 	/*
338 	 * Recompute the stashed list of spares, with status information
339 	 * this time.
340 	 */
341 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
342 	    DATA_TYPE_NVLIST_ARRAY) == 0);
343 
344 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
345 	for (i = 0; i < spa->spa_nspares; i++)
346 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
347 		    B_TRUE, B_TRUE);
348 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
349 	    spares, spa->spa_nspares) == 0);
350 	for (i = 0; i < spa->spa_nspares; i++)
351 		nvlist_free(spares[i]);
352 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
353 }
354 
355 static int
356 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
357 {
358 	dmu_buf_t *db;
359 	char *packed = NULL;
360 	size_t nvsize = 0;
361 	int error;
362 	*value = NULL;
363 
364 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
365 	nvsize = *(uint64_t *)db->db_data;
366 	dmu_buf_rele(db, FTAG);
367 
368 	packed = kmem_alloc(nvsize, KM_SLEEP);
369 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
370 	if (error == 0)
371 		error = nvlist_unpack(packed, nvsize, value, 0);
372 	kmem_free(packed, nvsize);
373 
374 	return (error);
375 }
376 
377 /*
378  * Load an existing storage pool, using the pool's builtin spa_config as a
379  * source of configuration information.
380  */
381 static int
382 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
383 {
384 	int error = 0;
385 	nvlist_t *nvroot = NULL;
386 	vdev_t *rvd;
387 	uberblock_t *ub = &spa->spa_uberblock;
388 	uint64_t config_cache_txg = spa->spa_config_txg;
389 	uint64_t pool_guid;
390 	uint64_t version;
391 	zio_t *zio;
392 
393 	spa->spa_load_state = state;
394 
395 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
396 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
397 		error = EINVAL;
398 		goto out;
399 	}
400 
401 	/*
402 	 * Versioning wasn't explicitly added to the label until later, so if
403 	 * it's not present treat it as the initial version.
404 	 */
405 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
406 		version = ZFS_VERSION_INITIAL;
407 
408 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
409 	    &spa->spa_config_txg);
410 
411 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
412 	    spa_guid_exists(pool_guid, 0)) {
413 		error = EEXIST;
414 		goto out;
415 	}
416 
417 	/*
418 	 * Parse the configuration into a vdev tree.  We explicitly set the
419 	 * value that will be returned by spa_version() since parsing the
420 	 * configuration requires knowing the version number.
421 	 */
422 	spa_config_enter(spa, RW_WRITER, FTAG);
423 	spa->spa_ubsync.ub_version = version;
424 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
425 	spa_config_exit(spa, FTAG);
426 
427 	if (error != 0)
428 		goto out;
429 
430 	ASSERT(spa->spa_root_vdev == rvd);
431 	ASSERT(spa_guid(spa) == pool_guid);
432 
433 	/*
434 	 * Try to open all vdevs, loading each label in the process.
435 	 */
436 	if (vdev_open(rvd) != 0) {
437 		error = ENXIO;
438 		goto out;
439 	}
440 
441 	/*
442 	 * Validate the labels for all leaf vdevs.  We need to grab the config
443 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
444 	 * flag.
445 	 */
446 	spa_config_enter(spa, RW_READER, FTAG);
447 	error = vdev_validate(rvd);
448 	spa_config_exit(spa, FTAG);
449 
450 	if (error != 0) {
451 		error = EBADF;
452 		goto out;
453 	}
454 
455 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
456 		error = ENXIO;
457 		goto out;
458 	}
459 
460 	/*
461 	 * Find the best uberblock.
462 	 */
463 	bzero(ub, sizeof (uberblock_t));
464 
465 	zio = zio_root(spa, NULL, NULL,
466 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
467 	vdev_uberblock_load(zio, rvd, ub);
468 	error = zio_wait(zio);
469 
470 	/*
471 	 * If we weren't able to find a single valid uberblock, return failure.
472 	 */
473 	if (ub->ub_txg == 0) {
474 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
475 		    VDEV_AUX_CORRUPT_DATA);
476 		error = ENXIO;
477 		goto out;
478 	}
479 
480 	/*
481 	 * If the pool is newer than the code, we can't open it.
482 	 */
483 	if (ub->ub_version > ZFS_VERSION) {
484 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
485 		    VDEV_AUX_VERSION_NEWER);
486 		error = ENOTSUP;
487 		goto out;
488 	}
489 
490 	/*
491 	 * If the vdev guid sum doesn't match the uberblock, we have an
492 	 * incomplete configuration.
493 	 */
494 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
495 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
496 		    VDEV_AUX_BAD_GUID_SUM);
497 		error = ENXIO;
498 		goto out;
499 	}
500 
501 	/*
502 	 * Initialize internal SPA structures.
503 	 */
504 	spa->spa_state = POOL_STATE_ACTIVE;
505 	spa->spa_ubsync = spa->spa_uberblock;
506 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
507 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
508 	if (error) {
509 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
510 		    VDEV_AUX_CORRUPT_DATA);
511 		goto out;
512 	}
513 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
514 
515 	if (zap_lookup(spa->spa_meta_objset,
516 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
517 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
518 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
519 		    VDEV_AUX_CORRUPT_DATA);
520 		error = EIO;
521 		goto out;
522 	}
523 
524 	if (!mosconfig) {
525 		nvlist_t *newconfig;
526 
527 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
528 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
529 			    VDEV_AUX_CORRUPT_DATA);
530 			error = EIO;
531 			goto out;
532 		}
533 
534 		spa_config_set(spa, newconfig);
535 		spa_unload(spa);
536 		spa_deactivate(spa);
537 		spa_activate(spa);
538 
539 		return (spa_load(spa, newconfig, state, B_TRUE));
540 	}
541 
542 	if (zap_lookup(spa->spa_meta_objset,
543 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
544 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
545 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
546 		    VDEV_AUX_CORRUPT_DATA);
547 		error = EIO;
548 		goto out;
549 	}
550 
551 	/*
552 	 * Load the bit that tells us to use the new accounting function
553 	 * (raid-z deflation).  If we have an older pool, this will not
554 	 * be present.
555 	 */
556 	error = zap_lookup(spa->spa_meta_objset,
557 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
558 	    sizeof (uint64_t), 1, &spa->spa_deflate);
559 	if (error != 0 && error != ENOENT) {
560 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
561 		    VDEV_AUX_CORRUPT_DATA);
562 		error = EIO;
563 		goto out;
564 	}
565 
566 	/*
567 	 * Load the persistent error log.  If we have an older pool, this will
568 	 * not be present.
569 	 */
570 	error = zap_lookup(spa->spa_meta_objset,
571 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
572 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
573 	if (error != 0 && error != ENOENT) {
574 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
575 		    VDEV_AUX_CORRUPT_DATA);
576 		error = EIO;
577 		goto out;
578 	}
579 
580 	error = zap_lookup(spa->spa_meta_objset,
581 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
582 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
583 	if (error != 0 && error != ENOENT) {
584 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
585 		    VDEV_AUX_CORRUPT_DATA);
586 		error = EIO;
587 		goto out;
588 	}
589 
590 	/*
591 	 * Load any hot spares for this pool.
592 	 */
593 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
594 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
595 	if (error != 0 && error != ENOENT) {
596 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
597 		    VDEV_AUX_CORRUPT_DATA);
598 		error = EIO;
599 		goto out;
600 	}
601 	if (error == 0) {
602 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
603 		if (load_nvlist(spa, spa->spa_spares_object,
604 		    &spa->spa_sparelist) != 0) {
605 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
606 			    VDEV_AUX_CORRUPT_DATA);
607 			error = EIO;
608 			goto out;
609 		}
610 
611 		spa_config_enter(spa, RW_WRITER, FTAG);
612 		spa_load_spares(spa);
613 		spa_config_exit(spa, FTAG);
614 	}
615 
616 	/*
617 	 * Load the vdev state for all toplevel vdevs.
618 	 */
619 	vdev_load(rvd);
620 
621 	/*
622 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
623 	 */
624 	spa_config_enter(spa, RW_WRITER, FTAG);
625 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
626 	spa_config_exit(spa, FTAG);
627 
628 	/*
629 	 * Check the state of the root vdev.  If it can't be opened, it
630 	 * indicates one or more toplevel vdevs are faulted.
631 	 */
632 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
633 		error = ENXIO;
634 		goto out;
635 	}
636 
637 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
638 		dmu_tx_t *tx;
639 		int need_update = B_FALSE;
640 		int c;
641 
642 		/*
643 		 * Claim log blocks that haven't been committed yet.
644 		 * This must all happen in a single txg.
645 		 */
646 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
647 		    spa_first_txg(spa));
648 		dmu_objset_find(spa->spa_name, zil_claim, tx, 0);
649 		dmu_tx_commit(tx);
650 
651 		spa->spa_sync_on = B_TRUE;
652 		txg_sync_start(spa->spa_dsl_pool);
653 
654 		/*
655 		 * Wait for all claims to sync.
656 		 */
657 		txg_wait_synced(spa->spa_dsl_pool, 0);
658 
659 		/*
660 		 * If the config cache is stale, or we have uninitialized
661 		 * metaslabs (see spa_vdev_add()), then update the config.
662 		 */
663 		if (config_cache_txg != spa->spa_config_txg ||
664 		    state == SPA_LOAD_IMPORT)
665 			need_update = B_TRUE;
666 
667 		for (c = 0; c < rvd->vdev_children; c++)
668 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
669 				need_update = B_TRUE;
670 
671 		/*
672 		 * Update the config cache asychronously in case we're the
673 		 * root pool, in which case the config cache isn't writable yet.
674 		 */
675 		if (need_update)
676 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
677 	}
678 
679 	error = 0;
680 out:
681 	if (error && error != EBADF)
682 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
683 	spa->spa_load_state = SPA_LOAD_NONE;
684 	spa->spa_ena = 0;
685 
686 	return (error);
687 }
688 
689 /*
690  * Pool Open/Import
691  *
692  * The import case is identical to an open except that the configuration is sent
693  * down from userland, instead of grabbed from the configuration cache.  For the
694  * case of an open, the pool configuration will exist in the
695  * POOL_STATE_UNITIALIZED state.
696  *
697  * The stats information (gen/count/ustats) is used to gather vdev statistics at
698  * the same time open the pool, without having to keep around the spa_t in some
699  * ambiguous state.
700  */
701 static int
702 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
703 {
704 	spa_t *spa;
705 	int error;
706 	int loaded = B_FALSE;
707 	int locked = B_FALSE;
708 
709 	*spapp = NULL;
710 
711 	/*
712 	 * As disgusting as this is, we need to support recursive calls to this
713 	 * function because dsl_dir_open() is called during spa_load(), and ends
714 	 * up calling spa_open() again.  The real fix is to figure out how to
715 	 * avoid dsl_dir_open() calling this in the first place.
716 	 */
717 	if (mutex_owner(&spa_namespace_lock) != curthread) {
718 		mutex_enter(&spa_namespace_lock);
719 		locked = B_TRUE;
720 	}
721 
722 	if ((spa = spa_lookup(pool)) == NULL) {
723 		if (locked)
724 			mutex_exit(&spa_namespace_lock);
725 		return (ENOENT);
726 	}
727 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
728 
729 		spa_activate(spa);
730 
731 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
732 
733 		if (error == EBADF) {
734 			/*
735 			 * If vdev_validate() returns failure (indicated by
736 			 * EBADF), it indicates that one of the vdevs indicates
737 			 * that the pool has been exported or destroyed.  If
738 			 * this is the case, the config cache is out of sync and
739 			 * we should remove the pool from the namespace.
740 			 */
741 			zfs_post_ok(spa, NULL);
742 			spa_unload(spa);
743 			spa_deactivate(spa);
744 			spa_remove(spa);
745 			spa_config_sync();
746 			if (locked)
747 				mutex_exit(&spa_namespace_lock);
748 			return (ENOENT);
749 		}
750 
751 		if (error) {
752 			/*
753 			 * We can't open the pool, but we still have useful
754 			 * information: the state of each vdev after the
755 			 * attempted vdev_open().  Return this to the user.
756 			 */
757 			if (config != NULL && spa->spa_root_vdev != NULL) {
758 				spa_config_enter(spa, RW_READER, FTAG);
759 				*config = spa_config_generate(spa, NULL, -1ULL,
760 				    B_TRUE);
761 				spa_config_exit(spa, FTAG);
762 			}
763 			spa_unload(spa);
764 			spa_deactivate(spa);
765 			spa->spa_last_open_failed = B_TRUE;
766 			if (locked)
767 				mutex_exit(&spa_namespace_lock);
768 			*spapp = NULL;
769 			return (error);
770 		} else {
771 			zfs_post_ok(spa, NULL);
772 			spa->spa_last_open_failed = B_FALSE;
773 		}
774 
775 		loaded = B_TRUE;
776 	}
777 
778 	spa_open_ref(spa, tag);
779 	if (locked)
780 		mutex_exit(&spa_namespace_lock);
781 
782 	*spapp = spa;
783 
784 	if (config != NULL) {
785 		spa_config_enter(spa, RW_READER, FTAG);
786 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
787 		spa_config_exit(spa, FTAG);
788 	}
789 
790 	/*
791 	 * If we just loaded the pool, resilver anything that's out of date.
792 	 */
793 	if (loaded && (spa_mode & FWRITE))
794 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
795 
796 	return (0);
797 }
798 
799 int
800 spa_open(const char *name, spa_t **spapp, void *tag)
801 {
802 	return (spa_open_common(name, spapp, tag, NULL));
803 }
804 
805 /*
806  * Lookup the given spa_t, incrementing the inject count in the process,
807  * preventing it from being exported or destroyed.
808  */
809 spa_t *
810 spa_inject_addref(char *name)
811 {
812 	spa_t *spa;
813 
814 	mutex_enter(&spa_namespace_lock);
815 	if ((spa = spa_lookup(name)) == NULL) {
816 		mutex_exit(&spa_namespace_lock);
817 		return (NULL);
818 	}
819 	spa->spa_inject_ref++;
820 	mutex_exit(&spa_namespace_lock);
821 
822 	return (spa);
823 }
824 
825 void
826 spa_inject_delref(spa_t *spa)
827 {
828 	mutex_enter(&spa_namespace_lock);
829 	spa->spa_inject_ref--;
830 	mutex_exit(&spa_namespace_lock);
831 }
832 
833 static void
834 spa_add_spares(spa_t *spa, nvlist_t *config)
835 {
836 	nvlist_t **spares;
837 	uint_t i, nspares;
838 	nvlist_t *nvroot;
839 	uint64_t guid;
840 	vdev_stat_t *vs;
841 	uint_t vsc;
842 
843 	if (spa->spa_nspares == 0)
844 		return;
845 
846 	VERIFY(nvlist_lookup_nvlist(config,
847 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
848 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
849 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
850 	if (nspares != 0) {
851 		VERIFY(nvlist_add_nvlist_array(nvroot,
852 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
853 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
854 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
855 
856 		/*
857 		 * Go through and find any spares which have since been
858 		 * repurposed as an active spare.  If this is the case, update
859 		 * their status appropriately.
860 		 */
861 		for (i = 0; i < nspares; i++) {
862 			VERIFY(nvlist_lookup_uint64(spares[i],
863 			    ZPOOL_CONFIG_GUID, &guid) == 0);
864 			if (spa_spare_inuse(guid)) {
865 				VERIFY(nvlist_lookup_uint64_array(
866 				    spares[i], ZPOOL_CONFIG_STATS,
867 				    (uint64_t **)&vs, &vsc) == 0);
868 				vs->vs_state = VDEV_STATE_CANT_OPEN;
869 				vs->vs_aux = VDEV_AUX_SPARED;
870 			}
871 		}
872 	}
873 }
874 
875 int
876 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
877 {
878 	int error;
879 	spa_t *spa;
880 
881 	*config = NULL;
882 	error = spa_open_common(name, &spa, FTAG, config);
883 
884 	if (spa && *config != NULL) {
885 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
886 		    spa_get_errlog_size(spa)) == 0);
887 
888 		spa_add_spares(spa, *config);
889 	}
890 
891 	/*
892 	 * We want to get the alternate root even for faulted pools, so we cheat
893 	 * and call spa_lookup() directly.
894 	 */
895 	if (altroot) {
896 		if (spa == NULL) {
897 			mutex_enter(&spa_namespace_lock);
898 			spa = spa_lookup(name);
899 			if (spa)
900 				spa_altroot(spa, altroot, buflen);
901 			else
902 				altroot[0] = '\0';
903 			spa = NULL;
904 			mutex_exit(&spa_namespace_lock);
905 		} else {
906 			spa_altroot(spa, altroot, buflen);
907 		}
908 	}
909 
910 	if (spa != NULL)
911 		spa_close(spa, FTAG);
912 
913 	return (error);
914 }
915 
916 /*
917  * Validate that the 'spares' array is well formed.  We must have an array of
918  * nvlists, each which describes a valid leaf vdev.
919  */
920 static int
921 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
922 {
923 	nvlist_t **spares;
924 	uint_t i, nspares;
925 	vdev_t *vd;
926 	int error;
927 
928 	/*
929 	 * It's acceptable to have no spares specified.
930 	 */
931 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
932 	    &spares, &nspares) != 0)
933 		return (0);
934 
935 	if (nspares == 0)
936 		return (EINVAL);
937 
938 	/*
939 	 * Make sure the pool is formatted with a version that supports hot
940 	 * spares.
941 	 */
942 	if (spa_version(spa) < ZFS_VERSION_SPARES)
943 		return (ENOTSUP);
944 
945 	for (i = 0; i < nspares; i++) {
946 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
947 		    mode)) != 0)
948 			return (error);
949 
950 		if (!vd->vdev_ops->vdev_op_leaf) {
951 			vdev_free(vd);
952 			return (EINVAL);
953 		}
954 
955 		if ((error = vdev_open(vd)) != 0) {
956 			vdev_free(vd);
957 			return (error);
958 		}
959 
960 		vd->vdev_top = vd;
961 		if ((error = vdev_label_spare(vd, crtxg)) != 0) {
962 			vdev_free(vd);
963 			return (error);
964 		}
965 
966 		VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
967 		    vd->vdev_guid) == 0);
968 
969 		vdev_free(vd);
970 	}
971 
972 	return (0);
973 }
974 
975 /*
976  * Pool Creation
977  */
978 int
979 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
980 {
981 	spa_t *spa;
982 	vdev_t *rvd;
983 	dsl_pool_t *dp;
984 	dmu_tx_t *tx;
985 	int c, error = 0;
986 	uint64_t txg = TXG_INITIAL;
987 	nvlist_t **spares;
988 	uint_t nspares;
989 
990 	/*
991 	 * If this pool already exists, return failure.
992 	 */
993 	mutex_enter(&spa_namespace_lock);
994 	if (spa_lookup(pool) != NULL) {
995 		mutex_exit(&spa_namespace_lock);
996 		return (EEXIST);
997 	}
998 
999 	/*
1000 	 * Allocate a new spa_t structure.
1001 	 */
1002 	spa = spa_add(pool, altroot);
1003 	spa_activate(spa);
1004 
1005 	spa->spa_uberblock.ub_txg = txg - 1;
1006 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1007 	spa->spa_ubsync = spa->spa_uberblock;
1008 
1009 	/*
1010 	 * Create the root vdev.
1011 	 */
1012 	spa_config_enter(spa, RW_WRITER, FTAG);
1013 
1014 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1015 
1016 	ASSERT(error != 0 || rvd != NULL);
1017 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1018 
1019 	if (error == 0 && rvd->vdev_children == 0)
1020 		error = EINVAL;
1021 
1022 	if (error == 0 &&
1023 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1024 	    (error = spa_validate_spares(spa, nvroot, txg,
1025 	    VDEV_ALLOC_ADD)) == 0) {
1026 		for (c = 0; c < rvd->vdev_children; c++)
1027 			vdev_init(rvd->vdev_child[c], txg);
1028 		vdev_config_dirty(rvd);
1029 	}
1030 
1031 	spa_config_exit(spa, FTAG);
1032 
1033 	if (error != 0) {
1034 		spa_unload(spa);
1035 		spa_deactivate(spa);
1036 		spa_remove(spa);
1037 		mutex_exit(&spa_namespace_lock);
1038 		return (error);
1039 	}
1040 
1041 	/*
1042 	 * Get the list of spares, if specified.
1043 	 */
1044 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1045 	    &spares, &nspares) == 0) {
1046 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1047 		    KM_SLEEP) == 0);
1048 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1049 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1050 		spa_config_enter(spa, RW_WRITER, FTAG);
1051 		spa_load_spares(spa);
1052 		spa_config_exit(spa, FTAG);
1053 		spa->spa_sync_spares = B_TRUE;
1054 	}
1055 
1056 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1057 	spa->spa_meta_objset = dp->dp_meta_objset;
1058 
1059 	tx = dmu_tx_create_assigned(dp, txg);
1060 
1061 	/*
1062 	 * Create the pool config object.
1063 	 */
1064 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1065 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1066 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1067 
1068 	if (zap_add(spa->spa_meta_objset,
1069 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1070 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1071 		cmn_err(CE_PANIC, "failed to add pool config");
1072 	}
1073 
1074 	/* Newly created pools are always deflated. */
1075 	spa->spa_deflate = TRUE;
1076 	if (zap_add(spa->spa_meta_objset,
1077 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1078 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1079 		cmn_err(CE_PANIC, "failed to add deflate");
1080 	}
1081 
1082 	/*
1083 	 * Create the deferred-free bplist object.  Turn off compression
1084 	 * because sync-to-convergence takes longer if the blocksize
1085 	 * keeps changing.
1086 	 */
1087 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1088 	    1 << 14, tx);
1089 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1090 	    ZIO_COMPRESS_OFF, tx);
1091 
1092 	if (zap_add(spa->spa_meta_objset,
1093 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1094 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1095 		cmn_err(CE_PANIC, "failed to add bplist");
1096 	}
1097 
1098 	dmu_tx_commit(tx);
1099 
1100 	spa->spa_sync_on = B_TRUE;
1101 	txg_sync_start(spa->spa_dsl_pool);
1102 
1103 	/*
1104 	 * We explicitly wait for the first transaction to complete so that our
1105 	 * bean counters are appropriately updated.
1106 	 */
1107 	txg_wait_synced(spa->spa_dsl_pool, txg);
1108 
1109 	spa_config_sync();
1110 
1111 	mutex_exit(&spa_namespace_lock);
1112 
1113 	return (0);
1114 }
1115 
1116 /*
1117  * Import the given pool into the system.  We set up the necessary spa_t and
1118  * then call spa_load() to do the dirty work.
1119  */
1120 int
1121 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1122 {
1123 	spa_t *spa;
1124 	int error;
1125 	nvlist_t *nvroot;
1126 	nvlist_t **spares;
1127 	uint_t nspares;
1128 
1129 	if (!(spa_mode & FWRITE))
1130 		return (EROFS);
1131 
1132 	/*
1133 	 * If a pool with this name exists, return failure.
1134 	 */
1135 	mutex_enter(&spa_namespace_lock);
1136 	if (spa_lookup(pool) != NULL) {
1137 		mutex_exit(&spa_namespace_lock);
1138 		return (EEXIST);
1139 	}
1140 
1141 	/*
1142 	 * Create and initialize the spa structure.
1143 	 */
1144 	spa = spa_add(pool, altroot);
1145 	spa_activate(spa);
1146 
1147 	/*
1148 	 * Pass off the heavy lifting to spa_load().
1149 	 * Pass TRUE for mosconfig because the user-supplied config
1150 	 * is actually the one to trust when doing an import.
1151 	 */
1152 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1153 
1154 	spa_config_enter(spa, RW_WRITER, FTAG);
1155 	/*
1156 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1157 	 * and conflicts with spa_has_spare().
1158 	 */
1159 	if (spa->spa_sparelist) {
1160 		nvlist_free(spa->spa_sparelist);
1161 		spa->spa_sparelist = NULL;
1162 		spa_load_spares(spa);
1163 	}
1164 
1165 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1166 	    &nvroot) == 0);
1167 	if (error == 0)
1168 		error = spa_validate_spares(spa, nvroot, -1ULL,
1169 		    VDEV_ALLOC_SPARE);
1170 	spa_config_exit(spa, FTAG);
1171 
1172 	if (error != 0) {
1173 		spa_unload(spa);
1174 		spa_deactivate(spa);
1175 		spa_remove(spa);
1176 		mutex_exit(&spa_namespace_lock);
1177 		return (error);
1178 	}
1179 
1180 	/*
1181 	 * Override any spares as specified by the user, as these may have
1182 	 * correct device names/devids, etc.
1183 	 */
1184 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1185 	    &spares, &nspares) == 0) {
1186 		if (spa->spa_sparelist)
1187 			VERIFY(nvlist_remove(spa->spa_sparelist,
1188 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1189 		else
1190 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1191 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1192 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1193 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1194 		spa_config_enter(spa, RW_WRITER, FTAG);
1195 		spa_load_spares(spa);
1196 		spa_config_exit(spa, FTAG);
1197 		spa->spa_sync_spares = B_TRUE;
1198 	}
1199 
1200 	/*
1201 	 * Update the config cache to include the newly-imported pool.
1202 	 */
1203 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1204 
1205 	mutex_exit(&spa_namespace_lock);
1206 
1207 	/*
1208 	 * Resilver anything that's out of date.
1209 	 */
1210 	if (spa_mode & FWRITE)
1211 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1212 
1213 	return (0);
1214 }
1215 
1216 /*
1217  * This (illegal) pool name is used when temporarily importing a spa_t in order
1218  * to get the vdev stats associated with the imported devices.
1219  */
1220 #define	TRYIMPORT_NAME	"$import"
1221 
1222 nvlist_t *
1223 spa_tryimport(nvlist_t *tryconfig)
1224 {
1225 	nvlist_t *config = NULL;
1226 	char *poolname;
1227 	spa_t *spa;
1228 	uint64_t state;
1229 
1230 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1231 		return (NULL);
1232 
1233 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1234 		return (NULL);
1235 
1236 	/*
1237 	 * Create and initialize the spa structure.
1238 	 */
1239 	mutex_enter(&spa_namespace_lock);
1240 	spa = spa_add(TRYIMPORT_NAME, NULL);
1241 	spa_activate(spa);
1242 
1243 	/*
1244 	 * Pass off the heavy lifting to spa_load().
1245 	 * Pass TRUE for mosconfig because the user-supplied config
1246 	 * is actually the one to trust when doing an import.
1247 	 */
1248 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1249 
1250 	/*
1251 	 * If 'tryconfig' was at least parsable, return the current config.
1252 	 */
1253 	if (spa->spa_root_vdev != NULL) {
1254 		spa_config_enter(spa, RW_READER, FTAG);
1255 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1256 		spa_config_exit(spa, FTAG);
1257 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1258 		    poolname) == 0);
1259 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1260 		    state) == 0);
1261 
1262 		/*
1263 		 * Add the list of hot spares.
1264 		 */
1265 		spa_add_spares(spa, config);
1266 	}
1267 
1268 	spa_unload(spa);
1269 	spa_deactivate(spa);
1270 	spa_remove(spa);
1271 	mutex_exit(&spa_namespace_lock);
1272 
1273 	return (config);
1274 }
1275 
1276 /*
1277  * Pool export/destroy
1278  *
1279  * The act of destroying or exporting a pool is very simple.  We make sure there
1280  * is no more pending I/O and any references to the pool are gone.  Then, we
1281  * update the pool state and sync all the labels to disk, removing the
1282  * configuration from the cache afterwards.
1283  */
1284 static int
1285 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1286 {
1287 	spa_t *spa;
1288 
1289 	if (oldconfig)
1290 		*oldconfig = NULL;
1291 
1292 	if (!(spa_mode & FWRITE))
1293 		return (EROFS);
1294 
1295 	mutex_enter(&spa_namespace_lock);
1296 	if ((spa = spa_lookup(pool)) == NULL) {
1297 		mutex_exit(&spa_namespace_lock);
1298 		return (ENOENT);
1299 	}
1300 
1301 	/*
1302 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1303 	 * reacquire the namespace lock, and see if we can export.
1304 	 */
1305 	spa_open_ref(spa, FTAG);
1306 	mutex_exit(&spa_namespace_lock);
1307 	spa_async_suspend(spa);
1308 	mutex_enter(&spa_namespace_lock);
1309 	spa_close(spa, FTAG);
1310 
1311 	/*
1312 	 * The pool will be in core if it's openable,
1313 	 * in which case we can modify its state.
1314 	 */
1315 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1316 		/*
1317 		 * Objsets may be open only because they're dirty, so we
1318 		 * have to force it to sync before checking spa_refcnt.
1319 		 */
1320 		spa_scrub_suspend(spa);
1321 		txg_wait_synced(spa->spa_dsl_pool, 0);
1322 
1323 		/*
1324 		 * A pool cannot be exported or destroyed if there are active
1325 		 * references.  If we are resetting a pool, allow references by
1326 		 * fault injection handlers.
1327 		 */
1328 		if (!spa_refcount_zero(spa) ||
1329 		    (spa->spa_inject_ref != 0 &&
1330 		    new_state != POOL_STATE_UNINITIALIZED)) {
1331 			spa_scrub_resume(spa);
1332 			spa_async_resume(spa);
1333 			mutex_exit(&spa_namespace_lock);
1334 			return (EBUSY);
1335 		}
1336 
1337 		spa_scrub_resume(spa);
1338 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1339 
1340 		/*
1341 		 * We want this to be reflected on every label,
1342 		 * so mark them all dirty.  spa_unload() will do the
1343 		 * final sync that pushes these changes out.
1344 		 */
1345 		if (new_state != POOL_STATE_UNINITIALIZED) {
1346 			spa_config_enter(spa, RW_WRITER, FTAG);
1347 			spa->spa_state = new_state;
1348 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1349 			vdev_config_dirty(spa->spa_root_vdev);
1350 			spa_config_exit(spa, FTAG);
1351 		}
1352 	}
1353 
1354 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1355 		spa_unload(spa);
1356 		spa_deactivate(spa);
1357 	}
1358 
1359 	if (oldconfig && spa->spa_config)
1360 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1361 
1362 	if (new_state != POOL_STATE_UNINITIALIZED) {
1363 		spa_remove(spa);
1364 		spa_config_sync();
1365 	}
1366 	mutex_exit(&spa_namespace_lock);
1367 
1368 	return (0);
1369 }
1370 
1371 /*
1372  * Destroy a storage pool.
1373  */
1374 int
1375 spa_destroy(char *pool)
1376 {
1377 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1378 }
1379 
1380 /*
1381  * Export a storage pool.
1382  */
1383 int
1384 spa_export(char *pool, nvlist_t **oldconfig)
1385 {
1386 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1387 }
1388 
1389 /*
1390  * Similar to spa_export(), this unloads the spa_t without actually removing it
1391  * from the namespace in any way.
1392  */
1393 int
1394 spa_reset(char *pool)
1395 {
1396 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1397 }
1398 
1399 
1400 /*
1401  * ==========================================================================
1402  * Device manipulation
1403  * ==========================================================================
1404  */
1405 
1406 /*
1407  * Add capacity to a storage pool.
1408  */
1409 int
1410 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1411 {
1412 	uint64_t txg;
1413 	int c, error;
1414 	vdev_t *rvd = spa->spa_root_vdev;
1415 	vdev_t *vd, *tvd;
1416 	nvlist_t **spares;
1417 	uint_t i, nspares;
1418 
1419 	txg = spa_vdev_enter(spa);
1420 
1421 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1422 	    VDEV_ALLOC_ADD)) != 0)
1423 		return (spa_vdev_exit(spa, NULL, txg, error));
1424 
1425 	if ((error = spa_validate_spares(spa, nvroot, txg,
1426 	    VDEV_ALLOC_ADD)) != 0)
1427 		return (spa_vdev_exit(spa, vd, txg, error));
1428 
1429 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1430 	    &spares, &nspares) != 0)
1431 		nspares = 0;
1432 
1433 	if (vd->vdev_children == 0 && nspares == 0)
1434 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1435 
1436 	if (vd->vdev_children != 0) {
1437 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0)
1438 			return (spa_vdev_exit(spa, vd, txg, error));
1439 
1440 		/*
1441 		 * Transfer each new top-level vdev from vd to rvd.
1442 		 */
1443 		for (c = 0; c < vd->vdev_children; c++) {
1444 			tvd = vd->vdev_child[c];
1445 			vdev_remove_child(vd, tvd);
1446 			tvd->vdev_id = rvd->vdev_children;
1447 			vdev_add_child(rvd, tvd);
1448 			vdev_config_dirty(tvd);
1449 		}
1450 	}
1451 
1452 	if (nspares != 0) {
1453 		if (spa->spa_sparelist != NULL) {
1454 			nvlist_t **oldspares;
1455 			uint_t oldnspares;
1456 			nvlist_t **newspares;
1457 
1458 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1459 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1460 
1461 			newspares = kmem_alloc(sizeof (void *) *
1462 			    (nspares + oldnspares), KM_SLEEP);
1463 			for (i = 0; i < oldnspares; i++)
1464 				VERIFY(nvlist_dup(oldspares[i],
1465 				    &newspares[i], KM_SLEEP) == 0);
1466 			for (i = 0; i < nspares; i++)
1467 				VERIFY(nvlist_dup(spares[i],
1468 				    &newspares[i + oldnspares],
1469 				    KM_SLEEP) == 0);
1470 
1471 			VERIFY(nvlist_remove(spa->spa_sparelist,
1472 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1473 
1474 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1475 			    ZPOOL_CONFIG_SPARES, newspares,
1476 			    nspares + oldnspares) == 0);
1477 			for (i = 0; i < oldnspares + nspares; i++)
1478 				nvlist_free(newspares[i]);
1479 			kmem_free(newspares, (oldnspares + nspares) *
1480 			    sizeof (void *));
1481 		} else {
1482 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1483 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1484 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1485 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1486 		}
1487 
1488 		spa_load_spares(spa);
1489 		spa->spa_sync_spares = B_TRUE;
1490 	}
1491 
1492 	/*
1493 	 * We have to be careful when adding new vdevs to an existing pool.
1494 	 * If other threads start allocating from these vdevs before we
1495 	 * sync the config cache, and we lose power, then upon reboot we may
1496 	 * fail to open the pool because there are DVAs that the config cache
1497 	 * can't translate.  Therefore, we first add the vdevs without
1498 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1499 	 * and then let spa_config_update() initialize the new metaslabs.
1500 	 *
1501 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1502 	 * if we lose power at any point in this sequence, the remaining
1503 	 * steps will be completed the next time we load the pool.
1504 	 */
1505 	(void) spa_vdev_exit(spa, vd, txg, 0);
1506 
1507 	mutex_enter(&spa_namespace_lock);
1508 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1509 	mutex_exit(&spa_namespace_lock);
1510 
1511 	return (0);
1512 }
1513 
1514 /*
1515  * Attach a device to a mirror.  The arguments are the path to any device
1516  * in the mirror, and the nvroot for the new device.  If the path specifies
1517  * a device that is not mirrored, we automatically insert the mirror vdev.
1518  *
1519  * If 'replacing' is specified, the new device is intended to replace the
1520  * existing device; in this case the two devices are made into their own
1521  * mirror using the 'replacing' vdev, which is functionally idendical to
1522  * the mirror vdev (it actually reuses all the same ops) but has a few
1523  * extra rules: you can't attach to it after it's been created, and upon
1524  * completion of resilvering, the first disk (the one being replaced)
1525  * is automatically detached.
1526  */
1527 int
1528 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1529 {
1530 	uint64_t txg, open_txg;
1531 	int error;
1532 	vdev_t *rvd = spa->spa_root_vdev;
1533 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1534 	vdev_ops_t *pvops;
1535 
1536 	txg = spa_vdev_enter(spa);
1537 
1538 	oldvd = vdev_lookup_by_guid(rvd, guid);
1539 
1540 	if (oldvd == NULL)
1541 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1542 
1543 	if (!oldvd->vdev_ops->vdev_op_leaf)
1544 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1545 
1546 	pvd = oldvd->vdev_parent;
1547 
1548 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1549 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1550 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1551 
1552 	newvd = newrootvd->vdev_child[0];
1553 
1554 	if (!newvd->vdev_ops->vdev_op_leaf)
1555 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1556 
1557 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1558 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1559 
1560 	if (!replacing) {
1561 		/*
1562 		 * For attach, the only allowable parent is a mirror or the root
1563 		 * vdev.
1564 		 */
1565 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1566 		    pvd->vdev_ops != &vdev_root_ops)
1567 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1568 
1569 		pvops = &vdev_mirror_ops;
1570 	} else {
1571 		/*
1572 		 * Active hot spares can only be replaced by inactive hot
1573 		 * spares.
1574 		 */
1575 		if (pvd->vdev_ops == &vdev_spare_ops &&
1576 		    pvd->vdev_child[1] == oldvd &&
1577 		    !spa_has_spare(spa, newvd->vdev_guid))
1578 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1579 
1580 		/*
1581 		 * If the source is a hot spare, and the parent isn't already a
1582 		 * spare, then we want to create a new hot spare.  Otherwise, we
1583 		 * want to create a replacing vdev.
1584 		 */
1585 		if (pvd->vdev_ops == &vdev_replacing_ops)
1586 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1587 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1588 		    newvd->vdev_isspare)
1589 			pvops = &vdev_spare_ops;
1590 		else
1591 			pvops = &vdev_replacing_ops;
1592 	}
1593 
1594 	/*
1595 	 * Compare the new device size with the replaceable/attachable
1596 	 * device size.
1597 	 */
1598 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1599 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1600 
1601 	/*
1602 	 * The new device cannot have a higher alignment requirement
1603 	 * than the top-level vdev.
1604 	 */
1605 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1606 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1607 
1608 	/*
1609 	 * If this is an in-place replacement, update oldvd's path and devid
1610 	 * to make it distinguishable from newvd, and unopenable from now on.
1611 	 */
1612 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1613 		spa_strfree(oldvd->vdev_path);
1614 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1615 		    KM_SLEEP);
1616 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1617 		    newvd->vdev_path, "old");
1618 		if (oldvd->vdev_devid != NULL) {
1619 			spa_strfree(oldvd->vdev_devid);
1620 			oldvd->vdev_devid = NULL;
1621 		}
1622 	}
1623 
1624 	/*
1625 	 * If the parent is not a mirror, or if we're replacing, insert the new
1626 	 * mirror/replacing/spare vdev above oldvd.
1627 	 */
1628 	if (pvd->vdev_ops != pvops)
1629 		pvd = vdev_add_parent(oldvd, pvops);
1630 
1631 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1632 	ASSERT(pvd->vdev_ops == pvops);
1633 	ASSERT(oldvd->vdev_parent == pvd);
1634 
1635 	/*
1636 	 * Extract the new device from its root and add it to pvd.
1637 	 */
1638 	vdev_remove_child(newrootvd, newvd);
1639 	newvd->vdev_id = pvd->vdev_children;
1640 	vdev_add_child(pvd, newvd);
1641 
1642 	/*
1643 	 * If newvd is smaller than oldvd, but larger than its rsize,
1644 	 * the addition of newvd may have decreased our parent's asize.
1645 	 */
1646 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1647 
1648 	tvd = newvd->vdev_top;
1649 	ASSERT(pvd->vdev_top == tvd);
1650 	ASSERT(tvd->vdev_parent == rvd);
1651 
1652 	vdev_config_dirty(tvd);
1653 
1654 	/*
1655 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1656 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1657 	 */
1658 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1659 
1660 	mutex_enter(&newvd->vdev_dtl_lock);
1661 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1662 	    open_txg - TXG_INITIAL + 1);
1663 	mutex_exit(&newvd->vdev_dtl_lock);
1664 
1665 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1666 
1667 	/*
1668 	 * Mark newvd's DTL dirty in this txg.
1669 	 */
1670 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1671 
1672 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1673 
1674 	/*
1675 	 * Kick off a resilver to update newvd.
1676 	 */
1677 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1678 
1679 	return (0);
1680 }
1681 
1682 /*
1683  * Detach a device from a mirror or replacing vdev.
1684  * If 'replace_done' is specified, only detach if the parent
1685  * is a replacing vdev.
1686  */
1687 int
1688 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1689 {
1690 	uint64_t txg;
1691 	int c, t, error;
1692 	vdev_t *rvd = spa->spa_root_vdev;
1693 	vdev_t *vd, *pvd, *cvd, *tvd;
1694 	boolean_t unspare = B_FALSE;
1695 	uint64_t unspare_guid;
1696 
1697 	txg = spa_vdev_enter(spa);
1698 
1699 	vd = vdev_lookup_by_guid(rvd, guid);
1700 
1701 	if (vd == NULL)
1702 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1703 
1704 	if (!vd->vdev_ops->vdev_op_leaf)
1705 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1706 
1707 	pvd = vd->vdev_parent;
1708 
1709 	/*
1710 	 * If replace_done is specified, only remove this device if it's
1711 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1712 	 * disk can be removed.
1713 	 */
1714 	if (replace_done) {
1715 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1716 			if (vd->vdev_id != 0)
1717 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1718 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1719 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1720 		}
1721 	}
1722 
1723 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1724 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1725 
1726 	/*
1727 	 * Only mirror, replacing, and spare vdevs support detach.
1728 	 */
1729 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1730 	    pvd->vdev_ops != &vdev_mirror_ops &&
1731 	    pvd->vdev_ops != &vdev_spare_ops)
1732 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1733 
1734 	/*
1735 	 * If there's only one replica, you can't detach it.
1736 	 */
1737 	if (pvd->vdev_children <= 1)
1738 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1739 
1740 	/*
1741 	 * If all siblings have non-empty DTLs, this device may have the only
1742 	 * valid copy of the data, which means we cannot safely detach it.
1743 	 *
1744 	 * XXX -- as in the vdev_offline() case, we really want a more
1745 	 * precise DTL check.
1746 	 */
1747 	for (c = 0; c < pvd->vdev_children; c++) {
1748 		uint64_t dirty;
1749 
1750 		cvd = pvd->vdev_child[c];
1751 		if (cvd == vd)
1752 			continue;
1753 		if (vdev_is_dead(cvd))
1754 			continue;
1755 		mutex_enter(&cvd->vdev_dtl_lock);
1756 		dirty = cvd->vdev_dtl_map.sm_space |
1757 		    cvd->vdev_dtl_scrub.sm_space;
1758 		mutex_exit(&cvd->vdev_dtl_lock);
1759 		if (!dirty)
1760 			break;
1761 	}
1762 
1763 	/*
1764 	 * If we are a replacing or spare vdev, then we can always detach the
1765 	 * latter child, as that is how one cancels the operation.
1766 	 */
1767 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1768 	    c == pvd->vdev_children)
1769 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1770 
1771 	/*
1772 	 * If we are detaching the original disk from a spare, then it implies
1773 	 * that the spare should become a real disk, and be removed from the
1774 	 * active spare list for the pool.
1775 	 */
1776 	if (pvd->vdev_ops == &vdev_spare_ops &&
1777 	    vd->vdev_id == 0)
1778 		unspare = B_TRUE;
1779 
1780 	/*
1781 	 * Erase the disk labels so the disk can be used for other things.
1782 	 * This must be done after all other error cases are handled,
1783 	 * but before we disembowel vd (so we can still do I/O to it).
1784 	 * But if we can't do it, don't treat the error as fatal --
1785 	 * it may be that the unwritability of the disk is the reason
1786 	 * it's being detached!
1787 	 */
1788 	error = vdev_label_init(vd, 0, B_FALSE);
1789 	if (error)
1790 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1791 
1792 	/*
1793 	 * Remove vd from its parent and compact the parent's children.
1794 	 */
1795 	vdev_remove_child(pvd, vd);
1796 	vdev_compact_children(pvd);
1797 
1798 	/*
1799 	 * Remember one of the remaining children so we can get tvd below.
1800 	 */
1801 	cvd = pvd->vdev_child[0];
1802 
1803 	/*
1804 	 * If we need to remove the remaining child from the list of hot spares,
1805 	 * do it now, marking the vdev as no longer a spare in the process.  We
1806 	 * must do this before vdev_remove_parent(), because that can change the
1807 	 * GUID if it creates a new toplevel GUID.
1808 	 */
1809 	if (unspare) {
1810 		ASSERT(cvd->vdev_isspare);
1811 		spa_spare_remove(cvd->vdev_guid);
1812 		cvd->vdev_isspare = B_FALSE;
1813 		unspare_guid = cvd->vdev_guid;
1814 	}
1815 
1816 	/*
1817 	 * If the parent mirror/replacing vdev only has one child,
1818 	 * the parent is no longer needed.  Remove it from the tree.
1819 	 */
1820 	if (pvd->vdev_children == 1)
1821 		vdev_remove_parent(cvd);
1822 
1823 	/*
1824 	 * We don't set tvd until now because the parent we just removed
1825 	 * may have been the previous top-level vdev.
1826 	 */
1827 	tvd = cvd->vdev_top;
1828 	ASSERT(tvd->vdev_parent == rvd);
1829 
1830 	/*
1831 	 * Reopen this top-level vdev to reassess health after detach.
1832 	 */
1833 	vdev_reopen(tvd);
1834 
1835 	/*
1836 	 * If the device we just detached was smaller than the others,
1837 	 * it may be possible to add metaslabs (i.e. grow the pool).
1838 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1839 	 * are already in core, so there's nothing to read from disk.
1840 	 */
1841 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1842 
1843 	vdev_config_dirty(tvd);
1844 
1845 	/*
1846 	 * Mark vd's DTL as dirty in this txg.
1847 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1848 	 * and free vd's DTL object in syncing context.
1849 	 * But first make sure we're not on any *other* txg's DTL list,
1850 	 * to prevent vd from being accessed after it's freed.
1851 	 */
1852 	for (t = 0; t < TXG_SIZE; t++)
1853 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1854 	vd->vdev_detached = B_TRUE;
1855 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1856 
1857 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1858 
1859 	error = spa_vdev_exit(spa, vd, txg, 0);
1860 
1861 	/*
1862 	 * If we are supposed to remove the given vdev from the list of spares,
1863 	 * iterate over all pools in the system and replace it if it's present.
1864 	 */
1865 	if (unspare) {
1866 		spa = NULL;
1867 		mutex_enter(&spa_namespace_lock);
1868 		while ((spa = spa_next(spa)) != NULL) {
1869 			if (spa->spa_state != POOL_STATE_ACTIVE)
1870 				continue;
1871 
1872 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1873 		}
1874 		mutex_exit(&spa_namespace_lock);
1875 	}
1876 
1877 	return (error);
1878 }
1879 
1880 /*
1881  * Remove a device from the pool.  Currently, this supports removing only hot
1882  * spares.
1883  */
1884 int
1885 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1886 {
1887 	vdev_t *vd;
1888 	nvlist_t **spares, *nv, **newspares;
1889 	uint_t i, j, nspares;
1890 	int ret = 0;
1891 
1892 	spa_config_enter(spa, RW_WRITER, FTAG);
1893 
1894 	vd = spa_lookup_by_guid(spa, guid);
1895 
1896 	nv = NULL;
1897 	if (spa->spa_spares != NULL &&
1898 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1899 	    &spares, &nspares) == 0) {
1900 		for (i = 0; i < nspares; i++) {
1901 			uint64_t theguid;
1902 
1903 			VERIFY(nvlist_lookup_uint64(spares[i],
1904 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
1905 			if (theguid == guid) {
1906 				nv = spares[i];
1907 				break;
1908 			}
1909 		}
1910 	}
1911 
1912 	/*
1913 	 * We only support removing a hot spare, and only if it's not currently
1914 	 * in use in this pool.
1915 	 */
1916 	if (nv == NULL && vd == NULL) {
1917 		ret = ENOENT;
1918 		goto out;
1919 	}
1920 
1921 	if (nv == NULL && vd != NULL) {
1922 		ret = ENOTSUP;
1923 		goto out;
1924 	}
1925 
1926 	if (!unspare && nv != NULL && vd != NULL) {
1927 		ret = EBUSY;
1928 		goto out;
1929 	}
1930 
1931 	if (nspares == 1) {
1932 		newspares = NULL;
1933 	} else {
1934 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
1935 		    KM_SLEEP);
1936 		for (i = 0, j = 0; i < nspares; i++) {
1937 			if (spares[i] != nv)
1938 				VERIFY(nvlist_dup(spares[i],
1939 				    &newspares[j++], KM_SLEEP) == 0);
1940 		}
1941 	}
1942 
1943 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1944 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1945 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1946 	    newspares, nspares - 1) == 0);
1947 	for (i = 0; i < nspares - 1; i++)
1948 		nvlist_free(newspares[i]);
1949 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
1950 	spa_load_spares(spa);
1951 	spa->spa_sync_spares = B_TRUE;
1952 
1953 out:
1954 	spa_config_exit(spa, FTAG);
1955 
1956 	return (ret);
1957 }
1958 
1959 /*
1960  * Find any device that's done replacing, so we can detach it.
1961  */
1962 static vdev_t *
1963 spa_vdev_replace_done_hunt(vdev_t *vd)
1964 {
1965 	vdev_t *newvd, *oldvd;
1966 	int c;
1967 
1968 	for (c = 0; c < vd->vdev_children; c++) {
1969 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1970 		if (oldvd != NULL)
1971 			return (oldvd);
1972 	}
1973 
1974 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1975 		oldvd = vd->vdev_child[0];
1976 		newvd = vd->vdev_child[1];
1977 
1978 		mutex_enter(&newvd->vdev_dtl_lock);
1979 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1980 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1981 			mutex_exit(&newvd->vdev_dtl_lock);
1982 			return (oldvd);
1983 		}
1984 		mutex_exit(&newvd->vdev_dtl_lock);
1985 	}
1986 
1987 	return (NULL);
1988 }
1989 
1990 static void
1991 spa_vdev_replace_done(spa_t *spa)
1992 {
1993 	vdev_t *vd;
1994 	vdev_t *pvd;
1995 	uint64_t guid;
1996 	uint64_t pguid = 0;
1997 
1998 	spa_config_enter(spa, RW_READER, FTAG);
1999 
2000 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2001 		guid = vd->vdev_guid;
2002 		/*
2003 		 * If we have just finished replacing a hot spared device, then
2004 		 * we need to detach the parent's first child (the original hot
2005 		 * spare) as well.
2006 		 */
2007 		pvd = vd->vdev_parent;
2008 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2009 		    pvd->vdev_id == 0) {
2010 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2011 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2012 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2013 		}
2014 		spa_config_exit(spa, FTAG);
2015 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2016 			return;
2017 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2018 			return;
2019 		spa_config_enter(spa, RW_READER, FTAG);
2020 	}
2021 
2022 	spa_config_exit(spa, FTAG);
2023 }
2024 
2025 /*
2026  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2027  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2028  */
2029 int
2030 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2031 {
2032 	vdev_t *rvd, *vd;
2033 	uint64_t txg;
2034 
2035 	rvd = spa->spa_root_vdev;
2036 
2037 	txg = spa_vdev_enter(spa);
2038 
2039 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2040 		/*
2041 		 * Determine if this is a reference to a hot spare.  In that
2042 		 * case, update the path as stored in the spare list.
2043 		 */
2044 		nvlist_t **spares;
2045 		uint_t i, nspares;
2046 		if (spa->spa_sparelist != NULL) {
2047 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2048 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2049 			for (i = 0; i < nspares; i++) {
2050 				uint64_t theguid;
2051 				VERIFY(nvlist_lookup_uint64(spares[i],
2052 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2053 				if (theguid == guid)
2054 					break;
2055 			}
2056 
2057 			if (i == nspares)
2058 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2059 
2060 			VERIFY(nvlist_add_string(spares[i],
2061 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2062 			spa_load_spares(spa);
2063 			spa->spa_sync_spares = B_TRUE;
2064 			return (spa_vdev_exit(spa, NULL, txg, 0));
2065 		} else {
2066 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2067 		}
2068 	}
2069 
2070 	if (!vd->vdev_ops->vdev_op_leaf)
2071 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2072 
2073 	spa_strfree(vd->vdev_path);
2074 	vd->vdev_path = spa_strdup(newpath);
2075 
2076 	vdev_config_dirty(vd->vdev_top);
2077 
2078 	return (spa_vdev_exit(spa, NULL, txg, 0));
2079 }
2080 
2081 /*
2082  * ==========================================================================
2083  * SPA Scrubbing
2084  * ==========================================================================
2085  */
2086 
2087 void
2088 spa_scrub_throttle(spa_t *spa, int direction)
2089 {
2090 	mutex_enter(&spa->spa_scrub_lock);
2091 	spa->spa_scrub_throttled += direction;
2092 	ASSERT(spa->spa_scrub_throttled >= 0);
2093 	if (spa->spa_scrub_throttled == 0)
2094 		cv_broadcast(&spa->spa_scrub_io_cv);
2095 	mutex_exit(&spa->spa_scrub_lock);
2096 }
2097 
2098 static void
2099 spa_scrub_io_done(zio_t *zio)
2100 {
2101 	spa_t *spa = zio->io_spa;
2102 
2103 	zio_buf_free(zio->io_data, zio->io_size);
2104 
2105 	mutex_enter(&spa->spa_scrub_lock);
2106 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2107 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2108 		spa->spa_scrub_errors++;
2109 		mutex_enter(&vd->vdev_stat_lock);
2110 		vd->vdev_stat.vs_scrub_errors++;
2111 		mutex_exit(&vd->vdev_stat_lock);
2112 	}
2113 	if (--spa->spa_scrub_inflight == 0) {
2114 		cv_broadcast(&spa->spa_scrub_io_cv);
2115 		ASSERT(spa->spa_scrub_throttled == 0);
2116 	}
2117 	mutex_exit(&spa->spa_scrub_lock);
2118 }
2119 
2120 static void
2121 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2122     zbookmark_t *zb)
2123 {
2124 	size_t size = BP_GET_LSIZE(bp);
2125 	void *data = zio_buf_alloc(size);
2126 
2127 	mutex_enter(&spa->spa_scrub_lock);
2128 	spa->spa_scrub_inflight++;
2129 	mutex_exit(&spa->spa_scrub_lock);
2130 
2131 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2132 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2133 
2134 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2135 
2136 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2137 	    spa_scrub_io_done, NULL, priority, flags, zb));
2138 }
2139 
2140 /* ARGSUSED */
2141 static int
2142 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2143 {
2144 	blkptr_t *bp = &bc->bc_blkptr;
2145 	vdev_t *vd = spa->spa_root_vdev;
2146 	dva_t *dva = bp->blk_dva;
2147 	int needs_resilver = B_FALSE;
2148 	int d;
2149 
2150 	if (bc->bc_errno) {
2151 		/*
2152 		 * We can't scrub this block, but we can continue to scrub
2153 		 * the rest of the pool.  Note the error and move along.
2154 		 */
2155 		mutex_enter(&spa->spa_scrub_lock);
2156 		spa->spa_scrub_errors++;
2157 		mutex_exit(&spa->spa_scrub_lock);
2158 
2159 		mutex_enter(&vd->vdev_stat_lock);
2160 		vd->vdev_stat.vs_scrub_errors++;
2161 		mutex_exit(&vd->vdev_stat_lock);
2162 
2163 		return (ERESTART);
2164 	}
2165 
2166 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2167 
2168 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2169 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2170 
2171 		ASSERT(vd != NULL);
2172 
2173 		/*
2174 		 * Keep track of how much data we've examined so that
2175 		 * zpool(1M) status can make useful progress reports.
2176 		 */
2177 		mutex_enter(&vd->vdev_stat_lock);
2178 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2179 		mutex_exit(&vd->vdev_stat_lock);
2180 
2181 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2182 			if (DVA_GET_GANG(&dva[d])) {
2183 				/*
2184 				 * Gang members may be spread across multiple
2185 				 * vdevs, so the best we can do is look at the
2186 				 * pool-wide DTL.
2187 				 * XXX -- it would be better to change our
2188 				 * allocation policy to ensure that this can't
2189 				 * happen.
2190 				 */
2191 				vd = spa->spa_root_vdev;
2192 			}
2193 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2194 			    bp->blk_birth, 1))
2195 				needs_resilver = B_TRUE;
2196 		}
2197 	}
2198 
2199 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2200 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2201 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2202 	else if (needs_resilver)
2203 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2204 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2205 
2206 	return (0);
2207 }
2208 
2209 static void
2210 spa_scrub_thread(spa_t *spa)
2211 {
2212 	callb_cpr_t cprinfo;
2213 	traverse_handle_t *th = spa->spa_scrub_th;
2214 	vdev_t *rvd = spa->spa_root_vdev;
2215 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2216 	int error = 0;
2217 	boolean_t complete;
2218 
2219 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2220 
2221 	/*
2222 	 * If we're restarting due to a snapshot create/delete,
2223 	 * wait for that to complete.
2224 	 */
2225 	txg_wait_synced(spa_get_dsl(spa), 0);
2226 
2227 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2228 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2229 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2230 
2231 	spa_config_enter(spa, RW_WRITER, FTAG);
2232 	vdev_reopen(rvd);		/* purge all vdev caches */
2233 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2234 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2235 	spa_config_exit(spa, FTAG);
2236 
2237 	mutex_enter(&spa->spa_scrub_lock);
2238 	spa->spa_scrub_errors = 0;
2239 	spa->spa_scrub_active = 1;
2240 	ASSERT(spa->spa_scrub_inflight == 0);
2241 	ASSERT(spa->spa_scrub_throttled == 0);
2242 
2243 	while (!spa->spa_scrub_stop) {
2244 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2245 		while (spa->spa_scrub_suspended) {
2246 			spa->spa_scrub_active = 0;
2247 			cv_broadcast(&spa->spa_scrub_cv);
2248 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2249 			spa->spa_scrub_active = 1;
2250 		}
2251 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2252 
2253 		if (spa->spa_scrub_restart_txg != 0)
2254 			break;
2255 
2256 		mutex_exit(&spa->spa_scrub_lock);
2257 		error = traverse_more(th);
2258 		mutex_enter(&spa->spa_scrub_lock);
2259 		if (error != EAGAIN)
2260 			break;
2261 
2262 		while (spa->spa_scrub_throttled > 0)
2263 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2264 	}
2265 
2266 	while (spa->spa_scrub_inflight)
2267 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2268 
2269 	spa->spa_scrub_active = 0;
2270 	cv_broadcast(&spa->spa_scrub_cv);
2271 
2272 	mutex_exit(&spa->spa_scrub_lock);
2273 
2274 	spa_config_enter(spa, RW_WRITER, FTAG);
2275 
2276 	mutex_enter(&spa->spa_scrub_lock);
2277 
2278 	/*
2279 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2280 	 * AND the spa config lock to synchronize with any config changes
2281 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2282 	 */
2283 	if (spa->spa_scrub_restart_txg != 0)
2284 		error = ERESTART;
2285 
2286 	if (spa->spa_scrub_stop)
2287 		error = EINTR;
2288 
2289 	/*
2290 	 * Even if there were uncorrectable errors, we consider the scrub
2291 	 * completed.  The downside is that if there is a transient error during
2292 	 * a resilver, we won't resilver the data properly to the target.  But
2293 	 * if the damage is permanent (more likely) we will resilver forever,
2294 	 * which isn't really acceptable.  Since there is enough information for
2295 	 * the user to know what has failed and why, this seems like a more
2296 	 * tractable approach.
2297 	 */
2298 	complete = (error == 0);
2299 
2300 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2301 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2302 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2303 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2304 
2305 	mutex_exit(&spa->spa_scrub_lock);
2306 
2307 	/*
2308 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2309 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2310 	 */
2311 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2312 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2313 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2314 	spa_errlog_rotate(spa);
2315 
2316 	spa_config_exit(spa, FTAG);
2317 
2318 	mutex_enter(&spa->spa_scrub_lock);
2319 
2320 	/*
2321 	 * We may have finished replacing a device.
2322 	 * Let the async thread assess this and handle the detach.
2323 	 */
2324 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2325 
2326 	/*
2327 	 * If we were told to restart, our final act is to start a new scrub.
2328 	 */
2329 	if (error == ERESTART)
2330 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2331 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2332 
2333 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2334 	spa->spa_scrub_active = 0;
2335 	spa->spa_scrub_thread = NULL;
2336 	cv_broadcast(&spa->spa_scrub_cv);
2337 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2338 	thread_exit();
2339 }
2340 
2341 void
2342 spa_scrub_suspend(spa_t *spa)
2343 {
2344 	mutex_enter(&spa->spa_scrub_lock);
2345 	spa->spa_scrub_suspended++;
2346 	while (spa->spa_scrub_active) {
2347 		cv_broadcast(&spa->spa_scrub_cv);
2348 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2349 	}
2350 	while (spa->spa_scrub_inflight)
2351 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2352 	mutex_exit(&spa->spa_scrub_lock);
2353 }
2354 
2355 void
2356 spa_scrub_resume(spa_t *spa)
2357 {
2358 	mutex_enter(&spa->spa_scrub_lock);
2359 	ASSERT(spa->spa_scrub_suspended != 0);
2360 	if (--spa->spa_scrub_suspended == 0)
2361 		cv_broadcast(&spa->spa_scrub_cv);
2362 	mutex_exit(&spa->spa_scrub_lock);
2363 }
2364 
2365 void
2366 spa_scrub_restart(spa_t *spa, uint64_t txg)
2367 {
2368 	/*
2369 	 * Something happened (e.g. snapshot create/delete) that means
2370 	 * we must restart any in-progress scrubs.  The itinerary will
2371 	 * fix this properly.
2372 	 */
2373 	mutex_enter(&spa->spa_scrub_lock);
2374 	spa->spa_scrub_restart_txg = txg;
2375 	mutex_exit(&spa->spa_scrub_lock);
2376 }
2377 
2378 int
2379 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2380 {
2381 	space_seg_t *ss;
2382 	uint64_t mintxg, maxtxg;
2383 	vdev_t *rvd = spa->spa_root_vdev;
2384 
2385 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2386 		return (ENOTSUP);
2387 
2388 	mutex_enter(&spa->spa_scrub_lock);
2389 
2390 	/*
2391 	 * If there's a scrub or resilver already in progress, stop it.
2392 	 */
2393 	while (spa->spa_scrub_thread != NULL) {
2394 		/*
2395 		 * Don't stop a resilver unless forced.
2396 		 */
2397 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2398 			mutex_exit(&spa->spa_scrub_lock);
2399 			return (EBUSY);
2400 		}
2401 		spa->spa_scrub_stop = 1;
2402 		cv_broadcast(&spa->spa_scrub_cv);
2403 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2404 	}
2405 
2406 	/*
2407 	 * Terminate the previous traverse.
2408 	 */
2409 	if (spa->spa_scrub_th != NULL) {
2410 		traverse_fini(spa->spa_scrub_th);
2411 		spa->spa_scrub_th = NULL;
2412 	}
2413 
2414 	if (rvd == NULL) {
2415 		ASSERT(spa->spa_scrub_stop == 0);
2416 		ASSERT(spa->spa_scrub_type == type);
2417 		ASSERT(spa->spa_scrub_restart_txg == 0);
2418 		mutex_exit(&spa->spa_scrub_lock);
2419 		return (0);
2420 	}
2421 
2422 	mintxg = TXG_INITIAL - 1;
2423 	maxtxg = spa_last_synced_txg(spa) + 1;
2424 
2425 	mutex_enter(&rvd->vdev_dtl_lock);
2426 
2427 	if (rvd->vdev_dtl_map.sm_space == 0) {
2428 		/*
2429 		 * The pool-wide DTL is empty.
2430 		 * If this is a resilver, there's nothing to do except
2431 		 * check whether any in-progress replacements have completed.
2432 		 */
2433 		if (type == POOL_SCRUB_RESILVER) {
2434 			type = POOL_SCRUB_NONE;
2435 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2436 		}
2437 	} else {
2438 		/*
2439 		 * The pool-wide DTL is non-empty.
2440 		 * If this is a normal scrub, upgrade to a resilver instead.
2441 		 */
2442 		if (type == POOL_SCRUB_EVERYTHING)
2443 			type = POOL_SCRUB_RESILVER;
2444 	}
2445 
2446 	if (type == POOL_SCRUB_RESILVER) {
2447 		/*
2448 		 * Determine the resilvering boundaries.
2449 		 *
2450 		 * Note: (mintxg, maxtxg) is an open interval,
2451 		 * i.e. mintxg and maxtxg themselves are not included.
2452 		 *
2453 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2454 		 * so we don't claim to resilver a txg that's still changing.
2455 		 */
2456 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2457 		mintxg = ss->ss_start - 1;
2458 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2459 		maxtxg = MIN(ss->ss_end, maxtxg);
2460 	}
2461 
2462 	mutex_exit(&rvd->vdev_dtl_lock);
2463 
2464 	spa->spa_scrub_stop = 0;
2465 	spa->spa_scrub_type = type;
2466 	spa->spa_scrub_restart_txg = 0;
2467 
2468 	if (type != POOL_SCRUB_NONE) {
2469 		spa->spa_scrub_mintxg = mintxg;
2470 		spa->spa_scrub_maxtxg = maxtxg;
2471 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2472 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2473 		    ZIO_FLAG_CANFAIL);
2474 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2475 		spa->spa_scrub_thread = thread_create(NULL, 0,
2476 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2477 	}
2478 
2479 	mutex_exit(&spa->spa_scrub_lock);
2480 
2481 	return (0);
2482 }
2483 
2484 /*
2485  * ==========================================================================
2486  * SPA async task processing
2487  * ==========================================================================
2488  */
2489 
2490 static void
2491 spa_async_reopen(spa_t *spa)
2492 {
2493 	vdev_t *rvd = spa->spa_root_vdev;
2494 	vdev_t *tvd;
2495 	int c;
2496 
2497 	spa_config_enter(spa, RW_WRITER, FTAG);
2498 
2499 	for (c = 0; c < rvd->vdev_children; c++) {
2500 		tvd = rvd->vdev_child[c];
2501 		if (tvd->vdev_reopen_wanted) {
2502 			tvd->vdev_reopen_wanted = 0;
2503 			vdev_reopen(tvd);
2504 		}
2505 	}
2506 
2507 	spa_config_exit(spa, FTAG);
2508 }
2509 
2510 static void
2511 spa_async_thread(spa_t *spa)
2512 {
2513 	int tasks;
2514 
2515 	ASSERT(spa->spa_sync_on);
2516 
2517 	mutex_enter(&spa->spa_async_lock);
2518 	tasks = spa->spa_async_tasks;
2519 	spa->spa_async_tasks = 0;
2520 	mutex_exit(&spa->spa_async_lock);
2521 
2522 	/*
2523 	 * See if the config needs to be updated.
2524 	 */
2525 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2526 		mutex_enter(&spa_namespace_lock);
2527 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2528 		mutex_exit(&spa_namespace_lock);
2529 	}
2530 
2531 	/*
2532 	 * See if any devices need to be reopened.
2533 	 */
2534 	if (tasks & SPA_ASYNC_REOPEN)
2535 		spa_async_reopen(spa);
2536 
2537 	/*
2538 	 * If any devices are done replacing, detach them.
2539 	 */
2540 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2541 		spa_vdev_replace_done(spa);
2542 
2543 	/*
2544 	 * Kick off a scrub.
2545 	 */
2546 	if (tasks & SPA_ASYNC_SCRUB)
2547 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2548 
2549 	/*
2550 	 * Kick off a resilver.
2551 	 */
2552 	if (tasks & SPA_ASYNC_RESILVER)
2553 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2554 
2555 	/*
2556 	 * Let the world know that we're done.
2557 	 */
2558 	mutex_enter(&spa->spa_async_lock);
2559 	spa->spa_async_thread = NULL;
2560 	cv_broadcast(&spa->spa_async_cv);
2561 	mutex_exit(&spa->spa_async_lock);
2562 	thread_exit();
2563 }
2564 
2565 void
2566 spa_async_suspend(spa_t *spa)
2567 {
2568 	mutex_enter(&spa->spa_async_lock);
2569 	spa->spa_async_suspended++;
2570 	while (spa->spa_async_thread != NULL)
2571 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2572 	mutex_exit(&spa->spa_async_lock);
2573 }
2574 
2575 void
2576 spa_async_resume(spa_t *spa)
2577 {
2578 	mutex_enter(&spa->spa_async_lock);
2579 	ASSERT(spa->spa_async_suspended != 0);
2580 	spa->spa_async_suspended--;
2581 	mutex_exit(&spa->spa_async_lock);
2582 }
2583 
2584 static void
2585 spa_async_dispatch(spa_t *spa)
2586 {
2587 	mutex_enter(&spa->spa_async_lock);
2588 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2589 	    spa->spa_async_thread == NULL &&
2590 	    rootdir != NULL && !vn_is_readonly(rootdir))
2591 		spa->spa_async_thread = thread_create(NULL, 0,
2592 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2593 	mutex_exit(&spa->spa_async_lock);
2594 }
2595 
2596 void
2597 spa_async_request(spa_t *spa, int task)
2598 {
2599 	mutex_enter(&spa->spa_async_lock);
2600 	spa->spa_async_tasks |= task;
2601 	mutex_exit(&spa->spa_async_lock);
2602 }
2603 
2604 /*
2605  * ==========================================================================
2606  * SPA syncing routines
2607  * ==========================================================================
2608  */
2609 
2610 static void
2611 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2612 {
2613 	bplist_t *bpl = &spa->spa_sync_bplist;
2614 	dmu_tx_t *tx;
2615 	blkptr_t blk;
2616 	uint64_t itor = 0;
2617 	zio_t *zio;
2618 	int error;
2619 	uint8_t c = 1;
2620 
2621 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2622 
2623 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2624 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2625 
2626 	error = zio_wait(zio);
2627 	ASSERT3U(error, ==, 0);
2628 
2629 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2630 	bplist_vacate(bpl, tx);
2631 
2632 	/*
2633 	 * Pre-dirty the first block so we sync to convergence faster.
2634 	 * (Usually only the first block is needed.)
2635 	 */
2636 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2637 	dmu_tx_commit(tx);
2638 }
2639 
2640 static void
2641 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2642 {
2643 	char *packed = NULL;
2644 	size_t nvsize = 0;
2645 	dmu_buf_t *db;
2646 
2647 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2648 
2649 	packed = kmem_alloc(nvsize, KM_SLEEP);
2650 
2651 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2652 	    KM_SLEEP) == 0);
2653 
2654 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2655 
2656 	kmem_free(packed, nvsize);
2657 
2658 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2659 	dmu_buf_will_dirty(db, tx);
2660 	*(uint64_t *)db->db_data = nvsize;
2661 	dmu_buf_rele(db, FTAG);
2662 }
2663 
2664 static void
2665 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2666 {
2667 	nvlist_t *nvroot;
2668 	nvlist_t **spares;
2669 	int i;
2670 
2671 	if (!spa->spa_sync_spares)
2672 		return;
2673 
2674 	/*
2675 	 * Update the MOS nvlist describing the list of available spares.
2676 	 * spa_validate_spares() will have already made sure this nvlist is
2677 	 * valid and the vdevs are labelled appropriately.
2678 	 */
2679 	if (spa->spa_spares_object == 0) {
2680 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2681 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2682 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2683 		VERIFY(zap_update(spa->spa_meta_objset,
2684 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2685 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2686 	}
2687 
2688 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2689 	if (spa->spa_nspares == 0) {
2690 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2691 		    NULL, 0) == 0);
2692 	} else {
2693 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2694 		    KM_SLEEP);
2695 		for (i = 0; i < spa->spa_nspares; i++)
2696 			spares[i] = vdev_config_generate(spa,
2697 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2698 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2699 		    spares, spa->spa_nspares) == 0);
2700 		for (i = 0; i < spa->spa_nspares; i++)
2701 			nvlist_free(spares[i]);
2702 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2703 	}
2704 
2705 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2706 
2707 	spa->spa_sync_spares = B_FALSE;
2708 }
2709 
2710 static void
2711 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2712 {
2713 	nvlist_t *config;
2714 
2715 	if (list_is_empty(&spa->spa_dirty_list))
2716 		return;
2717 
2718 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2719 
2720 	if (spa->spa_config_syncing)
2721 		nvlist_free(spa->spa_config_syncing);
2722 	spa->spa_config_syncing = config;
2723 
2724 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2725 }
2726 
2727 /*
2728  * Sync the specified transaction group.  New blocks may be dirtied as
2729  * part of the process, so we iterate until it converges.
2730  */
2731 void
2732 spa_sync(spa_t *spa, uint64_t txg)
2733 {
2734 	dsl_pool_t *dp = spa->spa_dsl_pool;
2735 	objset_t *mos = spa->spa_meta_objset;
2736 	bplist_t *bpl = &spa->spa_sync_bplist;
2737 	vdev_t *rvd = spa->spa_root_vdev;
2738 	vdev_t *vd;
2739 	dmu_tx_t *tx;
2740 	int dirty_vdevs;
2741 
2742 	/*
2743 	 * Lock out configuration changes.
2744 	 */
2745 	spa_config_enter(spa, RW_READER, FTAG);
2746 
2747 	spa->spa_syncing_txg = txg;
2748 	spa->spa_sync_pass = 0;
2749 
2750 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2751 
2752 	tx = dmu_tx_create_assigned(dp, txg);
2753 
2754 	/*
2755 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2756 	 * set spa_deflate if we have no raid-z vdevs.
2757 	 */
2758 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2759 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2760 		int i;
2761 
2762 		for (i = 0; i < rvd->vdev_children; i++) {
2763 			vd = rvd->vdev_child[i];
2764 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2765 				break;
2766 		}
2767 		if (i == rvd->vdev_children) {
2768 			spa->spa_deflate = TRUE;
2769 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2770 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2771 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2772 		}
2773 	}
2774 
2775 	/*
2776 	 * If anything has changed in this txg, push the deferred frees
2777 	 * from the previous txg.  If not, leave them alone so that we
2778 	 * don't generate work on an otherwise idle system.
2779 	 */
2780 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2781 	    !txg_list_empty(&dp->dp_dirty_dirs, txg))
2782 		spa_sync_deferred_frees(spa, txg);
2783 
2784 	/*
2785 	 * Iterate to convergence.
2786 	 */
2787 	do {
2788 		spa->spa_sync_pass++;
2789 
2790 		spa_sync_config_object(spa, tx);
2791 		spa_sync_spares(spa, tx);
2792 		spa_errlog_sync(spa, txg);
2793 		dsl_pool_sync(dp, txg);
2794 
2795 		dirty_vdevs = 0;
2796 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2797 			vdev_sync(vd, txg);
2798 			dirty_vdevs++;
2799 		}
2800 
2801 		bplist_sync(bpl, tx);
2802 	} while (dirty_vdevs);
2803 
2804 	bplist_close(bpl);
2805 
2806 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2807 
2808 	/*
2809 	 * Rewrite the vdev configuration (which includes the uberblock)
2810 	 * to commit the transaction group.
2811 	 *
2812 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2813 	 * Otherwise, pick a random top-level vdev that's known to be
2814 	 * visible in the config cache (see spa_vdev_add() for details).
2815 	 * If the write fails, try the next vdev until we're tried them all.
2816 	 */
2817 	if (!list_is_empty(&spa->spa_dirty_list)) {
2818 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2819 	} else {
2820 		int children = rvd->vdev_children;
2821 		int c0 = spa_get_random(children);
2822 		int c;
2823 
2824 		for (c = 0; c < children; c++) {
2825 			vd = rvd->vdev_child[(c0 + c) % children];
2826 			if (vd->vdev_ms_array == 0)
2827 				continue;
2828 			if (vdev_config_sync(vd, txg) == 0)
2829 				break;
2830 		}
2831 		if (c == children)
2832 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2833 	}
2834 
2835 	dmu_tx_commit(tx);
2836 
2837 	/*
2838 	 * Clear the dirty config list.
2839 	 */
2840 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2841 		vdev_config_clean(vd);
2842 
2843 	/*
2844 	 * Now that the new config has synced transactionally,
2845 	 * let it become visible to the config cache.
2846 	 */
2847 	if (spa->spa_config_syncing != NULL) {
2848 		spa_config_set(spa, spa->spa_config_syncing);
2849 		spa->spa_config_txg = txg;
2850 		spa->spa_config_syncing = NULL;
2851 	}
2852 
2853 	/*
2854 	 * Make a stable copy of the fully synced uberblock.
2855 	 * We use this as the root for pool traversals.
2856 	 */
2857 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2858 
2859 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2860 
2861 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2862 	spa->spa_traverse_wanted = 0;
2863 	spa->spa_ubsync = spa->spa_uberblock;
2864 	rw_exit(&spa->spa_traverse_lock);
2865 
2866 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2867 
2868 	/*
2869 	 * Clean up the ZIL records for the synced txg.
2870 	 */
2871 	dsl_pool_zil_clean(dp);
2872 
2873 	/*
2874 	 * Update usable space statistics.
2875 	 */
2876 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2877 		vdev_sync_done(vd, txg);
2878 
2879 	/*
2880 	 * It had better be the case that we didn't dirty anything
2881 	 * since vdev_config_sync().
2882 	 */
2883 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2884 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2885 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2886 	ASSERT(bpl->bpl_queue == NULL);
2887 
2888 	spa_config_exit(spa, FTAG);
2889 
2890 	/*
2891 	 * If any async tasks have been requested, kick them off.
2892 	 */
2893 	spa_async_dispatch(spa);
2894 }
2895 
2896 /*
2897  * Sync all pools.  We don't want to hold the namespace lock across these
2898  * operations, so we take a reference on the spa_t and drop the lock during the
2899  * sync.
2900  */
2901 void
2902 spa_sync_allpools(void)
2903 {
2904 	spa_t *spa = NULL;
2905 	mutex_enter(&spa_namespace_lock);
2906 	while ((spa = spa_next(spa)) != NULL) {
2907 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2908 			continue;
2909 		spa_open_ref(spa, FTAG);
2910 		mutex_exit(&spa_namespace_lock);
2911 		txg_wait_synced(spa_get_dsl(spa), 0);
2912 		mutex_enter(&spa_namespace_lock);
2913 		spa_close(spa, FTAG);
2914 	}
2915 	mutex_exit(&spa_namespace_lock);
2916 }
2917 
2918 /*
2919  * ==========================================================================
2920  * Miscellaneous routines
2921  * ==========================================================================
2922  */
2923 
2924 /*
2925  * Remove all pools in the system.
2926  */
2927 void
2928 spa_evict_all(void)
2929 {
2930 	spa_t *spa;
2931 
2932 	/*
2933 	 * Remove all cached state.  All pools should be closed now,
2934 	 * so every spa in the AVL tree should be unreferenced.
2935 	 */
2936 	mutex_enter(&spa_namespace_lock);
2937 	while ((spa = spa_next(NULL)) != NULL) {
2938 		/*
2939 		 * Stop async tasks.  The async thread may need to detach
2940 		 * a device that's been replaced, which requires grabbing
2941 		 * spa_namespace_lock, so we must drop it here.
2942 		 */
2943 		spa_open_ref(spa, FTAG);
2944 		mutex_exit(&spa_namespace_lock);
2945 		spa_async_suspend(spa);
2946 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2947 		mutex_enter(&spa_namespace_lock);
2948 		spa_close(spa, FTAG);
2949 
2950 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2951 			spa_unload(spa);
2952 			spa_deactivate(spa);
2953 		}
2954 		spa_remove(spa);
2955 	}
2956 	mutex_exit(&spa_namespace_lock);
2957 }
2958 
2959 vdev_t *
2960 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2961 {
2962 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2963 }
2964 
2965 void
2966 spa_upgrade(spa_t *spa)
2967 {
2968 	spa_config_enter(spa, RW_WRITER, FTAG);
2969 
2970 	/*
2971 	 * This should only be called for a non-faulted pool, and since a
2972 	 * future version would result in an unopenable pool, this shouldn't be
2973 	 * possible.
2974 	 */
2975 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
2976 
2977 	spa->spa_uberblock.ub_version = ZFS_VERSION;
2978 	vdev_config_dirty(spa->spa_root_vdev);
2979 
2980 	spa_config_exit(spa, FTAG);
2981 
2982 	txg_wait_synced(spa_get_dsl(spa), 0);
2983 }
2984 
2985 boolean_t
2986 spa_has_spare(spa_t *spa, uint64_t guid)
2987 {
2988 	int i;
2989 
2990 	for (i = 0; i < spa->spa_nspares; i++)
2991 		if (spa->spa_spares[i]->vdev_guid == guid)
2992 			return (B_TRUE);
2993 
2994 	return (B_FALSE);
2995 }
2996