xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 7bfdf011e081684f853a3242d0296695110d9d84)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #ifdef	_KERNEL
64 #include <sys/zone.h>
65 #endif	/* _KERNEL */
66 
67 #include "zfs_prop.h"
68 #include "zfs_comutil.h"
69 
70 int zio_taskq_threads[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
71 	/*	ISSUE	INTR					*/
72 	{	1,	1	},	/* ZIO_TYPE_NULL	*/
73 	{	8,	8	},	/* ZIO_TYPE_READ	*/
74 	{	8,	8	},	/* ZIO_TYPE_WRITE	*/
75 	{	1,	1	},	/* ZIO_TYPE_FREE	*/
76 	{	1,	1	},	/* ZIO_TYPE_CLAIM	*/
77 	{	1,	1	},	/* ZIO_TYPE_IOCTL	*/
78 };
79 
80 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
81 static boolean_t spa_has_active_shared_spare(spa_t *spa);
82 
83 /*
84  * ==========================================================================
85  * SPA properties routines
86  * ==========================================================================
87  */
88 
89 /*
90  * Add a (source=src, propname=propval) list to an nvlist.
91  */
92 static void
93 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
94     uint64_t intval, zprop_source_t src)
95 {
96 	const char *propname = zpool_prop_to_name(prop);
97 	nvlist_t *propval;
98 
99 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
100 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
101 
102 	if (strval != NULL)
103 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
104 	else
105 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
106 
107 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
108 	nvlist_free(propval);
109 }
110 
111 /*
112  * Get property values from the spa configuration.
113  */
114 static void
115 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
116 {
117 	uint64_t size;
118 	uint64_t used;
119 	uint64_t cap, version;
120 	zprop_source_t src = ZPROP_SRC_NONE;
121 	spa_config_dirent_t *dp;
122 
123 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
124 
125 	if (spa->spa_root_vdev != NULL) {
126 		size = spa_get_space(spa);
127 		used = spa_get_alloc(spa);
128 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
129 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
130 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
131 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
132 		    size - used, src);
133 
134 		cap = (size == 0) ? 0 : (used * 100 / size);
135 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
136 
137 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
138 		    spa->spa_root_vdev->vdev_state, src);
139 
140 		version = spa_version(spa);
141 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
142 			src = ZPROP_SRC_DEFAULT;
143 		else
144 			src = ZPROP_SRC_LOCAL;
145 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
146 	}
147 
148 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
149 
150 	if (spa->spa_root != NULL)
151 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
152 		    0, ZPROP_SRC_LOCAL);
153 
154 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
155 		if (dp->scd_path == NULL) {
156 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
157 			    "none", 0, ZPROP_SRC_LOCAL);
158 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
159 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
160 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
161 		}
162 	}
163 }
164 
165 /*
166  * Get zpool property values.
167  */
168 int
169 spa_prop_get(spa_t *spa, nvlist_t **nvp)
170 {
171 	zap_cursor_t zc;
172 	zap_attribute_t za;
173 	objset_t *mos = spa->spa_meta_objset;
174 	int err;
175 
176 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
177 
178 	mutex_enter(&spa->spa_props_lock);
179 
180 	/*
181 	 * Get properties from the spa config.
182 	 */
183 	spa_prop_get_config(spa, nvp);
184 
185 	/* If no pool property object, no more prop to get. */
186 	if (spa->spa_pool_props_object == 0) {
187 		mutex_exit(&spa->spa_props_lock);
188 		return (0);
189 	}
190 
191 	/*
192 	 * Get properties from the MOS pool property object.
193 	 */
194 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
195 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
196 	    zap_cursor_advance(&zc)) {
197 		uint64_t intval = 0;
198 		char *strval = NULL;
199 		zprop_source_t src = ZPROP_SRC_DEFAULT;
200 		zpool_prop_t prop;
201 
202 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
203 			continue;
204 
205 		switch (za.za_integer_length) {
206 		case 8:
207 			/* integer property */
208 			if (za.za_first_integer !=
209 			    zpool_prop_default_numeric(prop))
210 				src = ZPROP_SRC_LOCAL;
211 
212 			if (prop == ZPOOL_PROP_BOOTFS) {
213 				dsl_pool_t *dp;
214 				dsl_dataset_t *ds = NULL;
215 
216 				dp = spa_get_dsl(spa);
217 				rw_enter(&dp->dp_config_rwlock, RW_READER);
218 				if (err = dsl_dataset_hold_obj(dp,
219 				    za.za_first_integer, FTAG, &ds)) {
220 					rw_exit(&dp->dp_config_rwlock);
221 					break;
222 				}
223 
224 				strval = kmem_alloc(
225 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
226 				    KM_SLEEP);
227 				dsl_dataset_name(ds, strval);
228 				dsl_dataset_rele(ds, FTAG);
229 				rw_exit(&dp->dp_config_rwlock);
230 			} else {
231 				strval = NULL;
232 				intval = za.za_first_integer;
233 			}
234 
235 			spa_prop_add_list(*nvp, prop, strval, intval, src);
236 
237 			if (strval != NULL)
238 				kmem_free(strval,
239 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
240 
241 			break;
242 
243 		case 1:
244 			/* string property */
245 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
246 			err = zap_lookup(mos, spa->spa_pool_props_object,
247 			    za.za_name, 1, za.za_num_integers, strval);
248 			if (err) {
249 				kmem_free(strval, za.za_num_integers);
250 				break;
251 			}
252 			spa_prop_add_list(*nvp, prop, strval, 0, src);
253 			kmem_free(strval, za.za_num_integers);
254 			break;
255 
256 		default:
257 			break;
258 		}
259 	}
260 	zap_cursor_fini(&zc);
261 	mutex_exit(&spa->spa_props_lock);
262 out:
263 	if (err && err != ENOENT) {
264 		nvlist_free(*nvp);
265 		*nvp = NULL;
266 		return (err);
267 	}
268 
269 	return (0);
270 }
271 
272 /*
273  * Validate the given pool properties nvlist and modify the list
274  * for the property values to be set.
275  */
276 static int
277 spa_prop_validate(spa_t *spa, nvlist_t *props)
278 {
279 	nvpair_t *elem;
280 	int error = 0, reset_bootfs = 0;
281 	uint64_t objnum;
282 
283 	elem = NULL;
284 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
285 		zpool_prop_t prop;
286 		char *propname, *strval;
287 		uint64_t intval;
288 		objset_t *os;
289 		char *slash;
290 
291 		propname = nvpair_name(elem);
292 
293 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
294 			return (EINVAL);
295 
296 		switch (prop) {
297 		case ZPOOL_PROP_VERSION:
298 			error = nvpair_value_uint64(elem, &intval);
299 			if (!error &&
300 			    (intval < spa_version(spa) || intval > SPA_VERSION))
301 				error = EINVAL;
302 			break;
303 
304 		case ZPOOL_PROP_DELEGATION:
305 		case ZPOOL_PROP_AUTOREPLACE:
306 		case ZPOOL_PROP_LISTSNAPS:
307 			error = nvpair_value_uint64(elem, &intval);
308 			if (!error && intval > 1)
309 				error = EINVAL;
310 			break;
311 
312 		case ZPOOL_PROP_BOOTFS:
313 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
314 				error = ENOTSUP;
315 				break;
316 			}
317 
318 			/*
319 			 * Make sure the vdev config is bootable
320 			 */
321 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
322 				error = ENOTSUP;
323 				break;
324 			}
325 
326 			reset_bootfs = 1;
327 
328 			error = nvpair_value_string(elem, &strval);
329 
330 			if (!error) {
331 				uint64_t compress;
332 
333 				if (strval == NULL || strval[0] == '\0') {
334 					objnum = zpool_prop_default_numeric(
335 					    ZPOOL_PROP_BOOTFS);
336 					break;
337 				}
338 
339 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
340 				    DS_MODE_USER | DS_MODE_READONLY, &os))
341 					break;
342 
343 				/* We don't support gzip bootable datasets */
344 				if ((error = dsl_prop_get_integer(strval,
345 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
346 				    &compress, NULL)) == 0 &&
347 				    !BOOTFS_COMPRESS_VALID(compress)) {
348 					error = ENOTSUP;
349 				} else {
350 					objnum = dmu_objset_id(os);
351 				}
352 				dmu_objset_close(os);
353 			}
354 			break;
355 
356 		case ZPOOL_PROP_FAILUREMODE:
357 			error = nvpair_value_uint64(elem, &intval);
358 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
359 			    intval > ZIO_FAILURE_MODE_PANIC))
360 				error = EINVAL;
361 
362 			/*
363 			 * This is a special case which only occurs when
364 			 * the pool has completely failed. This allows
365 			 * the user to change the in-core failmode property
366 			 * without syncing it out to disk (I/Os might
367 			 * currently be blocked). We do this by returning
368 			 * EIO to the caller (spa_prop_set) to trick it
369 			 * into thinking we encountered a property validation
370 			 * error.
371 			 */
372 			if (!error && spa_suspended(spa)) {
373 				spa->spa_failmode = intval;
374 				error = EIO;
375 			}
376 			break;
377 
378 		case ZPOOL_PROP_CACHEFILE:
379 			if ((error = nvpair_value_string(elem, &strval)) != 0)
380 				break;
381 
382 			if (strval[0] == '\0')
383 				break;
384 
385 			if (strcmp(strval, "none") == 0)
386 				break;
387 
388 			if (strval[0] != '/') {
389 				error = EINVAL;
390 				break;
391 			}
392 
393 			slash = strrchr(strval, '/');
394 			ASSERT(slash != NULL);
395 
396 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
397 			    strcmp(slash, "/..") == 0)
398 				error = EINVAL;
399 			break;
400 		}
401 
402 		if (error)
403 			break;
404 	}
405 
406 	if (!error && reset_bootfs) {
407 		error = nvlist_remove(props,
408 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
409 
410 		if (!error) {
411 			error = nvlist_add_uint64(props,
412 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
413 		}
414 	}
415 
416 	return (error);
417 }
418 
419 void
420 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
421 {
422 	char *cachefile;
423 	spa_config_dirent_t *dp;
424 
425 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
426 	    &cachefile) != 0)
427 		return;
428 
429 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
430 	    KM_SLEEP);
431 
432 	if (cachefile[0] == '\0')
433 		dp->scd_path = spa_strdup(spa_config_path);
434 	else if (strcmp(cachefile, "none") == 0)
435 		dp->scd_path = NULL;
436 	else
437 		dp->scd_path = spa_strdup(cachefile);
438 
439 	list_insert_head(&spa->spa_config_list, dp);
440 	if (need_sync)
441 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
442 }
443 
444 int
445 spa_prop_set(spa_t *spa, nvlist_t *nvp)
446 {
447 	int error;
448 	nvpair_t *elem;
449 	boolean_t need_sync = B_FALSE;
450 	zpool_prop_t prop;
451 
452 	if ((error = spa_prop_validate(spa, nvp)) != 0)
453 		return (error);
454 
455 	elem = NULL;
456 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
457 		if ((prop = zpool_name_to_prop(
458 		    nvpair_name(elem))) == ZPROP_INVAL)
459 			return (EINVAL);
460 
461 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
462 			continue;
463 
464 		need_sync = B_TRUE;
465 		break;
466 	}
467 
468 	if (need_sync)
469 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
470 		    spa, nvp, 3));
471 	else
472 		return (0);
473 }
474 
475 /*
476  * If the bootfs property value is dsobj, clear it.
477  */
478 void
479 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
480 {
481 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
482 		VERIFY(zap_remove(spa->spa_meta_objset,
483 		    spa->spa_pool_props_object,
484 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
485 		spa->spa_bootfs = 0;
486 	}
487 }
488 
489 /*
490  * ==========================================================================
491  * SPA state manipulation (open/create/destroy/import/export)
492  * ==========================================================================
493  */
494 
495 static int
496 spa_error_entry_compare(const void *a, const void *b)
497 {
498 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
499 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
500 	int ret;
501 
502 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
503 	    sizeof (zbookmark_t));
504 
505 	if (ret < 0)
506 		return (-1);
507 	else if (ret > 0)
508 		return (1);
509 	else
510 		return (0);
511 }
512 
513 /*
514  * Utility function which retrieves copies of the current logs and
515  * re-initializes them in the process.
516  */
517 void
518 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
519 {
520 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
521 
522 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
523 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
524 
525 	avl_create(&spa->spa_errlist_scrub,
526 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
527 	    offsetof(spa_error_entry_t, se_avl));
528 	avl_create(&spa->spa_errlist_last,
529 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
530 	    offsetof(spa_error_entry_t, se_avl));
531 }
532 
533 /*
534  * Activate an uninitialized pool.
535  */
536 static void
537 spa_activate(spa_t *spa, int mode)
538 {
539 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
540 
541 	spa->spa_state = POOL_STATE_ACTIVE;
542 	spa->spa_mode = mode;
543 
544 	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
545 	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
546 
547 	for (int t = 0; t < ZIO_TYPES; t++) {
548 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
549 			spa->spa_zio_taskq[t][q] = taskq_create("spa_zio",
550 			    zio_taskq_threads[t][q], maxclsyspri, 50,
551 			    INT_MAX, TASKQ_PREPOPULATE);
552 		}
553 	}
554 
555 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
556 	    offsetof(vdev_t, vdev_config_dirty_node));
557 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
558 	    offsetof(vdev_t, vdev_state_dirty_node));
559 
560 	txg_list_create(&spa->spa_vdev_txg_list,
561 	    offsetof(struct vdev, vdev_txg_node));
562 
563 	avl_create(&spa->spa_errlist_scrub,
564 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565 	    offsetof(spa_error_entry_t, se_avl));
566 	avl_create(&spa->spa_errlist_last,
567 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
568 	    offsetof(spa_error_entry_t, se_avl));
569 }
570 
571 /*
572  * Opposite of spa_activate().
573  */
574 static void
575 spa_deactivate(spa_t *spa)
576 {
577 	ASSERT(spa->spa_sync_on == B_FALSE);
578 	ASSERT(spa->spa_dsl_pool == NULL);
579 	ASSERT(spa->spa_root_vdev == NULL);
580 
581 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
582 
583 	txg_list_destroy(&spa->spa_vdev_txg_list);
584 
585 	list_destroy(&spa->spa_config_dirty_list);
586 	list_destroy(&spa->spa_state_dirty_list);
587 
588 	for (int t = 0; t < ZIO_TYPES; t++) {
589 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
590 			taskq_destroy(spa->spa_zio_taskq[t][q]);
591 			spa->spa_zio_taskq[t][q] = NULL;
592 		}
593 	}
594 
595 	metaslab_class_destroy(spa->spa_normal_class);
596 	spa->spa_normal_class = NULL;
597 
598 	metaslab_class_destroy(spa->spa_log_class);
599 	spa->spa_log_class = NULL;
600 
601 	/*
602 	 * If this was part of an import or the open otherwise failed, we may
603 	 * still have errors left in the queues.  Empty them just in case.
604 	 */
605 	spa_errlog_drain(spa);
606 
607 	avl_destroy(&spa->spa_errlist_scrub);
608 	avl_destroy(&spa->spa_errlist_last);
609 
610 	spa->spa_state = POOL_STATE_UNINITIALIZED;
611 }
612 
613 /*
614  * Verify a pool configuration, and construct the vdev tree appropriately.  This
615  * will create all the necessary vdevs in the appropriate layout, with each vdev
616  * in the CLOSED state.  This will prep the pool before open/creation/import.
617  * All vdev validation is done by the vdev_alloc() routine.
618  */
619 static int
620 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
621     uint_t id, int atype)
622 {
623 	nvlist_t **child;
624 	uint_t c, children;
625 	int error;
626 
627 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
628 		return (error);
629 
630 	if ((*vdp)->vdev_ops->vdev_op_leaf)
631 		return (0);
632 
633 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
634 	    &child, &children);
635 
636 	if (error == ENOENT)
637 		return (0);
638 
639 	if (error) {
640 		vdev_free(*vdp);
641 		*vdp = NULL;
642 		return (EINVAL);
643 	}
644 
645 	for (c = 0; c < children; c++) {
646 		vdev_t *vd;
647 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
648 		    atype)) != 0) {
649 			vdev_free(*vdp);
650 			*vdp = NULL;
651 			return (error);
652 		}
653 	}
654 
655 	ASSERT(*vdp != NULL);
656 
657 	return (0);
658 }
659 
660 /*
661  * Opposite of spa_load().
662  */
663 static void
664 spa_unload(spa_t *spa)
665 {
666 	int i;
667 
668 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
669 
670 	/*
671 	 * Stop async tasks.
672 	 */
673 	spa_async_suspend(spa);
674 
675 	/*
676 	 * Stop syncing.
677 	 */
678 	if (spa->spa_sync_on) {
679 		txg_sync_stop(spa->spa_dsl_pool);
680 		spa->spa_sync_on = B_FALSE;
681 	}
682 
683 	/*
684 	 * Wait for any outstanding async I/O to complete.
685 	 */
686 	if (spa->spa_async_zio_root != NULL) {
687 		(void) zio_wait(spa->spa_async_zio_root);
688 		spa->spa_async_zio_root = NULL;
689 	}
690 
691 	/*
692 	 * Close the dsl pool.
693 	 */
694 	if (spa->spa_dsl_pool) {
695 		dsl_pool_close(spa->spa_dsl_pool);
696 		spa->spa_dsl_pool = NULL;
697 	}
698 
699 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
700 
701 	/*
702 	 * Drop and purge level 2 cache
703 	 */
704 	spa_l2cache_drop(spa);
705 
706 	/*
707 	 * Close all vdevs.
708 	 */
709 	if (spa->spa_root_vdev)
710 		vdev_free(spa->spa_root_vdev);
711 	ASSERT(spa->spa_root_vdev == NULL);
712 
713 	for (i = 0; i < spa->spa_spares.sav_count; i++)
714 		vdev_free(spa->spa_spares.sav_vdevs[i]);
715 	if (spa->spa_spares.sav_vdevs) {
716 		kmem_free(spa->spa_spares.sav_vdevs,
717 		    spa->spa_spares.sav_count * sizeof (void *));
718 		spa->spa_spares.sav_vdevs = NULL;
719 	}
720 	if (spa->spa_spares.sav_config) {
721 		nvlist_free(spa->spa_spares.sav_config);
722 		spa->spa_spares.sav_config = NULL;
723 	}
724 	spa->spa_spares.sav_count = 0;
725 
726 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
727 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
728 	if (spa->spa_l2cache.sav_vdevs) {
729 		kmem_free(spa->spa_l2cache.sav_vdevs,
730 		    spa->spa_l2cache.sav_count * sizeof (void *));
731 		spa->spa_l2cache.sav_vdevs = NULL;
732 	}
733 	if (spa->spa_l2cache.sav_config) {
734 		nvlist_free(spa->spa_l2cache.sav_config);
735 		spa->spa_l2cache.sav_config = NULL;
736 	}
737 	spa->spa_l2cache.sav_count = 0;
738 
739 	spa->spa_async_suspended = 0;
740 
741 	spa_config_exit(spa, SCL_ALL, FTAG);
742 }
743 
744 /*
745  * Load (or re-load) the current list of vdevs describing the active spares for
746  * this pool.  When this is called, we have some form of basic information in
747  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
748  * then re-generate a more complete list including status information.
749  */
750 static void
751 spa_load_spares(spa_t *spa)
752 {
753 	nvlist_t **spares;
754 	uint_t nspares;
755 	int i;
756 	vdev_t *vd, *tvd;
757 
758 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
759 
760 	/*
761 	 * First, close and free any existing spare vdevs.
762 	 */
763 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
764 		vd = spa->spa_spares.sav_vdevs[i];
765 
766 		/* Undo the call to spa_activate() below */
767 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
768 		    B_FALSE)) != NULL && tvd->vdev_isspare)
769 			spa_spare_remove(tvd);
770 		vdev_close(vd);
771 		vdev_free(vd);
772 	}
773 
774 	if (spa->spa_spares.sav_vdevs)
775 		kmem_free(spa->spa_spares.sav_vdevs,
776 		    spa->spa_spares.sav_count * sizeof (void *));
777 
778 	if (spa->spa_spares.sav_config == NULL)
779 		nspares = 0;
780 	else
781 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
782 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
783 
784 	spa->spa_spares.sav_count = (int)nspares;
785 	spa->spa_spares.sav_vdevs = NULL;
786 
787 	if (nspares == 0)
788 		return;
789 
790 	/*
791 	 * Construct the array of vdevs, opening them to get status in the
792 	 * process.   For each spare, there is potentially two different vdev_t
793 	 * structures associated with it: one in the list of spares (used only
794 	 * for basic validation purposes) and one in the active vdev
795 	 * configuration (if it's spared in).  During this phase we open and
796 	 * validate each vdev on the spare list.  If the vdev also exists in the
797 	 * active configuration, then we also mark this vdev as an active spare.
798 	 */
799 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
800 	    KM_SLEEP);
801 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
802 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
803 		    VDEV_ALLOC_SPARE) == 0);
804 		ASSERT(vd != NULL);
805 
806 		spa->spa_spares.sav_vdevs[i] = vd;
807 
808 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
809 		    B_FALSE)) != NULL) {
810 			if (!tvd->vdev_isspare)
811 				spa_spare_add(tvd);
812 
813 			/*
814 			 * We only mark the spare active if we were successfully
815 			 * able to load the vdev.  Otherwise, importing a pool
816 			 * with a bad active spare would result in strange
817 			 * behavior, because multiple pool would think the spare
818 			 * is actively in use.
819 			 *
820 			 * There is a vulnerability here to an equally bizarre
821 			 * circumstance, where a dead active spare is later
822 			 * brought back to life (onlined or otherwise).  Given
823 			 * the rarity of this scenario, and the extra complexity
824 			 * it adds, we ignore the possibility.
825 			 */
826 			if (!vdev_is_dead(tvd))
827 				spa_spare_activate(tvd);
828 		}
829 
830 		vd->vdev_top = vd;
831 		vd->vdev_aux = &spa->spa_spares;
832 
833 		if (vdev_open(vd) != 0)
834 			continue;
835 
836 		if (vdev_validate_aux(vd) == 0)
837 			spa_spare_add(vd);
838 	}
839 
840 	/*
841 	 * Recompute the stashed list of spares, with status information
842 	 * this time.
843 	 */
844 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
845 	    DATA_TYPE_NVLIST_ARRAY) == 0);
846 
847 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
848 	    KM_SLEEP);
849 	for (i = 0; i < spa->spa_spares.sav_count; i++)
850 		spares[i] = vdev_config_generate(spa,
851 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
852 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
853 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
854 	for (i = 0; i < spa->spa_spares.sav_count; i++)
855 		nvlist_free(spares[i]);
856 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
857 }
858 
859 /*
860  * Load (or re-load) the current list of vdevs describing the active l2cache for
861  * this pool.  When this is called, we have some form of basic information in
862  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
863  * then re-generate a more complete list including status information.
864  * Devices which are already active have their details maintained, and are
865  * not re-opened.
866  */
867 static void
868 spa_load_l2cache(spa_t *spa)
869 {
870 	nvlist_t **l2cache;
871 	uint_t nl2cache;
872 	int i, j, oldnvdevs;
873 	uint64_t guid, size;
874 	vdev_t *vd, **oldvdevs, **newvdevs;
875 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
876 
877 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
878 
879 	if (sav->sav_config != NULL) {
880 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
881 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
882 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
883 	} else {
884 		nl2cache = 0;
885 	}
886 
887 	oldvdevs = sav->sav_vdevs;
888 	oldnvdevs = sav->sav_count;
889 	sav->sav_vdevs = NULL;
890 	sav->sav_count = 0;
891 
892 	/*
893 	 * Process new nvlist of vdevs.
894 	 */
895 	for (i = 0; i < nl2cache; i++) {
896 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
897 		    &guid) == 0);
898 
899 		newvdevs[i] = NULL;
900 		for (j = 0; j < oldnvdevs; j++) {
901 			vd = oldvdevs[j];
902 			if (vd != NULL && guid == vd->vdev_guid) {
903 				/*
904 				 * Retain previous vdev for add/remove ops.
905 				 */
906 				newvdevs[i] = vd;
907 				oldvdevs[j] = NULL;
908 				break;
909 			}
910 		}
911 
912 		if (newvdevs[i] == NULL) {
913 			/*
914 			 * Create new vdev
915 			 */
916 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
917 			    VDEV_ALLOC_L2CACHE) == 0);
918 			ASSERT(vd != NULL);
919 			newvdevs[i] = vd;
920 
921 			/*
922 			 * Commit this vdev as an l2cache device,
923 			 * even if it fails to open.
924 			 */
925 			spa_l2cache_add(vd);
926 
927 			vd->vdev_top = vd;
928 			vd->vdev_aux = sav;
929 
930 			spa_l2cache_activate(vd);
931 
932 			if (vdev_open(vd) != 0)
933 				continue;
934 
935 			(void) vdev_validate_aux(vd);
936 
937 			if (!vdev_is_dead(vd)) {
938 				size = vdev_get_rsize(vd);
939 				l2arc_add_vdev(spa, vd,
940 				    VDEV_LABEL_START_SIZE,
941 				    size - VDEV_LABEL_START_SIZE);
942 			}
943 		}
944 	}
945 
946 	/*
947 	 * Purge vdevs that were dropped
948 	 */
949 	for (i = 0; i < oldnvdevs; i++) {
950 		uint64_t pool;
951 
952 		vd = oldvdevs[i];
953 		if (vd != NULL) {
954 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
955 			    pool != 0ULL && l2arc_vdev_present(vd))
956 				l2arc_remove_vdev(vd);
957 			(void) vdev_close(vd);
958 			spa_l2cache_remove(vd);
959 		}
960 	}
961 
962 	if (oldvdevs)
963 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
964 
965 	if (sav->sav_config == NULL)
966 		goto out;
967 
968 	sav->sav_vdevs = newvdevs;
969 	sav->sav_count = (int)nl2cache;
970 
971 	/*
972 	 * Recompute the stashed list of l2cache devices, with status
973 	 * information this time.
974 	 */
975 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
976 	    DATA_TYPE_NVLIST_ARRAY) == 0);
977 
978 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
979 	for (i = 0; i < sav->sav_count; i++)
980 		l2cache[i] = vdev_config_generate(spa,
981 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
982 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
983 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
984 out:
985 	for (i = 0; i < sav->sav_count; i++)
986 		nvlist_free(l2cache[i]);
987 	if (sav->sav_count)
988 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
989 }
990 
991 static int
992 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
993 {
994 	dmu_buf_t *db;
995 	char *packed = NULL;
996 	size_t nvsize = 0;
997 	int error;
998 	*value = NULL;
999 
1000 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1001 	nvsize = *(uint64_t *)db->db_data;
1002 	dmu_buf_rele(db, FTAG);
1003 
1004 	packed = kmem_alloc(nvsize, KM_SLEEP);
1005 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1006 	    DMU_READ_PREFETCH);
1007 	if (error == 0)
1008 		error = nvlist_unpack(packed, nvsize, value, 0);
1009 	kmem_free(packed, nvsize);
1010 
1011 	return (error);
1012 }
1013 
1014 /*
1015  * Checks to see if the given vdev could not be opened, in which case we post a
1016  * sysevent to notify the autoreplace code that the device has been removed.
1017  */
1018 static void
1019 spa_check_removed(vdev_t *vd)
1020 {
1021 	int c;
1022 
1023 	for (c = 0; c < vd->vdev_children; c++)
1024 		spa_check_removed(vd->vdev_child[c]);
1025 
1026 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1027 		zfs_post_autoreplace(vd->vdev_spa, vd);
1028 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1029 	}
1030 }
1031 
1032 /*
1033  * Check for missing log devices
1034  */
1035 int
1036 spa_check_logs(spa_t *spa)
1037 {
1038 	switch (spa->spa_log_state) {
1039 	case SPA_LOG_MISSING:
1040 		/* need to recheck in case slog has been restored */
1041 	case SPA_LOG_UNKNOWN:
1042 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1043 		    DS_FIND_CHILDREN)) {
1044 			spa->spa_log_state = SPA_LOG_MISSING;
1045 			return (1);
1046 		}
1047 		break;
1048 
1049 	case SPA_LOG_CLEAR:
1050 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
1051 		    DS_FIND_CHILDREN);
1052 		break;
1053 	}
1054 	spa->spa_log_state = SPA_LOG_GOOD;
1055 	return (0);
1056 }
1057 
1058 /*
1059  * Load an existing storage pool, using the pool's builtin spa_config as a
1060  * source of configuration information.
1061  */
1062 static int
1063 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1064 {
1065 	int error = 0;
1066 	nvlist_t *nvroot = NULL;
1067 	vdev_t *rvd;
1068 	uberblock_t *ub = &spa->spa_uberblock;
1069 	uint64_t config_cache_txg = spa->spa_config_txg;
1070 	uint64_t pool_guid;
1071 	uint64_t version;
1072 	uint64_t autoreplace = 0;
1073 	int orig_mode = spa->spa_mode;
1074 	char *ereport = FM_EREPORT_ZFS_POOL;
1075 
1076 	/*
1077 	 * If this is an untrusted config, access the pool in read-only mode.
1078 	 * This prevents things like resilvering recently removed devices.
1079 	 */
1080 	if (!mosconfig)
1081 		spa->spa_mode = FREAD;
1082 
1083 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1084 
1085 	spa->spa_load_state = state;
1086 
1087 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1088 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1089 		error = EINVAL;
1090 		goto out;
1091 	}
1092 
1093 	/*
1094 	 * Versioning wasn't explicitly added to the label until later, so if
1095 	 * it's not present treat it as the initial version.
1096 	 */
1097 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1098 		version = SPA_VERSION_INITIAL;
1099 
1100 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1101 	    &spa->spa_config_txg);
1102 
1103 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1104 	    spa_guid_exists(pool_guid, 0)) {
1105 		error = EEXIST;
1106 		goto out;
1107 	}
1108 
1109 	spa->spa_load_guid = pool_guid;
1110 
1111 	/*
1112 	 * Create "The Godfather" zio to hold all async IOs
1113 	 */
1114 	if (spa->spa_async_zio_root == NULL)
1115 		spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1116 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1117 		    ZIO_FLAG_GODFATHER);
1118 
1119 	/*
1120 	 * Parse the configuration into a vdev tree.  We explicitly set the
1121 	 * value that will be returned by spa_version() since parsing the
1122 	 * configuration requires knowing the version number.
1123 	 */
1124 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1125 	spa->spa_ubsync.ub_version = version;
1126 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1127 	spa_config_exit(spa, SCL_ALL, FTAG);
1128 
1129 	if (error != 0)
1130 		goto out;
1131 
1132 	ASSERT(spa->spa_root_vdev == rvd);
1133 	ASSERT(spa_guid(spa) == pool_guid);
1134 
1135 	/*
1136 	 * Try to open all vdevs, loading each label in the process.
1137 	 */
1138 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1139 	error = vdev_open(rvd);
1140 	spa_config_exit(spa, SCL_ALL, FTAG);
1141 	if (error != 0)
1142 		goto out;
1143 
1144 	/*
1145 	 * We need to validate the vdev labels against the configuration that
1146 	 * we have in hand, which is dependent on the setting of mosconfig. If
1147 	 * mosconfig is true then we're validating the vdev labels based on
1148 	 * that config. Otherwise, we're validating against the cached config
1149 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1150 	 * later we will recursively call spa_load() and validate against
1151 	 * the vdev config.
1152 	 */
1153 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1154 	error = vdev_validate(rvd);
1155 	spa_config_exit(spa, SCL_ALL, FTAG);
1156 	if (error != 0)
1157 		goto out;
1158 
1159 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1160 		error = ENXIO;
1161 		goto out;
1162 	}
1163 
1164 	/*
1165 	 * Find the best uberblock.
1166 	 */
1167 	vdev_uberblock_load(NULL, rvd, ub);
1168 
1169 	/*
1170 	 * If we weren't able to find a single valid uberblock, return failure.
1171 	 */
1172 	if (ub->ub_txg == 0) {
1173 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1174 		    VDEV_AUX_CORRUPT_DATA);
1175 		error = ENXIO;
1176 		goto out;
1177 	}
1178 
1179 	/*
1180 	 * If the pool is newer than the code, we can't open it.
1181 	 */
1182 	if (ub->ub_version > SPA_VERSION) {
1183 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1184 		    VDEV_AUX_VERSION_NEWER);
1185 		error = ENOTSUP;
1186 		goto out;
1187 	}
1188 
1189 	/*
1190 	 * If the vdev guid sum doesn't match the uberblock, we have an
1191 	 * incomplete configuration.
1192 	 */
1193 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1194 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1195 		    VDEV_AUX_BAD_GUID_SUM);
1196 		error = ENXIO;
1197 		goto out;
1198 	}
1199 
1200 	/*
1201 	 * Initialize internal SPA structures.
1202 	 */
1203 	spa->spa_state = POOL_STATE_ACTIVE;
1204 	spa->spa_ubsync = spa->spa_uberblock;
1205 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1206 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1207 	if (error) {
1208 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1209 		    VDEV_AUX_CORRUPT_DATA);
1210 		goto out;
1211 	}
1212 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1213 
1214 	if (zap_lookup(spa->spa_meta_objset,
1215 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1216 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1217 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 		    VDEV_AUX_CORRUPT_DATA);
1219 		error = EIO;
1220 		goto out;
1221 	}
1222 
1223 	if (!mosconfig) {
1224 		nvlist_t *newconfig;
1225 		uint64_t hostid;
1226 
1227 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1228 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229 			    VDEV_AUX_CORRUPT_DATA);
1230 			error = EIO;
1231 			goto out;
1232 		}
1233 
1234 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1235 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1236 			char *hostname;
1237 			unsigned long myhostid = 0;
1238 
1239 			VERIFY(nvlist_lookup_string(newconfig,
1240 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1241 
1242 #ifdef	_KERNEL
1243 			myhostid = zone_get_hostid(NULL);
1244 #else	/* _KERNEL */
1245 			/*
1246 			 * We're emulating the system's hostid in userland, so
1247 			 * we can't use zone_get_hostid().
1248 			 */
1249 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1250 #endif	/* _KERNEL */
1251 			if (hostid != 0 && myhostid != 0 &&
1252 			    hostid != myhostid) {
1253 				cmn_err(CE_WARN, "pool '%s' could not be "
1254 				    "loaded as it was last accessed by "
1255 				    "another system (host: %s hostid: 0x%lx). "
1256 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1257 				    spa_name(spa), hostname,
1258 				    (unsigned long)hostid);
1259 				error = EBADF;
1260 				goto out;
1261 			}
1262 		}
1263 
1264 		spa_config_set(spa, newconfig);
1265 		spa_unload(spa);
1266 		spa_deactivate(spa);
1267 		spa_activate(spa, orig_mode);
1268 
1269 		return (spa_load(spa, newconfig, state, B_TRUE));
1270 	}
1271 
1272 	if (zap_lookup(spa->spa_meta_objset,
1273 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1274 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1275 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1276 		    VDEV_AUX_CORRUPT_DATA);
1277 		error = EIO;
1278 		goto out;
1279 	}
1280 
1281 	/*
1282 	 * Load the bit that tells us to use the new accounting function
1283 	 * (raid-z deflation).  If we have an older pool, this will not
1284 	 * be present.
1285 	 */
1286 	error = zap_lookup(spa->spa_meta_objset,
1287 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1288 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1289 	if (error != 0 && error != ENOENT) {
1290 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1291 		    VDEV_AUX_CORRUPT_DATA);
1292 		error = EIO;
1293 		goto out;
1294 	}
1295 
1296 	/*
1297 	 * Load the persistent error log.  If we have an older pool, this will
1298 	 * not be present.
1299 	 */
1300 	error = zap_lookup(spa->spa_meta_objset,
1301 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1302 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1303 	if (error != 0 && error != ENOENT) {
1304 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1305 		    VDEV_AUX_CORRUPT_DATA);
1306 		error = EIO;
1307 		goto out;
1308 	}
1309 
1310 	error = zap_lookup(spa->spa_meta_objset,
1311 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1312 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1313 	if (error != 0 && error != ENOENT) {
1314 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1315 		    VDEV_AUX_CORRUPT_DATA);
1316 		error = EIO;
1317 		goto out;
1318 	}
1319 
1320 	/*
1321 	 * Load the history object.  If we have an older pool, this
1322 	 * will not be present.
1323 	 */
1324 	error = zap_lookup(spa->spa_meta_objset,
1325 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1326 	    sizeof (uint64_t), 1, &spa->spa_history);
1327 	if (error != 0 && error != ENOENT) {
1328 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1329 		    VDEV_AUX_CORRUPT_DATA);
1330 		error = EIO;
1331 		goto out;
1332 	}
1333 
1334 	/*
1335 	 * Load any hot spares for this pool.
1336 	 */
1337 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1338 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1339 	if (error != 0 && error != ENOENT) {
1340 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1341 		    VDEV_AUX_CORRUPT_DATA);
1342 		error = EIO;
1343 		goto out;
1344 	}
1345 	if (error == 0) {
1346 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1347 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1348 		    &spa->spa_spares.sav_config) != 0) {
1349 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1350 			    VDEV_AUX_CORRUPT_DATA);
1351 			error = EIO;
1352 			goto out;
1353 		}
1354 
1355 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1356 		spa_load_spares(spa);
1357 		spa_config_exit(spa, SCL_ALL, FTAG);
1358 	}
1359 
1360 	/*
1361 	 * Load any level 2 ARC devices for this pool.
1362 	 */
1363 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1364 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1365 	    &spa->spa_l2cache.sav_object);
1366 	if (error != 0 && error != ENOENT) {
1367 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1368 		    VDEV_AUX_CORRUPT_DATA);
1369 		error = EIO;
1370 		goto out;
1371 	}
1372 	if (error == 0) {
1373 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1374 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1375 		    &spa->spa_l2cache.sav_config) != 0) {
1376 			vdev_set_state(rvd, B_TRUE,
1377 			    VDEV_STATE_CANT_OPEN,
1378 			    VDEV_AUX_CORRUPT_DATA);
1379 			error = EIO;
1380 			goto out;
1381 		}
1382 
1383 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1384 		spa_load_l2cache(spa);
1385 		spa_config_exit(spa, SCL_ALL, FTAG);
1386 	}
1387 
1388 	if (spa_check_logs(spa)) {
1389 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1390 		    VDEV_AUX_BAD_LOG);
1391 		error = ENXIO;
1392 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1393 		goto out;
1394 	}
1395 
1396 
1397 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1398 
1399 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1400 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1401 
1402 	if (error && error != ENOENT) {
1403 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1404 		    VDEV_AUX_CORRUPT_DATA);
1405 		error = EIO;
1406 		goto out;
1407 	}
1408 
1409 	if (error == 0) {
1410 		(void) zap_lookup(spa->spa_meta_objset,
1411 		    spa->spa_pool_props_object,
1412 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1413 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1414 		(void) zap_lookup(spa->spa_meta_objset,
1415 		    spa->spa_pool_props_object,
1416 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1417 		    sizeof (uint64_t), 1, &autoreplace);
1418 		(void) zap_lookup(spa->spa_meta_objset,
1419 		    spa->spa_pool_props_object,
1420 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1421 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1422 		(void) zap_lookup(spa->spa_meta_objset,
1423 		    spa->spa_pool_props_object,
1424 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1425 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1426 	}
1427 
1428 	/*
1429 	 * If the 'autoreplace' property is set, then post a resource notifying
1430 	 * the ZFS DE that it should not issue any faults for unopenable
1431 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1432 	 * unopenable vdevs so that the normal autoreplace handler can take
1433 	 * over.
1434 	 */
1435 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1436 		spa_check_removed(spa->spa_root_vdev);
1437 
1438 	/*
1439 	 * Load the vdev state for all toplevel vdevs.
1440 	 */
1441 	vdev_load(rvd);
1442 
1443 	/*
1444 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1445 	 */
1446 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1447 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1448 	spa_config_exit(spa, SCL_ALL, FTAG);
1449 
1450 	/*
1451 	 * Check the state of the root vdev.  If it can't be opened, it
1452 	 * indicates one or more toplevel vdevs are faulted.
1453 	 */
1454 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1455 		error = ENXIO;
1456 		goto out;
1457 	}
1458 
1459 	if (spa_writeable(spa)) {
1460 		dmu_tx_t *tx;
1461 		int need_update = B_FALSE;
1462 
1463 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1464 
1465 		/*
1466 		 * Claim log blocks that haven't been committed yet.
1467 		 * This must all happen in a single txg.
1468 		 */
1469 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1470 		    spa_first_txg(spa));
1471 		(void) dmu_objset_find(spa_name(spa),
1472 		    zil_claim, tx, DS_FIND_CHILDREN);
1473 		dmu_tx_commit(tx);
1474 
1475 		spa->spa_sync_on = B_TRUE;
1476 		txg_sync_start(spa->spa_dsl_pool);
1477 
1478 		/*
1479 		 * Wait for all claims to sync.
1480 		 */
1481 		txg_wait_synced(spa->spa_dsl_pool, 0);
1482 
1483 		/*
1484 		 * If the config cache is stale, or we have uninitialized
1485 		 * metaslabs (see spa_vdev_add()), then update the config.
1486 		 */
1487 		if (config_cache_txg != spa->spa_config_txg ||
1488 		    state == SPA_LOAD_IMPORT)
1489 			need_update = B_TRUE;
1490 
1491 		for (int c = 0; c < rvd->vdev_children; c++)
1492 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1493 				need_update = B_TRUE;
1494 
1495 		/*
1496 		 * Update the config cache asychronously in case we're the
1497 		 * root pool, in which case the config cache isn't writable yet.
1498 		 */
1499 		if (need_update)
1500 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1501 
1502 		/*
1503 		 * Check all DTLs to see if anything needs resilvering.
1504 		 */
1505 		if (vdev_resilver_needed(rvd, NULL, NULL))
1506 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1507 	}
1508 
1509 	error = 0;
1510 out:
1511 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1512 	if (error && error != EBADF)
1513 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1514 	spa->spa_load_state = SPA_LOAD_NONE;
1515 	spa->spa_ena = 0;
1516 
1517 	return (error);
1518 }
1519 
1520 /*
1521  * Pool Open/Import
1522  *
1523  * The import case is identical to an open except that the configuration is sent
1524  * down from userland, instead of grabbed from the configuration cache.  For the
1525  * case of an open, the pool configuration will exist in the
1526  * POOL_STATE_UNINITIALIZED state.
1527  *
1528  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1529  * the same time open the pool, without having to keep around the spa_t in some
1530  * ambiguous state.
1531  */
1532 static int
1533 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1534 {
1535 	spa_t *spa;
1536 	int error;
1537 	int locked = B_FALSE;
1538 
1539 	*spapp = NULL;
1540 
1541 	/*
1542 	 * As disgusting as this is, we need to support recursive calls to this
1543 	 * function because dsl_dir_open() is called during spa_load(), and ends
1544 	 * up calling spa_open() again.  The real fix is to figure out how to
1545 	 * avoid dsl_dir_open() calling this in the first place.
1546 	 */
1547 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1548 		mutex_enter(&spa_namespace_lock);
1549 		locked = B_TRUE;
1550 	}
1551 
1552 	if ((spa = spa_lookup(pool)) == NULL) {
1553 		if (locked)
1554 			mutex_exit(&spa_namespace_lock);
1555 		return (ENOENT);
1556 	}
1557 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1558 
1559 		spa_activate(spa, spa_mode_global);
1560 
1561 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1562 
1563 		if (error == EBADF) {
1564 			/*
1565 			 * If vdev_validate() returns failure (indicated by
1566 			 * EBADF), it indicates that one of the vdevs indicates
1567 			 * that the pool has been exported or destroyed.  If
1568 			 * this is the case, the config cache is out of sync and
1569 			 * we should remove the pool from the namespace.
1570 			 */
1571 			spa_unload(spa);
1572 			spa_deactivate(spa);
1573 			spa_config_sync(spa, B_TRUE, B_TRUE);
1574 			spa_remove(spa);
1575 			if (locked)
1576 				mutex_exit(&spa_namespace_lock);
1577 			return (ENOENT);
1578 		}
1579 
1580 		if (error) {
1581 			/*
1582 			 * We can't open the pool, but we still have useful
1583 			 * information: the state of each vdev after the
1584 			 * attempted vdev_open().  Return this to the user.
1585 			 */
1586 			if (config != NULL && spa->spa_root_vdev != NULL)
1587 				*config = spa_config_generate(spa, NULL, -1ULL,
1588 				    B_TRUE);
1589 			spa_unload(spa);
1590 			spa_deactivate(spa);
1591 			spa->spa_last_open_failed = B_TRUE;
1592 			if (locked)
1593 				mutex_exit(&spa_namespace_lock);
1594 			*spapp = NULL;
1595 			return (error);
1596 		} else {
1597 			spa->spa_last_open_failed = B_FALSE;
1598 		}
1599 	}
1600 
1601 	spa_open_ref(spa, tag);
1602 
1603 	if (locked)
1604 		mutex_exit(&spa_namespace_lock);
1605 
1606 	*spapp = spa;
1607 
1608 	if (config != NULL)
1609 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1610 
1611 	return (0);
1612 }
1613 
1614 int
1615 spa_open(const char *name, spa_t **spapp, void *tag)
1616 {
1617 	return (spa_open_common(name, spapp, tag, NULL));
1618 }
1619 
1620 /*
1621  * Lookup the given spa_t, incrementing the inject count in the process,
1622  * preventing it from being exported or destroyed.
1623  */
1624 spa_t *
1625 spa_inject_addref(char *name)
1626 {
1627 	spa_t *spa;
1628 
1629 	mutex_enter(&spa_namespace_lock);
1630 	if ((spa = spa_lookup(name)) == NULL) {
1631 		mutex_exit(&spa_namespace_lock);
1632 		return (NULL);
1633 	}
1634 	spa->spa_inject_ref++;
1635 	mutex_exit(&spa_namespace_lock);
1636 
1637 	return (spa);
1638 }
1639 
1640 void
1641 spa_inject_delref(spa_t *spa)
1642 {
1643 	mutex_enter(&spa_namespace_lock);
1644 	spa->spa_inject_ref--;
1645 	mutex_exit(&spa_namespace_lock);
1646 }
1647 
1648 /*
1649  * Add spares device information to the nvlist.
1650  */
1651 static void
1652 spa_add_spares(spa_t *spa, nvlist_t *config)
1653 {
1654 	nvlist_t **spares;
1655 	uint_t i, nspares;
1656 	nvlist_t *nvroot;
1657 	uint64_t guid;
1658 	vdev_stat_t *vs;
1659 	uint_t vsc;
1660 	uint64_t pool;
1661 
1662 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1663 
1664 	if (spa->spa_spares.sav_count == 0)
1665 		return;
1666 
1667 	VERIFY(nvlist_lookup_nvlist(config,
1668 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1669 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1670 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1671 	if (nspares != 0) {
1672 		VERIFY(nvlist_add_nvlist_array(nvroot,
1673 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1674 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1675 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1676 
1677 		/*
1678 		 * Go through and find any spares which have since been
1679 		 * repurposed as an active spare.  If this is the case, update
1680 		 * their status appropriately.
1681 		 */
1682 		for (i = 0; i < nspares; i++) {
1683 			VERIFY(nvlist_lookup_uint64(spares[i],
1684 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1685 			if (spa_spare_exists(guid, &pool, NULL) &&
1686 			    pool != 0ULL) {
1687 				VERIFY(nvlist_lookup_uint64_array(
1688 				    spares[i], ZPOOL_CONFIG_STATS,
1689 				    (uint64_t **)&vs, &vsc) == 0);
1690 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1691 				vs->vs_aux = VDEV_AUX_SPARED;
1692 			}
1693 		}
1694 	}
1695 }
1696 
1697 /*
1698  * Add l2cache device information to the nvlist, including vdev stats.
1699  */
1700 static void
1701 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1702 {
1703 	nvlist_t **l2cache;
1704 	uint_t i, j, nl2cache;
1705 	nvlist_t *nvroot;
1706 	uint64_t guid;
1707 	vdev_t *vd;
1708 	vdev_stat_t *vs;
1709 	uint_t vsc;
1710 
1711 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1712 
1713 	if (spa->spa_l2cache.sav_count == 0)
1714 		return;
1715 
1716 	VERIFY(nvlist_lookup_nvlist(config,
1717 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1718 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1719 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1720 	if (nl2cache != 0) {
1721 		VERIFY(nvlist_add_nvlist_array(nvroot,
1722 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1723 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1724 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1725 
1726 		/*
1727 		 * Update level 2 cache device stats.
1728 		 */
1729 
1730 		for (i = 0; i < nl2cache; i++) {
1731 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1732 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1733 
1734 			vd = NULL;
1735 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1736 				if (guid ==
1737 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1738 					vd = spa->spa_l2cache.sav_vdevs[j];
1739 					break;
1740 				}
1741 			}
1742 			ASSERT(vd != NULL);
1743 
1744 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1745 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1746 			vdev_get_stats(vd, vs);
1747 		}
1748 	}
1749 }
1750 
1751 int
1752 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1753 {
1754 	int error;
1755 	spa_t *spa;
1756 
1757 	*config = NULL;
1758 	error = spa_open_common(name, &spa, FTAG, config);
1759 
1760 	if (spa != NULL) {
1761 		/*
1762 		 * This still leaves a window of inconsistency where the spares
1763 		 * or l2cache devices could change and the config would be
1764 		 * self-inconsistent.
1765 		 */
1766 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1767 
1768 		if (*config != NULL) {
1769 			VERIFY(nvlist_add_uint64(*config,
1770 			    ZPOOL_CONFIG_ERRCOUNT,
1771 			    spa_get_errlog_size(spa)) == 0);
1772 
1773 			if (spa_suspended(spa))
1774 				VERIFY(nvlist_add_uint64(*config,
1775 				    ZPOOL_CONFIG_SUSPENDED,
1776 				    spa->spa_failmode) == 0);
1777 
1778 			spa_add_spares(spa, *config);
1779 			spa_add_l2cache(spa, *config);
1780 		}
1781 	}
1782 
1783 	/*
1784 	 * We want to get the alternate root even for faulted pools, so we cheat
1785 	 * and call spa_lookup() directly.
1786 	 */
1787 	if (altroot) {
1788 		if (spa == NULL) {
1789 			mutex_enter(&spa_namespace_lock);
1790 			spa = spa_lookup(name);
1791 			if (spa)
1792 				spa_altroot(spa, altroot, buflen);
1793 			else
1794 				altroot[0] = '\0';
1795 			spa = NULL;
1796 			mutex_exit(&spa_namespace_lock);
1797 		} else {
1798 			spa_altroot(spa, altroot, buflen);
1799 		}
1800 	}
1801 
1802 	if (spa != NULL) {
1803 		spa_config_exit(spa, SCL_CONFIG, FTAG);
1804 		spa_close(spa, FTAG);
1805 	}
1806 
1807 	return (error);
1808 }
1809 
1810 /*
1811  * Validate that the auxiliary device array is well formed.  We must have an
1812  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1813  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1814  * specified, as long as they are well-formed.
1815  */
1816 static int
1817 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1818     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1819     vdev_labeltype_t label)
1820 {
1821 	nvlist_t **dev;
1822 	uint_t i, ndev;
1823 	vdev_t *vd;
1824 	int error;
1825 
1826 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1827 
1828 	/*
1829 	 * It's acceptable to have no devs specified.
1830 	 */
1831 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1832 		return (0);
1833 
1834 	if (ndev == 0)
1835 		return (EINVAL);
1836 
1837 	/*
1838 	 * Make sure the pool is formatted with a version that supports this
1839 	 * device type.
1840 	 */
1841 	if (spa_version(spa) < version)
1842 		return (ENOTSUP);
1843 
1844 	/*
1845 	 * Set the pending device list so we correctly handle device in-use
1846 	 * checking.
1847 	 */
1848 	sav->sav_pending = dev;
1849 	sav->sav_npending = ndev;
1850 
1851 	for (i = 0; i < ndev; i++) {
1852 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1853 		    mode)) != 0)
1854 			goto out;
1855 
1856 		if (!vd->vdev_ops->vdev_op_leaf) {
1857 			vdev_free(vd);
1858 			error = EINVAL;
1859 			goto out;
1860 		}
1861 
1862 		/*
1863 		 * The L2ARC currently only supports disk devices in
1864 		 * kernel context.  For user-level testing, we allow it.
1865 		 */
1866 #ifdef _KERNEL
1867 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1868 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1869 			error = ENOTBLK;
1870 			goto out;
1871 		}
1872 #endif
1873 		vd->vdev_top = vd;
1874 
1875 		if ((error = vdev_open(vd)) == 0 &&
1876 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1877 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1878 			    vd->vdev_guid) == 0);
1879 		}
1880 
1881 		vdev_free(vd);
1882 
1883 		if (error &&
1884 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1885 			goto out;
1886 		else
1887 			error = 0;
1888 	}
1889 
1890 out:
1891 	sav->sav_pending = NULL;
1892 	sav->sav_npending = 0;
1893 	return (error);
1894 }
1895 
1896 static int
1897 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1898 {
1899 	int error;
1900 
1901 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1902 
1903 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1904 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1905 	    VDEV_LABEL_SPARE)) != 0) {
1906 		return (error);
1907 	}
1908 
1909 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1910 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1911 	    VDEV_LABEL_L2CACHE));
1912 }
1913 
1914 static void
1915 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1916     const char *config)
1917 {
1918 	int i;
1919 
1920 	if (sav->sav_config != NULL) {
1921 		nvlist_t **olddevs;
1922 		uint_t oldndevs;
1923 		nvlist_t **newdevs;
1924 
1925 		/*
1926 		 * Generate new dev list by concatentating with the
1927 		 * current dev list.
1928 		 */
1929 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1930 		    &olddevs, &oldndevs) == 0);
1931 
1932 		newdevs = kmem_alloc(sizeof (void *) *
1933 		    (ndevs + oldndevs), KM_SLEEP);
1934 		for (i = 0; i < oldndevs; i++)
1935 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1936 			    KM_SLEEP) == 0);
1937 		for (i = 0; i < ndevs; i++)
1938 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1939 			    KM_SLEEP) == 0);
1940 
1941 		VERIFY(nvlist_remove(sav->sav_config, config,
1942 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1943 
1944 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1945 		    config, newdevs, ndevs + oldndevs) == 0);
1946 		for (i = 0; i < oldndevs + ndevs; i++)
1947 			nvlist_free(newdevs[i]);
1948 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1949 	} else {
1950 		/*
1951 		 * Generate a new dev list.
1952 		 */
1953 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1954 		    KM_SLEEP) == 0);
1955 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1956 		    devs, ndevs) == 0);
1957 	}
1958 }
1959 
1960 /*
1961  * Stop and drop level 2 ARC devices
1962  */
1963 void
1964 spa_l2cache_drop(spa_t *spa)
1965 {
1966 	vdev_t *vd;
1967 	int i;
1968 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1969 
1970 	for (i = 0; i < sav->sav_count; i++) {
1971 		uint64_t pool;
1972 
1973 		vd = sav->sav_vdevs[i];
1974 		ASSERT(vd != NULL);
1975 
1976 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1977 		    pool != 0ULL && l2arc_vdev_present(vd))
1978 			l2arc_remove_vdev(vd);
1979 		if (vd->vdev_isl2cache)
1980 			spa_l2cache_remove(vd);
1981 		vdev_clear_stats(vd);
1982 		(void) vdev_close(vd);
1983 	}
1984 }
1985 
1986 /*
1987  * Pool Creation
1988  */
1989 int
1990 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1991     const char *history_str, nvlist_t *zplprops)
1992 {
1993 	spa_t *spa;
1994 	char *altroot = NULL;
1995 	vdev_t *rvd;
1996 	dsl_pool_t *dp;
1997 	dmu_tx_t *tx;
1998 	int c, error = 0;
1999 	uint64_t txg = TXG_INITIAL;
2000 	nvlist_t **spares, **l2cache;
2001 	uint_t nspares, nl2cache;
2002 	uint64_t version;
2003 
2004 	/*
2005 	 * If this pool already exists, return failure.
2006 	 */
2007 	mutex_enter(&spa_namespace_lock);
2008 	if (spa_lookup(pool) != NULL) {
2009 		mutex_exit(&spa_namespace_lock);
2010 		return (EEXIST);
2011 	}
2012 
2013 	/*
2014 	 * Allocate a new spa_t structure.
2015 	 */
2016 	(void) nvlist_lookup_string(props,
2017 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2018 	spa = spa_add(pool, altroot);
2019 	spa_activate(spa, spa_mode_global);
2020 
2021 	spa->spa_uberblock.ub_txg = txg - 1;
2022 
2023 	if (props && (error = spa_prop_validate(spa, props))) {
2024 		spa_unload(spa);
2025 		spa_deactivate(spa);
2026 		spa_remove(spa);
2027 		mutex_exit(&spa_namespace_lock);
2028 		return (error);
2029 	}
2030 
2031 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2032 	    &version) != 0)
2033 		version = SPA_VERSION;
2034 	ASSERT(version <= SPA_VERSION);
2035 	spa->spa_uberblock.ub_version = version;
2036 	spa->spa_ubsync = spa->spa_uberblock;
2037 
2038 	/*
2039 	 * Create "The Godfather" zio to hold all async IOs
2040 	 */
2041 	if (spa->spa_async_zio_root == NULL)
2042 		spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2043 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2044 		    ZIO_FLAG_GODFATHER);
2045 
2046 	/*
2047 	 * Create the root vdev.
2048 	 */
2049 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2050 
2051 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2052 
2053 	ASSERT(error != 0 || rvd != NULL);
2054 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2055 
2056 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2057 		error = EINVAL;
2058 
2059 	if (error == 0 &&
2060 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2061 	    (error = spa_validate_aux(spa, nvroot, txg,
2062 	    VDEV_ALLOC_ADD)) == 0) {
2063 		for (c = 0; c < rvd->vdev_children; c++)
2064 			vdev_init(rvd->vdev_child[c], txg);
2065 		vdev_config_dirty(rvd);
2066 	}
2067 
2068 	spa_config_exit(spa, SCL_ALL, FTAG);
2069 
2070 	if (error != 0) {
2071 		spa_unload(spa);
2072 		spa_deactivate(spa);
2073 		spa_remove(spa);
2074 		mutex_exit(&spa_namespace_lock);
2075 		return (error);
2076 	}
2077 
2078 	/*
2079 	 * Get the list of spares, if specified.
2080 	 */
2081 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2082 	    &spares, &nspares) == 0) {
2083 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2084 		    KM_SLEEP) == 0);
2085 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2086 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2087 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2088 		spa_load_spares(spa);
2089 		spa_config_exit(spa, SCL_ALL, FTAG);
2090 		spa->spa_spares.sav_sync = B_TRUE;
2091 	}
2092 
2093 	/*
2094 	 * Get the list of level 2 cache devices, if specified.
2095 	 */
2096 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2097 	    &l2cache, &nl2cache) == 0) {
2098 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2099 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2100 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2101 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2102 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2103 		spa_load_l2cache(spa);
2104 		spa_config_exit(spa, SCL_ALL, FTAG);
2105 		spa->spa_l2cache.sav_sync = B_TRUE;
2106 	}
2107 
2108 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2109 	spa->spa_meta_objset = dp->dp_meta_objset;
2110 
2111 	tx = dmu_tx_create_assigned(dp, txg);
2112 
2113 	/*
2114 	 * Create the pool config object.
2115 	 */
2116 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2117 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2118 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2119 
2120 	if (zap_add(spa->spa_meta_objset,
2121 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2122 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2123 		cmn_err(CE_PANIC, "failed to add pool config");
2124 	}
2125 
2126 	/* Newly created pools with the right version are always deflated. */
2127 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2128 		spa->spa_deflate = TRUE;
2129 		if (zap_add(spa->spa_meta_objset,
2130 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2131 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2132 			cmn_err(CE_PANIC, "failed to add deflate");
2133 		}
2134 	}
2135 
2136 	/*
2137 	 * Create the deferred-free bplist object.  Turn off compression
2138 	 * because sync-to-convergence takes longer if the blocksize
2139 	 * keeps changing.
2140 	 */
2141 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2142 	    1 << 14, tx);
2143 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2144 	    ZIO_COMPRESS_OFF, tx);
2145 
2146 	if (zap_add(spa->spa_meta_objset,
2147 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2148 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2149 		cmn_err(CE_PANIC, "failed to add bplist");
2150 	}
2151 
2152 	/*
2153 	 * Create the pool's history object.
2154 	 */
2155 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2156 		spa_history_create_obj(spa, tx);
2157 
2158 	/*
2159 	 * Set pool properties.
2160 	 */
2161 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2162 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2163 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2164 	if (props != NULL) {
2165 		spa_configfile_set(spa, props, B_FALSE);
2166 		spa_sync_props(spa, props, CRED(), tx);
2167 	}
2168 
2169 	dmu_tx_commit(tx);
2170 
2171 	spa->spa_sync_on = B_TRUE;
2172 	txg_sync_start(spa->spa_dsl_pool);
2173 
2174 	/*
2175 	 * We explicitly wait for the first transaction to complete so that our
2176 	 * bean counters are appropriately updated.
2177 	 */
2178 	txg_wait_synced(spa->spa_dsl_pool, txg);
2179 
2180 	spa_config_sync(spa, B_FALSE, B_TRUE);
2181 
2182 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2183 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2184 
2185 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2186 
2187 	mutex_exit(&spa_namespace_lock);
2188 
2189 	return (0);
2190 }
2191 
2192 #ifdef _KERNEL
2193 /*
2194  * Build a "root" vdev for a top level vdev read in from a rootpool
2195  * device label.
2196  */
2197 static void
2198 spa_build_rootpool_config(nvlist_t *config)
2199 {
2200 	nvlist_t *nvtop, *nvroot;
2201 	uint64_t pgid;
2202 
2203 	/*
2204 	 * Add this top-level vdev to the child array.
2205 	 */
2206 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2207 	    == 0);
2208 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2209 	    == 0);
2210 
2211 	/*
2212 	 * Put this pool's top-level vdevs into a root vdev.
2213 	 */
2214 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2215 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2216 	    == 0);
2217 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2218 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2219 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2220 	    &nvtop, 1) == 0);
2221 
2222 	/*
2223 	 * Replace the existing vdev_tree with the new root vdev in
2224 	 * this pool's configuration (remove the old, add the new).
2225 	 */
2226 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2227 	nvlist_free(nvroot);
2228 }
2229 
2230 /*
2231  * Get the root pool information from the root disk, then import the root pool
2232  * during the system boot up time.
2233  */
2234 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2235 
2236 int
2237 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2238     uint64_t *besttxg)
2239 {
2240 	nvlist_t *config;
2241 	uint64_t txg;
2242 	int error;
2243 
2244 	if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2245 		return (error);
2246 
2247 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2248 
2249 	if (bestconf != NULL)
2250 		*bestconf = config;
2251 	else
2252 		nvlist_free(config);
2253 	*besttxg = txg;
2254 	return (0);
2255 }
2256 
2257 boolean_t
2258 spa_rootdev_validate(nvlist_t *nv)
2259 {
2260 	uint64_t ival;
2261 
2262 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2263 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2264 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2265 		return (B_FALSE);
2266 
2267 	return (B_TRUE);
2268 }
2269 
2270 
2271 /*
2272  * Given the boot device's physical path or devid, check if the device
2273  * is in a valid state.  If so, return the configuration from the vdev
2274  * label.
2275  */
2276 int
2277 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2278 {
2279 	nvlist_t *conf = NULL;
2280 	uint64_t txg = 0;
2281 	nvlist_t *nvtop, **child;
2282 	char *type;
2283 	char *bootpath = NULL;
2284 	uint_t children, c;
2285 	char *tmp;
2286 	int error;
2287 
2288 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2289 		*tmp = '\0';
2290 	if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2291 		cmn_err(CE_NOTE, "error reading device label");
2292 		return (error);
2293 	}
2294 	if (txg == 0) {
2295 		cmn_err(CE_NOTE, "this device is detached");
2296 		nvlist_free(conf);
2297 		return (EINVAL);
2298 	}
2299 
2300 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2301 	    &nvtop) == 0);
2302 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2303 
2304 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2305 		if (spa_rootdev_validate(nvtop)) {
2306 			goto out;
2307 		} else {
2308 			nvlist_free(conf);
2309 			return (EINVAL);
2310 		}
2311 	}
2312 
2313 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2314 
2315 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2316 	    &child, &children) == 0);
2317 
2318 	/*
2319 	 * Go thru vdevs in the mirror to see if the given device
2320 	 * has the most recent txg. Only the device with the most
2321 	 * recent txg has valid information and should be booted.
2322 	 */
2323 	for (c = 0; c < children; c++) {
2324 		char *cdevid, *cpath;
2325 		uint64_t tmptxg;
2326 
2327 		cpath = NULL;
2328 		cdevid = NULL;
2329 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2330 		    &cpath) != 0 && nvlist_lookup_string(child[c],
2331 		    ZPOOL_CONFIG_DEVID, &cdevid) != 0)
2332 			return (EINVAL);
2333 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2334 		    &tmptxg) == 0) && (tmptxg > txg)) {
2335 			txg = tmptxg;
2336 			VERIFY(nvlist_lookup_string(child[c],
2337 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2338 		}
2339 	}
2340 
2341 	/* Does the best device match the one we've booted from? */
2342 	if (bootpath) {
2343 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2344 		return (EINVAL);
2345 	}
2346 out:
2347 	*bestconf = conf;
2348 	return (0);
2349 }
2350 
2351 /*
2352  * Import a root pool.
2353  *
2354  * For x86. devpath_list will consist of devid and/or physpath name of
2355  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2356  * The GRUB "findroot" command will return the vdev we should boot.
2357  *
2358  * For Sparc, devpath_list consists the physpath name of the booting device
2359  * no matter the rootpool is a single device pool or a mirrored pool.
2360  * e.g.
2361  *	"/pci@1f,0/ide@d/disk@0,0:a"
2362  */
2363 int
2364 spa_import_rootpool(char *devpath, char *devid)
2365 {
2366 	nvlist_t *conf = NULL;
2367 	char *pname;
2368 	int error;
2369 	spa_t *spa;
2370 
2371 	/*
2372 	 * Get the vdev pathname and configuation from the most
2373 	 * recently updated vdev (highest txg).
2374 	 */
2375 	if (error = spa_get_rootconf(devpath, devid, &conf))
2376 		goto msg_out;
2377 
2378 	/*
2379 	 * Add type "root" vdev to the config.
2380 	 */
2381 	spa_build_rootpool_config(conf);
2382 
2383 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2384 
2385 	mutex_enter(&spa_namespace_lock);
2386 	if ((spa = spa_lookup(pname)) != NULL) {
2387 		/*
2388 		 * Remove the existing root pool from the namespace so that we
2389 		 * can replace it with the correct config we just read in.
2390 		 */
2391 		spa_remove(spa);
2392 	}
2393 
2394 	spa = spa_add(pname, NULL);
2395 
2396 	spa->spa_is_root = B_TRUE;
2397 	VERIFY(nvlist_dup(conf, &spa->spa_config, 0) == 0);
2398 	mutex_exit(&spa_namespace_lock);
2399 
2400 	nvlist_free(conf);
2401 	return (0);
2402 
2403 msg_out:
2404 	cmn_err(CE_NOTE, "\n"
2405 	    "  ***************************************************  \n"
2406 	    "  *  This device is not bootable!                   *  \n"
2407 	    "  *  It is either offlined or detached or faulted.  *  \n"
2408 	    "  *  Please try to boot from a different device.    *  \n"
2409 	    "  ***************************************************  ");
2410 
2411 	return (error);
2412 }
2413 #endif
2414 
2415 /*
2416  * Take a pool and insert it into the namespace as if it had been loaded at
2417  * boot.
2418  */
2419 int
2420 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2421 {
2422 	spa_t *spa;
2423 	char *altroot = NULL;
2424 
2425 	mutex_enter(&spa_namespace_lock);
2426 	if (spa_lookup(pool) != NULL) {
2427 		mutex_exit(&spa_namespace_lock);
2428 		return (EEXIST);
2429 	}
2430 
2431 	(void) nvlist_lookup_string(props,
2432 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2433 	spa = spa_add(pool, altroot);
2434 
2435 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2436 
2437 	if (props != NULL)
2438 		spa_configfile_set(spa, props, B_FALSE);
2439 
2440 	spa_config_sync(spa, B_FALSE, B_TRUE);
2441 
2442 	mutex_exit(&spa_namespace_lock);
2443 
2444 	return (0);
2445 }
2446 
2447 /*
2448  * Import a non-root pool into the system.
2449  */
2450 int
2451 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2452 {
2453 	spa_t *spa;
2454 	char *altroot = NULL;
2455 	int error;
2456 	nvlist_t *nvroot;
2457 	nvlist_t **spares, **l2cache;
2458 	uint_t nspares, nl2cache;
2459 
2460 	/*
2461 	 * If a pool with this name exists, return failure.
2462 	 */
2463 	mutex_enter(&spa_namespace_lock);
2464 	if ((spa = spa_lookup(pool)) != NULL) {
2465 		mutex_exit(&spa_namespace_lock);
2466 		return (EEXIST);
2467 	}
2468 
2469 	/*
2470 	 * Create and initialize the spa structure.
2471 	 */
2472 	(void) nvlist_lookup_string(props,
2473 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2474 	spa = spa_add(pool, altroot);
2475 	spa_activate(spa, spa_mode_global);
2476 
2477 	/*
2478 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2479 	 * because the user-supplied config is actually the one to trust when
2480 	 * doing an import.
2481 	 */
2482 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2483 
2484 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2485 	/*
2486 	 * Toss any existing sparelist, as it doesn't have any validity
2487 	 * anymore, and conflicts with spa_has_spare().
2488 	 */
2489 	if (spa->spa_spares.sav_config) {
2490 		nvlist_free(spa->spa_spares.sav_config);
2491 		spa->spa_spares.sav_config = NULL;
2492 		spa_load_spares(spa);
2493 	}
2494 	if (spa->spa_l2cache.sav_config) {
2495 		nvlist_free(spa->spa_l2cache.sav_config);
2496 		spa->spa_l2cache.sav_config = NULL;
2497 		spa_load_l2cache(spa);
2498 	}
2499 
2500 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2501 	    &nvroot) == 0);
2502 	if (error == 0)
2503 		error = spa_validate_aux(spa, nvroot, -1ULL,
2504 		    VDEV_ALLOC_SPARE);
2505 	if (error == 0)
2506 		error = spa_validate_aux(spa, nvroot, -1ULL,
2507 		    VDEV_ALLOC_L2CACHE);
2508 	spa_config_exit(spa, SCL_ALL, FTAG);
2509 
2510 	if (props != NULL)
2511 		spa_configfile_set(spa, props, B_FALSE);
2512 
2513 	if (error != 0 || (props && spa_writeable(spa) &&
2514 	    (error = spa_prop_set(spa, props)))) {
2515 		spa_unload(spa);
2516 		spa_deactivate(spa);
2517 		spa_remove(spa);
2518 		mutex_exit(&spa_namespace_lock);
2519 		return (error);
2520 	}
2521 
2522 	/*
2523 	 * Override any spares and level 2 cache devices as specified by
2524 	 * the user, as these may have correct device names/devids, etc.
2525 	 */
2526 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2527 	    &spares, &nspares) == 0) {
2528 		if (spa->spa_spares.sav_config)
2529 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2530 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2531 		else
2532 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2533 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2534 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2535 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2536 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2537 		spa_load_spares(spa);
2538 		spa_config_exit(spa, SCL_ALL, FTAG);
2539 		spa->spa_spares.sav_sync = B_TRUE;
2540 	}
2541 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2542 	    &l2cache, &nl2cache) == 0) {
2543 		if (spa->spa_l2cache.sav_config)
2544 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2545 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2546 		else
2547 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2548 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2549 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2550 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2551 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2552 		spa_load_l2cache(spa);
2553 		spa_config_exit(spa, SCL_ALL, FTAG);
2554 		spa->spa_l2cache.sav_sync = B_TRUE;
2555 	}
2556 
2557 	if (spa_writeable(spa)) {
2558 		/*
2559 		 * Update the config cache to include the newly-imported pool.
2560 		 */
2561 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, B_FALSE);
2562 	}
2563 
2564 	mutex_exit(&spa_namespace_lock);
2565 
2566 	return (0);
2567 }
2568 
2569 
2570 /*
2571  * This (illegal) pool name is used when temporarily importing a spa_t in order
2572  * to get the vdev stats associated with the imported devices.
2573  */
2574 #define	TRYIMPORT_NAME	"$import"
2575 
2576 nvlist_t *
2577 spa_tryimport(nvlist_t *tryconfig)
2578 {
2579 	nvlist_t *config = NULL;
2580 	char *poolname;
2581 	spa_t *spa;
2582 	uint64_t state;
2583 	int error;
2584 
2585 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2586 		return (NULL);
2587 
2588 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2589 		return (NULL);
2590 
2591 	/*
2592 	 * Create and initialize the spa structure.
2593 	 */
2594 	mutex_enter(&spa_namespace_lock);
2595 	spa = spa_add(TRYIMPORT_NAME, NULL);
2596 	spa_activate(spa, FREAD);
2597 
2598 	/*
2599 	 * Pass off the heavy lifting to spa_load().
2600 	 * Pass TRUE for mosconfig because the user-supplied config
2601 	 * is actually the one to trust when doing an import.
2602 	 */
2603 	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2604 
2605 	/*
2606 	 * If 'tryconfig' was at least parsable, return the current config.
2607 	 */
2608 	if (spa->spa_root_vdev != NULL) {
2609 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2610 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2611 		    poolname) == 0);
2612 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2613 		    state) == 0);
2614 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2615 		    spa->spa_uberblock.ub_timestamp) == 0);
2616 
2617 		/*
2618 		 * If the bootfs property exists on this pool then we
2619 		 * copy it out so that external consumers can tell which
2620 		 * pools are bootable.
2621 		 */
2622 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2623 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2624 
2625 			/*
2626 			 * We have to play games with the name since the
2627 			 * pool was opened as TRYIMPORT_NAME.
2628 			 */
2629 			if (dsl_dsobj_to_dsname(spa_name(spa),
2630 			    spa->spa_bootfs, tmpname) == 0) {
2631 				char *cp;
2632 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2633 
2634 				cp = strchr(tmpname, '/');
2635 				if (cp == NULL) {
2636 					(void) strlcpy(dsname, tmpname,
2637 					    MAXPATHLEN);
2638 				} else {
2639 					(void) snprintf(dsname, MAXPATHLEN,
2640 					    "%s/%s", poolname, ++cp);
2641 				}
2642 				VERIFY(nvlist_add_string(config,
2643 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2644 				kmem_free(dsname, MAXPATHLEN);
2645 			}
2646 			kmem_free(tmpname, MAXPATHLEN);
2647 		}
2648 
2649 		/*
2650 		 * Add the list of hot spares and level 2 cache devices.
2651 		 */
2652 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2653 		spa_add_spares(spa, config);
2654 		spa_add_l2cache(spa, config);
2655 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2656 	}
2657 
2658 	spa_unload(spa);
2659 	spa_deactivate(spa);
2660 	spa_remove(spa);
2661 	mutex_exit(&spa_namespace_lock);
2662 
2663 	return (config);
2664 }
2665 
2666 /*
2667  * Pool export/destroy
2668  *
2669  * The act of destroying or exporting a pool is very simple.  We make sure there
2670  * is no more pending I/O and any references to the pool are gone.  Then, we
2671  * update the pool state and sync all the labels to disk, removing the
2672  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2673  * we don't sync the labels or remove the configuration cache.
2674  */
2675 static int
2676 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2677     boolean_t force, boolean_t hardforce)
2678 {
2679 	spa_t *spa;
2680 
2681 	if (oldconfig)
2682 		*oldconfig = NULL;
2683 
2684 	if (!(spa_mode_global & FWRITE))
2685 		return (EROFS);
2686 
2687 	mutex_enter(&spa_namespace_lock);
2688 	if ((spa = spa_lookup(pool)) == NULL) {
2689 		mutex_exit(&spa_namespace_lock);
2690 		return (ENOENT);
2691 	}
2692 
2693 	/*
2694 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2695 	 * reacquire the namespace lock, and see if we can export.
2696 	 */
2697 	spa_open_ref(spa, FTAG);
2698 	mutex_exit(&spa_namespace_lock);
2699 	spa_async_suspend(spa);
2700 	mutex_enter(&spa_namespace_lock);
2701 	spa_close(spa, FTAG);
2702 
2703 	/*
2704 	 * The pool will be in core if it's openable,
2705 	 * in which case we can modify its state.
2706 	 */
2707 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2708 		/*
2709 		 * Objsets may be open only because they're dirty, so we
2710 		 * have to force it to sync before checking spa_refcnt.
2711 		 */
2712 		txg_wait_synced(spa->spa_dsl_pool, 0);
2713 
2714 		/*
2715 		 * A pool cannot be exported or destroyed if there are active
2716 		 * references.  If we are resetting a pool, allow references by
2717 		 * fault injection handlers.
2718 		 */
2719 		if (!spa_refcount_zero(spa) ||
2720 		    (spa->spa_inject_ref != 0 &&
2721 		    new_state != POOL_STATE_UNINITIALIZED)) {
2722 			spa_async_resume(spa);
2723 			mutex_exit(&spa_namespace_lock);
2724 			return (EBUSY);
2725 		}
2726 
2727 		/*
2728 		 * A pool cannot be exported if it has an active shared spare.
2729 		 * This is to prevent other pools stealing the active spare
2730 		 * from an exported pool. At user's own will, such pool can
2731 		 * be forcedly exported.
2732 		 */
2733 		if (!force && new_state == POOL_STATE_EXPORTED &&
2734 		    spa_has_active_shared_spare(spa)) {
2735 			spa_async_resume(spa);
2736 			mutex_exit(&spa_namespace_lock);
2737 			return (EXDEV);
2738 		}
2739 
2740 		/*
2741 		 * We want this to be reflected on every label,
2742 		 * so mark them all dirty.  spa_unload() will do the
2743 		 * final sync that pushes these changes out.
2744 		 */
2745 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2746 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2747 			spa->spa_state = new_state;
2748 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2749 			vdev_config_dirty(spa->spa_root_vdev);
2750 			spa_config_exit(spa, SCL_ALL, FTAG);
2751 		}
2752 	}
2753 
2754 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2755 
2756 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2757 		spa_unload(spa);
2758 		spa_deactivate(spa);
2759 	}
2760 
2761 	if (oldconfig && spa->spa_config)
2762 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2763 
2764 	if (new_state != POOL_STATE_UNINITIALIZED) {
2765 		if (!hardforce)
2766 			spa_config_sync(spa, B_TRUE, B_TRUE);
2767 		spa_remove(spa);
2768 	}
2769 	mutex_exit(&spa_namespace_lock);
2770 
2771 	return (0);
2772 }
2773 
2774 /*
2775  * Destroy a storage pool.
2776  */
2777 int
2778 spa_destroy(char *pool)
2779 {
2780 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2781 	    B_FALSE, B_FALSE));
2782 }
2783 
2784 /*
2785  * Export a storage pool.
2786  */
2787 int
2788 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2789     boolean_t hardforce)
2790 {
2791 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2792 	    force, hardforce));
2793 }
2794 
2795 /*
2796  * Similar to spa_export(), this unloads the spa_t without actually removing it
2797  * from the namespace in any way.
2798  */
2799 int
2800 spa_reset(char *pool)
2801 {
2802 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2803 	    B_FALSE, B_FALSE));
2804 }
2805 
2806 /*
2807  * ==========================================================================
2808  * Device manipulation
2809  * ==========================================================================
2810  */
2811 
2812 /*
2813  * Add a device to a storage pool.
2814  */
2815 int
2816 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2817 {
2818 	uint64_t txg;
2819 	int error;
2820 	vdev_t *rvd = spa->spa_root_vdev;
2821 	vdev_t *vd, *tvd;
2822 	nvlist_t **spares, **l2cache;
2823 	uint_t nspares, nl2cache;
2824 
2825 	txg = spa_vdev_enter(spa);
2826 
2827 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2828 	    VDEV_ALLOC_ADD)) != 0)
2829 		return (spa_vdev_exit(spa, NULL, txg, error));
2830 
2831 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2832 
2833 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2834 	    &nspares) != 0)
2835 		nspares = 0;
2836 
2837 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2838 	    &nl2cache) != 0)
2839 		nl2cache = 0;
2840 
2841 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2842 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2843 
2844 	if (vd->vdev_children != 0 &&
2845 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2846 		return (spa_vdev_exit(spa, vd, txg, error));
2847 
2848 	/*
2849 	 * We must validate the spares and l2cache devices after checking the
2850 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2851 	 */
2852 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2853 		return (spa_vdev_exit(spa, vd, txg, error));
2854 
2855 	/*
2856 	 * Transfer each new top-level vdev from vd to rvd.
2857 	 */
2858 	for (int c = 0; c < vd->vdev_children; c++) {
2859 		tvd = vd->vdev_child[c];
2860 		vdev_remove_child(vd, tvd);
2861 		tvd->vdev_id = rvd->vdev_children;
2862 		vdev_add_child(rvd, tvd);
2863 		vdev_config_dirty(tvd);
2864 	}
2865 
2866 	if (nspares != 0) {
2867 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2868 		    ZPOOL_CONFIG_SPARES);
2869 		spa_load_spares(spa);
2870 		spa->spa_spares.sav_sync = B_TRUE;
2871 	}
2872 
2873 	if (nl2cache != 0) {
2874 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2875 		    ZPOOL_CONFIG_L2CACHE);
2876 		spa_load_l2cache(spa);
2877 		spa->spa_l2cache.sav_sync = B_TRUE;
2878 	}
2879 
2880 	/*
2881 	 * We have to be careful when adding new vdevs to an existing pool.
2882 	 * If other threads start allocating from these vdevs before we
2883 	 * sync the config cache, and we lose power, then upon reboot we may
2884 	 * fail to open the pool because there are DVAs that the config cache
2885 	 * can't translate.  Therefore, we first add the vdevs without
2886 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2887 	 * and then let spa_config_update() initialize the new metaslabs.
2888 	 *
2889 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2890 	 * if we lose power at any point in this sequence, the remaining
2891 	 * steps will be completed the next time we load the pool.
2892 	 */
2893 	(void) spa_vdev_exit(spa, vd, txg, 0);
2894 
2895 	mutex_enter(&spa_namespace_lock);
2896 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2897 	mutex_exit(&spa_namespace_lock);
2898 
2899 	return (0);
2900 }
2901 
2902 /*
2903  * Attach a device to a mirror.  The arguments are the path to any device
2904  * in the mirror, and the nvroot for the new device.  If the path specifies
2905  * a device that is not mirrored, we automatically insert the mirror vdev.
2906  *
2907  * If 'replacing' is specified, the new device is intended to replace the
2908  * existing device; in this case the two devices are made into their own
2909  * mirror using the 'replacing' vdev, which is functionally identical to
2910  * the mirror vdev (it actually reuses all the same ops) but has a few
2911  * extra rules: you can't attach to it after it's been created, and upon
2912  * completion of resilvering, the first disk (the one being replaced)
2913  * is automatically detached.
2914  */
2915 int
2916 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2917 {
2918 	uint64_t txg, open_txg;
2919 	vdev_t *rvd = spa->spa_root_vdev;
2920 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2921 	vdev_ops_t *pvops;
2922 	dmu_tx_t *tx;
2923 	char *oldvdpath, *newvdpath;
2924 	int newvd_isspare;
2925 	int error;
2926 
2927 	txg = spa_vdev_enter(spa);
2928 
2929 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2930 
2931 	if (oldvd == NULL)
2932 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2933 
2934 	if (!oldvd->vdev_ops->vdev_op_leaf)
2935 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2936 
2937 	pvd = oldvd->vdev_parent;
2938 
2939 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2940 	    VDEV_ALLOC_ADD)) != 0)
2941 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2942 
2943 	if (newrootvd->vdev_children != 1)
2944 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2945 
2946 	newvd = newrootvd->vdev_child[0];
2947 
2948 	if (!newvd->vdev_ops->vdev_op_leaf)
2949 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2950 
2951 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2952 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2953 
2954 	/*
2955 	 * Spares can't replace logs
2956 	 */
2957 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2958 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2959 
2960 	if (!replacing) {
2961 		/*
2962 		 * For attach, the only allowable parent is a mirror or the root
2963 		 * vdev.
2964 		 */
2965 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2966 		    pvd->vdev_ops != &vdev_root_ops)
2967 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2968 
2969 		pvops = &vdev_mirror_ops;
2970 	} else {
2971 		/*
2972 		 * Active hot spares can only be replaced by inactive hot
2973 		 * spares.
2974 		 */
2975 		if (pvd->vdev_ops == &vdev_spare_ops &&
2976 		    pvd->vdev_child[1] == oldvd &&
2977 		    !spa_has_spare(spa, newvd->vdev_guid))
2978 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2979 
2980 		/*
2981 		 * If the source is a hot spare, and the parent isn't already a
2982 		 * spare, then we want to create a new hot spare.  Otherwise, we
2983 		 * want to create a replacing vdev.  The user is not allowed to
2984 		 * attach to a spared vdev child unless the 'isspare' state is
2985 		 * the same (spare replaces spare, non-spare replaces
2986 		 * non-spare).
2987 		 */
2988 		if (pvd->vdev_ops == &vdev_replacing_ops)
2989 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2990 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2991 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2992 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2993 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2994 		    newvd->vdev_isspare)
2995 			pvops = &vdev_spare_ops;
2996 		else
2997 			pvops = &vdev_replacing_ops;
2998 	}
2999 
3000 	/*
3001 	 * Compare the new device size with the replaceable/attachable
3002 	 * device size.
3003 	 */
3004 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
3005 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3006 
3007 	/*
3008 	 * The new device cannot have a higher alignment requirement
3009 	 * than the top-level vdev.
3010 	 */
3011 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3012 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3013 
3014 	/*
3015 	 * If this is an in-place replacement, update oldvd's path and devid
3016 	 * to make it distinguishable from newvd, and unopenable from now on.
3017 	 */
3018 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3019 		spa_strfree(oldvd->vdev_path);
3020 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3021 		    KM_SLEEP);
3022 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3023 		    newvd->vdev_path, "old");
3024 		if (oldvd->vdev_devid != NULL) {
3025 			spa_strfree(oldvd->vdev_devid);
3026 			oldvd->vdev_devid = NULL;
3027 		}
3028 	}
3029 
3030 	/*
3031 	 * If the parent is not a mirror, or if we're replacing, insert the new
3032 	 * mirror/replacing/spare vdev above oldvd.
3033 	 */
3034 	if (pvd->vdev_ops != pvops)
3035 		pvd = vdev_add_parent(oldvd, pvops);
3036 
3037 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3038 	ASSERT(pvd->vdev_ops == pvops);
3039 	ASSERT(oldvd->vdev_parent == pvd);
3040 
3041 	/*
3042 	 * Extract the new device from its root and add it to pvd.
3043 	 */
3044 	vdev_remove_child(newrootvd, newvd);
3045 	newvd->vdev_id = pvd->vdev_children;
3046 	vdev_add_child(pvd, newvd);
3047 
3048 	/*
3049 	 * If newvd is smaller than oldvd, but larger than its rsize,
3050 	 * the addition of newvd may have decreased our parent's asize.
3051 	 */
3052 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
3053 
3054 	tvd = newvd->vdev_top;
3055 	ASSERT(pvd->vdev_top == tvd);
3056 	ASSERT(tvd->vdev_parent == rvd);
3057 
3058 	vdev_config_dirty(tvd);
3059 
3060 	/*
3061 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3062 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3063 	 */
3064 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3065 
3066 	vdev_dtl_dirty(newvd, DTL_MISSING,
3067 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3068 
3069 	if (newvd->vdev_isspare) {
3070 		spa_spare_activate(newvd);
3071 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3072 	}
3073 
3074 	oldvdpath = spa_strdup(oldvd->vdev_path);
3075 	newvdpath = spa_strdup(newvd->vdev_path);
3076 	newvd_isspare = newvd->vdev_isspare;
3077 
3078 	/*
3079 	 * Mark newvd's DTL dirty in this txg.
3080 	 */
3081 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3082 
3083 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3084 
3085 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3086 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3087 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
3088 		    CRED(),  "%s vdev=%s %s vdev=%s",
3089 		    replacing && newvd_isspare ? "spare in" :
3090 		    replacing ? "replace" : "attach", newvdpath,
3091 		    replacing ? "for" : "to", oldvdpath);
3092 		dmu_tx_commit(tx);
3093 	} else {
3094 		dmu_tx_abort(tx);
3095 	}
3096 
3097 	spa_strfree(oldvdpath);
3098 	spa_strfree(newvdpath);
3099 
3100 	/*
3101 	 * Kick off a resilver to update newvd.
3102 	 */
3103 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3104 
3105 	return (0);
3106 }
3107 
3108 /*
3109  * Detach a device from a mirror or replacing vdev.
3110  * If 'replace_done' is specified, only detach if the parent
3111  * is a replacing vdev.
3112  */
3113 int
3114 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3115 {
3116 	uint64_t txg;
3117 	int error;
3118 	vdev_t *rvd = spa->spa_root_vdev;
3119 	vdev_t *vd, *pvd, *cvd, *tvd;
3120 	boolean_t unspare = B_FALSE;
3121 	uint64_t unspare_guid;
3122 	size_t len;
3123 
3124 	txg = spa_vdev_enter(spa);
3125 
3126 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3127 
3128 	if (vd == NULL)
3129 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3130 
3131 	if (!vd->vdev_ops->vdev_op_leaf)
3132 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3133 
3134 	pvd = vd->vdev_parent;
3135 
3136 	/*
3137 	 * If the parent/child relationship is not as expected, don't do it.
3138 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3139 	 * vdev that's replacing B with C.  The user's intent in replacing
3140 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3141 	 * the replace by detaching C, the expected behavior is to end up
3142 	 * M(A,B).  But suppose that right after deciding to detach C,
3143 	 * the replacement of B completes.  We would have M(A,C), and then
3144 	 * ask to detach C, which would leave us with just A -- not what
3145 	 * the user wanted.  To prevent this, we make sure that the
3146 	 * parent/child relationship hasn't changed -- in this example,
3147 	 * that C's parent is still the replacing vdev R.
3148 	 */
3149 	if (pvd->vdev_guid != pguid && pguid != 0)
3150 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3151 
3152 	/*
3153 	 * If replace_done is specified, only remove this device if it's
3154 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3155 	 * disk can be removed.
3156 	 */
3157 	if (replace_done) {
3158 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3159 			if (vd->vdev_id != 0)
3160 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3161 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3162 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3163 		}
3164 	}
3165 
3166 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3167 	    spa_version(spa) >= SPA_VERSION_SPARES);
3168 
3169 	/*
3170 	 * Only mirror, replacing, and spare vdevs support detach.
3171 	 */
3172 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3173 	    pvd->vdev_ops != &vdev_mirror_ops &&
3174 	    pvd->vdev_ops != &vdev_spare_ops)
3175 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3176 
3177 	/*
3178 	 * If this device has the only valid copy of some data,
3179 	 * we cannot safely detach it.
3180 	 */
3181 	if (vdev_dtl_required(vd))
3182 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3183 
3184 	ASSERT(pvd->vdev_children >= 2);
3185 
3186 	/*
3187 	 * If we are detaching the second disk from a replacing vdev, then
3188 	 * check to see if we changed the original vdev's path to have "/old"
3189 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3190 	 */
3191 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3192 	    pvd->vdev_child[0]->vdev_path != NULL &&
3193 	    pvd->vdev_child[1]->vdev_path != NULL) {
3194 		ASSERT(pvd->vdev_child[1] == vd);
3195 		cvd = pvd->vdev_child[0];
3196 		len = strlen(vd->vdev_path);
3197 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3198 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3199 			spa_strfree(cvd->vdev_path);
3200 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3201 		}
3202 	}
3203 
3204 	/*
3205 	 * If we are detaching the original disk from a spare, then it implies
3206 	 * that the spare should become a real disk, and be removed from the
3207 	 * active spare list for the pool.
3208 	 */
3209 	if (pvd->vdev_ops == &vdev_spare_ops &&
3210 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3211 		unspare = B_TRUE;
3212 
3213 	/*
3214 	 * Erase the disk labels so the disk can be used for other things.
3215 	 * This must be done after all other error cases are handled,
3216 	 * but before we disembowel vd (so we can still do I/O to it).
3217 	 * But if we can't do it, don't treat the error as fatal --
3218 	 * it may be that the unwritability of the disk is the reason
3219 	 * it's being detached!
3220 	 */
3221 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3222 
3223 	/*
3224 	 * Remove vd from its parent and compact the parent's children.
3225 	 */
3226 	vdev_remove_child(pvd, vd);
3227 	vdev_compact_children(pvd);
3228 
3229 	/*
3230 	 * Remember one of the remaining children so we can get tvd below.
3231 	 */
3232 	cvd = pvd->vdev_child[0];
3233 
3234 	/*
3235 	 * If we need to remove the remaining child from the list of hot spares,
3236 	 * do it now, marking the vdev as no longer a spare in the process.
3237 	 * We must do this before vdev_remove_parent(), because that can
3238 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3239 	 * reason, we must remove the spare now, in the same txg as the detach;
3240 	 * otherwise someone could attach a new sibling, change the GUID, and
3241 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3242 	 */
3243 	if (unspare) {
3244 		ASSERT(cvd->vdev_isspare);
3245 		spa_spare_remove(cvd);
3246 		unspare_guid = cvd->vdev_guid;
3247 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3248 	}
3249 
3250 	/*
3251 	 * If the parent mirror/replacing vdev only has one child,
3252 	 * the parent is no longer needed.  Remove it from the tree.
3253 	 */
3254 	if (pvd->vdev_children == 1)
3255 		vdev_remove_parent(cvd);
3256 
3257 	/*
3258 	 * We don't set tvd until now because the parent we just removed
3259 	 * may have been the previous top-level vdev.
3260 	 */
3261 	tvd = cvd->vdev_top;
3262 	ASSERT(tvd->vdev_parent == rvd);
3263 
3264 	/*
3265 	 * Reevaluate the parent vdev state.
3266 	 */
3267 	vdev_propagate_state(cvd);
3268 
3269 	/*
3270 	 * If the device we just detached was smaller than the others, it may be
3271 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3272 	 * can't fail because the existing metaslabs are already in core, so
3273 	 * there's nothing to read from disk.
3274 	 */
3275 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3276 
3277 	vdev_config_dirty(tvd);
3278 
3279 	/*
3280 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3281 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3282 	 * But first make sure we're not on any *other* txg's DTL list, to
3283 	 * prevent vd from being accessed after it's freed.
3284 	 */
3285 	for (int t = 0; t < TXG_SIZE; t++)
3286 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3287 	vd->vdev_detached = B_TRUE;
3288 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3289 
3290 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3291 
3292 	error = spa_vdev_exit(spa, vd, txg, 0);
3293 
3294 	/*
3295 	 * If this was the removal of the original device in a hot spare vdev,
3296 	 * then we want to go through and remove the device from the hot spare
3297 	 * list of every other pool.
3298 	 */
3299 	if (unspare) {
3300 		spa_t *myspa = spa;
3301 		spa = NULL;
3302 		mutex_enter(&spa_namespace_lock);
3303 		while ((spa = spa_next(spa)) != NULL) {
3304 			if (spa->spa_state != POOL_STATE_ACTIVE)
3305 				continue;
3306 			if (spa == myspa)
3307 				continue;
3308 			spa_open_ref(spa, FTAG);
3309 			mutex_exit(&spa_namespace_lock);
3310 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3311 			mutex_enter(&spa_namespace_lock);
3312 			spa_close(spa, FTAG);
3313 		}
3314 		mutex_exit(&spa_namespace_lock);
3315 	}
3316 
3317 	return (error);
3318 }
3319 
3320 static nvlist_t *
3321 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3322 {
3323 	for (int i = 0; i < count; i++) {
3324 		uint64_t guid;
3325 
3326 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3327 		    &guid) == 0);
3328 
3329 		if (guid == target_guid)
3330 			return (nvpp[i]);
3331 	}
3332 
3333 	return (NULL);
3334 }
3335 
3336 static void
3337 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3338 	nvlist_t *dev_to_remove)
3339 {
3340 	nvlist_t **newdev = NULL;
3341 
3342 	if (count > 1)
3343 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3344 
3345 	for (int i = 0, j = 0; i < count; i++) {
3346 		if (dev[i] == dev_to_remove)
3347 			continue;
3348 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3349 	}
3350 
3351 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3352 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3353 
3354 	for (int i = 0; i < count - 1; i++)
3355 		nvlist_free(newdev[i]);
3356 
3357 	if (count > 1)
3358 		kmem_free(newdev, (count - 1) * sizeof (void *));
3359 }
3360 
3361 /*
3362  * Remove a device from the pool.  Currently, this supports removing only hot
3363  * spares and level 2 ARC devices.
3364  */
3365 int
3366 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3367 {
3368 	vdev_t *vd;
3369 	nvlist_t **spares, **l2cache, *nv;
3370 	uint_t nspares, nl2cache;
3371 	uint64_t txg = 0;
3372 	int error = 0;
3373 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3374 
3375 	if (!locked)
3376 		txg = spa_vdev_enter(spa);
3377 
3378 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3379 
3380 	if (spa->spa_spares.sav_vdevs != NULL &&
3381 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3382 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3383 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3384 		/*
3385 		 * Only remove the hot spare if it's not currently in use
3386 		 * in this pool.
3387 		 */
3388 		if (vd == NULL || unspare) {
3389 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3390 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3391 			spa_load_spares(spa);
3392 			spa->spa_spares.sav_sync = B_TRUE;
3393 		} else {
3394 			error = EBUSY;
3395 		}
3396 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3397 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3398 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3399 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3400 		/*
3401 		 * Cache devices can always be removed.
3402 		 */
3403 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3404 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3405 		spa_load_l2cache(spa);
3406 		spa->spa_l2cache.sav_sync = B_TRUE;
3407 	} else if (vd != NULL) {
3408 		/*
3409 		 * Normal vdevs cannot be removed (yet).
3410 		 */
3411 		error = ENOTSUP;
3412 	} else {
3413 		/*
3414 		 * There is no vdev of any kind with the specified guid.
3415 		 */
3416 		error = ENOENT;
3417 	}
3418 
3419 	if (!locked)
3420 		return (spa_vdev_exit(spa, NULL, txg, error));
3421 
3422 	return (error);
3423 }
3424 
3425 /*
3426  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3427  * current spared, so we can detach it.
3428  */
3429 static vdev_t *
3430 spa_vdev_resilver_done_hunt(vdev_t *vd)
3431 {
3432 	vdev_t *newvd, *oldvd;
3433 	int c;
3434 
3435 	for (c = 0; c < vd->vdev_children; c++) {
3436 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3437 		if (oldvd != NULL)
3438 			return (oldvd);
3439 	}
3440 
3441 	/*
3442 	 * Check for a completed replacement.
3443 	 */
3444 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3445 		oldvd = vd->vdev_child[0];
3446 		newvd = vd->vdev_child[1];
3447 
3448 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3449 		    !vdev_dtl_required(oldvd))
3450 			return (oldvd);
3451 	}
3452 
3453 	/*
3454 	 * Check for a completed resilver with the 'unspare' flag set.
3455 	 */
3456 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3457 		newvd = vd->vdev_child[0];
3458 		oldvd = vd->vdev_child[1];
3459 
3460 		if (newvd->vdev_unspare &&
3461 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3462 		    !vdev_dtl_required(oldvd)) {
3463 			newvd->vdev_unspare = 0;
3464 			return (oldvd);
3465 		}
3466 	}
3467 
3468 	return (NULL);
3469 }
3470 
3471 static void
3472 spa_vdev_resilver_done(spa_t *spa)
3473 {
3474 	vdev_t *vd, *pvd, *ppvd;
3475 	uint64_t guid, sguid, pguid, ppguid;
3476 
3477 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3478 
3479 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3480 		pvd = vd->vdev_parent;
3481 		ppvd = pvd->vdev_parent;
3482 		guid = vd->vdev_guid;
3483 		pguid = pvd->vdev_guid;
3484 		ppguid = ppvd->vdev_guid;
3485 		sguid = 0;
3486 		/*
3487 		 * If we have just finished replacing a hot spared device, then
3488 		 * we need to detach the parent's first child (the original hot
3489 		 * spare) as well.
3490 		 */
3491 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3492 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3493 			ASSERT(ppvd->vdev_children == 2);
3494 			sguid = ppvd->vdev_child[1]->vdev_guid;
3495 		}
3496 		spa_config_exit(spa, SCL_ALL, FTAG);
3497 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3498 			return;
3499 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3500 			return;
3501 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3502 	}
3503 
3504 	spa_config_exit(spa, SCL_ALL, FTAG);
3505 }
3506 
3507 /*
3508  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3509  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3510  */
3511 int
3512 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3513     boolean_t ispath)
3514 {
3515 	vdev_t *vd;
3516 	uint64_t txg;
3517 
3518 	txg = spa_vdev_enter(spa);
3519 
3520 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3521 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3522 
3523 	if (!vd->vdev_ops->vdev_op_leaf)
3524 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3525 
3526 	if (ispath) {
3527 		spa_strfree(vd->vdev_path);
3528 		vd->vdev_path = spa_strdup(value);
3529 	} else {
3530 		if (vd->vdev_fru != NULL)
3531 			spa_strfree(vd->vdev_fru);
3532 		vd->vdev_fru = spa_strdup(value);
3533 	}
3534 
3535 	vdev_config_dirty(vd->vdev_top);
3536 
3537 	return (spa_vdev_exit(spa, NULL, txg, 0));
3538 }
3539 
3540 int
3541 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3542 {
3543 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3544 }
3545 
3546 int
3547 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3548 {
3549 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3550 }
3551 
3552 /*
3553  * ==========================================================================
3554  * SPA Scrubbing
3555  * ==========================================================================
3556  */
3557 
3558 int
3559 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3560 {
3561 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3562 
3563 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3564 		return (ENOTSUP);
3565 
3566 	/*
3567 	 * If a resilver was requested, but there is no DTL on a
3568 	 * writeable leaf device, we have nothing to do.
3569 	 */
3570 	if (type == POOL_SCRUB_RESILVER &&
3571 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3572 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3573 		return (0);
3574 	}
3575 
3576 	if (type == POOL_SCRUB_EVERYTHING &&
3577 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3578 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3579 		return (EBUSY);
3580 
3581 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3582 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3583 	} else if (type == POOL_SCRUB_NONE) {
3584 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3585 	} else {
3586 		return (EINVAL);
3587 	}
3588 }
3589 
3590 /*
3591  * ==========================================================================
3592  * SPA async task processing
3593  * ==========================================================================
3594  */
3595 
3596 static void
3597 spa_async_remove(spa_t *spa, vdev_t *vd)
3598 {
3599 	if (vd->vdev_remove_wanted) {
3600 		vd->vdev_remove_wanted = 0;
3601 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3602 		vdev_clear(spa, vd);
3603 		vdev_state_dirty(vd->vdev_top);
3604 	}
3605 
3606 	for (int c = 0; c < vd->vdev_children; c++)
3607 		spa_async_remove(spa, vd->vdev_child[c]);
3608 }
3609 
3610 static void
3611 spa_async_probe(spa_t *spa, vdev_t *vd)
3612 {
3613 	if (vd->vdev_probe_wanted) {
3614 		vd->vdev_probe_wanted = 0;
3615 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3616 	}
3617 
3618 	for (int c = 0; c < vd->vdev_children; c++)
3619 		spa_async_probe(spa, vd->vdev_child[c]);
3620 }
3621 
3622 static void
3623 spa_async_thread(spa_t *spa)
3624 {
3625 	int tasks;
3626 
3627 	ASSERT(spa->spa_sync_on);
3628 
3629 	mutex_enter(&spa->spa_async_lock);
3630 	tasks = spa->spa_async_tasks;
3631 	spa->spa_async_tasks = 0;
3632 	mutex_exit(&spa->spa_async_lock);
3633 
3634 	/*
3635 	 * See if the config needs to be updated.
3636 	 */
3637 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3638 		mutex_enter(&spa_namespace_lock);
3639 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3640 		mutex_exit(&spa_namespace_lock);
3641 	}
3642 
3643 	/*
3644 	 * See if any devices need to be marked REMOVED.
3645 	 */
3646 	if (tasks & SPA_ASYNC_REMOVE) {
3647 		spa_vdev_state_enter(spa);
3648 		spa_async_remove(spa, spa->spa_root_vdev);
3649 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3650 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3651 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3652 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3653 		(void) spa_vdev_state_exit(spa, NULL, 0);
3654 	}
3655 
3656 	/*
3657 	 * See if any devices need to be probed.
3658 	 */
3659 	if (tasks & SPA_ASYNC_PROBE) {
3660 		spa_vdev_state_enter(spa);
3661 		spa_async_probe(spa, spa->spa_root_vdev);
3662 		(void) spa_vdev_state_exit(spa, NULL, 0);
3663 	}
3664 
3665 	/*
3666 	 * If any devices are done replacing, detach them.
3667 	 */
3668 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3669 		spa_vdev_resilver_done(spa);
3670 
3671 	/*
3672 	 * Kick off a resilver.
3673 	 */
3674 	if (tasks & SPA_ASYNC_RESILVER)
3675 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3676 
3677 	/*
3678 	 * Let the world know that we're done.
3679 	 */
3680 	mutex_enter(&spa->spa_async_lock);
3681 	spa->spa_async_thread = NULL;
3682 	cv_broadcast(&spa->spa_async_cv);
3683 	mutex_exit(&spa->spa_async_lock);
3684 	thread_exit();
3685 }
3686 
3687 void
3688 spa_async_suspend(spa_t *spa)
3689 {
3690 	mutex_enter(&spa->spa_async_lock);
3691 	spa->spa_async_suspended++;
3692 	while (spa->spa_async_thread != NULL)
3693 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3694 	mutex_exit(&spa->spa_async_lock);
3695 }
3696 
3697 void
3698 spa_async_resume(spa_t *spa)
3699 {
3700 	mutex_enter(&spa->spa_async_lock);
3701 	ASSERT(spa->spa_async_suspended != 0);
3702 	spa->spa_async_suspended--;
3703 	mutex_exit(&spa->spa_async_lock);
3704 }
3705 
3706 static void
3707 spa_async_dispatch(spa_t *spa)
3708 {
3709 	mutex_enter(&spa->spa_async_lock);
3710 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3711 	    spa->spa_async_thread == NULL &&
3712 	    rootdir != NULL && !vn_is_readonly(rootdir))
3713 		spa->spa_async_thread = thread_create(NULL, 0,
3714 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3715 	mutex_exit(&spa->spa_async_lock);
3716 }
3717 
3718 void
3719 spa_async_request(spa_t *spa, int task)
3720 {
3721 	mutex_enter(&spa->spa_async_lock);
3722 	spa->spa_async_tasks |= task;
3723 	mutex_exit(&spa->spa_async_lock);
3724 }
3725 
3726 /*
3727  * ==========================================================================
3728  * SPA syncing routines
3729  * ==========================================================================
3730  */
3731 
3732 static void
3733 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3734 {
3735 	bplist_t *bpl = &spa->spa_sync_bplist;
3736 	dmu_tx_t *tx;
3737 	blkptr_t blk;
3738 	uint64_t itor = 0;
3739 	zio_t *zio;
3740 	int error;
3741 	uint8_t c = 1;
3742 
3743 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3744 
3745 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3746 		ASSERT(blk.blk_birth < txg);
3747 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3748 		    ZIO_FLAG_MUSTSUCCEED));
3749 	}
3750 
3751 	error = zio_wait(zio);
3752 	ASSERT3U(error, ==, 0);
3753 
3754 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3755 	bplist_vacate(bpl, tx);
3756 
3757 	/*
3758 	 * Pre-dirty the first block so we sync to convergence faster.
3759 	 * (Usually only the first block is needed.)
3760 	 */
3761 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3762 	dmu_tx_commit(tx);
3763 }
3764 
3765 static void
3766 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3767 {
3768 	char *packed = NULL;
3769 	size_t bufsize;
3770 	size_t nvsize = 0;
3771 	dmu_buf_t *db;
3772 
3773 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3774 
3775 	/*
3776 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3777 	 * information.  This avoids the dbuf_will_dirty() path and
3778 	 * saves us a pre-read to get data we don't actually care about.
3779 	 */
3780 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3781 	packed = kmem_alloc(bufsize, KM_SLEEP);
3782 
3783 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3784 	    KM_SLEEP) == 0);
3785 	bzero(packed + nvsize, bufsize - nvsize);
3786 
3787 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3788 
3789 	kmem_free(packed, bufsize);
3790 
3791 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3792 	dmu_buf_will_dirty(db, tx);
3793 	*(uint64_t *)db->db_data = nvsize;
3794 	dmu_buf_rele(db, FTAG);
3795 }
3796 
3797 static void
3798 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3799     const char *config, const char *entry)
3800 {
3801 	nvlist_t *nvroot;
3802 	nvlist_t **list;
3803 	int i;
3804 
3805 	if (!sav->sav_sync)
3806 		return;
3807 
3808 	/*
3809 	 * Update the MOS nvlist describing the list of available devices.
3810 	 * spa_validate_aux() will have already made sure this nvlist is
3811 	 * valid and the vdevs are labeled appropriately.
3812 	 */
3813 	if (sav->sav_object == 0) {
3814 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3815 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3816 		    sizeof (uint64_t), tx);
3817 		VERIFY(zap_update(spa->spa_meta_objset,
3818 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3819 		    &sav->sav_object, tx) == 0);
3820 	}
3821 
3822 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3823 	if (sav->sav_count == 0) {
3824 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3825 	} else {
3826 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3827 		for (i = 0; i < sav->sav_count; i++)
3828 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3829 			    B_FALSE, B_FALSE, B_TRUE);
3830 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3831 		    sav->sav_count) == 0);
3832 		for (i = 0; i < sav->sav_count; i++)
3833 			nvlist_free(list[i]);
3834 		kmem_free(list, sav->sav_count * sizeof (void *));
3835 	}
3836 
3837 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3838 	nvlist_free(nvroot);
3839 
3840 	sav->sav_sync = B_FALSE;
3841 }
3842 
3843 static void
3844 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3845 {
3846 	nvlist_t *config;
3847 
3848 	if (list_is_empty(&spa->spa_config_dirty_list))
3849 		return;
3850 
3851 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3852 
3853 	config = spa_config_generate(spa, spa->spa_root_vdev,
3854 	    dmu_tx_get_txg(tx), B_FALSE);
3855 
3856 	spa_config_exit(spa, SCL_STATE, FTAG);
3857 
3858 	if (spa->spa_config_syncing)
3859 		nvlist_free(spa->spa_config_syncing);
3860 	spa->spa_config_syncing = config;
3861 
3862 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3863 }
3864 
3865 /*
3866  * Set zpool properties.
3867  */
3868 static void
3869 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3870 {
3871 	spa_t *spa = arg1;
3872 	objset_t *mos = spa->spa_meta_objset;
3873 	nvlist_t *nvp = arg2;
3874 	nvpair_t *elem;
3875 	uint64_t intval;
3876 	char *strval;
3877 	zpool_prop_t prop;
3878 	const char *propname;
3879 	zprop_type_t proptype;
3880 
3881 	mutex_enter(&spa->spa_props_lock);
3882 
3883 	elem = NULL;
3884 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3885 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3886 		case ZPOOL_PROP_VERSION:
3887 			/*
3888 			 * Only set version for non-zpool-creation cases
3889 			 * (set/import). spa_create() needs special care
3890 			 * for version setting.
3891 			 */
3892 			if (tx->tx_txg != TXG_INITIAL) {
3893 				VERIFY(nvpair_value_uint64(elem,
3894 				    &intval) == 0);
3895 				ASSERT(intval <= SPA_VERSION);
3896 				ASSERT(intval >= spa_version(spa));
3897 				spa->spa_uberblock.ub_version = intval;
3898 				vdev_config_dirty(spa->spa_root_vdev);
3899 			}
3900 			break;
3901 
3902 		case ZPOOL_PROP_ALTROOT:
3903 			/*
3904 			 * 'altroot' is a non-persistent property. It should
3905 			 * have been set temporarily at creation or import time.
3906 			 */
3907 			ASSERT(spa->spa_root != NULL);
3908 			break;
3909 
3910 		case ZPOOL_PROP_CACHEFILE:
3911 			/*
3912 			 * 'cachefile' is also a non-persisitent property.
3913 			 */
3914 			break;
3915 		default:
3916 			/*
3917 			 * Set pool property values in the poolprops mos object.
3918 			 */
3919 			if (spa->spa_pool_props_object == 0) {
3920 				objset_t *mos = spa->spa_meta_objset;
3921 
3922 				VERIFY((spa->spa_pool_props_object =
3923 				    zap_create(mos, DMU_OT_POOL_PROPS,
3924 				    DMU_OT_NONE, 0, tx)) > 0);
3925 
3926 				VERIFY(zap_update(mos,
3927 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3928 				    8, 1, &spa->spa_pool_props_object, tx)
3929 				    == 0);
3930 			}
3931 
3932 			/* normalize the property name */
3933 			propname = zpool_prop_to_name(prop);
3934 			proptype = zpool_prop_get_type(prop);
3935 
3936 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3937 				ASSERT(proptype == PROP_TYPE_STRING);
3938 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3939 				VERIFY(zap_update(mos,
3940 				    spa->spa_pool_props_object, propname,
3941 				    1, strlen(strval) + 1, strval, tx) == 0);
3942 
3943 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3944 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3945 
3946 				if (proptype == PROP_TYPE_INDEX) {
3947 					const char *unused;
3948 					VERIFY(zpool_prop_index_to_string(
3949 					    prop, intval, &unused) == 0);
3950 				}
3951 				VERIFY(zap_update(mos,
3952 				    spa->spa_pool_props_object, propname,
3953 				    8, 1, &intval, tx) == 0);
3954 			} else {
3955 				ASSERT(0); /* not allowed */
3956 			}
3957 
3958 			switch (prop) {
3959 			case ZPOOL_PROP_DELEGATION:
3960 				spa->spa_delegation = intval;
3961 				break;
3962 			case ZPOOL_PROP_BOOTFS:
3963 				spa->spa_bootfs = intval;
3964 				break;
3965 			case ZPOOL_PROP_FAILUREMODE:
3966 				spa->spa_failmode = intval;
3967 				break;
3968 			default:
3969 				break;
3970 			}
3971 		}
3972 
3973 		/* log internal history if this is not a zpool create */
3974 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3975 		    tx->tx_txg != TXG_INITIAL) {
3976 			spa_history_internal_log(LOG_POOL_PROPSET,
3977 			    spa, tx, cr, "%s %lld %s",
3978 			    nvpair_name(elem), intval, spa_name(spa));
3979 		}
3980 	}
3981 
3982 	mutex_exit(&spa->spa_props_lock);
3983 }
3984 
3985 /*
3986  * Sync the specified transaction group.  New blocks may be dirtied as
3987  * part of the process, so we iterate until it converges.
3988  */
3989 void
3990 spa_sync(spa_t *spa, uint64_t txg)
3991 {
3992 	dsl_pool_t *dp = spa->spa_dsl_pool;
3993 	objset_t *mos = spa->spa_meta_objset;
3994 	bplist_t *bpl = &spa->spa_sync_bplist;
3995 	vdev_t *rvd = spa->spa_root_vdev;
3996 	vdev_t *vd;
3997 	dmu_tx_t *tx;
3998 	int dirty_vdevs;
3999 	int error;
4000 
4001 	/*
4002 	 * Lock out configuration changes.
4003 	 */
4004 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4005 
4006 	spa->spa_syncing_txg = txg;
4007 	spa->spa_sync_pass = 0;
4008 
4009 	/*
4010 	 * If there are any pending vdev state changes, convert them
4011 	 * into config changes that go out with this transaction group.
4012 	 */
4013 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4014 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4015 		/*
4016 		 * We need the write lock here because, for aux vdevs,
4017 		 * calling vdev_config_dirty() modifies sav_config.
4018 		 * This is ugly and will become unnecessary when we
4019 		 * eliminate the aux vdev wart by integrating all vdevs
4020 		 * into the root vdev tree.
4021 		 */
4022 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4023 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4024 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4025 			vdev_state_clean(vd);
4026 			vdev_config_dirty(vd);
4027 		}
4028 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4029 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4030 	}
4031 	spa_config_exit(spa, SCL_STATE, FTAG);
4032 
4033 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4034 
4035 	tx = dmu_tx_create_assigned(dp, txg);
4036 
4037 	/*
4038 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4039 	 * set spa_deflate if we have no raid-z vdevs.
4040 	 */
4041 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4042 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4043 		int i;
4044 
4045 		for (i = 0; i < rvd->vdev_children; i++) {
4046 			vd = rvd->vdev_child[i];
4047 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4048 				break;
4049 		}
4050 		if (i == rvd->vdev_children) {
4051 			spa->spa_deflate = TRUE;
4052 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4053 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4054 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4055 		}
4056 	}
4057 
4058 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4059 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4060 		dsl_pool_create_origin(dp, tx);
4061 
4062 		/* Keeping the origin open increases spa_minref */
4063 		spa->spa_minref += 3;
4064 	}
4065 
4066 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4067 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4068 		dsl_pool_upgrade_clones(dp, tx);
4069 	}
4070 
4071 	/*
4072 	 * If anything has changed in this txg, push the deferred frees
4073 	 * from the previous txg.  If not, leave them alone so that we
4074 	 * don't generate work on an otherwise idle system.
4075 	 */
4076 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4077 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4078 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4079 		spa_sync_deferred_frees(spa, txg);
4080 
4081 	/*
4082 	 * Iterate to convergence.
4083 	 */
4084 	do {
4085 		spa->spa_sync_pass++;
4086 
4087 		spa_sync_config_object(spa, tx);
4088 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4089 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4090 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4091 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4092 		spa_errlog_sync(spa, txg);
4093 		dsl_pool_sync(dp, txg);
4094 
4095 		dirty_vdevs = 0;
4096 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4097 			vdev_sync(vd, txg);
4098 			dirty_vdevs++;
4099 		}
4100 
4101 		bplist_sync(bpl, tx);
4102 	} while (dirty_vdevs);
4103 
4104 	bplist_close(bpl);
4105 
4106 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4107 
4108 	/*
4109 	 * Rewrite the vdev configuration (which includes the uberblock)
4110 	 * to commit the transaction group.
4111 	 *
4112 	 * If there are no dirty vdevs, we sync the uberblock to a few
4113 	 * random top-level vdevs that are known to be visible in the
4114 	 * config cache (see spa_vdev_add() for a complete description).
4115 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4116 	 */
4117 	for (;;) {
4118 		/*
4119 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4120 		 * while we're attempting to write the vdev labels.
4121 		 */
4122 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4123 
4124 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4125 			vdev_t *svd[SPA_DVAS_PER_BP];
4126 			int svdcount = 0;
4127 			int children = rvd->vdev_children;
4128 			int c0 = spa_get_random(children);
4129 			int c;
4130 
4131 			for (c = 0; c < children; c++) {
4132 				vd = rvd->vdev_child[(c0 + c) % children];
4133 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4134 					continue;
4135 				svd[svdcount++] = vd;
4136 				if (svdcount == SPA_DVAS_PER_BP)
4137 					break;
4138 			}
4139 			error = vdev_config_sync(svd, svdcount, txg);
4140 		} else {
4141 			error = vdev_config_sync(rvd->vdev_child,
4142 			    rvd->vdev_children, txg);
4143 		}
4144 
4145 		spa_config_exit(spa, SCL_STATE, FTAG);
4146 
4147 		if (error == 0)
4148 			break;
4149 		zio_suspend(spa, NULL);
4150 		zio_resume_wait(spa);
4151 	}
4152 	dmu_tx_commit(tx);
4153 
4154 	/*
4155 	 * Clear the dirty config list.
4156 	 */
4157 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4158 		vdev_config_clean(vd);
4159 
4160 	/*
4161 	 * Now that the new config has synced transactionally,
4162 	 * let it become visible to the config cache.
4163 	 */
4164 	if (spa->spa_config_syncing != NULL) {
4165 		spa_config_set(spa, spa->spa_config_syncing);
4166 		spa->spa_config_txg = txg;
4167 		spa->spa_config_syncing = NULL;
4168 	}
4169 
4170 	spa->spa_ubsync = spa->spa_uberblock;
4171 
4172 	/*
4173 	 * Clean up the ZIL records for the synced txg.
4174 	 */
4175 	dsl_pool_zil_clean(dp);
4176 
4177 	/*
4178 	 * Update usable space statistics.
4179 	 */
4180 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4181 		vdev_sync_done(vd, txg);
4182 
4183 	/*
4184 	 * It had better be the case that we didn't dirty anything
4185 	 * since vdev_config_sync().
4186 	 */
4187 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4188 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4189 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4190 	ASSERT(bpl->bpl_queue == NULL);
4191 
4192 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4193 
4194 	/*
4195 	 * If any async tasks have been requested, kick them off.
4196 	 */
4197 	spa_async_dispatch(spa);
4198 }
4199 
4200 /*
4201  * Sync all pools.  We don't want to hold the namespace lock across these
4202  * operations, so we take a reference on the spa_t and drop the lock during the
4203  * sync.
4204  */
4205 void
4206 spa_sync_allpools(void)
4207 {
4208 	spa_t *spa = NULL;
4209 	mutex_enter(&spa_namespace_lock);
4210 	while ((spa = spa_next(spa)) != NULL) {
4211 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4212 			continue;
4213 		spa_open_ref(spa, FTAG);
4214 		mutex_exit(&spa_namespace_lock);
4215 		txg_wait_synced(spa_get_dsl(spa), 0);
4216 		mutex_enter(&spa_namespace_lock);
4217 		spa_close(spa, FTAG);
4218 	}
4219 	mutex_exit(&spa_namespace_lock);
4220 }
4221 
4222 /*
4223  * ==========================================================================
4224  * Miscellaneous routines
4225  * ==========================================================================
4226  */
4227 
4228 /*
4229  * Remove all pools in the system.
4230  */
4231 void
4232 spa_evict_all(void)
4233 {
4234 	spa_t *spa;
4235 
4236 	/*
4237 	 * Remove all cached state.  All pools should be closed now,
4238 	 * so every spa in the AVL tree should be unreferenced.
4239 	 */
4240 	mutex_enter(&spa_namespace_lock);
4241 	while ((spa = spa_next(NULL)) != NULL) {
4242 		/*
4243 		 * Stop async tasks.  The async thread may need to detach
4244 		 * a device that's been replaced, which requires grabbing
4245 		 * spa_namespace_lock, so we must drop it here.
4246 		 */
4247 		spa_open_ref(spa, FTAG);
4248 		mutex_exit(&spa_namespace_lock);
4249 		spa_async_suspend(spa);
4250 		mutex_enter(&spa_namespace_lock);
4251 		spa_close(spa, FTAG);
4252 
4253 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4254 			spa_unload(spa);
4255 			spa_deactivate(spa);
4256 		}
4257 		spa_remove(spa);
4258 	}
4259 	mutex_exit(&spa_namespace_lock);
4260 }
4261 
4262 vdev_t *
4263 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4264 {
4265 	vdev_t *vd;
4266 	int i;
4267 
4268 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4269 		return (vd);
4270 
4271 	if (aux) {
4272 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4273 			vd = spa->spa_l2cache.sav_vdevs[i];
4274 			if (vd->vdev_guid == guid)
4275 				return (vd);
4276 		}
4277 
4278 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4279 			vd = spa->spa_spares.sav_vdevs[i];
4280 			if (vd->vdev_guid == guid)
4281 				return (vd);
4282 		}
4283 	}
4284 
4285 	return (NULL);
4286 }
4287 
4288 void
4289 spa_upgrade(spa_t *spa, uint64_t version)
4290 {
4291 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4292 
4293 	/*
4294 	 * This should only be called for a non-faulted pool, and since a
4295 	 * future version would result in an unopenable pool, this shouldn't be
4296 	 * possible.
4297 	 */
4298 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4299 	ASSERT(version >= spa->spa_uberblock.ub_version);
4300 
4301 	spa->spa_uberblock.ub_version = version;
4302 	vdev_config_dirty(spa->spa_root_vdev);
4303 
4304 	spa_config_exit(spa, SCL_ALL, FTAG);
4305 
4306 	txg_wait_synced(spa_get_dsl(spa), 0);
4307 }
4308 
4309 boolean_t
4310 spa_has_spare(spa_t *spa, uint64_t guid)
4311 {
4312 	int i;
4313 	uint64_t spareguid;
4314 	spa_aux_vdev_t *sav = &spa->spa_spares;
4315 
4316 	for (i = 0; i < sav->sav_count; i++)
4317 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4318 			return (B_TRUE);
4319 
4320 	for (i = 0; i < sav->sav_npending; i++) {
4321 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4322 		    &spareguid) == 0 && spareguid == guid)
4323 			return (B_TRUE);
4324 	}
4325 
4326 	return (B_FALSE);
4327 }
4328 
4329 /*
4330  * Check if a pool has an active shared spare device.
4331  * Note: reference count of an active spare is 2, as a spare and as a replace
4332  */
4333 static boolean_t
4334 spa_has_active_shared_spare(spa_t *spa)
4335 {
4336 	int i, refcnt;
4337 	uint64_t pool;
4338 	spa_aux_vdev_t *sav = &spa->spa_spares;
4339 
4340 	for (i = 0; i < sav->sav_count; i++) {
4341 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4342 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4343 		    refcnt > 2)
4344 			return (B_TRUE);
4345 	}
4346 
4347 	return (B_FALSE);
4348 }
4349 
4350 /*
4351  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4352  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4353  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4354  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4355  * or zdb as real changes.
4356  */
4357 void
4358 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4359 {
4360 #ifdef _KERNEL
4361 	sysevent_t		*ev;
4362 	sysevent_attr_list_t	*attr = NULL;
4363 	sysevent_value_t	value;
4364 	sysevent_id_t		eid;
4365 
4366 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4367 	    SE_SLEEP);
4368 
4369 	value.value_type = SE_DATA_TYPE_STRING;
4370 	value.value.sv_string = spa_name(spa);
4371 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4372 		goto done;
4373 
4374 	value.value_type = SE_DATA_TYPE_UINT64;
4375 	value.value.sv_uint64 = spa_guid(spa);
4376 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4377 		goto done;
4378 
4379 	if (vd) {
4380 		value.value_type = SE_DATA_TYPE_UINT64;
4381 		value.value.sv_uint64 = vd->vdev_guid;
4382 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4383 		    SE_SLEEP) != 0)
4384 			goto done;
4385 
4386 		if (vd->vdev_path) {
4387 			value.value_type = SE_DATA_TYPE_STRING;
4388 			value.value.sv_string = vd->vdev_path;
4389 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4390 			    &value, SE_SLEEP) != 0)
4391 				goto done;
4392 		}
4393 	}
4394 
4395 	if (sysevent_attach_attributes(ev, attr) != 0)
4396 		goto done;
4397 	attr = NULL;
4398 
4399 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4400 
4401 done:
4402 	if (attr)
4403 		sysevent_free_attr(attr);
4404 	sysevent_free(ev);
4405 #endif
4406 }
4407