xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 7fd05ac4dec0c343d2f68f310d3718b715ecfbaf)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size;
198 	uint64_t alloc;
199 	uint64_t space;
200 	uint64_t cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 
204 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 
206 	if (rvd != NULL) {
207 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 		size = metaslab_class_get_space(spa_normal_class(spa));
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 		    size - alloc, src);
214 
215 		space = 0;
216 		for (int c = 0; c < rvd->vdev_children; c++) {
217 			vdev_t *tvd = rvd->vdev_child[c];
218 			space += tvd->vdev_max_asize - tvd->vdev_asize;
219 		}
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 		    src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 		    (spa_mode(spa) == FREAD), src);
225 
226 		cap = (size == 0) ? 0 : (alloc * 100 / size);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 		    ddt_get_pool_dedup_ratio(spa), src);
231 
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 		    rvd->vdev_state, src);
234 
235 		version = spa_version(spa);
236 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 			src = ZPROP_SRC_DEFAULT;
238 		else
239 			src = ZPROP_SRC_LOCAL;
240 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 	}
242 
243 	if (pool != NULL) {
244 		/*
245 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
246 		 * when opening pools before this version freedir will be NULL.
247 		 */
248 		if (pool->dp_free_dir != NULL) {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
250 			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
251 		} else {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
253 			    NULL, 0, src);
254 		}
255 
256 		if (pool->dp_leak_dir != NULL) {
257 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
258 			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
259 		} else {
260 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
261 			    NULL, 0, src);
262 		}
263 	}
264 
265 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
266 
267 	if (spa->spa_comment != NULL) {
268 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
269 		    0, ZPROP_SRC_LOCAL);
270 	}
271 
272 	if (spa->spa_root != NULL)
273 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
274 		    0, ZPROP_SRC_LOCAL);
275 
276 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
277 		if (dp->scd_path == NULL) {
278 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
279 			    "none", 0, ZPROP_SRC_LOCAL);
280 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
281 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
282 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
283 		}
284 	}
285 }
286 
287 /*
288  * Get zpool property values.
289  */
290 int
291 spa_prop_get(spa_t *spa, nvlist_t **nvp)
292 {
293 	objset_t *mos = spa->spa_meta_objset;
294 	zap_cursor_t zc;
295 	zap_attribute_t za;
296 	int err;
297 
298 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
299 
300 	mutex_enter(&spa->spa_props_lock);
301 
302 	/*
303 	 * Get properties from the spa config.
304 	 */
305 	spa_prop_get_config(spa, nvp);
306 
307 	/* If no pool property object, no more prop to get. */
308 	if (mos == NULL || spa->spa_pool_props_object == 0) {
309 		mutex_exit(&spa->spa_props_lock);
310 		return (0);
311 	}
312 
313 	/*
314 	 * Get properties from the MOS pool property object.
315 	 */
316 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
317 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
318 	    zap_cursor_advance(&zc)) {
319 		uint64_t intval = 0;
320 		char *strval = NULL;
321 		zprop_source_t src = ZPROP_SRC_DEFAULT;
322 		zpool_prop_t prop;
323 
324 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
325 			continue;
326 
327 		switch (za.za_integer_length) {
328 		case 8:
329 			/* integer property */
330 			if (za.za_first_integer !=
331 			    zpool_prop_default_numeric(prop))
332 				src = ZPROP_SRC_LOCAL;
333 
334 			if (prop == ZPOOL_PROP_BOOTFS) {
335 				dsl_pool_t *dp;
336 				dsl_dataset_t *ds = NULL;
337 
338 				dp = spa_get_dsl(spa);
339 				dsl_pool_config_enter(dp, FTAG);
340 				if (err = dsl_dataset_hold_obj(dp,
341 				    za.za_first_integer, FTAG, &ds)) {
342 					dsl_pool_config_exit(dp, FTAG);
343 					break;
344 				}
345 
346 				strval = kmem_alloc(
347 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
348 				    KM_SLEEP);
349 				dsl_dataset_name(ds, strval);
350 				dsl_dataset_rele(ds, FTAG);
351 				dsl_pool_config_exit(dp, FTAG);
352 			} else {
353 				strval = NULL;
354 				intval = za.za_first_integer;
355 			}
356 
357 			spa_prop_add_list(*nvp, prop, strval, intval, src);
358 
359 			if (strval != NULL)
360 				kmem_free(strval,
361 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
362 
363 			break;
364 
365 		case 1:
366 			/* string property */
367 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
368 			err = zap_lookup(mos, spa->spa_pool_props_object,
369 			    za.za_name, 1, za.za_num_integers, strval);
370 			if (err) {
371 				kmem_free(strval, za.za_num_integers);
372 				break;
373 			}
374 			spa_prop_add_list(*nvp, prop, strval, 0, src);
375 			kmem_free(strval, za.za_num_integers);
376 			break;
377 
378 		default:
379 			break;
380 		}
381 	}
382 	zap_cursor_fini(&zc);
383 	mutex_exit(&spa->spa_props_lock);
384 out:
385 	if (err && err != ENOENT) {
386 		nvlist_free(*nvp);
387 		*nvp = NULL;
388 		return (err);
389 	}
390 
391 	return (0);
392 }
393 
394 /*
395  * Validate the given pool properties nvlist and modify the list
396  * for the property values to be set.
397  */
398 static int
399 spa_prop_validate(spa_t *spa, nvlist_t *props)
400 {
401 	nvpair_t *elem;
402 	int error = 0, reset_bootfs = 0;
403 	uint64_t objnum = 0;
404 	boolean_t has_feature = B_FALSE;
405 
406 	elem = NULL;
407 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
408 		uint64_t intval;
409 		char *strval, *slash, *check, *fname;
410 		const char *propname = nvpair_name(elem);
411 		zpool_prop_t prop = zpool_name_to_prop(propname);
412 
413 		switch (prop) {
414 		case ZPROP_INVAL:
415 			if (!zpool_prop_feature(propname)) {
416 				error = SET_ERROR(EINVAL);
417 				break;
418 			}
419 
420 			/*
421 			 * Sanitize the input.
422 			 */
423 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
424 				error = SET_ERROR(EINVAL);
425 				break;
426 			}
427 
428 			if (nvpair_value_uint64(elem, &intval) != 0) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			if (intval != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			fname = strchr(propname, '@') + 1;
439 			if (zfeature_lookup_name(fname, NULL) != 0) {
440 				error = SET_ERROR(EINVAL);
441 				break;
442 			}
443 
444 			has_feature = B_TRUE;
445 			break;
446 
447 		case ZPOOL_PROP_VERSION:
448 			error = nvpair_value_uint64(elem, &intval);
449 			if (!error &&
450 			    (intval < spa_version(spa) ||
451 			    intval > SPA_VERSION_BEFORE_FEATURES ||
452 			    has_feature))
453 				error = SET_ERROR(EINVAL);
454 			break;
455 
456 		case ZPOOL_PROP_DELEGATION:
457 		case ZPOOL_PROP_AUTOREPLACE:
458 		case ZPOOL_PROP_LISTSNAPS:
459 		case ZPOOL_PROP_AUTOEXPAND:
460 			error = nvpair_value_uint64(elem, &intval);
461 			if (!error && intval > 1)
462 				error = SET_ERROR(EINVAL);
463 			break;
464 
465 		case ZPOOL_PROP_BOOTFS:
466 			/*
467 			 * If the pool version is less than SPA_VERSION_BOOTFS,
468 			 * or the pool is still being created (version == 0),
469 			 * the bootfs property cannot be set.
470 			 */
471 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
472 				error = SET_ERROR(ENOTSUP);
473 				break;
474 			}
475 
476 			/*
477 			 * Make sure the vdev config is bootable
478 			 */
479 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
480 				error = SET_ERROR(ENOTSUP);
481 				break;
482 			}
483 
484 			reset_bootfs = 1;
485 
486 			error = nvpair_value_string(elem, &strval);
487 
488 			if (!error) {
489 				objset_t *os;
490 				uint64_t compress;
491 
492 				if (strval == NULL || strval[0] == '\0') {
493 					objnum = zpool_prop_default_numeric(
494 					    ZPOOL_PROP_BOOTFS);
495 					break;
496 				}
497 
498 				if (error = dmu_objset_hold(strval, FTAG, &os))
499 					break;
500 
501 				/* Must be ZPL and not gzip compressed. */
502 
503 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
504 					error = SET_ERROR(ENOTSUP);
505 				} else if ((error =
506 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
507 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
508 				    &compress)) == 0 &&
509 				    !BOOTFS_COMPRESS_VALID(compress)) {
510 					error = SET_ERROR(ENOTSUP);
511 				} else {
512 					objnum = dmu_objset_id(os);
513 				}
514 				dmu_objset_rele(os, FTAG);
515 			}
516 			break;
517 
518 		case ZPOOL_PROP_FAILUREMODE:
519 			error = nvpair_value_uint64(elem, &intval);
520 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
521 			    intval > ZIO_FAILURE_MODE_PANIC))
522 				error = SET_ERROR(EINVAL);
523 
524 			/*
525 			 * This is a special case which only occurs when
526 			 * the pool has completely failed. This allows
527 			 * the user to change the in-core failmode property
528 			 * without syncing it out to disk (I/Os might
529 			 * currently be blocked). We do this by returning
530 			 * EIO to the caller (spa_prop_set) to trick it
531 			 * into thinking we encountered a property validation
532 			 * error.
533 			 */
534 			if (!error && spa_suspended(spa)) {
535 				spa->spa_failmode = intval;
536 				error = SET_ERROR(EIO);
537 			}
538 			break;
539 
540 		case ZPOOL_PROP_CACHEFILE:
541 			if ((error = nvpair_value_string(elem, &strval)) != 0)
542 				break;
543 
544 			if (strval[0] == '\0')
545 				break;
546 
547 			if (strcmp(strval, "none") == 0)
548 				break;
549 
550 			if (strval[0] != '/') {
551 				error = SET_ERROR(EINVAL);
552 				break;
553 			}
554 
555 			slash = strrchr(strval, '/');
556 			ASSERT(slash != NULL);
557 
558 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
559 			    strcmp(slash, "/..") == 0)
560 				error = SET_ERROR(EINVAL);
561 			break;
562 
563 		case ZPOOL_PROP_COMMENT:
564 			if ((error = nvpair_value_string(elem, &strval)) != 0)
565 				break;
566 			for (check = strval; *check != '\0'; check++) {
567 				/*
568 				 * The kernel doesn't have an easy isprint()
569 				 * check.  For this kernel check, we merely
570 				 * check ASCII apart from DEL.  Fix this if
571 				 * there is an easy-to-use kernel isprint().
572 				 */
573 				if (*check >= 0x7f) {
574 					error = SET_ERROR(EINVAL);
575 					break;
576 				}
577 				check++;
578 			}
579 			if (strlen(strval) > ZPROP_MAX_COMMENT)
580 				error = E2BIG;
581 			break;
582 
583 		case ZPOOL_PROP_DEDUPDITTO:
584 			if (spa_version(spa) < SPA_VERSION_DEDUP)
585 				error = SET_ERROR(ENOTSUP);
586 			else
587 				error = nvpair_value_uint64(elem, &intval);
588 			if (error == 0 &&
589 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
590 				error = SET_ERROR(EINVAL);
591 			break;
592 		}
593 
594 		if (error)
595 			break;
596 	}
597 
598 	if (!error && reset_bootfs) {
599 		error = nvlist_remove(props,
600 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
601 
602 		if (!error) {
603 			error = nvlist_add_uint64(props,
604 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
605 		}
606 	}
607 
608 	return (error);
609 }
610 
611 void
612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
613 {
614 	char *cachefile;
615 	spa_config_dirent_t *dp;
616 
617 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
618 	    &cachefile) != 0)
619 		return;
620 
621 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
622 	    KM_SLEEP);
623 
624 	if (cachefile[0] == '\0')
625 		dp->scd_path = spa_strdup(spa_config_path);
626 	else if (strcmp(cachefile, "none") == 0)
627 		dp->scd_path = NULL;
628 	else
629 		dp->scd_path = spa_strdup(cachefile);
630 
631 	list_insert_head(&spa->spa_config_list, dp);
632 	if (need_sync)
633 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
634 }
635 
636 int
637 spa_prop_set(spa_t *spa, nvlist_t *nvp)
638 {
639 	int error;
640 	nvpair_t *elem = NULL;
641 	boolean_t need_sync = B_FALSE;
642 
643 	if ((error = spa_prop_validate(spa, nvp)) != 0)
644 		return (error);
645 
646 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
647 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
648 
649 		if (prop == ZPOOL_PROP_CACHEFILE ||
650 		    prop == ZPOOL_PROP_ALTROOT ||
651 		    prop == ZPOOL_PROP_READONLY)
652 			continue;
653 
654 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
655 			uint64_t ver;
656 
657 			if (prop == ZPOOL_PROP_VERSION) {
658 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
659 			} else {
660 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
661 				ver = SPA_VERSION_FEATURES;
662 				need_sync = B_TRUE;
663 			}
664 
665 			/* Save time if the version is already set. */
666 			if (ver == spa_version(spa))
667 				continue;
668 
669 			/*
670 			 * In addition to the pool directory object, we might
671 			 * create the pool properties object, the features for
672 			 * read object, the features for write object, or the
673 			 * feature descriptions object.
674 			 */
675 			error = dsl_sync_task(spa->spa_name, NULL,
676 			    spa_sync_version, &ver, 6);
677 			if (error)
678 				return (error);
679 			continue;
680 		}
681 
682 		need_sync = B_TRUE;
683 		break;
684 	}
685 
686 	if (need_sync) {
687 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
688 		    nvp, 6));
689 	}
690 
691 	return (0);
692 }
693 
694 /*
695  * If the bootfs property value is dsobj, clear it.
696  */
697 void
698 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
699 {
700 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
701 		VERIFY(zap_remove(spa->spa_meta_objset,
702 		    spa->spa_pool_props_object,
703 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
704 		spa->spa_bootfs = 0;
705 	}
706 }
707 
708 /*ARGSUSED*/
709 static int
710 spa_change_guid_check(void *arg, dmu_tx_t *tx)
711 {
712 	uint64_t *newguid = arg;
713 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
714 	vdev_t *rvd = spa->spa_root_vdev;
715 	uint64_t vdev_state;
716 
717 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
718 	vdev_state = rvd->vdev_state;
719 	spa_config_exit(spa, SCL_STATE, FTAG);
720 
721 	if (vdev_state != VDEV_STATE_HEALTHY)
722 		return (SET_ERROR(ENXIO));
723 
724 	ASSERT3U(spa_guid(spa), !=, *newguid);
725 
726 	return (0);
727 }
728 
729 static void
730 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
731 {
732 	uint64_t *newguid = arg;
733 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
734 	uint64_t oldguid;
735 	vdev_t *rvd = spa->spa_root_vdev;
736 
737 	oldguid = spa_guid(spa);
738 
739 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
740 	rvd->vdev_guid = *newguid;
741 	rvd->vdev_guid_sum += (*newguid - oldguid);
742 	vdev_config_dirty(rvd);
743 	spa_config_exit(spa, SCL_STATE, FTAG);
744 
745 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
746 	    oldguid, *newguid);
747 }
748 
749 /*
750  * Change the GUID for the pool.  This is done so that we can later
751  * re-import a pool built from a clone of our own vdevs.  We will modify
752  * the root vdev's guid, our own pool guid, and then mark all of our
753  * vdevs dirty.  Note that we must make sure that all our vdevs are
754  * online when we do this, or else any vdevs that weren't present
755  * would be orphaned from our pool.  We are also going to issue a
756  * sysevent to update any watchers.
757  */
758 int
759 spa_change_guid(spa_t *spa)
760 {
761 	int error;
762 	uint64_t guid;
763 
764 	mutex_enter(&spa->spa_vdev_top_lock);
765 	mutex_enter(&spa_namespace_lock);
766 	guid = spa_generate_guid(NULL);
767 
768 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
769 	    spa_change_guid_sync, &guid, 5);
770 
771 	if (error == 0) {
772 		spa_config_sync(spa, B_FALSE, B_TRUE);
773 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
774 	}
775 
776 	mutex_exit(&spa_namespace_lock);
777 	mutex_exit(&spa->spa_vdev_top_lock);
778 
779 	return (error);
780 }
781 
782 /*
783  * ==========================================================================
784  * SPA state manipulation (open/create/destroy/import/export)
785  * ==========================================================================
786  */
787 
788 static int
789 spa_error_entry_compare(const void *a, const void *b)
790 {
791 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
792 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
793 	int ret;
794 
795 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
796 	    sizeof (zbookmark_t));
797 
798 	if (ret < 0)
799 		return (-1);
800 	else if (ret > 0)
801 		return (1);
802 	else
803 		return (0);
804 }
805 
806 /*
807  * Utility function which retrieves copies of the current logs and
808  * re-initializes them in the process.
809  */
810 void
811 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
812 {
813 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
814 
815 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
816 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
817 
818 	avl_create(&spa->spa_errlist_scrub,
819 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
820 	    offsetof(spa_error_entry_t, se_avl));
821 	avl_create(&spa->spa_errlist_last,
822 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
823 	    offsetof(spa_error_entry_t, se_avl));
824 }
825 
826 static void
827 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
828 {
829 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
830 	enum zti_modes mode = ztip->zti_mode;
831 	uint_t value = ztip->zti_value;
832 	uint_t count = ztip->zti_count;
833 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
834 	char name[32];
835 	uint_t flags = 0;
836 	boolean_t batch = B_FALSE;
837 
838 	if (mode == ZTI_MODE_NULL) {
839 		tqs->stqs_count = 0;
840 		tqs->stqs_taskq = NULL;
841 		return;
842 	}
843 
844 	ASSERT3U(count, >, 0);
845 
846 	tqs->stqs_count = count;
847 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
848 
849 	switch (mode) {
850 	case ZTI_MODE_FIXED:
851 		ASSERT3U(value, >=, 1);
852 		value = MAX(value, 1);
853 		break;
854 
855 	case ZTI_MODE_BATCH:
856 		batch = B_TRUE;
857 		flags |= TASKQ_THREADS_CPU_PCT;
858 		value = zio_taskq_batch_pct;
859 		break;
860 
861 	default:
862 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
863 		    "spa_activate()",
864 		    zio_type_name[t], zio_taskq_types[q], mode, value);
865 		break;
866 	}
867 
868 	for (uint_t i = 0; i < count; i++) {
869 		taskq_t *tq;
870 
871 		if (count > 1) {
872 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
873 			    zio_type_name[t], zio_taskq_types[q], i);
874 		} else {
875 			(void) snprintf(name, sizeof (name), "%s_%s",
876 			    zio_type_name[t], zio_taskq_types[q]);
877 		}
878 
879 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
880 			if (batch)
881 				flags |= TASKQ_DC_BATCH;
882 
883 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
884 			    spa->spa_proc, zio_taskq_basedc, flags);
885 		} else {
886 			pri_t pri = maxclsyspri;
887 			/*
888 			 * The write issue taskq can be extremely CPU
889 			 * intensive.  Run it at slightly lower priority
890 			 * than the other taskqs.
891 			 */
892 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
893 				pri--;
894 
895 			tq = taskq_create_proc(name, value, pri, 50,
896 			    INT_MAX, spa->spa_proc, flags);
897 		}
898 
899 		tqs->stqs_taskq[i] = tq;
900 	}
901 }
902 
903 static void
904 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
905 {
906 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
907 
908 	if (tqs->stqs_taskq == NULL) {
909 		ASSERT0(tqs->stqs_count);
910 		return;
911 	}
912 
913 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
914 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
915 		taskq_destroy(tqs->stqs_taskq[i]);
916 	}
917 
918 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
919 	tqs->stqs_taskq = NULL;
920 }
921 
922 /*
923  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
924  * Note that a type may have multiple discrete taskqs to avoid lock contention
925  * on the taskq itself. In that case we choose which taskq at random by using
926  * the low bits of gethrtime().
927  */
928 void
929 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
930     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
931 {
932 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
933 	taskq_t *tq;
934 
935 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
936 	ASSERT3U(tqs->stqs_count, !=, 0);
937 
938 	if (tqs->stqs_count == 1) {
939 		tq = tqs->stqs_taskq[0];
940 	} else {
941 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
942 	}
943 
944 	taskq_dispatch_ent(tq, func, arg, flags, ent);
945 }
946 
947 static void
948 spa_create_zio_taskqs(spa_t *spa)
949 {
950 	for (int t = 0; t < ZIO_TYPES; t++) {
951 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
952 			spa_taskqs_init(spa, t, q);
953 		}
954 	}
955 }
956 
957 #ifdef _KERNEL
958 static void
959 spa_thread(void *arg)
960 {
961 	callb_cpr_t cprinfo;
962 
963 	spa_t *spa = arg;
964 	user_t *pu = PTOU(curproc);
965 
966 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
967 	    spa->spa_name);
968 
969 	ASSERT(curproc != &p0);
970 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
971 	    "zpool-%s", spa->spa_name);
972 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
973 
974 	/* bind this thread to the requested psrset */
975 	if (zio_taskq_psrset_bind != PS_NONE) {
976 		pool_lock();
977 		mutex_enter(&cpu_lock);
978 		mutex_enter(&pidlock);
979 		mutex_enter(&curproc->p_lock);
980 
981 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
982 		    0, NULL, NULL) == 0)  {
983 			curthread->t_bind_pset = zio_taskq_psrset_bind;
984 		} else {
985 			cmn_err(CE_WARN,
986 			    "Couldn't bind process for zfs pool \"%s\" to "
987 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
988 		}
989 
990 		mutex_exit(&curproc->p_lock);
991 		mutex_exit(&pidlock);
992 		mutex_exit(&cpu_lock);
993 		pool_unlock();
994 	}
995 
996 	if (zio_taskq_sysdc) {
997 		sysdc_thread_enter(curthread, 100, 0);
998 	}
999 
1000 	spa->spa_proc = curproc;
1001 	spa->spa_did = curthread->t_did;
1002 
1003 	spa_create_zio_taskqs(spa);
1004 
1005 	mutex_enter(&spa->spa_proc_lock);
1006 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1007 
1008 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1009 	cv_broadcast(&spa->spa_proc_cv);
1010 
1011 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1012 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1013 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1014 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1015 
1016 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1017 	spa->spa_proc_state = SPA_PROC_GONE;
1018 	spa->spa_proc = &p0;
1019 	cv_broadcast(&spa->spa_proc_cv);
1020 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1021 
1022 	mutex_enter(&curproc->p_lock);
1023 	lwp_exit();
1024 }
1025 #endif
1026 
1027 /*
1028  * Activate an uninitialized pool.
1029  */
1030 static void
1031 spa_activate(spa_t *spa, int mode)
1032 {
1033 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1034 
1035 	spa->spa_state = POOL_STATE_ACTIVE;
1036 	spa->spa_mode = mode;
1037 
1038 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1039 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1040 
1041 	/* Try to create a covering process */
1042 	mutex_enter(&spa->spa_proc_lock);
1043 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1044 	ASSERT(spa->spa_proc == &p0);
1045 	spa->spa_did = 0;
1046 
1047 	/* Only create a process if we're going to be around a while. */
1048 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1049 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1050 		    NULL, 0) == 0) {
1051 			spa->spa_proc_state = SPA_PROC_CREATED;
1052 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1053 				cv_wait(&spa->spa_proc_cv,
1054 				    &spa->spa_proc_lock);
1055 			}
1056 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1057 			ASSERT(spa->spa_proc != &p0);
1058 			ASSERT(spa->spa_did != 0);
1059 		} else {
1060 #ifdef _KERNEL
1061 			cmn_err(CE_WARN,
1062 			    "Couldn't create process for zfs pool \"%s\"\n",
1063 			    spa->spa_name);
1064 #endif
1065 		}
1066 	}
1067 	mutex_exit(&spa->spa_proc_lock);
1068 
1069 	/* If we didn't create a process, we need to create our taskqs. */
1070 	if (spa->spa_proc == &p0) {
1071 		spa_create_zio_taskqs(spa);
1072 	}
1073 
1074 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1075 	    offsetof(vdev_t, vdev_config_dirty_node));
1076 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1077 	    offsetof(vdev_t, vdev_state_dirty_node));
1078 
1079 	txg_list_create(&spa->spa_vdev_txg_list,
1080 	    offsetof(struct vdev, vdev_txg_node));
1081 
1082 	avl_create(&spa->spa_errlist_scrub,
1083 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1084 	    offsetof(spa_error_entry_t, se_avl));
1085 	avl_create(&spa->spa_errlist_last,
1086 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1087 	    offsetof(spa_error_entry_t, se_avl));
1088 }
1089 
1090 /*
1091  * Opposite of spa_activate().
1092  */
1093 static void
1094 spa_deactivate(spa_t *spa)
1095 {
1096 	ASSERT(spa->spa_sync_on == B_FALSE);
1097 	ASSERT(spa->spa_dsl_pool == NULL);
1098 	ASSERT(spa->spa_root_vdev == NULL);
1099 	ASSERT(spa->spa_async_zio_root == NULL);
1100 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1101 
1102 	txg_list_destroy(&spa->spa_vdev_txg_list);
1103 
1104 	list_destroy(&spa->spa_config_dirty_list);
1105 	list_destroy(&spa->spa_state_dirty_list);
1106 
1107 	for (int t = 0; t < ZIO_TYPES; t++) {
1108 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1109 			spa_taskqs_fini(spa, t, q);
1110 		}
1111 	}
1112 
1113 	metaslab_class_destroy(spa->spa_normal_class);
1114 	spa->spa_normal_class = NULL;
1115 
1116 	metaslab_class_destroy(spa->spa_log_class);
1117 	spa->spa_log_class = NULL;
1118 
1119 	/*
1120 	 * If this was part of an import or the open otherwise failed, we may
1121 	 * still have errors left in the queues.  Empty them just in case.
1122 	 */
1123 	spa_errlog_drain(spa);
1124 
1125 	avl_destroy(&spa->spa_errlist_scrub);
1126 	avl_destroy(&spa->spa_errlist_last);
1127 
1128 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1129 
1130 	mutex_enter(&spa->spa_proc_lock);
1131 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1132 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1133 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1134 		cv_broadcast(&spa->spa_proc_cv);
1135 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1136 			ASSERT(spa->spa_proc != &p0);
1137 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1138 		}
1139 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1140 		spa->spa_proc_state = SPA_PROC_NONE;
1141 	}
1142 	ASSERT(spa->spa_proc == &p0);
1143 	mutex_exit(&spa->spa_proc_lock);
1144 
1145 	/*
1146 	 * We want to make sure spa_thread() has actually exited the ZFS
1147 	 * module, so that the module can't be unloaded out from underneath
1148 	 * it.
1149 	 */
1150 	if (spa->spa_did != 0) {
1151 		thread_join(spa->spa_did);
1152 		spa->spa_did = 0;
1153 	}
1154 }
1155 
1156 /*
1157  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1158  * will create all the necessary vdevs in the appropriate layout, with each vdev
1159  * in the CLOSED state.  This will prep the pool before open/creation/import.
1160  * All vdev validation is done by the vdev_alloc() routine.
1161  */
1162 static int
1163 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1164     uint_t id, int atype)
1165 {
1166 	nvlist_t **child;
1167 	uint_t children;
1168 	int error;
1169 
1170 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1171 		return (error);
1172 
1173 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1174 		return (0);
1175 
1176 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1177 	    &child, &children);
1178 
1179 	if (error == ENOENT)
1180 		return (0);
1181 
1182 	if (error) {
1183 		vdev_free(*vdp);
1184 		*vdp = NULL;
1185 		return (SET_ERROR(EINVAL));
1186 	}
1187 
1188 	for (int c = 0; c < children; c++) {
1189 		vdev_t *vd;
1190 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1191 		    atype)) != 0) {
1192 			vdev_free(*vdp);
1193 			*vdp = NULL;
1194 			return (error);
1195 		}
1196 	}
1197 
1198 	ASSERT(*vdp != NULL);
1199 
1200 	return (0);
1201 }
1202 
1203 /*
1204  * Opposite of spa_load().
1205  */
1206 static void
1207 spa_unload(spa_t *spa)
1208 {
1209 	int i;
1210 
1211 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1212 
1213 	/*
1214 	 * Stop async tasks.
1215 	 */
1216 	spa_async_suspend(spa);
1217 
1218 	/*
1219 	 * Stop syncing.
1220 	 */
1221 	if (spa->spa_sync_on) {
1222 		txg_sync_stop(spa->spa_dsl_pool);
1223 		spa->spa_sync_on = B_FALSE;
1224 	}
1225 
1226 	/*
1227 	 * Wait for any outstanding async I/O to complete.
1228 	 */
1229 	if (spa->spa_async_zio_root != NULL) {
1230 		(void) zio_wait(spa->spa_async_zio_root);
1231 		spa->spa_async_zio_root = NULL;
1232 	}
1233 
1234 	bpobj_close(&spa->spa_deferred_bpobj);
1235 
1236 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1237 
1238 	/*
1239 	 * Close all vdevs.
1240 	 */
1241 	if (spa->spa_root_vdev)
1242 		vdev_free(spa->spa_root_vdev);
1243 	ASSERT(spa->spa_root_vdev == NULL);
1244 
1245 	/*
1246 	 * Close the dsl pool.
1247 	 */
1248 	if (spa->spa_dsl_pool) {
1249 		dsl_pool_close(spa->spa_dsl_pool);
1250 		spa->spa_dsl_pool = NULL;
1251 		spa->spa_meta_objset = NULL;
1252 	}
1253 
1254 	ddt_unload(spa);
1255 
1256 
1257 	/*
1258 	 * Drop and purge level 2 cache
1259 	 */
1260 	spa_l2cache_drop(spa);
1261 
1262 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1263 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1264 	if (spa->spa_spares.sav_vdevs) {
1265 		kmem_free(spa->spa_spares.sav_vdevs,
1266 		    spa->spa_spares.sav_count * sizeof (void *));
1267 		spa->spa_spares.sav_vdevs = NULL;
1268 	}
1269 	if (spa->spa_spares.sav_config) {
1270 		nvlist_free(spa->spa_spares.sav_config);
1271 		spa->spa_spares.sav_config = NULL;
1272 	}
1273 	spa->spa_spares.sav_count = 0;
1274 
1275 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1276 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1277 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1278 	}
1279 	if (spa->spa_l2cache.sav_vdevs) {
1280 		kmem_free(spa->spa_l2cache.sav_vdevs,
1281 		    spa->spa_l2cache.sav_count * sizeof (void *));
1282 		spa->spa_l2cache.sav_vdevs = NULL;
1283 	}
1284 	if (spa->spa_l2cache.sav_config) {
1285 		nvlist_free(spa->spa_l2cache.sav_config);
1286 		spa->spa_l2cache.sav_config = NULL;
1287 	}
1288 	spa->spa_l2cache.sav_count = 0;
1289 
1290 	spa->spa_async_suspended = 0;
1291 
1292 	if (spa->spa_comment != NULL) {
1293 		spa_strfree(spa->spa_comment);
1294 		spa->spa_comment = NULL;
1295 	}
1296 
1297 	spa_config_exit(spa, SCL_ALL, FTAG);
1298 }
1299 
1300 /*
1301  * Load (or re-load) the current list of vdevs describing the active spares for
1302  * this pool.  When this is called, we have some form of basic information in
1303  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1304  * then re-generate a more complete list including status information.
1305  */
1306 static void
1307 spa_load_spares(spa_t *spa)
1308 {
1309 	nvlist_t **spares;
1310 	uint_t nspares;
1311 	int i;
1312 	vdev_t *vd, *tvd;
1313 
1314 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1315 
1316 	/*
1317 	 * First, close and free any existing spare vdevs.
1318 	 */
1319 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1320 		vd = spa->spa_spares.sav_vdevs[i];
1321 
1322 		/* Undo the call to spa_activate() below */
1323 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1324 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1325 			spa_spare_remove(tvd);
1326 		vdev_close(vd);
1327 		vdev_free(vd);
1328 	}
1329 
1330 	if (spa->spa_spares.sav_vdevs)
1331 		kmem_free(spa->spa_spares.sav_vdevs,
1332 		    spa->spa_spares.sav_count * sizeof (void *));
1333 
1334 	if (spa->spa_spares.sav_config == NULL)
1335 		nspares = 0;
1336 	else
1337 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1338 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1339 
1340 	spa->spa_spares.sav_count = (int)nspares;
1341 	spa->spa_spares.sav_vdevs = NULL;
1342 
1343 	if (nspares == 0)
1344 		return;
1345 
1346 	/*
1347 	 * Construct the array of vdevs, opening them to get status in the
1348 	 * process.   For each spare, there is potentially two different vdev_t
1349 	 * structures associated with it: one in the list of spares (used only
1350 	 * for basic validation purposes) and one in the active vdev
1351 	 * configuration (if it's spared in).  During this phase we open and
1352 	 * validate each vdev on the spare list.  If the vdev also exists in the
1353 	 * active configuration, then we also mark this vdev as an active spare.
1354 	 */
1355 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1356 	    KM_SLEEP);
1357 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1358 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1359 		    VDEV_ALLOC_SPARE) == 0);
1360 		ASSERT(vd != NULL);
1361 
1362 		spa->spa_spares.sav_vdevs[i] = vd;
1363 
1364 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1365 		    B_FALSE)) != NULL) {
1366 			if (!tvd->vdev_isspare)
1367 				spa_spare_add(tvd);
1368 
1369 			/*
1370 			 * We only mark the spare active if we were successfully
1371 			 * able to load the vdev.  Otherwise, importing a pool
1372 			 * with a bad active spare would result in strange
1373 			 * behavior, because multiple pool would think the spare
1374 			 * is actively in use.
1375 			 *
1376 			 * There is a vulnerability here to an equally bizarre
1377 			 * circumstance, where a dead active spare is later
1378 			 * brought back to life (onlined or otherwise).  Given
1379 			 * the rarity of this scenario, and the extra complexity
1380 			 * it adds, we ignore the possibility.
1381 			 */
1382 			if (!vdev_is_dead(tvd))
1383 				spa_spare_activate(tvd);
1384 		}
1385 
1386 		vd->vdev_top = vd;
1387 		vd->vdev_aux = &spa->spa_spares;
1388 
1389 		if (vdev_open(vd) != 0)
1390 			continue;
1391 
1392 		if (vdev_validate_aux(vd) == 0)
1393 			spa_spare_add(vd);
1394 	}
1395 
1396 	/*
1397 	 * Recompute the stashed list of spares, with status information
1398 	 * this time.
1399 	 */
1400 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1401 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1402 
1403 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1404 	    KM_SLEEP);
1405 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 		spares[i] = vdev_config_generate(spa,
1407 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1408 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1409 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1410 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1411 		nvlist_free(spares[i]);
1412 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1413 }
1414 
1415 /*
1416  * Load (or re-load) the current list of vdevs describing the active l2cache for
1417  * this pool.  When this is called, we have some form of basic information in
1418  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1419  * then re-generate a more complete list including status information.
1420  * Devices which are already active have their details maintained, and are
1421  * not re-opened.
1422  */
1423 static void
1424 spa_load_l2cache(spa_t *spa)
1425 {
1426 	nvlist_t **l2cache;
1427 	uint_t nl2cache;
1428 	int i, j, oldnvdevs;
1429 	uint64_t guid;
1430 	vdev_t *vd, **oldvdevs, **newvdevs;
1431 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1432 
1433 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1434 
1435 	if (sav->sav_config != NULL) {
1436 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1437 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1438 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1439 	} else {
1440 		nl2cache = 0;
1441 		newvdevs = NULL;
1442 	}
1443 
1444 	oldvdevs = sav->sav_vdevs;
1445 	oldnvdevs = sav->sav_count;
1446 	sav->sav_vdevs = NULL;
1447 	sav->sav_count = 0;
1448 
1449 	/*
1450 	 * Process new nvlist of vdevs.
1451 	 */
1452 	for (i = 0; i < nl2cache; i++) {
1453 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1454 		    &guid) == 0);
1455 
1456 		newvdevs[i] = NULL;
1457 		for (j = 0; j < oldnvdevs; j++) {
1458 			vd = oldvdevs[j];
1459 			if (vd != NULL && guid == vd->vdev_guid) {
1460 				/*
1461 				 * Retain previous vdev for add/remove ops.
1462 				 */
1463 				newvdevs[i] = vd;
1464 				oldvdevs[j] = NULL;
1465 				break;
1466 			}
1467 		}
1468 
1469 		if (newvdevs[i] == NULL) {
1470 			/*
1471 			 * Create new vdev
1472 			 */
1473 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1474 			    VDEV_ALLOC_L2CACHE) == 0);
1475 			ASSERT(vd != NULL);
1476 			newvdevs[i] = vd;
1477 
1478 			/*
1479 			 * Commit this vdev as an l2cache device,
1480 			 * even if it fails to open.
1481 			 */
1482 			spa_l2cache_add(vd);
1483 
1484 			vd->vdev_top = vd;
1485 			vd->vdev_aux = sav;
1486 
1487 			spa_l2cache_activate(vd);
1488 
1489 			if (vdev_open(vd) != 0)
1490 				continue;
1491 
1492 			(void) vdev_validate_aux(vd);
1493 
1494 			if (!vdev_is_dead(vd))
1495 				l2arc_add_vdev(spa, vd);
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * Purge vdevs that were dropped
1501 	 */
1502 	for (i = 0; i < oldnvdevs; i++) {
1503 		uint64_t pool;
1504 
1505 		vd = oldvdevs[i];
1506 		if (vd != NULL) {
1507 			ASSERT(vd->vdev_isl2cache);
1508 
1509 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1510 			    pool != 0ULL && l2arc_vdev_present(vd))
1511 				l2arc_remove_vdev(vd);
1512 			vdev_clear_stats(vd);
1513 			vdev_free(vd);
1514 		}
1515 	}
1516 
1517 	if (oldvdevs)
1518 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1519 
1520 	if (sav->sav_config == NULL)
1521 		goto out;
1522 
1523 	sav->sav_vdevs = newvdevs;
1524 	sav->sav_count = (int)nl2cache;
1525 
1526 	/*
1527 	 * Recompute the stashed list of l2cache devices, with status
1528 	 * information this time.
1529 	 */
1530 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1531 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1532 
1533 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1534 	for (i = 0; i < sav->sav_count; i++)
1535 		l2cache[i] = vdev_config_generate(spa,
1536 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1537 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1538 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1539 out:
1540 	for (i = 0; i < sav->sav_count; i++)
1541 		nvlist_free(l2cache[i]);
1542 	if (sav->sav_count)
1543 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1544 }
1545 
1546 static int
1547 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1548 {
1549 	dmu_buf_t *db;
1550 	char *packed = NULL;
1551 	size_t nvsize = 0;
1552 	int error;
1553 	*value = NULL;
1554 
1555 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1556 	nvsize = *(uint64_t *)db->db_data;
1557 	dmu_buf_rele(db, FTAG);
1558 
1559 	packed = kmem_alloc(nvsize, KM_SLEEP);
1560 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1561 	    DMU_READ_PREFETCH);
1562 	if (error == 0)
1563 		error = nvlist_unpack(packed, nvsize, value, 0);
1564 	kmem_free(packed, nvsize);
1565 
1566 	return (error);
1567 }
1568 
1569 /*
1570  * Checks to see if the given vdev could not be opened, in which case we post a
1571  * sysevent to notify the autoreplace code that the device has been removed.
1572  */
1573 static void
1574 spa_check_removed(vdev_t *vd)
1575 {
1576 	for (int c = 0; c < vd->vdev_children; c++)
1577 		spa_check_removed(vd->vdev_child[c]);
1578 
1579 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1580 	    !vd->vdev_ishole) {
1581 		zfs_post_autoreplace(vd->vdev_spa, vd);
1582 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1583 	}
1584 }
1585 
1586 /*
1587  * Validate the current config against the MOS config
1588  */
1589 static boolean_t
1590 spa_config_valid(spa_t *spa, nvlist_t *config)
1591 {
1592 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1593 	nvlist_t *nv;
1594 
1595 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1596 
1597 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1598 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1599 
1600 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1601 
1602 	/*
1603 	 * If we're doing a normal import, then build up any additional
1604 	 * diagnostic information about missing devices in this config.
1605 	 * We'll pass this up to the user for further processing.
1606 	 */
1607 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1608 		nvlist_t **child, *nv;
1609 		uint64_t idx = 0;
1610 
1611 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1612 		    KM_SLEEP);
1613 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1614 
1615 		for (int c = 0; c < rvd->vdev_children; c++) {
1616 			vdev_t *tvd = rvd->vdev_child[c];
1617 			vdev_t *mtvd  = mrvd->vdev_child[c];
1618 
1619 			if (tvd->vdev_ops == &vdev_missing_ops &&
1620 			    mtvd->vdev_ops != &vdev_missing_ops &&
1621 			    mtvd->vdev_islog)
1622 				child[idx++] = vdev_config_generate(spa, mtvd,
1623 				    B_FALSE, 0);
1624 		}
1625 
1626 		if (idx) {
1627 			VERIFY(nvlist_add_nvlist_array(nv,
1628 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1629 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1630 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1631 
1632 			for (int i = 0; i < idx; i++)
1633 				nvlist_free(child[i]);
1634 		}
1635 		nvlist_free(nv);
1636 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1637 	}
1638 
1639 	/*
1640 	 * Compare the root vdev tree with the information we have
1641 	 * from the MOS config (mrvd). Check each top-level vdev
1642 	 * with the corresponding MOS config top-level (mtvd).
1643 	 */
1644 	for (int c = 0; c < rvd->vdev_children; c++) {
1645 		vdev_t *tvd = rvd->vdev_child[c];
1646 		vdev_t *mtvd  = mrvd->vdev_child[c];
1647 
1648 		/*
1649 		 * Resolve any "missing" vdevs in the current configuration.
1650 		 * If we find that the MOS config has more accurate information
1651 		 * about the top-level vdev then use that vdev instead.
1652 		 */
1653 		if (tvd->vdev_ops == &vdev_missing_ops &&
1654 		    mtvd->vdev_ops != &vdev_missing_ops) {
1655 
1656 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1657 				continue;
1658 
1659 			/*
1660 			 * Device specific actions.
1661 			 */
1662 			if (mtvd->vdev_islog) {
1663 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1664 			} else {
1665 				/*
1666 				 * XXX - once we have 'readonly' pool
1667 				 * support we should be able to handle
1668 				 * missing data devices by transitioning
1669 				 * the pool to readonly.
1670 				 */
1671 				continue;
1672 			}
1673 
1674 			/*
1675 			 * Swap the missing vdev with the data we were
1676 			 * able to obtain from the MOS config.
1677 			 */
1678 			vdev_remove_child(rvd, tvd);
1679 			vdev_remove_child(mrvd, mtvd);
1680 
1681 			vdev_add_child(rvd, mtvd);
1682 			vdev_add_child(mrvd, tvd);
1683 
1684 			spa_config_exit(spa, SCL_ALL, FTAG);
1685 			vdev_load(mtvd);
1686 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1687 
1688 			vdev_reopen(rvd);
1689 		} else if (mtvd->vdev_islog) {
1690 			/*
1691 			 * Load the slog device's state from the MOS config
1692 			 * since it's possible that the label does not
1693 			 * contain the most up-to-date information.
1694 			 */
1695 			vdev_load_log_state(tvd, mtvd);
1696 			vdev_reopen(tvd);
1697 		}
1698 	}
1699 	vdev_free(mrvd);
1700 	spa_config_exit(spa, SCL_ALL, FTAG);
1701 
1702 	/*
1703 	 * Ensure we were able to validate the config.
1704 	 */
1705 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1706 }
1707 
1708 /*
1709  * Check for missing log devices
1710  */
1711 static boolean_t
1712 spa_check_logs(spa_t *spa)
1713 {
1714 	boolean_t rv = B_FALSE;
1715 
1716 	switch (spa->spa_log_state) {
1717 	case SPA_LOG_MISSING:
1718 		/* need to recheck in case slog has been restored */
1719 	case SPA_LOG_UNKNOWN:
1720 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1721 		    NULL, DS_FIND_CHILDREN) != 0);
1722 		if (rv)
1723 			spa_set_log_state(spa, SPA_LOG_MISSING);
1724 		break;
1725 	}
1726 	return (rv);
1727 }
1728 
1729 static boolean_t
1730 spa_passivate_log(spa_t *spa)
1731 {
1732 	vdev_t *rvd = spa->spa_root_vdev;
1733 	boolean_t slog_found = B_FALSE;
1734 
1735 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1736 
1737 	if (!spa_has_slogs(spa))
1738 		return (B_FALSE);
1739 
1740 	for (int c = 0; c < rvd->vdev_children; c++) {
1741 		vdev_t *tvd = rvd->vdev_child[c];
1742 		metaslab_group_t *mg = tvd->vdev_mg;
1743 
1744 		if (tvd->vdev_islog) {
1745 			metaslab_group_passivate(mg);
1746 			slog_found = B_TRUE;
1747 		}
1748 	}
1749 
1750 	return (slog_found);
1751 }
1752 
1753 static void
1754 spa_activate_log(spa_t *spa)
1755 {
1756 	vdev_t *rvd = spa->spa_root_vdev;
1757 
1758 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1759 
1760 	for (int c = 0; c < rvd->vdev_children; c++) {
1761 		vdev_t *tvd = rvd->vdev_child[c];
1762 		metaslab_group_t *mg = tvd->vdev_mg;
1763 
1764 		if (tvd->vdev_islog)
1765 			metaslab_group_activate(mg);
1766 	}
1767 }
1768 
1769 int
1770 spa_offline_log(spa_t *spa)
1771 {
1772 	int error;
1773 
1774 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1775 	    NULL, DS_FIND_CHILDREN);
1776 	if (error == 0) {
1777 		/*
1778 		 * We successfully offlined the log device, sync out the
1779 		 * current txg so that the "stubby" block can be removed
1780 		 * by zil_sync().
1781 		 */
1782 		txg_wait_synced(spa->spa_dsl_pool, 0);
1783 	}
1784 	return (error);
1785 }
1786 
1787 static void
1788 spa_aux_check_removed(spa_aux_vdev_t *sav)
1789 {
1790 	for (int i = 0; i < sav->sav_count; i++)
1791 		spa_check_removed(sav->sav_vdevs[i]);
1792 }
1793 
1794 void
1795 spa_claim_notify(zio_t *zio)
1796 {
1797 	spa_t *spa = zio->io_spa;
1798 
1799 	if (zio->io_error)
1800 		return;
1801 
1802 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1803 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1804 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1805 	mutex_exit(&spa->spa_props_lock);
1806 }
1807 
1808 typedef struct spa_load_error {
1809 	uint64_t	sle_meta_count;
1810 	uint64_t	sle_data_count;
1811 } spa_load_error_t;
1812 
1813 static void
1814 spa_load_verify_done(zio_t *zio)
1815 {
1816 	blkptr_t *bp = zio->io_bp;
1817 	spa_load_error_t *sle = zio->io_private;
1818 	dmu_object_type_t type = BP_GET_TYPE(bp);
1819 	int error = zio->io_error;
1820 
1821 	if (error) {
1822 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1823 		    type != DMU_OT_INTENT_LOG)
1824 			atomic_add_64(&sle->sle_meta_count, 1);
1825 		else
1826 			atomic_add_64(&sle->sle_data_count, 1);
1827 	}
1828 	zio_data_buf_free(zio->io_data, zio->io_size);
1829 }
1830 
1831 /*ARGSUSED*/
1832 static int
1833 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1834     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1835 {
1836 	if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
1837 		zio_t *rio = arg;
1838 		size_t size = BP_GET_PSIZE(bp);
1839 		void *data = zio_data_buf_alloc(size);
1840 
1841 		zio_nowait(zio_read(rio, spa, bp, data, size,
1842 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1843 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1844 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1845 	}
1846 	return (0);
1847 }
1848 
1849 static int
1850 spa_load_verify(spa_t *spa)
1851 {
1852 	zio_t *rio;
1853 	spa_load_error_t sle = { 0 };
1854 	zpool_rewind_policy_t policy;
1855 	boolean_t verify_ok = B_FALSE;
1856 	int error;
1857 
1858 	zpool_get_rewind_policy(spa->spa_config, &policy);
1859 
1860 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1861 		return (0);
1862 
1863 	rio = zio_root(spa, NULL, &sle,
1864 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1865 
1866 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1867 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1868 
1869 	(void) zio_wait(rio);
1870 
1871 	spa->spa_load_meta_errors = sle.sle_meta_count;
1872 	spa->spa_load_data_errors = sle.sle_data_count;
1873 
1874 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1875 	    sle.sle_data_count <= policy.zrp_maxdata) {
1876 		int64_t loss = 0;
1877 
1878 		verify_ok = B_TRUE;
1879 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1880 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1881 
1882 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1883 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1884 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1885 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1886 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1887 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1888 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1889 	} else {
1890 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1891 	}
1892 
1893 	if (error) {
1894 		if (error != ENXIO && error != EIO)
1895 			error = SET_ERROR(EIO);
1896 		return (error);
1897 	}
1898 
1899 	return (verify_ok ? 0 : EIO);
1900 }
1901 
1902 /*
1903  * Find a value in the pool props object.
1904  */
1905 static void
1906 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1907 {
1908 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1909 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1910 }
1911 
1912 /*
1913  * Find a value in the pool directory object.
1914  */
1915 static int
1916 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1917 {
1918 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1919 	    name, sizeof (uint64_t), 1, val));
1920 }
1921 
1922 static int
1923 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1924 {
1925 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1926 	return (err);
1927 }
1928 
1929 /*
1930  * Fix up config after a partly-completed split.  This is done with the
1931  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1932  * pool have that entry in their config, but only the splitting one contains
1933  * a list of all the guids of the vdevs that are being split off.
1934  *
1935  * This function determines what to do with that list: either rejoin
1936  * all the disks to the pool, or complete the splitting process.  To attempt
1937  * the rejoin, each disk that is offlined is marked online again, and
1938  * we do a reopen() call.  If the vdev label for every disk that was
1939  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1940  * then we call vdev_split() on each disk, and complete the split.
1941  *
1942  * Otherwise we leave the config alone, with all the vdevs in place in
1943  * the original pool.
1944  */
1945 static void
1946 spa_try_repair(spa_t *spa, nvlist_t *config)
1947 {
1948 	uint_t extracted;
1949 	uint64_t *glist;
1950 	uint_t i, gcount;
1951 	nvlist_t *nvl;
1952 	vdev_t **vd;
1953 	boolean_t attempt_reopen;
1954 
1955 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1956 		return;
1957 
1958 	/* check that the config is complete */
1959 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1960 	    &glist, &gcount) != 0)
1961 		return;
1962 
1963 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1964 
1965 	/* attempt to online all the vdevs & validate */
1966 	attempt_reopen = B_TRUE;
1967 	for (i = 0; i < gcount; i++) {
1968 		if (glist[i] == 0)	/* vdev is hole */
1969 			continue;
1970 
1971 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1972 		if (vd[i] == NULL) {
1973 			/*
1974 			 * Don't bother attempting to reopen the disks;
1975 			 * just do the split.
1976 			 */
1977 			attempt_reopen = B_FALSE;
1978 		} else {
1979 			/* attempt to re-online it */
1980 			vd[i]->vdev_offline = B_FALSE;
1981 		}
1982 	}
1983 
1984 	if (attempt_reopen) {
1985 		vdev_reopen(spa->spa_root_vdev);
1986 
1987 		/* check each device to see what state it's in */
1988 		for (extracted = 0, i = 0; i < gcount; i++) {
1989 			if (vd[i] != NULL &&
1990 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1991 				break;
1992 			++extracted;
1993 		}
1994 	}
1995 
1996 	/*
1997 	 * If every disk has been moved to the new pool, or if we never
1998 	 * even attempted to look at them, then we split them off for
1999 	 * good.
2000 	 */
2001 	if (!attempt_reopen || gcount == extracted) {
2002 		for (i = 0; i < gcount; i++)
2003 			if (vd[i] != NULL)
2004 				vdev_split(vd[i]);
2005 		vdev_reopen(spa->spa_root_vdev);
2006 	}
2007 
2008 	kmem_free(vd, gcount * sizeof (vdev_t *));
2009 }
2010 
2011 static int
2012 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2013     boolean_t mosconfig)
2014 {
2015 	nvlist_t *config = spa->spa_config;
2016 	char *ereport = FM_EREPORT_ZFS_POOL;
2017 	char *comment;
2018 	int error;
2019 	uint64_t pool_guid;
2020 	nvlist_t *nvl;
2021 
2022 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2023 		return (SET_ERROR(EINVAL));
2024 
2025 	ASSERT(spa->spa_comment == NULL);
2026 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2027 		spa->spa_comment = spa_strdup(comment);
2028 
2029 	/*
2030 	 * Versioning wasn't explicitly added to the label until later, so if
2031 	 * it's not present treat it as the initial version.
2032 	 */
2033 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2034 	    &spa->spa_ubsync.ub_version) != 0)
2035 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2036 
2037 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2038 	    &spa->spa_config_txg);
2039 
2040 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2041 	    spa_guid_exists(pool_guid, 0)) {
2042 		error = SET_ERROR(EEXIST);
2043 	} else {
2044 		spa->spa_config_guid = pool_guid;
2045 
2046 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2047 		    &nvl) == 0) {
2048 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2049 			    KM_SLEEP) == 0);
2050 		}
2051 
2052 		nvlist_free(spa->spa_load_info);
2053 		spa->spa_load_info = fnvlist_alloc();
2054 
2055 		gethrestime(&spa->spa_loaded_ts);
2056 		error = spa_load_impl(spa, pool_guid, config, state, type,
2057 		    mosconfig, &ereport);
2058 	}
2059 
2060 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2061 	if (error) {
2062 		if (error != EEXIST) {
2063 			spa->spa_loaded_ts.tv_sec = 0;
2064 			spa->spa_loaded_ts.tv_nsec = 0;
2065 		}
2066 		if (error != EBADF) {
2067 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2068 		}
2069 	}
2070 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2071 	spa->spa_ena = 0;
2072 
2073 	return (error);
2074 }
2075 
2076 /*
2077  * Load an existing storage pool, using the pool's builtin spa_config as a
2078  * source of configuration information.
2079  */
2080 static int
2081 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2082     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2083     char **ereport)
2084 {
2085 	int error = 0;
2086 	nvlist_t *nvroot = NULL;
2087 	nvlist_t *label;
2088 	vdev_t *rvd;
2089 	uberblock_t *ub = &spa->spa_uberblock;
2090 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2091 	int orig_mode = spa->spa_mode;
2092 	int parse;
2093 	uint64_t obj;
2094 	boolean_t missing_feat_write = B_FALSE;
2095 
2096 	/*
2097 	 * If this is an untrusted config, access the pool in read-only mode.
2098 	 * This prevents things like resilvering recently removed devices.
2099 	 */
2100 	if (!mosconfig)
2101 		spa->spa_mode = FREAD;
2102 
2103 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2104 
2105 	spa->spa_load_state = state;
2106 
2107 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2108 		return (SET_ERROR(EINVAL));
2109 
2110 	parse = (type == SPA_IMPORT_EXISTING ?
2111 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2112 
2113 	/*
2114 	 * Create "The Godfather" zio to hold all async IOs
2115 	 */
2116 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2117 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2118 
2119 	/*
2120 	 * Parse the configuration into a vdev tree.  We explicitly set the
2121 	 * value that will be returned by spa_version() since parsing the
2122 	 * configuration requires knowing the version number.
2123 	 */
2124 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2125 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2126 	spa_config_exit(spa, SCL_ALL, FTAG);
2127 
2128 	if (error != 0)
2129 		return (error);
2130 
2131 	ASSERT(spa->spa_root_vdev == rvd);
2132 
2133 	if (type != SPA_IMPORT_ASSEMBLE) {
2134 		ASSERT(spa_guid(spa) == pool_guid);
2135 	}
2136 
2137 	/*
2138 	 * Try to open all vdevs, loading each label in the process.
2139 	 */
2140 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2141 	error = vdev_open(rvd);
2142 	spa_config_exit(spa, SCL_ALL, FTAG);
2143 	if (error != 0)
2144 		return (error);
2145 
2146 	/*
2147 	 * We need to validate the vdev labels against the configuration that
2148 	 * we have in hand, which is dependent on the setting of mosconfig. If
2149 	 * mosconfig is true then we're validating the vdev labels based on
2150 	 * that config.  Otherwise, we're validating against the cached config
2151 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2152 	 * later we will recursively call spa_load() and validate against
2153 	 * the vdev config.
2154 	 *
2155 	 * If we're assembling a new pool that's been split off from an
2156 	 * existing pool, the labels haven't yet been updated so we skip
2157 	 * validation for now.
2158 	 */
2159 	if (type != SPA_IMPORT_ASSEMBLE) {
2160 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2161 		error = vdev_validate(rvd, mosconfig);
2162 		spa_config_exit(spa, SCL_ALL, FTAG);
2163 
2164 		if (error != 0)
2165 			return (error);
2166 
2167 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2168 			return (SET_ERROR(ENXIO));
2169 	}
2170 
2171 	/*
2172 	 * Find the best uberblock.
2173 	 */
2174 	vdev_uberblock_load(rvd, ub, &label);
2175 
2176 	/*
2177 	 * If we weren't able to find a single valid uberblock, return failure.
2178 	 */
2179 	if (ub->ub_txg == 0) {
2180 		nvlist_free(label);
2181 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2182 	}
2183 
2184 	/*
2185 	 * If the pool has an unsupported version we can't open it.
2186 	 */
2187 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2188 		nvlist_free(label);
2189 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2190 	}
2191 
2192 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2193 		nvlist_t *features;
2194 
2195 		/*
2196 		 * If we weren't able to find what's necessary for reading the
2197 		 * MOS in the label, return failure.
2198 		 */
2199 		if (label == NULL || nvlist_lookup_nvlist(label,
2200 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2201 			nvlist_free(label);
2202 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2203 			    ENXIO));
2204 		}
2205 
2206 		/*
2207 		 * Update our in-core representation with the definitive values
2208 		 * from the label.
2209 		 */
2210 		nvlist_free(spa->spa_label_features);
2211 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2212 	}
2213 
2214 	nvlist_free(label);
2215 
2216 	/*
2217 	 * Look through entries in the label nvlist's features_for_read. If
2218 	 * there is a feature listed there which we don't understand then we
2219 	 * cannot open a pool.
2220 	 */
2221 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2222 		nvlist_t *unsup_feat;
2223 
2224 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2225 		    0);
2226 
2227 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2228 		    NULL); nvp != NULL;
2229 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2230 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2231 				VERIFY(nvlist_add_string(unsup_feat,
2232 				    nvpair_name(nvp), "") == 0);
2233 			}
2234 		}
2235 
2236 		if (!nvlist_empty(unsup_feat)) {
2237 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2238 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2239 			nvlist_free(unsup_feat);
2240 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2241 			    ENOTSUP));
2242 		}
2243 
2244 		nvlist_free(unsup_feat);
2245 	}
2246 
2247 	/*
2248 	 * If the vdev guid sum doesn't match the uberblock, we have an
2249 	 * incomplete configuration.  We first check to see if the pool
2250 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2251 	 * If it is, defer the vdev_guid_sum check till later so we
2252 	 * can handle missing vdevs.
2253 	 */
2254 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2255 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2256 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2257 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2258 
2259 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2260 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 		spa_try_repair(spa, config);
2262 		spa_config_exit(spa, SCL_ALL, FTAG);
2263 		nvlist_free(spa->spa_config_splitting);
2264 		spa->spa_config_splitting = NULL;
2265 	}
2266 
2267 	/*
2268 	 * Initialize internal SPA structures.
2269 	 */
2270 	spa->spa_state = POOL_STATE_ACTIVE;
2271 	spa->spa_ubsync = spa->spa_uberblock;
2272 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2273 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2274 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2275 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2276 	spa->spa_claim_max_txg = spa->spa_first_txg;
2277 	spa->spa_prev_software_version = ub->ub_software_version;
2278 
2279 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2280 	if (error)
2281 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2282 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2283 
2284 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2285 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2286 
2287 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2288 		boolean_t missing_feat_read = B_FALSE;
2289 		nvlist_t *unsup_feat, *enabled_feat;
2290 
2291 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2292 		    &spa->spa_feat_for_read_obj) != 0) {
2293 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2294 		}
2295 
2296 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2297 		    &spa->spa_feat_for_write_obj) != 0) {
2298 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2299 		}
2300 
2301 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2302 		    &spa->spa_feat_desc_obj) != 0) {
2303 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2304 		}
2305 
2306 		enabled_feat = fnvlist_alloc();
2307 		unsup_feat = fnvlist_alloc();
2308 
2309 		if (!spa_features_check(spa, B_FALSE,
2310 		    unsup_feat, enabled_feat))
2311 			missing_feat_read = B_TRUE;
2312 
2313 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2314 			if (!spa_features_check(spa, B_TRUE,
2315 			    unsup_feat, enabled_feat)) {
2316 				missing_feat_write = B_TRUE;
2317 			}
2318 		}
2319 
2320 		fnvlist_add_nvlist(spa->spa_load_info,
2321 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2322 
2323 		if (!nvlist_empty(unsup_feat)) {
2324 			fnvlist_add_nvlist(spa->spa_load_info,
2325 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2326 		}
2327 
2328 		fnvlist_free(enabled_feat);
2329 		fnvlist_free(unsup_feat);
2330 
2331 		if (!missing_feat_read) {
2332 			fnvlist_add_boolean(spa->spa_load_info,
2333 			    ZPOOL_CONFIG_CAN_RDONLY);
2334 		}
2335 
2336 		/*
2337 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2338 		 * twofold: to determine whether the pool is available for
2339 		 * import in read-write mode and (if it is not) whether the
2340 		 * pool is available for import in read-only mode. If the pool
2341 		 * is available for import in read-write mode, it is displayed
2342 		 * as available in userland; if it is not available for import
2343 		 * in read-only mode, it is displayed as unavailable in
2344 		 * userland. If the pool is available for import in read-only
2345 		 * mode but not read-write mode, it is displayed as unavailable
2346 		 * in userland with a special note that the pool is actually
2347 		 * available for open in read-only mode.
2348 		 *
2349 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2350 		 * missing a feature for write, we must first determine whether
2351 		 * the pool can be opened read-only before returning to
2352 		 * userland in order to know whether to display the
2353 		 * abovementioned note.
2354 		 */
2355 		if (missing_feat_read || (missing_feat_write &&
2356 		    spa_writeable(spa))) {
2357 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2358 			    ENOTSUP));
2359 		}
2360 
2361 		/*
2362 		 * Load refcounts for ZFS features from disk into an in-memory
2363 		 * cache during SPA initialization.
2364 		 */
2365 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2366 			uint64_t refcount;
2367 
2368 			error = feature_get_refcount_from_disk(spa,
2369 			    &spa_feature_table[i], &refcount);
2370 			if (error == 0) {
2371 				spa->spa_feat_refcount_cache[i] = refcount;
2372 			} else if (error == ENOTSUP) {
2373 				spa->spa_feat_refcount_cache[i] =
2374 				    SPA_FEATURE_DISABLED;
2375 			} else {
2376 				return (spa_vdev_err(rvd,
2377 				    VDEV_AUX_CORRUPT_DATA, EIO));
2378 			}
2379 		}
2380 	}
2381 
2382 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2383 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2384 		    &spa->spa_feat_enabled_txg_obj) != 0)
2385 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2386 	}
2387 
2388 	spa->spa_is_initializing = B_TRUE;
2389 	error = dsl_pool_open(spa->spa_dsl_pool);
2390 	spa->spa_is_initializing = B_FALSE;
2391 	if (error != 0)
2392 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2393 
2394 	if (!mosconfig) {
2395 		uint64_t hostid;
2396 		nvlist_t *policy = NULL, *nvconfig;
2397 
2398 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2399 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400 
2401 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2402 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2403 			char *hostname;
2404 			unsigned long myhostid = 0;
2405 
2406 			VERIFY(nvlist_lookup_string(nvconfig,
2407 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2408 
2409 #ifdef	_KERNEL
2410 			myhostid = zone_get_hostid(NULL);
2411 #else	/* _KERNEL */
2412 			/*
2413 			 * We're emulating the system's hostid in userland, so
2414 			 * we can't use zone_get_hostid().
2415 			 */
2416 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2417 #endif	/* _KERNEL */
2418 			if (hostid != 0 && myhostid != 0 &&
2419 			    hostid != myhostid) {
2420 				nvlist_free(nvconfig);
2421 				cmn_err(CE_WARN, "pool '%s' could not be "
2422 				    "loaded as it was last accessed by "
2423 				    "another system (host: %s hostid: 0x%lx). "
2424 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2425 				    spa_name(spa), hostname,
2426 				    (unsigned long)hostid);
2427 				return (SET_ERROR(EBADF));
2428 			}
2429 		}
2430 		if (nvlist_lookup_nvlist(spa->spa_config,
2431 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2432 			VERIFY(nvlist_add_nvlist(nvconfig,
2433 			    ZPOOL_REWIND_POLICY, policy) == 0);
2434 
2435 		spa_config_set(spa, nvconfig);
2436 		spa_unload(spa);
2437 		spa_deactivate(spa);
2438 		spa_activate(spa, orig_mode);
2439 
2440 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2441 	}
2442 
2443 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2444 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2445 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2446 	if (error != 0)
2447 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2448 
2449 	/*
2450 	 * Load the bit that tells us to use the new accounting function
2451 	 * (raid-z deflation).  If we have an older pool, this will not
2452 	 * be present.
2453 	 */
2454 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2455 	if (error != 0 && error != ENOENT)
2456 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457 
2458 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2459 	    &spa->spa_creation_version);
2460 	if (error != 0 && error != ENOENT)
2461 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 
2463 	/*
2464 	 * Load the persistent error log.  If we have an older pool, this will
2465 	 * not be present.
2466 	 */
2467 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2468 	if (error != 0 && error != ENOENT)
2469 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 
2471 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2472 	    &spa->spa_errlog_scrub);
2473 	if (error != 0 && error != ENOENT)
2474 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475 
2476 	/*
2477 	 * Load the history object.  If we have an older pool, this
2478 	 * will not be present.
2479 	 */
2480 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2481 	if (error != 0 && error != ENOENT)
2482 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2483 
2484 	/*
2485 	 * If we're assembling the pool from the split-off vdevs of
2486 	 * an existing pool, we don't want to attach the spares & cache
2487 	 * devices.
2488 	 */
2489 
2490 	/*
2491 	 * Load any hot spares for this pool.
2492 	 */
2493 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2494 	if (error != 0 && error != ENOENT)
2495 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2497 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2498 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2499 		    &spa->spa_spares.sav_config) != 0)
2500 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501 
2502 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503 		spa_load_spares(spa);
2504 		spa_config_exit(spa, SCL_ALL, FTAG);
2505 	} else if (error == 0) {
2506 		spa->spa_spares.sav_sync = B_TRUE;
2507 	}
2508 
2509 	/*
2510 	 * Load any level 2 ARC devices for this pool.
2511 	 */
2512 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2513 	    &spa->spa_l2cache.sav_object);
2514 	if (error != 0 && error != ENOENT)
2515 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2517 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2518 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2519 		    &spa->spa_l2cache.sav_config) != 0)
2520 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521 
2522 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2523 		spa_load_l2cache(spa);
2524 		spa_config_exit(spa, SCL_ALL, FTAG);
2525 	} else if (error == 0) {
2526 		spa->spa_l2cache.sav_sync = B_TRUE;
2527 	}
2528 
2529 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2530 
2531 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2532 	if (error && error != ENOENT)
2533 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534 
2535 	if (error == 0) {
2536 		uint64_t autoreplace;
2537 
2538 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2539 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2540 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2541 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2542 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2543 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2544 		    &spa->spa_dedup_ditto);
2545 
2546 		spa->spa_autoreplace = (autoreplace != 0);
2547 	}
2548 
2549 	/*
2550 	 * If the 'autoreplace' property is set, then post a resource notifying
2551 	 * the ZFS DE that it should not issue any faults for unopenable
2552 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2553 	 * unopenable vdevs so that the normal autoreplace handler can take
2554 	 * over.
2555 	 */
2556 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2557 		spa_check_removed(spa->spa_root_vdev);
2558 		/*
2559 		 * For the import case, this is done in spa_import(), because
2560 		 * at this point we're using the spare definitions from
2561 		 * the MOS config, not necessarily from the userland config.
2562 		 */
2563 		if (state != SPA_LOAD_IMPORT) {
2564 			spa_aux_check_removed(&spa->spa_spares);
2565 			spa_aux_check_removed(&spa->spa_l2cache);
2566 		}
2567 	}
2568 
2569 	/*
2570 	 * Load the vdev state for all toplevel vdevs.
2571 	 */
2572 	vdev_load(rvd);
2573 
2574 	/*
2575 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2576 	 */
2577 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2578 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2579 	spa_config_exit(spa, SCL_ALL, FTAG);
2580 
2581 	/*
2582 	 * Load the DDTs (dedup tables).
2583 	 */
2584 	error = ddt_load(spa);
2585 	if (error != 0)
2586 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2587 
2588 	spa_update_dspace(spa);
2589 
2590 	/*
2591 	 * Validate the config, using the MOS config to fill in any
2592 	 * information which might be missing.  If we fail to validate
2593 	 * the config then declare the pool unfit for use. If we're
2594 	 * assembling a pool from a split, the log is not transferred
2595 	 * over.
2596 	 */
2597 	if (type != SPA_IMPORT_ASSEMBLE) {
2598 		nvlist_t *nvconfig;
2599 
2600 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2601 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602 
2603 		if (!spa_config_valid(spa, nvconfig)) {
2604 			nvlist_free(nvconfig);
2605 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2606 			    ENXIO));
2607 		}
2608 		nvlist_free(nvconfig);
2609 
2610 		/*
2611 		 * Now that we've validated the config, check the state of the
2612 		 * root vdev.  If it can't be opened, it indicates one or
2613 		 * more toplevel vdevs are faulted.
2614 		 */
2615 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2616 			return (SET_ERROR(ENXIO));
2617 
2618 		if (spa_check_logs(spa)) {
2619 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2620 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2621 		}
2622 	}
2623 
2624 	if (missing_feat_write) {
2625 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2626 
2627 		/*
2628 		 * At this point, we know that we can open the pool in
2629 		 * read-only mode but not read-write mode. We now have enough
2630 		 * information and can return to userland.
2631 		 */
2632 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2633 	}
2634 
2635 	/*
2636 	 * We've successfully opened the pool, verify that we're ready
2637 	 * to start pushing transactions.
2638 	 */
2639 	if (state != SPA_LOAD_TRYIMPORT) {
2640 		if (error = spa_load_verify(spa))
2641 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2642 			    error));
2643 	}
2644 
2645 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2646 	    spa->spa_load_max_txg == UINT64_MAX)) {
2647 		dmu_tx_t *tx;
2648 		int need_update = B_FALSE;
2649 
2650 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2651 
2652 		/*
2653 		 * Claim log blocks that haven't been committed yet.
2654 		 * This must all happen in a single txg.
2655 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2656 		 * invoked from zil_claim_log_block()'s i/o done callback.
2657 		 * Price of rollback is that we abandon the log.
2658 		 */
2659 		spa->spa_claiming = B_TRUE;
2660 
2661 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2662 		    spa_first_txg(spa));
2663 		(void) dmu_objset_find(spa_name(spa),
2664 		    zil_claim, tx, DS_FIND_CHILDREN);
2665 		dmu_tx_commit(tx);
2666 
2667 		spa->spa_claiming = B_FALSE;
2668 
2669 		spa_set_log_state(spa, SPA_LOG_GOOD);
2670 		spa->spa_sync_on = B_TRUE;
2671 		txg_sync_start(spa->spa_dsl_pool);
2672 
2673 		/*
2674 		 * Wait for all claims to sync.  We sync up to the highest
2675 		 * claimed log block birth time so that claimed log blocks
2676 		 * don't appear to be from the future.  spa_claim_max_txg
2677 		 * will have been set for us by either zil_check_log_chain()
2678 		 * (invoked from spa_check_logs()) or zil_claim() above.
2679 		 */
2680 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2681 
2682 		/*
2683 		 * If the config cache is stale, or we have uninitialized
2684 		 * metaslabs (see spa_vdev_add()), then update the config.
2685 		 *
2686 		 * If this is a verbatim import, trust the current
2687 		 * in-core spa_config and update the disk labels.
2688 		 */
2689 		if (config_cache_txg != spa->spa_config_txg ||
2690 		    state == SPA_LOAD_IMPORT ||
2691 		    state == SPA_LOAD_RECOVER ||
2692 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2693 			need_update = B_TRUE;
2694 
2695 		for (int c = 0; c < rvd->vdev_children; c++)
2696 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2697 				need_update = B_TRUE;
2698 
2699 		/*
2700 		 * Update the config cache asychronously in case we're the
2701 		 * root pool, in which case the config cache isn't writable yet.
2702 		 */
2703 		if (need_update)
2704 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2705 
2706 		/*
2707 		 * Check all DTLs to see if anything needs resilvering.
2708 		 */
2709 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2710 		    vdev_resilver_needed(rvd, NULL, NULL))
2711 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2712 
2713 		/*
2714 		 * Log the fact that we booted up (so that we can detect if
2715 		 * we rebooted in the middle of an operation).
2716 		 */
2717 		spa_history_log_version(spa, "open");
2718 
2719 		/*
2720 		 * Delete any inconsistent datasets.
2721 		 */
2722 		(void) dmu_objset_find(spa_name(spa),
2723 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2724 
2725 		/*
2726 		 * Clean up any stale temporary dataset userrefs.
2727 		 */
2728 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2729 	}
2730 
2731 	return (0);
2732 }
2733 
2734 static int
2735 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2736 {
2737 	int mode = spa->spa_mode;
2738 
2739 	spa_unload(spa);
2740 	spa_deactivate(spa);
2741 
2742 	spa->spa_load_max_txg--;
2743 
2744 	spa_activate(spa, mode);
2745 	spa_async_suspend(spa);
2746 
2747 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2748 }
2749 
2750 /*
2751  * If spa_load() fails this function will try loading prior txg's. If
2752  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2753  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2754  * function will not rewind the pool and will return the same error as
2755  * spa_load().
2756  */
2757 static int
2758 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2759     uint64_t max_request, int rewind_flags)
2760 {
2761 	nvlist_t *loadinfo = NULL;
2762 	nvlist_t *config = NULL;
2763 	int load_error, rewind_error;
2764 	uint64_t safe_rewind_txg;
2765 	uint64_t min_txg;
2766 
2767 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2768 		spa->spa_load_max_txg = spa->spa_load_txg;
2769 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2770 	} else {
2771 		spa->spa_load_max_txg = max_request;
2772 	}
2773 
2774 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2775 	    mosconfig);
2776 	if (load_error == 0)
2777 		return (0);
2778 
2779 	if (spa->spa_root_vdev != NULL)
2780 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2781 
2782 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2783 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2784 
2785 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2786 		nvlist_free(config);
2787 		return (load_error);
2788 	}
2789 
2790 	if (state == SPA_LOAD_RECOVER) {
2791 		/* Price of rolling back is discarding txgs, including log */
2792 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2793 	} else {
2794 		/*
2795 		 * If we aren't rolling back save the load info from our first
2796 		 * import attempt so that we can restore it after attempting
2797 		 * to rewind.
2798 		 */
2799 		loadinfo = spa->spa_load_info;
2800 		spa->spa_load_info = fnvlist_alloc();
2801 	}
2802 
2803 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2804 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2805 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2806 	    TXG_INITIAL : safe_rewind_txg;
2807 
2808 	/*
2809 	 * Continue as long as we're finding errors, we're still within
2810 	 * the acceptable rewind range, and we're still finding uberblocks
2811 	 */
2812 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2813 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2814 		if (spa->spa_load_max_txg < safe_rewind_txg)
2815 			spa->spa_extreme_rewind = B_TRUE;
2816 		rewind_error = spa_load_retry(spa, state, mosconfig);
2817 	}
2818 
2819 	spa->spa_extreme_rewind = B_FALSE;
2820 	spa->spa_load_max_txg = UINT64_MAX;
2821 
2822 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2823 		spa_config_set(spa, config);
2824 
2825 	if (state == SPA_LOAD_RECOVER) {
2826 		ASSERT3P(loadinfo, ==, NULL);
2827 		return (rewind_error);
2828 	} else {
2829 		/* Store the rewind info as part of the initial load info */
2830 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2831 		    spa->spa_load_info);
2832 
2833 		/* Restore the initial load info */
2834 		fnvlist_free(spa->spa_load_info);
2835 		spa->spa_load_info = loadinfo;
2836 
2837 		return (load_error);
2838 	}
2839 }
2840 
2841 /*
2842  * Pool Open/Import
2843  *
2844  * The import case is identical to an open except that the configuration is sent
2845  * down from userland, instead of grabbed from the configuration cache.  For the
2846  * case of an open, the pool configuration will exist in the
2847  * POOL_STATE_UNINITIALIZED state.
2848  *
2849  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2850  * the same time open the pool, without having to keep around the spa_t in some
2851  * ambiguous state.
2852  */
2853 static int
2854 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2855     nvlist_t **config)
2856 {
2857 	spa_t *spa;
2858 	spa_load_state_t state = SPA_LOAD_OPEN;
2859 	int error;
2860 	int locked = B_FALSE;
2861 
2862 	*spapp = NULL;
2863 
2864 	/*
2865 	 * As disgusting as this is, we need to support recursive calls to this
2866 	 * function because dsl_dir_open() is called during spa_load(), and ends
2867 	 * up calling spa_open() again.  The real fix is to figure out how to
2868 	 * avoid dsl_dir_open() calling this in the first place.
2869 	 */
2870 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2871 		mutex_enter(&spa_namespace_lock);
2872 		locked = B_TRUE;
2873 	}
2874 
2875 	if ((spa = spa_lookup(pool)) == NULL) {
2876 		if (locked)
2877 			mutex_exit(&spa_namespace_lock);
2878 		return (SET_ERROR(ENOENT));
2879 	}
2880 
2881 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2882 		zpool_rewind_policy_t policy;
2883 
2884 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2885 		    &policy);
2886 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2887 			state = SPA_LOAD_RECOVER;
2888 
2889 		spa_activate(spa, spa_mode_global);
2890 
2891 		if (state != SPA_LOAD_RECOVER)
2892 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2893 
2894 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2895 		    policy.zrp_request);
2896 
2897 		if (error == EBADF) {
2898 			/*
2899 			 * If vdev_validate() returns failure (indicated by
2900 			 * EBADF), it indicates that one of the vdevs indicates
2901 			 * that the pool has been exported or destroyed.  If
2902 			 * this is the case, the config cache is out of sync and
2903 			 * we should remove the pool from the namespace.
2904 			 */
2905 			spa_unload(spa);
2906 			spa_deactivate(spa);
2907 			spa_config_sync(spa, B_TRUE, B_TRUE);
2908 			spa_remove(spa);
2909 			if (locked)
2910 				mutex_exit(&spa_namespace_lock);
2911 			return (SET_ERROR(ENOENT));
2912 		}
2913 
2914 		if (error) {
2915 			/*
2916 			 * We can't open the pool, but we still have useful
2917 			 * information: the state of each vdev after the
2918 			 * attempted vdev_open().  Return this to the user.
2919 			 */
2920 			if (config != NULL && spa->spa_config) {
2921 				VERIFY(nvlist_dup(spa->spa_config, config,
2922 				    KM_SLEEP) == 0);
2923 				VERIFY(nvlist_add_nvlist(*config,
2924 				    ZPOOL_CONFIG_LOAD_INFO,
2925 				    spa->spa_load_info) == 0);
2926 			}
2927 			spa_unload(spa);
2928 			spa_deactivate(spa);
2929 			spa->spa_last_open_failed = error;
2930 			if (locked)
2931 				mutex_exit(&spa_namespace_lock);
2932 			*spapp = NULL;
2933 			return (error);
2934 		}
2935 	}
2936 
2937 	spa_open_ref(spa, tag);
2938 
2939 	if (config != NULL)
2940 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2941 
2942 	/*
2943 	 * If we've recovered the pool, pass back any information we
2944 	 * gathered while doing the load.
2945 	 */
2946 	if (state == SPA_LOAD_RECOVER) {
2947 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2948 		    spa->spa_load_info) == 0);
2949 	}
2950 
2951 	if (locked) {
2952 		spa->spa_last_open_failed = 0;
2953 		spa->spa_last_ubsync_txg = 0;
2954 		spa->spa_load_txg = 0;
2955 		mutex_exit(&spa_namespace_lock);
2956 	}
2957 
2958 	*spapp = spa;
2959 
2960 	return (0);
2961 }
2962 
2963 int
2964 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2965     nvlist_t **config)
2966 {
2967 	return (spa_open_common(name, spapp, tag, policy, config));
2968 }
2969 
2970 int
2971 spa_open(const char *name, spa_t **spapp, void *tag)
2972 {
2973 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2974 }
2975 
2976 /*
2977  * Lookup the given spa_t, incrementing the inject count in the process,
2978  * preventing it from being exported or destroyed.
2979  */
2980 spa_t *
2981 spa_inject_addref(char *name)
2982 {
2983 	spa_t *spa;
2984 
2985 	mutex_enter(&spa_namespace_lock);
2986 	if ((spa = spa_lookup(name)) == NULL) {
2987 		mutex_exit(&spa_namespace_lock);
2988 		return (NULL);
2989 	}
2990 	spa->spa_inject_ref++;
2991 	mutex_exit(&spa_namespace_lock);
2992 
2993 	return (spa);
2994 }
2995 
2996 void
2997 spa_inject_delref(spa_t *spa)
2998 {
2999 	mutex_enter(&spa_namespace_lock);
3000 	spa->spa_inject_ref--;
3001 	mutex_exit(&spa_namespace_lock);
3002 }
3003 
3004 /*
3005  * Add spares device information to the nvlist.
3006  */
3007 static void
3008 spa_add_spares(spa_t *spa, nvlist_t *config)
3009 {
3010 	nvlist_t **spares;
3011 	uint_t i, nspares;
3012 	nvlist_t *nvroot;
3013 	uint64_t guid;
3014 	vdev_stat_t *vs;
3015 	uint_t vsc;
3016 	uint64_t pool;
3017 
3018 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3019 
3020 	if (spa->spa_spares.sav_count == 0)
3021 		return;
3022 
3023 	VERIFY(nvlist_lookup_nvlist(config,
3024 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3025 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3026 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3027 	if (nspares != 0) {
3028 		VERIFY(nvlist_add_nvlist_array(nvroot,
3029 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3030 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3031 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3032 
3033 		/*
3034 		 * Go through and find any spares which have since been
3035 		 * repurposed as an active spare.  If this is the case, update
3036 		 * their status appropriately.
3037 		 */
3038 		for (i = 0; i < nspares; i++) {
3039 			VERIFY(nvlist_lookup_uint64(spares[i],
3040 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3041 			if (spa_spare_exists(guid, &pool, NULL) &&
3042 			    pool != 0ULL) {
3043 				VERIFY(nvlist_lookup_uint64_array(
3044 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3045 				    (uint64_t **)&vs, &vsc) == 0);
3046 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3047 				vs->vs_aux = VDEV_AUX_SPARED;
3048 			}
3049 		}
3050 	}
3051 }
3052 
3053 /*
3054  * Add l2cache device information to the nvlist, including vdev stats.
3055  */
3056 static void
3057 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3058 {
3059 	nvlist_t **l2cache;
3060 	uint_t i, j, nl2cache;
3061 	nvlist_t *nvroot;
3062 	uint64_t guid;
3063 	vdev_t *vd;
3064 	vdev_stat_t *vs;
3065 	uint_t vsc;
3066 
3067 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3068 
3069 	if (spa->spa_l2cache.sav_count == 0)
3070 		return;
3071 
3072 	VERIFY(nvlist_lookup_nvlist(config,
3073 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3074 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3075 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3076 	if (nl2cache != 0) {
3077 		VERIFY(nvlist_add_nvlist_array(nvroot,
3078 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3079 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3080 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3081 
3082 		/*
3083 		 * Update level 2 cache device stats.
3084 		 */
3085 
3086 		for (i = 0; i < nl2cache; i++) {
3087 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3088 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3089 
3090 			vd = NULL;
3091 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3092 				if (guid ==
3093 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3094 					vd = spa->spa_l2cache.sav_vdevs[j];
3095 					break;
3096 				}
3097 			}
3098 			ASSERT(vd != NULL);
3099 
3100 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3101 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3102 			    == 0);
3103 			vdev_get_stats(vd, vs);
3104 		}
3105 	}
3106 }
3107 
3108 static void
3109 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3110 {
3111 	nvlist_t *features;
3112 	zap_cursor_t zc;
3113 	zap_attribute_t za;
3114 
3115 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3116 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3117 
3118 	if (spa->spa_feat_for_read_obj != 0) {
3119 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3120 		    spa->spa_feat_for_read_obj);
3121 		    zap_cursor_retrieve(&zc, &za) == 0;
3122 		    zap_cursor_advance(&zc)) {
3123 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3124 			    za.za_num_integers == 1);
3125 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3126 			    za.za_first_integer));
3127 		}
3128 		zap_cursor_fini(&zc);
3129 	}
3130 
3131 	if (spa->spa_feat_for_write_obj != 0) {
3132 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3133 		    spa->spa_feat_for_write_obj);
3134 		    zap_cursor_retrieve(&zc, &za) == 0;
3135 		    zap_cursor_advance(&zc)) {
3136 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3137 			    za.za_num_integers == 1);
3138 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3139 			    za.za_first_integer));
3140 		}
3141 		zap_cursor_fini(&zc);
3142 	}
3143 
3144 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3145 	    features) == 0);
3146 	nvlist_free(features);
3147 }
3148 
3149 int
3150 spa_get_stats(const char *name, nvlist_t **config,
3151     char *altroot, size_t buflen)
3152 {
3153 	int error;
3154 	spa_t *spa;
3155 
3156 	*config = NULL;
3157 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3158 
3159 	if (spa != NULL) {
3160 		/*
3161 		 * This still leaves a window of inconsistency where the spares
3162 		 * or l2cache devices could change and the config would be
3163 		 * self-inconsistent.
3164 		 */
3165 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3166 
3167 		if (*config != NULL) {
3168 			uint64_t loadtimes[2];
3169 
3170 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3171 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3172 			VERIFY(nvlist_add_uint64_array(*config,
3173 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3174 
3175 			VERIFY(nvlist_add_uint64(*config,
3176 			    ZPOOL_CONFIG_ERRCOUNT,
3177 			    spa_get_errlog_size(spa)) == 0);
3178 
3179 			if (spa_suspended(spa))
3180 				VERIFY(nvlist_add_uint64(*config,
3181 				    ZPOOL_CONFIG_SUSPENDED,
3182 				    spa->spa_failmode) == 0);
3183 
3184 			spa_add_spares(spa, *config);
3185 			spa_add_l2cache(spa, *config);
3186 			spa_add_feature_stats(spa, *config);
3187 		}
3188 	}
3189 
3190 	/*
3191 	 * We want to get the alternate root even for faulted pools, so we cheat
3192 	 * and call spa_lookup() directly.
3193 	 */
3194 	if (altroot) {
3195 		if (spa == NULL) {
3196 			mutex_enter(&spa_namespace_lock);
3197 			spa = spa_lookup(name);
3198 			if (spa)
3199 				spa_altroot(spa, altroot, buflen);
3200 			else
3201 				altroot[0] = '\0';
3202 			spa = NULL;
3203 			mutex_exit(&spa_namespace_lock);
3204 		} else {
3205 			spa_altroot(spa, altroot, buflen);
3206 		}
3207 	}
3208 
3209 	if (spa != NULL) {
3210 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3211 		spa_close(spa, FTAG);
3212 	}
3213 
3214 	return (error);
3215 }
3216 
3217 /*
3218  * Validate that the auxiliary device array is well formed.  We must have an
3219  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3220  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3221  * specified, as long as they are well-formed.
3222  */
3223 static int
3224 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3225     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3226     vdev_labeltype_t label)
3227 {
3228 	nvlist_t **dev;
3229 	uint_t i, ndev;
3230 	vdev_t *vd;
3231 	int error;
3232 
3233 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3234 
3235 	/*
3236 	 * It's acceptable to have no devs specified.
3237 	 */
3238 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3239 		return (0);
3240 
3241 	if (ndev == 0)
3242 		return (SET_ERROR(EINVAL));
3243 
3244 	/*
3245 	 * Make sure the pool is formatted with a version that supports this
3246 	 * device type.
3247 	 */
3248 	if (spa_version(spa) < version)
3249 		return (SET_ERROR(ENOTSUP));
3250 
3251 	/*
3252 	 * Set the pending device list so we correctly handle device in-use
3253 	 * checking.
3254 	 */
3255 	sav->sav_pending = dev;
3256 	sav->sav_npending = ndev;
3257 
3258 	for (i = 0; i < ndev; i++) {
3259 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3260 		    mode)) != 0)
3261 			goto out;
3262 
3263 		if (!vd->vdev_ops->vdev_op_leaf) {
3264 			vdev_free(vd);
3265 			error = SET_ERROR(EINVAL);
3266 			goto out;
3267 		}
3268 
3269 		/*
3270 		 * The L2ARC currently only supports disk devices in
3271 		 * kernel context.  For user-level testing, we allow it.
3272 		 */
3273 #ifdef _KERNEL
3274 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3275 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3276 			error = SET_ERROR(ENOTBLK);
3277 			vdev_free(vd);
3278 			goto out;
3279 		}
3280 #endif
3281 		vd->vdev_top = vd;
3282 
3283 		if ((error = vdev_open(vd)) == 0 &&
3284 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3285 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3286 			    vd->vdev_guid) == 0);
3287 		}
3288 
3289 		vdev_free(vd);
3290 
3291 		if (error &&
3292 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3293 			goto out;
3294 		else
3295 			error = 0;
3296 	}
3297 
3298 out:
3299 	sav->sav_pending = NULL;
3300 	sav->sav_npending = 0;
3301 	return (error);
3302 }
3303 
3304 static int
3305 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3306 {
3307 	int error;
3308 
3309 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3310 
3311 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3312 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3313 	    VDEV_LABEL_SPARE)) != 0) {
3314 		return (error);
3315 	}
3316 
3317 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3318 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3319 	    VDEV_LABEL_L2CACHE));
3320 }
3321 
3322 static void
3323 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3324     const char *config)
3325 {
3326 	int i;
3327 
3328 	if (sav->sav_config != NULL) {
3329 		nvlist_t **olddevs;
3330 		uint_t oldndevs;
3331 		nvlist_t **newdevs;
3332 
3333 		/*
3334 		 * Generate new dev list by concatentating with the
3335 		 * current dev list.
3336 		 */
3337 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3338 		    &olddevs, &oldndevs) == 0);
3339 
3340 		newdevs = kmem_alloc(sizeof (void *) *
3341 		    (ndevs + oldndevs), KM_SLEEP);
3342 		for (i = 0; i < oldndevs; i++)
3343 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3344 			    KM_SLEEP) == 0);
3345 		for (i = 0; i < ndevs; i++)
3346 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3347 			    KM_SLEEP) == 0);
3348 
3349 		VERIFY(nvlist_remove(sav->sav_config, config,
3350 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3351 
3352 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3353 		    config, newdevs, ndevs + oldndevs) == 0);
3354 		for (i = 0; i < oldndevs + ndevs; i++)
3355 			nvlist_free(newdevs[i]);
3356 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3357 	} else {
3358 		/*
3359 		 * Generate a new dev list.
3360 		 */
3361 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3362 		    KM_SLEEP) == 0);
3363 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3364 		    devs, ndevs) == 0);
3365 	}
3366 }
3367 
3368 /*
3369  * Stop and drop level 2 ARC devices
3370  */
3371 void
3372 spa_l2cache_drop(spa_t *spa)
3373 {
3374 	vdev_t *vd;
3375 	int i;
3376 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3377 
3378 	for (i = 0; i < sav->sav_count; i++) {
3379 		uint64_t pool;
3380 
3381 		vd = sav->sav_vdevs[i];
3382 		ASSERT(vd != NULL);
3383 
3384 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3385 		    pool != 0ULL && l2arc_vdev_present(vd))
3386 			l2arc_remove_vdev(vd);
3387 	}
3388 }
3389 
3390 /*
3391  * Pool Creation
3392  */
3393 int
3394 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3395     nvlist_t *zplprops)
3396 {
3397 	spa_t *spa;
3398 	char *altroot = NULL;
3399 	vdev_t *rvd;
3400 	dsl_pool_t *dp;
3401 	dmu_tx_t *tx;
3402 	int error = 0;
3403 	uint64_t txg = TXG_INITIAL;
3404 	nvlist_t **spares, **l2cache;
3405 	uint_t nspares, nl2cache;
3406 	uint64_t version, obj;
3407 	boolean_t has_features;
3408 
3409 	/*
3410 	 * If this pool already exists, return failure.
3411 	 */
3412 	mutex_enter(&spa_namespace_lock);
3413 	if (spa_lookup(pool) != NULL) {
3414 		mutex_exit(&spa_namespace_lock);
3415 		return (SET_ERROR(EEXIST));
3416 	}
3417 
3418 	/*
3419 	 * Allocate a new spa_t structure.
3420 	 */
3421 	(void) nvlist_lookup_string(props,
3422 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3423 	spa = spa_add(pool, NULL, altroot);
3424 	spa_activate(spa, spa_mode_global);
3425 
3426 	if (props && (error = spa_prop_validate(spa, props))) {
3427 		spa_deactivate(spa);
3428 		spa_remove(spa);
3429 		mutex_exit(&spa_namespace_lock);
3430 		return (error);
3431 	}
3432 
3433 	has_features = B_FALSE;
3434 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3435 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3436 		if (zpool_prop_feature(nvpair_name(elem)))
3437 			has_features = B_TRUE;
3438 	}
3439 
3440 	if (has_features || nvlist_lookup_uint64(props,
3441 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3442 		version = SPA_VERSION;
3443 	}
3444 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3445 
3446 	spa->spa_first_txg = txg;
3447 	spa->spa_uberblock.ub_txg = txg - 1;
3448 	spa->spa_uberblock.ub_version = version;
3449 	spa->spa_ubsync = spa->spa_uberblock;
3450 
3451 	/*
3452 	 * Create "The Godfather" zio to hold all async IOs
3453 	 */
3454 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3455 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3456 
3457 	/*
3458 	 * Create the root vdev.
3459 	 */
3460 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3461 
3462 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3463 
3464 	ASSERT(error != 0 || rvd != NULL);
3465 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3466 
3467 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3468 		error = SET_ERROR(EINVAL);
3469 
3470 	if (error == 0 &&
3471 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3472 	    (error = spa_validate_aux(spa, nvroot, txg,
3473 	    VDEV_ALLOC_ADD)) == 0) {
3474 		for (int c = 0; c < rvd->vdev_children; c++) {
3475 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3476 			vdev_expand(rvd->vdev_child[c], txg);
3477 		}
3478 	}
3479 
3480 	spa_config_exit(spa, SCL_ALL, FTAG);
3481 
3482 	if (error != 0) {
3483 		spa_unload(spa);
3484 		spa_deactivate(spa);
3485 		spa_remove(spa);
3486 		mutex_exit(&spa_namespace_lock);
3487 		return (error);
3488 	}
3489 
3490 	/*
3491 	 * Get the list of spares, if specified.
3492 	 */
3493 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3494 	    &spares, &nspares) == 0) {
3495 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3496 		    KM_SLEEP) == 0);
3497 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3498 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3499 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3500 		spa_load_spares(spa);
3501 		spa_config_exit(spa, SCL_ALL, FTAG);
3502 		spa->spa_spares.sav_sync = B_TRUE;
3503 	}
3504 
3505 	/*
3506 	 * Get the list of level 2 cache devices, if specified.
3507 	 */
3508 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3509 	    &l2cache, &nl2cache) == 0) {
3510 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3511 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3512 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3513 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3514 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3515 		spa_load_l2cache(spa);
3516 		spa_config_exit(spa, SCL_ALL, FTAG);
3517 		spa->spa_l2cache.sav_sync = B_TRUE;
3518 	}
3519 
3520 	spa->spa_is_initializing = B_TRUE;
3521 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3522 	spa->spa_meta_objset = dp->dp_meta_objset;
3523 	spa->spa_is_initializing = B_FALSE;
3524 
3525 	/*
3526 	 * Create DDTs (dedup tables).
3527 	 */
3528 	ddt_create(spa);
3529 
3530 	spa_update_dspace(spa);
3531 
3532 	tx = dmu_tx_create_assigned(dp, txg);
3533 
3534 	/*
3535 	 * Create the pool config object.
3536 	 */
3537 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3538 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3539 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3540 
3541 	if (zap_add(spa->spa_meta_objset,
3542 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3543 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3544 		cmn_err(CE_PANIC, "failed to add pool config");
3545 	}
3546 
3547 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3548 		spa_feature_create_zap_objects(spa, tx);
3549 
3550 	if (zap_add(spa->spa_meta_objset,
3551 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3552 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3553 		cmn_err(CE_PANIC, "failed to add pool version");
3554 	}
3555 
3556 	/* Newly created pools with the right version are always deflated. */
3557 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3558 		spa->spa_deflate = TRUE;
3559 		if (zap_add(spa->spa_meta_objset,
3560 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3561 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3562 			cmn_err(CE_PANIC, "failed to add deflate");
3563 		}
3564 	}
3565 
3566 	/*
3567 	 * Create the deferred-free bpobj.  Turn off compression
3568 	 * because sync-to-convergence takes longer if the blocksize
3569 	 * keeps changing.
3570 	 */
3571 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3572 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3573 	    ZIO_COMPRESS_OFF, tx);
3574 	if (zap_add(spa->spa_meta_objset,
3575 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3576 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3577 		cmn_err(CE_PANIC, "failed to add bpobj");
3578 	}
3579 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3580 	    spa->spa_meta_objset, obj));
3581 
3582 	/*
3583 	 * Create the pool's history object.
3584 	 */
3585 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3586 		spa_history_create_obj(spa, tx);
3587 
3588 	/*
3589 	 * Set pool properties.
3590 	 */
3591 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3592 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3593 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3594 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3595 
3596 	if (props != NULL) {
3597 		spa_configfile_set(spa, props, B_FALSE);
3598 		spa_sync_props(props, tx);
3599 	}
3600 
3601 	dmu_tx_commit(tx);
3602 
3603 	spa->spa_sync_on = B_TRUE;
3604 	txg_sync_start(spa->spa_dsl_pool);
3605 
3606 	/*
3607 	 * We explicitly wait for the first transaction to complete so that our
3608 	 * bean counters are appropriately updated.
3609 	 */
3610 	txg_wait_synced(spa->spa_dsl_pool, txg);
3611 
3612 	spa_config_sync(spa, B_FALSE, B_TRUE);
3613 
3614 	spa_history_log_version(spa, "create");
3615 
3616 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3617 
3618 	mutex_exit(&spa_namespace_lock);
3619 
3620 	return (0);
3621 }
3622 
3623 #ifdef _KERNEL
3624 /*
3625  * Get the root pool information from the root disk, then import the root pool
3626  * during the system boot up time.
3627  */
3628 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3629 
3630 static nvlist_t *
3631 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3632 {
3633 	nvlist_t *config;
3634 	nvlist_t *nvtop, *nvroot;
3635 	uint64_t pgid;
3636 
3637 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3638 		return (NULL);
3639 
3640 	/*
3641 	 * Add this top-level vdev to the child array.
3642 	 */
3643 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3644 	    &nvtop) == 0);
3645 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3646 	    &pgid) == 0);
3647 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3648 
3649 	/*
3650 	 * Put this pool's top-level vdevs into a root vdev.
3651 	 */
3652 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3653 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3654 	    VDEV_TYPE_ROOT) == 0);
3655 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3656 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3657 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3658 	    &nvtop, 1) == 0);
3659 
3660 	/*
3661 	 * Replace the existing vdev_tree with the new root vdev in
3662 	 * this pool's configuration (remove the old, add the new).
3663 	 */
3664 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3665 	nvlist_free(nvroot);
3666 	return (config);
3667 }
3668 
3669 /*
3670  * Walk the vdev tree and see if we can find a device with "better"
3671  * configuration. A configuration is "better" if the label on that
3672  * device has a more recent txg.
3673  */
3674 static void
3675 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3676 {
3677 	for (int c = 0; c < vd->vdev_children; c++)
3678 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3679 
3680 	if (vd->vdev_ops->vdev_op_leaf) {
3681 		nvlist_t *label;
3682 		uint64_t label_txg;
3683 
3684 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3685 		    &label) != 0)
3686 			return;
3687 
3688 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3689 		    &label_txg) == 0);
3690 
3691 		/*
3692 		 * Do we have a better boot device?
3693 		 */
3694 		if (label_txg > *txg) {
3695 			*txg = label_txg;
3696 			*avd = vd;
3697 		}
3698 		nvlist_free(label);
3699 	}
3700 }
3701 
3702 /*
3703  * Import a root pool.
3704  *
3705  * For x86. devpath_list will consist of devid and/or physpath name of
3706  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3707  * The GRUB "findroot" command will return the vdev we should boot.
3708  *
3709  * For Sparc, devpath_list consists the physpath name of the booting device
3710  * no matter the rootpool is a single device pool or a mirrored pool.
3711  * e.g.
3712  *	"/pci@1f,0/ide@d/disk@0,0:a"
3713  */
3714 int
3715 spa_import_rootpool(char *devpath, char *devid)
3716 {
3717 	spa_t *spa;
3718 	vdev_t *rvd, *bvd, *avd = NULL;
3719 	nvlist_t *config, *nvtop;
3720 	uint64_t guid, txg;
3721 	char *pname;
3722 	int error;
3723 
3724 	/*
3725 	 * Read the label from the boot device and generate a configuration.
3726 	 */
3727 	config = spa_generate_rootconf(devpath, devid, &guid);
3728 #if defined(_OBP) && defined(_KERNEL)
3729 	if (config == NULL) {
3730 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3731 			/* iscsi boot */
3732 			get_iscsi_bootpath_phy(devpath);
3733 			config = spa_generate_rootconf(devpath, devid, &guid);
3734 		}
3735 	}
3736 #endif
3737 	if (config == NULL) {
3738 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3739 		    devpath);
3740 		return (SET_ERROR(EIO));
3741 	}
3742 
3743 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3744 	    &pname) == 0);
3745 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3746 
3747 	mutex_enter(&spa_namespace_lock);
3748 	if ((spa = spa_lookup(pname)) != NULL) {
3749 		/*
3750 		 * Remove the existing root pool from the namespace so that we
3751 		 * can replace it with the correct config we just read in.
3752 		 */
3753 		spa_remove(spa);
3754 	}
3755 
3756 	spa = spa_add(pname, config, NULL);
3757 	spa->spa_is_root = B_TRUE;
3758 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3759 
3760 	/*
3761 	 * Build up a vdev tree based on the boot device's label config.
3762 	 */
3763 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3764 	    &nvtop) == 0);
3765 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3766 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3767 	    VDEV_ALLOC_ROOTPOOL);
3768 	spa_config_exit(spa, SCL_ALL, FTAG);
3769 	if (error) {
3770 		mutex_exit(&spa_namespace_lock);
3771 		nvlist_free(config);
3772 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3773 		    pname);
3774 		return (error);
3775 	}
3776 
3777 	/*
3778 	 * Get the boot vdev.
3779 	 */
3780 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3781 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3782 		    (u_longlong_t)guid);
3783 		error = SET_ERROR(ENOENT);
3784 		goto out;
3785 	}
3786 
3787 	/*
3788 	 * Determine if there is a better boot device.
3789 	 */
3790 	avd = bvd;
3791 	spa_alt_rootvdev(rvd, &avd, &txg);
3792 	if (avd != bvd) {
3793 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3794 		    "try booting from '%s'", avd->vdev_path);
3795 		error = SET_ERROR(EINVAL);
3796 		goto out;
3797 	}
3798 
3799 	/*
3800 	 * If the boot device is part of a spare vdev then ensure that
3801 	 * we're booting off the active spare.
3802 	 */
3803 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3804 	    !bvd->vdev_isspare) {
3805 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3806 		    "try booting from '%s'",
3807 		    bvd->vdev_parent->
3808 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3809 		error = SET_ERROR(EINVAL);
3810 		goto out;
3811 	}
3812 
3813 	error = 0;
3814 out:
3815 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3816 	vdev_free(rvd);
3817 	spa_config_exit(spa, SCL_ALL, FTAG);
3818 	mutex_exit(&spa_namespace_lock);
3819 
3820 	nvlist_free(config);
3821 	return (error);
3822 }
3823 
3824 #endif
3825 
3826 /*
3827  * Import a non-root pool into the system.
3828  */
3829 int
3830 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3831 {
3832 	spa_t *spa;
3833 	char *altroot = NULL;
3834 	spa_load_state_t state = SPA_LOAD_IMPORT;
3835 	zpool_rewind_policy_t policy;
3836 	uint64_t mode = spa_mode_global;
3837 	uint64_t readonly = B_FALSE;
3838 	int error;
3839 	nvlist_t *nvroot;
3840 	nvlist_t **spares, **l2cache;
3841 	uint_t nspares, nl2cache;
3842 
3843 	/*
3844 	 * If a pool with this name exists, return failure.
3845 	 */
3846 	mutex_enter(&spa_namespace_lock);
3847 	if (spa_lookup(pool) != NULL) {
3848 		mutex_exit(&spa_namespace_lock);
3849 		return (SET_ERROR(EEXIST));
3850 	}
3851 
3852 	/*
3853 	 * Create and initialize the spa structure.
3854 	 */
3855 	(void) nvlist_lookup_string(props,
3856 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3857 	(void) nvlist_lookup_uint64(props,
3858 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3859 	if (readonly)
3860 		mode = FREAD;
3861 	spa = spa_add(pool, config, altroot);
3862 	spa->spa_import_flags = flags;
3863 
3864 	/*
3865 	 * Verbatim import - Take a pool and insert it into the namespace
3866 	 * as if it had been loaded at boot.
3867 	 */
3868 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3869 		if (props != NULL)
3870 			spa_configfile_set(spa, props, B_FALSE);
3871 
3872 		spa_config_sync(spa, B_FALSE, B_TRUE);
3873 
3874 		mutex_exit(&spa_namespace_lock);
3875 		return (0);
3876 	}
3877 
3878 	spa_activate(spa, mode);
3879 
3880 	/*
3881 	 * Don't start async tasks until we know everything is healthy.
3882 	 */
3883 	spa_async_suspend(spa);
3884 
3885 	zpool_get_rewind_policy(config, &policy);
3886 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3887 		state = SPA_LOAD_RECOVER;
3888 
3889 	/*
3890 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3891 	 * because the user-supplied config is actually the one to trust when
3892 	 * doing an import.
3893 	 */
3894 	if (state != SPA_LOAD_RECOVER)
3895 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3896 
3897 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3898 	    policy.zrp_request);
3899 
3900 	/*
3901 	 * Propagate anything learned while loading the pool and pass it
3902 	 * back to caller (i.e. rewind info, missing devices, etc).
3903 	 */
3904 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3905 	    spa->spa_load_info) == 0);
3906 
3907 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3908 	/*
3909 	 * Toss any existing sparelist, as it doesn't have any validity
3910 	 * anymore, and conflicts with spa_has_spare().
3911 	 */
3912 	if (spa->spa_spares.sav_config) {
3913 		nvlist_free(spa->spa_spares.sav_config);
3914 		spa->spa_spares.sav_config = NULL;
3915 		spa_load_spares(spa);
3916 	}
3917 	if (spa->spa_l2cache.sav_config) {
3918 		nvlist_free(spa->spa_l2cache.sav_config);
3919 		spa->spa_l2cache.sav_config = NULL;
3920 		spa_load_l2cache(spa);
3921 	}
3922 
3923 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3924 	    &nvroot) == 0);
3925 	if (error == 0)
3926 		error = spa_validate_aux(spa, nvroot, -1ULL,
3927 		    VDEV_ALLOC_SPARE);
3928 	if (error == 0)
3929 		error = spa_validate_aux(spa, nvroot, -1ULL,
3930 		    VDEV_ALLOC_L2CACHE);
3931 	spa_config_exit(spa, SCL_ALL, FTAG);
3932 
3933 	if (props != NULL)
3934 		spa_configfile_set(spa, props, B_FALSE);
3935 
3936 	if (error != 0 || (props && spa_writeable(spa) &&
3937 	    (error = spa_prop_set(spa, props)))) {
3938 		spa_unload(spa);
3939 		spa_deactivate(spa);
3940 		spa_remove(spa);
3941 		mutex_exit(&spa_namespace_lock);
3942 		return (error);
3943 	}
3944 
3945 	spa_async_resume(spa);
3946 
3947 	/*
3948 	 * Override any spares and level 2 cache devices as specified by
3949 	 * the user, as these may have correct device names/devids, etc.
3950 	 */
3951 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3952 	    &spares, &nspares) == 0) {
3953 		if (spa->spa_spares.sav_config)
3954 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3955 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3956 		else
3957 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3958 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3959 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3960 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3961 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3962 		spa_load_spares(spa);
3963 		spa_config_exit(spa, SCL_ALL, FTAG);
3964 		spa->spa_spares.sav_sync = B_TRUE;
3965 	}
3966 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3967 	    &l2cache, &nl2cache) == 0) {
3968 		if (spa->spa_l2cache.sav_config)
3969 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3970 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3971 		else
3972 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3973 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3974 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3975 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3976 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3977 		spa_load_l2cache(spa);
3978 		spa_config_exit(spa, SCL_ALL, FTAG);
3979 		spa->spa_l2cache.sav_sync = B_TRUE;
3980 	}
3981 
3982 	/*
3983 	 * Check for any removed devices.
3984 	 */
3985 	if (spa->spa_autoreplace) {
3986 		spa_aux_check_removed(&spa->spa_spares);
3987 		spa_aux_check_removed(&spa->spa_l2cache);
3988 	}
3989 
3990 	if (spa_writeable(spa)) {
3991 		/*
3992 		 * Update the config cache to include the newly-imported pool.
3993 		 */
3994 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3995 	}
3996 
3997 	/*
3998 	 * It's possible that the pool was expanded while it was exported.
3999 	 * We kick off an async task to handle this for us.
4000 	 */
4001 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4002 
4003 	mutex_exit(&spa_namespace_lock);
4004 	spa_history_log_version(spa, "import");
4005 
4006 	return (0);
4007 }
4008 
4009 nvlist_t *
4010 spa_tryimport(nvlist_t *tryconfig)
4011 {
4012 	nvlist_t *config = NULL;
4013 	char *poolname;
4014 	spa_t *spa;
4015 	uint64_t state;
4016 	int error;
4017 
4018 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4019 		return (NULL);
4020 
4021 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4022 		return (NULL);
4023 
4024 	/*
4025 	 * Create and initialize the spa structure.
4026 	 */
4027 	mutex_enter(&spa_namespace_lock);
4028 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4029 	spa_activate(spa, FREAD);
4030 
4031 	/*
4032 	 * Pass off the heavy lifting to spa_load().
4033 	 * Pass TRUE for mosconfig because the user-supplied config
4034 	 * is actually the one to trust when doing an import.
4035 	 */
4036 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4037 
4038 	/*
4039 	 * If 'tryconfig' was at least parsable, return the current config.
4040 	 */
4041 	if (spa->spa_root_vdev != NULL) {
4042 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4043 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4044 		    poolname) == 0);
4045 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4046 		    state) == 0);
4047 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4048 		    spa->spa_uberblock.ub_timestamp) == 0);
4049 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4050 		    spa->spa_load_info) == 0);
4051 
4052 		/*
4053 		 * If the bootfs property exists on this pool then we
4054 		 * copy it out so that external consumers can tell which
4055 		 * pools are bootable.
4056 		 */
4057 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4058 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4059 
4060 			/*
4061 			 * We have to play games with the name since the
4062 			 * pool was opened as TRYIMPORT_NAME.
4063 			 */
4064 			if (dsl_dsobj_to_dsname(spa_name(spa),
4065 			    spa->spa_bootfs, tmpname) == 0) {
4066 				char *cp;
4067 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4068 
4069 				cp = strchr(tmpname, '/');
4070 				if (cp == NULL) {
4071 					(void) strlcpy(dsname, tmpname,
4072 					    MAXPATHLEN);
4073 				} else {
4074 					(void) snprintf(dsname, MAXPATHLEN,
4075 					    "%s/%s", poolname, ++cp);
4076 				}
4077 				VERIFY(nvlist_add_string(config,
4078 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4079 				kmem_free(dsname, MAXPATHLEN);
4080 			}
4081 			kmem_free(tmpname, MAXPATHLEN);
4082 		}
4083 
4084 		/*
4085 		 * Add the list of hot spares and level 2 cache devices.
4086 		 */
4087 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4088 		spa_add_spares(spa, config);
4089 		spa_add_l2cache(spa, config);
4090 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4091 	}
4092 
4093 	spa_unload(spa);
4094 	spa_deactivate(spa);
4095 	spa_remove(spa);
4096 	mutex_exit(&spa_namespace_lock);
4097 
4098 	return (config);
4099 }
4100 
4101 /*
4102  * Pool export/destroy
4103  *
4104  * The act of destroying or exporting a pool is very simple.  We make sure there
4105  * is no more pending I/O and any references to the pool are gone.  Then, we
4106  * update the pool state and sync all the labels to disk, removing the
4107  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4108  * we don't sync the labels or remove the configuration cache.
4109  */
4110 static int
4111 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4112     boolean_t force, boolean_t hardforce)
4113 {
4114 	spa_t *spa;
4115 
4116 	if (oldconfig)
4117 		*oldconfig = NULL;
4118 
4119 	if (!(spa_mode_global & FWRITE))
4120 		return (SET_ERROR(EROFS));
4121 
4122 	mutex_enter(&spa_namespace_lock);
4123 	if ((spa = spa_lookup(pool)) == NULL) {
4124 		mutex_exit(&spa_namespace_lock);
4125 		return (SET_ERROR(ENOENT));
4126 	}
4127 
4128 	/*
4129 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4130 	 * reacquire the namespace lock, and see if we can export.
4131 	 */
4132 	spa_open_ref(spa, FTAG);
4133 	mutex_exit(&spa_namespace_lock);
4134 	spa_async_suspend(spa);
4135 	mutex_enter(&spa_namespace_lock);
4136 	spa_close(spa, FTAG);
4137 
4138 	/*
4139 	 * The pool will be in core if it's openable,
4140 	 * in which case we can modify its state.
4141 	 */
4142 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4143 		/*
4144 		 * Objsets may be open only because they're dirty, so we
4145 		 * have to force it to sync before checking spa_refcnt.
4146 		 */
4147 		txg_wait_synced(spa->spa_dsl_pool, 0);
4148 
4149 		/*
4150 		 * A pool cannot be exported or destroyed if there are active
4151 		 * references.  If we are resetting a pool, allow references by
4152 		 * fault injection handlers.
4153 		 */
4154 		if (!spa_refcount_zero(spa) ||
4155 		    (spa->spa_inject_ref != 0 &&
4156 		    new_state != POOL_STATE_UNINITIALIZED)) {
4157 			spa_async_resume(spa);
4158 			mutex_exit(&spa_namespace_lock);
4159 			return (SET_ERROR(EBUSY));
4160 		}
4161 
4162 		/*
4163 		 * A pool cannot be exported if it has an active shared spare.
4164 		 * This is to prevent other pools stealing the active spare
4165 		 * from an exported pool. At user's own will, such pool can
4166 		 * be forcedly exported.
4167 		 */
4168 		if (!force && new_state == POOL_STATE_EXPORTED &&
4169 		    spa_has_active_shared_spare(spa)) {
4170 			spa_async_resume(spa);
4171 			mutex_exit(&spa_namespace_lock);
4172 			return (SET_ERROR(EXDEV));
4173 		}
4174 
4175 		/*
4176 		 * We want this to be reflected on every label,
4177 		 * so mark them all dirty.  spa_unload() will do the
4178 		 * final sync that pushes these changes out.
4179 		 */
4180 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4181 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4182 			spa->spa_state = new_state;
4183 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4184 			    TXG_DEFER_SIZE + 1;
4185 			vdev_config_dirty(spa->spa_root_vdev);
4186 			spa_config_exit(spa, SCL_ALL, FTAG);
4187 		}
4188 	}
4189 
4190 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4191 
4192 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4193 		spa_unload(spa);
4194 		spa_deactivate(spa);
4195 	}
4196 
4197 	if (oldconfig && spa->spa_config)
4198 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4199 
4200 	if (new_state != POOL_STATE_UNINITIALIZED) {
4201 		if (!hardforce)
4202 			spa_config_sync(spa, B_TRUE, B_TRUE);
4203 		spa_remove(spa);
4204 	}
4205 	mutex_exit(&spa_namespace_lock);
4206 
4207 	return (0);
4208 }
4209 
4210 /*
4211  * Destroy a storage pool.
4212  */
4213 int
4214 spa_destroy(char *pool)
4215 {
4216 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4217 	    B_FALSE, B_FALSE));
4218 }
4219 
4220 /*
4221  * Export a storage pool.
4222  */
4223 int
4224 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4225     boolean_t hardforce)
4226 {
4227 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4228 	    force, hardforce));
4229 }
4230 
4231 /*
4232  * Similar to spa_export(), this unloads the spa_t without actually removing it
4233  * from the namespace in any way.
4234  */
4235 int
4236 spa_reset(char *pool)
4237 {
4238 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4239 	    B_FALSE, B_FALSE));
4240 }
4241 
4242 /*
4243  * ==========================================================================
4244  * Device manipulation
4245  * ==========================================================================
4246  */
4247 
4248 /*
4249  * Add a device to a storage pool.
4250  */
4251 int
4252 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4253 {
4254 	uint64_t txg, id;
4255 	int error;
4256 	vdev_t *rvd = spa->spa_root_vdev;
4257 	vdev_t *vd, *tvd;
4258 	nvlist_t **spares, **l2cache;
4259 	uint_t nspares, nl2cache;
4260 
4261 	ASSERT(spa_writeable(spa));
4262 
4263 	txg = spa_vdev_enter(spa);
4264 
4265 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4266 	    VDEV_ALLOC_ADD)) != 0)
4267 		return (spa_vdev_exit(spa, NULL, txg, error));
4268 
4269 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4270 
4271 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4272 	    &nspares) != 0)
4273 		nspares = 0;
4274 
4275 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4276 	    &nl2cache) != 0)
4277 		nl2cache = 0;
4278 
4279 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4280 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4281 
4282 	if (vd->vdev_children != 0 &&
4283 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4284 		return (spa_vdev_exit(spa, vd, txg, error));
4285 
4286 	/*
4287 	 * We must validate the spares and l2cache devices after checking the
4288 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4289 	 */
4290 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4291 		return (spa_vdev_exit(spa, vd, txg, error));
4292 
4293 	/*
4294 	 * Transfer each new top-level vdev from vd to rvd.
4295 	 */
4296 	for (int c = 0; c < vd->vdev_children; c++) {
4297 
4298 		/*
4299 		 * Set the vdev id to the first hole, if one exists.
4300 		 */
4301 		for (id = 0; id < rvd->vdev_children; id++) {
4302 			if (rvd->vdev_child[id]->vdev_ishole) {
4303 				vdev_free(rvd->vdev_child[id]);
4304 				break;
4305 			}
4306 		}
4307 		tvd = vd->vdev_child[c];
4308 		vdev_remove_child(vd, tvd);
4309 		tvd->vdev_id = id;
4310 		vdev_add_child(rvd, tvd);
4311 		vdev_config_dirty(tvd);
4312 	}
4313 
4314 	if (nspares != 0) {
4315 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4316 		    ZPOOL_CONFIG_SPARES);
4317 		spa_load_spares(spa);
4318 		spa->spa_spares.sav_sync = B_TRUE;
4319 	}
4320 
4321 	if (nl2cache != 0) {
4322 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4323 		    ZPOOL_CONFIG_L2CACHE);
4324 		spa_load_l2cache(spa);
4325 		spa->spa_l2cache.sav_sync = B_TRUE;
4326 	}
4327 
4328 	/*
4329 	 * We have to be careful when adding new vdevs to an existing pool.
4330 	 * If other threads start allocating from these vdevs before we
4331 	 * sync the config cache, and we lose power, then upon reboot we may
4332 	 * fail to open the pool because there are DVAs that the config cache
4333 	 * can't translate.  Therefore, we first add the vdevs without
4334 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4335 	 * and then let spa_config_update() initialize the new metaslabs.
4336 	 *
4337 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4338 	 * if we lose power at any point in this sequence, the remaining
4339 	 * steps will be completed the next time we load the pool.
4340 	 */
4341 	(void) spa_vdev_exit(spa, vd, txg, 0);
4342 
4343 	mutex_enter(&spa_namespace_lock);
4344 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4345 	mutex_exit(&spa_namespace_lock);
4346 
4347 	return (0);
4348 }
4349 
4350 /*
4351  * Attach a device to a mirror.  The arguments are the path to any device
4352  * in the mirror, and the nvroot for the new device.  If the path specifies
4353  * a device that is not mirrored, we automatically insert the mirror vdev.
4354  *
4355  * If 'replacing' is specified, the new device is intended to replace the
4356  * existing device; in this case the two devices are made into their own
4357  * mirror using the 'replacing' vdev, which is functionally identical to
4358  * the mirror vdev (it actually reuses all the same ops) but has a few
4359  * extra rules: you can't attach to it after it's been created, and upon
4360  * completion of resilvering, the first disk (the one being replaced)
4361  * is automatically detached.
4362  */
4363 int
4364 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4365 {
4366 	uint64_t txg, dtl_max_txg;
4367 	vdev_t *rvd = spa->spa_root_vdev;
4368 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4369 	vdev_ops_t *pvops;
4370 	char *oldvdpath, *newvdpath;
4371 	int newvd_isspare;
4372 	int error;
4373 
4374 	ASSERT(spa_writeable(spa));
4375 
4376 	txg = spa_vdev_enter(spa);
4377 
4378 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4379 
4380 	if (oldvd == NULL)
4381 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4382 
4383 	if (!oldvd->vdev_ops->vdev_op_leaf)
4384 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4385 
4386 	pvd = oldvd->vdev_parent;
4387 
4388 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4389 	    VDEV_ALLOC_ATTACH)) != 0)
4390 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4391 
4392 	if (newrootvd->vdev_children != 1)
4393 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4394 
4395 	newvd = newrootvd->vdev_child[0];
4396 
4397 	if (!newvd->vdev_ops->vdev_op_leaf)
4398 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4399 
4400 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4401 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4402 
4403 	/*
4404 	 * Spares can't replace logs
4405 	 */
4406 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4407 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4408 
4409 	if (!replacing) {
4410 		/*
4411 		 * For attach, the only allowable parent is a mirror or the root
4412 		 * vdev.
4413 		 */
4414 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4415 		    pvd->vdev_ops != &vdev_root_ops)
4416 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4417 
4418 		pvops = &vdev_mirror_ops;
4419 	} else {
4420 		/*
4421 		 * Active hot spares can only be replaced by inactive hot
4422 		 * spares.
4423 		 */
4424 		if (pvd->vdev_ops == &vdev_spare_ops &&
4425 		    oldvd->vdev_isspare &&
4426 		    !spa_has_spare(spa, newvd->vdev_guid))
4427 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4428 
4429 		/*
4430 		 * If the source is a hot spare, and the parent isn't already a
4431 		 * spare, then we want to create a new hot spare.  Otherwise, we
4432 		 * want to create a replacing vdev.  The user is not allowed to
4433 		 * attach to a spared vdev child unless the 'isspare' state is
4434 		 * the same (spare replaces spare, non-spare replaces
4435 		 * non-spare).
4436 		 */
4437 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4438 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4439 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4440 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4441 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4442 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4443 		}
4444 
4445 		if (newvd->vdev_isspare)
4446 			pvops = &vdev_spare_ops;
4447 		else
4448 			pvops = &vdev_replacing_ops;
4449 	}
4450 
4451 	/*
4452 	 * Make sure the new device is big enough.
4453 	 */
4454 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4455 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4456 
4457 	/*
4458 	 * The new device cannot have a higher alignment requirement
4459 	 * than the top-level vdev.
4460 	 */
4461 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4462 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4463 
4464 	/*
4465 	 * If this is an in-place replacement, update oldvd's path and devid
4466 	 * to make it distinguishable from newvd, and unopenable from now on.
4467 	 */
4468 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4469 		spa_strfree(oldvd->vdev_path);
4470 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4471 		    KM_SLEEP);
4472 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4473 		    newvd->vdev_path, "old");
4474 		if (oldvd->vdev_devid != NULL) {
4475 			spa_strfree(oldvd->vdev_devid);
4476 			oldvd->vdev_devid = NULL;
4477 		}
4478 	}
4479 
4480 	/* mark the device being resilvered */
4481 	newvd->vdev_resilver_txg = txg;
4482 
4483 	/*
4484 	 * If the parent is not a mirror, or if we're replacing, insert the new
4485 	 * mirror/replacing/spare vdev above oldvd.
4486 	 */
4487 	if (pvd->vdev_ops != pvops)
4488 		pvd = vdev_add_parent(oldvd, pvops);
4489 
4490 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4491 	ASSERT(pvd->vdev_ops == pvops);
4492 	ASSERT(oldvd->vdev_parent == pvd);
4493 
4494 	/*
4495 	 * Extract the new device from its root and add it to pvd.
4496 	 */
4497 	vdev_remove_child(newrootvd, newvd);
4498 	newvd->vdev_id = pvd->vdev_children;
4499 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4500 	vdev_add_child(pvd, newvd);
4501 
4502 	tvd = newvd->vdev_top;
4503 	ASSERT(pvd->vdev_top == tvd);
4504 	ASSERT(tvd->vdev_parent == rvd);
4505 
4506 	vdev_config_dirty(tvd);
4507 
4508 	/*
4509 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4510 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4511 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4512 	 */
4513 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4514 
4515 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4516 	    dtl_max_txg - TXG_INITIAL);
4517 
4518 	if (newvd->vdev_isspare) {
4519 		spa_spare_activate(newvd);
4520 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4521 	}
4522 
4523 	oldvdpath = spa_strdup(oldvd->vdev_path);
4524 	newvdpath = spa_strdup(newvd->vdev_path);
4525 	newvd_isspare = newvd->vdev_isspare;
4526 
4527 	/*
4528 	 * Mark newvd's DTL dirty in this txg.
4529 	 */
4530 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4531 
4532 	/*
4533 	 * Schedule the resilver to restart in the future. We do this to
4534 	 * ensure that dmu_sync-ed blocks have been stitched into the
4535 	 * respective datasets.
4536 	 */
4537 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4538 
4539 	/*
4540 	 * Commit the config
4541 	 */
4542 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4543 
4544 	spa_history_log_internal(spa, "vdev attach", NULL,
4545 	    "%s vdev=%s %s vdev=%s",
4546 	    replacing && newvd_isspare ? "spare in" :
4547 	    replacing ? "replace" : "attach", newvdpath,
4548 	    replacing ? "for" : "to", oldvdpath);
4549 
4550 	spa_strfree(oldvdpath);
4551 	spa_strfree(newvdpath);
4552 
4553 	if (spa->spa_bootfs)
4554 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4555 
4556 	return (0);
4557 }
4558 
4559 /*
4560  * Detach a device from a mirror or replacing vdev.
4561  *
4562  * If 'replace_done' is specified, only detach if the parent
4563  * is a replacing vdev.
4564  */
4565 int
4566 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4567 {
4568 	uint64_t txg;
4569 	int error;
4570 	vdev_t *rvd = spa->spa_root_vdev;
4571 	vdev_t *vd, *pvd, *cvd, *tvd;
4572 	boolean_t unspare = B_FALSE;
4573 	uint64_t unspare_guid = 0;
4574 	char *vdpath;
4575 
4576 	ASSERT(spa_writeable(spa));
4577 
4578 	txg = spa_vdev_enter(spa);
4579 
4580 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4581 
4582 	if (vd == NULL)
4583 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4584 
4585 	if (!vd->vdev_ops->vdev_op_leaf)
4586 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4587 
4588 	pvd = vd->vdev_parent;
4589 
4590 	/*
4591 	 * If the parent/child relationship is not as expected, don't do it.
4592 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4593 	 * vdev that's replacing B with C.  The user's intent in replacing
4594 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4595 	 * the replace by detaching C, the expected behavior is to end up
4596 	 * M(A,B).  But suppose that right after deciding to detach C,
4597 	 * the replacement of B completes.  We would have M(A,C), and then
4598 	 * ask to detach C, which would leave us with just A -- not what
4599 	 * the user wanted.  To prevent this, we make sure that the
4600 	 * parent/child relationship hasn't changed -- in this example,
4601 	 * that C's parent is still the replacing vdev R.
4602 	 */
4603 	if (pvd->vdev_guid != pguid && pguid != 0)
4604 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4605 
4606 	/*
4607 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4608 	 */
4609 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4610 	    pvd->vdev_ops != &vdev_spare_ops)
4611 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4612 
4613 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4614 	    spa_version(spa) >= SPA_VERSION_SPARES);
4615 
4616 	/*
4617 	 * Only mirror, replacing, and spare vdevs support detach.
4618 	 */
4619 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4620 	    pvd->vdev_ops != &vdev_mirror_ops &&
4621 	    pvd->vdev_ops != &vdev_spare_ops)
4622 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4623 
4624 	/*
4625 	 * If this device has the only valid copy of some data,
4626 	 * we cannot safely detach it.
4627 	 */
4628 	if (vdev_dtl_required(vd))
4629 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4630 
4631 	ASSERT(pvd->vdev_children >= 2);
4632 
4633 	/*
4634 	 * If we are detaching the second disk from a replacing vdev, then
4635 	 * check to see if we changed the original vdev's path to have "/old"
4636 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4637 	 */
4638 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4639 	    vd->vdev_path != NULL) {
4640 		size_t len = strlen(vd->vdev_path);
4641 
4642 		for (int c = 0; c < pvd->vdev_children; c++) {
4643 			cvd = pvd->vdev_child[c];
4644 
4645 			if (cvd == vd || cvd->vdev_path == NULL)
4646 				continue;
4647 
4648 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4649 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4650 				spa_strfree(cvd->vdev_path);
4651 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4652 				break;
4653 			}
4654 		}
4655 	}
4656 
4657 	/*
4658 	 * If we are detaching the original disk from a spare, then it implies
4659 	 * that the spare should become a real disk, and be removed from the
4660 	 * active spare list for the pool.
4661 	 */
4662 	if (pvd->vdev_ops == &vdev_spare_ops &&
4663 	    vd->vdev_id == 0 &&
4664 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4665 		unspare = B_TRUE;
4666 
4667 	/*
4668 	 * Erase the disk labels so the disk can be used for other things.
4669 	 * This must be done after all other error cases are handled,
4670 	 * but before we disembowel vd (so we can still do I/O to it).
4671 	 * But if we can't do it, don't treat the error as fatal --
4672 	 * it may be that the unwritability of the disk is the reason
4673 	 * it's being detached!
4674 	 */
4675 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4676 
4677 	/*
4678 	 * Remove vd from its parent and compact the parent's children.
4679 	 */
4680 	vdev_remove_child(pvd, vd);
4681 	vdev_compact_children(pvd);
4682 
4683 	/*
4684 	 * Remember one of the remaining children so we can get tvd below.
4685 	 */
4686 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4687 
4688 	/*
4689 	 * If we need to remove the remaining child from the list of hot spares,
4690 	 * do it now, marking the vdev as no longer a spare in the process.
4691 	 * We must do this before vdev_remove_parent(), because that can
4692 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4693 	 * reason, we must remove the spare now, in the same txg as the detach;
4694 	 * otherwise someone could attach a new sibling, change the GUID, and
4695 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4696 	 */
4697 	if (unspare) {
4698 		ASSERT(cvd->vdev_isspare);
4699 		spa_spare_remove(cvd);
4700 		unspare_guid = cvd->vdev_guid;
4701 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4702 		cvd->vdev_unspare = B_TRUE;
4703 	}
4704 
4705 	/*
4706 	 * If the parent mirror/replacing vdev only has one child,
4707 	 * the parent is no longer needed.  Remove it from the tree.
4708 	 */
4709 	if (pvd->vdev_children == 1) {
4710 		if (pvd->vdev_ops == &vdev_spare_ops)
4711 			cvd->vdev_unspare = B_FALSE;
4712 		vdev_remove_parent(cvd);
4713 	}
4714 
4715 
4716 	/*
4717 	 * We don't set tvd until now because the parent we just removed
4718 	 * may have been the previous top-level vdev.
4719 	 */
4720 	tvd = cvd->vdev_top;
4721 	ASSERT(tvd->vdev_parent == rvd);
4722 
4723 	/*
4724 	 * Reevaluate the parent vdev state.
4725 	 */
4726 	vdev_propagate_state(cvd);
4727 
4728 	/*
4729 	 * If the 'autoexpand' property is set on the pool then automatically
4730 	 * try to expand the size of the pool. For example if the device we
4731 	 * just detached was smaller than the others, it may be possible to
4732 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4733 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4734 	 */
4735 	if (spa->spa_autoexpand) {
4736 		vdev_reopen(tvd);
4737 		vdev_expand(tvd, txg);
4738 	}
4739 
4740 	vdev_config_dirty(tvd);
4741 
4742 	/*
4743 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4744 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4745 	 * But first make sure we're not on any *other* txg's DTL list, to
4746 	 * prevent vd from being accessed after it's freed.
4747 	 */
4748 	vdpath = spa_strdup(vd->vdev_path);
4749 	for (int t = 0; t < TXG_SIZE; t++)
4750 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4751 	vd->vdev_detached = B_TRUE;
4752 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4753 
4754 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4755 
4756 	/* hang on to the spa before we release the lock */
4757 	spa_open_ref(spa, FTAG);
4758 
4759 	error = spa_vdev_exit(spa, vd, txg, 0);
4760 
4761 	spa_history_log_internal(spa, "detach", NULL,
4762 	    "vdev=%s", vdpath);
4763 	spa_strfree(vdpath);
4764 
4765 	/*
4766 	 * If this was the removal of the original device in a hot spare vdev,
4767 	 * then we want to go through and remove the device from the hot spare
4768 	 * list of every other pool.
4769 	 */
4770 	if (unspare) {
4771 		spa_t *altspa = NULL;
4772 
4773 		mutex_enter(&spa_namespace_lock);
4774 		while ((altspa = spa_next(altspa)) != NULL) {
4775 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4776 			    altspa == spa)
4777 				continue;
4778 
4779 			spa_open_ref(altspa, FTAG);
4780 			mutex_exit(&spa_namespace_lock);
4781 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4782 			mutex_enter(&spa_namespace_lock);
4783 			spa_close(altspa, FTAG);
4784 		}
4785 		mutex_exit(&spa_namespace_lock);
4786 
4787 		/* search the rest of the vdevs for spares to remove */
4788 		spa_vdev_resilver_done(spa);
4789 	}
4790 
4791 	/* all done with the spa; OK to release */
4792 	mutex_enter(&spa_namespace_lock);
4793 	spa_close(spa, FTAG);
4794 	mutex_exit(&spa_namespace_lock);
4795 
4796 	return (error);
4797 }
4798 
4799 /*
4800  * Split a set of devices from their mirrors, and create a new pool from them.
4801  */
4802 int
4803 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4804     nvlist_t *props, boolean_t exp)
4805 {
4806 	int error = 0;
4807 	uint64_t txg, *glist;
4808 	spa_t *newspa;
4809 	uint_t c, children, lastlog;
4810 	nvlist_t **child, *nvl, *tmp;
4811 	dmu_tx_t *tx;
4812 	char *altroot = NULL;
4813 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4814 	boolean_t activate_slog;
4815 
4816 	ASSERT(spa_writeable(spa));
4817 
4818 	txg = spa_vdev_enter(spa);
4819 
4820 	/* clear the log and flush everything up to now */
4821 	activate_slog = spa_passivate_log(spa);
4822 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4823 	error = spa_offline_log(spa);
4824 	txg = spa_vdev_config_enter(spa);
4825 
4826 	if (activate_slog)
4827 		spa_activate_log(spa);
4828 
4829 	if (error != 0)
4830 		return (spa_vdev_exit(spa, NULL, txg, error));
4831 
4832 	/* check new spa name before going any further */
4833 	if (spa_lookup(newname) != NULL)
4834 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4835 
4836 	/*
4837 	 * scan through all the children to ensure they're all mirrors
4838 	 */
4839 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4840 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4841 	    &children) != 0)
4842 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4843 
4844 	/* first, check to ensure we've got the right child count */
4845 	rvd = spa->spa_root_vdev;
4846 	lastlog = 0;
4847 	for (c = 0; c < rvd->vdev_children; c++) {
4848 		vdev_t *vd = rvd->vdev_child[c];
4849 
4850 		/* don't count the holes & logs as children */
4851 		if (vd->vdev_islog || vd->vdev_ishole) {
4852 			if (lastlog == 0)
4853 				lastlog = c;
4854 			continue;
4855 		}
4856 
4857 		lastlog = 0;
4858 	}
4859 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4860 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4861 
4862 	/* next, ensure no spare or cache devices are part of the split */
4863 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4864 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4865 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4866 
4867 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4868 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4869 
4870 	/* then, loop over each vdev and validate it */
4871 	for (c = 0; c < children; c++) {
4872 		uint64_t is_hole = 0;
4873 
4874 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4875 		    &is_hole);
4876 
4877 		if (is_hole != 0) {
4878 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4879 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4880 				continue;
4881 			} else {
4882 				error = SET_ERROR(EINVAL);
4883 				break;
4884 			}
4885 		}
4886 
4887 		/* which disk is going to be split? */
4888 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4889 		    &glist[c]) != 0) {
4890 			error = SET_ERROR(EINVAL);
4891 			break;
4892 		}
4893 
4894 		/* look it up in the spa */
4895 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4896 		if (vml[c] == NULL) {
4897 			error = SET_ERROR(ENODEV);
4898 			break;
4899 		}
4900 
4901 		/* make sure there's nothing stopping the split */
4902 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4903 		    vml[c]->vdev_islog ||
4904 		    vml[c]->vdev_ishole ||
4905 		    vml[c]->vdev_isspare ||
4906 		    vml[c]->vdev_isl2cache ||
4907 		    !vdev_writeable(vml[c]) ||
4908 		    vml[c]->vdev_children != 0 ||
4909 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4910 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4911 			error = SET_ERROR(EINVAL);
4912 			break;
4913 		}
4914 
4915 		if (vdev_dtl_required(vml[c])) {
4916 			error = SET_ERROR(EBUSY);
4917 			break;
4918 		}
4919 
4920 		/* we need certain info from the top level */
4921 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4922 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4923 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4924 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4925 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4926 		    vml[c]->vdev_top->vdev_asize) == 0);
4927 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4928 		    vml[c]->vdev_top->vdev_ashift) == 0);
4929 	}
4930 
4931 	if (error != 0) {
4932 		kmem_free(vml, children * sizeof (vdev_t *));
4933 		kmem_free(glist, children * sizeof (uint64_t));
4934 		return (spa_vdev_exit(spa, NULL, txg, error));
4935 	}
4936 
4937 	/* stop writers from using the disks */
4938 	for (c = 0; c < children; c++) {
4939 		if (vml[c] != NULL)
4940 			vml[c]->vdev_offline = B_TRUE;
4941 	}
4942 	vdev_reopen(spa->spa_root_vdev);
4943 
4944 	/*
4945 	 * Temporarily record the splitting vdevs in the spa config.  This
4946 	 * will disappear once the config is regenerated.
4947 	 */
4948 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4949 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4950 	    glist, children) == 0);
4951 	kmem_free(glist, children * sizeof (uint64_t));
4952 
4953 	mutex_enter(&spa->spa_props_lock);
4954 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4955 	    nvl) == 0);
4956 	mutex_exit(&spa->spa_props_lock);
4957 	spa->spa_config_splitting = nvl;
4958 	vdev_config_dirty(spa->spa_root_vdev);
4959 
4960 	/* configure and create the new pool */
4961 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4962 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4963 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4964 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4965 	    spa_version(spa)) == 0);
4966 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4967 	    spa->spa_config_txg) == 0);
4968 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4969 	    spa_generate_guid(NULL)) == 0);
4970 	(void) nvlist_lookup_string(props,
4971 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4972 
4973 	/* add the new pool to the namespace */
4974 	newspa = spa_add(newname, config, altroot);
4975 	newspa->spa_config_txg = spa->spa_config_txg;
4976 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4977 
4978 	/* release the spa config lock, retaining the namespace lock */
4979 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4980 
4981 	if (zio_injection_enabled)
4982 		zio_handle_panic_injection(spa, FTAG, 1);
4983 
4984 	spa_activate(newspa, spa_mode_global);
4985 	spa_async_suspend(newspa);
4986 
4987 	/* create the new pool from the disks of the original pool */
4988 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4989 	if (error)
4990 		goto out;
4991 
4992 	/* if that worked, generate a real config for the new pool */
4993 	if (newspa->spa_root_vdev != NULL) {
4994 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4995 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4996 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4997 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4998 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4999 		    B_TRUE));
5000 	}
5001 
5002 	/* set the props */
5003 	if (props != NULL) {
5004 		spa_configfile_set(newspa, props, B_FALSE);
5005 		error = spa_prop_set(newspa, props);
5006 		if (error)
5007 			goto out;
5008 	}
5009 
5010 	/* flush everything */
5011 	txg = spa_vdev_config_enter(newspa);
5012 	vdev_config_dirty(newspa->spa_root_vdev);
5013 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5014 
5015 	if (zio_injection_enabled)
5016 		zio_handle_panic_injection(spa, FTAG, 2);
5017 
5018 	spa_async_resume(newspa);
5019 
5020 	/* finally, update the original pool's config */
5021 	txg = spa_vdev_config_enter(spa);
5022 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5023 	error = dmu_tx_assign(tx, TXG_WAIT);
5024 	if (error != 0)
5025 		dmu_tx_abort(tx);
5026 	for (c = 0; c < children; c++) {
5027 		if (vml[c] != NULL) {
5028 			vdev_split(vml[c]);
5029 			if (error == 0)
5030 				spa_history_log_internal(spa, "detach", tx,
5031 				    "vdev=%s", vml[c]->vdev_path);
5032 			vdev_free(vml[c]);
5033 		}
5034 	}
5035 	vdev_config_dirty(spa->spa_root_vdev);
5036 	spa->spa_config_splitting = NULL;
5037 	nvlist_free(nvl);
5038 	if (error == 0)
5039 		dmu_tx_commit(tx);
5040 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5041 
5042 	if (zio_injection_enabled)
5043 		zio_handle_panic_injection(spa, FTAG, 3);
5044 
5045 	/* split is complete; log a history record */
5046 	spa_history_log_internal(newspa, "split", NULL,
5047 	    "from pool %s", spa_name(spa));
5048 
5049 	kmem_free(vml, children * sizeof (vdev_t *));
5050 
5051 	/* if we're not going to mount the filesystems in userland, export */
5052 	if (exp)
5053 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5054 		    B_FALSE, B_FALSE);
5055 
5056 	return (error);
5057 
5058 out:
5059 	spa_unload(newspa);
5060 	spa_deactivate(newspa);
5061 	spa_remove(newspa);
5062 
5063 	txg = spa_vdev_config_enter(spa);
5064 
5065 	/* re-online all offlined disks */
5066 	for (c = 0; c < children; c++) {
5067 		if (vml[c] != NULL)
5068 			vml[c]->vdev_offline = B_FALSE;
5069 	}
5070 	vdev_reopen(spa->spa_root_vdev);
5071 
5072 	nvlist_free(spa->spa_config_splitting);
5073 	spa->spa_config_splitting = NULL;
5074 	(void) spa_vdev_exit(spa, NULL, txg, error);
5075 
5076 	kmem_free(vml, children * sizeof (vdev_t *));
5077 	return (error);
5078 }
5079 
5080 static nvlist_t *
5081 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5082 {
5083 	for (int i = 0; i < count; i++) {
5084 		uint64_t guid;
5085 
5086 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5087 		    &guid) == 0);
5088 
5089 		if (guid == target_guid)
5090 			return (nvpp[i]);
5091 	}
5092 
5093 	return (NULL);
5094 }
5095 
5096 static void
5097 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5098 	nvlist_t *dev_to_remove)
5099 {
5100 	nvlist_t **newdev = NULL;
5101 
5102 	if (count > 1)
5103 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5104 
5105 	for (int i = 0, j = 0; i < count; i++) {
5106 		if (dev[i] == dev_to_remove)
5107 			continue;
5108 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5109 	}
5110 
5111 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5112 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5113 
5114 	for (int i = 0; i < count - 1; i++)
5115 		nvlist_free(newdev[i]);
5116 
5117 	if (count > 1)
5118 		kmem_free(newdev, (count - 1) * sizeof (void *));
5119 }
5120 
5121 /*
5122  * Evacuate the device.
5123  */
5124 static int
5125 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5126 {
5127 	uint64_t txg;
5128 	int error = 0;
5129 
5130 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5131 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5132 	ASSERT(vd == vd->vdev_top);
5133 
5134 	/*
5135 	 * Evacuate the device.  We don't hold the config lock as writer
5136 	 * since we need to do I/O but we do keep the
5137 	 * spa_namespace_lock held.  Once this completes the device
5138 	 * should no longer have any blocks allocated on it.
5139 	 */
5140 	if (vd->vdev_islog) {
5141 		if (vd->vdev_stat.vs_alloc != 0)
5142 			error = spa_offline_log(spa);
5143 	} else {
5144 		error = SET_ERROR(ENOTSUP);
5145 	}
5146 
5147 	if (error)
5148 		return (error);
5149 
5150 	/*
5151 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5152 	 * associated with this vdev, and wait for these changes to sync.
5153 	 */
5154 	ASSERT0(vd->vdev_stat.vs_alloc);
5155 	txg = spa_vdev_config_enter(spa);
5156 	vd->vdev_removing = B_TRUE;
5157 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5158 	vdev_config_dirty(vd);
5159 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5160 
5161 	return (0);
5162 }
5163 
5164 /*
5165  * Complete the removal by cleaning up the namespace.
5166  */
5167 static void
5168 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5169 {
5170 	vdev_t *rvd = spa->spa_root_vdev;
5171 	uint64_t id = vd->vdev_id;
5172 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5173 
5174 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5175 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5176 	ASSERT(vd == vd->vdev_top);
5177 
5178 	/*
5179 	 * Only remove any devices which are empty.
5180 	 */
5181 	if (vd->vdev_stat.vs_alloc != 0)
5182 		return;
5183 
5184 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5185 
5186 	if (list_link_active(&vd->vdev_state_dirty_node))
5187 		vdev_state_clean(vd);
5188 	if (list_link_active(&vd->vdev_config_dirty_node))
5189 		vdev_config_clean(vd);
5190 
5191 	vdev_free(vd);
5192 
5193 	if (last_vdev) {
5194 		vdev_compact_children(rvd);
5195 	} else {
5196 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5197 		vdev_add_child(rvd, vd);
5198 	}
5199 	vdev_config_dirty(rvd);
5200 
5201 	/*
5202 	 * Reassess the health of our root vdev.
5203 	 */
5204 	vdev_reopen(rvd);
5205 }
5206 
5207 /*
5208  * Remove a device from the pool -
5209  *
5210  * Removing a device from the vdev namespace requires several steps
5211  * and can take a significant amount of time.  As a result we use
5212  * the spa_vdev_config_[enter/exit] functions which allow us to
5213  * grab and release the spa_config_lock while still holding the namespace
5214  * lock.  During each step the configuration is synced out.
5215  *
5216  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5217  * devices.
5218  */
5219 int
5220 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5221 {
5222 	vdev_t *vd;
5223 	metaslab_group_t *mg;
5224 	nvlist_t **spares, **l2cache, *nv;
5225 	uint64_t txg = 0;
5226 	uint_t nspares, nl2cache;
5227 	int error = 0;
5228 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5229 
5230 	ASSERT(spa_writeable(spa));
5231 
5232 	if (!locked)
5233 		txg = spa_vdev_enter(spa);
5234 
5235 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5236 
5237 	if (spa->spa_spares.sav_vdevs != NULL &&
5238 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5239 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5240 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5241 		/*
5242 		 * Only remove the hot spare if it's not currently in use
5243 		 * in this pool.
5244 		 */
5245 		if (vd == NULL || unspare) {
5246 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5247 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5248 			spa_load_spares(spa);
5249 			spa->spa_spares.sav_sync = B_TRUE;
5250 		} else {
5251 			error = SET_ERROR(EBUSY);
5252 		}
5253 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5254 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5255 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5256 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5257 		/*
5258 		 * Cache devices can always be removed.
5259 		 */
5260 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5261 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5262 		spa_load_l2cache(spa);
5263 		spa->spa_l2cache.sav_sync = B_TRUE;
5264 	} else if (vd != NULL && vd->vdev_islog) {
5265 		ASSERT(!locked);
5266 		ASSERT(vd == vd->vdev_top);
5267 
5268 		mg = vd->vdev_mg;
5269 
5270 		/*
5271 		 * Stop allocating from this vdev.
5272 		 */
5273 		metaslab_group_passivate(mg);
5274 
5275 		/*
5276 		 * Wait for the youngest allocations and frees to sync,
5277 		 * and then wait for the deferral of those frees to finish.
5278 		 */
5279 		spa_vdev_config_exit(spa, NULL,
5280 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5281 
5282 		/*
5283 		 * Attempt to evacuate the vdev.
5284 		 */
5285 		error = spa_vdev_remove_evacuate(spa, vd);
5286 
5287 		txg = spa_vdev_config_enter(spa);
5288 
5289 		/*
5290 		 * If we couldn't evacuate the vdev, unwind.
5291 		 */
5292 		if (error) {
5293 			metaslab_group_activate(mg);
5294 			return (spa_vdev_exit(spa, NULL, txg, error));
5295 		}
5296 
5297 		/*
5298 		 * Clean up the vdev namespace.
5299 		 */
5300 		spa_vdev_remove_from_namespace(spa, vd);
5301 
5302 	} else if (vd != NULL) {
5303 		/*
5304 		 * Normal vdevs cannot be removed (yet).
5305 		 */
5306 		error = SET_ERROR(ENOTSUP);
5307 	} else {
5308 		/*
5309 		 * There is no vdev of any kind with the specified guid.
5310 		 */
5311 		error = SET_ERROR(ENOENT);
5312 	}
5313 
5314 	if (!locked)
5315 		return (spa_vdev_exit(spa, NULL, txg, error));
5316 
5317 	return (error);
5318 }
5319 
5320 /*
5321  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5322  * currently spared, so we can detach it.
5323  */
5324 static vdev_t *
5325 spa_vdev_resilver_done_hunt(vdev_t *vd)
5326 {
5327 	vdev_t *newvd, *oldvd;
5328 
5329 	for (int c = 0; c < vd->vdev_children; c++) {
5330 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5331 		if (oldvd != NULL)
5332 			return (oldvd);
5333 	}
5334 
5335 	/*
5336 	 * Check for a completed replacement.  We always consider the first
5337 	 * vdev in the list to be the oldest vdev, and the last one to be
5338 	 * the newest (see spa_vdev_attach() for how that works).  In
5339 	 * the case where the newest vdev is faulted, we will not automatically
5340 	 * remove it after a resilver completes.  This is OK as it will require
5341 	 * user intervention to determine which disk the admin wishes to keep.
5342 	 */
5343 	if (vd->vdev_ops == &vdev_replacing_ops) {
5344 		ASSERT(vd->vdev_children > 1);
5345 
5346 		newvd = vd->vdev_child[vd->vdev_children - 1];
5347 		oldvd = vd->vdev_child[0];
5348 
5349 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5350 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5351 		    !vdev_dtl_required(oldvd))
5352 			return (oldvd);
5353 	}
5354 
5355 	/*
5356 	 * Check for a completed resilver with the 'unspare' flag set.
5357 	 */
5358 	if (vd->vdev_ops == &vdev_spare_ops) {
5359 		vdev_t *first = vd->vdev_child[0];
5360 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5361 
5362 		if (last->vdev_unspare) {
5363 			oldvd = first;
5364 			newvd = last;
5365 		} else if (first->vdev_unspare) {
5366 			oldvd = last;
5367 			newvd = first;
5368 		} else {
5369 			oldvd = NULL;
5370 		}
5371 
5372 		if (oldvd != NULL &&
5373 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5374 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5375 		    !vdev_dtl_required(oldvd))
5376 			return (oldvd);
5377 
5378 		/*
5379 		 * If there are more than two spares attached to a disk,
5380 		 * and those spares are not required, then we want to
5381 		 * attempt to free them up now so that they can be used
5382 		 * by other pools.  Once we're back down to a single
5383 		 * disk+spare, we stop removing them.
5384 		 */
5385 		if (vd->vdev_children > 2) {
5386 			newvd = vd->vdev_child[1];
5387 
5388 			if (newvd->vdev_isspare && last->vdev_isspare &&
5389 			    vdev_dtl_empty(last, DTL_MISSING) &&
5390 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5391 			    !vdev_dtl_required(newvd))
5392 				return (newvd);
5393 		}
5394 	}
5395 
5396 	return (NULL);
5397 }
5398 
5399 static void
5400 spa_vdev_resilver_done(spa_t *spa)
5401 {
5402 	vdev_t *vd, *pvd, *ppvd;
5403 	uint64_t guid, sguid, pguid, ppguid;
5404 
5405 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406 
5407 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5408 		pvd = vd->vdev_parent;
5409 		ppvd = pvd->vdev_parent;
5410 		guid = vd->vdev_guid;
5411 		pguid = pvd->vdev_guid;
5412 		ppguid = ppvd->vdev_guid;
5413 		sguid = 0;
5414 		/*
5415 		 * If we have just finished replacing a hot spared device, then
5416 		 * we need to detach the parent's first child (the original hot
5417 		 * spare) as well.
5418 		 */
5419 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5420 		    ppvd->vdev_children == 2) {
5421 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5422 			sguid = ppvd->vdev_child[1]->vdev_guid;
5423 		}
5424 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5425 
5426 		spa_config_exit(spa, SCL_ALL, FTAG);
5427 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5428 			return;
5429 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5430 			return;
5431 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5432 	}
5433 
5434 	spa_config_exit(spa, SCL_ALL, FTAG);
5435 }
5436 
5437 /*
5438  * Update the stored path or FRU for this vdev.
5439  */
5440 int
5441 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5442     boolean_t ispath)
5443 {
5444 	vdev_t *vd;
5445 	boolean_t sync = B_FALSE;
5446 
5447 	ASSERT(spa_writeable(spa));
5448 
5449 	spa_vdev_state_enter(spa, SCL_ALL);
5450 
5451 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5452 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5453 
5454 	if (!vd->vdev_ops->vdev_op_leaf)
5455 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5456 
5457 	if (ispath) {
5458 		if (strcmp(value, vd->vdev_path) != 0) {
5459 			spa_strfree(vd->vdev_path);
5460 			vd->vdev_path = spa_strdup(value);
5461 			sync = B_TRUE;
5462 		}
5463 	} else {
5464 		if (vd->vdev_fru == NULL) {
5465 			vd->vdev_fru = spa_strdup(value);
5466 			sync = B_TRUE;
5467 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5468 			spa_strfree(vd->vdev_fru);
5469 			vd->vdev_fru = spa_strdup(value);
5470 			sync = B_TRUE;
5471 		}
5472 	}
5473 
5474 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5475 }
5476 
5477 int
5478 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5479 {
5480 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5481 }
5482 
5483 int
5484 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5485 {
5486 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5487 }
5488 
5489 /*
5490  * ==========================================================================
5491  * SPA Scanning
5492  * ==========================================================================
5493  */
5494 
5495 int
5496 spa_scan_stop(spa_t *spa)
5497 {
5498 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5499 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5500 		return (SET_ERROR(EBUSY));
5501 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5502 }
5503 
5504 int
5505 spa_scan(spa_t *spa, pool_scan_func_t func)
5506 {
5507 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5508 
5509 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5510 		return (SET_ERROR(ENOTSUP));
5511 
5512 	/*
5513 	 * If a resilver was requested, but there is no DTL on a
5514 	 * writeable leaf device, we have nothing to do.
5515 	 */
5516 	if (func == POOL_SCAN_RESILVER &&
5517 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5518 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5519 		return (0);
5520 	}
5521 
5522 	return (dsl_scan(spa->spa_dsl_pool, func));
5523 }
5524 
5525 /*
5526  * ==========================================================================
5527  * SPA async task processing
5528  * ==========================================================================
5529  */
5530 
5531 static void
5532 spa_async_remove(spa_t *spa, vdev_t *vd)
5533 {
5534 	if (vd->vdev_remove_wanted) {
5535 		vd->vdev_remove_wanted = B_FALSE;
5536 		vd->vdev_delayed_close = B_FALSE;
5537 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5538 
5539 		/*
5540 		 * We want to clear the stats, but we don't want to do a full
5541 		 * vdev_clear() as that will cause us to throw away
5542 		 * degraded/faulted state as well as attempt to reopen the
5543 		 * device, all of which is a waste.
5544 		 */
5545 		vd->vdev_stat.vs_read_errors = 0;
5546 		vd->vdev_stat.vs_write_errors = 0;
5547 		vd->vdev_stat.vs_checksum_errors = 0;
5548 
5549 		vdev_state_dirty(vd->vdev_top);
5550 	}
5551 
5552 	for (int c = 0; c < vd->vdev_children; c++)
5553 		spa_async_remove(spa, vd->vdev_child[c]);
5554 }
5555 
5556 static void
5557 spa_async_probe(spa_t *spa, vdev_t *vd)
5558 {
5559 	if (vd->vdev_probe_wanted) {
5560 		vd->vdev_probe_wanted = B_FALSE;
5561 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5562 	}
5563 
5564 	for (int c = 0; c < vd->vdev_children; c++)
5565 		spa_async_probe(spa, vd->vdev_child[c]);
5566 }
5567 
5568 static void
5569 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5570 {
5571 	sysevent_id_t eid;
5572 	nvlist_t *attr;
5573 	char *physpath;
5574 
5575 	if (!spa->spa_autoexpand)
5576 		return;
5577 
5578 	for (int c = 0; c < vd->vdev_children; c++) {
5579 		vdev_t *cvd = vd->vdev_child[c];
5580 		spa_async_autoexpand(spa, cvd);
5581 	}
5582 
5583 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5584 		return;
5585 
5586 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5587 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5588 
5589 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5590 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5591 
5592 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5593 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5594 
5595 	nvlist_free(attr);
5596 	kmem_free(physpath, MAXPATHLEN);
5597 }
5598 
5599 static void
5600 spa_async_thread(spa_t *spa)
5601 {
5602 	int tasks;
5603 
5604 	ASSERT(spa->spa_sync_on);
5605 
5606 	mutex_enter(&spa->spa_async_lock);
5607 	tasks = spa->spa_async_tasks;
5608 	spa->spa_async_tasks = 0;
5609 	mutex_exit(&spa->spa_async_lock);
5610 
5611 	/*
5612 	 * See if the config needs to be updated.
5613 	 */
5614 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5615 		uint64_t old_space, new_space;
5616 
5617 		mutex_enter(&spa_namespace_lock);
5618 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5619 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5620 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5621 		mutex_exit(&spa_namespace_lock);
5622 
5623 		/*
5624 		 * If the pool grew as a result of the config update,
5625 		 * then log an internal history event.
5626 		 */
5627 		if (new_space != old_space) {
5628 			spa_history_log_internal(spa, "vdev online", NULL,
5629 			    "pool '%s' size: %llu(+%llu)",
5630 			    spa_name(spa), new_space, new_space - old_space);
5631 		}
5632 	}
5633 
5634 	/*
5635 	 * See if any devices need to be marked REMOVED.
5636 	 */
5637 	if (tasks & SPA_ASYNC_REMOVE) {
5638 		spa_vdev_state_enter(spa, SCL_NONE);
5639 		spa_async_remove(spa, spa->spa_root_vdev);
5640 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5641 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5642 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5643 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5644 		(void) spa_vdev_state_exit(spa, NULL, 0);
5645 	}
5646 
5647 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5648 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5649 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5650 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5651 	}
5652 
5653 	/*
5654 	 * See if any devices need to be probed.
5655 	 */
5656 	if (tasks & SPA_ASYNC_PROBE) {
5657 		spa_vdev_state_enter(spa, SCL_NONE);
5658 		spa_async_probe(spa, spa->spa_root_vdev);
5659 		(void) spa_vdev_state_exit(spa, NULL, 0);
5660 	}
5661 
5662 	/*
5663 	 * If any devices are done replacing, detach them.
5664 	 */
5665 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5666 		spa_vdev_resilver_done(spa);
5667 
5668 	/*
5669 	 * Kick off a resilver.
5670 	 */
5671 	if (tasks & SPA_ASYNC_RESILVER)
5672 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5673 
5674 	/*
5675 	 * Let the world know that we're done.
5676 	 */
5677 	mutex_enter(&spa->spa_async_lock);
5678 	spa->spa_async_thread = NULL;
5679 	cv_broadcast(&spa->spa_async_cv);
5680 	mutex_exit(&spa->spa_async_lock);
5681 	thread_exit();
5682 }
5683 
5684 void
5685 spa_async_suspend(spa_t *spa)
5686 {
5687 	mutex_enter(&spa->spa_async_lock);
5688 	spa->spa_async_suspended++;
5689 	while (spa->spa_async_thread != NULL)
5690 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5691 	mutex_exit(&spa->spa_async_lock);
5692 }
5693 
5694 void
5695 spa_async_resume(spa_t *spa)
5696 {
5697 	mutex_enter(&spa->spa_async_lock);
5698 	ASSERT(spa->spa_async_suspended != 0);
5699 	spa->spa_async_suspended--;
5700 	mutex_exit(&spa->spa_async_lock);
5701 }
5702 
5703 static boolean_t
5704 spa_async_tasks_pending(spa_t *spa)
5705 {
5706 	uint_t non_config_tasks;
5707 	uint_t config_task;
5708 	boolean_t config_task_suspended;
5709 
5710 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5711 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5712 	if (spa->spa_ccw_fail_time == 0) {
5713 		config_task_suspended = B_FALSE;
5714 	} else {
5715 		config_task_suspended =
5716 		    (gethrtime() - spa->spa_ccw_fail_time) <
5717 		    (zfs_ccw_retry_interval * NANOSEC);
5718 	}
5719 
5720 	return (non_config_tasks || (config_task && !config_task_suspended));
5721 }
5722 
5723 static void
5724 spa_async_dispatch(spa_t *spa)
5725 {
5726 	mutex_enter(&spa->spa_async_lock);
5727 	if (spa_async_tasks_pending(spa) &&
5728 	    !spa->spa_async_suspended &&
5729 	    spa->spa_async_thread == NULL &&
5730 	    rootdir != NULL)
5731 		spa->spa_async_thread = thread_create(NULL, 0,
5732 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5733 	mutex_exit(&spa->spa_async_lock);
5734 }
5735 
5736 void
5737 spa_async_request(spa_t *spa, int task)
5738 {
5739 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5740 	mutex_enter(&spa->spa_async_lock);
5741 	spa->spa_async_tasks |= task;
5742 	mutex_exit(&spa->spa_async_lock);
5743 }
5744 
5745 /*
5746  * ==========================================================================
5747  * SPA syncing routines
5748  * ==========================================================================
5749  */
5750 
5751 static int
5752 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5753 {
5754 	bpobj_t *bpo = arg;
5755 	bpobj_enqueue(bpo, bp, tx);
5756 	return (0);
5757 }
5758 
5759 static int
5760 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5761 {
5762 	zio_t *zio = arg;
5763 
5764 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5765 	    zio->io_flags));
5766 	return (0);
5767 }
5768 
5769 /*
5770  * Note: this simple function is not inlined to make it easier to dtrace the
5771  * amount of time spent syncing frees.
5772  */
5773 static void
5774 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5775 {
5776 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5777 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5778 	VERIFY(zio_wait(zio) == 0);
5779 }
5780 
5781 /*
5782  * Note: this simple function is not inlined to make it easier to dtrace the
5783  * amount of time spent syncing deferred frees.
5784  */
5785 static void
5786 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5787 {
5788 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5789 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5790 	    spa_free_sync_cb, zio, tx), ==, 0);
5791 	VERIFY0(zio_wait(zio));
5792 }
5793 
5794 
5795 static void
5796 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5797 {
5798 	char *packed = NULL;
5799 	size_t bufsize;
5800 	size_t nvsize = 0;
5801 	dmu_buf_t *db;
5802 
5803 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5804 
5805 	/*
5806 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5807 	 * information.  This avoids the dmu_buf_will_dirty() path and
5808 	 * saves us a pre-read to get data we don't actually care about.
5809 	 */
5810 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5811 	packed = kmem_alloc(bufsize, KM_SLEEP);
5812 
5813 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5814 	    KM_SLEEP) == 0);
5815 	bzero(packed + nvsize, bufsize - nvsize);
5816 
5817 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5818 
5819 	kmem_free(packed, bufsize);
5820 
5821 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5822 	dmu_buf_will_dirty(db, tx);
5823 	*(uint64_t *)db->db_data = nvsize;
5824 	dmu_buf_rele(db, FTAG);
5825 }
5826 
5827 static void
5828 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5829     const char *config, const char *entry)
5830 {
5831 	nvlist_t *nvroot;
5832 	nvlist_t **list;
5833 	int i;
5834 
5835 	if (!sav->sav_sync)
5836 		return;
5837 
5838 	/*
5839 	 * Update the MOS nvlist describing the list of available devices.
5840 	 * spa_validate_aux() will have already made sure this nvlist is
5841 	 * valid and the vdevs are labeled appropriately.
5842 	 */
5843 	if (sav->sav_object == 0) {
5844 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5845 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5846 		    sizeof (uint64_t), tx);
5847 		VERIFY(zap_update(spa->spa_meta_objset,
5848 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5849 		    &sav->sav_object, tx) == 0);
5850 	}
5851 
5852 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5853 	if (sav->sav_count == 0) {
5854 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5855 	} else {
5856 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5857 		for (i = 0; i < sav->sav_count; i++)
5858 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5859 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5860 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5861 		    sav->sav_count) == 0);
5862 		for (i = 0; i < sav->sav_count; i++)
5863 			nvlist_free(list[i]);
5864 		kmem_free(list, sav->sav_count * sizeof (void *));
5865 	}
5866 
5867 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5868 	nvlist_free(nvroot);
5869 
5870 	sav->sav_sync = B_FALSE;
5871 }
5872 
5873 static void
5874 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5875 {
5876 	nvlist_t *config;
5877 
5878 	if (list_is_empty(&spa->spa_config_dirty_list))
5879 		return;
5880 
5881 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5882 
5883 	config = spa_config_generate(spa, spa->spa_root_vdev,
5884 	    dmu_tx_get_txg(tx), B_FALSE);
5885 
5886 	/*
5887 	 * If we're upgrading the spa version then make sure that
5888 	 * the config object gets updated with the correct version.
5889 	 */
5890 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5891 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5892 		    spa->spa_uberblock.ub_version);
5893 
5894 	spa_config_exit(spa, SCL_STATE, FTAG);
5895 
5896 	if (spa->spa_config_syncing)
5897 		nvlist_free(spa->spa_config_syncing);
5898 	spa->spa_config_syncing = config;
5899 
5900 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5901 }
5902 
5903 static void
5904 spa_sync_version(void *arg, dmu_tx_t *tx)
5905 {
5906 	uint64_t *versionp = arg;
5907 	uint64_t version = *versionp;
5908 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5909 
5910 	/*
5911 	 * Setting the version is special cased when first creating the pool.
5912 	 */
5913 	ASSERT(tx->tx_txg != TXG_INITIAL);
5914 
5915 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5916 	ASSERT(version >= spa_version(spa));
5917 
5918 	spa->spa_uberblock.ub_version = version;
5919 	vdev_config_dirty(spa->spa_root_vdev);
5920 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5921 }
5922 
5923 /*
5924  * Set zpool properties.
5925  */
5926 static void
5927 spa_sync_props(void *arg, dmu_tx_t *tx)
5928 {
5929 	nvlist_t *nvp = arg;
5930 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5931 	objset_t *mos = spa->spa_meta_objset;
5932 	nvpair_t *elem = NULL;
5933 
5934 	mutex_enter(&spa->spa_props_lock);
5935 
5936 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5937 		uint64_t intval;
5938 		char *strval, *fname;
5939 		zpool_prop_t prop;
5940 		const char *propname;
5941 		zprop_type_t proptype;
5942 		spa_feature_t fid;
5943 
5944 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5945 		case ZPROP_INVAL:
5946 			/*
5947 			 * We checked this earlier in spa_prop_validate().
5948 			 */
5949 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5950 
5951 			fname = strchr(nvpair_name(elem), '@') + 1;
5952 			VERIFY0(zfeature_lookup_name(fname, &fid));
5953 
5954 			spa_feature_enable(spa, fid, tx);
5955 			spa_history_log_internal(spa, "set", tx,
5956 			    "%s=enabled", nvpair_name(elem));
5957 			break;
5958 
5959 		case ZPOOL_PROP_VERSION:
5960 			intval = fnvpair_value_uint64(elem);
5961 			/*
5962 			 * The version is synced seperatly before other
5963 			 * properties and should be correct by now.
5964 			 */
5965 			ASSERT3U(spa_version(spa), >=, intval);
5966 			break;
5967 
5968 		case ZPOOL_PROP_ALTROOT:
5969 			/*
5970 			 * 'altroot' is a non-persistent property. It should
5971 			 * have been set temporarily at creation or import time.
5972 			 */
5973 			ASSERT(spa->spa_root != NULL);
5974 			break;
5975 
5976 		case ZPOOL_PROP_READONLY:
5977 		case ZPOOL_PROP_CACHEFILE:
5978 			/*
5979 			 * 'readonly' and 'cachefile' are also non-persisitent
5980 			 * properties.
5981 			 */
5982 			break;
5983 		case ZPOOL_PROP_COMMENT:
5984 			strval = fnvpair_value_string(elem);
5985 			if (spa->spa_comment != NULL)
5986 				spa_strfree(spa->spa_comment);
5987 			spa->spa_comment = spa_strdup(strval);
5988 			/*
5989 			 * We need to dirty the configuration on all the vdevs
5990 			 * so that their labels get updated.  It's unnecessary
5991 			 * to do this for pool creation since the vdev's
5992 			 * configuratoin has already been dirtied.
5993 			 */
5994 			if (tx->tx_txg != TXG_INITIAL)
5995 				vdev_config_dirty(spa->spa_root_vdev);
5996 			spa_history_log_internal(spa, "set", tx,
5997 			    "%s=%s", nvpair_name(elem), strval);
5998 			break;
5999 		default:
6000 			/*
6001 			 * Set pool property values in the poolprops mos object.
6002 			 */
6003 			if (spa->spa_pool_props_object == 0) {
6004 				spa->spa_pool_props_object =
6005 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6006 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6007 				    tx);
6008 			}
6009 
6010 			/* normalize the property name */
6011 			propname = zpool_prop_to_name(prop);
6012 			proptype = zpool_prop_get_type(prop);
6013 
6014 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6015 				ASSERT(proptype == PROP_TYPE_STRING);
6016 				strval = fnvpair_value_string(elem);
6017 				VERIFY0(zap_update(mos,
6018 				    spa->spa_pool_props_object, propname,
6019 				    1, strlen(strval) + 1, strval, tx));
6020 				spa_history_log_internal(spa, "set", tx,
6021 				    "%s=%s", nvpair_name(elem), strval);
6022 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6023 				intval = fnvpair_value_uint64(elem);
6024 
6025 				if (proptype == PROP_TYPE_INDEX) {
6026 					const char *unused;
6027 					VERIFY0(zpool_prop_index_to_string(
6028 					    prop, intval, &unused));
6029 				}
6030 				VERIFY0(zap_update(mos,
6031 				    spa->spa_pool_props_object, propname,
6032 				    8, 1, &intval, tx));
6033 				spa_history_log_internal(spa, "set", tx,
6034 				    "%s=%lld", nvpair_name(elem), intval);
6035 			} else {
6036 				ASSERT(0); /* not allowed */
6037 			}
6038 
6039 			switch (prop) {
6040 			case ZPOOL_PROP_DELEGATION:
6041 				spa->spa_delegation = intval;
6042 				break;
6043 			case ZPOOL_PROP_BOOTFS:
6044 				spa->spa_bootfs = intval;
6045 				break;
6046 			case ZPOOL_PROP_FAILUREMODE:
6047 				spa->spa_failmode = intval;
6048 				break;
6049 			case ZPOOL_PROP_AUTOEXPAND:
6050 				spa->spa_autoexpand = intval;
6051 				if (tx->tx_txg != TXG_INITIAL)
6052 					spa_async_request(spa,
6053 					    SPA_ASYNC_AUTOEXPAND);
6054 				break;
6055 			case ZPOOL_PROP_DEDUPDITTO:
6056 				spa->spa_dedup_ditto = intval;
6057 				break;
6058 			default:
6059 				break;
6060 			}
6061 		}
6062 
6063 	}
6064 
6065 	mutex_exit(&spa->spa_props_lock);
6066 }
6067 
6068 /*
6069  * Perform one-time upgrade on-disk changes.  spa_version() does not
6070  * reflect the new version this txg, so there must be no changes this
6071  * txg to anything that the upgrade code depends on after it executes.
6072  * Therefore this must be called after dsl_pool_sync() does the sync
6073  * tasks.
6074  */
6075 static void
6076 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6077 {
6078 	dsl_pool_t *dp = spa->spa_dsl_pool;
6079 
6080 	ASSERT(spa->spa_sync_pass == 1);
6081 
6082 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6083 
6084 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6085 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6086 		dsl_pool_create_origin(dp, tx);
6087 
6088 		/* Keeping the origin open increases spa_minref */
6089 		spa->spa_minref += 3;
6090 	}
6091 
6092 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6093 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6094 		dsl_pool_upgrade_clones(dp, tx);
6095 	}
6096 
6097 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6098 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6099 		dsl_pool_upgrade_dir_clones(dp, tx);
6100 
6101 		/* Keeping the freedir open increases spa_minref */
6102 		spa->spa_minref += 3;
6103 	}
6104 
6105 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6106 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6107 		spa_feature_create_zap_objects(spa, tx);
6108 	}
6109 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6110 }
6111 
6112 /*
6113  * Sync the specified transaction group.  New blocks may be dirtied as
6114  * part of the process, so we iterate until it converges.
6115  */
6116 void
6117 spa_sync(spa_t *spa, uint64_t txg)
6118 {
6119 	dsl_pool_t *dp = spa->spa_dsl_pool;
6120 	objset_t *mos = spa->spa_meta_objset;
6121 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6122 	vdev_t *rvd = spa->spa_root_vdev;
6123 	vdev_t *vd;
6124 	dmu_tx_t *tx;
6125 	int error;
6126 
6127 	VERIFY(spa_writeable(spa));
6128 
6129 	/*
6130 	 * Lock out configuration changes.
6131 	 */
6132 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6133 
6134 	spa->spa_syncing_txg = txg;
6135 	spa->spa_sync_pass = 0;
6136 
6137 	/*
6138 	 * If there are any pending vdev state changes, convert them
6139 	 * into config changes that go out with this transaction group.
6140 	 */
6141 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6142 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6143 		/*
6144 		 * We need the write lock here because, for aux vdevs,
6145 		 * calling vdev_config_dirty() modifies sav_config.
6146 		 * This is ugly and will become unnecessary when we
6147 		 * eliminate the aux vdev wart by integrating all vdevs
6148 		 * into the root vdev tree.
6149 		 */
6150 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6151 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6152 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6153 			vdev_state_clean(vd);
6154 			vdev_config_dirty(vd);
6155 		}
6156 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6157 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6158 	}
6159 	spa_config_exit(spa, SCL_STATE, FTAG);
6160 
6161 	tx = dmu_tx_create_assigned(dp, txg);
6162 
6163 	spa->spa_sync_starttime = gethrtime();
6164 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6165 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6166 
6167 	/*
6168 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6169 	 * set spa_deflate if we have no raid-z vdevs.
6170 	 */
6171 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6172 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6173 		int i;
6174 
6175 		for (i = 0; i < rvd->vdev_children; i++) {
6176 			vd = rvd->vdev_child[i];
6177 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6178 				break;
6179 		}
6180 		if (i == rvd->vdev_children) {
6181 			spa->spa_deflate = TRUE;
6182 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6183 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6184 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6185 		}
6186 	}
6187 
6188 	/*
6189 	 * If anything has changed in this txg, or if someone is waiting
6190 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6191 	 * deferred frees from the previous txg.  If not, leave them
6192 	 * alone so that we don't generate work on an otherwise idle
6193 	 * system.
6194 	 */
6195 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6196 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6197 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6198 	    ((dsl_scan_active(dp->dp_scan) ||
6199 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6200 		spa_sync_deferred_frees(spa, tx);
6201 	}
6202 
6203 	/*
6204 	 * Iterate to convergence.
6205 	 */
6206 	do {
6207 		int pass = ++spa->spa_sync_pass;
6208 
6209 		spa_sync_config_object(spa, tx);
6210 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6211 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6212 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6213 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6214 		spa_errlog_sync(spa, txg);
6215 		dsl_pool_sync(dp, txg);
6216 
6217 		if (pass < zfs_sync_pass_deferred_free) {
6218 			spa_sync_frees(spa, free_bpl, tx);
6219 		} else {
6220 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6221 			    &spa->spa_deferred_bpobj, tx);
6222 		}
6223 
6224 		ddt_sync(spa, txg);
6225 		dsl_scan_sync(dp, tx);
6226 
6227 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6228 			vdev_sync(vd, txg);
6229 
6230 		if (pass == 1)
6231 			spa_sync_upgrades(spa, tx);
6232 
6233 	} while (dmu_objset_is_dirty(mos, txg));
6234 
6235 	/*
6236 	 * Rewrite the vdev configuration (which includes the uberblock)
6237 	 * to commit the transaction group.
6238 	 *
6239 	 * If there are no dirty vdevs, we sync the uberblock to a few
6240 	 * random top-level vdevs that are known to be visible in the
6241 	 * config cache (see spa_vdev_add() for a complete description).
6242 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6243 	 */
6244 	for (;;) {
6245 		/*
6246 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6247 		 * while we're attempting to write the vdev labels.
6248 		 */
6249 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6250 
6251 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6252 			vdev_t *svd[SPA_DVAS_PER_BP];
6253 			int svdcount = 0;
6254 			int children = rvd->vdev_children;
6255 			int c0 = spa_get_random(children);
6256 
6257 			for (int c = 0; c < children; c++) {
6258 				vd = rvd->vdev_child[(c0 + c) % children];
6259 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6260 					continue;
6261 				svd[svdcount++] = vd;
6262 				if (svdcount == SPA_DVAS_PER_BP)
6263 					break;
6264 			}
6265 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6266 			if (error != 0)
6267 				error = vdev_config_sync(svd, svdcount, txg,
6268 				    B_TRUE);
6269 		} else {
6270 			error = vdev_config_sync(rvd->vdev_child,
6271 			    rvd->vdev_children, txg, B_FALSE);
6272 			if (error != 0)
6273 				error = vdev_config_sync(rvd->vdev_child,
6274 				    rvd->vdev_children, txg, B_TRUE);
6275 		}
6276 
6277 		if (error == 0)
6278 			spa->spa_last_synced_guid = rvd->vdev_guid;
6279 
6280 		spa_config_exit(spa, SCL_STATE, FTAG);
6281 
6282 		if (error == 0)
6283 			break;
6284 		zio_suspend(spa, NULL);
6285 		zio_resume_wait(spa);
6286 	}
6287 	dmu_tx_commit(tx);
6288 
6289 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6290 
6291 	/*
6292 	 * Clear the dirty config list.
6293 	 */
6294 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6295 		vdev_config_clean(vd);
6296 
6297 	/*
6298 	 * Now that the new config has synced transactionally,
6299 	 * let it become visible to the config cache.
6300 	 */
6301 	if (spa->spa_config_syncing != NULL) {
6302 		spa_config_set(spa, spa->spa_config_syncing);
6303 		spa->spa_config_txg = txg;
6304 		spa->spa_config_syncing = NULL;
6305 	}
6306 
6307 	spa->spa_ubsync = spa->spa_uberblock;
6308 
6309 	dsl_pool_sync_done(dp, txg);
6310 
6311 	/*
6312 	 * Update usable space statistics.
6313 	 */
6314 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6315 		vdev_sync_done(vd, txg);
6316 
6317 	spa_update_dspace(spa);
6318 
6319 	/*
6320 	 * It had better be the case that we didn't dirty anything
6321 	 * since vdev_config_sync().
6322 	 */
6323 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6324 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6325 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6326 
6327 	spa->spa_sync_pass = 0;
6328 
6329 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6330 
6331 	spa_handle_ignored_writes(spa);
6332 
6333 	/*
6334 	 * If any async tasks have been requested, kick them off.
6335 	 */
6336 	spa_async_dispatch(spa);
6337 }
6338 
6339 /*
6340  * Sync all pools.  We don't want to hold the namespace lock across these
6341  * operations, so we take a reference on the spa_t and drop the lock during the
6342  * sync.
6343  */
6344 void
6345 spa_sync_allpools(void)
6346 {
6347 	spa_t *spa = NULL;
6348 	mutex_enter(&spa_namespace_lock);
6349 	while ((spa = spa_next(spa)) != NULL) {
6350 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6351 		    !spa_writeable(spa) || spa_suspended(spa))
6352 			continue;
6353 		spa_open_ref(spa, FTAG);
6354 		mutex_exit(&spa_namespace_lock);
6355 		txg_wait_synced(spa_get_dsl(spa), 0);
6356 		mutex_enter(&spa_namespace_lock);
6357 		spa_close(spa, FTAG);
6358 	}
6359 	mutex_exit(&spa_namespace_lock);
6360 }
6361 
6362 /*
6363  * ==========================================================================
6364  * Miscellaneous routines
6365  * ==========================================================================
6366  */
6367 
6368 /*
6369  * Remove all pools in the system.
6370  */
6371 void
6372 spa_evict_all(void)
6373 {
6374 	spa_t *spa;
6375 
6376 	/*
6377 	 * Remove all cached state.  All pools should be closed now,
6378 	 * so every spa in the AVL tree should be unreferenced.
6379 	 */
6380 	mutex_enter(&spa_namespace_lock);
6381 	while ((spa = spa_next(NULL)) != NULL) {
6382 		/*
6383 		 * Stop async tasks.  The async thread may need to detach
6384 		 * a device that's been replaced, which requires grabbing
6385 		 * spa_namespace_lock, so we must drop it here.
6386 		 */
6387 		spa_open_ref(spa, FTAG);
6388 		mutex_exit(&spa_namespace_lock);
6389 		spa_async_suspend(spa);
6390 		mutex_enter(&spa_namespace_lock);
6391 		spa_close(spa, FTAG);
6392 
6393 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6394 			spa_unload(spa);
6395 			spa_deactivate(spa);
6396 		}
6397 		spa_remove(spa);
6398 	}
6399 	mutex_exit(&spa_namespace_lock);
6400 }
6401 
6402 vdev_t *
6403 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6404 {
6405 	vdev_t *vd;
6406 	int i;
6407 
6408 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6409 		return (vd);
6410 
6411 	if (aux) {
6412 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6413 			vd = spa->spa_l2cache.sav_vdevs[i];
6414 			if (vd->vdev_guid == guid)
6415 				return (vd);
6416 		}
6417 
6418 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6419 			vd = spa->spa_spares.sav_vdevs[i];
6420 			if (vd->vdev_guid == guid)
6421 				return (vd);
6422 		}
6423 	}
6424 
6425 	return (NULL);
6426 }
6427 
6428 void
6429 spa_upgrade(spa_t *spa, uint64_t version)
6430 {
6431 	ASSERT(spa_writeable(spa));
6432 
6433 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6434 
6435 	/*
6436 	 * This should only be called for a non-faulted pool, and since a
6437 	 * future version would result in an unopenable pool, this shouldn't be
6438 	 * possible.
6439 	 */
6440 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6441 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6442 
6443 	spa->spa_uberblock.ub_version = version;
6444 	vdev_config_dirty(spa->spa_root_vdev);
6445 
6446 	spa_config_exit(spa, SCL_ALL, FTAG);
6447 
6448 	txg_wait_synced(spa_get_dsl(spa), 0);
6449 }
6450 
6451 boolean_t
6452 spa_has_spare(spa_t *spa, uint64_t guid)
6453 {
6454 	int i;
6455 	uint64_t spareguid;
6456 	spa_aux_vdev_t *sav = &spa->spa_spares;
6457 
6458 	for (i = 0; i < sav->sav_count; i++)
6459 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6460 			return (B_TRUE);
6461 
6462 	for (i = 0; i < sav->sav_npending; i++) {
6463 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6464 		    &spareguid) == 0 && spareguid == guid)
6465 			return (B_TRUE);
6466 	}
6467 
6468 	return (B_FALSE);
6469 }
6470 
6471 /*
6472  * Check if a pool has an active shared spare device.
6473  * Note: reference count of an active spare is 2, as a spare and as a replace
6474  */
6475 static boolean_t
6476 spa_has_active_shared_spare(spa_t *spa)
6477 {
6478 	int i, refcnt;
6479 	uint64_t pool;
6480 	spa_aux_vdev_t *sav = &spa->spa_spares;
6481 
6482 	for (i = 0; i < sav->sav_count; i++) {
6483 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6484 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6485 		    refcnt > 2)
6486 			return (B_TRUE);
6487 	}
6488 
6489 	return (B_FALSE);
6490 }
6491 
6492 /*
6493  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6494  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6495  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6496  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6497  * or zdb as real changes.
6498  */
6499 void
6500 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6501 {
6502 #ifdef _KERNEL
6503 	sysevent_t		*ev;
6504 	sysevent_attr_list_t	*attr = NULL;
6505 	sysevent_value_t	value;
6506 	sysevent_id_t		eid;
6507 
6508 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6509 	    SE_SLEEP);
6510 
6511 	value.value_type = SE_DATA_TYPE_STRING;
6512 	value.value.sv_string = spa_name(spa);
6513 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6514 		goto done;
6515 
6516 	value.value_type = SE_DATA_TYPE_UINT64;
6517 	value.value.sv_uint64 = spa_guid(spa);
6518 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6519 		goto done;
6520 
6521 	if (vd) {
6522 		value.value_type = SE_DATA_TYPE_UINT64;
6523 		value.value.sv_uint64 = vd->vdev_guid;
6524 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6525 		    SE_SLEEP) != 0)
6526 			goto done;
6527 
6528 		if (vd->vdev_path) {
6529 			value.value_type = SE_DATA_TYPE_STRING;
6530 			value.value.sv_string = vd->vdev_path;
6531 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6532 			    &value, SE_SLEEP) != 0)
6533 				goto done;
6534 		}
6535 	}
6536 
6537 	if (sysevent_attach_attributes(ev, attr) != 0)
6538 		goto done;
6539 	attr = NULL;
6540 
6541 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6542 
6543 done:
6544 	if (attr)
6545 		sysevent_free_attr(attr);
6546 	sysevent_free(ev);
6547 #endif
6548 }
6549