xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 92241e0b80813d0b83c08e730a29b9d1831794fc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/zap.h>
41 #include <sys/zil.h>
42 #include <sys/ddt.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_synctask.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/arc.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/spa_boot.h>
62 #include <sys/zfs_ioctl.h>
63 
64 #ifdef	_KERNEL
65 #include <sys/zone.h>
66 #include <sys/bootprops.h>
67 #endif	/* _KERNEL */
68 
69 #include "zfs_prop.h"
70 #include "zfs_comutil.h"
71 
72 enum zti_modes {
73 	zti_mode_fixed,			/* value is # of threads (min 1) */
74 	zti_mode_online_percent,	/* value is % of online CPUs */
75 	zti_mode_tune,			/* fill from zio_taskq_tune_* */
76 	zti_nmodes
77 };
78 
79 #define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
80 #define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
81 #define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
82 
83 #define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
84 
85 typedef struct zio_taskq_info {
86 	const char *zti_name;
87 	struct {
88 		enum zti_modes zti_mode;
89 		uint_t zti_value;
90 	} zti_nthreads[ZIO_TASKQ_TYPES];
91 } zio_taskq_info_t;
92 
93 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
94 				"issue",		"intr"
95 };
96 
97 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
98 	/*			ISSUE			INTR		*/
99 	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
100 	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
101 	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
102 	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103 	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104 	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
105 };
106 
107 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
108 uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
109 
110 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
111 static boolean_t spa_has_active_shared_spare(spa_t *spa);
112 
113 /*
114  * ==========================================================================
115  * SPA properties routines
116  * ==========================================================================
117  */
118 
119 /*
120  * Add a (source=src, propname=propval) list to an nvlist.
121  */
122 static void
123 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
124     uint64_t intval, zprop_source_t src)
125 {
126 	const char *propname = zpool_prop_to_name(prop);
127 	nvlist_t *propval;
128 
129 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
130 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
131 
132 	if (strval != NULL)
133 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
134 	else
135 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
136 
137 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
138 	nvlist_free(propval);
139 }
140 
141 /*
142  * Get property values from the spa configuration.
143  */
144 static void
145 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
146 {
147 	uint64_t size;
148 	uint64_t alloc;
149 	uint64_t cap, version;
150 	zprop_source_t src = ZPROP_SRC_NONE;
151 	spa_config_dirent_t *dp;
152 
153 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
154 
155 	if (spa->spa_root_vdev != NULL) {
156 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
157 		size = metaslab_class_get_space(spa_normal_class(spa));
158 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
159 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
160 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
161 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
162 		    size - alloc, src);
163 
164 		cap = (size == 0) ? 0 : (alloc * 100 / size);
165 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
166 
167 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
168 		    ddt_get_pool_dedup_ratio(spa), src);
169 
170 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
171 		    spa->spa_root_vdev->vdev_state, src);
172 
173 		version = spa_version(spa);
174 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
175 			src = ZPROP_SRC_DEFAULT;
176 		else
177 			src = ZPROP_SRC_LOCAL;
178 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
179 	}
180 
181 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
182 
183 	if (spa->spa_root != NULL)
184 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
185 		    0, ZPROP_SRC_LOCAL);
186 
187 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
188 		if (dp->scd_path == NULL) {
189 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
190 			    "none", 0, ZPROP_SRC_LOCAL);
191 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
192 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
193 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
194 		}
195 	}
196 }
197 
198 /*
199  * Get zpool property values.
200  */
201 int
202 spa_prop_get(spa_t *spa, nvlist_t **nvp)
203 {
204 	objset_t *mos = spa->spa_meta_objset;
205 	zap_cursor_t zc;
206 	zap_attribute_t za;
207 	int err;
208 
209 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
210 
211 	mutex_enter(&spa->spa_props_lock);
212 
213 	/*
214 	 * Get properties from the spa config.
215 	 */
216 	spa_prop_get_config(spa, nvp);
217 
218 	/* If no pool property object, no more prop to get. */
219 	if (spa->spa_pool_props_object == 0) {
220 		mutex_exit(&spa->spa_props_lock);
221 		return (0);
222 	}
223 
224 	/*
225 	 * Get properties from the MOS pool property object.
226 	 */
227 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
228 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
229 	    zap_cursor_advance(&zc)) {
230 		uint64_t intval = 0;
231 		char *strval = NULL;
232 		zprop_source_t src = ZPROP_SRC_DEFAULT;
233 		zpool_prop_t prop;
234 
235 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
236 			continue;
237 
238 		switch (za.za_integer_length) {
239 		case 8:
240 			/* integer property */
241 			if (za.za_first_integer !=
242 			    zpool_prop_default_numeric(prop))
243 				src = ZPROP_SRC_LOCAL;
244 
245 			if (prop == ZPOOL_PROP_BOOTFS) {
246 				dsl_pool_t *dp;
247 				dsl_dataset_t *ds = NULL;
248 
249 				dp = spa_get_dsl(spa);
250 				rw_enter(&dp->dp_config_rwlock, RW_READER);
251 				if (err = dsl_dataset_hold_obj(dp,
252 				    za.za_first_integer, FTAG, &ds)) {
253 					rw_exit(&dp->dp_config_rwlock);
254 					break;
255 				}
256 
257 				strval = kmem_alloc(
258 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
259 				    KM_SLEEP);
260 				dsl_dataset_name(ds, strval);
261 				dsl_dataset_rele(ds, FTAG);
262 				rw_exit(&dp->dp_config_rwlock);
263 			} else {
264 				strval = NULL;
265 				intval = za.za_first_integer;
266 			}
267 
268 			spa_prop_add_list(*nvp, prop, strval, intval, src);
269 
270 			if (strval != NULL)
271 				kmem_free(strval,
272 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
273 
274 			break;
275 
276 		case 1:
277 			/* string property */
278 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
279 			err = zap_lookup(mos, spa->spa_pool_props_object,
280 			    za.za_name, 1, za.za_num_integers, strval);
281 			if (err) {
282 				kmem_free(strval, za.za_num_integers);
283 				break;
284 			}
285 			spa_prop_add_list(*nvp, prop, strval, 0, src);
286 			kmem_free(strval, za.za_num_integers);
287 			break;
288 
289 		default:
290 			break;
291 		}
292 	}
293 	zap_cursor_fini(&zc);
294 	mutex_exit(&spa->spa_props_lock);
295 out:
296 	if (err && err != ENOENT) {
297 		nvlist_free(*nvp);
298 		*nvp = NULL;
299 		return (err);
300 	}
301 
302 	return (0);
303 }
304 
305 /*
306  * Validate the given pool properties nvlist and modify the list
307  * for the property values to be set.
308  */
309 static int
310 spa_prop_validate(spa_t *spa, nvlist_t *props)
311 {
312 	nvpair_t *elem;
313 	int error = 0, reset_bootfs = 0;
314 	uint64_t objnum;
315 
316 	elem = NULL;
317 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
318 		zpool_prop_t prop;
319 		char *propname, *strval;
320 		uint64_t intval;
321 		objset_t *os;
322 		char *slash;
323 
324 		propname = nvpair_name(elem);
325 
326 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
327 			return (EINVAL);
328 
329 		switch (prop) {
330 		case ZPOOL_PROP_VERSION:
331 			error = nvpair_value_uint64(elem, &intval);
332 			if (!error &&
333 			    (intval < spa_version(spa) || intval > SPA_VERSION))
334 				error = EINVAL;
335 			break;
336 
337 		case ZPOOL_PROP_DELEGATION:
338 		case ZPOOL_PROP_AUTOREPLACE:
339 		case ZPOOL_PROP_LISTSNAPS:
340 		case ZPOOL_PROP_AUTOEXPAND:
341 			error = nvpair_value_uint64(elem, &intval);
342 			if (!error && intval > 1)
343 				error = EINVAL;
344 			break;
345 
346 		case ZPOOL_PROP_BOOTFS:
347 			/*
348 			 * If the pool version is less than SPA_VERSION_BOOTFS,
349 			 * or the pool is still being created (version == 0),
350 			 * the bootfs property cannot be set.
351 			 */
352 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
353 				error = ENOTSUP;
354 				break;
355 			}
356 
357 			/*
358 			 * Make sure the vdev config is bootable
359 			 */
360 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
361 				error = ENOTSUP;
362 				break;
363 			}
364 
365 			reset_bootfs = 1;
366 
367 			error = nvpair_value_string(elem, &strval);
368 
369 			if (!error) {
370 				uint64_t compress;
371 
372 				if (strval == NULL || strval[0] == '\0') {
373 					objnum = zpool_prop_default_numeric(
374 					    ZPOOL_PROP_BOOTFS);
375 					break;
376 				}
377 
378 				if (error = dmu_objset_hold(strval, FTAG, &os))
379 					break;
380 
381 				/* Must be ZPL and not gzip compressed. */
382 
383 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
384 					error = ENOTSUP;
385 				} else if ((error = dsl_prop_get_integer(strval,
386 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
387 				    &compress, NULL)) == 0 &&
388 				    !BOOTFS_COMPRESS_VALID(compress)) {
389 					error = ENOTSUP;
390 				} else {
391 					objnum = dmu_objset_id(os);
392 				}
393 				dmu_objset_rele(os, FTAG);
394 			}
395 			break;
396 
397 		case ZPOOL_PROP_FAILUREMODE:
398 			error = nvpair_value_uint64(elem, &intval);
399 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
400 			    intval > ZIO_FAILURE_MODE_PANIC))
401 				error = EINVAL;
402 
403 			/*
404 			 * This is a special case which only occurs when
405 			 * the pool has completely failed. This allows
406 			 * the user to change the in-core failmode property
407 			 * without syncing it out to disk (I/Os might
408 			 * currently be blocked). We do this by returning
409 			 * EIO to the caller (spa_prop_set) to trick it
410 			 * into thinking we encountered a property validation
411 			 * error.
412 			 */
413 			if (!error && spa_suspended(spa)) {
414 				spa->spa_failmode = intval;
415 				error = EIO;
416 			}
417 			break;
418 
419 		case ZPOOL_PROP_CACHEFILE:
420 			if ((error = nvpair_value_string(elem, &strval)) != 0)
421 				break;
422 
423 			if (strval[0] == '\0')
424 				break;
425 
426 			if (strcmp(strval, "none") == 0)
427 				break;
428 
429 			if (strval[0] != '/') {
430 				error = EINVAL;
431 				break;
432 			}
433 
434 			slash = strrchr(strval, '/');
435 			ASSERT(slash != NULL);
436 
437 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
438 			    strcmp(slash, "/..") == 0)
439 				error = EINVAL;
440 			break;
441 
442 		case ZPOOL_PROP_DEDUPDITTO:
443 			if (spa_version(spa) < SPA_VERSION_DEDUP)
444 				error = ENOTSUP;
445 			else
446 				error = nvpair_value_uint64(elem, &intval);
447 			if (error == 0 &&
448 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
449 				error = EINVAL;
450 			break;
451 		}
452 
453 		if (error)
454 			break;
455 	}
456 
457 	if (!error && reset_bootfs) {
458 		error = nvlist_remove(props,
459 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
460 
461 		if (!error) {
462 			error = nvlist_add_uint64(props,
463 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
464 		}
465 	}
466 
467 	return (error);
468 }
469 
470 void
471 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
472 {
473 	char *cachefile;
474 	spa_config_dirent_t *dp;
475 
476 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
477 	    &cachefile) != 0)
478 		return;
479 
480 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
481 	    KM_SLEEP);
482 
483 	if (cachefile[0] == '\0')
484 		dp->scd_path = spa_strdup(spa_config_path);
485 	else if (strcmp(cachefile, "none") == 0)
486 		dp->scd_path = NULL;
487 	else
488 		dp->scd_path = spa_strdup(cachefile);
489 
490 	list_insert_head(&spa->spa_config_list, dp);
491 	if (need_sync)
492 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
493 }
494 
495 int
496 spa_prop_set(spa_t *spa, nvlist_t *nvp)
497 {
498 	int error;
499 	nvpair_t *elem;
500 	boolean_t need_sync = B_FALSE;
501 	zpool_prop_t prop;
502 
503 	if ((error = spa_prop_validate(spa, nvp)) != 0)
504 		return (error);
505 
506 	elem = NULL;
507 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
508 		if ((prop = zpool_name_to_prop(
509 		    nvpair_name(elem))) == ZPROP_INVAL)
510 			return (EINVAL);
511 
512 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
513 			continue;
514 
515 		need_sync = B_TRUE;
516 		break;
517 	}
518 
519 	if (need_sync)
520 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
521 		    spa, nvp, 3));
522 	else
523 		return (0);
524 }
525 
526 /*
527  * If the bootfs property value is dsobj, clear it.
528  */
529 void
530 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
531 {
532 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
533 		VERIFY(zap_remove(spa->spa_meta_objset,
534 		    spa->spa_pool_props_object,
535 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
536 		spa->spa_bootfs = 0;
537 	}
538 }
539 
540 /*
541  * ==========================================================================
542  * SPA state manipulation (open/create/destroy/import/export)
543  * ==========================================================================
544  */
545 
546 static int
547 spa_error_entry_compare(const void *a, const void *b)
548 {
549 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
550 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
551 	int ret;
552 
553 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
554 	    sizeof (zbookmark_t));
555 
556 	if (ret < 0)
557 		return (-1);
558 	else if (ret > 0)
559 		return (1);
560 	else
561 		return (0);
562 }
563 
564 /*
565  * Utility function which retrieves copies of the current logs and
566  * re-initializes them in the process.
567  */
568 void
569 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
570 {
571 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
572 
573 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
574 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
575 
576 	avl_create(&spa->spa_errlist_scrub,
577 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
578 	    offsetof(spa_error_entry_t, se_avl));
579 	avl_create(&spa->spa_errlist_last,
580 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
581 	    offsetof(spa_error_entry_t, se_avl));
582 }
583 
584 /*
585  * Activate an uninitialized pool.
586  */
587 static void
588 spa_activate(spa_t *spa, int mode)
589 {
590 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
591 
592 	spa->spa_state = POOL_STATE_ACTIVE;
593 	spa->spa_mode = mode;
594 
595 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
596 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
597 
598 	for (int t = 0; t < ZIO_TYPES; t++) {
599 		const zio_taskq_info_t *ztip = &zio_taskqs[t];
600 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
601 			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
602 			uint_t value = ztip->zti_nthreads[q].zti_value;
603 			char name[32];
604 
605 			(void) snprintf(name, sizeof (name),
606 			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
607 
608 			if (mode == zti_mode_tune) {
609 				mode = zio_taskq_tune_mode;
610 				value = zio_taskq_tune_value;
611 				if (mode == zti_mode_tune)
612 					mode = zti_mode_online_percent;
613 			}
614 
615 			switch (mode) {
616 			case zti_mode_fixed:
617 				ASSERT3U(value, >=, 1);
618 				value = MAX(value, 1);
619 
620 				spa->spa_zio_taskq[t][q] = taskq_create(name,
621 				    value, maxclsyspri, 50, INT_MAX,
622 				    TASKQ_PREPOPULATE);
623 				break;
624 
625 			case zti_mode_online_percent:
626 				spa->spa_zio_taskq[t][q] = taskq_create(name,
627 				    value, maxclsyspri, 50, INT_MAX,
628 				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
629 				break;
630 
631 			case zti_mode_tune:
632 			default:
633 				panic("unrecognized mode for "
634 				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
635 				    "in spa_activate()",
636 				    t, q, mode, value);
637 				break;
638 			}
639 		}
640 	}
641 
642 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
643 	    offsetof(vdev_t, vdev_config_dirty_node));
644 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
645 	    offsetof(vdev_t, vdev_state_dirty_node));
646 
647 	txg_list_create(&spa->spa_vdev_txg_list,
648 	    offsetof(struct vdev, vdev_txg_node));
649 
650 	avl_create(&spa->spa_errlist_scrub,
651 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
652 	    offsetof(spa_error_entry_t, se_avl));
653 	avl_create(&spa->spa_errlist_last,
654 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
655 	    offsetof(spa_error_entry_t, se_avl));
656 }
657 
658 /*
659  * Opposite of spa_activate().
660  */
661 static void
662 spa_deactivate(spa_t *spa)
663 {
664 	ASSERT(spa->spa_sync_on == B_FALSE);
665 	ASSERT(spa->spa_dsl_pool == NULL);
666 	ASSERT(spa->spa_root_vdev == NULL);
667 	ASSERT(spa->spa_async_zio_root == NULL);
668 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
669 
670 	txg_list_destroy(&spa->spa_vdev_txg_list);
671 
672 	list_destroy(&spa->spa_config_dirty_list);
673 	list_destroy(&spa->spa_state_dirty_list);
674 
675 	for (int t = 0; t < ZIO_TYPES; t++) {
676 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
677 			taskq_destroy(spa->spa_zio_taskq[t][q]);
678 			spa->spa_zio_taskq[t][q] = NULL;
679 		}
680 	}
681 
682 	metaslab_class_destroy(spa->spa_normal_class);
683 	spa->spa_normal_class = NULL;
684 
685 	metaslab_class_destroy(spa->spa_log_class);
686 	spa->spa_log_class = NULL;
687 
688 	/*
689 	 * If this was part of an import or the open otherwise failed, we may
690 	 * still have errors left in the queues.  Empty them just in case.
691 	 */
692 	spa_errlog_drain(spa);
693 
694 	avl_destroy(&spa->spa_errlist_scrub);
695 	avl_destroy(&spa->spa_errlist_last);
696 
697 	spa->spa_state = POOL_STATE_UNINITIALIZED;
698 }
699 
700 /*
701  * Verify a pool configuration, and construct the vdev tree appropriately.  This
702  * will create all the necessary vdevs in the appropriate layout, with each vdev
703  * in the CLOSED state.  This will prep the pool before open/creation/import.
704  * All vdev validation is done by the vdev_alloc() routine.
705  */
706 static int
707 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
708     uint_t id, int atype)
709 {
710 	nvlist_t **child;
711 	uint_t children;
712 	int error;
713 
714 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
715 		return (error);
716 
717 	if ((*vdp)->vdev_ops->vdev_op_leaf)
718 		return (0);
719 
720 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
721 	    &child, &children);
722 
723 	if (error == ENOENT)
724 		return (0);
725 
726 	if (error) {
727 		vdev_free(*vdp);
728 		*vdp = NULL;
729 		return (EINVAL);
730 	}
731 
732 	for (int c = 0; c < children; c++) {
733 		vdev_t *vd;
734 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
735 		    atype)) != 0) {
736 			vdev_free(*vdp);
737 			*vdp = NULL;
738 			return (error);
739 		}
740 	}
741 
742 	ASSERT(*vdp != NULL);
743 
744 	return (0);
745 }
746 
747 /*
748  * Opposite of spa_load().
749  */
750 static void
751 spa_unload(spa_t *spa)
752 {
753 	int i;
754 
755 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
756 
757 	/*
758 	 * Stop async tasks.
759 	 */
760 	spa_async_suspend(spa);
761 
762 	/*
763 	 * Stop syncing.
764 	 */
765 	if (spa->spa_sync_on) {
766 		txg_sync_stop(spa->spa_dsl_pool);
767 		spa->spa_sync_on = B_FALSE;
768 	}
769 
770 	/*
771 	 * Wait for any outstanding async I/O to complete.
772 	 */
773 	if (spa->spa_async_zio_root != NULL) {
774 		(void) zio_wait(spa->spa_async_zio_root);
775 		spa->spa_async_zio_root = NULL;
776 	}
777 
778 	/*
779 	 * Close the dsl pool.
780 	 */
781 	if (spa->spa_dsl_pool) {
782 		dsl_pool_close(spa->spa_dsl_pool);
783 		spa->spa_dsl_pool = NULL;
784 	}
785 
786 	ddt_unload(spa);
787 
788 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
789 
790 	/*
791 	 * Drop and purge level 2 cache
792 	 */
793 	spa_l2cache_drop(spa);
794 
795 	/*
796 	 * Close all vdevs.
797 	 */
798 	if (spa->spa_root_vdev)
799 		vdev_free(spa->spa_root_vdev);
800 	ASSERT(spa->spa_root_vdev == NULL);
801 
802 	for (i = 0; i < spa->spa_spares.sav_count; i++)
803 		vdev_free(spa->spa_spares.sav_vdevs[i]);
804 	if (spa->spa_spares.sav_vdevs) {
805 		kmem_free(spa->spa_spares.sav_vdevs,
806 		    spa->spa_spares.sav_count * sizeof (void *));
807 		spa->spa_spares.sav_vdevs = NULL;
808 	}
809 	if (spa->spa_spares.sav_config) {
810 		nvlist_free(spa->spa_spares.sav_config);
811 		spa->spa_spares.sav_config = NULL;
812 	}
813 	spa->spa_spares.sav_count = 0;
814 
815 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
816 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
817 	if (spa->spa_l2cache.sav_vdevs) {
818 		kmem_free(spa->spa_l2cache.sav_vdevs,
819 		    spa->spa_l2cache.sav_count * sizeof (void *));
820 		spa->spa_l2cache.sav_vdevs = NULL;
821 	}
822 	if (spa->spa_l2cache.sav_config) {
823 		nvlist_free(spa->spa_l2cache.sav_config);
824 		spa->spa_l2cache.sav_config = NULL;
825 	}
826 	spa->spa_l2cache.sav_count = 0;
827 
828 	spa->spa_async_suspended = 0;
829 
830 	spa_config_exit(spa, SCL_ALL, FTAG);
831 }
832 
833 /*
834  * Load (or re-load) the current list of vdevs describing the active spares for
835  * this pool.  When this is called, we have some form of basic information in
836  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
837  * then re-generate a more complete list including status information.
838  */
839 static void
840 spa_load_spares(spa_t *spa)
841 {
842 	nvlist_t **spares;
843 	uint_t nspares;
844 	int i;
845 	vdev_t *vd, *tvd;
846 
847 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
848 
849 	/*
850 	 * First, close and free any existing spare vdevs.
851 	 */
852 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
853 		vd = spa->spa_spares.sav_vdevs[i];
854 
855 		/* Undo the call to spa_activate() below */
856 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
857 		    B_FALSE)) != NULL && tvd->vdev_isspare)
858 			spa_spare_remove(tvd);
859 		vdev_close(vd);
860 		vdev_free(vd);
861 	}
862 
863 	if (spa->spa_spares.sav_vdevs)
864 		kmem_free(spa->spa_spares.sav_vdevs,
865 		    spa->spa_spares.sav_count * sizeof (void *));
866 
867 	if (spa->spa_spares.sav_config == NULL)
868 		nspares = 0;
869 	else
870 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
871 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
872 
873 	spa->spa_spares.sav_count = (int)nspares;
874 	spa->spa_spares.sav_vdevs = NULL;
875 
876 	if (nspares == 0)
877 		return;
878 
879 	/*
880 	 * Construct the array of vdevs, opening them to get status in the
881 	 * process.   For each spare, there is potentially two different vdev_t
882 	 * structures associated with it: one in the list of spares (used only
883 	 * for basic validation purposes) and one in the active vdev
884 	 * configuration (if it's spared in).  During this phase we open and
885 	 * validate each vdev on the spare list.  If the vdev also exists in the
886 	 * active configuration, then we also mark this vdev as an active spare.
887 	 */
888 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
889 	    KM_SLEEP);
890 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
891 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
892 		    VDEV_ALLOC_SPARE) == 0);
893 		ASSERT(vd != NULL);
894 
895 		spa->spa_spares.sav_vdevs[i] = vd;
896 
897 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
898 		    B_FALSE)) != NULL) {
899 			if (!tvd->vdev_isspare)
900 				spa_spare_add(tvd);
901 
902 			/*
903 			 * We only mark the spare active if we were successfully
904 			 * able to load the vdev.  Otherwise, importing a pool
905 			 * with a bad active spare would result in strange
906 			 * behavior, because multiple pool would think the spare
907 			 * is actively in use.
908 			 *
909 			 * There is a vulnerability here to an equally bizarre
910 			 * circumstance, where a dead active spare is later
911 			 * brought back to life (onlined or otherwise).  Given
912 			 * the rarity of this scenario, and the extra complexity
913 			 * it adds, we ignore the possibility.
914 			 */
915 			if (!vdev_is_dead(tvd))
916 				spa_spare_activate(tvd);
917 		}
918 
919 		vd->vdev_top = vd;
920 		vd->vdev_aux = &spa->spa_spares;
921 
922 		if (vdev_open(vd) != 0)
923 			continue;
924 
925 		if (vdev_validate_aux(vd) == 0)
926 			spa_spare_add(vd);
927 	}
928 
929 	/*
930 	 * Recompute the stashed list of spares, with status information
931 	 * this time.
932 	 */
933 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
934 	    DATA_TYPE_NVLIST_ARRAY) == 0);
935 
936 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
937 	    KM_SLEEP);
938 	for (i = 0; i < spa->spa_spares.sav_count; i++)
939 		spares[i] = vdev_config_generate(spa,
940 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
941 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
942 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
943 	for (i = 0; i < spa->spa_spares.sav_count; i++)
944 		nvlist_free(spares[i]);
945 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
946 }
947 
948 /*
949  * Load (or re-load) the current list of vdevs describing the active l2cache for
950  * this pool.  When this is called, we have some form of basic information in
951  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
952  * then re-generate a more complete list including status information.
953  * Devices which are already active have their details maintained, and are
954  * not re-opened.
955  */
956 static void
957 spa_load_l2cache(spa_t *spa)
958 {
959 	nvlist_t **l2cache;
960 	uint_t nl2cache;
961 	int i, j, oldnvdevs;
962 	uint64_t guid;
963 	vdev_t *vd, **oldvdevs, **newvdevs;
964 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
965 
966 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
967 
968 	if (sav->sav_config != NULL) {
969 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
970 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
971 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
972 	} else {
973 		nl2cache = 0;
974 	}
975 
976 	oldvdevs = sav->sav_vdevs;
977 	oldnvdevs = sav->sav_count;
978 	sav->sav_vdevs = NULL;
979 	sav->sav_count = 0;
980 
981 	/*
982 	 * Process new nvlist of vdevs.
983 	 */
984 	for (i = 0; i < nl2cache; i++) {
985 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
986 		    &guid) == 0);
987 
988 		newvdevs[i] = NULL;
989 		for (j = 0; j < oldnvdevs; j++) {
990 			vd = oldvdevs[j];
991 			if (vd != NULL && guid == vd->vdev_guid) {
992 				/*
993 				 * Retain previous vdev for add/remove ops.
994 				 */
995 				newvdevs[i] = vd;
996 				oldvdevs[j] = NULL;
997 				break;
998 			}
999 		}
1000 
1001 		if (newvdevs[i] == NULL) {
1002 			/*
1003 			 * Create new vdev
1004 			 */
1005 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1006 			    VDEV_ALLOC_L2CACHE) == 0);
1007 			ASSERT(vd != NULL);
1008 			newvdevs[i] = vd;
1009 
1010 			/*
1011 			 * Commit this vdev as an l2cache device,
1012 			 * even if it fails to open.
1013 			 */
1014 			spa_l2cache_add(vd);
1015 
1016 			vd->vdev_top = vd;
1017 			vd->vdev_aux = sav;
1018 
1019 			spa_l2cache_activate(vd);
1020 
1021 			if (vdev_open(vd) != 0)
1022 				continue;
1023 
1024 			(void) vdev_validate_aux(vd);
1025 
1026 			if (!vdev_is_dead(vd))
1027 				l2arc_add_vdev(spa, vd);
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * Purge vdevs that were dropped
1033 	 */
1034 	for (i = 0; i < oldnvdevs; i++) {
1035 		uint64_t pool;
1036 
1037 		vd = oldvdevs[i];
1038 		if (vd != NULL) {
1039 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1040 			    pool != 0ULL && l2arc_vdev_present(vd))
1041 				l2arc_remove_vdev(vd);
1042 			(void) vdev_close(vd);
1043 			spa_l2cache_remove(vd);
1044 		}
1045 	}
1046 
1047 	if (oldvdevs)
1048 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1049 
1050 	if (sav->sav_config == NULL)
1051 		goto out;
1052 
1053 	sav->sav_vdevs = newvdevs;
1054 	sav->sav_count = (int)nl2cache;
1055 
1056 	/*
1057 	 * Recompute the stashed list of l2cache devices, with status
1058 	 * information this time.
1059 	 */
1060 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1061 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1062 
1063 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1064 	for (i = 0; i < sav->sav_count; i++)
1065 		l2cache[i] = vdev_config_generate(spa,
1066 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1067 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1068 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1069 out:
1070 	for (i = 0; i < sav->sav_count; i++)
1071 		nvlist_free(l2cache[i]);
1072 	if (sav->sav_count)
1073 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1074 }
1075 
1076 static int
1077 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1078 {
1079 	dmu_buf_t *db;
1080 	char *packed = NULL;
1081 	size_t nvsize = 0;
1082 	int error;
1083 	*value = NULL;
1084 
1085 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1086 	nvsize = *(uint64_t *)db->db_data;
1087 	dmu_buf_rele(db, FTAG);
1088 
1089 	packed = kmem_alloc(nvsize, KM_SLEEP);
1090 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1091 	    DMU_READ_PREFETCH);
1092 	if (error == 0)
1093 		error = nvlist_unpack(packed, nvsize, value, 0);
1094 	kmem_free(packed, nvsize);
1095 
1096 	return (error);
1097 }
1098 
1099 /*
1100  * Checks to see if the given vdev could not be opened, in which case we post a
1101  * sysevent to notify the autoreplace code that the device has been removed.
1102  */
1103 static void
1104 spa_check_removed(vdev_t *vd)
1105 {
1106 	for (int c = 0; c < vd->vdev_children; c++)
1107 		spa_check_removed(vd->vdev_child[c]);
1108 
1109 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1110 		zfs_post_autoreplace(vd->vdev_spa, vd);
1111 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1112 	}
1113 }
1114 
1115 /*
1116  * Load the slog device state from the config object since it's possible
1117  * that the label does not contain the most up-to-date information.
1118  */
1119 void
1120 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1121 {
1122 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1123 
1124 	/*
1125 	 * Load the original root vdev tree from the passed config.
1126 	 */
1127 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1128 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1129 
1130 	for (int c = 0; c < rvd->vdev_children; c++) {
1131 		vdev_t *cvd = rvd->vdev_child[c];
1132 		if (cvd->vdev_islog)
1133 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1134 	}
1135 	vdev_free(ovd);
1136 	spa_config_exit(spa, SCL_ALL, FTAG);
1137 }
1138 
1139 /*
1140  * Check for missing log devices
1141  */
1142 int
1143 spa_check_logs(spa_t *spa)
1144 {
1145 	switch (spa->spa_log_state) {
1146 	case SPA_LOG_MISSING:
1147 		/* need to recheck in case slog has been restored */
1148 	case SPA_LOG_UNKNOWN:
1149 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1150 		    DS_FIND_CHILDREN)) {
1151 			spa->spa_log_state = SPA_LOG_MISSING;
1152 			return (1);
1153 		}
1154 		break;
1155 	}
1156 	return (0);
1157 }
1158 
1159 static void
1160 spa_aux_check_removed(spa_aux_vdev_t *sav)
1161 {
1162 	for (int i = 0; i < sav->sav_count; i++)
1163 		spa_check_removed(sav->sav_vdevs[i]);
1164 }
1165 
1166 void
1167 spa_claim_notify(zio_t *zio)
1168 {
1169 	spa_t *spa = zio->io_spa;
1170 
1171 	if (zio->io_error)
1172 		return;
1173 
1174 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1175 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1176 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1177 	mutex_exit(&spa->spa_props_lock);
1178 }
1179 
1180 typedef struct spa_load_error {
1181 	uint64_t	sle_metadata_count;
1182 	uint64_t	sle_data_count;
1183 } spa_load_error_t;
1184 
1185 static void
1186 spa_load_verify_done(zio_t *zio)
1187 {
1188 	blkptr_t *bp = zio->io_bp;
1189 	spa_load_error_t *sle = zio->io_private;
1190 	dmu_object_type_t type = BP_GET_TYPE(bp);
1191 	int error = zio->io_error;
1192 
1193 	if (error) {
1194 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1195 		    type != DMU_OT_INTENT_LOG)
1196 			atomic_add_64(&sle->sle_metadata_count, 1);
1197 		else
1198 			atomic_add_64(&sle->sle_data_count, 1);
1199 	}
1200 	zio_data_buf_free(zio->io_data, zio->io_size);
1201 }
1202 
1203 /*ARGSUSED*/
1204 static int
1205 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1206     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1207 {
1208 	if (bp != NULL) {
1209 		zio_t *rio = arg;
1210 		size_t size = BP_GET_PSIZE(bp);
1211 		void *data = zio_data_buf_alloc(size);
1212 
1213 		zio_nowait(zio_read(rio, spa, bp, data, size,
1214 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1215 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1216 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1217 	}
1218 	return (0);
1219 }
1220 
1221 static int
1222 spa_load_verify(spa_t *spa)
1223 {
1224 	zio_t *rio;
1225 	spa_load_error_t sle = { 0 };
1226 	zpool_rewind_policy_t policy;
1227 	boolean_t verify_ok = B_FALSE;
1228 	int error;
1229 
1230 	rio = zio_root(spa, NULL, &sle,
1231 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1232 
1233 	error = traverse_pool(spa, spa_load_verify_cb, rio,
1234 	    spa->spa_verify_min_txg);
1235 
1236 	(void) zio_wait(rio);
1237 
1238 	zpool_get_rewind_policy(spa->spa_config, &policy);
1239 
1240 	spa->spa_load_meta_errors = sle.sle_metadata_count;
1241 	spa->spa_load_data_errors = sle.sle_data_count;
1242 
1243 	if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta &&
1244 	    sle.sle_data_count <= policy.zrp_maxdata) {
1245 		verify_ok = B_TRUE;
1246 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1247 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1248 	}
1249 
1250 	if (error) {
1251 		if (error != ENXIO && error != EIO)
1252 			error = EIO;
1253 		return (error);
1254 	}
1255 
1256 	return (verify_ok ? 0 : EIO);
1257 }
1258 
1259 /*
1260  * Load an existing storage pool, using the pool's builtin spa_config as a
1261  * source of configuration information.
1262  */
1263 static int
1264 spa_load(spa_t *spa, spa_load_state_t state, int mosconfig)
1265 {
1266 	int error = 0;
1267 	nvlist_t *nvconfig, *nvroot = NULL;
1268 	vdev_t *rvd;
1269 	uberblock_t *ub = &spa->spa_uberblock;
1270 	uint64_t config_cache_txg = spa->spa_config_txg;
1271 	uint64_t pool_guid;
1272 	uint64_t version;
1273 	uint64_t autoreplace = 0;
1274 	int orig_mode = spa->spa_mode;
1275 	char *ereport = FM_EREPORT_ZFS_POOL;
1276 	nvlist_t *config = spa->spa_config;
1277 
1278 	/*
1279 	 * If this is an untrusted config, access the pool in read-only mode.
1280 	 * This prevents things like resilvering recently removed devices.
1281 	 */
1282 	if (!mosconfig)
1283 		spa->spa_mode = FREAD;
1284 
1285 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1286 
1287 	spa->spa_load_state = state;
1288 
1289 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1290 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1291 		error = EINVAL;
1292 		goto out;
1293 	}
1294 
1295 	/*
1296 	 * Versioning wasn't explicitly added to the label until later, so if
1297 	 * it's not present treat it as the initial version.
1298 	 */
1299 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1300 		version = SPA_VERSION_INITIAL;
1301 
1302 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1303 	    &spa->spa_config_txg);
1304 
1305 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1306 	    spa_guid_exists(pool_guid, 0)) {
1307 		error = EEXIST;
1308 		goto out;
1309 	}
1310 
1311 	spa->spa_load_guid = pool_guid;
1312 
1313 	/*
1314 	 * Create "The Godfather" zio to hold all async IOs
1315 	 */
1316 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1317 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1318 
1319 	/*
1320 	 * Parse the configuration into a vdev tree.  We explicitly set the
1321 	 * value that will be returned by spa_version() since parsing the
1322 	 * configuration requires knowing the version number.
1323 	 */
1324 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1325 	spa->spa_ubsync.ub_version = version;
1326 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1327 	spa_config_exit(spa, SCL_ALL, FTAG);
1328 
1329 	if (error != 0)
1330 		goto out;
1331 
1332 	ASSERT(spa->spa_root_vdev == rvd);
1333 	ASSERT(spa_guid(spa) == pool_guid);
1334 
1335 	/*
1336 	 * Try to open all vdevs, loading each label in the process.
1337 	 */
1338 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1339 	error = vdev_open(rvd);
1340 	spa_config_exit(spa, SCL_ALL, FTAG);
1341 	if (error != 0)
1342 		goto out;
1343 
1344 	/*
1345 	 * We need to validate the vdev labels against the configuration that
1346 	 * we have in hand, which is dependent on the setting of mosconfig. If
1347 	 * mosconfig is true then we're validating the vdev labels based on
1348 	 * that config. Otherwise, we're validating against the cached config
1349 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1350 	 * later we will recursively call spa_load() and validate against
1351 	 * the vdev config.
1352 	 */
1353 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1354 	error = vdev_validate(rvd);
1355 	spa_config_exit(spa, SCL_ALL, FTAG);
1356 	if (error != 0)
1357 		goto out;
1358 
1359 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1360 		error = ENXIO;
1361 		goto out;
1362 	}
1363 
1364 	/*
1365 	 * Find the best uberblock.
1366 	 */
1367 	vdev_uberblock_load(NULL, rvd, ub);
1368 
1369 	/*
1370 	 * If we weren't able to find a single valid uberblock, return failure.
1371 	 */
1372 	if (ub->ub_txg == 0) {
1373 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1374 		    VDEV_AUX_CORRUPT_DATA);
1375 		error = ENXIO;
1376 		goto out;
1377 	}
1378 
1379 	/*
1380 	 * If the pool is newer than the code, we can't open it.
1381 	 */
1382 	if (ub->ub_version > SPA_VERSION) {
1383 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1384 		    VDEV_AUX_VERSION_NEWER);
1385 		error = ENOTSUP;
1386 		goto out;
1387 	}
1388 
1389 	/*
1390 	 * If the vdev guid sum doesn't match the uberblock, we have an
1391 	 * incomplete configuration.
1392 	 */
1393 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1394 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1395 		    VDEV_AUX_BAD_GUID_SUM);
1396 		error = ENXIO;
1397 		goto out;
1398 	}
1399 
1400 	/*
1401 	 * Initialize internal SPA structures.
1402 	 */
1403 	spa->spa_state = POOL_STATE_ACTIVE;
1404 	spa->spa_ubsync = spa->spa_uberblock;
1405 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1406 	    TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE;
1407 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1408 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1409 	spa->spa_claim_max_txg = spa->spa_first_txg;
1410 
1411 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1412 	if (error) {
1413 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1414 		    VDEV_AUX_CORRUPT_DATA);
1415 		error = EIO;
1416 		goto out;
1417 	}
1418 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1419 
1420 	if (zap_lookup(spa->spa_meta_objset,
1421 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1422 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1423 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1424 		    VDEV_AUX_CORRUPT_DATA);
1425 		error = EIO;
1426 		goto out;
1427 	}
1428 
1429 	if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) {
1430 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1431 		    VDEV_AUX_CORRUPT_DATA);
1432 		error = EIO;
1433 		goto out;
1434 	}
1435 
1436 	if (!mosconfig) {
1437 		uint64_t hostid;
1438 
1439 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1440 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1441 			char *hostname;
1442 			unsigned long myhostid = 0;
1443 
1444 			VERIFY(nvlist_lookup_string(nvconfig,
1445 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1446 
1447 #ifdef	_KERNEL
1448 			myhostid = zone_get_hostid(NULL);
1449 #else	/* _KERNEL */
1450 			/*
1451 			 * We're emulating the system's hostid in userland, so
1452 			 * we can't use zone_get_hostid().
1453 			 */
1454 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1455 #endif	/* _KERNEL */
1456 			if (hostid != 0 && myhostid != 0 &&
1457 			    hostid != myhostid) {
1458 				cmn_err(CE_WARN, "pool '%s' could not be "
1459 				    "loaded as it was last accessed by "
1460 				    "another system (host: %s hostid: 0x%lx). "
1461 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1462 				    spa_name(spa), hostname,
1463 				    (unsigned long)hostid);
1464 				error = EBADF;
1465 				goto out;
1466 			}
1467 		}
1468 
1469 		spa_config_set(spa, nvconfig);
1470 		spa_unload(spa);
1471 		spa_deactivate(spa);
1472 		spa_activate(spa, orig_mode);
1473 
1474 		return (spa_load(spa, state, B_TRUE));
1475 	}
1476 
1477 	if (zap_lookup(spa->spa_meta_objset,
1478 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1479 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj) != 0) {
1480 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1481 		    VDEV_AUX_CORRUPT_DATA);
1482 		error = EIO;
1483 		goto out;
1484 	}
1485 
1486 	/*
1487 	 * Load the bit that tells us to use the new accounting function
1488 	 * (raid-z deflation).  If we have an older pool, this will not
1489 	 * be present.
1490 	 */
1491 	error = zap_lookup(spa->spa_meta_objset,
1492 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1493 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1494 	if (error != 0 && error != ENOENT) {
1495 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1496 		    VDEV_AUX_CORRUPT_DATA);
1497 		error = EIO;
1498 		goto out;
1499 	}
1500 
1501 	/*
1502 	 * Load the persistent error log.  If we have an older pool, this will
1503 	 * not be present.
1504 	 */
1505 	error = zap_lookup(spa->spa_meta_objset,
1506 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1507 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1508 	if (error != 0 && error != ENOENT) {
1509 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1510 		    VDEV_AUX_CORRUPT_DATA);
1511 		error = EIO;
1512 		goto out;
1513 	}
1514 
1515 	error = zap_lookup(spa->spa_meta_objset,
1516 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1517 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1518 	if (error != 0 && error != ENOENT) {
1519 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1520 		    VDEV_AUX_CORRUPT_DATA);
1521 		error = EIO;
1522 		goto out;
1523 	}
1524 
1525 	/*
1526 	 * Load the history object.  If we have an older pool, this
1527 	 * will not be present.
1528 	 */
1529 	error = zap_lookup(spa->spa_meta_objset,
1530 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1531 	    sizeof (uint64_t), 1, &spa->spa_history);
1532 	if (error != 0 && error != ENOENT) {
1533 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1534 		    VDEV_AUX_CORRUPT_DATA);
1535 		error = EIO;
1536 		goto out;
1537 	}
1538 
1539 	/*
1540 	 * Load any hot spares for this pool.
1541 	 */
1542 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1543 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1544 	if (error != 0 && error != ENOENT) {
1545 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1546 		    VDEV_AUX_CORRUPT_DATA);
1547 		error = EIO;
1548 		goto out;
1549 	}
1550 	if (error == 0) {
1551 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1552 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1553 		    &spa->spa_spares.sav_config) != 0) {
1554 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1555 			    VDEV_AUX_CORRUPT_DATA);
1556 			error = EIO;
1557 			goto out;
1558 		}
1559 
1560 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1561 		spa_load_spares(spa);
1562 		spa_config_exit(spa, SCL_ALL, FTAG);
1563 	}
1564 
1565 	/*
1566 	 * Load any level 2 ARC devices for this pool.
1567 	 */
1568 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1569 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1570 	    &spa->spa_l2cache.sav_object);
1571 	if (error != 0 && error != ENOENT) {
1572 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1573 		    VDEV_AUX_CORRUPT_DATA);
1574 		error = EIO;
1575 		goto out;
1576 	}
1577 	if (error == 0) {
1578 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1579 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1580 		    &spa->spa_l2cache.sav_config) != 0) {
1581 			vdev_set_state(rvd, B_TRUE,
1582 			    VDEV_STATE_CANT_OPEN,
1583 			    VDEV_AUX_CORRUPT_DATA);
1584 			error = EIO;
1585 			goto out;
1586 		}
1587 
1588 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1589 		spa_load_l2cache(spa);
1590 		spa_config_exit(spa, SCL_ALL, FTAG);
1591 	}
1592 
1593 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1594 
1595 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1596 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1597 
1598 	if (error && error != ENOENT) {
1599 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1600 		    VDEV_AUX_CORRUPT_DATA);
1601 		error = EIO;
1602 		goto out;
1603 	}
1604 
1605 	if (error == 0) {
1606 		(void) zap_lookup(spa->spa_meta_objset,
1607 		    spa->spa_pool_props_object,
1608 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1609 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1610 		(void) zap_lookup(spa->spa_meta_objset,
1611 		    spa->spa_pool_props_object,
1612 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1613 		    sizeof (uint64_t), 1, &autoreplace);
1614 		spa->spa_autoreplace = (autoreplace != 0);
1615 		(void) zap_lookup(spa->spa_meta_objset,
1616 		    spa->spa_pool_props_object,
1617 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1618 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1619 		(void) zap_lookup(spa->spa_meta_objset,
1620 		    spa->spa_pool_props_object,
1621 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1622 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1623 		(void) zap_lookup(spa->spa_meta_objset,
1624 		    spa->spa_pool_props_object,
1625 		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1626 		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1627 		(void) zap_lookup(spa->spa_meta_objset,
1628 		    spa->spa_pool_props_object,
1629 		    zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO),
1630 		    sizeof (uint64_t), 1, &spa->spa_dedup_ditto);
1631 	}
1632 
1633 	/*
1634 	 * If the 'autoreplace' property is set, then post a resource notifying
1635 	 * the ZFS DE that it should not issue any faults for unopenable
1636 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1637 	 * unopenable vdevs so that the normal autoreplace handler can take
1638 	 * over.
1639 	 */
1640 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1641 		spa_check_removed(spa->spa_root_vdev);
1642 		/*
1643 		 * For the import case, this is done in spa_import(), because
1644 		 * at this point we're using the spare definitions from
1645 		 * the MOS config, not necessarily from the userland config.
1646 		 */
1647 		if (state != SPA_LOAD_IMPORT) {
1648 			spa_aux_check_removed(&spa->spa_spares);
1649 			spa_aux_check_removed(&spa->spa_l2cache);
1650 		}
1651 	}
1652 
1653 	/*
1654 	 * Load the vdev state for all toplevel vdevs.
1655 	 */
1656 	vdev_load(rvd);
1657 
1658 	/*
1659 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1660 	 */
1661 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1662 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1663 	spa_config_exit(spa, SCL_ALL, FTAG);
1664 
1665 	/*
1666 	 * Check the state of the root vdev.  If it can't be opened, it
1667 	 * indicates one or more toplevel vdevs are faulted.
1668 	 */
1669 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1670 		error = ENXIO;
1671 		goto out;
1672 	}
1673 
1674 	/*
1675 	 * Load the DDTs (dedup tables).
1676 	 */
1677 	error = ddt_load(spa);
1678 	if (error != 0) {
1679 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1680 		    VDEV_AUX_CORRUPT_DATA);
1681 		error = EIO;
1682 		goto out;
1683 	}
1684 
1685 	spa_update_dspace(spa);
1686 
1687 	if (state != SPA_LOAD_TRYIMPORT) {
1688 		error = spa_load_verify(spa);
1689 		if (error) {
1690 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1691 			    VDEV_AUX_CORRUPT_DATA);
1692 			goto out;
1693 		}
1694 	}
1695 
1696 	/*
1697 	 * Load the intent log state and check log integrity.
1698 	 */
1699 	VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
1700 	    &nvroot) == 0);
1701 	spa_load_log_state(spa, nvroot);
1702 	nvlist_free(nvconfig);
1703 
1704 	if (spa_check_logs(spa)) {
1705 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1706 		    VDEV_AUX_BAD_LOG);
1707 		error = ENXIO;
1708 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1709 		goto out;
1710 	}
1711 
1712 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
1713 	    spa->spa_load_max_txg == UINT64_MAX)) {
1714 		dmu_tx_t *tx;
1715 		int need_update = B_FALSE;
1716 
1717 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1718 
1719 		/*
1720 		 * Claim log blocks that haven't been committed yet.
1721 		 * This must all happen in a single txg.
1722 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
1723 		 * invoked from zil_claim_log_block()'s i/o done callback.
1724 		 * Price of rollback is that we abandon the log.
1725 		 */
1726 		spa->spa_claiming = B_TRUE;
1727 
1728 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1729 		    spa_first_txg(spa));
1730 		(void) dmu_objset_find(spa_name(spa),
1731 		    zil_claim, tx, DS_FIND_CHILDREN);
1732 		dmu_tx_commit(tx);
1733 
1734 		spa->spa_claiming = B_FALSE;
1735 
1736 		spa->spa_log_state = SPA_LOG_GOOD;
1737 		spa->spa_sync_on = B_TRUE;
1738 		txg_sync_start(spa->spa_dsl_pool);
1739 
1740 		/*
1741 		 * Wait for all claims to sync.  We sync up to the highest
1742 		 * claimed log block birth time so that claimed log blocks
1743 		 * don't appear to be from the future.  spa_claim_max_txg
1744 		 * will have been set for us by either zil_check_log_chain()
1745 		 * (invoked from spa_check_logs()) or zil_claim() above.
1746 		 */
1747 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
1748 
1749 		/*
1750 		 * If the config cache is stale, or we have uninitialized
1751 		 * metaslabs (see spa_vdev_add()), then update the config.
1752 		 *
1753 		 * If spa_load_verbatim is true, trust the current
1754 		 * in-core spa_config and update the disk labels.
1755 		 */
1756 		if (config_cache_txg != spa->spa_config_txg ||
1757 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
1758 		    state == SPA_LOAD_RECOVER)
1759 			need_update = B_TRUE;
1760 
1761 		for (int c = 0; c < rvd->vdev_children; c++)
1762 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1763 				need_update = B_TRUE;
1764 
1765 		/*
1766 		 * Update the config cache asychronously in case we're the
1767 		 * root pool, in which case the config cache isn't writable yet.
1768 		 */
1769 		if (need_update)
1770 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1771 
1772 		/*
1773 		 * Check all DTLs to see if anything needs resilvering.
1774 		 */
1775 		if (vdev_resilver_needed(rvd, NULL, NULL))
1776 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1777 
1778 		/*
1779 		 * Delete any inconsistent datasets.
1780 		 */
1781 		(void) dmu_objset_find(spa_name(spa),
1782 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
1783 
1784 		/*
1785 		 * Clean up any stale temporary dataset userrefs.
1786 		 */
1787 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
1788 	}
1789 
1790 	error = 0;
1791 out:
1792 
1793 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1794 	if (error && error != EBADF)
1795 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1796 	spa->spa_load_state = SPA_LOAD_NONE;
1797 	spa->spa_ena = 0;
1798 
1799 	return (error);
1800 }
1801 
1802 static int
1803 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
1804 {
1805 	spa_unload(spa);
1806 	spa_deactivate(spa);
1807 
1808 	spa->spa_load_max_txg--;
1809 
1810 	spa_activate(spa, spa_mode_global);
1811 	spa_async_suspend(spa);
1812 
1813 	return (spa_load(spa, state, mosconfig));
1814 }
1815 
1816 static int
1817 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
1818     uint64_t max_request, boolean_t extreme)
1819 {
1820 	nvlist_t *config = NULL;
1821 	int load_error, rewind_error;
1822 	uint64_t safe_rollback_txg;
1823 	uint64_t min_txg;
1824 
1825 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER)
1826 		spa->spa_load_max_txg = spa->spa_load_txg;
1827 	else
1828 		spa->spa_load_max_txg = max_request;
1829 
1830 	load_error = rewind_error = spa_load(spa, state, mosconfig);
1831 	if (load_error == 0)
1832 		return (0);
1833 
1834 	if (spa->spa_root_vdev != NULL)
1835 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1836 
1837 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
1838 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
1839 
1840 	/* specific txg requested */
1841 	if (spa->spa_load_max_txg != UINT64_MAX && !extreme) {
1842 		nvlist_free(config);
1843 		return (load_error);
1844 	}
1845 
1846 	/* Price of rolling back is discarding txgs, including log */
1847 	if (state == SPA_LOAD_RECOVER)
1848 		spa->spa_log_state = SPA_LOG_CLEAR;
1849 
1850 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1851 	safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE;
1852 
1853 	min_txg = extreme ? TXG_INITIAL : safe_rollback_txg;
1854 	while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) {
1855 		if (spa->spa_load_max_txg < safe_rollback_txg)
1856 			spa->spa_extreme_rewind = B_TRUE;
1857 		rewind_error = spa_load_retry(spa, state, mosconfig);
1858 	}
1859 
1860 	if (config)
1861 		spa_rewind_data_to_nvlist(spa, config);
1862 
1863 	spa->spa_extreme_rewind = B_FALSE;
1864 	spa->spa_load_max_txg = UINT64_MAX;
1865 
1866 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
1867 		spa_config_set(spa, config);
1868 
1869 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
1870 }
1871 
1872 /*
1873  * Pool Open/Import
1874  *
1875  * The import case is identical to an open except that the configuration is sent
1876  * down from userland, instead of grabbed from the configuration cache.  For the
1877  * case of an open, the pool configuration will exist in the
1878  * POOL_STATE_UNINITIALIZED state.
1879  *
1880  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1881  * the same time open the pool, without having to keep around the spa_t in some
1882  * ambiguous state.
1883  */
1884 static int
1885 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
1886     nvlist_t **config)
1887 {
1888 	spa_t *spa;
1889 	boolean_t norewind;
1890 	boolean_t extreme;
1891 	zpool_rewind_policy_t policy;
1892 	spa_load_state_t state = SPA_LOAD_OPEN;
1893 	int error;
1894 	int locked = B_FALSE;
1895 
1896 	*spapp = NULL;
1897 
1898 	zpool_get_rewind_policy(nvpolicy, &policy);
1899 	if (policy.zrp_request & ZPOOL_DO_REWIND)
1900 		state = SPA_LOAD_RECOVER;
1901 	norewind = (policy.zrp_request == ZPOOL_NO_REWIND);
1902 	extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0);
1903 
1904 	/*
1905 	 * As disgusting as this is, we need to support recursive calls to this
1906 	 * function because dsl_dir_open() is called during spa_load(), and ends
1907 	 * up calling spa_open() again.  The real fix is to figure out how to
1908 	 * avoid dsl_dir_open() calling this in the first place.
1909 	 */
1910 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1911 		mutex_enter(&spa_namespace_lock);
1912 		locked = B_TRUE;
1913 	}
1914 
1915 	if ((spa = spa_lookup(pool)) == NULL) {
1916 		if (locked)
1917 			mutex_exit(&spa_namespace_lock);
1918 		return (ENOENT);
1919 	}
1920 
1921 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1922 
1923 		spa_activate(spa, spa_mode_global);
1924 
1925 		if (spa->spa_last_open_failed && norewind) {
1926 			if (config != NULL && spa->spa_config)
1927 				VERIFY(nvlist_dup(spa->spa_config,
1928 				    config, KM_SLEEP) == 0);
1929 			spa_deactivate(spa);
1930 			if (locked)
1931 				mutex_exit(&spa_namespace_lock);
1932 			return (spa->spa_last_open_failed);
1933 		}
1934 
1935 		if (state != SPA_LOAD_RECOVER)
1936 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
1937 
1938 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
1939 		    extreme);
1940 
1941 		if (error == EBADF) {
1942 			/*
1943 			 * If vdev_validate() returns failure (indicated by
1944 			 * EBADF), it indicates that one of the vdevs indicates
1945 			 * that the pool has been exported or destroyed.  If
1946 			 * this is the case, the config cache is out of sync and
1947 			 * we should remove the pool from the namespace.
1948 			 */
1949 			spa_unload(spa);
1950 			spa_deactivate(spa);
1951 			spa_config_sync(spa, B_TRUE, B_TRUE);
1952 			spa_remove(spa);
1953 			if (locked)
1954 				mutex_exit(&spa_namespace_lock);
1955 			return (ENOENT);
1956 		}
1957 
1958 		if (error) {
1959 			/*
1960 			 * We can't open the pool, but we still have useful
1961 			 * information: the state of each vdev after the
1962 			 * attempted vdev_open().  Return this to the user.
1963 			 */
1964 			if (config != NULL && spa->spa_config)
1965 				VERIFY(nvlist_dup(spa->spa_config, config,
1966 				    KM_SLEEP) == 0);
1967 			spa_unload(spa);
1968 			spa_deactivate(spa);
1969 			spa->spa_last_open_failed = error;
1970 			if (locked)
1971 				mutex_exit(&spa_namespace_lock);
1972 			*spapp = NULL;
1973 			return (error);
1974 		}
1975 
1976 	}
1977 
1978 	spa_open_ref(spa, tag);
1979 
1980 	spa->spa_last_open_failed = 0;
1981 
1982 	if (config != NULL)
1983 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1984 
1985 	spa->spa_last_ubsync_txg = 0;
1986 	spa->spa_load_txg = 0;
1987 
1988 	if (locked)
1989 		mutex_exit(&spa_namespace_lock);
1990 
1991 	*spapp = spa;
1992 
1993 	return (0);
1994 }
1995 
1996 int
1997 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
1998     nvlist_t **config)
1999 {
2000 	return (spa_open_common(name, spapp, tag, policy, config));
2001 }
2002 
2003 int
2004 spa_open(const char *name, spa_t **spapp, void *tag)
2005 {
2006 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2007 }
2008 
2009 /*
2010  * Lookup the given spa_t, incrementing the inject count in the process,
2011  * preventing it from being exported or destroyed.
2012  */
2013 spa_t *
2014 spa_inject_addref(char *name)
2015 {
2016 	spa_t *spa;
2017 
2018 	mutex_enter(&spa_namespace_lock);
2019 	if ((spa = spa_lookup(name)) == NULL) {
2020 		mutex_exit(&spa_namespace_lock);
2021 		return (NULL);
2022 	}
2023 	spa->spa_inject_ref++;
2024 	mutex_exit(&spa_namespace_lock);
2025 
2026 	return (spa);
2027 }
2028 
2029 void
2030 spa_inject_delref(spa_t *spa)
2031 {
2032 	mutex_enter(&spa_namespace_lock);
2033 	spa->spa_inject_ref--;
2034 	mutex_exit(&spa_namespace_lock);
2035 }
2036 
2037 /*
2038  * Add spares device information to the nvlist.
2039  */
2040 static void
2041 spa_add_spares(spa_t *spa, nvlist_t *config)
2042 {
2043 	nvlist_t **spares;
2044 	uint_t i, nspares;
2045 	nvlist_t *nvroot;
2046 	uint64_t guid;
2047 	vdev_stat_t *vs;
2048 	uint_t vsc;
2049 	uint64_t pool;
2050 
2051 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2052 
2053 	if (spa->spa_spares.sav_count == 0)
2054 		return;
2055 
2056 	VERIFY(nvlist_lookup_nvlist(config,
2057 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2058 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2059 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2060 	if (nspares != 0) {
2061 		VERIFY(nvlist_add_nvlist_array(nvroot,
2062 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2063 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2064 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2065 
2066 		/*
2067 		 * Go through and find any spares which have since been
2068 		 * repurposed as an active spare.  If this is the case, update
2069 		 * their status appropriately.
2070 		 */
2071 		for (i = 0; i < nspares; i++) {
2072 			VERIFY(nvlist_lookup_uint64(spares[i],
2073 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2074 			if (spa_spare_exists(guid, &pool, NULL) &&
2075 			    pool != 0ULL) {
2076 				VERIFY(nvlist_lookup_uint64_array(
2077 				    spares[i], ZPOOL_CONFIG_STATS,
2078 				    (uint64_t **)&vs, &vsc) == 0);
2079 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2080 				vs->vs_aux = VDEV_AUX_SPARED;
2081 			}
2082 		}
2083 	}
2084 }
2085 
2086 /*
2087  * Add l2cache device information to the nvlist, including vdev stats.
2088  */
2089 static void
2090 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2091 {
2092 	nvlist_t **l2cache;
2093 	uint_t i, j, nl2cache;
2094 	nvlist_t *nvroot;
2095 	uint64_t guid;
2096 	vdev_t *vd;
2097 	vdev_stat_t *vs;
2098 	uint_t vsc;
2099 
2100 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2101 
2102 	if (spa->spa_l2cache.sav_count == 0)
2103 		return;
2104 
2105 	VERIFY(nvlist_lookup_nvlist(config,
2106 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2107 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2108 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2109 	if (nl2cache != 0) {
2110 		VERIFY(nvlist_add_nvlist_array(nvroot,
2111 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2112 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2113 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2114 
2115 		/*
2116 		 * Update level 2 cache device stats.
2117 		 */
2118 
2119 		for (i = 0; i < nl2cache; i++) {
2120 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2121 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2122 
2123 			vd = NULL;
2124 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2125 				if (guid ==
2126 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2127 					vd = spa->spa_l2cache.sav_vdevs[j];
2128 					break;
2129 				}
2130 			}
2131 			ASSERT(vd != NULL);
2132 
2133 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2134 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2135 			vdev_get_stats(vd, vs);
2136 		}
2137 	}
2138 }
2139 
2140 int
2141 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2142 {
2143 	int error;
2144 	spa_t *spa;
2145 
2146 	*config = NULL;
2147 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2148 
2149 	if (spa != NULL) {
2150 		/*
2151 		 * This still leaves a window of inconsistency where the spares
2152 		 * or l2cache devices could change and the config would be
2153 		 * self-inconsistent.
2154 		 */
2155 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2156 
2157 		if (*config != NULL) {
2158 			VERIFY(nvlist_add_uint64(*config,
2159 			    ZPOOL_CONFIG_ERRCOUNT,
2160 			    spa_get_errlog_size(spa)) == 0);
2161 
2162 			if (spa_suspended(spa))
2163 				VERIFY(nvlist_add_uint64(*config,
2164 				    ZPOOL_CONFIG_SUSPENDED,
2165 				    spa->spa_failmode) == 0);
2166 
2167 			spa_add_spares(spa, *config);
2168 			spa_add_l2cache(spa, *config);
2169 		}
2170 	}
2171 
2172 	/*
2173 	 * We want to get the alternate root even for faulted pools, so we cheat
2174 	 * and call spa_lookup() directly.
2175 	 */
2176 	if (altroot) {
2177 		if (spa == NULL) {
2178 			mutex_enter(&spa_namespace_lock);
2179 			spa = spa_lookup(name);
2180 			if (spa)
2181 				spa_altroot(spa, altroot, buflen);
2182 			else
2183 				altroot[0] = '\0';
2184 			spa = NULL;
2185 			mutex_exit(&spa_namespace_lock);
2186 		} else {
2187 			spa_altroot(spa, altroot, buflen);
2188 		}
2189 	}
2190 
2191 	if (spa != NULL) {
2192 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2193 		spa_close(spa, FTAG);
2194 	}
2195 
2196 	return (error);
2197 }
2198 
2199 /*
2200  * Validate that the auxiliary device array is well formed.  We must have an
2201  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2202  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2203  * specified, as long as they are well-formed.
2204  */
2205 static int
2206 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2207     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2208     vdev_labeltype_t label)
2209 {
2210 	nvlist_t **dev;
2211 	uint_t i, ndev;
2212 	vdev_t *vd;
2213 	int error;
2214 
2215 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2216 
2217 	/*
2218 	 * It's acceptable to have no devs specified.
2219 	 */
2220 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2221 		return (0);
2222 
2223 	if (ndev == 0)
2224 		return (EINVAL);
2225 
2226 	/*
2227 	 * Make sure the pool is formatted with a version that supports this
2228 	 * device type.
2229 	 */
2230 	if (spa_version(spa) < version)
2231 		return (ENOTSUP);
2232 
2233 	/*
2234 	 * Set the pending device list so we correctly handle device in-use
2235 	 * checking.
2236 	 */
2237 	sav->sav_pending = dev;
2238 	sav->sav_npending = ndev;
2239 
2240 	for (i = 0; i < ndev; i++) {
2241 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2242 		    mode)) != 0)
2243 			goto out;
2244 
2245 		if (!vd->vdev_ops->vdev_op_leaf) {
2246 			vdev_free(vd);
2247 			error = EINVAL;
2248 			goto out;
2249 		}
2250 
2251 		/*
2252 		 * The L2ARC currently only supports disk devices in
2253 		 * kernel context.  For user-level testing, we allow it.
2254 		 */
2255 #ifdef _KERNEL
2256 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2257 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2258 			error = ENOTBLK;
2259 			goto out;
2260 		}
2261 #endif
2262 		vd->vdev_top = vd;
2263 
2264 		if ((error = vdev_open(vd)) == 0 &&
2265 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2266 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2267 			    vd->vdev_guid) == 0);
2268 		}
2269 
2270 		vdev_free(vd);
2271 
2272 		if (error &&
2273 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2274 			goto out;
2275 		else
2276 			error = 0;
2277 	}
2278 
2279 out:
2280 	sav->sav_pending = NULL;
2281 	sav->sav_npending = 0;
2282 	return (error);
2283 }
2284 
2285 static int
2286 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2287 {
2288 	int error;
2289 
2290 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2291 
2292 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2293 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2294 	    VDEV_LABEL_SPARE)) != 0) {
2295 		return (error);
2296 	}
2297 
2298 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2299 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2300 	    VDEV_LABEL_L2CACHE));
2301 }
2302 
2303 static void
2304 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2305     const char *config)
2306 {
2307 	int i;
2308 
2309 	if (sav->sav_config != NULL) {
2310 		nvlist_t **olddevs;
2311 		uint_t oldndevs;
2312 		nvlist_t **newdevs;
2313 
2314 		/*
2315 		 * Generate new dev list by concatentating with the
2316 		 * current dev list.
2317 		 */
2318 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2319 		    &olddevs, &oldndevs) == 0);
2320 
2321 		newdevs = kmem_alloc(sizeof (void *) *
2322 		    (ndevs + oldndevs), KM_SLEEP);
2323 		for (i = 0; i < oldndevs; i++)
2324 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2325 			    KM_SLEEP) == 0);
2326 		for (i = 0; i < ndevs; i++)
2327 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2328 			    KM_SLEEP) == 0);
2329 
2330 		VERIFY(nvlist_remove(sav->sav_config, config,
2331 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2332 
2333 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2334 		    config, newdevs, ndevs + oldndevs) == 0);
2335 		for (i = 0; i < oldndevs + ndevs; i++)
2336 			nvlist_free(newdevs[i]);
2337 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2338 	} else {
2339 		/*
2340 		 * Generate a new dev list.
2341 		 */
2342 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2343 		    KM_SLEEP) == 0);
2344 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2345 		    devs, ndevs) == 0);
2346 	}
2347 }
2348 
2349 /*
2350  * Stop and drop level 2 ARC devices
2351  */
2352 void
2353 spa_l2cache_drop(spa_t *spa)
2354 {
2355 	vdev_t *vd;
2356 	int i;
2357 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2358 
2359 	for (i = 0; i < sav->sav_count; i++) {
2360 		uint64_t pool;
2361 
2362 		vd = sav->sav_vdevs[i];
2363 		ASSERT(vd != NULL);
2364 
2365 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2366 		    pool != 0ULL && l2arc_vdev_present(vd))
2367 			l2arc_remove_vdev(vd);
2368 		if (vd->vdev_isl2cache)
2369 			spa_l2cache_remove(vd);
2370 		vdev_clear_stats(vd);
2371 		(void) vdev_close(vd);
2372 	}
2373 }
2374 
2375 /*
2376  * Pool Creation
2377  */
2378 int
2379 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2380     const char *history_str, nvlist_t *zplprops)
2381 {
2382 	spa_t *spa;
2383 	char *altroot = NULL;
2384 	vdev_t *rvd;
2385 	dsl_pool_t *dp;
2386 	dmu_tx_t *tx;
2387 	int error = 0;
2388 	uint64_t txg = TXG_INITIAL;
2389 	nvlist_t **spares, **l2cache;
2390 	uint_t nspares, nl2cache;
2391 	uint64_t version;
2392 
2393 	/*
2394 	 * If this pool already exists, return failure.
2395 	 */
2396 	mutex_enter(&spa_namespace_lock);
2397 	if (spa_lookup(pool) != NULL) {
2398 		mutex_exit(&spa_namespace_lock);
2399 		return (EEXIST);
2400 	}
2401 
2402 	/*
2403 	 * Allocate a new spa_t structure.
2404 	 */
2405 	(void) nvlist_lookup_string(props,
2406 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2407 	spa = spa_add(pool, NULL, altroot);
2408 	spa_activate(spa, spa_mode_global);
2409 
2410 	if (props && (error = spa_prop_validate(spa, props))) {
2411 		spa_deactivate(spa);
2412 		spa_remove(spa);
2413 		mutex_exit(&spa_namespace_lock);
2414 		return (error);
2415 	}
2416 
2417 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2418 	    &version) != 0)
2419 		version = SPA_VERSION;
2420 	ASSERT(version <= SPA_VERSION);
2421 
2422 	spa->spa_first_txg = txg;
2423 	spa->spa_uberblock.ub_txg = txg - 1;
2424 	spa->spa_uberblock.ub_version = version;
2425 	spa->spa_ubsync = spa->spa_uberblock;
2426 
2427 	/*
2428 	 * Create "The Godfather" zio to hold all async IOs
2429 	 */
2430 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2431 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2432 
2433 	/*
2434 	 * Create the root vdev.
2435 	 */
2436 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2437 
2438 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2439 
2440 	ASSERT(error != 0 || rvd != NULL);
2441 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2442 
2443 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2444 		error = EINVAL;
2445 
2446 	if (error == 0 &&
2447 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2448 	    (error = spa_validate_aux(spa, nvroot, txg,
2449 	    VDEV_ALLOC_ADD)) == 0) {
2450 		for (int c = 0; c < rvd->vdev_children; c++) {
2451 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2452 			vdev_expand(rvd->vdev_child[c], txg);
2453 		}
2454 	}
2455 
2456 	spa_config_exit(spa, SCL_ALL, FTAG);
2457 
2458 	if (error != 0) {
2459 		spa_unload(spa);
2460 		spa_deactivate(spa);
2461 		spa_remove(spa);
2462 		mutex_exit(&spa_namespace_lock);
2463 		return (error);
2464 	}
2465 
2466 	/*
2467 	 * Get the list of spares, if specified.
2468 	 */
2469 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2470 	    &spares, &nspares) == 0) {
2471 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2472 		    KM_SLEEP) == 0);
2473 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2474 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2475 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2476 		spa_load_spares(spa);
2477 		spa_config_exit(spa, SCL_ALL, FTAG);
2478 		spa->spa_spares.sav_sync = B_TRUE;
2479 	}
2480 
2481 	/*
2482 	 * Get the list of level 2 cache devices, if specified.
2483 	 */
2484 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2485 	    &l2cache, &nl2cache) == 0) {
2486 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2487 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2488 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2489 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2490 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2491 		spa_load_l2cache(spa);
2492 		spa_config_exit(spa, SCL_ALL, FTAG);
2493 		spa->spa_l2cache.sav_sync = B_TRUE;
2494 	}
2495 
2496 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2497 	spa->spa_meta_objset = dp->dp_meta_objset;
2498 
2499 	/*
2500 	 * Create DDTs (dedup tables).
2501 	 */
2502 	ddt_create(spa);
2503 
2504 	spa_update_dspace(spa);
2505 
2506 	tx = dmu_tx_create_assigned(dp, txg);
2507 
2508 	/*
2509 	 * Create the pool config object.
2510 	 */
2511 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2512 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2513 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2514 
2515 	if (zap_add(spa->spa_meta_objset,
2516 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2517 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2518 		cmn_err(CE_PANIC, "failed to add pool config");
2519 	}
2520 
2521 	/* Newly created pools with the right version are always deflated. */
2522 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2523 		spa->spa_deflate = TRUE;
2524 		if (zap_add(spa->spa_meta_objset,
2525 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2526 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2527 			cmn_err(CE_PANIC, "failed to add deflate");
2528 		}
2529 	}
2530 
2531 	/*
2532 	 * Create the deferred-free bplist object.  Turn off compression
2533 	 * because sync-to-convergence takes longer if the blocksize
2534 	 * keeps changing.
2535 	 */
2536 	spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2537 	    1 << 14, tx);
2538 	dmu_object_set_compress(spa->spa_meta_objset,
2539 	    spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2540 
2541 	if (zap_add(spa->spa_meta_objset,
2542 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2543 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2544 		cmn_err(CE_PANIC, "failed to add bplist");
2545 	}
2546 
2547 	/*
2548 	 * Create the pool's history object.
2549 	 */
2550 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2551 		spa_history_create_obj(spa, tx);
2552 
2553 	/*
2554 	 * Set pool properties.
2555 	 */
2556 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2557 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2558 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2559 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2560 
2561 	if (props != NULL) {
2562 		spa_configfile_set(spa, props, B_FALSE);
2563 		spa_sync_props(spa, props, CRED(), tx);
2564 	}
2565 
2566 	dmu_tx_commit(tx);
2567 
2568 	spa->spa_sync_on = B_TRUE;
2569 	txg_sync_start(spa->spa_dsl_pool);
2570 
2571 	/*
2572 	 * We explicitly wait for the first transaction to complete so that our
2573 	 * bean counters are appropriately updated.
2574 	 */
2575 	txg_wait_synced(spa->spa_dsl_pool, txg);
2576 
2577 	spa_config_sync(spa, B_FALSE, B_TRUE);
2578 
2579 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2580 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2581 	spa_history_log_version(spa, LOG_POOL_CREATE);
2582 
2583 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2584 
2585 	mutex_exit(&spa_namespace_lock);
2586 
2587 	return (0);
2588 }
2589 
2590 #ifdef _KERNEL
2591 /*
2592  * Get the root pool information from the root disk, then import the root pool
2593  * during the system boot up time.
2594  */
2595 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2596 
2597 static nvlist_t *
2598 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2599 {
2600 	nvlist_t *config;
2601 	nvlist_t *nvtop, *nvroot;
2602 	uint64_t pgid;
2603 
2604 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2605 		return (NULL);
2606 
2607 	/*
2608 	 * Add this top-level vdev to the child array.
2609 	 */
2610 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2611 	    &nvtop) == 0);
2612 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2613 	    &pgid) == 0);
2614 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2615 
2616 	/*
2617 	 * Put this pool's top-level vdevs into a root vdev.
2618 	 */
2619 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2620 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2621 	    VDEV_TYPE_ROOT) == 0);
2622 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2623 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2624 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2625 	    &nvtop, 1) == 0);
2626 
2627 	/*
2628 	 * Replace the existing vdev_tree with the new root vdev in
2629 	 * this pool's configuration (remove the old, add the new).
2630 	 */
2631 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2632 	nvlist_free(nvroot);
2633 	return (config);
2634 }
2635 
2636 /*
2637  * Walk the vdev tree and see if we can find a device with "better"
2638  * configuration. A configuration is "better" if the label on that
2639  * device has a more recent txg.
2640  */
2641 static void
2642 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2643 {
2644 	for (int c = 0; c < vd->vdev_children; c++)
2645 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2646 
2647 	if (vd->vdev_ops->vdev_op_leaf) {
2648 		nvlist_t *label;
2649 		uint64_t label_txg;
2650 
2651 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2652 		    &label) != 0)
2653 			return;
2654 
2655 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2656 		    &label_txg) == 0);
2657 
2658 		/*
2659 		 * Do we have a better boot device?
2660 		 */
2661 		if (label_txg > *txg) {
2662 			*txg = label_txg;
2663 			*avd = vd;
2664 		}
2665 		nvlist_free(label);
2666 	}
2667 }
2668 
2669 /*
2670  * Import a root pool.
2671  *
2672  * For x86. devpath_list will consist of devid and/or physpath name of
2673  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2674  * The GRUB "findroot" command will return the vdev we should boot.
2675  *
2676  * For Sparc, devpath_list consists the physpath name of the booting device
2677  * no matter the rootpool is a single device pool or a mirrored pool.
2678  * e.g.
2679  *	"/pci@1f,0/ide@d/disk@0,0:a"
2680  */
2681 int
2682 spa_import_rootpool(char *devpath, char *devid)
2683 {
2684 	spa_t *spa;
2685 	vdev_t *rvd, *bvd, *avd = NULL;
2686 	nvlist_t *config, *nvtop;
2687 	uint64_t guid, txg;
2688 	char *pname;
2689 	int error;
2690 
2691 	/*
2692 	 * Read the label from the boot device and generate a configuration.
2693 	 */
2694 	config = spa_generate_rootconf(devpath, devid, &guid);
2695 #if defined(_OBP) && defined(_KERNEL)
2696 	if (config == NULL) {
2697 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
2698 			/* iscsi boot */
2699 			get_iscsi_bootpath_phy(devpath);
2700 			config = spa_generate_rootconf(devpath, devid, &guid);
2701 		}
2702 	}
2703 #endif
2704 	if (config == NULL) {
2705 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2706 		    devpath);
2707 		return (EIO);
2708 	}
2709 
2710 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2711 	    &pname) == 0);
2712 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2713 
2714 	mutex_enter(&spa_namespace_lock);
2715 	if ((spa = spa_lookup(pname)) != NULL) {
2716 		/*
2717 		 * Remove the existing root pool from the namespace so that we
2718 		 * can replace it with the correct config we just read in.
2719 		 */
2720 		spa_remove(spa);
2721 	}
2722 
2723 	spa = spa_add(pname, config, NULL);
2724 	spa->spa_is_root = B_TRUE;
2725 	spa->spa_load_verbatim = B_TRUE;
2726 
2727 	/*
2728 	 * Build up a vdev tree based on the boot device's label config.
2729 	 */
2730 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2731 	    &nvtop) == 0);
2732 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2733 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2734 	    VDEV_ALLOC_ROOTPOOL);
2735 	spa_config_exit(spa, SCL_ALL, FTAG);
2736 	if (error) {
2737 		mutex_exit(&spa_namespace_lock);
2738 		nvlist_free(config);
2739 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2740 		    pname);
2741 		return (error);
2742 	}
2743 
2744 	/*
2745 	 * Get the boot vdev.
2746 	 */
2747 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2748 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2749 		    (u_longlong_t)guid);
2750 		error = ENOENT;
2751 		goto out;
2752 	}
2753 
2754 	/*
2755 	 * Determine if there is a better boot device.
2756 	 */
2757 	avd = bvd;
2758 	spa_alt_rootvdev(rvd, &avd, &txg);
2759 	if (avd != bvd) {
2760 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2761 		    "try booting from '%s'", avd->vdev_path);
2762 		error = EINVAL;
2763 		goto out;
2764 	}
2765 
2766 	/*
2767 	 * If the boot device is part of a spare vdev then ensure that
2768 	 * we're booting off the active spare.
2769 	 */
2770 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2771 	    !bvd->vdev_isspare) {
2772 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2773 		    "try booting from '%s'",
2774 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2775 		error = EINVAL;
2776 		goto out;
2777 	}
2778 
2779 	error = 0;
2780 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2781 out:
2782 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2783 	vdev_free(rvd);
2784 	spa_config_exit(spa, SCL_ALL, FTAG);
2785 	mutex_exit(&spa_namespace_lock);
2786 
2787 	nvlist_free(config);
2788 	return (error);
2789 }
2790 
2791 #endif
2792 
2793 /*
2794  * Take a pool and insert it into the namespace as if it had been loaded at
2795  * boot.
2796  */
2797 int
2798 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2799 {
2800 	spa_t *spa;
2801 	zpool_rewind_policy_t policy;
2802 	char *altroot = NULL;
2803 
2804 	mutex_enter(&spa_namespace_lock);
2805 	if (spa_lookup(pool) != NULL) {
2806 		mutex_exit(&spa_namespace_lock);
2807 		return (EEXIST);
2808 	}
2809 
2810 	(void) nvlist_lookup_string(props,
2811 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2812 	spa = spa_add(pool, config, altroot);
2813 
2814 	zpool_get_rewind_policy(config, &policy);
2815 	spa->spa_load_max_txg = policy.zrp_txg;
2816 
2817 	spa->spa_load_verbatim = B_TRUE;
2818 
2819 	if (props != NULL)
2820 		spa_configfile_set(spa, props, B_FALSE);
2821 
2822 	spa_config_sync(spa, B_FALSE, B_TRUE);
2823 
2824 	mutex_exit(&spa_namespace_lock);
2825 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2826 
2827 	return (0);
2828 }
2829 
2830 /*
2831  * Import a non-root pool into the system.
2832  */
2833 int
2834 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2835 {
2836 	spa_t *spa;
2837 	char *altroot = NULL;
2838 	spa_load_state_t state = SPA_LOAD_IMPORT;
2839 	zpool_rewind_policy_t policy;
2840 	int error;
2841 	nvlist_t *nvroot;
2842 	nvlist_t **spares, **l2cache;
2843 	uint_t nspares, nl2cache;
2844 
2845 	/*
2846 	 * If a pool with this name exists, return failure.
2847 	 */
2848 	mutex_enter(&spa_namespace_lock);
2849 	if ((spa = spa_lookup(pool)) != NULL) {
2850 		mutex_exit(&spa_namespace_lock);
2851 		return (EEXIST);
2852 	}
2853 
2854 	zpool_get_rewind_policy(config, &policy);
2855 	if (policy.zrp_request & ZPOOL_DO_REWIND)
2856 		state = SPA_LOAD_RECOVER;
2857 
2858 	/*
2859 	 * Create and initialize the spa structure.
2860 	 */
2861 	(void) nvlist_lookup_string(props,
2862 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2863 	spa = spa_add(pool, config, altroot);
2864 	spa_activate(spa, spa_mode_global);
2865 
2866 	/*
2867 	 * Don't start async tasks until we know everything is healthy.
2868 	 */
2869 	spa_async_suspend(spa);
2870 
2871 	/*
2872 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2873 	 * because the user-supplied config is actually the one to trust when
2874 	 * doing an import.
2875 	 */
2876 	if (state != SPA_LOAD_RECOVER)
2877 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2878 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
2879 	    ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0));
2880 
2881 	/*
2882 	 * Propagate anything learned about failing or best txgs
2883 	 * back to caller
2884 	 */
2885 	spa_rewind_data_to_nvlist(spa, config);
2886 
2887 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2888 	/*
2889 	 * Toss any existing sparelist, as it doesn't have any validity
2890 	 * anymore, and conflicts with spa_has_spare().
2891 	 */
2892 	if (spa->spa_spares.sav_config) {
2893 		nvlist_free(spa->spa_spares.sav_config);
2894 		spa->spa_spares.sav_config = NULL;
2895 		spa_load_spares(spa);
2896 	}
2897 	if (spa->spa_l2cache.sav_config) {
2898 		nvlist_free(spa->spa_l2cache.sav_config);
2899 		spa->spa_l2cache.sav_config = NULL;
2900 		spa_load_l2cache(spa);
2901 	}
2902 
2903 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2904 	    &nvroot) == 0);
2905 	if (error == 0)
2906 		error = spa_validate_aux(spa, nvroot, -1ULL,
2907 		    VDEV_ALLOC_SPARE);
2908 	if (error == 0)
2909 		error = spa_validate_aux(spa, nvroot, -1ULL,
2910 		    VDEV_ALLOC_L2CACHE);
2911 	spa_config_exit(spa, SCL_ALL, FTAG);
2912 
2913 	if (props != NULL)
2914 		spa_configfile_set(spa, props, B_FALSE);
2915 
2916 	if (error != 0 || (props && spa_writeable(spa) &&
2917 	    (error = spa_prop_set(spa, props)))) {
2918 		spa_unload(spa);
2919 		spa_deactivate(spa);
2920 		spa_remove(spa);
2921 		mutex_exit(&spa_namespace_lock);
2922 		return (error);
2923 	}
2924 
2925 	spa_async_resume(spa);
2926 
2927 	/*
2928 	 * Override any spares and level 2 cache devices as specified by
2929 	 * the user, as these may have correct device names/devids, etc.
2930 	 */
2931 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2932 	    &spares, &nspares) == 0) {
2933 		if (spa->spa_spares.sav_config)
2934 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2935 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2936 		else
2937 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2938 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2939 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2940 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2941 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2942 		spa_load_spares(spa);
2943 		spa_config_exit(spa, SCL_ALL, FTAG);
2944 		spa->spa_spares.sav_sync = B_TRUE;
2945 	}
2946 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2947 	    &l2cache, &nl2cache) == 0) {
2948 		if (spa->spa_l2cache.sav_config)
2949 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2950 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2951 		else
2952 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2953 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2954 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2955 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2956 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2957 		spa_load_l2cache(spa);
2958 		spa_config_exit(spa, SCL_ALL, FTAG);
2959 		spa->spa_l2cache.sav_sync = B_TRUE;
2960 	}
2961 
2962 	/*
2963 	 * Check for any removed devices.
2964 	 */
2965 	if (spa->spa_autoreplace) {
2966 		spa_aux_check_removed(&spa->spa_spares);
2967 		spa_aux_check_removed(&spa->spa_l2cache);
2968 	}
2969 
2970 	if (spa_writeable(spa)) {
2971 		/*
2972 		 * Update the config cache to include the newly-imported pool.
2973 		 */
2974 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2975 	}
2976 
2977 	/*
2978 	 * It's possible that the pool was expanded while it was exported.
2979 	 * We kick off an async task to handle this for us.
2980 	 */
2981 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2982 
2983 	mutex_exit(&spa_namespace_lock);
2984 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2985 
2986 	return (0);
2987 }
2988 
2989 
2990 /*
2991  * This (illegal) pool name is used when temporarily importing a spa_t in order
2992  * to get the vdev stats associated with the imported devices.
2993  */
2994 #define	TRYIMPORT_NAME	"$import"
2995 
2996 nvlist_t *
2997 spa_tryimport(nvlist_t *tryconfig)
2998 {
2999 	nvlist_t *config = NULL;
3000 	char *poolname;
3001 	spa_t *spa;
3002 	uint64_t state;
3003 	int error;
3004 
3005 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3006 		return (NULL);
3007 
3008 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3009 		return (NULL);
3010 
3011 	/*
3012 	 * Create and initialize the spa structure.
3013 	 */
3014 	mutex_enter(&spa_namespace_lock);
3015 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3016 	spa_activate(spa, FREAD);
3017 
3018 	/*
3019 	 * Pass off the heavy lifting to spa_load().
3020 	 * Pass TRUE for mosconfig because the user-supplied config
3021 	 * is actually the one to trust when doing an import.
3022 	 */
3023 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, B_TRUE);
3024 
3025 	/*
3026 	 * If 'tryconfig' was at least parsable, return the current config.
3027 	 */
3028 	if (spa->spa_root_vdev != NULL) {
3029 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3030 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3031 		    poolname) == 0);
3032 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3033 		    state) == 0);
3034 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3035 		    spa->spa_uberblock.ub_timestamp) == 0);
3036 
3037 		/*
3038 		 * If the bootfs property exists on this pool then we
3039 		 * copy it out so that external consumers can tell which
3040 		 * pools are bootable.
3041 		 */
3042 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3043 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3044 
3045 			/*
3046 			 * We have to play games with the name since the
3047 			 * pool was opened as TRYIMPORT_NAME.
3048 			 */
3049 			if (dsl_dsobj_to_dsname(spa_name(spa),
3050 			    spa->spa_bootfs, tmpname) == 0) {
3051 				char *cp;
3052 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3053 
3054 				cp = strchr(tmpname, '/');
3055 				if (cp == NULL) {
3056 					(void) strlcpy(dsname, tmpname,
3057 					    MAXPATHLEN);
3058 				} else {
3059 					(void) snprintf(dsname, MAXPATHLEN,
3060 					    "%s/%s", poolname, ++cp);
3061 				}
3062 				VERIFY(nvlist_add_string(config,
3063 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3064 				kmem_free(dsname, MAXPATHLEN);
3065 			}
3066 			kmem_free(tmpname, MAXPATHLEN);
3067 		}
3068 
3069 		/*
3070 		 * Add the list of hot spares and level 2 cache devices.
3071 		 */
3072 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3073 		spa_add_spares(spa, config);
3074 		spa_add_l2cache(spa, config);
3075 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3076 	}
3077 
3078 	spa_unload(spa);
3079 	spa_deactivate(spa);
3080 	spa_remove(spa);
3081 	mutex_exit(&spa_namespace_lock);
3082 
3083 	return (config);
3084 }
3085 
3086 /*
3087  * Pool export/destroy
3088  *
3089  * The act of destroying or exporting a pool is very simple.  We make sure there
3090  * is no more pending I/O and any references to the pool are gone.  Then, we
3091  * update the pool state and sync all the labels to disk, removing the
3092  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3093  * we don't sync the labels or remove the configuration cache.
3094  */
3095 static int
3096 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3097     boolean_t force, boolean_t hardforce)
3098 {
3099 	spa_t *spa;
3100 
3101 	if (oldconfig)
3102 		*oldconfig = NULL;
3103 
3104 	if (!(spa_mode_global & FWRITE))
3105 		return (EROFS);
3106 
3107 	mutex_enter(&spa_namespace_lock);
3108 	if ((spa = spa_lookup(pool)) == NULL) {
3109 		mutex_exit(&spa_namespace_lock);
3110 		return (ENOENT);
3111 	}
3112 
3113 	/*
3114 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3115 	 * reacquire the namespace lock, and see if we can export.
3116 	 */
3117 	spa_open_ref(spa, FTAG);
3118 	mutex_exit(&spa_namespace_lock);
3119 	spa_async_suspend(spa);
3120 	mutex_enter(&spa_namespace_lock);
3121 	spa_close(spa, FTAG);
3122 
3123 	/*
3124 	 * The pool will be in core if it's openable,
3125 	 * in which case we can modify its state.
3126 	 */
3127 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3128 		/*
3129 		 * Objsets may be open only because they're dirty, so we
3130 		 * have to force it to sync before checking spa_refcnt.
3131 		 */
3132 		txg_wait_synced(spa->spa_dsl_pool, 0);
3133 
3134 		/*
3135 		 * A pool cannot be exported or destroyed if there are active
3136 		 * references.  If we are resetting a pool, allow references by
3137 		 * fault injection handlers.
3138 		 */
3139 		if (!spa_refcount_zero(spa) ||
3140 		    (spa->spa_inject_ref != 0 &&
3141 		    new_state != POOL_STATE_UNINITIALIZED)) {
3142 			spa_async_resume(spa);
3143 			mutex_exit(&spa_namespace_lock);
3144 			return (EBUSY);
3145 		}
3146 
3147 		/*
3148 		 * A pool cannot be exported if it has an active shared spare.
3149 		 * This is to prevent other pools stealing the active spare
3150 		 * from an exported pool. At user's own will, such pool can
3151 		 * be forcedly exported.
3152 		 */
3153 		if (!force && new_state == POOL_STATE_EXPORTED &&
3154 		    spa_has_active_shared_spare(spa)) {
3155 			spa_async_resume(spa);
3156 			mutex_exit(&spa_namespace_lock);
3157 			return (EXDEV);
3158 		}
3159 
3160 		/*
3161 		 * We want this to be reflected on every label,
3162 		 * so mark them all dirty.  spa_unload() will do the
3163 		 * final sync that pushes these changes out.
3164 		 */
3165 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3166 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3167 			spa->spa_state = new_state;
3168 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3169 			vdev_config_dirty(spa->spa_root_vdev);
3170 			spa_config_exit(spa, SCL_ALL, FTAG);
3171 		}
3172 	}
3173 
3174 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3175 
3176 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3177 		spa_unload(spa);
3178 		spa_deactivate(spa);
3179 	}
3180 
3181 	if (oldconfig && spa->spa_config)
3182 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3183 
3184 	if (new_state != POOL_STATE_UNINITIALIZED) {
3185 		if (!hardforce)
3186 			spa_config_sync(spa, B_TRUE, B_TRUE);
3187 		spa_remove(spa);
3188 	}
3189 	mutex_exit(&spa_namespace_lock);
3190 
3191 	return (0);
3192 }
3193 
3194 /*
3195  * Destroy a storage pool.
3196  */
3197 int
3198 spa_destroy(char *pool)
3199 {
3200 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3201 	    B_FALSE, B_FALSE));
3202 }
3203 
3204 /*
3205  * Export a storage pool.
3206  */
3207 int
3208 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3209     boolean_t hardforce)
3210 {
3211 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3212 	    force, hardforce));
3213 }
3214 
3215 /*
3216  * Similar to spa_export(), this unloads the spa_t without actually removing it
3217  * from the namespace in any way.
3218  */
3219 int
3220 spa_reset(char *pool)
3221 {
3222 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3223 	    B_FALSE, B_FALSE));
3224 }
3225 
3226 /*
3227  * ==========================================================================
3228  * Device manipulation
3229  * ==========================================================================
3230  */
3231 
3232 /*
3233  * Add a device to a storage pool.
3234  */
3235 int
3236 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3237 {
3238 	uint64_t txg, id;
3239 	int error;
3240 	vdev_t *rvd = spa->spa_root_vdev;
3241 	vdev_t *vd, *tvd;
3242 	nvlist_t **spares, **l2cache;
3243 	uint_t nspares, nl2cache;
3244 
3245 	txg = spa_vdev_enter(spa);
3246 
3247 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3248 	    VDEV_ALLOC_ADD)) != 0)
3249 		return (spa_vdev_exit(spa, NULL, txg, error));
3250 
3251 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3252 
3253 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3254 	    &nspares) != 0)
3255 		nspares = 0;
3256 
3257 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3258 	    &nl2cache) != 0)
3259 		nl2cache = 0;
3260 
3261 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3262 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3263 
3264 	if (vd->vdev_children != 0 &&
3265 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3266 		return (spa_vdev_exit(spa, vd, txg, error));
3267 
3268 	/*
3269 	 * We must validate the spares and l2cache devices after checking the
3270 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3271 	 */
3272 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3273 		return (spa_vdev_exit(spa, vd, txg, error));
3274 
3275 	/*
3276 	 * Transfer each new top-level vdev from vd to rvd.
3277 	 */
3278 	for (int c = 0; c < vd->vdev_children; c++) {
3279 
3280 		/*
3281 		 * Set the vdev id to the first hole, if one exists.
3282 		 */
3283 		for (id = 0; id < rvd->vdev_children; id++) {
3284 			if (rvd->vdev_child[id]->vdev_ishole) {
3285 				vdev_free(rvd->vdev_child[id]);
3286 				break;
3287 			}
3288 		}
3289 		tvd = vd->vdev_child[c];
3290 		vdev_remove_child(vd, tvd);
3291 		tvd->vdev_id = id;
3292 		vdev_add_child(rvd, tvd);
3293 		vdev_config_dirty(tvd);
3294 	}
3295 
3296 	if (nspares != 0) {
3297 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3298 		    ZPOOL_CONFIG_SPARES);
3299 		spa_load_spares(spa);
3300 		spa->spa_spares.sav_sync = B_TRUE;
3301 	}
3302 
3303 	if (nl2cache != 0) {
3304 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3305 		    ZPOOL_CONFIG_L2CACHE);
3306 		spa_load_l2cache(spa);
3307 		spa->spa_l2cache.sav_sync = B_TRUE;
3308 	}
3309 
3310 	/*
3311 	 * We have to be careful when adding new vdevs to an existing pool.
3312 	 * If other threads start allocating from these vdevs before we
3313 	 * sync the config cache, and we lose power, then upon reboot we may
3314 	 * fail to open the pool because there are DVAs that the config cache
3315 	 * can't translate.  Therefore, we first add the vdevs without
3316 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3317 	 * and then let spa_config_update() initialize the new metaslabs.
3318 	 *
3319 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3320 	 * if we lose power at any point in this sequence, the remaining
3321 	 * steps will be completed the next time we load the pool.
3322 	 */
3323 	(void) spa_vdev_exit(spa, vd, txg, 0);
3324 
3325 	mutex_enter(&spa_namespace_lock);
3326 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3327 	mutex_exit(&spa_namespace_lock);
3328 
3329 	return (0);
3330 }
3331 
3332 /*
3333  * Attach a device to a mirror.  The arguments are the path to any device
3334  * in the mirror, and the nvroot for the new device.  If the path specifies
3335  * a device that is not mirrored, we automatically insert the mirror vdev.
3336  *
3337  * If 'replacing' is specified, the new device is intended to replace the
3338  * existing device; in this case the two devices are made into their own
3339  * mirror using the 'replacing' vdev, which is functionally identical to
3340  * the mirror vdev (it actually reuses all the same ops) but has a few
3341  * extra rules: you can't attach to it after it's been created, and upon
3342  * completion of resilvering, the first disk (the one being replaced)
3343  * is automatically detached.
3344  */
3345 int
3346 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3347 {
3348 	uint64_t txg, open_txg;
3349 	vdev_t *rvd = spa->spa_root_vdev;
3350 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3351 	vdev_ops_t *pvops;
3352 	char *oldvdpath, *newvdpath;
3353 	int newvd_isspare;
3354 	int error;
3355 
3356 	txg = spa_vdev_enter(spa);
3357 
3358 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3359 
3360 	if (oldvd == NULL)
3361 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3362 
3363 	if (!oldvd->vdev_ops->vdev_op_leaf)
3364 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3365 
3366 	pvd = oldvd->vdev_parent;
3367 
3368 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3369 	    VDEV_ALLOC_ADD)) != 0)
3370 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3371 
3372 	if (newrootvd->vdev_children != 1)
3373 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3374 
3375 	newvd = newrootvd->vdev_child[0];
3376 
3377 	if (!newvd->vdev_ops->vdev_op_leaf)
3378 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3379 
3380 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3381 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3382 
3383 	/*
3384 	 * Spares can't replace logs
3385 	 */
3386 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3387 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3388 
3389 	if (!replacing) {
3390 		/*
3391 		 * For attach, the only allowable parent is a mirror or the root
3392 		 * vdev.
3393 		 */
3394 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3395 		    pvd->vdev_ops != &vdev_root_ops)
3396 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3397 
3398 		pvops = &vdev_mirror_ops;
3399 	} else {
3400 		/*
3401 		 * Active hot spares can only be replaced by inactive hot
3402 		 * spares.
3403 		 */
3404 		if (pvd->vdev_ops == &vdev_spare_ops &&
3405 		    pvd->vdev_child[1] == oldvd &&
3406 		    !spa_has_spare(spa, newvd->vdev_guid))
3407 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3408 
3409 		/*
3410 		 * If the source is a hot spare, and the parent isn't already a
3411 		 * spare, then we want to create a new hot spare.  Otherwise, we
3412 		 * want to create a replacing vdev.  The user is not allowed to
3413 		 * attach to a spared vdev child unless the 'isspare' state is
3414 		 * the same (spare replaces spare, non-spare replaces
3415 		 * non-spare).
3416 		 */
3417 		if (pvd->vdev_ops == &vdev_replacing_ops)
3418 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3419 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3420 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3421 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3422 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3423 		    newvd->vdev_isspare)
3424 			pvops = &vdev_spare_ops;
3425 		else
3426 			pvops = &vdev_replacing_ops;
3427 	}
3428 
3429 	/*
3430 	 * Make sure the new device is big enough.
3431 	 */
3432 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3433 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3434 
3435 	/*
3436 	 * The new device cannot have a higher alignment requirement
3437 	 * than the top-level vdev.
3438 	 */
3439 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3440 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3441 
3442 	/*
3443 	 * If this is an in-place replacement, update oldvd's path and devid
3444 	 * to make it distinguishable from newvd, and unopenable from now on.
3445 	 */
3446 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3447 		spa_strfree(oldvd->vdev_path);
3448 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3449 		    KM_SLEEP);
3450 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3451 		    newvd->vdev_path, "old");
3452 		if (oldvd->vdev_devid != NULL) {
3453 			spa_strfree(oldvd->vdev_devid);
3454 			oldvd->vdev_devid = NULL;
3455 		}
3456 	}
3457 
3458 	/*
3459 	 * If the parent is not a mirror, or if we're replacing, insert the new
3460 	 * mirror/replacing/spare vdev above oldvd.
3461 	 */
3462 	if (pvd->vdev_ops != pvops)
3463 		pvd = vdev_add_parent(oldvd, pvops);
3464 
3465 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3466 	ASSERT(pvd->vdev_ops == pvops);
3467 	ASSERT(oldvd->vdev_parent == pvd);
3468 
3469 	/*
3470 	 * Extract the new device from its root and add it to pvd.
3471 	 */
3472 	vdev_remove_child(newrootvd, newvd);
3473 	newvd->vdev_id = pvd->vdev_children;
3474 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3475 	vdev_add_child(pvd, newvd);
3476 
3477 	tvd = newvd->vdev_top;
3478 	ASSERT(pvd->vdev_top == tvd);
3479 	ASSERT(tvd->vdev_parent == rvd);
3480 
3481 	vdev_config_dirty(tvd);
3482 
3483 	/*
3484 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3485 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3486 	 */
3487 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3488 
3489 	vdev_dtl_dirty(newvd, DTL_MISSING,
3490 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3491 
3492 	if (newvd->vdev_isspare) {
3493 		spa_spare_activate(newvd);
3494 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3495 	}
3496 
3497 	oldvdpath = spa_strdup(oldvd->vdev_path);
3498 	newvdpath = spa_strdup(newvd->vdev_path);
3499 	newvd_isspare = newvd->vdev_isspare;
3500 
3501 	/*
3502 	 * Mark newvd's DTL dirty in this txg.
3503 	 */
3504 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3505 
3506 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3507 
3508 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3509 	    CRED(),  "%s vdev=%s %s vdev=%s",
3510 	    replacing && newvd_isspare ? "spare in" :
3511 	    replacing ? "replace" : "attach", newvdpath,
3512 	    replacing ? "for" : "to", oldvdpath);
3513 
3514 	spa_strfree(oldvdpath);
3515 	spa_strfree(newvdpath);
3516 
3517 	/*
3518 	 * Kick off a resilver to update newvd.
3519 	 */
3520 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3521 
3522 	return (0);
3523 }
3524 
3525 /*
3526  * Detach a device from a mirror or replacing vdev.
3527  * If 'replace_done' is specified, only detach if the parent
3528  * is a replacing vdev.
3529  */
3530 int
3531 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3532 {
3533 	uint64_t txg;
3534 	int error;
3535 	vdev_t *rvd = spa->spa_root_vdev;
3536 	vdev_t *vd, *pvd, *cvd, *tvd;
3537 	boolean_t unspare = B_FALSE;
3538 	uint64_t unspare_guid;
3539 	size_t len;
3540 
3541 	txg = spa_vdev_enter(spa);
3542 
3543 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3544 
3545 	if (vd == NULL)
3546 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3547 
3548 	if (!vd->vdev_ops->vdev_op_leaf)
3549 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3550 
3551 	pvd = vd->vdev_parent;
3552 
3553 	/*
3554 	 * If the parent/child relationship is not as expected, don't do it.
3555 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3556 	 * vdev that's replacing B with C.  The user's intent in replacing
3557 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3558 	 * the replace by detaching C, the expected behavior is to end up
3559 	 * M(A,B).  But suppose that right after deciding to detach C,
3560 	 * the replacement of B completes.  We would have M(A,C), and then
3561 	 * ask to detach C, which would leave us with just A -- not what
3562 	 * the user wanted.  To prevent this, we make sure that the
3563 	 * parent/child relationship hasn't changed -- in this example,
3564 	 * that C's parent is still the replacing vdev R.
3565 	 */
3566 	if (pvd->vdev_guid != pguid && pguid != 0)
3567 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3568 
3569 	/*
3570 	 * If replace_done is specified, only remove this device if it's
3571 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3572 	 * disk can be removed.
3573 	 */
3574 	if (replace_done) {
3575 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3576 			if (vd->vdev_id != 0)
3577 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3578 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3579 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3580 		}
3581 	}
3582 
3583 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3584 	    spa_version(spa) >= SPA_VERSION_SPARES);
3585 
3586 	/*
3587 	 * Only mirror, replacing, and spare vdevs support detach.
3588 	 */
3589 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3590 	    pvd->vdev_ops != &vdev_mirror_ops &&
3591 	    pvd->vdev_ops != &vdev_spare_ops)
3592 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3593 
3594 	/*
3595 	 * If this device has the only valid copy of some data,
3596 	 * we cannot safely detach it.
3597 	 */
3598 	if (vdev_dtl_required(vd))
3599 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3600 
3601 	ASSERT(pvd->vdev_children >= 2);
3602 
3603 	/*
3604 	 * If we are detaching the second disk from a replacing vdev, then
3605 	 * check to see if we changed the original vdev's path to have "/old"
3606 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3607 	 */
3608 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3609 	    pvd->vdev_child[0]->vdev_path != NULL &&
3610 	    pvd->vdev_child[1]->vdev_path != NULL) {
3611 		ASSERT(pvd->vdev_child[1] == vd);
3612 		cvd = pvd->vdev_child[0];
3613 		len = strlen(vd->vdev_path);
3614 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3615 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3616 			spa_strfree(cvd->vdev_path);
3617 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3618 		}
3619 	}
3620 
3621 	/*
3622 	 * If we are detaching the original disk from a spare, then it implies
3623 	 * that the spare should become a real disk, and be removed from the
3624 	 * active spare list for the pool.
3625 	 */
3626 	if (pvd->vdev_ops == &vdev_spare_ops &&
3627 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3628 		unspare = B_TRUE;
3629 
3630 	/*
3631 	 * Erase the disk labels so the disk can be used for other things.
3632 	 * This must be done after all other error cases are handled,
3633 	 * but before we disembowel vd (so we can still do I/O to it).
3634 	 * But if we can't do it, don't treat the error as fatal --
3635 	 * it may be that the unwritability of the disk is the reason
3636 	 * it's being detached!
3637 	 */
3638 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3639 
3640 	/*
3641 	 * Remove vd from its parent and compact the parent's children.
3642 	 */
3643 	vdev_remove_child(pvd, vd);
3644 	vdev_compact_children(pvd);
3645 
3646 	/*
3647 	 * Remember one of the remaining children so we can get tvd below.
3648 	 */
3649 	cvd = pvd->vdev_child[0];
3650 
3651 	/*
3652 	 * If we need to remove the remaining child from the list of hot spares,
3653 	 * do it now, marking the vdev as no longer a spare in the process.
3654 	 * We must do this before vdev_remove_parent(), because that can
3655 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3656 	 * reason, we must remove the spare now, in the same txg as the detach;
3657 	 * otherwise someone could attach a new sibling, change the GUID, and
3658 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3659 	 */
3660 	if (unspare) {
3661 		ASSERT(cvd->vdev_isspare);
3662 		spa_spare_remove(cvd);
3663 		unspare_guid = cvd->vdev_guid;
3664 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3665 	}
3666 
3667 	/*
3668 	 * If the parent mirror/replacing vdev only has one child,
3669 	 * the parent is no longer needed.  Remove it from the tree.
3670 	 */
3671 	if (pvd->vdev_children == 1)
3672 		vdev_remove_parent(cvd);
3673 
3674 	/*
3675 	 * We don't set tvd until now because the parent we just removed
3676 	 * may have been the previous top-level vdev.
3677 	 */
3678 	tvd = cvd->vdev_top;
3679 	ASSERT(tvd->vdev_parent == rvd);
3680 
3681 	/*
3682 	 * Reevaluate the parent vdev state.
3683 	 */
3684 	vdev_propagate_state(cvd);
3685 
3686 	/*
3687 	 * If the 'autoexpand' property is set on the pool then automatically
3688 	 * try to expand the size of the pool. For example if the device we
3689 	 * just detached was smaller than the others, it may be possible to
3690 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3691 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3692 	 */
3693 	if (spa->spa_autoexpand) {
3694 		vdev_reopen(tvd);
3695 		vdev_expand(tvd, txg);
3696 	}
3697 
3698 	vdev_config_dirty(tvd);
3699 
3700 	/*
3701 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3702 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3703 	 * But first make sure we're not on any *other* txg's DTL list, to
3704 	 * prevent vd from being accessed after it's freed.
3705 	 */
3706 	for (int t = 0; t < TXG_SIZE; t++)
3707 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3708 	vd->vdev_detached = B_TRUE;
3709 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3710 
3711 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3712 
3713 	error = spa_vdev_exit(spa, vd, txg, 0);
3714 
3715 	/*
3716 	 * If this was the removal of the original device in a hot spare vdev,
3717 	 * then we want to go through and remove the device from the hot spare
3718 	 * list of every other pool.
3719 	 */
3720 	if (unspare) {
3721 		spa_t *myspa = spa;
3722 		spa = NULL;
3723 		mutex_enter(&spa_namespace_lock);
3724 		while ((spa = spa_next(spa)) != NULL) {
3725 			if (spa->spa_state != POOL_STATE_ACTIVE)
3726 				continue;
3727 			if (spa == myspa)
3728 				continue;
3729 			spa_open_ref(spa, FTAG);
3730 			mutex_exit(&spa_namespace_lock);
3731 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3732 			mutex_enter(&spa_namespace_lock);
3733 			spa_close(spa, FTAG);
3734 		}
3735 		mutex_exit(&spa_namespace_lock);
3736 	}
3737 
3738 	return (error);
3739 }
3740 
3741 static nvlist_t *
3742 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3743 {
3744 	for (int i = 0; i < count; i++) {
3745 		uint64_t guid;
3746 
3747 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3748 		    &guid) == 0);
3749 
3750 		if (guid == target_guid)
3751 			return (nvpp[i]);
3752 	}
3753 
3754 	return (NULL);
3755 }
3756 
3757 static void
3758 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3759 	nvlist_t *dev_to_remove)
3760 {
3761 	nvlist_t **newdev = NULL;
3762 
3763 	if (count > 1)
3764 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3765 
3766 	for (int i = 0, j = 0; i < count; i++) {
3767 		if (dev[i] == dev_to_remove)
3768 			continue;
3769 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3770 	}
3771 
3772 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3773 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3774 
3775 	for (int i = 0; i < count - 1; i++)
3776 		nvlist_free(newdev[i]);
3777 
3778 	if (count > 1)
3779 		kmem_free(newdev, (count - 1) * sizeof (void *));
3780 }
3781 
3782 /*
3783  * Removing a device from the vdev namespace requires several steps
3784  * and can take a significant amount of time.  As a result we use
3785  * the spa_vdev_config_[enter/exit] functions which allow us to
3786  * grab and release the spa_config_lock while still holding the namespace
3787  * lock.  During each step the configuration is synced out.
3788  */
3789 
3790 /*
3791  * Evacuate the device.
3792  */
3793 int
3794 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
3795 {
3796 	int error = 0;
3797 	uint64_t txg;
3798 
3799 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3800 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3801 	ASSERT(vd == vd->vdev_top);
3802 
3803 	/*
3804 	 * Evacuate the device.  We don't hold the config lock as writer
3805 	 * since we need to do I/O but we do keep the
3806 	 * spa_namespace_lock held.  Once this completes the device
3807 	 * should no longer have any blocks allocated on it.
3808 	 */
3809 	if (vd->vdev_islog) {
3810 		error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
3811 		    NULL, DS_FIND_CHILDREN);
3812 	} else {
3813 		error = ENOTSUP;	/* until we have bp rewrite */
3814 	}
3815 
3816 	txg_wait_synced(spa_get_dsl(spa), 0);
3817 
3818 	if (error)
3819 		return (error);
3820 
3821 	/*
3822 	 * The evacuation succeeded.  Remove any remaining MOS metadata
3823 	 * associated with this vdev, and wait for these changes to sync.
3824 	 */
3825 	txg = spa_vdev_config_enter(spa);
3826 	vd->vdev_removing = B_TRUE;
3827 	vdev_dirty(vd, 0, NULL, txg);
3828 	vdev_config_dirty(vd);
3829 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3830 
3831 	return (0);
3832 }
3833 
3834 /*
3835  * Complete the removal by cleaning up the namespace.
3836  */
3837 void
3838 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
3839 {
3840 	vdev_t *rvd = spa->spa_root_vdev;
3841 	uint64_t id = vd->vdev_id;
3842 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
3843 
3844 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3845 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3846 	ASSERT(vd == vd->vdev_top);
3847 
3848 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3849 
3850 	if (list_link_active(&vd->vdev_state_dirty_node))
3851 		vdev_state_clean(vd);
3852 	if (list_link_active(&vd->vdev_config_dirty_node))
3853 		vdev_config_clean(vd);
3854 
3855 	vdev_free(vd);
3856 
3857 	if (last_vdev) {
3858 		vdev_compact_children(rvd);
3859 	} else {
3860 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
3861 		vdev_add_child(rvd, vd);
3862 	}
3863 	vdev_config_dirty(rvd);
3864 
3865 	/*
3866 	 * Reassess the health of our root vdev.
3867 	 */
3868 	vdev_reopen(rvd);
3869 }
3870 
3871 /*
3872  * Remove a device from the pool.  Currently, this supports removing only hot
3873  * spares, slogs, and level 2 ARC devices.
3874  */
3875 int
3876 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3877 {
3878 	vdev_t *vd;
3879 	metaslab_group_t *mg;
3880 	nvlist_t **spares, **l2cache, *nv;
3881 	uint64_t txg = 0;
3882 	uint_t nspares, nl2cache;
3883 	int error = 0;
3884 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3885 
3886 	if (!locked)
3887 		txg = spa_vdev_enter(spa);
3888 
3889 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3890 
3891 	if (spa->spa_spares.sav_vdevs != NULL &&
3892 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3893 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3894 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3895 		/*
3896 		 * Only remove the hot spare if it's not currently in use
3897 		 * in this pool.
3898 		 */
3899 		if (vd == NULL || unspare) {
3900 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3901 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3902 			spa_load_spares(spa);
3903 			spa->spa_spares.sav_sync = B_TRUE;
3904 		} else {
3905 			error = EBUSY;
3906 		}
3907 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3908 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3909 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3910 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3911 		/*
3912 		 * Cache devices can always be removed.
3913 		 */
3914 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3915 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3916 		spa_load_l2cache(spa);
3917 		spa->spa_l2cache.sav_sync = B_TRUE;
3918 	} else if (vd != NULL && vd->vdev_islog) {
3919 		ASSERT(!locked);
3920 		ASSERT(vd == vd->vdev_top);
3921 
3922 		/*
3923 		 * XXX - Once we have bp-rewrite this should
3924 		 * become the common case.
3925 		 */
3926 
3927 		mg = vd->vdev_mg;
3928 
3929 		/*
3930 		 * Stop allocating from this vdev.
3931 		 */
3932 		metaslab_group_passivate(mg);
3933 
3934 		/*
3935 		 * Wait for the youngest allocations and frees to sync,
3936 		 * and then wait for the deferral of those frees to finish.
3937 		 */
3938 		spa_vdev_config_exit(spa, NULL,
3939 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
3940 
3941 		/*
3942 		 * Attempt to evacuate the vdev.
3943 		 */
3944 		error = spa_vdev_remove_evacuate(spa, vd);
3945 
3946 		txg = spa_vdev_config_enter(spa);
3947 
3948 		/*
3949 		 * If we couldn't evacuate the vdev, unwind.
3950 		 */
3951 		if (error) {
3952 			metaslab_group_activate(mg);
3953 			return (spa_vdev_exit(spa, NULL, txg, error));
3954 		}
3955 
3956 		/*
3957 		 * Clean up the vdev namespace.
3958 		 */
3959 		spa_vdev_remove_from_namespace(spa, vd);
3960 
3961 	} else if (vd != NULL) {
3962 		/*
3963 		 * Normal vdevs cannot be removed (yet).
3964 		 */
3965 		error = ENOTSUP;
3966 	} else {
3967 		/*
3968 		 * There is no vdev of any kind with the specified guid.
3969 		 */
3970 		error = ENOENT;
3971 	}
3972 
3973 	if (!locked)
3974 		return (spa_vdev_exit(spa, NULL, txg, error));
3975 
3976 	return (error);
3977 }
3978 
3979 /*
3980  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3981  * current spared, so we can detach it.
3982  */
3983 static vdev_t *
3984 spa_vdev_resilver_done_hunt(vdev_t *vd)
3985 {
3986 	vdev_t *newvd, *oldvd;
3987 
3988 	for (int c = 0; c < vd->vdev_children; c++) {
3989 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3990 		if (oldvd != NULL)
3991 			return (oldvd);
3992 	}
3993 
3994 	/*
3995 	 * Check for a completed replacement.
3996 	 */
3997 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3998 		oldvd = vd->vdev_child[0];
3999 		newvd = vd->vdev_child[1];
4000 
4001 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4002 		    !vdev_dtl_required(oldvd))
4003 			return (oldvd);
4004 	}
4005 
4006 	/*
4007 	 * Check for a completed resilver with the 'unspare' flag set.
4008 	 */
4009 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4010 		newvd = vd->vdev_child[0];
4011 		oldvd = vd->vdev_child[1];
4012 
4013 		if (newvd->vdev_unspare &&
4014 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4015 		    !vdev_dtl_required(oldvd)) {
4016 			newvd->vdev_unspare = 0;
4017 			return (oldvd);
4018 		}
4019 	}
4020 
4021 	return (NULL);
4022 }
4023 
4024 static void
4025 spa_vdev_resilver_done(spa_t *spa)
4026 {
4027 	vdev_t *vd, *pvd, *ppvd;
4028 	uint64_t guid, sguid, pguid, ppguid;
4029 
4030 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4031 
4032 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4033 		pvd = vd->vdev_parent;
4034 		ppvd = pvd->vdev_parent;
4035 		guid = vd->vdev_guid;
4036 		pguid = pvd->vdev_guid;
4037 		ppguid = ppvd->vdev_guid;
4038 		sguid = 0;
4039 		/*
4040 		 * If we have just finished replacing a hot spared device, then
4041 		 * we need to detach the parent's first child (the original hot
4042 		 * spare) as well.
4043 		 */
4044 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4045 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4046 			ASSERT(ppvd->vdev_children == 2);
4047 			sguid = ppvd->vdev_child[1]->vdev_guid;
4048 		}
4049 		spa_config_exit(spa, SCL_ALL, FTAG);
4050 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4051 			return;
4052 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4053 			return;
4054 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4055 	}
4056 
4057 	spa_config_exit(spa, SCL_ALL, FTAG);
4058 }
4059 
4060 /*
4061  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
4062  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
4063  */
4064 int
4065 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4066     boolean_t ispath)
4067 {
4068 	vdev_t *vd;
4069 	uint64_t txg;
4070 
4071 	txg = spa_vdev_enter(spa);
4072 
4073 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4074 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
4075 
4076 	if (!vd->vdev_ops->vdev_op_leaf)
4077 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4078 
4079 	if (ispath) {
4080 		spa_strfree(vd->vdev_path);
4081 		vd->vdev_path = spa_strdup(value);
4082 	} else {
4083 		if (vd->vdev_fru != NULL)
4084 			spa_strfree(vd->vdev_fru);
4085 		vd->vdev_fru = spa_strdup(value);
4086 	}
4087 
4088 	vdev_config_dirty(vd->vdev_top);
4089 
4090 	return (spa_vdev_exit(spa, NULL, txg, 0));
4091 }
4092 
4093 int
4094 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4095 {
4096 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4097 }
4098 
4099 int
4100 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4101 {
4102 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4103 }
4104 
4105 /*
4106  * ==========================================================================
4107  * SPA Scrubbing
4108  * ==========================================================================
4109  */
4110 
4111 int
4112 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4113 {
4114 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4115 
4116 	if ((uint_t)type >= POOL_SCRUB_TYPES)
4117 		return (ENOTSUP);
4118 
4119 	/*
4120 	 * If a resilver was requested, but there is no DTL on a
4121 	 * writeable leaf device, we have nothing to do.
4122 	 */
4123 	if (type == POOL_SCRUB_RESILVER &&
4124 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4125 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4126 		return (0);
4127 	}
4128 
4129 	if (type == POOL_SCRUB_EVERYTHING &&
4130 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4131 	    spa->spa_dsl_pool->dp_scrub_isresilver)
4132 		return (EBUSY);
4133 
4134 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4135 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4136 	} else if (type == POOL_SCRUB_NONE) {
4137 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4138 	} else {
4139 		return (EINVAL);
4140 	}
4141 }
4142 
4143 /*
4144  * ==========================================================================
4145  * SPA async task processing
4146  * ==========================================================================
4147  */
4148 
4149 static void
4150 spa_async_remove(spa_t *spa, vdev_t *vd)
4151 {
4152 	if (vd->vdev_remove_wanted) {
4153 		vd->vdev_remove_wanted = 0;
4154 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4155 
4156 		/*
4157 		 * We want to clear the stats, but we don't want to do a full
4158 		 * vdev_clear() as that will cause us to throw away
4159 		 * degraded/faulted state as well as attempt to reopen the
4160 		 * device, all of which is a waste.
4161 		 */
4162 		vd->vdev_stat.vs_read_errors = 0;
4163 		vd->vdev_stat.vs_write_errors = 0;
4164 		vd->vdev_stat.vs_checksum_errors = 0;
4165 
4166 		vdev_state_dirty(vd->vdev_top);
4167 	}
4168 
4169 	for (int c = 0; c < vd->vdev_children; c++)
4170 		spa_async_remove(spa, vd->vdev_child[c]);
4171 }
4172 
4173 static void
4174 spa_async_probe(spa_t *spa, vdev_t *vd)
4175 {
4176 	if (vd->vdev_probe_wanted) {
4177 		vd->vdev_probe_wanted = 0;
4178 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4179 	}
4180 
4181 	for (int c = 0; c < vd->vdev_children; c++)
4182 		spa_async_probe(spa, vd->vdev_child[c]);
4183 }
4184 
4185 static void
4186 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4187 {
4188 	sysevent_id_t eid;
4189 	nvlist_t *attr;
4190 	char *physpath;
4191 
4192 	if (!spa->spa_autoexpand)
4193 		return;
4194 
4195 	for (int c = 0; c < vd->vdev_children; c++) {
4196 		vdev_t *cvd = vd->vdev_child[c];
4197 		spa_async_autoexpand(spa, cvd);
4198 	}
4199 
4200 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4201 		return;
4202 
4203 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4204 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4205 
4206 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4207 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4208 
4209 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4210 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4211 
4212 	nvlist_free(attr);
4213 	kmem_free(physpath, MAXPATHLEN);
4214 }
4215 
4216 static void
4217 spa_async_thread(spa_t *spa)
4218 {
4219 	int tasks;
4220 
4221 	ASSERT(spa->spa_sync_on);
4222 
4223 	mutex_enter(&spa->spa_async_lock);
4224 	tasks = spa->spa_async_tasks;
4225 	spa->spa_async_tasks = 0;
4226 	mutex_exit(&spa->spa_async_lock);
4227 
4228 	/*
4229 	 * See if the config needs to be updated.
4230 	 */
4231 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4232 		uint64_t old_space, new_space;
4233 
4234 		mutex_enter(&spa_namespace_lock);
4235 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4236 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4237 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4238 		mutex_exit(&spa_namespace_lock);
4239 
4240 		/*
4241 		 * If the pool grew as a result of the config update,
4242 		 * then log an internal history event.
4243 		 */
4244 		if (new_space != old_space) {
4245 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4246 			    spa, NULL, CRED(),
4247 			    "pool '%s' size: %llu(+%llu)",
4248 			    spa_name(spa), new_space, new_space - old_space);
4249 		}
4250 	}
4251 
4252 	/*
4253 	 * See if any devices need to be marked REMOVED.
4254 	 */
4255 	if (tasks & SPA_ASYNC_REMOVE) {
4256 		spa_vdev_state_enter(spa, SCL_NONE);
4257 		spa_async_remove(spa, spa->spa_root_vdev);
4258 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4259 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4260 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4261 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4262 		(void) spa_vdev_state_exit(spa, NULL, 0);
4263 	}
4264 
4265 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4266 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4267 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4268 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4269 	}
4270 
4271 	/*
4272 	 * See if any devices need to be probed.
4273 	 */
4274 	if (tasks & SPA_ASYNC_PROBE) {
4275 		spa_vdev_state_enter(spa, SCL_NONE);
4276 		spa_async_probe(spa, spa->spa_root_vdev);
4277 		(void) spa_vdev_state_exit(spa, NULL, 0);
4278 	}
4279 
4280 	/*
4281 	 * If any devices are done replacing, detach them.
4282 	 */
4283 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4284 		spa_vdev_resilver_done(spa);
4285 
4286 	/*
4287 	 * Kick off a resilver.
4288 	 */
4289 	if (tasks & SPA_ASYNC_RESILVER)
4290 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4291 
4292 	/*
4293 	 * Let the world know that we're done.
4294 	 */
4295 	mutex_enter(&spa->spa_async_lock);
4296 	spa->spa_async_thread = NULL;
4297 	cv_broadcast(&spa->spa_async_cv);
4298 	mutex_exit(&spa->spa_async_lock);
4299 	thread_exit();
4300 }
4301 
4302 void
4303 spa_async_suspend(spa_t *spa)
4304 {
4305 	mutex_enter(&spa->spa_async_lock);
4306 	spa->spa_async_suspended++;
4307 	while (spa->spa_async_thread != NULL)
4308 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4309 	mutex_exit(&spa->spa_async_lock);
4310 }
4311 
4312 void
4313 spa_async_resume(spa_t *spa)
4314 {
4315 	mutex_enter(&spa->spa_async_lock);
4316 	ASSERT(spa->spa_async_suspended != 0);
4317 	spa->spa_async_suspended--;
4318 	mutex_exit(&spa->spa_async_lock);
4319 }
4320 
4321 static void
4322 spa_async_dispatch(spa_t *spa)
4323 {
4324 	mutex_enter(&spa->spa_async_lock);
4325 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4326 	    spa->spa_async_thread == NULL &&
4327 	    rootdir != NULL && !vn_is_readonly(rootdir))
4328 		spa->spa_async_thread = thread_create(NULL, 0,
4329 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4330 	mutex_exit(&spa->spa_async_lock);
4331 }
4332 
4333 void
4334 spa_async_request(spa_t *spa, int task)
4335 {
4336 	mutex_enter(&spa->spa_async_lock);
4337 	spa->spa_async_tasks |= task;
4338 	mutex_exit(&spa->spa_async_lock);
4339 }
4340 
4341 /*
4342  * ==========================================================================
4343  * SPA syncing routines
4344  * ==========================================================================
4345  */
4346 static void
4347 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4348 {
4349 	blkptr_t blk;
4350 	uint64_t itor = 0;
4351 	uint8_t c = 1;
4352 
4353 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4354 		ASSERT(blk.blk_birth < txg);
4355 		zio_free(spa, txg, &blk);
4356 	}
4357 
4358 	bplist_vacate(bpl, tx);
4359 
4360 	/*
4361 	 * Pre-dirty the first block so we sync to convergence faster.
4362 	 * (Usually only the first block is needed.)
4363 	 */
4364 	dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4365 }
4366 
4367 static void
4368 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4369 {
4370 	zio_t *zio = arg;
4371 
4372 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4373 	    zio->io_flags));
4374 }
4375 
4376 static void
4377 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4378 {
4379 	char *packed = NULL;
4380 	size_t bufsize;
4381 	size_t nvsize = 0;
4382 	dmu_buf_t *db;
4383 
4384 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4385 
4386 	/*
4387 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4388 	 * information.  This avoids the dbuf_will_dirty() path and
4389 	 * saves us a pre-read to get data we don't actually care about.
4390 	 */
4391 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4392 	packed = kmem_alloc(bufsize, KM_SLEEP);
4393 
4394 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4395 	    KM_SLEEP) == 0);
4396 	bzero(packed + nvsize, bufsize - nvsize);
4397 
4398 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4399 
4400 	kmem_free(packed, bufsize);
4401 
4402 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4403 	dmu_buf_will_dirty(db, tx);
4404 	*(uint64_t *)db->db_data = nvsize;
4405 	dmu_buf_rele(db, FTAG);
4406 }
4407 
4408 static void
4409 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4410     const char *config, const char *entry)
4411 {
4412 	nvlist_t *nvroot;
4413 	nvlist_t **list;
4414 	int i;
4415 
4416 	if (!sav->sav_sync)
4417 		return;
4418 
4419 	/*
4420 	 * Update the MOS nvlist describing the list of available devices.
4421 	 * spa_validate_aux() will have already made sure this nvlist is
4422 	 * valid and the vdevs are labeled appropriately.
4423 	 */
4424 	if (sav->sav_object == 0) {
4425 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4426 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4427 		    sizeof (uint64_t), tx);
4428 		VERIFY(zap_update(spa->spa_meta_objset,
4429 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4430 		    &sav->sav_object, tx) == 0);
4431 	}
4432 
4433 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4434 	if (sav->sav_count == 0) {
4435 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4436 	} else {
4437 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
4438 		for (i = 0; i < sav->sav_count; i++)
4439 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
4440 			    B_FALSE, B_FALSE, B_TRUE);
4441 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
4442 		    sav->sav_count) == 0);
4443 		for (i = 0; i < sav->sav_count; i++)
4444 			nvlist_free(list[i]);
4445 		kmem_free(list, sav->sav_count * sizeof (void *));
4446 	}
4447 
4448 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
4449 	nvlist_free(nvroot);
4450 
4451 	sav->sav_sync = B_FALSE;
4452 }
4453 
4454 static void
4455 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
4456 {
4457 	nvlist_t *config;
4458 
4459 	if (list_is_empty(&spa->spa_config_dirty_list))
4460 		return;
4461 
4462 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4463 
4464 	config = spa_config_generate(spa, spa->spa_root_vdev,
4465 	    dmu_tx_get_txg(tx), B_FALSE);
4466 
4467 	spa_config_exit(spa, SCL_STATE, FTAG);
4468 
4469 	if (spa->spa_config_syncing)
4470 		nvlist_free(spa->spa_config_syncing);
4471 	spa->spa_config_syncing = config;
4472 
4473 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4474 }
4475 
4476 /*
4477  * Set zpool properties.
4478  */
4479 static void
4480 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4481 {
4482 	spa_t *spa = arg1;
4483 	objset_t *mos = spa->spa_meta_objset;
4484 	nvlist_t *nvp = arg2;
4485 	nvpair_t *elem;
4486 	uint64_t intval;
4487 	char *strval;
4488 	zpool_prop_t prop;
4489 	const char *propname;
4490 	zprop_type_t proptype;
4491 
4492 	mutex_enter(&spa->spa_props_lock);
4493 
4494 	elem = NULL;
4495 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4496 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4497 		case ZPOOL_PROP_VERSION:
4498 			/*
4499 			 * Only set version for non-zpool-creation cases
4500 			 * (set/import). spa_create() needs special care
4501 			 * for version setting.
4502 			 */
4503 			if (tx->tx_txg != TXG_INITIAL) {
4504 				VERIFY(nvpair_value_uint64(elem,
4505 				    &intval) == 0);
4506 				ASSERT(intval <= SPA_VERSION);
4507 				ASSERT(intval >= spa_version(spa));
4508 				spa->spa_uberblock.ub_version = intval;
4509 				vdev_config_dirty(spa->spa_root_vdev);
4510 			}
4511 			break;
4512 
4513 		case ZPOOL_PROP_ALTROOT:
4514 			/*
4515 			 * 'altroot' is a non-persistent property. It should
4516 			 * have been set temporarily at creation or import time.
4517 			 */
4518 			ASSERT(spa->spa_root != NULL);
4519 			break;
4520 
4521 		case ZPOOL_PROP_CACHEFILE:
4522 			/*
4523 			 * 'cachefile' is also a non-persisitent property.
4524 			 */
4525 			break;
4526 		default:
4527 			/*
4528 			 * Set pool property values in the poolprops mos object.
4529 			 */
4530 			if (spa->spa_pool_props_object == 0) {
4531 				VERIFY((spa->spa_pool_props_object =
4532 				    zap_create(mos, DMU_OT_POOL_PROPS,
4533 				    DMU_OT_NONE, 0, tx)) > 0);
4534 
4535 				VERIFY(zap_update(mos,
4536 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4537 				    8, 1, &spa->spa_pool_props_object, tx)
4538 				    == 0);
4539 			}
4540 
4541 			/* normalize the property name */
4542 			propname = zpool_prop_to_name(prop);
4543 			proptype = zpool_prop_get_type(prop);
4544 
4545 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4546 				ASSERT(proptype == PROP_TYPE_STRING);
4547 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4548 				VERIFY(zap_update(mos,
4549 				    spa->spa_pool_props_object, propname,
4550 				    1, strlen(strval) + 1, strval, tx) == 0);
4551 
4552 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4553 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4554 
4555 				if (proptype == PROP_TYPE_INDEX) {
4556 					const char *unused;
4557 					VERIFY(zpool_prop_index_to_string(
4558 					    prop, intval, &unused) == 0);
4559 				}
4560 				VERIFY(zap_update(mos,
4561 				    spa->spa_pool_props_object, propname,
4562 				    8, 1, &intval, tx) == 0);
4563 			} else {
4564 				ASSERT(0); /* not allowed */
4565 			}
4566 
4567 			switch (prop) {
4568 			case ZPOOL_PROP_DELEGATION:
4569 				spa->spa_delegation = intval;
4570 				break;
4571 			case ZPOOL_PROP_BOOTFS:
4572 				spa->spa_bootfs = intval;
4573 				break;
4574 			case ZPOOL_PROP_FAILUREMODE:
4575 				spa->spa_failmode = intval;
4576 				break;
4577 			case ZPOOL_PROP_AUTOEXPAND:
4578 				spa->spa_autoexpand = intval;
4579 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4580 				break;
4581 			case ZPOOL_PROP_DEDUPDITTO:
4582 				spa->spa_dedup_ditto = intval;
4583 				break;
4584 			default:
4585 				break;
4586 			}
4587 		}
4588 
4589 		/* log internal history if this is not a zpool create */
4590 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4591 		    tx->tx_txg != TXG_INITIAL) {
4592 			spa_history_internal_log(LOG_POOL_PROPSET,
4593 			    spa, tx, cr, "%s %lld %s",
4594 			    nvpair_name(elem), intval, spa_name(spa));
4595 		}
4596 	}
4597 
4598 	mutex_exit(&spa->spa_props_lock);
4599 }
4600 
4601 /*
4602  * Sync the specified transaction group.  New blocks may be dirtied as
4603  * part of the process, so we iterate until it converges.
4604  */
4605 void
4606 spa_sync(spa_t *spa, uint64_t txg)
4607 {
4608 	dsl_pool_t *dp = spa->spa_dsl_pool;
4609 	objset_t *mos = spa->spa_meta_objset;
4610 	bplist_t *defer_bpl = &spa->spa_deferred_bplist;
4611 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
4612 	vdev_t *rvd = spa->spa_root_vdev;
4613 	vdev_t *vd;
4614 	dmu_tx_t *tx;
4615 	int error;
4616 
4617 	/*
4618 	 * Lock out configuration changes.
4619 	 */
4620 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4621 
4622 	spa->spa_syncing_txg = txg;
4623 	spa->spa_sync_pass = 0;
4624 
4625 	/*
4626 	 * If there are any pending vdev state changes, convert them
4627 	 * into config changes that go out with this transaction group.
4628 	 */
4629 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4630 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4631 		/*
4632 		 * We need the write lock here because, for aux vdevs,
4633 		 * calling vdev_config_dirty() modifies sav_config.
4634 		 * This is ugly and will become unnecessary when we
4635 		 * eliminate the aux vdev wart by integrating all vdevs
4636 		 * into the root vdev tree.
4637 		 */
4638 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4639 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4640 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4641 			vdev_state_clean(vd);
4642 			vdev_config_dirty(vd);
4643 		}
4644 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4645 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4646 	}
4647 	spa_config_exit(spa, SCL_STATE, FTAG);
4648 
4649 	VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
4650 
4651 	tx = dmu_tx_create_assigned(dp, txg);
4652 
4653 	/*
4654 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4655 	 * set spa_deflate if we have no raid-z vdevs.
4656 	 */
4657 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4658 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4659 		int i;
4660 
4661 		for (i = 0; i < rvd->vdev_children; i++) {
4662 			vd = rvd->vdev_child[i];
4663 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4664 				break;
4665 		}
4666 		if (i == rvd->vdev_children) {
4667 			spa->spa_deflate = TRUE;
4668 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4669 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4670 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4671 		}
4672 	}
4673 
4674 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4675 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4676 		dsl_pool_create_origin(dp, tx);
4677 
4678 		/* Keeping the origin open increases spa_minref */
4679 		spa->spa_minref += 3;
4680 	}
4681 
4682 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4683 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4684 		dsl_pool_upgrade_clones(dp, tx);
4685 	}
4686 
4687 	/*
4688 	 * If anything has changed in this txg, push the deferred frees
4689 	 * from the previous txg.  If not, leave them alone so that we
4690 	 * don't generate work on an otherwise idle system.
4691 	 */
4692 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4693 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4694 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4695 		spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
4696 
4697 	/*
4698 	 * Iterate to convergence.
4699 	 */
4700 	do {
4701 		int pass = ++spa->spa_sync_pass;
4702 
4703 		spa_sync_config_object(spa, tx);
4704 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4705 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4706 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4707 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4708 		spa_errlog_sync(spa, txg);
4709 		dsl_pool_sync(dp, txg);
4710 
4711 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
4712 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
4713 			bplist_sync(free_bpl, spa_sync_free, zio, tx);
4714 			VERIFY(zio_wait(zio) == 0);
4715 		} else {
4716 			bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
4717 		}
4718 
4719 		ddt_sync(spa, txg);
4720 
4721 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
4722 			vdev_sync(vd, txg);
4723 
4724 	} while (dmu_objset_is_dirty(mos, txg));
4725 
4726 	ASSERT(free_bpl->bpl_queue == NULL);
4727 
4728 	bplist_close(defer_bpl);
4729 
4730 	/*
4731 	 * Rewrite the vdev configuration (which includes the uberblock)
4732 	 * to commit the transaction group.
4733 	 *
4734 	 * If there are no dirty vdevs, we sync the uberblock to a few
4735 	 * random top-level vdevs that are known to be visible in the
4736 	 * config cache (see spa_vdev_add() for a complete description).
4737 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4738 	 */
4739 	for (;;) {
4740 		/*
4741 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4742 		 * while we're attempting to write the vdev labels.
4743 		 */
4744 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4745 
4746 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4747 			vdev_t *svd[SPA_DVAS_PER_BP];
4748 			int svdcount = 0;
4749 			int children = rvd->vdev_children;
4750 			int c0 = spa_get_random(children);
4751 
4752 			for (int c = 0; c < children; c++) {
4753 				vd = rvd->vdev_child[(c0 + c) % children];
4754 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4755 					continue;
4756 				svd[svdcount++] = vd;
4757 				if (svdcount == SPA_DVAS_PER_BP)
4758 					break;
4759 			}
4760 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4761 			if (error != 0)
4762 				error = vdev_config_sync(svd, svdcount, txg,
4763 				    B_TRUE);
4764 		} else {
4765 			error = vdev_config_sync(rvd->vdev_child,
4766 			    rvd->vdev_children, txg, B_FALSE);
4767 			if (error != 0)
4768 				error = vdev_config_sync(rvd->vdev_child,
4769 				    rvd->vdev_children, txg, B_TRUE);
4770 		}
4771 
4772 		spa_config_exit(spa, SCL_STATE, FTAG);
4773 
4774 		if (error == 0)
4775 			break;
4776 		zio_suspend(spa, NULL);
4777 		zio_resume_wait(spa);
4778 	}
4779 	dmu_tx_commit(tx);
4780 
4781 	/*
4782 	 * Clear the dirty config list.
4783 	 */
4784 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4785 		vdev_config_clean(vd);
4786 
4787 	/*
4788 	 * Now that the new config has synced transactionally,
4789 	 * let it become visible to the config cache.
4790 	 */
4791 	if (spa->spa_config_syncing != NULL) {
4792 		spa_config_set(spa, spa->spa_config_syncing);
4793 		spa->spa_config_txg = txg;
4794 		spa->spa_config_syncing = NULL;
4795 	}
4796 
4797 	spa->spa_ubsync = spa->spa_uberblock;
4798 
4799 	dsl_pool_sync_done(dp, txg);
4800 
4801 	/*
4802 	 * Update usable space statistics.
4803 	 */
4804 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4805 		vdev_sync_done(vd, txg);
4806 
4807 	spa_update_dspace(spa);
4808 
4809 	/*
4810 	 * It had better be the case that we didn't dirty anything
4811 	 * since vdev_config_sync().
4812 	 */
4813 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4814 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4815 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4816 	ASSERT(defer_bpl->bpl_queue == NULL);
4817 	ASSERT(free_bpl->bpl_queue == NULL);
4818 
4819 	spa->spa_sync_pass = 0;
4820 
4821 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4822 
4823 	spa_handle_ignored_writes(spa);
4824 
4825 	/*
4826 	 * If any async tasks have been requested, kick them off.
4827 	 */
4828 	spa_async_dispatch(spa);
4829 }
4830 
4831 /*
4832  * Sync all pools.  We don't want to hold the namespace lock across these
4833  * operations, so we take a reference on the spa_t and drop the lock during the
4834  * sync.
4835  */
4836 void
4837 spa_sync_allpools(void)
4838 {
4839 	spa_t *spa = NULL;
4840 	mutex_enter(&spa_namespace_lock);
4841 	while ((spa = spa_next(spa)) != NULL) {
4842 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4843 			continue;
4844 		spa_open_ref(spa, FTAG);
4845 		mutex_exit(&spa_namespace_lock);
4846 		txg_wait_synced(spa_get_dsl(spa), 0);
4847 		mutex_enter(&spa_namespace_lock);
4848 		spa_close(spa, FTAG);
4849 	}
4850 	mutex_exit(&spa_namespace_lock);
4851 }
4852 
4853 /*
4854  * ==========================================================================
4855  * Miscellaneous routines
4856  * ==========================================================================
4857  */
4858 
4859 /*
4860  * Remove all pools in the system.
4861  */
4862 void
4863 spa_evict_all(void)
4864 {
4865 	spa_t *spa;
4866 
4867 	/*
4868 	 * Remove all cached state.  All pools should be closed now,
4869 	 * so every spa in the AVL tree should be unreferenced.
4870 	 */
4871 	mutex_enter(&spa_namespace_lock);
4872 	while ((spa = spa_next(NULL)) != NULL) {
4873 		/*
4874 		 * Stop async tasks.  The async thread may need to detach
4875 		 * a device that's been replaced, which requires grabbing
4876 		 * spa_namespace_lock, so we must drop it here.
4877 		 */
4878 		spa_open_ref(spa, FTAG);
4879 		mutex_exit(&spa_namespace_lock);
4880 		spa_async_suspend(spa);
4881 		mutex_enter(&spa_namespace_lock);
4882 		spa_close(spa, FTAG);
4883 
4884 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4885 			spa_unload(spa);
4886 			spa_deactivate(spa);
4887 		}
4888 		spa_remove(spa);
4889 	}
4890 	mutex_exit(&spa_namespace_lock);
4891 }
4892 
4893 vdev_t *
4894 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4895 {
4896 	vdev_t *vd;
4897 	int i;
4898 
4899 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4900 		return (vd);
4901 
4902 	if (aux) {
4903 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4904 			vd = spa->spa_l2cache.sav_vdevs[i];
4905 			if (vd->vdev_guid == guid)
4906 				return (vd);
4907 		}
4908 
4909 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4910 			vd = spa->spa_spares.sav_vdevs[i];
4911 			if (vd->vdev_guid == guid)
4912 				return (vd);
4913 		}
4914 	}
4915 
4916 	return (NULL);
4917 }
4918 
4919 void
4920 spa_upgrade(spa_t *spa, uint64_t version)
4921 {
4922 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4923 
4924 	/*
4925 	 * This should only be called for a non-faulted pool, and since a
4926 	 * future version would result in an unopenable pool, this shouldn't be
4927 	 * possible.
4928 	 */
4929 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4930 	ASSERT(version >= spa->spa_uberblock.ub_version);
4931 
4932 	spa->spa_uberblock.ub_version = version;
4933 	vdev_config_dirty(spa->spa_root_vdev);
4934 
4935 	spa_config_exit(spa, SCL_ALL, FTAG);
4936 
4937 	txg_wait_synced(spa_get_dsl(spa), 0);
4938 }
4939 
4940 boolean_t
4941 spa_has_spare(spa_t *spa, uint64_t guid)
4942 {
4943 	int i;
4944 	uint64_t spareguid;
4945 	spa_aux_vdev_t *sav = &spa->spa_spares;
4946 
4947 	for (i = 0; i < sav->sav_count; i++)
4948 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4949 			return (B_TRUE);
4950 
4951 	for (i = 0; i < sav->sav_npending; i++) {
4952 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4953 		    &spareguid) == 0 && spareguid == guid)
4954 			return (B_TRUE);
4955 	}
4956 
4957 	return (B_FALSE);
4958 }
4959 
4960 /*
4961  * Check if a pool has an active shared spare device.
4962  * Note: reference count of an active spare is 2, as a spare and as a replace
4963  */
4964 static boolean_t
4965 spa_has_active_shared_spare(spa_t *spa)
4966 {
4967 	int i, refcnt;
4968 	uint64_t pool;
4969 	spa_aux_vdev_t *sav = &spa->spa_spares;
4970 
4971 	for (i = 0; i < sav->sav_count; i++) {
4972 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4973 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4974 		    refcnt > 2)
4975 			return (B_TRUE);
4976 	}
4977 
4978 	return (B_FALSE);
4979 }
4980 
4981 /*
4982  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4983  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4984  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4985  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4986  * or zdb as real changes.
4987  */
4988 void
4989 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4990 {
4991 #ifdef _KERNEL
4992 	sysevent_t		*ev;
4993 	sysevent_attr_list_t	*attr = NULL;
4994 	sysevent_value_t	value;
4995 	sysevent_id_t		eid;
4996 
4997 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4998 	    SE_SLEEP);
4999 
5000 	value.value_type = SE_DATA_TYPE_STRING;
5001 	value.value.sv_string = spa_name(spa);
5002 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5003 		goto done;
5004 
5005 	value.value_type = SE_DATA_TYPE_UINT64;
5006 	value.value.sv_uint64 = spa_guid(spa);
5007 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5008 		goto done;
5009 
5010 	if (vd) {
5011 		value.value_type = SE_DATA_TYPE_UINT64;
5012 		value.value.sv_uint64 = vd->vdev_guid;
5013 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5014 		    SE_SLEEP) != 0)
5015 			goto done;
5016 
5017 		if (vd->vdev_path) {
5018 			value.value_type = SE_DATA_TYPE_STRING;
5019 			value.value.sv_string = vd->vdev_path;
5020 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5021 			    &value, SE_SLEEP) != 0)
5022 				goto done;
5023 		}
5024 	}
5025 
5026 	if (sysevent_attach_attributes(ev, attr) != 0)
5027 		goto done;
5028 	attr = NULL;
5029 
5030 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5031 
5032 done:
5033 	if (attr)
5034 		sysevent_free_attr(attr);
5035 	sysevent_free(ev);
5036 #endif
5037 }
5038