xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 5aeb94743e3be0c51e86f73096334611ae3a058e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
27  */
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/dmu.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/zap.h>
43 #include <sys/zil.h>
44 #include <sys/ddt.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/uberblock_impl.h>
49 #include <sys/txg.h>
50 #include <sys/avl.h>
51 #include <sys/dmu_traverse.h>
52 #include <sys/dmu_objset.h>
53 #include <sys/unique.h>
54 #include <sys/dsl_pool.h>
55 #include <sys/dsl_dataset.h>
56 #include <sys/dsl_dir.h>
57 #include <sys/dsl_prop.h>
58 #include <sys/dsl_synctask.h>
59 #include <sys/fs/zfs.h>
60 #include <sys/arc.h>
61 #include <sys/callb.h>
62 #include <sys/systeminfo.h>
63 #include <sys/spa_boot.h>
64 #include <sys/zfs_ioctl.h>
65 #include <sys/dsl_scan.h>
66 
67 #ifdef	_KERNEL
68 #include <sys/bootprops.h>
69 #include <sys/callb.h>
70 #include <sys/cpupart.h>
71 #include <sys/pool.h>
72 #include <sys/sysdc.h>
73 #include <sys/zone.h>
74 #endif	/* _KERNEL */
75 
76 #include "zfs_prop.h"
77 #include "zfs_comutil.h"
78 
79 typedef enum zti_modes {
80 	zti_mode_fixed,			/* value is # of threads (min 1) */
81 	zti_mode_online_percent,	/* value is % of online CPUs */
82 	zti_mode_batch,			/* cpu-intensive; value is ignored */
83 	zti_mode_null,			/* don't create a taskq */
84 	zti_nmodes
85 } zti_modes_t;
86 
87 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
88 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
89 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
90 #define	ZTI_NULL	{ zti_mode_null, 0 }
91 
92 #define	ZTI_ONE		ZTI_FIX(1)
93 
94 typedef struct zio_taskq_info {
95 	enum zti_modes zti_mode;
96 	uint_t zti_value;
97 } zio_taskq_info_t;
98 
99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 	"issue", "issue_high", "intr", "intr_high"
101 };
102 
103 /*
104  * Define the taskq threads for the following I/O types:
105  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106  */
107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
109 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
111 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
112 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
115 };
116 
117 static dsl_syncfunc_t spa_sync_props;
118 static boolean_t spa_has_active_shared_spare(spa_t *spa);
119 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
120     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
121     char **ereport);
122 static void spa_vdev_resilver_done(spa_t *spa);
123 
124 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
125 id_t		zio_taskq_psrset_bind = PS_NONE;
126 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
127 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
128 
129 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
130 
131 /*
132  * This (illegal) pool name is used when temporarily importing a spa_t in order
133  * to get the vdev stats associated with the imported devices.
134  */
135 #define	TRYIMPORT_NAME	"$import"
136 
137 /*
138  * ==========================================================================
139  * SPA properties routines
140  * ==========================================================================
141  */
142 
143 /*
144  * Add a (source=src, propname=propval) list to an nvlist.
145  */
146 static void
147 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
148     uint64_t intval, zprop_source_t src)
149 {
150 	const char *propname = zpool_prop_to_name(prop);
151 	nvlist_t *propval;
152 
153 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
154 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
155 
156 	if (strval != NULL)
157 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
158 	else
159 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
160 
161 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
162 	nvlist_free(propval);
163 }
164 
165 /*
166  * Get property values from the spa configuration.
167  */
168 static void
169 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
170 {
171 	uint64_t size;
172 	uint64_t alloc;
173 	uint64_t cap, version;
174 	zprop_source_t src = ZPROP_SRC_NONE;
175 	spa_config_dirent_t *dp;
176 
177 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
178 
179 	if (spa->spa_root_vdev != NULL) {
180 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
181 		size = metaslab_class_get_space(spa_normal_class(spa));
182 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
183 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
184 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
185 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
186 		    size - alloc, src);
187 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
188 		    (spa_mode(spa) == FREAD), src);
189 
190 		cap = (size == 0) ? 0 : (alloc * 100 / size);
191 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
192 
193 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
194 		    ddt_get_pool_dedup_ratio(spa), src);
195 
196 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
197 		    spa->spa_root_vdev->vdev_state, src);
198 
199 		version = spa_version(spa);
200 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
201 			src = ZPROP_SRC_DEFAULT;
202 		else
203 			src = ZPROP_SRC_LOCAL;
204 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
205 	}
206 
207 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
208 
209 	if (spa->spa_root != NULL)
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
211 		    0, ZPROP_SRC_LOCAL);
212 
213 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
214 		if (dp->scd_path == NULL) {
215 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
216 			    "none", 0, ZPROP_SRC_LOCAL);
217 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
218 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
219 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
220 		}
221 	}
222 }
223 
224 /*
225  * Get zpool property values.
226  */
227 int
228 spa_prop_get(spa_t *spa, nvlist_t **nvp)
229 {
230 	objset_t *mos = spa->spa_meta_objset;
231 	zap_cursor_t zc;
232 	zap_attribute_t za;
233 	int err;
234 
235 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
236 
237 	mutex_enter(&spa->spa_props_lock);
238 
239 	/*
240 	 * Get properties from the spa config.
241 	 */
242 	spa_prop_get_config(spa, nvp);
243 
244 	/* If no pool property object, no more prop to get. */
245 	if (mos == NULL || spa->spa_pool_props_object == 0) {
246 		mutex_exit(&spa->spa_props_lock);
247 		return (0);
248 	}
249 
250 	/*
251 	 * Get properties from the MOS pool property object.
252 	 */
253 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
254 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
255 	    zap_cursor_advance(&zc)) {
256 		uint64_t intval = 0;
257 		char *strval = NULL;
258 		zprop_source_t src = ZPROP_SRC_DEFAULT;
259 		zpool_prop_t prop;
260 
261 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
262 			continue;
263 
264 		switch (za.za_integer_length) {
265 		case 8:
266 			/* integer property */
267 			if (za.za_first_integer !=
268 			    zpool_prop_default_numeric(prop))
269 				src = ZPROP_SRC_LOCAL;
270 
271 			if (prop == ZPOOL_PROP_BOOTFS) {
272 				dsl_pool_t *dp;
273 				dsl_dataset_t *ds = NULL;
274 
275 				dp = spa_get_dsl(spa);
276 				rw_enter(&dp->dp_config_rwlock, RW_READER);
277 				if (err = dsl_dataset_hold_obj(dp,
278 				    za.za_first_integer, FTAG, &ds)) {
279 					rw_exit(&dp->dp_config_rwlock);
280 					break;
281 				}
282 
283 				strval = kmem_alloc(
284 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
285 				    KM_SLEEP);
286 				dsl_dataset_name(ds, strval);
287 				dsl_dataset_rele(ds, FTAG);
288 				rw_exit(&dp->dp_config_rwlock);
289 			} else {
290 				strval = NULL;
291 				intval = za.za_first_integer;
292 			}
293 
294 			spa_prop_add_list(*nvp, prop, strval, intval, src);
295 
296 			if (strval != NULL)
297 				kmem_free(strval,
298 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
299 
300 			break;
301 
302 		case 1:
303 			/* string property */
304 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
305 			err = zap_lookup(mos, spa->spa_pool_props_object,
306 			    za.za_name, 1, za.za_num_integers, strval);
307 			if (err) {
308 				kmem_free(strval, za.za_num_integers);
309 				break;
310 			}
311 			spa_prop_add_list(*nvp, prop, strval, 0, src);
312 			kmem_free(strval, za.za_num_integers);
313 			break;
314 
315 		default:
316 			break;
317 		}
318 	}
319 	zap_cursor_fini(&zc);
320 	mutex_exit(&spa->spa_props_lock);
321 out:
322 	if (err && err != ENOENT) {
323 		nvlist_free(*nvp);
324 		*nvp = NULL;
325 		return (err);
326 	}
327 
328 	return (0);
329 }
330 
331 /*
332  * Validate the given pool properties nvlist and modify the list
333  * for the property values to be set.
334  */
335 static int
336 spa_prop_validate(spa_t *spa, nvlist_t *props)
337 {
338 	nvpair_t *elem;
339 	int error = 0, reset_bootfs = 0;
340 	uint64_t objnum;
341 
342 	elem = NULL;
343 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
344 		zpool_prop_t prop;
345 		char *propname, *strval;
346 		uint64_t intval;
347 		objset_t *os;
348 		char *slash;
349 
350 		propname = nvpair_name(elem);
351 
352 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
353 			return (EINVAL);
354 
355 		switch (prop) {
356 		case ZPOOL_PROP_VERSION:
357 			error = nvpair_value_uint64(elem, &intval);
358 			if (!error &&
359 			    (intval < spa_version(spa) || intval > SPA_VERSION))
360 				error = EINVAL;
361 			break;
362 
363 		case ZPOOL_PROP_DELEGATION:
364 		case ZPOOL_PROP_AUTOREPLACE:
365 		case ZPOOL_PROP_LISTSNAPS:
366 		case ZPOOL_PROP_AUTOEXPAND:
367 			error = nvpair_value_uint64(elem, &intval);
368 			if (!error && intval > 1)
369 				error = EINVAL;
370 			break;
371 
372 		case ZPOOL_PROP_BOOTFS:
373 			/*
374 			 * If the pool version is less than SPA_VERSION_BOOTFS,
375 			 * or the pool is still being created (version == 0),
376 			 * the bootfs property cannot be set.
377 			 */
378 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
379 				error = ENOTSUP;
380 				break;
381 			}
382 
383 			/*
384 			 * Make sure the vdev config is bootable
385 			 */
386 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
387 				error = ENOTSUP;
388 				break;
389 			}
390 
391 			reset_bootfs = 1;
392 
393 			error = nvpair_value_string(elem, &strval);
394 
395 			if (!error) {
396 				uint64_t compress;
397 
398 				if (strval == NULL || strval[0] == '\0') {
399 					objnum = zpool_prop_default_numeric(
400 					    ZPOOL_PROP_BOOTFS);
401 					break;
402 				}
403 
404 				if (error = dmu_objset_hold(strval, FTAG, &os))
405 					break;
406 
407 				/* Must be ZPL and not gzip compressed. */
408 
409 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
410 					error = ENOTSUP;
411 				} else if ((error = dsl_prop_get_integer(strval,
412 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
413 				    &compress, NULL)) == 0 &&
414 				    !BOOTFS_COMPRESS_VALID(compress)) {
415 					error = ENOTSUP;
416 				} else {
417 					objnum = dmu_objset_id(os);
418 				}
419 				dmu_objset_rele(os, FTAG);
420 			}
421 			break;
422 
423 		case ZPOOL_PROP_FAILUREMODE:
424 			error = nvpair_value_uint64(elem, &intval);
425 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
426 			    intval > ZIO_FAILURE_MODE_PANIC))
427 				error = EINVAL;
428 
429 			/*
430 			 * This is a special case which only occurs when
431 			 * the pool has completely failed. This allows
432 			 * the user to change the in-core failmode property
433 			 * without syncing it out to disk (I/Os might
434 			 * currently be blocked). We do this by returning
435 			 * EIO to the caller (spa_prop_set) to trick it
436 			 * into thinking we encountered a property validation
437 			 * error.
438 			 */
439 			if (!error && spa_suspended(spa)) {
440 				spa->spa_failmode = intval;
441 				error = EIO;
442 			}
443 			break;
444 
445 		case ZPOOL_PROP_CACHEFILE:
446 			if ((error = nvpair_value_string(elem, &strval)) != 0)
447 				break;
448 
449 			if (strval[0] == '\0')
450 				break;
451 
452 			if (strcmp(strval, "none") == 0)
453 				break;
454 
455 			if (strval[0] != '/') {
456 				error = EINVAL;
457 				break;
458 			}
459 
460 			slash = strrchr(strval, '/');
461 			ASSERT(slash != NULL);
462 
463 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
464 			    strcmp(slash, "/..") == 0)
465 				error = EINVAL;
466 			break;
467 
468 		case ZPOOL_PROP_DEDUPDITTO:
469 			if (spa_version(spa) < SPA_VERSION_DEDUP)
470 				error = ENOTSUP;
471 			else
472 				error = nvpair_value_uint64(elem, &intval);
473 			if (error == 0 &&
474 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
475 				error = EINVAL;
476 			break;
477 		}
478 
479 		if (error)
480 			break;
481 	}
482 
483 	if (!error && reset_bootfs) {
484 		error = nvlist_remove(props,
485 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
486 
487 		if (!error) {
488 			error = nvlist_add_uint64(props,
489 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
490 		}
491 	}
492 
493 	return (error);
494 }
495 
496 void
497 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
498 {
499 	char *cachefile;
500 	spa_config_dirent_t *dp;
501 
502 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
503 	    &cachefile) != 0)
504 		return;
505 
506 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
507 	    KM_SLEEP);
508 
509 	if (cachefile[0] == '\0')
510 		dp->scd_path = spa_strdup(spa_config_path);
511 	else if (strcmp(cachefile, "none") == 0)
512 		dp->scd_path = NULL;
513 	else
514 		dp->scd_path = spa_strdup(cachefile);
515 
516 	list_insert_head(&spa->spa_config_list, dp);
517 	if (need_sync)
518 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
519 }
520 
521 int
522 spa_prop_set(spa_t *spa, nvlist_t *nvp)
523 {
524 	int error;
525 	nvpair_t *elem;
526 	boolean_t need_sync = B_FALSE;
527 	zpool_prop_t prop;
528 
529 	if ((error = spa_prop_validate(spa, nvp)) != 0)
530 		return (error);
531 
532 	elem = NULL;
533 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
534 		if ((prop = zpool_name_to_prop(
535 		    nvpair_name(elem))) == ZPROP_INVAL)
536 			return (EINVAL);
537 
538 		if (prop == ZPOOL_PROP_CACHEFILE ||
539 		    prop == ZPOOL_PROP_ALTROOT ||
540 		    prop == ZPOOL_PROP_READONLY)
541 			continue;
542 
543 		need_sync = B_TRUE;
544 		break;
545 	}
546 
547 	if (need_sync)
548 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
549 		    spa, nvp, 3));
550 	else
551 		return (0);
552 }
553 
554 /*
555  * If the bootfs property value is dsobj, clear it.
556  */
557 void
558 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
559 {
560 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
561 		VERIFY(zap_remove(spa->spa_meta_objset,
562 		    spa->spa_pool_props_object,
563 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
564 		spa->spa_bootfs = 0;
565 	}
566 }
567 
568 /*
569  * ==========================================================================
570  * SPA state manipulation (open/create/destroy/import/export)
571  * ==========================================================================
572  */
573 
574 static int
575 spa_error_entry_compare(const void *a, const void *b)
576 {
577 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
578 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
579 	int ret;
580 
581 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
582 	    sizeof (zbookmark_t));
583 
584 	if (ret < 0)
585 		return (-1);
586 	else if (ret > 0)
587 		return (1);
588 	else
589 		return (0);
590 }
591 
592 /*
593  * Utility function which retrieves copies of the current logs and
594  * re-initializes them in the process.
595  */
596 void
597 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
598 {
599 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
600 
601 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
602 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
603 
604 	avl_create(&spa->spa_errlist_scrub,
605 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
606 	    offsetof(spa_error_entry_t, se_avl));
607 	avl_create(&spa->spa_errlist_last,
608 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
609 	    offsetof(spa_error_entry_t, se_avl));
610 }
611 
612 static taskq_t *
613 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
614     uint_t value)
615 {
616 	uint_t flags = 0;
617 	boolean_t batch = B_FALSE;
618 
619 	switch (mode) {
620 	case zti_mode_null:
621 		return (NULL);		/* no taskq needed */
622 
623 	case zti_mode_fixed:
624 		ASSERT3U(value, >=, 1);
625 		value = MAX(value, 1);
626 		break;
627 
628 	case zti_mode_batch:
629 		batch = B_TRUE;
630 		flags |= TASKQ_THREADS_CPU_PCT;
631 		value = zio_taskq_batch_pct;
632 		break;
633 
634 	case zti_mode_online_percent:
635 		flags |= TASKQ_THREADS_CPU_PCT;
636 		break;
637 
638 	default:
639 		panic("unrecognized mode for %s taskq (%u:%u) in "
640 		    "spa_activate()",
641 		    name, mode, value);
642 		break;
643 	}
644 
645 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
646 		if (batch)
647 			flags |= TASKQ_DC_BATCH;
648 
649 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
650 		    spa->spa_proc, zio_taskq_basedc, flags));
651 	}
652 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
653 	    spa->spa_proc, flags));
654 }
655 
656 static void
657 spa_create_zio_taskqs(spa_t *spa)
658 {
659 	for (int t = 0; t < ZIO_TYPES; t++) {
660 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
661 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
662 			enum zti_modes mode = ztip->zti_mode;
663 			uint_t value = ztip->zti_value;
664 			char name[32];
665 
666 			(void) snprintf(name, sizeof (name),
667 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
668 
669 			spa->spa_zio_taskq[t][q] =
670 			    spa_taskq_create(spa, name, mode, value);
671 		}
672 	}
673 }
674 
675 #ifdef _KERNEL
676 static void
677 spa_thread(void *arg)
678 {
679 	callb_cpr_t cprinfo;
680 
681 	spa_t *spa = arg;
682 	user_t *pu = PTOU(curproc);
683 
684 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
685 	    spa->spa_name);
686 
687 	ASSERT(curproc != &p0);
688 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
689 	    "zpool-%s", spa->spa_name);
690 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
691 
692 	/* bind this thread to the requested psrset */
693 	if (zio_taskq_psrset_bind != PS_NONE) {
694 		pool_lock();
695 		mutex_enter(&cpu_lock);
696 		mutex_enter(&pidlock);
697 		mutex_enter(&curproc->p_lock);
698 
699 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
700 		    0, NULL, NULL) == 0)  {
701 			curthread->t_bind_pset = zio_taskq_psrset_bind;
702 		} else {
703 			cmn_err(CE_WARN,
704 			    "Couldn't bind process for zfs pool \"%s\" to "
705 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
706 		}
707 
708 		mutex_exit(&curproc->p_lock);
709 		mutex_exit(&pidlock);
710 		mutex_exit(&cpu_lock);
711 		pool_unlock();
712 	}
713 
714 	if (zio_taskq_sysdc) {
715 		sysdc_thread_enter(curthread, 100, 0);
716 	}
717 
718 	spa->spa_proc = curproc;
719 	spa->spa_did = curthread->t_did;
720 
721 	spa_create_zio_taskqs(spa);
722 
723 	mutex_enter(&spa->spa_proc_lock);
724 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
725 
726 	spa->spa_proc_state = SPA_PROC_ACTIVE;
727 	cv_broadcast(&spa->spa_proc_cv);
728 
729 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
730 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
731 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
732 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
733 
734 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
735 	spa->spa_proc_state = SPA_PROC_GONE;
736 	spa->spa_proc = &p0;
737 	cv_broadcast(&spa->spa_proc_cv);
738 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
739 
740 	mutex_enter(&curproc->p_lock);
741 	lwp_exit();
742 }
743 #endif
744 
745 /*
746  * Activate an uninitialized pool.
747  */
748 static void
749 spa_activate(spa_t *spa, int mode)
750 {
751 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
752 
753 	spa->spa_state = POOL_STATE_ACTIVE;
754 	spa->spa_mode = mode;
755 
756 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
757 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
758 
759 	/* Try to create a covering process */
760 	mutex_enter(&spa->spa_proc_lock);
761 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
762 	ASSERT(spa->spa_proc == &p0);
763 	spa->spa_did = 0;
764 
765 	/* Only create a process if we're going to be around a while. */
766 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
767 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
768 		    NULL, 0) == 0) {
769 			spa->spa_proc_state = SPA_PROC_CREATED;
770 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
771 				cv_wait(&spa->spa_proc_cv,
772 				    &spa->spa_proc_lock);
773 			}
774 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
775 			ASSERT(spa->spa_proc != &p0);
776 			ASSERT(spa->spa_did != 0);
777 		} else {
778 #ifdef _KERNEL
779 			cmn_err(CE_WARN,
780 			    "Couldn't create process for zfs pool \"%s\"\n",
781 			    spa->spa_name);
782 #endif
783 		}
784 	}
785 	mutex_exit(&spa->spa_proc_lock);
786 
787 	/* If we didn't create a process, we need to create our taskqs. */
788 	if (spa->spa_proc == &p0) {
789 		spa_create_zio_taskqs(spa);
790 	}
791 
792 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
793 	    offsetof(vdev_t, vdev_config_dirty_node));
794 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
795 	    offsetof(vdev_t, vdev_state_dirty_node));
796 
797 	txg_list_create(&spa->spa_vdev_txg_list,
798 	    offsetof(struct vdev, vdev_txg_node));
799 
800 	avl_create(&spa->spa_errlist_scrub,
801 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
802 	    offsetof(spa_error_entry_t, se_avl));
803 	avl_create(&spa->spa_errlist_last,
804 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
805 	    offsetof(spa_error_entry_t, se_avl));
806 }
807 
808 /*
809  * Opposite of spa_activate().
810  */
811 static void
812 spa_deactivate(spa_t *spa)
813 {
814 	ASSERT(spa->spa_sync_on == B_FALSE);
815 	ASSERT(spa->spa_dsl_pool == NULL);
816 	ASSERT(spa->spa_root_vdev == NULL);
817 	ASSERT(spa->spa_async_zio_root == NULL);
818 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
819 
820 	txg_list_destroy(&spa->spa_vdev_txg_list);
821 
822 	list_destroy(&spa->spa_config_dirty_list);
823 	list_destroy(&spa->spa_state_dirty_list);
824 
825 	for (int t = 0; t < ZIO_TYPES; t++) {
826 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
827 			if (spa->spa_zio_taskq[t][q] != NULL)
828 				taskq_destroy(spa->spa_zio_taskq[t][q]);
829 			spa->spa_zio_taskq[t][q] = NULL;
830 		}
831 	}
832 
833 	metaslab_class_destroy(spa->spa_normal_class);
834 	spa->spa_normal_class = NULL;
835 
836 	metaslab_class_destroy(spa->spa_log_class);
837 	spa->spa_log_class = NULL;
838 
839 	/*
840 	 * If this was part of an import or the open otherwise failed, we may
841 	 * still have errors left in the queues.  Empty them just in case.
842 	 */
843 	spa_errlog_drain(spa);
844 
845 	avl_destroy(&spa->spa_errlist_scrub);
846 	avl_destroy(&spa->spa_errlist_last);
847 
848 	spa->spa_state = POOL_STATE_UNINITIALIZED;
849 
850 	mutex_enter(&spa->spa_proc_lock);
851 	if (spa->spa_proc_state != SPA_PROC_NONE) {
852 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
853 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
854 		cv_broadcast(&spa->spa_proc_cv);
855 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
856 			ASSERT(spa->spa_proc != &p0);
857 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
858 		}
859 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
860 		spa->spa_proc_state = SPA_PROC_NONE;
861 	}
862 	ASSERT(spa->spa_proc == &p0);
863 	mutex_exit(&spa->spa_proc_lock);
864 
865 	/*
866 	 * We want to make sure spa_thread() has actually exited the ZFS
867 	 * module, so that the module can't be unloaded out from underneath
868 	 * it.
869 	 */
870 	if (spa->spa_did != 0) {
871 		thread_join(spa->spa_did);
872 		spa->spa_did = 0;
873 	}
874 }
875 
876 /*
877  * Verify a pool configuration, and construct the vdev tree appropriately.  This
878  * will create all the necessary vdevs in the appropriate layout, with each vdev
879  * in the CLOSED state.  This will prep the pool before open/creation/import.
880  * All vdev validation is done by the vdev_alloc() routine.
881  */
882 static int
883 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
884     uint_t id, int atype)
885 {
886 	nvlist_t **child;
887 	uint_t children;
888 	int error;
889 
890 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
891 		return (error);
892 
893 	if ((*vdp)->vdev_ops->vdev_op_leaf)
894 		return (0);
895 
896 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
897 	    &child, &children);
898 
899 	if (error == ENOENT)
900 		return (0);
901 
902 	if (error) {
903 		vdev_free(*vdp);
904 		*vdp = NULL;
905 		return (EINVAL);
906 	}
907 
908 	for (int c = 0; c < children; c++) {
909 		vdev_t *vd;
910 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
911 		    atype)) != 0) {
912 			vdev_free(*vdp);
913 			*vdp = NULL;
914 			return (error);
915 		}
916 	}
917 
918 	ASSERT(*vdp != NULL);
919 
920 	return (0);
921 }
922 
923 /*
924  * Opposite of spa_load().
925  */
926 static void
927 spa_unload(spa_t *spa)
928 {
929 	int i;
930 
931 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
932 
933 	/*
934 	 * Stop async tasks.
935 	 */
936 	spa_async_suspend(spa);
937 
938 	/*
939 	 * Stop syncing.
940 	 */
941 	if (spa->spa_sync_on) {
942 		txg_sync_stop(spa->spa_dsl_pool);
943 		spa->spa_sync_on = B_FALSE;
944 	}
945 
946 	/*
947 	 * Wait for any outstanding async I/O to complete.
948 	 */
949 	if (spa->spa_async_zio_root != NULL) {
950 		(void) zio_wait(spa->spa_async_zio_root);
951 		spa->spa_async_zio_root = NULL;
952 	}
953 
954 	bpobj_close(&spa->spa_deferred_bpobj);
955 
956 	/*
957 	 * Close the dsl pool.
958 	 */
959 	if (spa->spa_dsl_pool) {
960 		dsl_pool_close(spa->spa_dsl_pool);
961 		spa->spa_dsl_pool = NULL;
962 		spa->spa_meta_objset = NULL;
963 	}
964 
965 	ddt_unload(spa);
966 
967 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
968 
969 	/*
970 	 * Drop and purge level 2 cache
971 	 */
972 	spa_l2cache_drop(spa);
973 
974 	/*
975 	 * Close all vdevs.
976 	 */
977 	if (spa->spa_root_vdev)
978 		vdev_free(spa->spa_root_vdev);
979 	ASSERT(spa->spa_root_vdev == NULL);
980 
981 	for (i = 0; i < spa->spa_spares.sav_count; i++)
982 		vdev_free(spa->spa_spares.sav_vdevs[i]);
983 	if (spa->spa_spares.sav_vdevs) {
984 		kmem_free(spa->spa_spares.sav_vdevs,
985 		    spa->spa_spares.sav_count * sizeof (void *));
986 		spa->spa_spares.sav_vdevs = NULL;
987 	}
988 	if (spa->spa_spares.sav_config) {
989 		nvlist_free(spa->spa_spares.sav_config);
990 		spa->spa_spares.sav_config = NULL;
991 	}
992 	spa->spa_spares.sav_count = 0;
993 
994 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
995 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
996 	if (spa->spa_l2cache.sav_vdevs) {
997 		kmem_free(spa->spa_l2cache.sav_vdevs,
998 		    spa->spa_l2cache.sav_count * sizeof (void *));
999 		spa->spa_l2cache.sav_vdevs = NULL;
1000 	}
1001 	if (spa->spa_l2cache.sav_config) {
1002 		nvlist_free(spa->spa_l2cache.sav_config);
1003 		spa->spa_l2cache.sav_config = NULL;
1004 	}
1005 	spa->spa_l2cache.sav_count = 0;
1006 
1007 	spa->spa_async_suspended = 0;
1008 
1009 	spa_config_exit(spa, SCL_ALL, FTAG);
1010 }
1011 
1012 /*
1013  * Load (or re-load) the current list of vdevs describing the active spares for
1014  * this pool.  When this is called, we have some form of basic information in
1015  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1016  * then re-generate a more complete list including status information.
1017  */
1018 static void
1019 spa_load_spares(spa_t *spa)
1020 {
1021 	nvlist_t **spares;
1022 	uint_t nspares;
1023 	int i;
1024 	vdev_t *vd, *tvd;
1025 
1026 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1027 
1028 	/*
1029 	 * First, close and free any existing spare vdevs.
1030 	 */
1031 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1032 		vd = spa->spa_spares.sav_vdevs[i];
1033 
1034 		/* Undo the call to spa_activate() below */
1035 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1036 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1037 			spa_spare_remove(tvd);
1038 		vdev_close(vd);
1039 		vdev_free(vd);
1040 	}
1041 
1042 	if (spa->spa_spares.sav_vdevs)
1043 		kmem_free(spa->spa_spares.sav_vdevs,
1044 		    spa->spa_spares.sav_count * sizeof (void *));
1045 
1046 	if (spa->spa_spares.sav_config == NULL)
1047 		nspares = 0;
1048 	else
1049 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1050 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1051 
1052 	spa->spa_spares.sav_count = (int)nspares;
1053 	spa->spa_spares.sav_vdevs = NULL;
1054 
1055 	if (nspares == 0)
1056 		return;
1057 
1058 	/*
1059 	 * Construct the array of vdevs, opening them to get status in the
1060 	 * process.   For each spare, there is potentially two different vdev_t
1061 	 * structures associated with it: one in the list of spares (used only
1062 	 * for basic validation purposes) and one in the active vdev
1063 	 * configuration (if it's spared in).  During this phase we open and
1064 	 * validate each vdev on the spare list.  If the vdev also exists in the
1065 	 * active configuration, then we also mark this vdev as an active spare.
1066 	 */
1067 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1068 	    KM_SLEEP);
1069 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1070 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1071 		    VDEV_ALLOC_SPARE) == 0);
1072 		ASSERT(vd != NULL);
1073 
1074 		spa->spa_spares.sav_vdevs[i] = vd;
1075 
1076 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1077 		    B_FALSE)) != NULL) {
1078 			if (!tvd->vdev_isspare)
1079 				spa_spare_add(tvd);
1080 
1081 			/*
1082 			 * We only mark the spare active if we were successfully
1083 			 * able to load the vdev.  Otherwise, importing a pool
1084 			 * with a bad active spare would result in strange
1085 			 * behavior, because multiple pool would think the spare
1086 			 * is actively in use.
1087 			 *
1088 			 * There is a vulnerability here to an equally bizarre
1089 			 * circumstance, where a dead active spare is later
1090 			 * brought back to life (onlined or otherwise).  Given
1091 			 * the rarity of this scenario, and the extra complexity
1092 			 * it adds, we ignore the possibility.
1093 			 */
1094 			if (!vdev_is_dead(tvd))
1095 				spa_spare_activate(tvd);
1096 		}
1097 
1098 		vd->vdev_top = vd;
1099 		vd->vdev_aux = &spa->spa_spares;
1100 
1101 		if (vdev_open(vd) != 0)
1102 			continue;
1103 
1104 		if (vdev_validate_aux(vd) == 0)
1105 			spa_spare_add(vd);
1106 	}
1107 
1108 	/*
1109 	 * Recompute the stashed list of spares, with status information
1110 	 * this time.
1111 	 */
1112 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1113 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1114 
1115 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1116 	    KM_SLEEP);
1117 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1118 		spares[i] = vdev_config_generate(spa,
1119 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1120 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1121 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1122 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1123 		nvlist_free(spares[i]);
1124 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1125 }
1126 
1127 /*
1128  * Load (or re-load) the current list of vdevs describing the active l2cache for
1129  * this pool.  When this is called, we have some form of basic information in
1130  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1131  * then re-generate a more complete list including status information.
1132  * Devices which are already active have their details maintained, and are
1133  * not re-opened.
1134  */
1135 static void
1136 spa_load_l2cache(spa_t *spa)
1137 {
1138 	nvlist_t **l2cache;
1139 	uint_t nl2cache;
1140 	int i, j, oldnvdevs;
1141 	uint64_t guid;
1142 	vdev_t *vd, **oldvdevs, **newvdevs;
1143 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1144 
1145 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1146 
1147 	if (sav->sav_config != NULL) {
1148 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1149 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1150 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1151 	} else {
1152 		nl2cache = 0;
1153 	}
1154 
1155 	oldvdevs = sav->sav_vdevs;
1156 	oldnvdevs = sav->sav_count;
1157 	sav->sav_vdevs = NULL;
1158 	sav->sav_count = 0;
1159 
1160 	/*
1161 	 * Process new nvlist of vdevs.
1162 	 */
1163 	for (i = 0; i < nl2cache; i++) {
1164 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1165 		    &guid) == 0);
1166 
1167 		newvdevs[i] = NULL;
1168 		for (j = 0; j < oldnvdevs; j++) {
1169 			vd = oldvdevs[j];
1170 			if (vd != NULL && guid == vd->vdev_guid) {
1171 				/*
1172 				 * Retain previous vdev for add/remove ops.
1173 				 */
1174 				newvdevs[i] = vd;
1175 				oldvdevs[j] = NULL;
1176 				break;
1177 			}
1178 		}
1179 
1180 		if (newvdevs[i] == NULL) {
1181 			/*
1182 			 * Create new vdev
1183 			 */
1184 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1185 			    VDEV_ALLOC_L2CACHE) == 0);
1186 			ASSERT(vd != NULL);
1187 			newvdevs[i] = vd;
1188 
1189 			/*
1190 			 * Commit this vdev as an l2cache device,
1191 			 * even if it fails to open.
1192 			 */
1193 			spa_l2cache_add(vd);
1194 
1195 			vd->vdev_top = vd;
1196 			vd->vdev_aux = sav;
1197 
1198 			spa_l2cache_activate(vd);
1199 
1200 			if (vdev_open(vd) != 0)
1201 				continue;
1202 
1203 			(void) vdev_validate_aux(vd);
1204 
1205 			if (!vdev_is_dead(vd))
1206 				l2arc_add_vdev(spa, vd);
1207 		}
1208 	}
1209 
1210 	/*
1211 	 * Purge vdevs that were dropped
1212 	 */
1213 	for (i = 0; i < oldnvdevs; i++) {
1214 		uint64_t pool;
1215 
1216 		vd = oldvdevs[i];
1217 		if (vd != NULL) {
1218 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1219 			    pool != 0ULL && l2arc_vdev_present(vd))
1220 				l2arc_remove_vdev(vd);
1221 			(void) vdev_close(vd);
1222 			spa_l2cache_remove(vd);
1223 		}
1224 	}
1225 
1226 	if (oldvdevs)
1227 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1228 
1229 	if (sav->sav_config == NULL)
1230 		goto out;
1231 
1232 	sav->sav_vdevs = newvdevs;
1233 	sav->sav_count = (int)nl2cache;
1234 
1235 	/*
1236 	 * Recompute the stashed list of l2cache devices, with status
1237 	 * information this time.
1238 	 */
1239 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1240 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1241 
1242 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1243 	for (i = 0; i < sav->sav_count; i++)
1244 		l2cache[i] = vdev_config_generate(spa,
1245 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1246 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1247 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1248 out:
1249 	for (i = 0; i < sav->sav_count; i++)
1250 		nvlist_free(l2cache[i]);
1251 	if (sav->sav_count)
1252 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1253 }
1254 
1255 static int
1256 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1257 {
1258 	dmu_buf_t *db;
1259 	char *packed = NULL;
1260 	size_t nvsize = 0;
1261 	int error;
1262 	*value = NULL;
1263 
1264 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1265 	nvsize = *(uint64_t *)db->db_data;
1266 	dmu_buf_rele(db, FTAG);
1267 
1268 	packed = kmem_alloc(nvsize, KM_SLEEP);
1269 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1270 	    DMU_READ_PREFETCH);
1271 	if (error == 0)
1272 		error = nvlist_unpack(packed, nvsize, value, 0);
1273 	kmem_free(packed, nvsize);
1274 
1275 	return (error);
1276 }
1277 
1278 /*
1279  * Checks to see if the given vdev could not be opened, in which case we post a
1280  * sysevent to notify the autoreplace code that the device has been removed.
1281  */
1282 static void
1283 spa_check_removed(vdev_t *vd)
1284 {
1285 	for (int c = 0; c < vd->vdev_children; c++)
1286 		spa_check_removed(vd->vdev_child[c]);
1287 
1288 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1289 		zfs_post_autoreplace(vd->vdev_spa, vd);
1290 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1291 	}
1292 }
1293 
1294 /*
1295  * Validate the current config against the MOS config
1296  */
1297 static boolean_t
1298 spa_config_valid(spa_t *spa, nvlist_t *config)
1299 {
1300 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1301 	nvlist_t *nv;
1302 
1303 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1304 
1305 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1306 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1307 
1308 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1309 
1310 	/*
1311 	 * If we're doing a normal import, then build up any additional
1312 	 * diagnostic information about missing devices in this config.
1313 	 * We'll pass this up to the user for further processing.
1314 	 */
1315 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1316 		nvlist_t **child, *nv;
1317 		uint64_t idx = 0;
1318 
1319 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1320 		    KM_SLEEP);
1321 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1322 
1323 		for (int c = 0; c < rvd->vdev_children; c++) {
1324 			vdev_t *tvd = rvd->vdev_child[c];
1325 			vdev_t *mtvd  = mrvd->vdev_child[c];
1326 
1327 			if (tvd->vdev_ops == &vdev_missing_ops &&
1328 			    mtvd->vdev_ops != &vdev_missing_ops &&
1329 			    mtvd->vdev_islog)
1330 				child[idx++] = vdev_config_generate(spa, mtvd,
1331 				    B_FALSE, 0);
1332 		}
1333 
1334 		if (idx) {
1335 			VERIFY(nvlist_add_nvlist_array(nv,
1336 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1337 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1338 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1339 
1340 			for (int i = 0; i < idx; i++)
1341 				nvlist_free(child[i]);
1342 		}
1343 		nvlist_free(nv);
1344 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1345 	}
1346 
1347 	/*
1348 	 * Compare the root vdev tree with the information we have
1349 	 * from the MOS config (mrvd). Check each top-level vdev
1350 	 * with the corresponding MOS config top-level (mtvd).
1351 	 */
1352 	for (int c = 0; c < rvd->vdev_children; c++) {
1353 		vdev_t *tvd = rvd->vdev_child[c];
1354 		vdev_t *mtvd  = mrvd->vdev_child[c];
1355 
1356 		/*
1357 		 * Resolve any "missing" vdevs in the current configuration.
1358 		 * If we find that the MOS config has more accurate information
1359 		 * about the top-level vdev then use that vdev instead.
1360 		 */
1361 		if (tvd->vdev_ops == &vdev_missing_ops &&
1362 		    mtvd->vdev_ops != &vdev_missing_ops) {
1363 
1364 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1365 				continue;
1366 
1367 			/*
1368 			 * Device specific actions.
1369 			 */
1370 			if (mtvd->vdev_islog) {
1371 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1372 			} else {
1373 				/*
1374 				 * XXX - once we have 'readonly' pool
1375 				 * support we should be able to handle
1376 				 * missing data devices by transitioning
1377 				 * the pool to readonly.
1378 				 */
1379 				continue;
1380 			}
1381 
1382 			/*
1383 			 * Swap the missing vdev with the data we were
1384 			 * able to obtain from the MOS config.
1385 			 */
1386 			vdev_remove_child(rvd, tvd);
1387 			vdev_remove_child(mrvd, mtvd);
1388 
1389 			vdev_add_child(rvd, mtvd);
1390 			vdev_add_child(mrvd, tvd);
1391 
1392 			spa_config_exit(spa, SCL_ALL, FTAG);
1393 			vdev_load(mtvd);
1394 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1395 
1396 			vdev_reopen(rvd);
1397 		} else if (mtvd->vdev_islog) {
1398 			/*
1399 			 * Load the slog device's state from the MOS config
1400 			 * since it's possible that the label does not
1401 			 * contain the most up-to-date information.
1402 			 */
1403 			vdev_load_log_state(tvd, mtvd);
1404 			vdev_reopen(tvd);
1405 		}
1406 	}
1407 	vdev_free(mrvd);
1408 	spa_config_exit(spa, SCL_ALL, FTAG);
1409 
1410 	/*
1411 	 * Ensure we were able to validate the config.
1412 	 */
1413 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1414 }
1415 
1416 /*
1417  * Check for missing log devices
1418  */
1419 static int
1420 spa_check_logs(spa_t *spa)
1421 {
1422 	switch (spa->spa_log_state) {
1423 	case SPA_LOG_MISSING:
1424 		/* need to recheck in case slog has been restored */
1425 	case SPA_LOG_UNKNOWN:
1426 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1427 		    DS_FIND_CHILDREN)) {
1428 			spa_set_log_state(spa, SPA_LOG_MISSING);
1429 			return (1);
1430 		}
1431 		break;
1432 	}
1433 	return (0);
1434 }
1435 
1436 static boolean_t
1437 spa_passivate_log(spa_t *spa)
1438 {
1439 	vdev_t *rvd = spa->spa_root_vdev;
1440 	boolean_t slog_found = B_FALSE;
1441 
1442 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1443 
1444 	if (!spa_has_slogs(spa))
1445 		return (B_FALSE);
1446 
1447 	for (int c = 0; c < rvd->vdev_children; c++) {
1448 		vdev_t *tvd = rvd->vdev_child[c];
1449 		metaslab_group_t *mg = tvd->vdev_mg;
1450 
1451 		if (tvd->vdev_islog) {
1452 			metaslab_group_passivate(mg);
1453 			slog_found = B_TRUE;
1454 		}
1455 	}
1456 
1457 	return (slog_found);
1458 }
1459 
1460 static void
1461 spa_activate_log(spa_t *spa)
1462 {
1463 	vdev_t *rvd = spa->spa_root_vdev;
1464 
1465 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1466 
1467 	for (int c = 0; c < rvd->vdev_children; c++) {
1468 		vdev_t *tvd = rvd->vdev_child[c];
1469 		metaslab_group_t *mg = tvd->vdev_mg;
1470 
1471 		if (tvd->vdev_islog)
1472 			metaslab_group_activate(mg);
1473 	}
1474 }
1475 
1476 int
1477 spa_offline_log(spa_t *spa)
1478 {
1479 	int error = 0;
1480 
1481 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1482 	    NULL, DS_FIND_CHILDREN)) == 0) {
1483 
1484 		/*
1485 		 * We successfully offlined the log device, sync out the
1486 		 * current txg so that the "stubby" block can be removed
1487 		 * by zil_sync().
1488 		 */
1489 		txg_wait_synced(spa->spa_dsl_pool, 0);
1490 	}
1491 	return (error);
1492 }
1493 
1494 static void
1495 spa_aux_check_removed(spa_aux_vdev_t *sav)
1496 {
1497 	for (int i = 0; i < sav->sav_count; i++)
1498 		spa_check_removed(sav->sav_vdevs[i]);
1499 }
1500 
1501 void
1502 spa_claim_notify(zio_t *zio)
1503 {
1504 	spa_t *spa = zio->io_spa;
1505 
1506 	if (zio->io_error)
1507 		return;
1508 
1509 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1510 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1511 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1512 	mutex_exit(&spa->spa_props_lock);
1513 }
1514 
1515 typedef struct spa_load_error {
1516 	uint64_t	sle_meta_count;
1517 	uint64_t	sle_data_count;
1518 } spa_load_error_t;
1519 
1520 static void
1521 spa_load_verify_done(zio_t *zio)
1522 {
1523 	blkptr_t *bp = zio->io_bp;
1524 	spa_load_error_t *sle = zio->io_private;
1525 	dmu_object_type_t type = BP_GET_TYPE(bp);
1526 	int error = zio->io_error;
1527 
1528 	if (error) {
1529 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1530 		    type != DMU_OT_INTENT_LOG)
1531 			atomic_add_64(&sle->sle_meta_count, 1);
1532 		else
1533 			atomic_add_64(&sle->sle_data_count, 1);
1534 	}
1535 	zio_data_buf_free(zio->io_data, zio->io_size);
1536 }
1537 
1538 /*ARGSUSED*/
1539 static int
1540 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1541     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1542 {
1543 	if (bp != NULL) {
1544 		zio_t *rio = arg;
1545 		size_t size = BP_GET_PSIZE(bp);
1546 		void *data = zio_data_buf_alloc(size);
1547 
1548 		zio_nowait(zio_read(rio, spa, bp, data, size,
1549 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1550 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1551 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1552 	}
1553 	return (0);
1554 }
1555 
1556 static int
1557 spa_load_verify(spa_t *spa)
1558 {
1559 	zio_t *rio;
1560 	spa_load_error_t sle = { 0 };
1561 	zpool_rewind_policy_t policy;
1562 	boolean_t verify_ok = B_FALSE;
1563 	int error;
1564 
1565 	zpool_get_rewind_policy(spa->spa_config, &policy);
1566 
1567 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1568 		return (0);
1569 
1570 	rio = zio_root(spa, NULL, &sle,
1571 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1572 
1573 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1574 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1575 
1576 	(void) zio_wait(rio);
1577 
1578 	spa->spa_load_meta_errors = sle.sle_meta_count;
1579 	spa->spa_load_data_errors = sle.sle_data_count;
1580 
1581 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1582 	    sle.sle_data_count <= policy.zrp_maxdata) {
1583 		int64_t loss = 0;
1584 
1585 		verify_ok = B_TRUE;
1586 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1587 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1588 
1589 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1590 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1591 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1592 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1593 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1594 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1595 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1596 	} else {
1597 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1598 	}
1599 
1600 	if (error) {
1601 		if (error != ENXIO && error != EIO)
1602 			error = EIO;
1603 		return (error);
1604 	}
1605 
1606 	return (verify_ok ? 0 : EIO);
1607 }
1608 
1609 /*
1610  * Find a value in the pool props object.
1611  */
1612 static void
1613 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1614 {
1615 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1616 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1617 }
1618 
1619 /*
1620  * Find a value in the pool directory object.
1621  */
1622 static int
1623 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1624 {
1625 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1626 	    name, sizeof (uint64_t), 1, val));
1627 }
1628 
1629 static int
1630 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1631 {
1632 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1633 	return (err);
1634 }
1635 
1636 /*
1637  * Fix up config after a partly-completed split.  This is done with the
1638  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1639  * pool have that entry in their config, but only the splitting one contains
1640  * a list of all the guids of the vdevs that are being split off.
1641  *
1642  * This function determines what to do with that list: either rejoin
1643  * all the disks to the pool, or complete the splitting process.  To attempt
1644  * the rejoin, each disk that is offlined is marked online again, and
1645  * we do a reopen() call.  If the vdev label for every disk that was
1646  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1647  * then we call vdev_split() on each disk, and complete the split.
1648  *
1649  * Otherwise we leave the config alone, with all the vdevs in place in
1650  * the original pool.
1651  */
1652 static void
1653 spa_try_repair(spa_t *spa, nvlist_t *config)
1654 {
1655 	uint_t extracted;
1656 	uint64_t *glist;
1657 	uint_t i, gcount;
1658 	nvlist_t *nvl;
1659 	vdev_t **vd;
1660 	boolean_t attempt_reopen;
1661 
1662 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1663 		return;
1664 
1665 	/* check that the config is complete */
1666 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1667 	    &glist, &gcount) != 0)
1668 		return;
1669 
1670 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1671 
1672 	/* attempt to online all the vdevs & validate */
1673 	attempt_reopen = B_TRUE;
1674 	for (i = 0; i < gcount; i++) {
1675 		if (glist[i] == 0)	/* vdev is hole */
1676 			continue;
1677 
1678 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1679 		if (vd[i] == NULL) {
1680 			/*
1681 			 * Don't bother attempting to reopen the disks;
1682 			 * just do the split.
1683 			 */
1684 			attempt_reopen = B_FALSE;
1685 		} else {
1686 			/* attempt to re-online it */
1687 			vd[i]->vdev_offline = B_FALSE;
1688 		}
1689 	}
1690 
1691 	if (attempt_reopen) {
1692 		vdev_reopen(spa->spa_root_vdev);
1693 
1694 		/* check each device to see what state it's in */
1695 		for (extracted = 0, i = 0; i < gcount; i++) {
1696 			if (vd[i] != NULL &&
1697 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1698 				break;
1699 			++extracted;
1700 		}
1701 	}
1702 
1703 	/*
1704 	 * If every disk has been moved to the new pool, or if we never
1705 	 * even attempted to look at them, then we split them off for
1706 	 * good.
1707 	 */
1708 	if (!attempt_reopen || gcount == extracted) {
1709 		for (i = 0; i < gcount; i++)
1710 			if (vd[i] != NULL)
1711 				vdev_split(vd[i]);
1712 		vdev_reopen(spa->spa_root_vdev);
1713 	}
1714 
1715 	kmem_free(vd, gcount * sizeof (vdev_t *));
1716 }
1717 
1718 static int
1719 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1720     boolean_t mosconfig)
1721 {
1722 	nvlist_t *config = spa->spa_config;
1723 	char *ereport = FM_EREPORT_ZFS_POOL;
1724 	int error;
1725 	uint64_t pool_guid;
1726 	nvlist_t *nvl;
1727 
1728 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1729 		return (EINVAL);
1730 
1731 	/*
1732 	 * Versioning wasn't explicitly added to the label until later, so if
1733 	 * it's not present treat it as the initial version.
1734 	 */
1735 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1736 	    &spa->spa_ubsync.ub_version) != 0)
1737 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1738 
1739 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1740 	    &spa->spa_config_txg);
1741 
1742 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1743 	    spa_guid_exists(pool_guid, 0)) {
1744 		error = EEXIST;
1745 	} else {
1746 		spa->spa_load_guid = pool_guid;
1747 
1748 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1749 		    &nvl) == 0) {
1750 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1751 			    KM_SLEEP) == 0);
1752 		}
1753 
1754 		gethrestime(&spa->spa_loaded_ts);
1755 		error = spa_load_impl(spa, pool_guid, config, state, type,
1756 		    mosconfig, &ereport);
1757 	}
1758 
1759 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1760 	if (error) {
1761 		if (error != EEXIST) {
1762 			spa->spa_loaded_ts.tv_sec = 0;
1763 			spa->spa_loaded_ts.tv_nsec = 0;
1764 		}
1765 		if (error != EBADF) {
1766 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1767 		}
1768 	}
1769 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1770 	spa->spa_ena = 0;
1771 
1772 	return (error);
1773 }
1774 
1775 /*
1776  * Load an existing storage pool, using the pool's builtin spa_config as a
1777  * source of configuration information.
1778  */
1779 static int
1780 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1781     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1782     char **ereport)
1783 {
1784 	int error = 0;
1785 	nvlist_t *nvroot = NULL;
1786 	vdev_t *rvd;
1787 	uberblock_t *ub = &spa->spa_uberblock;
1788 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1789 	int orig_mode = spa->spa_mode;
1790 	int parse;
1791 	uint64_t obj;
1792 
1793 	/*
1794 	 * If this is an untrusted config, access the pool in read-only mode.
1795 	 * This prevents things like resilvering recently removed devices.
1796 	 */
1797 	if (!mosconfig)
1798 		spa->spa_mode = FREAD;
1799 
1800 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1801 
1802 	spa->spa_load_state = state;
1803 
1804 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1805 		return (EINVAL);
1806 
1807 	parse = (type == SPA_IMPORT_EXISTING ?
1808 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1809 
1810 	/*
1811 	 * Create "The Godfather" zio to hold all async IOs
1812 	 */
1813 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1814 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1815 
1816 	/*
1817 	 * Parse the configuration into a vdev tree.  We explicitly set the
1818 	 * value that will be returned by spa_version() since parsing the
1819 	 * configuration requires knowing the version number.
1820 	 */
1821 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1822 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1823 	spa_config_exit(spa, SCL_ALL, FTAG);
1824 
1825 	if (error != 0)
1826 		return (error);
1827 
1828 	ASSERT(spa->spa_root_vdev == rvd);
1829 
1830 	if (type != SPA_IMPORT_ASSEMBLE) {
1831 		ASSERT(spa_guid(spa) == pool_guid);
1832 	}
1833 
1834 	/*
1835 	 * Try to open all vdevs, loading each label in the process.
1836 	 */
1837 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1838 	error = vdev_open(rvd);
1839 	spa_config_exit(spa, SCL_ALL, FTAG);
1840 	if (error != 0)
1841 		return (error);
1842 
1843 	/*
1844 	 * We need to validate the vdev labels against the configuration that
1845 	 * we have in hand, which is dependent on the setting of mosconfig. If
1846 	 * mosconfig is true then we're validating the vdev labels based on
1847 	 * that config.  Otherwise, we're validating against the cached config
1848 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1849 	 * later we will recursively call spa_load() and validate against
1850 	 * the vdev config.
1851 	 *
1852 	 * If we're assembling a new pool that's been split off from an
1853 	 * existing pool, the labels haven't yet been updated so we skip
1854 	 * validation for now.
1855 	 */
1856 	if (type != SPA_IMPORT_ASSEMBLE) {
1857 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1858 		error = vdev_validate(rvd);
1859 		spa_config_exit(spa, SCL_ALL, FTAG);
1860 
1861 		if (error != 0)
1862 			return (error);
1863 
1864 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1865 			return (ENXIO);
1866 	}
1867 
1868 	/*
1869 	 * Find the best uberblock.
1870 	 */
1871 	vdev_uberblock_load(NULL, rvd, ub);
1872 
1873 	/*
1874 	 * If we weren't able to find a single valid uberblock, return failure.
1875 	 */
1876 	if (ub->ub_txg == 0)
1877 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1878 
1879 	/*
1880 	 * If the pool is newer than the code, we can't open it.
1881 	 */
1882 	if (ub->ub_version > SPA_VERSION)
1883 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1884 
1885 	/*
1886 	 * If the vdev guid sum doesn't match the uberblock, we have an
1887 	 * incomplete configuration.  We first check to see if the pool
1888 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
1889 	 * If it is, defer the vdev_guid_sum check till later so we
1890 	 * can handle missing vdevs.
1891 	 */
1892 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
1893 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1894 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1895 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1896 
1897 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1898 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1899 		spa_try_repair(spa, config);
1900 		spa_config_exit(spa, SCL_ALL, FTAG);
1901 		nvlist_free(spa->spa_config_splitting);
1902 		spa->spa_config_splitting = NULL;
1903 	}
1904 
1905 	/*
1906 	 * Initialize internal SPA structures.
1907 	 */
1908 	spa->spa_state = POOL_STATE_ACTIVE;
1909 	spa->spa_ubsync = spa->spa_uberblock;
1910 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1911 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1912 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1913 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1914 	spa->spa_claim_max_txg = spa->spa_first_txg;
1915 	spa->spa_prev_software_version = ub->ub_software_version;
1916 
1917 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1918 	if (error)
1919 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1920 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1921 
1922 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1923 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1924 
1925 	if (!mosconfig) {
1926 		uint64_t hostid;
1927 		nvlist_t *policy = NULL, *nvconfig;
1928 
1929 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1930 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1931 
1932 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1933 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1934 			char *hostname;
1935 			unsigned long myhostid = 0;
1936 
1937 			VERIFY(nvlist_lookup_string(nvconfig,
1938 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1939 
1940 #ifdef	_KERNEL
1941 			myhostid = zone_get_hostid(NULL);
1942 #else	/* _KERNEL */
1943 			/*
1944 			 * We're emulating the system's hostid in userland, so
1945 			 * we can't use zone_get_hostid().
1946 			 */
1947 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1948 #endif	/* _KERNEL */
1949 			if (hostid != 0 && myhostid != 0 &&
1950 			    hostid != myhostid) {
1951 				nvlist_free(nvconfig);
1952 				cmn_err(CE_WARN, "pool '%s' could not be "
1953 				    "loaded as it was last accessed by "
1954 				    "another system (host: %s hostid: 0x%lx). "
1955 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1956 				    spa_name(spa), hostname,
1957 				    (unsigned long)hostid);
1958 				return (EBADF);
1959 			}
1960 		}
1961 		if (nvlist_lookup_nvlist(spa->spa_config,
1962 		    ZPOOL_REWIND_POLICY, &policy) == 0)
1963 			VERIFY(nvlist_add_nvlist(nvconfig,
1964 			    ZPOOL_REWIND_POLICY, policy) == 0);
1965 
1966 		spa_config_set(spa, nvconfig);
1967 		spa_unload(spa);
1968 		spa_deactivate(spa);
1969 		spa_activate(spa, orig_mode);
1970 
1971 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1972 	}
1973 
1974 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
1975 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1976 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
1977 	if (error != 0)
1978 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1979 
1980 	/*
1981 	 * Load the bit that tells us to use the new accounting function
1982 	 * (raid-z deflation).  If we have an older pool, this will not
1983 	 * be present.
1984 	 */
1985 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1986 	if (error != 0 && error != ENOENT)
1987 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1988 
1989 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
1990 	    &spa->spa_creation_version);
1991 	if (error != 0 && error != ENOENT)
1992 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1993 
1994 	/*
1995 	 * Load the persistent error log.  If we have an older pool, this will
1996 	 * not be present.
1997 	 */
1998 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1999 	if (error != 0 && error != ENOENT)
2000 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2001 
2002 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2003 	    &spa->spa_errlog_scrub);
2004 	if (error != 0 && error != ENOENT)
2005 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2006 
2007 	/*
2008 	 * Load the history object.  If we have an older pool, this
2009 	 * will not be present.
2010 	 */
2011 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2012 	if (error != 0 && error != ENOENT)
2013 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2014 
2015 	/*
2016 	 * If we're assembling the pool from the split-off vdevs of
2017 	 * an existing pool, we don't want to attach the spares & cache
2018 	 * devices.
2019 	 */
2020 
2021 	/*
2022 	 * Load any hot spares for this pool.
2023 	 */
2024 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2025 	if (error != 0 && error != ENOENT)
2026 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2027 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2028 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2029 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2030 		    &spa->spa_spares.sav_config) != 0)
2031 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2032 
2033 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2034 		spa_load_spares(spa);
2035 		spa_config_exit(spa, SCL_ALL, FTAG);
2036 	} else if (error == 0) {
2037 		spa->spa_spares.sav_sync = B_TRUE;
2038 	}
2039 
2040 	/*
2041 	 * Load any level 2 ARC devices for this pool.
2042 	 */
2043 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2044 	    &spa->spa_l2cache.sav_object);
2045 	if (error != 0 && error != ENOENT)
2046 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2047 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2048 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2049 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2050 		    &spa->spa_l2cache.sav_config) != 0)
2051 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2052 
2053 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2054 		spa_load_l2cache(spa);
2055 		spa_config_exit(spa, SCL_ALL, FTAG);
2056 	} else if (error == 0) {
2057 		spa->spa_l2cache.sav_sync = B_TRUE;
2058 	}
2059 
2060 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2061 
2062 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2063 	if (error && error != ENOENT)
2064 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2065 
2066 	if (error == 0) {
2067 		uint64_t autoreplace;
2068 
2069 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2070 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2071 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2072 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2073 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2074 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2075 		    &spa->spa_dedup_ditto);
2076 
2077 		spa->spa_autoreplace = (autoreplace != 0);
2078 	}
2079 
2080 	/*
2081 	 * If the 'autoreplace' property is set, then post a resource notifying
2082 	 * the ZFS DE that it should not issue any faults for unopenable
2083 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2084 	 * unopenable vdevs so that the normal autoreplace handler can take
2085 	 * over.
2086 	 */
2087 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2088 		spa_check_removed(spa->spa_root_vdev);
2089 		/*
2090 		 * For the import case, this is done in spa_import(), because
2091 		 * at this point we're using the spare definitions from
2092 		 * the MOS config, not necessarily from the userland config.
2093 		 */
2094 		if (state != SPA_LOAD_IMPORT) {
2095 			spa_aux_check_removed(&spa->spa_spares);
2096 			spa_aux_check_removed(&spa->spa_l2cache);
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * Load the vdev state for all toplevel vdevs.
2102 	 */
2103 	vdev_load(rvd);
2104 
2105 	/*
2106 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2107 	 */
2108 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2109 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2110 	spa_config_exit(spa, SCL_ALL, FTAG);
2111 
2112 	/*
2113 	 * Load the DDTs (dedup tables).
2114 	 */
2115 	error = ddt_load(spa);
2116 	if (error != 0)
2117 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2118 
2119 	spa_update_dspace(spa);
2120 
2121 	/*
2122 	 * Validate the config, using the MOS config to fill in any
2123 	 * information which might be missing.  If we fail to validate
2124 	 * the config then declare the pool unfit for use. If we're
2125 	 * assembling a pool from a split, the log is not transferred
2126 	 * over.
2127 	 */
2128 	if (type != SPA_IMPORT_ASSEMBLE) {
2129 		nvlist_t *nvconfig;
2130 
2131 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2132 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2133 
2134 		if (!spa_config_valid(spa, nvconfig)) {
2135 			nvlist_free(nvconfig);
2136 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2137 			    ENXIO));
2138 		}
2139 		nvlist_free(nvconfig);
2140 
2141 		/*
2142 		 * Now that we've validate the config, check the state of the
2143 		 * root vdev.  If it can't be opened, it indicates one or
2144 		 * more toplevel vdevs are faulted.
2145 		 */
2146 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2147 			return (ENXIO);
2148 
2149 		if (spa_check_logs(spa)) {
2150 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2151 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2152 		}
2153 	}
2154 
2155 	/*
2156 	 * We've successfully opened the pool, verify that we're ready
2157 	 * to start pushing transactions.
2158 	 */
2159 	if (state != SPA_LOAD_TRYIMPORT) {
2160 		if (error = spa_load_verify(spa))
2161 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2162 			    error));
2163 	}
2164 
2165 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2166 	    spa->spa_load_max_txg == UINT64_MAX)) {
2167 		dmu_tx_t *tx;
2168 		int need_update = B_FALSE;
2169 
2170 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2171 
2172 		/*
2173 		 * Claim log blocks that haven't been committed yet.
2174 		 * This must all happen in a single txg.
2175 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2176 		 * invoked from zil_claim_log_block()'s i/o done callback.
2177 		 * Price of rollback is that we abandon the log.
2178 		 */
2179 		spa->spa_claiming = B_TRUE;
2180 
2181 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2182 		    spa_first_txg(spa));
2183 		(void) dmu_objset_find(spa_name(spa),
2184 		    zil_claim, tx, DS_FIND_CHILDREN);
2185 		dmu_tx_commit(tx);
2186 
2187 		spa->spa_claiming = B_FALSE;
2188 
2189 		spa_set_log_state(spa, SPA_LOG_GOOD);
2190 		spa->spa_sync_on = B_TRUE;
2191 		txg_sync_start(spa->spa_dsl_pool);
2192 
2193 		/*
2194 		 * Wait for all claims to sync.  We sync up to the highest
2195 		 * claimed log block birth time so that claimed log blocks
2196 		 * don't appear to be from the future.  spa_claim_max_txg
2197 		 * will have been set for us by either zil_check_log_chain()
2198 		 * (invoked from spa_check_logs()) or zil_claim() above.
2199 		 */
2200 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2201 
2202 		/*
2203 		 * If the config cache is stale, or we have uninitialized
2204 		 * metaslabs (see spa_vdev_add()), then update the config.
2205 		 *
2206 		 * If this is a verbatim import, trust the current
2207 		 * in-core spa_config and update the disk labels.
2208 		 */
2209 		if (config_cache_txg != spa->spa_config_txg ||
2210 		    state == SPA_LOAD_IMPORT ||
2211 		    state == SPA_LOAD_RECOVER ||
2212 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2213 			need_update = B_TRUE;
2214 
2215 		for (int c = 0; c < rvd->vdev_children; c++)
2216 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2217 				need_update = B_TRUE;
2218 
2219 		/*
2220 		 * Update the config cache asychronously in case we're the
2221 		 * root pool, in which case the config cache isn't writable yet.
2222 		 */
2223 		if (need_update)
2224 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2225 
2226 		/*
2227 		 * Check all DTLs to see if anything needs resilvering.
2228 		 */
2229 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2230 		    vdev_resilver_needed(rvd, NULL, NULL))
2231 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2232 
2233 		/*
2234 		 * Delete any inconsistent datasets.
2235 		 */
2236 		(void) dmu_objset_find(spa_name(spa),
2237 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2238 
2239 		/*
2240 		 * Clean up any stale temporary dataset userrefs.
2241 		 */
2242 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2243 	}
2244 
2245 	return (0);
2246 }
2247 
2248 static int
2249 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2250 {
2251 	int mode = spa->spa_mode;
2252 
2253 	spa_unload(spa);
2254 	spa_deactivate(spa);
2255 
2256 	spa->spa_load_max_txg--;
2257 
2258 	spa_activate(spa, mode);
2259 	spa_async_suspend(spa);
2260 
2261 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2262 }
2263 
2264 static int
2265 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2266     uint64_t max_request, int rewind_flags)
2267 {
2268 	nvlist_t *config = NULL;
2269 	int load_error, rewind_error;
2270 	uint64_t safe_rewind_txg;
2271 	uint64_t min_txg;
2272 
2273 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2274 		spa->spa_load_max_txg = spa->spa_load_txg;
2275 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2276 	} else {
2277 		spa->spa_load_max_txg = max_request;
2278 	}
2279 
2280 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2281 	    mosconfig);
2282 	if (load_error == 0)
2283 		return (0);
2284 
2285 	if (spa->spa_root_vdev != NULL)
2286 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2287 
2288 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2289 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2290 
2291 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2292 		nvlist_free(config);
2293 		return (load_error);
2294 	}
2295 
2296 	/* Price of rolling back is discarding txgs, including log */
2297 	if (state == SPA_LOAD_RECOVER)
2298 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2299 
2300 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2301 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2302 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2303 	    TXG_INITIAL : safe_rewind_txg;
2304 
2305 	/*
2306 	 * Continue as long as we're finding errors, we're still within
2307 	 * the acceptable rewind range, and we're still finding uberblocks
2308 	 */
2309 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2310 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2311 		if (spa->spa_load_max_txg < safe_rewind_txg)
2312 			spa->spa_extreme_rewind = B_TRUE;
2313 		rewind_error = spa_load_retry(spa, state, mosconfig);
2314 	}
2315 
2316 	spa->spa_extreme_rewind = B_FALSE;
2317 	spa->spa_load_max_txg = UINT64_MAX;
2318 
2319 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2320 		spa_config_set(spa, config);
2321 
2322 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2323 }
2324 
2325 /*
2326  * Pool Open/Import
2327  *
2328  * The import case is identical to an open except that the configuration is sent
2329  * down from userland, instead of grabbed from the configuration cache.  For the
2330  * case of an open, the pool configuration will exist in the
2331  * POOL_STATE_UNINITIALIZED state.
2332  *
2333  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2334  * the same time open the pool, without having to keep around the spa_t in some
2335  * ambiguous state.
2336  */
2337 static int
2338 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2339     nvlist_t **config)
2340 {
2341 	spa_t *spa;
2342 	spa_load_state_t state = SPA_LOAD_OPEN;
2343 	int error;
2344 	int locked = B_FALSE;
2345 
2346 	*spapp = NULL;
2347 
2348 	/*
2349 	 * As disgusting as this is, we need to support recursive calls to this
2350 	 * function because dsl_dir_open() is called during spa_load(), and ends
2351 	 * up calling spa_open() again.  The real fix is to figure out how to
2352 	 * avoid dsl_dir_open() calling this in the first place.
2353 	 */
2354 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2355 		mutex_enter(&spa_namespace_lock);
2356 		locked = B_TRUE;
2357 	}
2358 
2359 	if ((spa = spa_lookup(pool)) == NULL) {
2360 		if (locked)
2361 			mutex_exit(&spa_namespace_lock);
2362 		return (ENOENT);
2363 	}
2364 
2365 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2366 		zpool_rewind_policy_t policy;
2367 
2368 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2369 		    &policy);
2370 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2371 			state = SPA_LOAD_RECOVER;
2372 
2373 		spa_activate(spa, spa_mode_global);
2374 
2375 		if (state != SPA_LOAD_RECOVER)
2376 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2377 
2378 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2379 		    policy.zrp_request);
2380 
2381 		if (error == EBADF) {
2382 			/*
2383 			 * If vdev_validate() returns failure (indicated by
2384 			 * EBADF), it indicates that one of the vdevs indicates
2385 			 * that the pool has been exported or destroyed.  If
2386 			 * this is the case, the config cache is out of sync and
2387 			 * we should remove the pool from the namespace.
2388 			 */
2389 			spa_unload(spa);
2390 			spa_deactivate(spa);
2391 			spa_config_sync(spa, B_TRUE, B_TRUE);
2392 			spa_remove(spa);
2393 			if (locked)
2394 				mutex_exit(&spa_namespace_lock);
2395 			return (ENOENT);
2396 		}
2397 
2398 		if (error) {
2399 			/*
2400 			 * We can't open the pool, but we still have useful
2401 			 * information: the state of each vdev after the
2402 			 * attempted vdev_open().  Return this to the user.
2403 			 */
2404 			if (config != NULL && spa->spa_config) {
2405 				VERIFY(nvlist_dup(spa->spa_config, config,
2406 				    KM_SLEEP) == 0);
2407 				VERIFY(nvlist_add_nvlist(*config,
2408 				    ZPOOL_CONFIG_LOAD_INFO,
2409 				    spa->spa_load_info) == 0);
2410 			}
2411 			spa_unload(spa);
2412 			spa_deactivate(spa);
2413 			spa->spa_last_open_failed = error;
2414 			if (locked)
2415 				mutex_exit(&spa_namespace_lock);
2416 			*spapp = NULL;
2417 			return (error);
2418 		}
2419 	}
2420 
2421 	spa_open_ref(spa, tag);
2422 
2423 	if (config != NULL)
2424 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2425 
2426 	/*
2427 	 * If we've recovered the pool, pass back any information we
2428 	 * gathered while doing the load.
2429 	 */
2430 	if (state == SPA_LOAD_RECOVER) {
2431 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2432 		    spa->spa_load_info) == 0);
2433 	}
2434 
2435 	if (locked) {
2436 		spa->spa_last_open_failed = 0;
2437 		spa->spa_last_ubsync_txg = 0;
2438 		spa->spa_load_txg = 0;
2439 		mutex_exit(&spa_namespace_lock);
2440 	}
2441 
2442 	*spapp = spa;
2443 
2444 	return (0);
2445 }
2446 
2447 int
2448 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2449     nvlist_t **config)
2450 {
2451 	return (spa_open_common(name, spapp, tag, policy, config));
2452 }
2453 
2454 int
2455 spa_open(const char *name, spa_t **spapp, void *tag)
2456 {
2457 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2458 }
2459 
2460 /*
2461  * Lookup the given spa_t, incrementing the inject count in the process,
2462  * preventing it from being exported or destroyed.
2463  */
2464 spa_t *
2465 spa_inject_addref(char *name)
2466 {
2467 	spa_t *spa;
2468 
2469 	mutex_enter(&spa_namespace_lock);
2470 	if ((spa = spa_lookup(name)) == NULL) {
2471 		mutex_exit(&spa_namespace_lock);
2472 		return (NULL);
2473 	}
2474 	spa->spa_inject_ref++;
2475 	mutex_exit(&spa_namespace_lock);
2476 
2477 	return (spa);
2478 }
2479 
2480 void
2481 spa_inject_delref(spa_t *spa)
2482 {
2483 	mutex_enter(&spa_namespace_lock);
2484 	spa->spa_inject_ref--;
2485 	mutex_exit(&spa_namespace_lock);
2486 }
2487 
2488 /*
2489  * Add spares device information to the nvlist.
2490  */
2491 static void
2492 spa_add_spares(spa_t *spa, nvlist_t *config)
2493 {
2494 	nvlist_t **spares;
2495 	uint_t i, nspares;
2496 	nvlist_t *nvroot;
2497 	uint64_t guid;
2498 	vdev_stat_t *vs;
2499 	uint_t vsc;
2500 	uint64_t pool;
2501 
2502 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2503 
2504 	if (spa->spa_spares.sav_count == 0)
2505 		return;
2506 
2507 	VERIFY(nvlist_lookup_nvlist(config,
2508 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2509 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2510 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2511 	if (nspares != 0) {
2512 		VERIFY(nvlist_add_nvlist_array(nvroot,
2513 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2514 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2515 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2516 
2517 		/*
2518 		 * Go through and find any spares which have since been
2519 		 * repurposed as an active spare.  If this is the case, update
2520 		 * their status appropriately.
2521 		 */
2522 		for (i = 0; i < nspares; i++) {
2523 			VERIFY(nvlist_lookup_uint64(spares[i],
2524 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2525 			if (spa_spare_exists(guid, &pool, NULL) &&
2526 			    pool != 0ULL) {
2527 				VERIFY(nvlist_lookup_uint64_array(
2528 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2529 				    (uint64_t **)&vs, &vsc) == 0);
2530 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2531 				vs->vs_aux = VDEV_AUX_SPARED;
2532 			}
2533 		}
2534 	}
2535 }
2536 
2537 /*
2538  * Add l2cache device information to the nvlist, including vdev stats.
2539  */
2540 static void
2541 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2542 {
2543 	nvlist_t **l2cache;
2544 	uint_t i, j, nl2cache;
2545 	nvlist_t *nvroot;
2546 	uint64_t guid;
2547 	vdev_t *vd;
2548 	vdev_stat_t *vs;
2549 	uint_t vsc;
2550 
2551 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2552 
2553 	if (spa->spa_l2cache.sav_count == 0)
2554 		return;
2555 
2556 	VERIFY(nvlist_lookup_nvlist(config,
2557 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2558 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2559 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2560 	if (nl2cache != 0) {
2561 		VERIFY(nvlist_add_nvlist_array(nvroot,
2562 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2563 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2564 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2565 
2566 		/*
2567 		 * Update level 2 cache device stats.
2568 		 */
2569 
2570 		for (i = 0; i < nl2cache; i++) {
2571 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2572 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2573 
2574 			vd = NULL;
2575 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2576 				if (guid ==
2577 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2578 					vd = spa->spa_l2cache.sav_vdevs[j];
2579 					break;
2580 				}
2581 			}
2582 			ASSERT(vd != NULL);
2583 
2584 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2585 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2586 			    == 0);
2587 			vdev_get_stats(vd, vs);
2588 		}
2589 	}
2590 }
2591 
2592 int
2593 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2594 {
2595 	int error;
2596 	spa_t *spa;
2597 
2598 	*config = NULL;
2599 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2600 
2601 	if (spa != NULL) {
2602 		/*
2603 		 * This still leaves a window of inconsistency where the spares
2604 		 * or l2cache devices could change and the config would be
2605 		 * self-inconsistent.
2606 		 */
2607 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2608 
2609 		if (*config != NULL) {
2610 			uint64_t loadtimes[2];
2611 
2612 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2613 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2614 			VERIFY(nvlist_add_uint64_array(*config,
2615 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2616 
2617 			VERIFY(nvlist_add_uint64(*config,
2618 			    ZPOOL_CONFIG_ERRCOUNT,
2619 			    spa_get_errlog_size(spa)) == 0);
2620 
2621 			if (spa_suspended(spa))
2622 				VERIFY(nvlist_add_uint64(*config,
2623 				    ZPOOL_CONFIG_SUSPENDED,
2624 				    spa->spa_failmode) == 0);
2625 
2626 			spa_add_spares(spa, *config);
2627 			spa_add_l2cache(spa, *config);
2628 		}
2629 	}
2630 
2631 	/*
2632 	 * We want to get the alternate root even for faulted pools, so we cheat
2633 	 * and call spa_lookup() directly.
2634 	 */
2635 	if (altroot) {
2636 		if (spa == NULL) {
2637 			mutex_enter(&spa_namespace_lock);
2638 			spa = spa_lookup(name);
2639 			if (spa)
2640 				spa_altroot(spa, altroot, buflen);
2641 			else
2642 				altroot[0] = '\0';
2643 			spa = NULL;
2644 			mutex_exit(&spa_namespace_lock);
2645 		} else {
2646 			spa_altroot(spa, altroot, buflen);
2647 		}
2648 	}
2649 
2650 	if (spa != NULL) {
2651 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2652 		spa_close(spa, FTAG);
2653 	}
2654 
2655 	return (error);
2656 }
2657 
2658 /*
2659  * Validate that the auxiliary device array is well formed.  We must have an
2660  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2661  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2662  * specified, as long as they are well-formed.
2663  */
2664 static int
2665 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2666     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2667     vdev_labeltype_t label)
2668 {
2669 	nvlist_t **dev;
2670 	uint_t i, ndev;
2671 	vdev_t *vd;
2672 	int error;
2673 
2674 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2675 
2676 	/*
2677 	 * It's acceptable to have no devs specified.
2678 	 */
2679 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2680 		return (0);
2681 
2682 	if (ndev == 0)
2683 		return (EINVAL);
2684 
2685 	/*
2686 	 * Make sure the pool is formatted with a version that supports this
2687 	 * device type.
2688 	 */
2689 	if (spa_version(spa) < version)
2690 		return (ENOTSUP);
2691 
2692 	/*
2693 	 * Set the pending device list so we correctly handle device in-use
2694 	 * checking.
2695 	 */
2696 	sav->sav_pending = dev;
2697 	sav->sav_npending = ndev;
2698 
2699 	for (i = 0; i < ndev; i++) {
2700 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2701 		    mode)) != 0)
2702 			goto out;
2703 
2704 		if (!vd->vdev_ops->vdev_op_leaf) {
2705 			vdev_free(vd);
2706 			error = EINVAL;
2707 			goto out;
2708 		}
2709 
2710 		/*
2711 		 * The L2ARC currently only supports disk devices in
2712 		 * kernel context.  For user-level testing, we allow it.
2713 		 */
2714 #ifdef _KERNEL
2715 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2716 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2717 			error = ENOTBLK;
2718 			goto out;
2719 		}
2720 #endif
2721 		vd->vdev_top = vd;
2722 
2723 		if ((error = vdev_open(vd)) == 0 &&
2724 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2725 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2726 			    vd->vdev_guid) == 0);
2727 		}
2728 
2729 		vdev_free(vd);
2730 
2731 		if (error &&
2732 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2733 			goto out;
2734 		else
2735 			error = 0;
2736 	}
2737 
2738 out:
2739 	sav->sav_pending = NULL;
2740 	sav->sav_npending = 0;
2741 	return (error);
2742 }
2743 
2744 static int
2745 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2746 {
2747 	int error;
2748 
2749 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2750 
2751 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2752 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2753 	    VDEV_LABEL_SPARE)) != 0) {
2754 		return (error);
2755 	}
2756 
2757 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2758 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2759 	    VDEV_LABEL_L2CACHE));
2760 }
2761 
2762 static void
2763 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2764     const char *config)
2765 {
2766 	int i;
2767 
2768 	if (sav->sav_config != NULL) {
2769 		nvlist_t **olddevs;
2770 		uint_t oldndevs;
2771 		nvlist_t **newdevs;
2772 
2773 		/*
2774 		 * Generate new dev list by concatentating with the
2775 		 * current dev list.
2776 		 */
2777 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2778 		    &olddevs, &oldndevs) == 0);
2779 
2780 		newdevs = kmem_alloc(sizeof (void *) *
2781 		    (ndevs + oldndevs), KM_SLEEP);
2782 		for (i = 0; i < oldndevs; i++)
2783 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2784 			    KM_SLEEP) == 0);
2785 		for (i = 0; i < ndevs; i++)
2786 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2787 			    KM_SLEEP) == 0);
2788 
2789 		VERIFY(nvlist_remove(sav->sav_config, config,
2790 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2791 
2792 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2793 		    config, newdevs, ndevs + oldndevs) == 0);
2794 		for (i = 0; i < oldndevs + ndevs; i++)
2795 			nvlist_free(newdevs[i]);
2796 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2797 	} else {
2798 		/*
2799 		 * Generate a new dev list.
2800 		 */
2801 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2802 		    KM_SLEEP) == 0);
2803 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2804 		    devs, ndevs) == 0);
2805 	}
2806 }
2807 
2808 /*
2809  * Stop and drop level 2 ARC devices
2810  */
2811 void
2812 spa_l2cache_drop(spa_t *spa)
2813 {
2814 	vdev_t *vd;
2815 	int i;
2816 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2817 
2818 	for (i = 0; i < sav->sav_count; i++) {
2819 		uint64_t pool;
2820 
2821 		vd = sav->sav_vdevs[i];
2822 		ASSERT(vd != NULL);
2823 
2824 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2825 		    pool != 0ULL && l2arc_vdev_present(vd))
2826 			l2arc_remove_vdev(vd);
2827 		if (vd->vdev_isl2cache)
2828 			spa_l2cache_remove(vd);
2829 		vdev_clear_stats(vd);
2830 		(void) vdev_close(vd);
2831 	}
2832 }
2833 
2834 /*
2835  * Pool Creation
2836  */
2837 int
2838 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2839     const char *history_str, nvlist_t *zplprops)
2840 {
2841 	spa_t *spa;
2842 	char *altroot = NULL;
2843 	vdev_t *rvd;
2844 	dsl_pool_t *dp;
2845 	dmu_tx_t *tx;
2846 	int error = 0;
2847 	uint64_t txg = TXG_INITIAL;
2848 	nvlist_t **spares, **l2cache;
2849 	uint_t nspares, nl2cache;
2850 	uint64_t version, obj;
2851 
2852 	/*
2853 	 * If this pool already exists, return failure.
2854 	 */
2855 	mutex_enter(&spa_namespace_lock);
2856 	if (spa_lookup(pool) != NULL) {
2857 		mutex_exit(&spa_namespace_lock);
2858 		return (EEXIST);
2859 	}
2860 
2861 	/*
2862 	 * Allocate a new spa_t structure.
2863 	 */
2864 	(void) nvlist_lookup_string(props,
2865 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2866 	spa = spa_add(pool, NULL, altroot);
2867 	spa_activate(spa, spa_mode_global);
2868 
2869 	if (props && (error = spa_prop_validate(spa, props))) {
2870 		spa_deactivate(spa);
2871 		spa_remove(spa);
2872 		mutex_exit(&spa_namespace_lock);
2873 		return (error);
2874 	}
2875 
2876 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2877 	    &version) != 0)
2878 		version = SPA_VERSION;
2879 	ASSERT(version <= SPA_VERSION);
2880 
2881 	spa->spa_first_txg = txg;
2882 	spa->spa_uberblock.ub_txg = txg - 1;
2883 	spa->spa_uberblock.ub_version = version;
2884 	spa->spa_ubsync = spa->spa_uberblock;
2885 
2886 	/*
2887 	 * Create "The Godfather" zio to hold all async IOs
2888 	 */
2889 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2890 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2891 
2892 	/*
2893 	 * Create the root vdev.
2894 	 */
2895 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2896 
2897 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2898 
2899 	ASSERT(error != 0 || rvd != NULL);
2900 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2901 
2902 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2903 		error = EINVAL;
2904 
2905 	if (error == 0 &&
2906 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2907 	    (error = spa_validate_aux(spa, nvroot, txg,
2908 	    VDEV_ALLOC_ADD)) == 0) {
2909 		for (int c = 0; c < rvd->vdev_children; c++) {
2910 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2911 			vdev_expand(rvd->vdev_child[c], txg);
2912 		}
2913 	}
2914 
2915 	spa_config_exit(spa, SCL_ALL, FTAG);
2916 
2917 	if (error != 0) {
2918 		spa_unload(spa);
2919 		spa_deactivate(spa);
2920 		spa_remove(spa);
2921 		mutex_exit(&spa_namespace_lock);
2922 		return (error);
2923 	}
2924 
2925 	/*
2926 	 * Get the list of spares, if specified.
2927 	 */
2928 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2929 	    &spares, &nspares) == 0) {
2930 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2931 		    KM_SLEEP) == 0);
2932 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2933 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2934 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2935 		spa_load_spares(spa);
2936 		spa_config_exit(spa, SCL_ALL, FTAG);
2937 		spa->spa_spares.sav_sync = B_TRUE;
2938 	}
2939 
2940 	/*
2941 	 * Get the list of level 2 cache devices, if specified.
2942 	 */
2943 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2944 	    &l2cache, &nl2cache) == 0) {
2945 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2946 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2947 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2948 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2949 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2950 		spa_load_l2cache(spa);
2951 		spa_config_exit(spa, SCL_ALL, FTAG);
2952 		spa->spa_l2cache.sav_sync = B_TRUE;
2953 	}
2954 
2955 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2956 	spa->spa_meta_objset = dp->dp_meta_objset;
2957 
2958 	/*
2959 	 * Create DDTs (dedup tables).
2960 	 */
2961 	ddt_create(spa);
2962 
2963 	spa_update_dspace(spa);
2964 
2965 	tx = dmu_tx_create_assigned(dp, txg);
2966 
2967 	/*
2968 	 * Create the pool config object.
2969 	 */
2970 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2971 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2972 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2973 
2974 	if (zap_add(spa->spa_meta_objset,
2975 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2976 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2977 		cmn_err(CE_PANIC, "failed to add pool config");
2978 	}
2979 
2980 	if (zap_add(spa->spa_meta_objset,
2981 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
2982 	    sizeof (uint64_t), 1, &version, tx) != 0) {
2983 		cmn_err(CE_PANIC, "failed to add pool version");
2984 	}
2985 
2986 	/* Newly created pools with the right version are always deflated. */
2987 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2988 		spa->spa_deflate = TRUE;
2989 		if (zap_add(spa->spa_meta_objset,
2990 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2991 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2992 			cmn_err(CE_PANIC, "failed to add deflate");
2993 		}
2994 	}
2995 
2996 	/*
2997 	 * Create the deferred-free bpobj.  Turn off compression
2998 	 * because sync-to-convergence takes longer if the blocksize
2999 	 * keeps changing.
3000 	 */
3001 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3002 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3003 	    ZIO_COMPRESS_OFF, tx);
3004 	if (zap_add(spa->spa_meta_objset,
3005 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3006 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3007 		cmn_err(CE_PANIC, "failed to add bpobj");
3008 	}
3009 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3010 	    spa->spa_meta_objset, obj));
3011 
3012 	/*
3013 	 * Create the pool's history object.
3014 	 */
3015 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3016 		spa_history_create_obj(spa, tx);
3017 
3018 	/*
3019 	 * Set pool properties.
3020 	 */
3021 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3022 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3023 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3024 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3025 
3026 	if (props != NULL) {
3027 		spa_configfile_set(spa, props, B_FALSE);
3028 		spa_sync_props(spa, props, tx);
3029 	}
3030 
3031 	dmu_tx_commit(tx);
3032 
3033 	spa->spa_sync_on = B_TRUE;
3034 	txg_sync_start(spa->spa_dsl_pool);
3035 
3036 	/*
3037 	 * We explicitly wait for the first transaction to complete so that our
3038 	 * bean counters are appropriately updated.
3039 	 */
3040 	txg_wait_synced(spa->spa_dsl_pool, txg);
3041 
3042 	spa_config_sync(spa, B_FALSE, B_TRUE);
3043 
3044 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3045 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3046 	spa_history_log_version(spa, LOG_POOL_CREATE);
3047 
3048 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3049 
3050 	mutex_exit(&spa_namespace_lock);
3051 
3052 	return (0);
3053 }
3054 
3055 #ifdef _KERNEL
3056 /*
3057  * Get the root pool information from the root disk, then import the root pool
3058  * during the system boot up time.
3059  */
3060 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3061 
3062 static nvlist_t *
3063 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3064 {
3065 	nvlist_t *config;
3066 	nvlist_t *nvtop, *nvroot;
3067 	uint64_t pgid;
3068 
3069 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3070 		return (NULL);
3071 
3072 	/*
3073 	 * Add this top-level vdev to the child array.
3074 	 */
3075 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3076 	    &nvtop) == 0);
3077 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3078 	    &pgid) == 0);
3079 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3080 
3081 	/*
3082 	 * Put this pool's top-level vdevs into a root vdev.
3083 	 */
3084 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3085 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3086 	    VDEV_TYPE_ROOT) == 0);
3087 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3088 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3089 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3090 	    &nvtop, 1) == 0);
3091 
3092 	/*
3093 	 * Replace the existing vdev_tree with the new root vdev in
3094 	 * this pool's configuration (remove the old, add the new).
3095 	 */
3096 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3097 	nvlist_free(nvroot);
3098 	return (config);
3099 }
3100 
3101 /*
3102  * Walk the vdev tree and see if we can find a device with "better"
3103  * configuration. A configuration is "better" if the label on that
3104  * device has a more recent txg.
3105  */
3106 static void
3107 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3108 {
3109 	for (int c = 0; c < vd->vdev_children; c++)
3110 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3111 
3112 	if (vd->vdev_ops->vdev_op_leaf) {
3113 		nvlist_t *label;
3114 		uint64_t label_txg;
3115 
3116 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3117 		    &label) != 0)
3118 			return;
3119 
3120 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3121 		    &label_txg) == 0);
3122 
3123 		/*
3124 		 * Do we have a better boot device?
3125 		 */
3126 		if (label_txg > *txg) {
3127 			*txg = label_txg;
3128 			*avd = vd;
3129 		}
3130 		nvlist_free(label);
3131 	}
3132 }
3133 
3134 /*
3135  * Import a root pool.
3136  *
3137  * For x86. devpath_list will consist of devid and/or physpath name of
3138  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3139  * The GRUB "findroot" command will return the vdev we should boot.
3140  *
3141  * For Sparc, devpath_list consists the physpath name of the booting device
3142  * no matter the rootpool is a single device pool or a mirrored pool.
3143  * e.g.
3144  *	"/pci@1f,0/ide@d/disk@0,0:a"
3145  */
3146 int
3147 spa_import_rootpool(char *devpath, char *devid)
3148 {
3149 	spa_t *spa;
3150 	vdev_t *rvd, *bvd, *avd = NULL;
3151 	nvlist_t *config, *nvtop;
3152 	uint64_t guid, txg;
3153 	char *pname;
3154 	int error;
3155 
3156 	/*
3157 	 * Read the label from the boot device and generate a configuration.
3158 	 */
3159 	config = spa_generate_rootconf(devpath, devid, &guid);
3160 #if defined(_OBP) && defined(_KERNEL)
3161 	if (config == NULL) {
3162 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3163 			/* iscsi boot */
3164 			get_iscsi_bootpath_phy(devpath);
3165 			config = spa_generate_rootconf(devpath, devid, &guid);
3166 		}
3167 	}
3168 #endif
3169 	if (config == NULL) {
3170 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3171 		    devpath);
3172 		return (EIO);
3173 	}
3174 
3175 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3176 	    &pname) == 0);
3177 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3178 
3179 	mutex_enter(&spa_namespace_lock);
3180 	if ((spa = spa_lookup(pname)) != NULL) {
3181 		/*
3182 		 * Remove the existing root pool from the namespace so that we
3183 		 * can replace it with the correct config we just read in.
3184 		 */
3185 		spa_remove(spa);
3186 	}
3187 
3188 	spa = spa_add(pname, config, NULL);
3189 	spa->spa_is_root = B_TRUE;
3190 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3191 
3192 	/*
3193 	 * Build up a vdev tree based on the boot device's label config.
3194 	 */
3195 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3196 	    &nvtop) == 0);
3197 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3198 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3199 	    VDEV_ALLOC_ROOTPOOL);
3200 	spa_config_exit(spa, SCL_ALL, FTAG);
3201 	if (error) {
3202 		mutex_exit(&spa_namespace_lock);
3203 		nvlist_free(config);
3204 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3205 		    pname);
3206 		return (error);
3207 	}
3208 
3209 	/*
3210 	 * Get the boot vdev.
3211 	 */
3212 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3213 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3214 		    (u_longlong_t)guid);
3215 		error = ENOENT;
3216 		goto out;
3217 	}
3218 
3219 	/*
3220 	 * Determine if there is a better boot device.
3221 	 */
3222 	avd = bvd;
3223 	spa_alt_rootvdev(rvd, &avd, &txg);
3224 	if (avd != bvd) {
3225 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3226 		    "try booting from '%s'", avd->vdev_path);
3227 		error = EINVAL;
3228 		goto out;
3229 	}
3230 
3231 	/*
3232 	 * If the boot device is part of a spare vdev then ensure that
3233 	 * we're booting off the active spare.
3234 	 */
3235 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3236 	    !bvd->vdev_isspare) {
3237 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3238 		    "try booting from '%s'",
3239 		    bvd->vdev_parent->
3240 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3241 		error = EINVAL;
3242 		goto out;
3243 	}
3244 
3245 	error = 0;
3246 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3247 out:
3248 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3249 	vdev_free(rvd);
3250 	spa_config_exit(spa, SCL_ALL, FTAG);
3251 	mutex_exit(&spa_namespace_lock);
3252 
3253 	nvlist_free(config);
3254 	return (error);
3255 }
3256 
3257 #endif
3258 
3259 /*
3260  * Import a non-root pool into the system.
3261  */
3262 int
3263 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3264 {
3265 	spa_t *spa;
3266 	char *altroot = NULL;
3267 	spa_load_state_t state = SPA_LOAD_IMPORT;
3268 	zpool_rewind_policy_t policy;
3269 	uint64_t mode = spa_mode_global;
3270 	uint64_t readonly = B_FALSE;
3271 	int error;
3272 	nvlist_t *nvroot;
3273 	nvlist_t **spares, **l2cache;
3274 	uint_t nspares, nl2cache;
3275 
3276 	/*
3277 	 * If a pool with this name exists, return failure.
3278 	 */
3279 	mutex_enter(&spa_namespace_lock);
3280 	if (spa_lookup(pool) != NULL) {
3281 		mutex_exit(&spa_namespace_lock);
3282 		return (EEXIST);
3283 	}
3284 
3285 	/*
3286 	 * Create and initialize the spa structure.
3287 	 */
3288 	(void) nvlist_lookup_string(props,
3289 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3290 	(void) nvlist_lookup_uint64(props,
3291 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3292 	if (readonly)
3293 		mode = FREAD;
3294 	spa = spa_add(pool, config, altroot);
3295 	spa->spa_import_flags = flags;
3296 
3297 	/*
3298 	 * Verbatim import - Take a pool and insert it into the namespace
3299 	 * as if it had been loaded at boot.
3300 	 */
3301 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3302 		if (props != NULL)
3303 			spa_configfile_set(spa, props, B_FALSE);
3304 
3305 		spa_config_sync(spa, B_FALSE, B_TRUE);
3306 
3307 		mutex_exit(&spa_namespace_lock);
3308 		spa_history_log_version(spa, LOG_POOL_IMPORT);
3309 
3310 		return (0);
3311 	}
3312 
3313 	spa_activate(spa, mode);
3314 
3315 	/*
3316 	 * Don't start async tasks until we know everything is healthy.
3317 	 */
3318 	spa_async_suspend(spa);
3319 
3320 	zpool_get_rewind_policy(config, &policy);
3321 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3322 		state = SPA_LOAD_RECOVER;
3323 
3324 	/*
3325 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3326 	 * because the user-supplied config is actually the one to trust when
3327 	 * doing an import.
3328 	 */
3329 	if (state != SPA_LOAD_RECOVER)
3330 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3331 
3332 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3333 	    policy.zrp_request);
3334 
3335 	/*
3336 	 * Propagate anything learned while loading the pool and pass it
3337 	 * back to caller (i.e. rewind info, missing devices, etc).
3338 	 */
3339 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3340 	    spa->spa_load_info) == 0);
3341 
3342 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3343 	/*
3344 	 * Toss any existing sparelist, as it doesn't have any validity
3345 	 * anymore, and conflicts with spa_has_spare().
3346 	 */
3347 	if (spa->spa_spares.sav_config) {
3348 		nvlist_free(spa->spa_spares.sav_config);
3349 		spa->spa_spares.sav_config = NULL;
3350 		spa_load_spares(spa);
3351 	}
3352 	if (spa->spa_l2cache.sav_config) {
3353 		nvlist_free(spa->spa_l2cache.sav_config);
3354 		spa->spa_l2cache.sav_config = NULL;
3355 		spa_load_l2cache(spa);
3356 	}
3357 
3358 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3359 	    &nvroot) == 0);
3360 	if (error == 0)
3361 		error = spa_validate_aux(spa, nvroot, -1ULL,
3362 		    VDEV_ALLOC_SPARE);
3363 	if (error == 0)
3364 		error = spa_validate_aux(spa, nvroot, -1ULL,
3365 		    VDEV_ALLOC_L2CACHE);
3366 	spa_config_exit(spa, SCL_ALL, FTAG);
3367 
3368 	if (props != NULL)
3369 		spa_configfile_set(spa, props, B_FALSE);
3370 
3371 	if (error != 0 || (props && spa_writeable(spa) &&
3372 	    (error = spa_prop_set(spa, props)))) {
3373 		spa_unload(spa);
3374 		spa_deactivate(spa);
3375 		spa_remove(spa);
3376 		mutex_exit(&spa_namespace_lock);
3377 		return (error);
3378 	}
3379 
3380 	spa_async_resume(spa);
3381 
3382 	/*
3383 	 * Override any spares and level 2 cache devices as specified by
3384 	 * the user, as these may have correct device names/devids, etc.
3385 	 */
3386 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3387 	    &spares, &nspares) == 0) {
3388 		if (spa->spa_spares.sav_config)
3389 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3390 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3391 		else
3392 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3393 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3394 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3395 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3396 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3397 		spa_load_spares(spa);
3398 		spa_config_exit(spa, SCL_ALL, FTAG);
3399 		spa->spa_spares.sav_sync = B_TRUE;
3400 	}
3401 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3402 	    &l2cache, &nl2cache) == 0) {
3403 		if (spa->spa_l2cache.sav_config)
3404 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3405 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3406 		else
3407 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3408 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3409 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3410 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3411 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3412 		spa_load_l2cache(spa);
3413 		spa_config_exit(spa, SCL_ALL, FTAG);
3414 		spa->spa_l2cache.sav_sync = B_TRUE;
3415 	}
3416 
3417 	/*
3418 	 * Check for any removed devices.
3419 	 */
3420 	if (spa->spa_autoreplace) {
3421 		spa_aux_check_removed(&spa->spa_spares);
3422 		spa_aux_check_removed(&spa->spa_l2cache);
3423 	}
3424 
3425 	if (spa_writeable(spa)) {
3426 		/*
3427 		 * Update the config cache to include the newly-imported pool.
3428 		 */
3429 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3430 	}
3431 
3432 	/*
3433 	 * It's possible that the pool was expanded while it was exported.
3434 	 * We kick off an async task to handle this for us.
3435 	 */
3436 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3437 
3438 	mutex_exit(&spa_namespace_lock);
3439 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3440 
3441 	return (0);
3442 }
3443 
3444 nvlist_t *
3445 spa_tryimport(nvlist_t *tryconfig)
3446 {
3447 	nvlist_t *config = NULL;
3448 	char *poolname;
3449 	spa_t *spa;
3450 	uint64_t state;
3451 	int error;
3452 
3453 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3454 		return (NULL);
3455 
3456 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3457 		return (NULL);
3458 
3459 	/*
3460 	 * Create and initialize the spa structure.
3461 	 */
3462 	mutex_enter(&spa_namespace_lock);
3463 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3464 	spa_activate(spa, FREAD);
3465 
3466 	/*
3467 	 * Pass off the heavy lifting to spa_load().
3468 	 * Pass TRUE for mosconfig because the user-supplied config
3469 	 * is actually the one to trust when doing an import.
3470 	 */
3471 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3472 
3473 	/*
3474 	 * If 'tryconfig' was at least parsable, return the current config.
3475 	 */
3476 	if (spa->spa_root_vdev != NULL) {
3477 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3478 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3479 		    poolname) == 0);
3480 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3481 		    state) == 0);
3482 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3483 		    spa->spa_uberblock.ub_timestamp) == 0);
3484 
3485 		/*
3486 		 * If the bootfs property exists on this pool then we
3487 		 * copy it out so that external consumers can tell which
3488 		 * pools are bootable.
3489 		 */
3490 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3491 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3492 
3493 			/*
3494 			 * We have to play games with the name since the
3495 			 * pool was opened as TRYIMPORT_NAME.
3496 			 */
3497 			if (dsl_dsobj_to_dsname(spa_name(spa),
3498 			    spa->spa_bootfs, tmpname) == 0) {
3499 				char *cp;
3500 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3501 
3502 				cp = strchr(tmpname, '/');
3503 				if (cp == NULL) {
3504 					(void) strlcpy(dsname, tmpname,
3505 					    MAXPATHLEN);
3506 				} else {
3507 					(void) snprintf(dsname, MAXPATHLEN,
3508 					    "%s/%s", poolname, ++cp);
3509 				}
3510 				VERIFY(nvlist_add_string(config,
3511 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3512 				kmem_free(dsname, MAXPATHLEN);
3513 			}
3514 			kmem_free(tmpname, MAXPATHLEN);
3515 		}
3516 
3517 		/*
3518 		 * Add the list of hot spares and level 2 cache devices.
3519 		 */
3520 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3521 		spa_add_spares(spa, config);
3522 		spa_add_l2cache(spa, config);
3523 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3524 	}
3525 
3526 	spa_unload(spa);
3527 	spa_deactivate(spa);
3528 	spa_remove(spa);
3529 	mutex_exit(&spa_namespace_lock);
3530 
3531 	return (config);
3532 }
3533 
3534 /*
3535  * Pool export/destroy
3536  *
3537  * The act of destroying or exporting a pool is very simple.  We make sure there
3538  * is no more pending I/O and any references to the pool are gone.  Then, we
3539  * update the pool state and sync all the labels to disk, removing the
3540  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3541  * we don't sync the labels or remove the configuration cache.
3542  */
3543 static int
3544 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3545     boolean_t force, boolean_t hardforce)
3546 {
3547 	spa_t *spa;
3548 
3549 	if (oldconfig)
3550 		*oldconfig = NULL;
3551 
3552 	if (!(spa_mode_global & FWRITE))
3553 		return (EROFS);
3554 
3555 	mutex_enter(&spa_namespace_lock);
3556 	if ((spa = spa_lookup(pool)) == NULL) {
3557 		mutex_exit(&spa_namespace_lock);
3558 		return (ENOENT);
3559 	}
3560 
3561 	/*
3562 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3563 	 * reacquire the namespace lock, and see if we can export.
3564 	 */
3565 	spa_open_ref(spa, FTAG);
3566 	mutex_exit(&spa_namespace_lock);
3567 	spa_async_suspend(spa);
3568 	mutex_enter(&spa_namespace_lock);
3569 	spa_close(spa, FTAG);
3570 
3571 	/*
3572 	 * The pool will be in core if it's openable,
3573 	 * in which case we can modify its state.
3574 	 */
3575 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3576 		/*
3577 		 * Objsets may be open only because they're dirty, so we
3578 		 * have to force it to sync before checking spa_refcnt.
3579 		 */
3580 		txg_wait_synced(spa->spa_dsl_pool, 0);
3581 
3582 		/*
3583 		 * A pool cannot be exported or destroyed if there are active
3584 		 * references.  If we are resetting a pool, allow references by
3585 		 * fault injection handlers.
3586 		 */
3587 		if (!spa_refcount_zero(spa) ||
3588 		    (spa->spa_inject_ref != 0 &&
3589 		    new_state != POOL_STATE_UNINITIALIZED)) {
3590 			spa_async_resume(spa);
3591 			mutex_exit(&spa_namespace_lock);
3592 			return (EBUSY);
3593 		}
3594 
3595 		/*
3596 		 * A pool cannot be exported if it has an active shared spare.
3597 		 * This is to prevent other pools stealing the active spare
3598 		 * from an exported pool. At user's own will, such pool can
3599 		 * be forcedly exported.
3600 		 */
3601 		if (!force && new_state == POOL_STATE_EXPORTED &&
3602 		    spa_has_active_shared_spare(spa)) {
3603 			spa_async_resume(spa);
3604 			mutex_exit(&spa_namespace_lock);
3605 			return (EXDEV);
3606 		}
3607 
3608 		/*
3609 		 * We want this to be reflected on every label,
3610 		 * so mark them all dirty.  spa_unload() will do the
3611 		 * final sync that pushes these changes out.
3612 		 */
3613 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3614 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3615 			spa->spa_state = new_state;
3616 			spa->spa_final_txg = spa_last_synced_txg(spa) +
3617 			    TXG_DEFER_SIZE + 1;
3618 			vdev_config_dirty(spa->spa_root_vdev);
3619 			spa_config_exit(spa, SCL_ALL, FTAG);
3620 		}
3621 	}
3622 
3623 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3624 
3625 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3626 		spa_unload(spa);
3627 		spa_deactivate(spa);
3628 	}
3629 
3630 	if (oldconfig && spa->spa_config)
3631 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3632 
3633 	if (new_state != POOL_STATE_UNINITIALIZED) {
3634 		if (!hardforce)
3635 			spa_config_sync(spa, B_TRUE, B_TRUE);
3636 		spa_remove(spa);
3637 	}
3638 	mutex_exit(&spa_namespace_lock);
3639 
3640 	return (0);
3641 }
3642 
3643 /*
3644  * Destroy a storage pool.
3645  */
3646 int
3647 spa_destroy(char *pool)
3648 {
3649 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3650 	    B_FALSE, B_FALSE));
3651 }
3652 
3653 /*
3654  * Export a storage pool.
3655  */
3656 int
3657 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3658     boolean_t hardforce)
3659 {
3660 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3661 	    force, hardforce));
3662 }
3663 
3664 /*
3665  * Similar to spa_export(), this unloads the spa_t without actually removing it
3666  * from the namespace in any way.
3667  */
3668 int
3669 spa_reset(char *pool)
3670 {
3671 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3672 	    B_FALSE, B_FALSE));
3673 }
3674 
3675 /*
3676  * ==========================================================================
3677  * Device manipulation
3678  * ==========================================================================
3679  */
3680 
3681 /*
3682  * Add a device to a storage pool.
3683  */
3684 int
3685 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3686 {
3687 	uint64_t txg, id;
3688 	int error;
3689 	vdev_t *rvd = spa->spa_root_vdev;
3690 	vdev_t *vd, *tvd;
3691 	nvlist_t **spares, **l2cache;
3692 	uint_t nspares, nl2cache;
3693 
3694 	ASSERT(spa_writeable(spa));
3695 
3696 	txg = spa_vdev_enter(spa);
3697 
3698 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3699 	    VDEV_ALLOC_ADD)) != 0)
3700 		return (spa_vdev_exit(spa, NULL, txg, error));
3701 
3702 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3703 
3704 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3705 	    &nspares) != 0)
3706 		nspares = 0;
3707 
3708 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3709 	    &nl2cache) != 0)
3710 		nl2cache = 0;
3711 
3712 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3713 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3714 
3715 	if (vd->vdev_children != 0 &&
3716 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3717 		return (spa_vdev_exit(spa, vd, txg, error));
3718 
3719 	/*
3720 	 * We must validate the spares and l2cache devices after checking the
3721 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3722 	 */
3723 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3724 		return (spa_vdev_exit(spa, vd, txg, error));
3725 
3726 	/*
3727 	 * Transfer each new top-level vdev from vd to rvd.
3728 	 */
3729 	for (int c = 0; c < vd->vdev_children; c++) {
3730 
3731 		/*
3732 		 * Set the vdev id to the first hole, if one exists.
3733 		 */
3734 		for (id = 0; id < rvd->vdev_children; id++) {
3735 			if (rvd->vdev_child[id]->vdev_ishole) {
3736 				vdev_free(rvd->vdev_child[id]);
3737 				break;
3738 			}
3739 		}
3740 		tvd = vd->vdev_child[c];
3741 		vdev_remove_child(vd, tvd);
3742 		tvd->vdev_id = id;
3743 		vdev_add_child(rvd, tvd);
3744 		vdev_config_dirty(tvd);
3745 	}
3746 
3747 	if (nspares != 0) {
3748 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3749 		    ZPOOL_CONFIG_SPARES);
3750 		spa_load_spares(spa);
3751 		spa->spa_spares.sav_sync = B_TRUE;
3752 	}
3753 
3754 	if (nl2cache != 0) {
3755 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3756 		    ZPOOL_CONFIG_L2CACHE);
3757 		spa_load_l2cache(spa);
3758 		spa->spa_l2cache.sav_sync = B_TRUE;
3759 	}
3760 
3761 	/*
3762 	 * We have to be careful when adding new vdevs to an existing pool.
3763 	 * If other threads start allocating from these vdevs before we
3764 	 * sync the config cache, and we lose power, then upon reboot we may
3765 	 * fail to open the pool because there are DVAs that the config cache
3766 	 * can't translate.  Therefore, we first add the vdevs without
3767 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3768 	 * and then let spa_config_update() initialize the new metaslabs.
3769 	 *
3770 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3771 	 * if we lose power at any point in this sequence, the remaining
3772 	 * steps will be completed the next time we load the pool.
3773 	 */
3774 	(void) spa_vdev_exit(spa, vd, txg, 0);
3775 
3776 	mutex_enter(&spa_namespace_lock);
3777 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3778 	mutex_exit(&spa_namespace_lock);
3779 
3780 	return (0);
3781 }
3782 
3783 /*
3784  * Attach a device to a mirror.  The arguments are the path to any device
3785  * in the mirror, and the nvroot for the new device.  If the path specifies
3786  * a device that is not mirrored, we automatically insert the mirror vdev.
3787  *
3788  * If 'replacing' is specified, the new device is intended to replace the
3789  * existing device; in this case the two devices are made into their own
3790  * mirror using the 'replacing' vdev, which is functionally identical to
3791  * the mirror vdev (it actually reuses all the same ops) but has a few
3792  * extra rules: you can't attach to it after it's been created, and upon
3793  * completion of resilvering, the first disk (the one being replaced)
3794  * is automatically detached.
3795  */
3796 int
3797 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3798 {
3799 	uint64_t txg, dtl_max_txg;
3800 	vdev_t *rvd = spa->spa_root_vdev;
3801 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3802 	vdev_ops_t *pvops;
3803 	char *oldvdpath, *newvdpath;
3804 	int newvd_isspare;
3805 	int error;
3806 
3807 	ASSERT(spa_writeable(spa));
3808 
3809 	txg = spa_vdev_enter(spa);
3810 
3811 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3812 
3813 	if (oldvd == NULL)
3814 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3815 
3816 	if (!oldvd->vdev_ops->vdev_op_leaf)
3817 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3818 
3819 	pvd = oldvd->vdev_parent;
3820 
3821 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3822 	    VDEV_ALLOC_ADD)) != 0)
3823 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3824 
3825 	if (newrootvd->vdev_children != 1)
3826 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3827 
3828 	newvd = newrootvd->vdev_child[0];
3829 
3830 	if (!newvd->vdev_ops->vdev_op_leaf)
3831 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3832 
3833 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3834 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3835 
3836 	/*
3837 	 * Spares can't replace logs
3838 	 */
3839 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3840 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3841 
3842 	if (!replacing) {
3843 		/*
3844 		 * For attach, the only allowable parent is a mirror or the root
3845 		 * vdev.
3846 		 */
3847 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3848 		    pvd->vdev_ops != &vdev_root_ops)
3849 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3850 
3851 		pvops = &vdev_mirror_ops;
3852 	} else {
3853 		/*
3854 		 * Active hot spares can only be replaced by inactive hot
3855 		 * spares.
3856 		 */
3857 		if (pvd->vdev_ops == &vdev_spare_ops &&
3858 		    oldvd->vdev_isspare &&
3859 		    !spa_has_spare(spa, newvd->vdev_guid))
3860 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3861 
3862 		/*
3863 		 * If the source is a hot spare, and the parent isn't already a
3864 		 * spare, then we want to create a new hot spare.  Otherwise, we
3865 		 * want to create a replacing vdev.  The user is not allowed to
3866 		 * attach to a spared vdev child unless the 'isspare' state is
3867 		 * the same (spare replaces spare, non-spare replaces
3868 		 * non-spare).
3869 		 */
3870 		if (pvd->vdev_ops == &vdev_replacing_ops &&
3871 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
3872 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3873 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
3874 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
3875 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3876 		}
3877 
3878 		if (newvd->vdev_isspare)
3879 			pvops = &vdev_spare_ops;
3880 		else
3881 			pvops = &vdev_replacing_ops;
3882 	}
3883 
3884 	/*
3885 	 * Make sure the new device is big enough.
3886 	 */
3887 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3888 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3889 
3890 	/*
3891 	 * The new device cannot have a higher alignment requirement
3892 	 * than the top-level vdev.
3893 	 */
3894 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3895 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3896 
3897 	/*
3898 	 * If this is an in-place replacement, update oldvd's path and devid
3899 	 * to make it distinguishable from newvd, and unopenable from now on.
3900 	 */
3901 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3902 		spa_strfree(oldvd->vdev_path);
3903 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3904 		    KM_SLEEP);
3905 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3906 		    newvd->vdev_path, "old");
3907 		if (oldvd->vdev_devid != NULL) {
3908 			spa_strfree(oldvd->vdev_devid);
3909 			oldvd->vdev_devid = NULL;
3910 		}
3911 	}
3912 
3913 	/* mark the device being resilvered */
3914 	newvd->vdev_resilvering = B_TRUE;
3915 
3916 	/*
3917 	 * If the parent is not a mirror, or if we're replacing, insert the new
3918 	 * mirror/replacing/spare vdev above oldvd.
3919 	 */
3920 	if (pvd->vdev_ops != pvops)
3921 		pvd = vdev_add_parent(oldvd, pvops);
3922 
3923 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3924 	ASSERT(pvd->vdev_ops == pvops);
3925 	ASSERT(oldvd->vdev_parent == pvd);
3926 
3927 	/*
3928 	 * Extract the new device from its root and add it to pvd.
3929 	 */
3930 	vdev_remove_child(newrootvd, newvd);
3931 	newvd->vdev_id = pvd->vdev_children;
3932 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3933 	vdev_add_child(pvd, newvd);
3934 
3935 	tvd = newvd->vdev_top;
3936 	ASSERT(pvd->vdev_top == tvd);
3937 	ASSERT(tvd->vdev_parent == rvd);
3938 
3939 	vdev_config_dirty(tvd);
3940 
3941 	/*
3942 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
3943 	 * for any dmu_sync-ed blocks.  It will propagate upward when
3944 	 * spa_vdev_exit() calls vdev_dtl_reassess().
3945 	 */
3946 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
3947 
3948 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
3949 	    dtl_max_txg - TXG_INITIAL);
3950 
3951 	if (newvd->vdev_isspare) {
3952 		spa_spare_activate(newvd);
3953 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3954 	}
3955 
3956 	oldvdpath = spa_strdup(oldvd->vdev_path);
3957 	newvdpath = spa_strdup(newvd->vdev_path);
3958 	newvd_isspare = newvd->vdev_isspare;
3959 
3960 	/*
3961 	 * Mark newvd's DTL dirty in this txg.
3962 	 */
3963 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3964 
3965 	/*
3966 	 * Restart the resilver
3967 	 */
3968 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
3969 
3970 	/*
3971 	 * Commit the config
3972 	 */
3973 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
3974 
3975 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
3976 	    "%s vdev=%s %s vdev=%s",
3977 	    replacing && newvd_isspare ? "spare in" :
3978 	    replacing ? "replace" : "attach", newvdpath,
3979 	    replacing ? "for" : "to", oldvdpath);
3980 
3981 	spa_strfree(oldvdpath);
3982 	spa_strfree(newvdpath);
3983 
3984 	if (spa->spa_bootfs)
3985 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
3986 
3987 	return (0);
3988 }
3989 
3990 /*
3991  * Detach a device from a mirror or replacing vdev.
3992  * If 'replace_done' is specified, only detach if the parent
3993  * is a replacing vdev.
3994  */
3995 int
3996 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3997 {
3998 	uint64_t txg;
3999 	int error;
4000 	vdev_t *rvd = spa->spa_root_vdev;
4001 	vdev_t *vd, *pvd, *cvd, *tvd;
4002 	boolean_t unspare = B_FALSE;
4003 	uint64_t unspare_guid;
4004 	char *vdpath;
4005 
4006 	ASSERT(spa_writeable(spa));
4007 
4008 	txg = spa_vdev_enter(spa);
4009 
4010 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4011 
4012 	if (vd == NULL)
4013 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4014 
4015 	if (!vd->vdev_ops->vdev_op_leaf)
4016 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4017 
4018 	pvd = vd->vdev_parent;
4019 
4020 	/*
4021 	 * If the parent/child relationship is not as expected, don't do it.
4022 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4023 	 * vdev that's replacing B with C.  The user's intent in replacing
4024 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4025 	 * the replace by detaching C, the expected behavior is to end up
4026 	 * M(A,B).  But suppose that right after deciding to detach C,
4027 	 * the replacement of B completes.  We would have M(A,C), and then
4028 	 * ask to detach C, which would leave us with just A -- not what
4029 	 * the user wanted.  To prevent this, we make sure that the
4030 	 * parent/child relationship hasn't changed -- in this example,
4031 	 * that C's parent is still the replacing vdev R.
4032 	 */
4033 	if (pvd->vdev_guid != pguid && pguid != 0)
4034 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4035 
4036 	/*
4037 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4038 	 */
4039 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4040 	    pvd->vdev_ops != &vdev_spare_ops)
4041 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4042 
4043 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4044 	    spa_version(spa) >= SPA_VERSION_SPARES);
4045 
4046 	/*
4047 	 * Only mirror, replacing, and spare vdevs support detach.
4048 	 */
4049 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4050 	    pvd->vdev_ops != &vdev_mirror_ops &&
4051 	    pvd->vdev_ops != &vdev_spare_ops)
4052 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4053 
4054 	/*
4055 	 * If this device has the only valid copy of some data,
4056 	 * we cannot safely detach it.
4057 	 */
4058 	if (vdev_dtl_required(vd))
4059 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4060 
4061 	ASSERT(pvd->vdev_children >= 2);
4062 
4063 	/*
4064 	 * If we are detaching the second disk from a replacing vdev, then
4065 	 * check to see if we changed the original vdev's path to have "/old"
4066 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4067 	 */
4068 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4069 	    vd->vdev_path != NULL) {
4070 		size_t len = strlen(vd->vdev_path);
4071 
4072 		for (int c = 0; c < pvd->vdev_children; c++) {
4073 			cvd = pvd->vdev_child[c];
4074 
4075 			if (cvd == vd || cvd->vdev_path == NULL)
4076 				continue;
4077 
4078 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4079 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4080 				spa_strfree(cvd->vdev_path);
4081 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4082 				break;
4083 			}
4084 		}
4085 	}
4086 
4087 	/*
4088 	 * If we are detaching the original disk from a spare, then it implies
4089 	 * that the spare should become a real disk, and be removed from the
4090 	 * active spare list for the pool.
4091 	 */
4092 	if (pvd->vdev_ops == &vdev_spare_ops &&
4093 	    vd->vdev_id == 0 &&
4094 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4095 		unspare = B_TRUE;
4096 
4097 	/*
4098 	 * Erase the disk labels so the disk can be used for other things.
4099 	 * This must be done after all other error cases are handled,
4100 	 * but before we disembowel vd (so we can still do I/O to it).
4101 	 * But if we can't do it, don't treat the error as fatal --
4102 	 * it may be that the unwritability of the disk is the reason
4103 	 * it's being detached!
4104 	 */
4105 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4106 
4107 	/*
4108 	 * Remove vd from its parent and compact the parent's children.
4109 	 */
4110 	vdev_remove_child(pvd, vd);
4111 	vdev_compact_children(pvd);
4112 
4113 	/*
4114 	 * Remember one of the remaining children so we can get tvd below.
4115 	 */
4116 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4117 
4118 	/*
4119 	 * If we need to remove the remaining child from the list of hot spares,
4120 	 * do it now, marking the vdev as no longer a spare in the process.
4121 	 * We must do this before vdev_remove_parent(), because that can
4122 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4123 	 * reason, we must remove the spare now, in the same txg as the detach;
4124 	 * otherwise someone could attach a new sibling, change the GUID, and
4125 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4126 	 */
4127 	if (unspare) {
4128 		ASSERT(cvd->vdev_isspare);
4129 		spa_spare_remove(cvd);
4130 		unspare_guid = cvd->vdev_guid;
4131 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4132 		cvd->vdev_unspare = B_TRUE;
4133 	}
4134 
4135 	/*
4136 	 * If the parent mirror/replacing vdev only has one child,
4137 	 * the parent is no longer needed.  Remove it from the tree.
4138 	 */
4139 	if (pvd->vdev_children == 1) {
4140 		if (pvd->vdev_ops == &vdev_spare_ops)
4141 			cvd->vdev_unspare = B_FALSE;
4142 		vdev_remove_parent(cvd);
4143 		cvd->vdev_resilvering = B_FALSE;
4144 	}
4145 
4146 
4147 	/*
4148 	 * We don't set tvd until now because the parent we just removed
4149 	 * may have been the previous top-level vdev.
4150 	 */
4151 	tvd = cvd->vdev_top;
4152 	ASSERT(tvd->vdev_parent == rvd);
4153 
4154 	/*
4155 	 * Reevaluate the parent vdev state.
4156 	 */
4157 	vdev_propagate_state(cvd);
4158 
4159 	/*
4160 	 * If the 'autoexpand' property is set on the pool then automatically
4161 	 * try to expand the size of the pool. For example if the device we
4162 	 * just detached was smaller than the others, it may be possible to
4163 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4164 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4165 	 */
4166 	if (spa->spa_autoexpand) {
4167 		vdev_reopen(tvd);
4168 		vdev_expand(tvd, txg);
4169 	}
4170 
4171 	vdev_config_dirty(tvd);
4172 
4173 	/*
4174 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4175 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4176 	 * But first make sure we're not on any *other* txg's DTL list, to
4177 	 * prevent vd from being accessed after it's freed.
4178 	 */
4179 	vdpath = spa_strdup(vd->vdev_path);
4180 	for (int t = 0; t < TXG_SIZE; t++)
4181 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4182 	vd->vdev_detached = B_TRUE;
4183 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4184 
4185 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4186 
4187 	/* hang on to the spa before we release the lock */
4188 	spa_open_ref(spa, FTAG);
4189 
4190 	error = spa_vdev_exit(spa, vd, txg, 0);
4191 
4192 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4193 	    "vdev=%s", vdpath);
4194 	spa_strfree(vdpath);
4195 
4196 	/*
4197 	 * If this was the removal of the original device in a hot spare vdev,
4198 	 * then we want to go through and remove the device from the hot spare
4199 	 * list of every other pool.
4200 	 */
4201 	if (unspare) {
4202 		spa_t *altspa = NULL;
4203 
4204 		mutex_enter(&spa_namespace_lock);
4205 		while ((altspa = spa_next(altspa)) != NULL) {
4206 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4207 			    altspa == spa)
4208 				continue;
4209 
4210 			spa_open_ref(altspa, FTAG);
4211 			mutex_exit(&spa_namespace_lock);
4212 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4213 			mutex_enter(&spa_namespace_lock);
4214 			spa_close(altspa, FTAG);
4215 		}
4216 		mutex_exit(&spa_namespace_lock);
4217 
4218 		/* search the rest of the vdevs for spares to remove */
4219 		spa_vdev_resilver_done(spa);
4220 	}
4221 
4222 	/* all done with the spa; OK to release */
4223 	mutex_enter(&spa_namespace_lock);
4224 	spa_close(spa, FTAG);
4225 	mutex_exit(&spa_namespace_lock);
4226 
4227 	return (error);
4228 }
4229 
4230 /*
4231  * Split a set of devices from their mirrors, and create a new pool from them.
4232  */
4233 int
4234 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4235     nvlist_t *props, boolean_t exp)
4236 {
4237 	int error = 0;
4238 	uint64_t txg, *glist;
4239 	spa_t *newspa;
4240 	uint_t c, children, lastlog;
4241 	nvlist_t **child, *nvl, *tmp;
4242 	dmu_tx_t *tx;
4243 	char *altroot = NULL;
4244 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4245 	boolean_t activate_slog;
4246 
4247 	ASSERT(spa_writeable(spa));
4248 
4249 	txg = spa_vdev_enter(spa);
4250 
4251 	/* clear the log and flush everything up to now */
4252 	activate_slog = spa_passivate_log(spa);
4253 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4254 	error = spa_offline_log(spa);
4255 	txg = spa_vdev_config_enter(spa);
4256 
4257 	if (activate_slog)
4258 		spa_activate_log(spa);
4259 
4260 	if (error != 0)
4261 		return (spa_vdev_exit(spa, NULL, txg, error));
4262 
4263 	/* check new spa name before going any further */
4264 	if (spa_lookup(newname) != NULL)
4265 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4266 
4267 	/*
4268 	 * scan through all the children to ensure they're all mirrors
4269 	 */
4270 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4271 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4272 	    &children) != 0)
4273 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4274 
4275 	/* first, check to ensure we've got the right child count */
4276 	rvd = spa->spa_root_vdev;
4277 	lastlog = 0;
4278 	for (c = 0; c < rvd->vdev_children; c++) {
4279 		vdev_t *vd = rvd->vdev_child[c];
4280 
4281 		/* don't count the holes & logs as children */
4282 		if (vd->vdev_islog || vd->vdev_ishole) {
4283 			if (lastlog == 0)
4284 				lastlog = c;
4285 			continue;
4286 		}
4287 
4288 		lastlog = 0;
4289 	}
4290 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4291 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4292 
4293 	/* next, ensure no spare or cache devices are part of the split */
4294 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4295 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4296 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4297 
4298 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4299 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4300 
4301 	/* then, loop over each vdev and validate it */
4302 	for (c = 0; c < children; c++) {
4303 		uint64_t is_hole = 0;
4304 
4305 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4306 		    &is_hole);
4307 
4308 		if (is_hole != 0) {
4309 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4310 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4311 				continue;
4312 			} else {
4313 				error = EINVAL;
4314 				break;
4315 			}
4316 		}
4317 
4318 		/* which disk is going to be split? */
4319 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4320 		    &glist[c]) != 0) {
4321 			error = EINVAL;
4322 			break;
4323 		}
4324 
4325 		/* look it up in the spa */
4326 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4327 		if (vml[c] == NULL) {
4328 			error = ENODEV;
4329 			break;
4330 		}
4331 
4332 		/* make sure there's nothing stopping the split */
4333 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4334 		    vml[c]->vdev_islog ||
4335 		    vml[c]->vdev_ishole ||
4336 		    vml[c]->vdev_isspare ||
4337 		    vml[c]->vdev_isl2cache ||
4338 		    !vdev_writeable(vml[c]) ||
4339 		    vml[c]->vdev_children != 0 ||
4340 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4341 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4342 			error = EINVAL;
4343 			break;
4344 		}
4345 
4346 		if (vdev_dtl_required(vml[c])) {
4347 			error = EBUSY;
4348 			break;
4349 		}
4350 
4351 		/* we need certain info from the top level */
4352 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4353 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4354 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4355 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4356 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4357 		    vml[c]->vdev_top->vdev_asize) == 0);
4358 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4359 		    vml[c]->vdev_top->vdev_ashift) == 0);
4360 	}
4361 
4362 	if (error != 0) {
4363 		kmem_free(vml, children * sizeof (vdev_t *));
4364 		kmem_free(glist, children * sizeof (uint64_t));
4365 		return (spa_vdev_exit(spa, NULL, txg, error));
4366 	}
4367 
4368 	/* stop writers from using the disks */
4369 	for (c = 0; c < children; c++) {
4370 		if (vml[c] != NULL)
4371 			vml[c]->vdev_offline = B_TRUE;
4372 	}
4373 	vdev_reopen(spa->spa_root_vdev);
4374 
4375 	/*
4376 	 * Temporarily record the splitting vdevs in the spa config.  This
4377 	 * will disappear once the config is regenerated.
4378 	 */
4379 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4380 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4381 	    glist, children) == 0);
4382 	kmem_free(glist, children * sizeof (uint64_t));
4383 
4384 	mutex_enter(&spa->spa_props_lock);
4385 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4386 	    nvl) == 0);
4387 	mutex_exit(&spa->spa_props_lock);
4388 	spa->spa_config_splitting = nvl;
4389 	vdev_config_dirty(spa->spa_root_vdev);
4390 
4391 	/* configure and create the new pool */
4392 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4393 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4394 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4395 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4396 	    spa_version(spa)) == 0);
4397 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4398 	    spa->spa_config_txg) == 0);
4399 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4400 	    spa_generate_guid(NULL)) == 0);
4401 	(void) nvlist_lookup_string(props,
4402 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4403 
4404 	/* add the new pool to the namespace */
4405 	newspa = spa_add(newname, config, altroot);
4406 	newspa->spa_config_txg = spa->spa_config_txg;
4407 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4408 
4409 	/* release the spa config lock, retaining the namespace lock */
4410 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4411 
4412 	if (zio_injection_enabled)
4413 		zio_handle_panic_injection(spa, FTAG, 1);
4414 
4415 	spa_activate(newspa, spa_mode_global);
4416 	spa_async_suspend(newspa);
4417 
4418 	/* create the new pool from the disks of the original pool */
4419 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4420 	if (error)
4421 		goto out;
4422 
4423 	/* if that worked, generate a real config for the new pool */
4424 	if (newspa->spa_root_vdev != NULL) {
4425 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4426 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4427 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4428 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4429 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4430 		    B_TRUE));
4431 	}
4432 
4433 	/* set the props */
4434 	if (props != NULL) {
4435 		spa_configfile_set(newspa, props, B_FALSE);
4436 		error = spa_prop_set(newspa, props);
4437 		if (error)
4438 			goto out;
4439 	}
4440 
4441 	/* flush everything */
4442 	txg = spa_vdev_config_enter(newspa);
4443 	vdev_config_dirty(newspa->spa_root_vdev);
4444 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4445 
4446 	if (zio_injection_enabled)
4447 		zio_handle_panic_injection(spa, FTAG, 2);
4448 
4449 	spa_async_resume(newspa);
4450 
4451 	/* finally, update the original pool's config */
4452 	txg = spa_vdev_config_enter(spa);
4453 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4454 	error = dmu_tx_assign(tx, TXG_WAIT);
4455 	if (error != 0)
4456 		dmu_tx_abort(tx);
4457 	for (c = 0; c < children; c++) {
4458 		if (vml[c] != NULL) {
4459 			vdev_split(vml[c]);
4460 			if (error == 0)
4461 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4462 				    spa, tx, "vdev=%s",
4463 				    vml[c]->vdev_path);
4464 			vdev_free(vml[c]);
4465 		}
4466 	}
4467 	vdev_config_dirty(spa->spa_root_vdev);
4468 	spa->spa_config_splitting = NULL;
4469 	nvlist_free(nvl);
4470 	if (error == 0)
4471 		dmu_tx_commit(tx);
4472 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4473 
4474 	if (zio_injection_enabled)
4475 		zio_handle_panic_injection(spa, FTAG, 3);
4476 
4477 	/* split is complete; log a history record */
4478 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4479 	    "split new pool %s from pool %s", newname, spa_name(spa));
4480 
4481 	kmem_free(vml, children * sizeof (vdev_t *));
4482 
4483 	/* if we're not going to mount the filesystems in userland, export */
4484 	if (exp)
4485 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4486 		    B_FALSE, B_FALSE);
4487 
4488 	return (error);
4489 
4490 out:
4491 	spa_unload(newspa);
4492 	spa_deactivate(newspa);
4493 	spa_remove(newspa);
4494 
4495 	txg = spa_vdev_config_enter(spa);
4496 
4497 	/* re-online all offlined disks */
4498 	for (c = 0; c < children; c++) {
4499 		if (vml[c] != NULL)
4500 			vml[c]->vdev_offline = B_FALSE;
4501 	}
4502 	vdev_reopen(spa->spa_root_vdev);
4503 
4504 	nvlist_free(spa->spa_config_splitting);
4505 	spa->spa_config_splitting = NULL;
4506 	(void) spa_vdev_exit(spa, NULL, txg, error);
4507 
4508 	kmem_free(vml, children * sizeof (vdev_t *));
4509 	return (error);
4510 }
4511 
4512 static nvlist_t *
4513 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4514 {
4515 	for (int i = 0; i < count; i++) {
4516 		uint64_t guid;
4517 
4518 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4519 		    &guid) == 0);
4520 
4521 		if (guid == target_guid)
4522 			return (nvpp[i]);
4523 	}
4524 
4525 	return (NULL);
4526 }
4527 
4528 static void
4529 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4530 	nvlist_t *dev_to_remove)
4531 {
4532 	nvlist_t **newdev = NULL;
4533 
4534 	if (count > 1)
4535 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4536 
4537 	for (int i = 0, j = 0; i < count; i++) {
4538 		if (dev[i] == dev_to_remove)
4539 			continue;
4540 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4541 	}
4542 
4543 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4544 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4545 
4546 	for (int i = 0; i < count - 1; i++)
4547 		nvlist_free(newdev[i]);
4548 
4549 	if (count > 1)
4550 		kmem_free(newdev, (count - 1) * sizeof (void *));
4551 }
4552 
4553 /*
4554  * Evacuate the device.
4555  */
4556 static int
4557 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4558 {
4559 	uint64_t txg;
4560 	int error = 0;
4561 
4562 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4563 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4564 	ASSERT(vd == vd->vdev_top);
4565 
4566 	/*
4567 	 * Evacuate the device.  We don't hold the config lock as writer
4568 	 * since we need to do I/O but we do keep the
4569 	 * spa_namespace_lock held.  Once this completes the device
4570 	 * should no longer have any blocks allocated on it.
4571 	 */
4572 	if (vd->vdev_islog) {
4573 		if (vd->vdev_stat.vs_alloc != 0)
4574 			error = spa_offline_log(spa);
4575 	} else {
4576 		error = ENOTSUP;
4577 	}
4578 
4579 	if (error)
4580 		return (error);
4581 
4582 	/*
4583 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4584 	 * associated with this vdev, and wait for these changes to sync.
4585 	 */
4586 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4587 	txg = spa_vdev_config_enter(spa);
4588 	vd->vdev_removing = B_TRUE;
4589 	vdev_dirty(vd, 0, NULL, txg);
4590 	vdev_config_dirty(vd);
4591 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4592 
4593 	return (0);
4594 }
4595 
4596 /*
4597  * Complete the removal by cleaning up the namespace.
4598  */
4599 static void
4600 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4601 {
4602 	vdev_t *rvd = spa->spa_root_vdev;
4603 	uint64_t id = vd->vdev_id;
4604 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4605 
4606 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4607 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4608 	ASSERT(vd == vd->vdev_top);
4609 
4610 	/*
4611 	 * Only remove any devices which are empty.
4612 	 */
4613 	if (vd->vdev_stat.vs_alloc != 0)
4614 		return;
4615 
4616 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4617 
4618 	if (list_link_active(&vd->vdev_state_dirty_node))
4619 		vdev_state_clean(vd);
4620 	if (list_link_active(&vd->vdev_config_dirty_node))
4621 		vdev_config_clean(vd);
4622 
4623 	vdev_free(vd);
4624 
4625 	if (last_vdev) {
4626 		vdev_compact_children(rvd);
4627 	} else {
4628 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4629 		vdev_add_child(rvd, vd);
4630 	}
4631 	vdev_config_dirty(rvd);
4632 
4633 	/*
4634 	 * Reassess the health of our root vdev.
4635 	 */
4636 	vdev_reopen(rvd);
4637 }
4638 
4639 /*
4640  * Remove a device from the pool -
4641  *
4642  * Removing a device from the vdev namespace requires several steps
4643  * and can take a significant amount of time.  As a result we use
4644  * the spa_vdev_config_[enter/exit] functions which allow us to
4645  * grab and release the spa_config_lock while still holding the namespace
4646  * lock.  During each step the configuration is synced out.
4647  */
4648 
4649 /*
4650  * Remove a device from the pool.  Currently, this supports removing only hot
4651  * spares, slogs, and level 2 ARC devices.
4652  */
4653 int
4654 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4655 {
4656 	vdev_t *vd;
4657 	metaslab_group_t *mg;
4658 	nvlist_t **spares, **l2cache, *nv;
4659 	uint64_t txg = 0;
4660 	uint_t nspares, nl2cache;
4661 	int error = 0;
4662 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4663 
4664 	ASSERT(spa_writeable(spa));
4665 
4666 	if (!locked)
4667 		txg = spa_vdev_enter(spa);
4668 
4669 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4670 
4671 	if (spa->spa_spares.sav_vdevs != NULL &&
4672 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4673 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4674 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4675 		/*
4676 		 * Only remove the hot spare if it's not currently in use
4677 		 * in this pool.
4678 		 */
4679 		if (vd == NULL || unspare) {
4680 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4681 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4682 			spa_load_spares(spa);
4683 			spa->spa_spares.sav_sync = B_TRUE;
4684 		} else {
4685 			error = EBUSY;
4686 		}
4687 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4688 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4689 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4690 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4691 		/*
4692 		 * Cache devices can always be removed.
4693 		 */
4694 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4695 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4696 		spa_load_l2cache(spa);
4697 		spa->spa_l2cache.sav_sync = B_TRUE;
4698 	} else if (vd != NULL && vd->vdev_islog) {
4699 		ASSERT(!locked);
4700 		ASSERT(vd == vd->vdev_top);
4701 
4702 		/*
4703 		 * XXX - Once we have bp-rewrite this should
4704 		 * become the common case.
4705 		 */
4706 
4707 		mg = vd->vdev_mg;
4708 
4709 		/*
4710 		 * Stop allocating from this vdev.
4711 		 */
4712 		metaslab_group_passivate(mg);
4713 
4714 		/*
4715 		 * Wait for the youngest allocations and frees to sync,
4716 		 * and then wait for the deferral of those frees to finish.
4717 		 */
4718 		spa_vdev_config_exit(spa, NULL,
4719 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4720 
4721 		/*
4722 		 * Attempt to evacuate the vdev.
4723 		 */
4724 		error = spa_vdev_remove_evacuate(spa, vd);
4725 
4726 		txg = spa_vdev_config_enter(spa);
4727 
4728 		/*
4729 		 * If we couldn't evacuate the vdev, unwind.
4730 		 */
4731 		if (error) {
4732 			metaslab_group_activate(mg);
4733 			return (spa_vdev_exit(spa, NULL, txg, error));
4734 		}
4735 
4736 		/*
4737 		 * Clean up the vdev namespace.
4738 		 */
4739 		spa_vdev_remove_from_namespace(spa, vd);
4740 
4741 	} else if (vd != NULL) {
4742 		/*
4743 		 * Normal vdevs cannot be removed (yet).
4744 		 */
4745 		error = ENOTSUP;
4746 	} else {
4747 		/*
4748 		 * There is no vdev of any kind with the specified guid.
4749 		 */
4750 		error = ENOENT;
4751 	}
4752 
4753 	if (!locked)
4754 		return (spa_vdev_exit(spa, NULL, txg, error));
4755 
4756 	return (error);
4757 }
4758 
4759 /*
4760  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4761  * current spared, so we can detach it.
4762  */
4763 static vdev_t *
4764 spa_vdev_resilver_done_hunt(vdev_t *vd)
4765 {
4766 	vdev_t *newvd, *oldvd;
4767 
4768 	for (int c = 0; c < vd->vdev_children; c++) {
4769 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4770 		if (oldvd != NULL)
4771 			return (oldvd);
4772 	}
4773 
4774 	/*
4775 	 * Check for a completed replacement.  We always consider the first
4776 	 * vdev in the list to be the oldest vdev, and the last one to be
4777 	 * the newest (see spa_vdev_attach() for how that works).  In
4778 	 * the case where the newest vdev is faulted, we will not automatically
4779 	 * remove it after a resilver completes.  This is OK as it will require
4780 	 * user intervention to determine which disk the admin wishes to keep.
4781 	 */
4782 	if (vd->vdev_ops == &vdev_replacing_ops) {
4783 		ASSERT(vd->vdev_children > 1);
4784 
4785 		newvd = vd->vdev_child[vd->vdev_children - 1];
4786 		oldvd = vd->vdev_child[0];
4787 
4788 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4789 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4790 		    !vdev_dtl_required(oldvd))
4791 			return (oldvd);
4792 	}
4793 
4794 	/*
4795 	 * Check for a completed resilver with the 'unspare' flag set.
4796 	 */
4797 	if (vd->vdev_ops == &vdev_spare_ops) {
4798 		vdev_t *first = vd->vdev_child[0];
4799 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
4800 
4801 		if (last->vdev_unspare) {
4802 			oldvd = first;
4803 			newvd = last;
4804 		} else if (first->vdev_unspare) {
4805 			oldvd = last;
4806 			newvd = first;
4807 		} else {
4808 			oldvd = NULL;
4809 		}
4810 
4811 		if (oldvd != NULL &&
4812 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4813 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4814 		    !vdev_dtl_required(oldvd))
4815 			return (oldvd);
4816 
4817 		/*
4818 		 * If there are more than two spares attached to a disk,
4819 		 * and those spares are not required, then we want to
4820 		 * attempt to free them up now so that they can be used
4821 		 * by other pools.  Once we're back down to a single
4822 		 * disk+spare, we stop removing them.
4823 		 */
4824 		if (vd->vdev_children > 2) {
4825 			newvd = vd->vdev_child[1];
4826 
4827 			if (newvd->vdev_isspare && last->vdev_isspare &&
4828 			    vdev_dtl_empty(last, DTL_MISSING) &&
4829 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
4830 			    !vdev_dtl_required(newvd))
4831 				return (newvd);
4832 		}
4833 	}
4834 
4835 	return (NULL);
4836 }
4837 
4838 static void
4839 spa_vdev_resilver_done(spa_t *spa)
4840 {
4841 	vdev_t *vd, *pvd, *ppvd;
4842 	uint64_t guid, sguid, pguid, ppguid;
4843 
4844 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4845 
4846 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4847 		pvd = vd->vdev_parent;
4848 		ppvd = pvd->vdev_parent;
4849 		guid = vd->vdev_guid;
4850 		pguid = pvd->vdev_guid;
4851 		ppguid = ppvd->vdev_guid;
4852 		sguid = 0;
4853 		/*
4854 		 * If we have just finished replacing a hot spared device, then
4855 		 * we need to detach the parent's first child (the original hot
4856 		 * spare) as well.
4857 		 */
4858 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
4859 		    ppvd->vdev_children == 2) {
4860 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4861 			sguid = ppvd->vdev_child[1]->vdev_guid;
4862 		}
4863 		spa_config_exit(spa, SCL_ALL, FTAG);
4864 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4865 			return;
4866 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4867 			return;
4868 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4869 	}
4870 
4871 	spa_config_exit(spa, SCL_ALL, FTAG);
4872 }
4873 
4874 /*
4875  * Update the stored path or FRU for this vdev.
4876  */
4877 int
4878 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4879     boolean_t ispath)
4880 {
4881 	vdev_t *vd;
4882 	boolean_t sync = B_FALSE;
4883 
4884 	ASSERT(spa_writeable(spa));
4885 
4886 	spa_vdev_state_enter(spa, SCL_ALL);
4887 
4888 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4889 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4890 
4891 	if (!vd->vdev_ops->vdev_op_leaf)
4892 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4893 
4894 	if (ispath) {
4895 		if (strcmp(value, vd->vdev_path) != 0) {
4896 			spa_strfree(vd->vdev_path);
4897 			vd->vdev_path = spa_strdup(value);
4898 			sync = B_TRUE;
4899 		}
4900 	} else {
4901 		if (vd->vdev_fru == NULL) {
4902 			vd->vdev_fru = spa_strdup(value);
4903 			sync = B_TRUE;
4904 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4905 			spa_strfree(vd->vdev_fru);
4906 			vd->vdev_fru = spa_strdup(value);
4907 			sync = B_TRUE;
4908 		}
4909 	}
4910 
4911 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4912 }
4913 
4914 int
4915 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4916 {
4917 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4918 }
4919 
4920 int
4921 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4922 {
4923 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4924 }
4925 
4926 /*
4927  * ==========================================================================
4928  * SPA Scanning
4929  * ==========================================================================
4930  */
4931 
4932 int
4933 spa_scan_stop(spa_t *spa)
4934 {
4935 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4936 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
4937 		return (EBUSY);
4938 	return (dsl_scan_cancel(spa->spa_dsl_pool));
4939 }
4940 
4941 int
4942 spa_scan(spa_t *spa, pool_scan_func_t func)
4943 {
4944 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4945 
4946 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
4947 		return (ENOTSUP);
4948 
4949 	/*
4950 	 * If a resilver was requested, but there is no DTL on a
4951 	 * writeable leaf device, we have nothing to do.
4952 	 */
4953 	if (func == POOL_SCAN_RESILVER &&
4954 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4955 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4956 		return (0);
4957 	}
4958 
4959 	return (dsl_scan(spa->spa_dsl_pool, func));
4960 }
4961 
4962 /*
4963  * ==========================================================================
4964  * SPA async task processing
4965  * ==========================================================================
4966  */
4967 
4968 static void
4969 spa_async_remove(spa_t *spa, vdev_t *vd)
4970 {
4971 	if (vd->vdev_remove_wanted) {
4972 		vd->vdev_remove_wanted = B_FALSE;
4973 		vd->vdev_delayed_close = B_FALSE;
4974 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4975 
4976 		/*
4977 		 * We want to clear the stats, but we don't want to do a full
4978 		 * vdev_clear() as that will cause us to throw away
4979 		 * degraded/faulted state as well as attempt to reopen the
4980 		 * device, all of which is a waste.
4981 		 */
4982 		vd->vdev_stat.vs_read_errors = 0;
4983 		vd->vdev_stat.vs_write_errors = 0;
4984 		vd->vdev_stat.vs_checksum_errors = 0;
4985 
4986 		vdev_state_dirty(vd->vdev_top);
4987 	}
4988 
4989 	for (int c = 0; c < vd->vdev_children; c++)
4990 		spa_async_remove(spa, vd->vdev_child[c]);
4991 }
4992 
4993 static void
4994 spa_async_probe(spa_t *spa, vdev_t *vd)
4995 {
4996 	if (vd->vdev_probe_wanted) {
4997 		vd->vdev_probe_wanted = B_FALSE;
4998 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4999 	}
5000 
5001 	for (int c = 0; c < vd->vdev_children; c++)
5002 		spa_async_probe(spa, vd->vdev_child[c]);
5003 }
5004 
5005 static void
5006 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5007 {
5008 	sysevent_id_t eid;
5009 	nvlist_t *attr;
5010 	char *physpath;
5011 
5012 	if (!spa->spa_autoexpand)
5013 		return;
5014 
5015 	for (int c = 0; c < vd->vdev_children; c++) {
5016 		vdev_t *cvd = vd->vdev_child[c];
5017 		spa_async_autoexpand(spa, cvd);
5018 	}
5019 
5020 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5021 		return;
5022 
5023 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5024 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5025 
5026 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5027 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5028 
5029 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5030 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5031 
5032 	nvlist_free(attr);
5033 	kmem_free(physpath, MAXPATHLEN);
5034 }
5035 
5036 static void
5037 spa_async_thread(spa_t *spa)
5038 {
5039 	int tasks;
5040 
5041 	ASSERT(spa->spa_sync_on);
5042 
5043 	mutex_enter(&spa->spa_async_lock);
5044 	tasks = spa->spa_async_tasks;
5045 	spa->spa_async_tasks = 0;
5046 	mutex_exit(&spa->spa_async_lock);
5047 
5048 	/*
5049 	 * See if the config needs to be updated.
5050 	 */
5051 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5052 		uint64_t old_space, new_space;
5053 
5054 		mutex_enter(&spa_namespace_lock);
5055 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5056 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5057 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5058 		mutex_exit(&spa_namespace_lock);
5059 
5060 		/*
5061 		 * If the pool grew as a result of the config update,
5062 		 * then log an internal history event.
5063 		 */
5064 		if (new_space != old_space) {
5065 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5066 			    spa, NULL,
5067 			    "pool '%s' size: %llu(+%llu)",
5068 			    spa_name(spa), new_space, new_space - old_space);
5069 		}
5070 	}
5071 
5072 	/*
5073 	 * See if any devices need to be marked REMOVED.
5074 	 */
5075 	if (tasks & SPA_ASYNC_REMOVE) {
5076 		spa_vdev_state_enter(spa, SCL_NONE);
5077 		spa_async_remove(spa, spa->spa_root_vdev);
5078 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5079 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5080 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5081 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5082 		(void) spa_vdev_state_exit(spa, NULL, 0);
5083 	}
5084 
5085 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5086 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5087 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5088 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5089 	}
5090 
5091 	/*
5092 	 * See if any devices need to be probed.
5093 	 */
5094 	if (tasks & SPA_ASYNC_PROBE) {
5095 		spa_vdev_state_enter(spa, SCL_NONE);
5096 		spa_async_probe(spa, spa->spa_root_vdev);
5097 		(void) spa_vdev_state_exit(spa, NULL, 0);
5098 	}
5099 
5100 	/*
5101 	 * If any devices are done replacing, detach them.
5102 	 */
5103 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5104 		spa_vdev_resilver_done(spa);
5105 
5106 	/*
5107 	 * Kick off a resilver.
5108 	 */
5109 	if (tasks & SPA_ASYNC_RESILVER)
5110 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5111 
5112 	/*
5113 	 * Let the world know that we're done.
5114 	 */
5115 	mutex_enter(&spa->spa_async_lock);
5116 	spa->spa_async_thread = NULL;
5117 	cv_broadcast(&spa->spa_async_cv);
5118 	mutex_exit(&spa->spa_async_lock);
5119 	thread_exit();
5120 }
5121 
5122 void
5123 spa_async_suspend(spa_t *spa)
5124 {
5125 	mutex_enter(&spa->spa_async_lock);
5126 	spa->spa_async_suspended++;
5127 	while (spa->spa_async_thread != NULL)
5128 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5129 	mutex_exit(&spa->spa_async_lock);
5130 }
5131 
5132 void
5133 spa_async_resume(spa_t *spa)
5134 {
5135 	mutex_enter(&spa->spa_async_lock);
5136 	ASSERT(spa->spa_async_suspended != 0);
5137 	spa->spa_async_suspended--;
5138 	mutex_exit(&spa->spa_async_lock);
5139 }
5140 
5141 static void
5142 spa_async_dispatch(spa_t *spa)
5143 {
5144 	mutex_enter(&spa->spa_async_lock);
5145 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5146 	    spa->spa_async_thread == NULL &&
5147 	    rootdir != NULL && !vn_is_readonly(rootdir))
5148 		spa->spa_async_thread = thread_create(NULL, 0,
5149 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5150 	mutex_exit(&spa->spa_async_lock);
5151 }
5152 
5153 void
5154 spa_async_request(spa_t *spa, int task)
5155 {
5156 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5157 	mutex_enter(&spa->spa_async_lock);
5158 	spa->spa_async_tasks |= task;
5159 	mutex_exit(&spa->spa_async_lock);
5160 }
5161 
5162 /*
5163  * ==========================================================================
5164  * SPA syncing routines
5165  * ==========================================================================
5166  */
5167 
5168 static int
5169 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5170 {
5171 	bpobj_t *bpo = arg;
5172 	bpobj_enqueue(bpo, bp, tx);
5173 	return (0);
5174 }
5175 
5176 static int
5177 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5178 {
5179 	zio_t *zio = arg;
5180 
5181 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5182 	    zio->io_flags));
5183 	return (0);
5184 }
5185 
5186 static void
5187 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5188 {
5189 	char *packed = NULL;
5190 	size_t bufsize;
5191 	size_t nvsize = 0;
5192 	dmu_buf_t *db;
5193 
5194 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5195 
5196 	/*
5197 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5198 	 * information.  This avoids the dbuf_will_dirty() path and
5199 	 * saves us a pre-read to get data we don't actually care about.
5200 	 */
5201 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5202 	packed = kmem_alloc(bufsize, KM_SLEEP);
5203 
5204 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5205 	    KM_SLEEP) == 0);
5206 	bzero(packed + nvsize, bufsize - nvsize);
5207 
5208 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5209 
5210 	kmem_free(packed, bufsize);
5211 
5212 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5213 	dmu_buf_will_dirty(db, tx);
5214 	*(uint64_t *)db->db_data = nvsize;
5215 	dmu_buf_rele(db, FTAG);
5216 }
5217 
5218 static void
5219 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5220     const char *config, const char *entry)
5221 {
5222 	nvlist_t *nvroot;
5223 	nvlist_t **list;
5224 	int i;
5225 
5226 	if (!sav->sav_sync)
5227 		return;
5228 
5229 	/*
5230 	 * Update the MOS nvlist describing the list of available devices.
5231 	 * spa_validate_aux() will have already made sure this nvlist is
5232 	 * valid and the vdevs are labeled appropriately.
5233 	 */
5234 	if (sav->sav_object == 0) {
5235 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5236 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5237 		    sizeof (uint64_t), tx);
5238 		VERIFY(zap_update(spa->spa_meta_objset,
5239 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5240 		    &sav->sav_object, tx) == 0);
5241 	}
5242 
5243 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5244 	if (sav->sav_count == 0) {
5245 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5246 	} else {
5247 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5248 		for (i = 0; i < sav->sav_count; i++)
5249 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5250 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5251 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5252 		    sav->sav_count) == 0);
5253 		for (i = 0; i < sav->sav_count; i++)
5254 			nvlist_free(list[i]);
5255 		kmem_free(list, sav->sav_count * sizeof (void *));
5256 	}
5257 
5258 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5259 	nvlist_free(nvroot);
5260 
5261 	sav->sav_sync = B_FALSE;
5262 }
5263 
5264 static void
5265 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5266 {
5267 	nvlist_t *config;
5268 
5269 	if (list_is_empty(&spa->spa_config_dirty_list))
5270 		return;
5271 
5272 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5273 
5274 	config = spa_config_generate(spa, spa->spa_root_vdev,
5275 	    dmu_tx_get_txg(tx), B_FALSE);
5276 
5277 	spa_config_exit(spa, SCL_STATE, FTAG);
5278 
5279 	if (spa->spa_config_syncing)
5280 		nvlist_free(spa->spa_config_syncing);
5281 	spa->spa_config_syncing = config;
5282 
5283 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5284 }
5285 
5286 /*
5287  * Set zpool properties.
5288  */
5289 static void
5290 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5291 {
5292 	spa_t *spa = arg1;
5293 	objset_t *mos = spa->spa_meta_objset;
5294 	nvlist_t *nvp = arg2;
5295 	nvpair_t *elem;
5296 	uint64_t intval;
5297 	char *strval;
5298 	zpool_prop_t prop;
5299 	const char *propname;
5300 	zprop_type_t proptype;
5301 
5302 	mutex_enter(&spa->spa_props_lock);
5303 
5304 	elem = NULL;
5305 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5306 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5307 		case ZPOOL_PROP_VERSION:
5308 			/*
5309 			 * Only set version for non-zpool-creation cases
5310 			 * (set/import). spa_create() needs special care
5311 			 * for version setting.
5312 			 */
5313 			if (tx->tx_txg != TXG_INITIAL) {
5314 				VERIFY(nvpair_value_uint64(elem,
5315 				    &intval) == 0);
5316 				ASSERT(intval <= SPA_VERSION);
5317 				ASSERT(intval >= spa_version(spa));
5318 				spa->spa_uberblock.ub_version = intval;
5319 				vdev_config_dirty(spa->spa_root_vdev);
5320 			}
5321 			break;
5322 
5323 		case ZPOOL_PROP_ALTROOT:
5324 			/*
5325 			 * 'altroot' is a non-persistent property. It should
5326 			 * have been set temporarily at creation or import time.
5327 			 */
5328 			ASSERT(spa->spa_root != NULL);
5329 			break;
5330 
5331 		case ZPOOL_PROP_READONLY:
5332 		case ZPOOL_PROP_CACHEFILE:
5333 			/*
5334 			 * 'readonly' and 'cachefile' are also non-persisitent
5335 			 * properties.
5336 			 */
5337 			break;
5338 		default:
5339 			/*
5340 			 * Set pool property values in the poolprops mos object.
5341 			 */
5342 			if (spa->spa_pool_props_object == 0) {
5343 				VERIFY((spa->spa_pool_props_object =
5344 				    zap_create(mos, DMU_OT_POOL_PROPS,
5345 				    DMU_OT_NONE, 0, tx)) > 0);
5346 
5347 				VERIFY(zap_update(mos,
5348 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5349 				    8, 1, &spa->spa_pool_props_object, tx)
5350 				    == 0);
5351 			}
5352 
5353 			/* normalize the property name */
5354 			propname = zpool_prop_to_name(prop);
5355 			proptype = zpool_prop_get_type(prop);
5356 
5357 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5358 				ASSERT(proptype == PROP_TYPE_STRING);
5359 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5360 				VERIFY(zap_update(mos,
5361 				    spa->spa_pool_props_object, propname,
5362 				    1, strlen(strval) + 1, strval, tx) == 0);
5363 
5364 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5365 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5366 
5367 				if (proptype == PROP_TYPE_INDEX) {
5368 					const char *unused;
5369 					VERIFY(zpool_prop_index_to_string(
5370 					    prop, intval, &unused) == 0);
5371 				}
5372 				VERIFY(zap_update(mos,
5373 				    spa->spa_pool_props_object, propname,
5374 				    8, 1, &intval, tx) == 0);
5375 			} else {
5376 				ASSERT(0); /* not allowed */
5377 			}
5378 
5379 			switch (prop) {
5380 			case ZPOOL_PROP_DELEGATION:
5381 				spa->spa_delegation = intval;
5382 				break;
5383 			case ZPOOL_PROP_BOOTFS:
5384 				spa->spa_bootfs = intval;
5385 				break;
5386 			case ZPOOL_PROP_FAILUREMODE:
5387 				spa->spa_failmode = intval;
5388 				break;
5389 			case ZPOOL_PROP_AUTOEXPAND:
5390 				spa->spa_autoexpand = intval;
5391 				if (tx->tx_txg != TXG_INITIAL)
5392 					spa_async_request(spa,
5393 					    SPA_ASYNC_AUTOEXPAND);
5394 				break;
5395 			case ZPOOL_PROP_DEDUPDITTO:
5396 				spa->spa_dedup_ditto = intval;
5397 				break;
5398 			default:
5399 				break;
5400 			}
5401 		}
5402 
5403 		/* log internal history if this is not a zpool create */
5404 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5405 		    tx->tx_txg != TXG_INITIAL) {
5406 			spa_history_log_internal(LOG_POOL_PROPSET,
5407 			    spa, tx, "%s %lld %s",
5408 			    nvpair_name(elem), intval, spa_name(spa));
5409 		}
5410 	}
5411 
5412 	mutex_exit(&spa->spa_props_lock);
5413 }
5414 
5415 /*
5416  * Perform one-time upgrade on-disk changes.  spa_version() does not
5417  * reflect the new version this txg, so there must be no changes this
5418  * txg to anything that the upgrade code depends on after it executes.
5419  * Therefore this must be called after dsl_pool_sync() does the sync
5420  * tasks.
5421  */
5422 static void
5423 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5424 {
5425 	dsl_pool_t *dp = spa->spa_dsl_pool;
5426 
5427 	ASSERT(spa->spa_sync_pass == 1);
5428 
5429 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5430 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5431 		dsl_pool_create_origin(dp, tx);
5432 
5433 		/* Keeping the origin open increases spa_minref */
5434 		spa->spa_minref += 3;
5435 	}
5436 
5437 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5438 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5439 		dsl_pool_upgrade_clones(dp, tx);
5440 	}
5441 
5442 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5443 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5444 		dsl_pool_upgrade_dir_clones(dp, tx);
5445 
5446 		/* Keeping the freedir open increases spa_minref */
5447 		spa->spa_minref += 3;
5448 	}
5449 }
5450 
5451 /*
5452  * Sync the specified transaction group.  New blocks may be dirtied as
5453  * part of the process, so we iterate until it converges.
5454  */
5455 void
5456 spa_sync(spa_t *spa, uint64_t txg)
5457 {
5458 	dsl_pool_t *dp = spa->spa_dsl_pool;
5459 	objset_t *mos = spa->spa_meta_objset;
5460 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5461 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5462 	vdev_t *rvd = spa->spa_root_vdev;
5463 	vdev_t *vd;
5464 	dmu_tx_t *tx;
5465 	int error;
5466 
5467 	VERIFY(spa_writeable(spa));
5468 
5469 	/*
5470 	 * Lock out configuration changes.
5471 	 */
5472 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5473 
5474 	spa->spa_syncing_txg = txg;
5475 	spa->spa_sync_pass = 0;
5476 
5477 	/*
5478 	 * If there are any pending vdev state changes, convert them
5479 	 * into config changes that go out with this transaction group.
5480 	 */
5481 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5482 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5483 		/*
5484 		 * We need the write lock here because, for aux vdevs,
5485 		 * calling vdev_config_dirty() modifies sav_config.
5486 		 * This is ugly and will become unnecessary when we
5487 		 * eliminate the aux vdev wart by integrating all vdevs
5488 		 * into the root vdev tree.
5489 		 */
5490 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5491 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5492 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5493 			vdev_state_clean(vd);
5494 			vdev_config_dirty(vd);
5495 		}
5496 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5497 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5498 	}
5499 	spa_config_exit(spa, SCL_STATE, FTAG);
5500 
5501 	tx = dmu_tx_create_assigned(dp, txg);
5502 
5503 	/*
5504 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5505 	 * set spa_deflate if we have no raid-z vdevs.
5506 	 */
5507 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5508 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5509 		int i;
5510 
5511 		for (i = 0; i < rvd->vdev_children; i++) {
5512 			vd = rvd->vdev_child[i];
5513 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5514 				break;
5515 		}
5516 		if (i == rvd->vdev_children) {
5517 			spa->spa_deflate = TRUE;
5518 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5519 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5520 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5521 		}
5522 	}
5523 
5524 	/*
5525 	 * If anything has changed in this txg, or if someone is waiting
5526 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5527 	 * deferred frees from the previous txg.  If not, leave them
5528 	 * alone so that we don't generate work on an otherwise idle
5529 	 * system.
5530 	 */
5531 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5532 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5533 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5534 	    ((dsl_scan_active(dp->dp_scan) ||
5535 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5536 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5537 		VERIFY3U(bpobj_iterate(defer_bpo,
5538 		    spa_free_sync_cb, zio, tx), ==, 0);
5539 		VERIFY3U(zio_wait(zio), ==, 0);
5540 	}
5541 
5542 	/*
5543 	 * Iterate to convergence.
5544 	 */
5545 	do {
5546 		int pass = ++spa->spa_sync_pass;
5547 
5548 		spa_sync_config_object(spa, tx);
5549 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5550 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5551 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5552 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5553 		spa_errlog_sync(spa, txg);
5554 		dsl_pool_sync(dp, txg);
5555 
5556 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5557 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5558 			bplist_iterate(free_bpl, spa_free_sync_cb,
5559 			    zio, tx);
5560 			VERIFY(zio_wait(zio) == 0);
5561 		} else {
5562 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5563 			    defer_bpo, tx);
5564 		}
5565 
5566 		ddt_sync(spa, txg);
5567 		dsl_scan_sync(dp, tx);
5568 
5569 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5570 			vdev_sync(vd, txg);
5571 
5572 		if (pass == 1)
5573 			spa_sync_upgrades(spa, tx);
5574 
5575 	} while (dmu_objset_is_dirty(mos, txg));
5576 
5577 	/*
5578 	 * Rewrite the vdev configuration (which includes the uberblock)
5579 	 * to commit the transaction group.
5580 	 *
5581 	 * If there are no dirty vdevs, we sync the uberblock to a few
5582 	 * random top-level vdevs that are known to be visible in the
5583 	 * config cache (see spa_vdev_add() for a complete description).
5584 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5585 	 */
5586 	for (;;) {
5587 		/*
5588 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5589 		 * while we're attempting to write the vdev labels.
5590 		 */
5591 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5592 
5593 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5594 			vdev_t *svd[SPA_DVAS_PER_BP];
5595 			int svdcount = 0;
5596 			int children = rvd->vdev_children;
5597 			int c0 = spa_get_random(children);
5598 
5599 			for (int c = 0; c < children; c++) {
5600 				vd = rvd->vdev_child[(c0 + c) % children];
5601 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5602 					continue;
5603 				svd[svdcount++] = vd;
5604 				if (svdcount == SPA_DVAS_PER_BP)
5605 					break;
5606 			}
5607 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5608 			if (error != 0)
5609 				error = vdev_config_sync(svd, svdcount, txg,
5610 				    B_TRUE);
5611 		} else {
5612 			error = vdev_config_sync(rvd->vdev_child,
5613 			    rvd->vdev_children, txg, B_FALSE);
5614 			if (error != 0)
5615 				error = vdev_config_sync(rvd->vdev_child,
5616 				    rvd->vdev_children, txg, B_TRUE);
5617 		}
5618 
5619 		spa_config_exit(spa, SCL_STATE, FTAG);
5620 
5621 		if (error == 0)
5622 			break;
5623 		zio_suspend(spa, NULL);
5624 		zio_resume_wait(spa);
5625 	}
5626 	dmu_tx_commit(tx);
5627 
5628 	/*
5629 	 * Clear the dirty config list.
5630 	 */
5631 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5632 		vdev_config_clean(vd);
5633 
5634 	/*
5635 	 * Now that the new config has synced transactionally,
5636 	 * let it become visible to the config cache.
5637 	 */
5638 	if (spa->spa_config_syncing != NULL) {
5639 		spa_config_set(spa, spa->spa_config_syncing);
5640 		spa->spa_config_txg = txg;
5641 		spa->spa_config_syncing = NULL;
5642 	}
5643 
5644 	spa->spa_ubsync = spa->spa_uberblock;
5645 
5646 	dsl_pool_sync_done(dp, txg);
5647 
5648 	/*
5649 	 * Update usable space statistics.
5650 	 */
5651 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5652 		vdev_sync_done(vd, txg);
5653 
5654 	spa_update_dspace(spa);
5655 
5656 	/*
5657 	 * It had better be the case that we didn't dirty anything
5658 	 * since vdev_config_sync().
5659 	 */
5660 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5661 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5662 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5663 
5664 	spa->spa_sync_pass = 0;
5665 
5666 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5667 
5668 	spa_handle_ignored_writes(spa);
5669 
5670 	/*
5671 	 * If any async tasks have been requested, kick them off.
5672 	 */
5673 	spa_async_dispatch(spa);
5674 }
5675 
5676 /*
5677  * Sync all pools.  We don't want to hold the namespace lock across these
5678  * operations, so we take a reference on the spa_t and drop the lock during the
5679  * sync.
5680  */
5681 void
5682 spa_sync_allpools(void)
5683 {
5684 	spa_t *spa = NULL;
5685 	mutex_enter(&spa_namespace_lock);
5686 	while ((spa = spa_next(spa)) != NULL) {
5687 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
5688 		    !spa_writeable(spa) || spa_suspended(spa))
5689 			continue;
5690 		spa_open_ref(spa, FTAG);
5691 		mutex_exit(&spa_namespace_lock);
5692 		txg_wait_synced(spa_get_dsl(spa), 0);
5693 		mutex_enter(&spa_namespace_lock);
5694 		spa_close(spa, FTAG);
5695 	}
5696 	mutex_exit(&spa_namespace_lock);
5697 }
5698 
5699 /*
5700  * ==========================================================================
5701  * Miscellaneous routines
5702  * ==========================================================================
5703  */
5704 
5705 /*
5706  * Remove all pools in the system.
5707  */
5708 void
5709 spa_evict_all(void)
5710 {
5711 	spa_t *spa;
5712 
5713 	/*
5714 	 * Remove all cached state.  All pools should be closed now,
5715 	 * so every spa in the AVL tree should be unreferenced.
5716 	 */
5717 	mutex_enter(&spa_namespace_lock);
5718 	while ((spa = spa_next(NULL)) != NULL) {
5719 		/*
5720 		 * Stop async tasks.  The async thread may need to detach
5721 		 * a device that's been replaced, which requires grabbing
5722 		 * spa_namespace_lock, so we must drop it here.
5723 		 */
5724 		spa_open_ref(spa, FTAG);
5725 		mutex_exit(&spa_namespace_lock);
5726 		spa_async_suspend(spa);
5727 		mutex_enter(&spa_namespace_lock);
5728 		spa_close(spa, FTAG);
5729 
5730 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5731 			spa_unload(spa);
5732 			spa_deactivate(spa);
5733 		}
5734 		spa_remove(spa);
5735 	}
5736 	mutex_exit(&spa_namespace_lock);
5737 }
5738 
5739 vdev_t *
5740 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5741 {
5742 	vdev_t *vd;
5743 	int i;
5744 
5745 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5746 		return (vd);
5747 
5748 	if (aux) {
5749 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5750 			vd = spa->spa_l2cache.sav_vdevs[i];
5751 			if (vd->vdev_guid == guid)
5752 				return (vd);
5753 		}
5754 
5755 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5756 			vd = spa->spa_spares.sav_vdevs[i];
5757 			if (vd->vdev_guid == guid)
5758 				return (vd);
5759 		}
5760 	}
5761 
5762 	return (NULL);
5763 }
5764 
5765 void
5766 spa_upgrade(spa_t *spa, uint64_t version)
5767 {
5768 	ASSERT(spa_writeable(spa));
5769 
5770 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5771 
5772 	/*
5773 	 * This should only be called for a non-faulted pool, and since a
5774 	 * future version would result in an unopenable pool, this shouldn't be
5775 	 * possible.
5776 	 */
5777 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5778 	ASSERT(version >= spa->spa_uberblock.ub_version);
5779 
5780 	spa->spa_uberblock.ub_version = version;
5781 	vdev_config_dirty(spa->spa_root_vdev);
5782 
5783 	spa_config_exit(spa, SCL_ALL, FTAG);
5784 
5785 	txg_wait_synced(spa_get_dsl(spa), 0);
5786 }
5787 
5788 boolean_t
5789 spa_has_spare(spa_t *spa, uint64_t guid)
5790 {
5791 	int i;
5792 	uint64_t spareguid;
5793 	spa_aux_vdev_t *sav = &spa->spa_spares;
5794 
5795 	for (i = 0; i < sav->sav_count; i++)
5796 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5797 			return (B_TRUE);
5798 
5799 	for (i = 0; i < sav->sav_npending; i++) {
5800 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5801 		    &spareguid) == 0 && spareguid == guid)
5802 			return (B_TRUE);
5803 	}
5804 
5805 	return (B_FALSE);
5806 }
5807 
5808 /*
5809  * Check if a pool has an active shared spare device.
5810  * Note: reference count of an active spare is 2, as a spare and as a replace
5811  */
5812 static boolean_t
5813 spa_has_active_shared_spare(spa_t *spa)
5814 {
5815 	int i, refcnt;
5816 	uint64_t pool;
5817 	spa_aux_vdev_t *sav = &spa->spa_spares;
5818 
5819 	for (i = 0; i < sav->sav_count; i++) {
5820 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5821 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5822 		    refcnt > 2)
5823 			return (B_TRUE);
5824 	}
5825 
5826 	return (B_FALSE);
5827 }
5828 
5829 /*
5830  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5831  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5832  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5833  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5834  * or zdb as real changes.
5835  */
5836 void
5837 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5838 {
5839 #ifdef _KERNEL
5840 	sysevent_t		*ev;
5841 	sysevent_attr_list_t	*attr = NULL;
5842 	sysevent_value_t	value;
5843 	sysevent_id_t		eid;
5844 
5845 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5846 	    SE_SLEEP);
5847 
5848 	value.value_type = SE_DATA_TYPE_STRING;
5849 	value.value.sv_string = spa_name(spa);
5850 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5851 		goto done;
5852 
5853 	value.value_type = SE_DATA_TYPE_UINT64;
5854 	value.value.sv_uint64 = spa_guid(spa);
5855 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5856 		goto done;
5857 
5858 	if (vd) {
5859 		value.value_type = SE_DATA_TYPE_UINT64;
5860 		value.value.sv_uint64 = vd->vdev_guid;
5861 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5862 		    SE_SLEEP) != 0)
5863 			goto done;
5864 
5865 		if (vd->vdev_path) {
5866 			value.value_type = SE_DATA_TYPE_STRING;
5867 			value.value.sv_string = vd->vdev_path;
5868 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5869 			    &value, SE_SLEEP) != 0)
5870 				goto done;
5871 		}
5872 	}
5873 
5874 	if (sysevent_attach_attributes(ev, attr) != 0)
5875 		goto done;
5876 	attr = NULL;
5877 
5878 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5879 
5880 done:
5881 	if (attr)
5882 		sysevent_free_attr(attr);
5883 	sysevent_free(ev);
5884 #endif
5885 }
5886