spa.c revision 4f0f5e5be9d3811b437d9156675d584e2a2f204a
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/zio_compress.h>
39#include <sys/dmu.h>
40#include <sys/dmu_tx.h>
41#include <sys/zap.h>
42#include <sys/zil.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/uberblock_impl.h>
46#include <sys/txg.h>
47#include <sys/avl.h>
48#include <sys/dmu_traverse.h>
49#include <sys/dmu_objset.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dataset.h>
53#include <sys/dsl_dir.h>
54#include <sys/dsl_prop.h>
55#include <sys/dsl_synctask.h>
56#include <sys/fs/zfs.h>
57#include <sys/arc.h>
58#include <sys/callb.h>
59#include <sys/systeminfo.h>
60#include <sys/sunddi.h>
61#include <sys/spa_boot.h>
62#include <sys/zfs_ioctl.h>
63
64#ifdef	_KERNEL
65#include <sys/zone.h>
66#endif	/* _KERNEL */
67
68#include "zfs_prop.h"
69#include "zfs_comutil.h"
70
71enum zti_modes {
72	zti_mode_fixed,			/* value is # of threads (min 1) */
73	zti_mode_online_percent,	/* value is % of online CPUs */
74	zti_mode_tune,			/* fill from zio_taskq_tune_* */
75	zti_nmodes
76};
77
78#define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
79#define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
80#define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
81
82#define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
83
84typedef struct zio_taskq_info {
85	const char *zti_name;
86	struct {
87		enum zti_modes zti_mode;
88		uint_t zti_value;
89	} zti_nthreads[ZIO_TASKQ_TYPES];
90} zio_taskq_info_t;
91
92static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
93				"issue",		"intr"
94};
95
96const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
97	/*			ISSUE			INTR		*/
98	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
99	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
100	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
101	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
102	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
103	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104};
105
106enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
107uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
108
109static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
110static boolean_t spa_has_active_shared_spare(spa_t *spa);
111
112/*
113 * ==========================================================================
114 * SPA properties routines
115 * ==========================================================================
116 */
117
118/*
119 * Add a (source=src, propname=propval) list to an nvlist.
120 */
121static void
122spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
123    uint64_t intval, zprop_source_t src)
124{
125	const char *propname = zpool_prop_to_name(prop);
126	nvlist_t *propval;
127
128	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
129	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
130
131	if (strval != NULL)
132		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
133	else
134		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
135
136	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
137	nvlist_free(propval);
138}
139
140/*
141 * Get property values from the spa configuration.
142 */
143static void
144spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
145{
146	uint64_t size;
147	uint64_t used;
148	uint64_t cap, version;
149	zprop_source_t src = ZPROP_SRC_NONE;
150	spa_config_dirent_t *dp;
151
152	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
153
154	if (spa->spa_root_vdev != NULL) {
155		size = spa_get_space(spa);
156		used = spa_get_alloc(spa);
157		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
158		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
159		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
160		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
161		    size - used, src);
162
163		cap = (size == 0) ? 0 : (used * 100 / size);
164		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
165
166		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
167		    spa->spa_root_vdev->vdev_state, src);
168
169		version = spa_version(spa);
170		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
171			src = ZPROP_SRC_DEFAULT;
172		else
173			src = ZPROP_SRC_LOCAL;
174		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
175	}
176
177	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
178
179	if (spa->spa_root != NULL)
180		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
181		    0, ZPROP_SRC_LOCAL);
182
183	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
184		if (dp->scd_path == NULL) {
185			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
186			    "none", 0, ZPROP_SRC_LOCAL);
187		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
188			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
189			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
190		}
191	}
192}
193
194/*
195 * Get zpool property values.
196 */
197int
198spa_prop_get(spa_t *spa, nvlist_t **nvp)
199{
200	zap_cursor_t zc;
201	zap_attribute_t za;
202	objset_t *mos = spa->spa_meta_objset;
203	int err;
204
205	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
206
207	mutex_enter(&spa->spa_props_lock);
208
209	/*
210	 * Get properties from the spa config.
211	 */
212	spa_prop_get_config(spa, nvp);
213
214	/* If no pool property object, no more prop to get. */
215	if (spa->spa_pool_props_object == 0) {
216		mutex_exit(&spa->spa_props_lock);
217		return (0);
218	}
219
220	/*
221	 * Get properties from the MOS pool property object.
222	 */
223	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
224	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
225	    zap_cursor_advance(&zc)) {
226		uint64_t intval = 0;
227		char *strval = NULL;
228		zprop_source_t src = ZPROP_SRC_DEFAULT;
229		zpool_prop_t prop;
230
231		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
232			continue;
233
234		switch (za.za_integer_length) {
235		case 8:
236			/* integer property */
237			if (za.za_first_integer !=
238			    zpool_prop_default_numeric(prop))
239				src = ZPROP_SRC_LOCAL;
240
241			if (prop == ZPOOL_PROP_BOOTFS) {
242				dsl_pool_t *dp;
243				dsl_dataset_t *ds = NULL;
244
245				dp = spa_get_dsl(spa);
246				rw_enter(&dp->dp_config_rwlock, RW_READER);
247				if (err = dsl_dataset_hold_obj(dp,
248				    za.za_first_integer, FTAG, &ds)) {
249					rw_exit(&dp->dp_config_rwlock);
250					break;
251				}
252
253				strval = kmem_alloc(
254				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
255				    KM_SLEEP);
256				dsl_dataset_name(ds, strval);
257				dsl_dataset_rele(ds, FTAG);
258				rw_exit(&dp->dp_config_rwlock);
259			} else {
260				strval = NULL;
261				intval = za.za_first_integer;
262			}
263
264			spa_prop_add_list(*nvp, prop, strval, intval, src);
265
266			if (strval != NULL)
267				kmem_free(strval,
268				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
269
270			break;
271
272		case 1:
273			/* string property */
274			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
275			err = zap_lookup(mos, spa->spa_pool_props_object,
276			    za.za_name, 1, za.za_num_integers, strval);
277			if (err) {
278				kmem_free(strval, za.za_num_integers);
279				break;
280			}
281			spa_prop_add_list(*nvp, prop, strval, 0, src);
282			kmem_free(strval, za.za_num_integers);
283			break;
284
285		default:
286			break;
287		}
288	}
289	zap_cursor_fini(&zc);
290	mutex_exit(&spa->spa_props_lock);
291out:
292	if (err && err != ENOENT) {
293		nvlist_free(*nvp);
294		*nvp = NULL;
295		return (err);
296	}
297
298	return (0);
299}
300
301/*
302 * Validate the given pool properties nvlist and modify the list
303 * for the property values to be set.
304 */
305static int
306spa_prop_validate(spa_t *spa, nvlist_t *props)
307{
308	nvpair_t *elem;
309	int error = 0, reset_bootfs = 0;
310	uint64_t objnum;
311
312	elem = NULL;
313	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
314		zpool_prop_t prop;
315		char *propname, *strval;
316		uint64_t intval;
317		objset_t *os;
318		char *slash;
319
320		propname = nvpair_name(elem);
321
322		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
323			return (EINVAL);
324
325		switch (prop) {
326		case ZPOOL_PROP_VERSION:
327			error = nvpair_value_uint64(elem, &intval);
328			if (!error &&
329			    (intval < spa_version(spa) || intval > SPA_VERSION))
330				error = EINVAL;
331			break;
332
333		case ZPOOL_PROP_DELEGATION:
334		case ZPOOL_PROP_AUTOREPLACE:
335		case ZPOOL_PROP_LISTSNAPS:
336		case ZPOOL_PROP_AUTOEXPAND:
337			error = nvpair_value_uint64(elem, &intval);
338			if (!error && intval > 1)
339				error = EINVAL;
340			break;
341
342		case ZPOOL_PROP_BOOTFS:
343			/*
344			 * If the pool version is less than SPA_VERSION_BOOTFS,
345			 * or the pool is still being created (version == 0),
346			 * the bootfs property cannot be set.
347			 */
348			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
349				error = ENOTSUP;
350				break;
351			}
352
353			/*
354			 * Make sure the vdev config is bootable
355			 */
356			if (!vdev_is_bootable(spa->spa_root_vdev)) {
357				error = ENOTSUP;
358				break;
359			}
360
361			reset_bootfs = 1;
362
363			error = nvpair_value_string(elem, &strval);
364
365			if (!error) {
366				uint64_t compress;
367
368				if (strval == NULL || strval[0] == '\0') {
369					objnum = zpool_prop_default_numeric(
370					    ZPOOL_PROP_BOOTFS);
371					break;
372				}
373
374				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
375				    DS_MODE_USER | DS_MODE_READONLY, &os))
376					break;
377
378				/* We don't support gzip bootable datasets */
379				if ((error = dsl_prop_get_integer(strval,
380				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
381				    &compress, NULL)) == 0 &&
382				    !BOOTFS_COMPRESS_VALID(compress)) {
383					error = ENOTSUP;
384				} else {
385					objnum = dmu_objset_id(os);
386				}
387				dmu_objset_close(os);
388			}
389			break;
390
391		case ZPOOL_PROP_FAILUREMODE:
392			error = nvpair_value_uint64(elem, &intval);
393			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
394			    intval > ZIO_FAILURE_MODE_PANIC))
395				error = EINVAL;
396
397			/*
398			 * This is a special case which only occurs when
399			 * the pool has completely failed. This allows
400			 * the user to change the in-core failmode property
401			 * without syncing it out to disk (I/Os might
402			 * currently be blocked). We do this by returning
403			 * EIO to the caller (spa_prop_set) to trick it
404			 * into thinking we encountered a property validation
405			 * error.
406			 */
407			if (!error && spa_suspended(spa)) {
408				spa->spa_failmode = intval;
409				error = EIO;
410			}
411			break;
412
413		case ZPOOL_PROP_CACHEFILE:
414			if ((error = nvpair_value_string(elem, &strval)) != 0)
415				break;
416
417			if (strval[0] == '\0')
418				break;
419
420			if (strcmp(strval, "none") == 0)
421				break;
422
423			if (strval[0] != '/') {
424				error = EINVAL;
425				break;
426			}
427
428			slash = strrchr(strval, '/');
429			ASSERT(slash != NULL);
430
431			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
432			    strcmp(slash, "/..") == 0)
433				error = EINVAL;
434			break;
435		}
436
437		if (error)
438			break;
439	}
440
441	if (!error && reset_bootfs) {
442		error = nvlist_remove(props,
443		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
444
445		if (!error) {
446			error = nvlist_add_uint64(props,
447			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
448		}
449	}
450
451	return (error);
452}
453
454void
455spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
456{
457	char *cachefile;
458	spa_config_dirent_t *dp;
459
460	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
461	    &cachefile) != 0)
462		return;
463
464	dp = kmem_alloc(sizeof (spa_config_dirent_t),
465	    KM_SLEEP);
466
467	if (cachefile[0] == '\0')
468		dp->scd_path = spa_strdup(spa_config_path);
469	else if (strcmp(cachefile, "none") == 0)
470		dp->scd_path = NULL;
471	else
472		dp->scd_path = spa_strdup(cachefile);
473
474	list_insert_head(&spa->spa_config_list, dp);
475	if (need_sync)
476		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
477}
478
479int
480spa_prop_set(spa_t *spa, nvlist_t *nvp)
481{
482	int error;
483	nvpair_t *elem;
484	boolean_t need_sync = B_FALSE;
485	zpool_prop_t prop;
486
487	if ((error = spa_prop_validate(spa, nvp)) != 0)
488		return (error);
489
490	elem = NULL;
491	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
492		if ((prop = zpool_name_to_prop(
493		    nvpair_name(elem))) == ZPROP_INVAL)
494			return (EINVAL);
495
496		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
497			continue;
498
499		need_sync = B_TRUE;
500		break;
501	}
502
503	if (need_sync)
504		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
505		    spa, nvp, 3));
506	else
507		return (0);
508}
509
510/*
511 * If the bootfs property value is dsobj, clear it.
512 */
513void
514spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
515{
516	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
517		VERIFY(zap_remove(spa->spa_meta_objset,
518		    spa->spa_pool_props_object,
519		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
520		spa->spa_bootfs = 0;
521	}
522}
523
524/*
525 * ==========================================================================
526 * SPA state manipulation (open/create/destroy/import/export)
527 * ==========================================================================
528 */
529
530static int
531spa_error_entry_compare(const void *a, const void *b)
532{
533	spa_error_entry_t *sa = (spa_error_entry_t *)a;
534	spa_error_entry_t *sb = (spa_error_entry_t *)b;
535	int ret;
536
537	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
538	    sizeof (zbookmark_t));
539
540	if (ret < 0)
541		return (-1);
542	else if (ret > 0)
543		return (1);
544	else
545		return (0);
546}
547
548/*
549 * Utility function which retrieves copies of the current logs and
550 * re-initializes them in the process.
551 */
552void
553spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
554{
555	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
556
557	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
558	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
559
560	avl_create(&spa->spa_errlist_scrub,
561	    spa_error_entry_compare, sizeof (spa_error_entry_t),
562	    offsetof(spa_error_entry_t, se_avl));
563	avl_create(&spa->spa_errlist_last,
564	    spa_error_entry_compare, sizeof (spa_error_entry_t),
565	    offsetof(spa_error_entry_t, se_avl));
566}
567
568/*
569 * Activate an uninitialized pool.
570 */
571static void
572spa_activate(spa_t *spa, int mode)
573{
574	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
575
576	spa->spa_state = POOL_STATE_ACTIVE;
577	spa->spa_mode = mode;
578
579	spa->spa_normal_class = metaslab_class_create(zfs_metaslab_ops);
580	spa->spa_log_class = metaslab_class_create(zfs_metaslab_ops);
581
582	for (int t = 0; t < ZIO_TYPES; t++) {
583		const zio_taskq_info_t *ztip = &zio_taskqs[t];
584		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
585			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
586			uint_t value = ztip->zti_nthreads[q].zti_value;
587			char name[32];
588
589			(void) snprintf(name, sizeof (name),
590			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
591
592			if (mode == zti_mode_tune) {
593				mode = zio_taskq_tune_mode;
594				value = zio_taskq_tune_value;
595				if (mode == zti_mode_tune)
596					mode = zti_mode_online_percent;
597			}
598
599			switch (mode) {
600			case zti_mode_fixed:
601				ASSERT3U(value, >=, 1);
602				value = MAX(value, 1);
603
604				spa->spa_zio_taskq[t][q] = taskq_create(name,
605				    value, maxclsyspri, 50, INT_MAX,
606				    TASKQ_PREPOPULATE);
607				break;
608
609			case zti_mode_online_percent:
610				spa->spa_zio_taskq[t][q] = taskq_create(name,
611				    value, maxclsyspri, 50, INT_MAX,
612				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
613				break;
614
615			case zti_mode_tune:
616			default:
617				panic("unrecognized mode for "
618				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
619				    "in spa_activate()",
620				    t, q, mode, value);
621				break;
622			}
623		}
624	}
625
626	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
627	    offsetof(vdev_t, vdev_config_dirty_node));
628	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
629	    offsetof(vdev_t, vdev_state_dirty_node));
630
631	txg_list_create(&spa->spa_vdev_txg_list,
632	    offsetof(struct vdev, vdev_txg_node));
633
634	avl_create(&spa->spa_errlist_scrub,
635	    spa_error_entry_compare, sizeof (spa_error_entry_t),
636	    offsetof(spa_error_entry_t, se_avl));
637	avl_create(&spa->spa_errlist_last,
638	    spa_error_entry_compare, sizeof (spa_error_entry_t),
639	    offsetof(spa_error_entry_t, se_avl));
640}
641
642/*
643 * Opposite of spa_activate().
644 */
645static void
646spa_deactivate(spa_t *spa)
647{
648	ASSERT(spa->spa_sync_on == B_FALSE);
649	ASSERT(spa->spa_dsl_pool == NULL);
650	ASSERT(spa->spa_root_vdev == NULL);
651	ASSERT(spa->spa_async_zio_root == NULL);
652	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
653
654	txg_list_destroy(&spa->spa_vdev_txg_list);
655
656	list_destroy(&spa->spa_config_dirty_list);
657	list_destroy(&spa->spa_state_dirty_list);
658
659	for (int t = 0; t < ZIO_TYPES; t++) {
660		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
661			taskq_destroy(spa->spa_zio_taskq[t][q]);
662			spa->spa_zio_taskq[t][q] = NULL;
663		}
664	}
665
666	metaslab_class_destroy(spa->spa_normal_class);
667	spa->spa_normal_class = NULL;
668
669	metaslab_class_destroy(spa->spa_log_class);
670	spa->spa_log_class = NULL;
671
672	/*
673	 * If this was part of an import or the open otherwise failed, we may
674	 * still have errors left in the queues.  Empty them just in case.
675	 */
676	spa_errlog_drain(spa);
677
678	avl_destroy(&spa->spa_errlist_scrub);
679	avl_destroy(&spa->spa_errlist_last);
680
681	spa->spa_state = POOL_STATE_UNINITIALIZED;
682}
683
684/*
685 * Verify a pool configuration, and construct the vdev tree appropriately.  This
686 * will create all the necessary vdevs in the appropriate layout, with each vdev
687 * in the CLOSED state.  This will prep the pool before open/creation/import.
688 * All vdev validation is done by the vdev_alloc() routine.
689 */
690static int
691spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
692    uint_t id, int atype)
693{
694	nvlist_t **child;
695	uint_t children;
696	int error;
697
698	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
699		return (error);
700
701	if ((*vdp)->vdev_ops->vdev_op_leaf)
702		return (0);
703
704	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
705	    &child, &children);
706
707	if (error == ENOENT)
708		return (0);
709
710	if (error) {
711		vdev_free(*vdp);
712		*vdp = NULL;
713		return (EINVAL);
714	}
715
716	for (int c = 0; c < children; c++) {
717		vdev_t *vd;
718		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
719		    atype)) != 0) {
720			vdev_free(*vdp);
721			*vdp = NULL;
722			return (error);
723		}
724	}
725
726	ASSERT(*vdp != NULL);
727
728	return (0);
729}
730
731/*
732 * Opposite of spa_load().
733 */
734static void
735spa_unload(spa_t *spa)
736{
737	int i;
738
739	ASSERT(MUTEX_HELD(&spa_namespace_lock));
740
741	/*
742	 * Stop async tasks.
743	 */
744	spa_async_suspend(spa);
745
746	/*
747	 * Stop syncing.
748	 */
749	if (spa->spa_sync_on) {
750		txg_sync_stop(spa->spa_dsl_pool);
751		spa->spa_sync_on = B_FALSE;
752	}
753
754	/*
755	 * Wait for any outstanding async I/O to complete.
756	 */
757	if (spa->spa_async_zio_root != NULL) {
758		(void) zio_wait(spa->spa_async_zio_root);
759		spa->spa_async_zio_root = NULL;
760	}
761
762	/*
763	 * Close the dsl pool.
764	 */
765	if (spa->spa_dsl_pool) {
766		dsl_pool_close(spa->spa_dsl_pool);
767		spa->spa_dsl_pool = NULL;
768	}
769
770	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
771
772	/*
773	 * Drop and purge level 2 cache
774	 */
775	spa_l2cache_drop(spa);
776
777	/*
778	 * Close all vdevs.
779	 */
780	if (spa->spa_root_vdev)
781		vdev_free(spa->spa_root_vdev);
782	ASSERT(spa->spa_root_vdev == NULL);
783
784	for (i = 0; i < spa->spa_spares.sav_count; i++)
785		vdev_free(spa->spa_spares.sav_vdevs[i]);
786	if (spa->spa_spares.sav_vdevs) {
787		kmem_free(spa->spa_spares.sav_vdevs,
788		    spa->spa_spares.sav_count * sizeof (void *));
789		spa->spa_spares.sav_vdevs = NULL;
790	}
791	if (spa->spa_spares.sav_config) {
792		nvlist_free(spa->spa_spares.sav_config);
793		spa->spa_spares.sav_config = NULL;
794	}
795	spa->spa_spares.sav_count = 0;
796
797	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
798		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
799	if (spa->spa_l2cache.sav_vdevs) {
800		kmem_free(spa->spa_l2cache.sav_vdevs,
801		    spa->spa_l2cache.sav_count * sizeof (void *));
802		spa->spa_l2cache.sav_vdevs = NULL;
803	}
804	if (spa->spa_l2cache.sav_config) {
805		nvlist_free(spa->spa_l2cache.sav_config);
806		spa->spa_l2cache.sav_config = NULL;
807	}
808	spa->spa_l2cache.sav_count = 0;
809
810	spa->spa_async_suspended = 0;
811
812	spa_config_exit(spa, SCL_ALL, FTAG);
813}
814
815/*
816 * Load (or re-load) the current list of vdevs describing the active spares for
817 * this pool.  When this is called, we have some form of basic information in
818 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
819 * then re-generate a more complete list including status information.
820 */
821static void
822spa_load_spares(spa_t *spa)
823{
824	nvlist_t **spares;
825	uint_t nspares;
826	int i;
827	vdev_t *vd, *tvd;
828
829	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
830
831	/*
832	 * First, close and free any existing spare vdevs.
833	 */
834	for (i = 0; i < spa->spa_spares.sav_count; i++) {
835		vd = spa->spa_spares.sav_vdevs[i];
836
837		/* Undo the call to spa_activate() below */
838		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
839		    B_FALSE)) != NULL && tvd->vdev_isspare)
840			spa_spare_remove(tvd);
841		vdev_close(vd);
842		vdev_free(vd);
843	}
844
845	if (spa->spa_spares.sav_vdevs)
846		kmem_free(spa->spa_spares.sav_vdevs,
847		    spa->spa_spares.sav_count * sizeof (void *));
848
849	if (spa->spa_spares.sav_config == NULL)
850		nspares = 0;
851	else
852		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
853		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
854
855	spa->spa_spares.sav_count = (int)nspares;
856	spa->spa_spares.sav_vdevs = NULL;
857
858	if (nspares == 0)
859		return;
860
861	/*
862	 * Construct the array of vdevs, opening them to get status in the
863	 * process.   For each spare, there is potentially two different vdev_t
864	 * structures associated with it: one in the list of spares (used only
865	 * for basic validation purposes) and one in the active vdev
866	 * configuration (if it's spared in).  During this phase we open and
867	 * validate each vdev on the spare list.  If the vdev also exists in the
868	 * active configuration, then we also mark this vdev as an active spare.
869	 */
870	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
871	    KM_SLEEP);
872	for (i = 0; i < spa->spa_spares.sav_count; i++) {
873		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
874		    VDEV_ALLOC_SPARE) == 0);
875		ASSERT(vd != NULL);
876
877		spa->spa_spares.sav_vdevs[i] = vd;
878
879		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
880		    B_FALSE)) != NULL) {
881			if (!tvd->vdev_isspare)
882				spa_spare_add(tvd);
883
884			/*
885			 * We only mark the spare active if we were successfully
886			 * able to load the vdev.  Otherwise, importing a pool
887			 * with a bad active spare would result in strange
888			 * behavior, because multiple pool would think the spare
889			 * is actively in use.
890			 *
891			 * There is a vulnerability here to an equally bizarre
892			 * circumstance, where a dead active spare is later
893			 * brought back to life (onlined or otherwise).  Given
894			 * the rarity of this scenario, and the extra complexity
895			 * it adds, we ignore the possibility.
896			 */
897			if (!vdev_is_dead(tvd))
898				spa_spare_activate(tvd);
899		}
900
901		vd->vdev_top = vd;
902		vd->vdev_aux = &spa->spa_spares;
903
904		if (vdev_open(vd) != 0)
905			continue;
906
907		if (vdev_validate_aux(vd) == 0)
908			spa_spare_add(vd);
909	}
910
911	/*
912	 * Recompute the stashed list of spares, with status information
913	 * this time.
914	 */
915	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
916	    DATA_TYPE_NVLIST_ARRAY) == 0);
917
918	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
919	    KM_SLEEP);
920	for (i = 0; i < spa->spa_spares.sav_count; i++)
921		spares[i] = vdev_config_generate(spa,
922		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
923	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
924	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
925	for (i = 0; i < spa->spa_spares.sav_count; i++)
926		nvlist_free(spares[i]);
927	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
928}
929
930/*
931 * Load (or re-load) the current list of vdevs describing the active l2cache for
932 * this pool.  When this is called, we have some form of basic information in
933 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
934 * then re-generate a more complete list including status information.
935 * Devices which are already active have their details maintained, and are
936 * not re-opened.
937 */
938static void
939spa_load_l2cache(spa_t *spa)
940{
941	nvlist_t **l2cache;
942	uint_t nl2cache;
943	int i, j, oldnvdevs;
944	uint64_t guid;
945	vdev_t *vd, **oldvdevs, **newvdevs;
946	spa_aux_vdev_t *sav = &spa->spa_l2cache;
947
948	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
949
950	if (sav->sav_config != NULL) {
951		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
952		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
953		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
954	} else {
955		nl2cache = 0;
956	}
957
958	oldvdevs = sav->sav_vdevs;
959	oldnvdevs = sav->sav_count;
960	sav->sav_vdevs = NULL;
961	sav->sav_count = 0;
962
963	/*
964	 * Process new nvlist of vdevs.
965	 */
966	for (i = 0; i < nl2cache; i++) {
967		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
968		    &guid) == 0);
969
970		newvdevs[i] = NULL;
971		for (j = 0; j < oldnvdevs; j++) {
972			vd = oldvdevs[j];
973			if (vd != NULL && guid == vd->vdev_guid) {
974				/*
975				 * Retain previous vdev for add/remove ops.
976				 */
977				newvdevs[i] = vd;
978				oldvdevs[j] = NULL;
979				break;
980			}
981		}
982
983		if (newvdevs[i] == NULL) {
984			/*
985			 * Create new vdev
986			 */
987			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
988			    VDEV_ALLOC_L2CACHE) == 0);
989			ASSERT(vd != NULL);
990			newvdevs[i] = vd;
991
992			/*
993			 * Commit this vdev as an l2cache device,
994			 * even if it fails to open.
995			 */
996			spa_l2cache_add(vd);
997
998			vd->vdev_top = vd;
999			vd->vdev_aux = sav;
1000
1001			spa_l2cache_activate(vd);
1002
1003			if (vdev_open(vd) != 0)
1004				continue;
1005
1006			(void) vdev_validate_aux(vd);
1007
1008			if (!vdev_is_dead(vd))
1009				l2arc_add_vdev(spa, vd);
1010		}
1011	}
1012
1013	/*
1014	 * Purge vdevs that were dropped
1015	 */
1016	for (i = 0; i < oldnvdevs; i++) {
1017		uint64_t pool;
1018
1019		vd = oldvdevs[i];
1020		if (vd != NULL) {
1021			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1022			    pool != 0ULL && l2arc_vdev_present(vd))
1023				l2arc_remove_vdev(vd);
1024			(void) vdev_close(vd);
1025			spa_l2cache_remove(vd);
1026		}
1027	}
1028
1029	if (oldvdevs)
1030		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1031
1032	if (sav->sav_config == NULL)
1033		goto out;
1034
1035	sav->sav_vdevs = newvdevs;
1036	sav->sav_count = (int)nl2cache;
1037
1038	/*
1039	 * Recompute the stashed list of l2cache devices, with status
1040	 * information this time.
1041	 */
1042	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1043	    DATA_TYPE_NVLIST_ARRAY) == 0);
1044
1045	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1046	for (i = 0; i < sav->sav_count; i++)
1047		l2cache[i] = vdev_config_generate(spa,
1048		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1049	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1050	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1051out:
1052	for (i = 0; i < sav->sav_count; i++)
1053		nvlist_free(l2cache[i]);
1054	if (sav->sav_count)
1055		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1056}
1057
1058static int
1059load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1060{
1061	dmu_buf_t *db;
1062	char *packed = NULL;
1063	size_t nvsize = 0;
1064	int error;
1065	*value = NULL;
1066
1067	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1068	nvsize = *(uint64_t *)db->db_data;
1069	dmu_buf_rele(db, FTAG);
1070
1071	packed = kmem_alloc(nvsize, KM_SLEEP);
1072	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1073	    DMU_READ_PREFETCH);
1074	if (error == 0)
1075		error = nvlist_unpack(packed, nvsize, value, 0);
1076	kmem_free(packed, nvsize);
1077
1078	return (error);
1079}
1080
1081/*
1082 * Checks to see if the given vdev could not be opened, in which case we post a
1083 * sysevent to notify the autoreplace code that the device has been removed.
1084 */
1085static void
1086spa_check_removed(vdev_t *vd)
1087{
1088	for (int c = 0; c < vd->vdev_children; c++)
1089		spa_check_removed(vd->vdev_child[c]);
1090
1091	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1092		zfs_post_autoreplace(vd->vdev_spa, vd);
1093		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1094	}
1095}
1096
1097/*
1098 * Load the slog device state from the config object since it's possible
1099 * that the label does not contain the most up-to-date information.
1100 */
1101void
1102spa_load_log_state(spa_t *spa)
1103{
1104	nvlist_t *nv, *nvroot, **child;
1105	uint64_t is_log;
1106	uint_t children;
1107	vdev_t *rvd = spa->spa_root_vdev;
1108
1109	VERIFY(load_nvlist(spa, spa->spa_config_object, &nv) == 0);
1110	VERIFY(nvlist_lookup_nvlist(nv, ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1111	VERIFY(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
1112	    &child, &children) == 0);
1113
1114	for (int c = 0; c < children; c++) {
1115		vdev_t *tvd = rvd->vdev_child[c];
1116
1117		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_LOG,
1118		    &is_log) == 0 && is_log)
1119			vdev_load_log_state(tvd, child[c]);
1120	}
1121	nvlist_free(nv);
1122}
1123
1124/*
1125 * Check for missing log devices
1126 */
1127int
1128spa_check_logs(spa_t *spa)
1129{
1130	switch (spa->spa_log_state) {
1131	case SPA_LOG_MISSING:
1132		/* need to recheck in case slog has been restored */
1133	case SPA_LOG_UNKNOWN:
1134		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1135		    DS_FIND_CHILDREN)) {
1136			spa->spa_log_state = SPA_LOG_MISSING;
1137			return (1);
1138		}
1139		break;
1140	}
1141	return (0);
1142}
1143
1144/*
1145 * Load an existing storage pool, using the pool's builtin spa_config as a
1146 * source of configuration information.
1147 */
1148static int
1149spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1150{
1151	int error = 0;
1152	nvlist_t *nvroot = NULL;
1153	vdev_t *rvd;
1154	uberblock_t *ub = &spa->spa_uberblock;
1155	uint64_t config_cache_txg = spa->spa_config_txg;
1156	uint64_t pool_guid;
1157	uint64_t version;
1158	uint64_t autoreplace = 0;
1159	int orig_mode = spa->spa_mode;
1160	char *ereport = FM_EREPORT_ZFS_POOL;
1161
1162	/*
1163	 * If this is an untrusted config, access the pool in read-only mode.
1164	 * This prevents things like resilvering recently removed devices.
1165	 */
1166	if (!mosconfig)
1167		spa->spa_mode = FREAD;
1168
1169	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1170
1171	spa->spa_load_state = state;
1172
1173	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1174	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1175		error = EINVAL;
1176		goto out;
1177	}
1178
1179	/*
1180	 * Versioning wasn't explicitly added to the label until later, so if
1181	 * it's not present treat it as the initial version.
1182	 */
1183	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1184		version = SPA_VERSION_INITIAL;
1185
1186	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1187	    &spa->spa_config_txg);
1188
1189	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1190	    spa_guid_exists(pool_guid, 0)) {
1191		error = EEXIST;
1192		goto out;
1193	}
1194
1195	spa->spa_load_guid = pool_guid;
1196
1197	/*
1198	 * Create "The Godfather" zio to hold all async IOs
1199	 */
1200	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1201	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1202
1203	/*
1204	 * Parse the configuration into a vdev tree.  We explicitly set the
1205	 * value that will be returned by spa_version() since parsing the
1206	 * configuration requires knowing the version number.
1207	 */
1208	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1209	spa->spa_ubsync.ub_version = version;
1210	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1211	spa_config_exit(spa, SCL_ALL, FTAG);
1212
1213	if (error != 0)
1214		goto out;
1215
1216	ASSERT(spa->spa_root_vdev == rvd);
1217	ASSERT(spa_guid(spa) == pool_guid);
1218
1219	/*
1220	 * Try to open all vdevs, loading each label in the process.
1221	 */
1222	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1223	error = vdev_open(rvd);
1224	spa_config_exit(spa, SCL_ALL, FTAG);
1225	if (error != 0)
1226		goto out;
1227
1228	/*
1229	 * We need to validate the vdev labels against the configuration that
1230	 * we have in hand, which is dependent on the setting of mosconfig. If
1231	 * mosconfig is true then we're validating the vdev labels based on
1232	 * that config. Otherwise, we're validating against the cached config
1233	 * (zpool.cache) that was read when we loaded the zfs module, and then
1234	 * later we will recursively call spa_load() and validate against
1235	 * the vdev config.
1236	 */
1237	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1238	error = vdev_validate(rvd);
1239	spa_config_exit(spa, SCL_ALL, FTAG);
1240	if (error != 0)
1241		goto out;
1242
1243	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1244		error = ENXIO;
1245		goto out;
1246	}
1247
1248	/*
1249	 * Find the best uberblock.
1250	 */
1251	vdev_uberblock_load(NULL, rvd, ub);
1252
1253	/*
1254	 * If we weren't able to find a single valid uberblock, return failure.
1255	 */
1256	if (ub->ub_txg == 0) {
1257		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1258		    VDEV_AUX_CORRUPT_DATA);
1259		error = ENXIO;
1260		goto out;
1261	}
1262
1263	/*
1264	 * If the pool is newer than the code, we can't open it.
1265	 */
1266	if (ub->ub_version > SPA_VERSION) {
1267		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268		    VDEV_AUX_VERSION_NEWER);
1269		error = ENOTSUP;
1270		goto out;
1271	}
1272
1273	/*
1274	 * If the vdev guid sum doesn't match the uberblock, we have an
1275	 * incomplete configuration.
1276	 */
1277	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1278		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1279		    VDEV_AUX_BAD_GUID_SUM);
1280		error = ENXIO;
1281		goto out;
1282	}
1283
1284	/*
1285	 * Initialize internal SPA structures.
1286	 */
1287	spa->spa_state = POOL_STATE_ACTIVE;
1288	spa->spa_ubsync = spa->spa_uberblock;
1289	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1290	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1291	if (error) {
1292		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1293		    VDEV_AUX_CORRUPT_DATA);
1294		goto out;
1295	}
1296	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1297
1298	if (zap_lookup(spa->spa_meta_objset,
1299	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1300	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1301		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1302		    VDEV_AUX_CORRUPT_DATA);
1303		error = EIO;
1304		goto out;
1305	}
1306
1307	if (!mosconfig) {
1308		nvlist_t *newconfig;
1309		uint64_t hostid;
1310
1311		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1312			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313			    VDEV_AUX_CORRUPT_DATA);
1314			error = EIO;
1315			goto out;
1316		}
1317
1318		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1319		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1320			char *hostname;
1321			unsigned long myhostid = 0;
1322
1323			VERIFY(nvlist_lookup_string(newconfig,
1324			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1325
1326#ifdef	_KERNEL
1327			myhostid = zone_get_hostid(NULL);
1328#else	/* _KERNEL */
1329			/*
1330			 * We're emulating the system's hostid in userland, so
1331			 * we can't use zone_get_hostid().
1332			 */
1333			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1334#endif	/* _KERNEL */
1335			if (hostid != 0 && myhostid != 0 &&
1336			    hostid != myhostid) {
1337				cmn_err(CE_WARN, "pool '%s' could not be "
1338				    "loaded as it was last accessed by "
1339				    "another system (host: %s hostid: 0x%lx). "
1340				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1341				    spa_name(spa), hostname,
1342				    (unsigned long)hostid);
1343				error = EBADF;
1344				goto out;
1345			}
1346		}
1347
1348		spa_config_set(spa, newconfig);
1349		spa_unload(spa);
1350		spa_deactivate(spa);
1351		spa_activate(spa, orig_mode);
1352
1353		return (spa_load(spa, newconfig, state, B_TRUE));
1354	}
1355
1356	if (zap_lookup(spa->spa_meta_objset,
1357	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1358	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1359		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1360		    VDEV_AUX_CORRUPT_DATA);
1361		error = EIO;
1362		goto out;
1363	}
1364
1365	/*
1366	 * Load the bit that tells us to use the new accounting function
1367	 * (raid-z deflation).  If we have an older pool, this will not
1368	 * be present.
1369	 */
1370	error = zap_lookup(spa->spa_meta_objset,
1371	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1372	    sizeof (uint64_t), 1, &spa->spa_deflate);
1373	if (error != 0 && error != ENOENT) {
1374		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375		    VDEV_AUX_CORRUPT_DATA);
1376		error = EIO;
1377		goto out;
1378	}
1379
1380	/*
1381	 * Load the persistent error log.  If we have an older pool, this will
1382	 * not be present.
1383	 */
1384	error = zap_lookup(spa->spa_meta_objset,
1385	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1386	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1387	if (error != 0 && error != ENOENT) {
1388		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1389		    VDEV_AUX_CORRUPT_DATA);
1390		error = EIO;
1391		goto out;
1392	}
1393
1394	error = zap_lookup(spa->spa_meta_objset,
1395	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1396	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1397	if (error != 0 && error != ENOENT) {
1398		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1399		    VDEV_AUX_CORRUPT_DATA);
1400		error = EIO;
1401		goto out;
1402	}
1403
1404	/*
1405	 * Load the history object.  If we have an older pool, this
1406	 * will not be present.
1407	 */
1408	error = zap_lookup(spa->spa_meta_objset,
1409	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1410	    sizeof (uint64_t), 1, &spa->spa_history);
1411	if (error != 0 && error != ENOENT) {
1412		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1413		    VDEV_AUX_CORRUPT_DATA);
1414		error = EIO;
1415		goto out;
1416	}
1417
1418	/*
1419	 * Load any hot spares for this pool.
1420	 */
1421	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1422	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1423	if (error != 0 && error != ENOENT) {
1424		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1425		    VDEV_AUX_CORRUPT_DATA);
1426		error = EIO;
1427		goto out;
1428	}
1429	if (error == 0) {
1430		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1431		if (load_nvlist(spa, spa->spa_spares.sav_object,
1432		    &spa->spa_spares.sav_config) != 0) {
1433			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1434			    VDEV_AUX_CORRUPT_DATA);
1435			error = EIO;
1436			goto out;
1437		}
1438
1439		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1440		spa_load_spares(spa);
1441		spa_config_exit(spa, SCL_ALL, FTAG);
1442	}
1443
1444	/*
1445	 * Load any level 2 ARC devices for this pool.
1446	 */
1447	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1448	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1449	    &spa->spa_l2cache.sav_object);
1450	if (error != 0 && error != ENOENT) {
1451		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1452		    VDEV_AUX_CORRUPT_DATA);
1453		error = EIO;
1454		goto out;
1455	}
1456	if (error == 0) {
1457		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1458		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1459		    &spa->spa_l2cache.sav_config) != 0) {
1460			vdev_set_state(rvd, B_TRUE,
1461			    VDEV_STATE_CANT_OPEN,
1462			    VDEV_AUX_CORRUPT_DATA);
1463			error = EIO;
1464			goto out;
1465		}
1466
1467		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1468		spa_load_l2cache(spa);
1469		spa_config_exit(spa, SCL_ALL, FTAG);
1470	}
1471
1472	spa_load_log_state(spa);
1473
1474	if (spa_check_logs(spa)) {
1475		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1476		    VDEV_AUX_BAD_LOG);
1477		error = ENXIO;
1478		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1479		goto out;
1480	}
1481
1482
1483	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1484
1485	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1486	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1487
1488	if (error && error != ENOENT) {
1489		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1490		    VDEV_AUX_CORRUPT_DATA);
1491		error = EIO;
1492		goto out;
1493	}
1494
1495	if (error == 0) {
1496		(void) zap_lookup(spa->spa_meta_objset,
1497		    spa->spa_pool_props_object,
1498		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1499		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1500		(void) zap_lookup(spa->spa_meta_objset,
1501		    spa->spa_pool_props_object,
1502		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1503		    sizeof (uint64_t), 1, &autoreplace);
1504		(void) zap_lookup(spa->spa_meta_objset,
1505		    spa->spa_pool_props_object,
1506		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1507		    sizeof (uint64_t), 1, &spa->spa_delegation);
1508		(void) zap_lookup(spa->spa_meta_objset,
1509		    spa->spa_pool_props_object,
1510		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1511		    sizeof (uint64_t), 1, &spa->spa_failmode);
1512		(void) zap_lookup(spa->spa_meta_objset,
1513		    spa->spa_pool_props_object,
1514		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1515		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1516	}
1517
1518	/*
1519	 * If the 'autoreplace' property is set, then post a resource notifying
1520	 * the ZFS DE that it should not issue any faults for unopenable
1521	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1522	 * unopenable vdevs so that the normal autoreplace handler can take
1523	 * over.
1524	 */
1525	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1526		spa_check_removed(spa->spa_root_vdev);
1527
1528	/*
1529	 * Load the vdev state for all toplevel vdevs.
1530	 */
1531	vdev_load(rvd);
1532
1533	/*
1534	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1535	 */
1536	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1537	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1538	spa_config_exit(spa, SCL_ALL, FTAG);
1539
1540	/*
1541	 * Check the state of the root vdev.  If it can't be opened, it
1542	 * indicates one or more toplevel vdevs are faulted.
1543	 */
1544	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1545		error = ENXIO;
1546		goto out;
1547	}
1548
1549	if (spa_writeable(spa)) {
1550		dmu_tx_t *tx;
1551		int need_update = B_FALSE;
1552
1553		ASSERT(state != SPA_LOAD_TRYIMPORT);
1554
1555		/*
1556		 * Claim log blocks that haven't been committed yet.
1557		 * This must all happen in a single txg.
1558		 */
1559		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1560		    spa_first_txg(spa));
1561		(void) dmu_objset_find(spa_name(spa),
1562		    zil_claim, tx, DS_FIND_CHILDREN);
1563		dmu_tx_commit(tx);
1564
1565		spa->spa_log_state = SPA_LOG_GOOD;
1566		spa->spa_sync_on = B_TRUE;
1567		txg_sync_start(spa->spa_dsl_pool);
1568
1569		/*
1570		 * Wait for all claims to sync.
1571		 */
1572		txg_wait_synced(spa->spa_dsl_pool, 0);
1573
1574		/*
1575		 * If the config cache is stale, or we have uninitialized
1576		 * metaslabs (see spa_vdev_add()), then update the config.
1577		 */
1578		if (config_cache_txg != spa->spa_config_txg ||
1579		    state == SPA_LOAD_IMPORT)
1580			need_update = B_TRUE;
1581
1582		for (int c = 0; c < rvd->vdev_children; c++)
1583			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1584				need_update = B_TRUE;
1585
1586		/*
1587		 * Update the config cache asychronously in case we're the
1588		 * root pool, in which case the config cache isn't writable yet.
1589		 */
1590		if (need_update)
1591			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1592
1593		/*
1594		 * Check all DTLs to see if anything needs resilvering.
1595		 */
1596		if (vdev_resilver_needed(rvd, NULL, NULL))
1597			spa_async_request(spa, SPA_ASYNC_RESILVER);
1598	}
1599
1600	error = 0;
1601out:
1602	spa->spa_minref = refcount_count(&spa->spa_refcount);
1603	if (error && error != EBADF)
1604		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1605	spa->spa_load_state = SPA_LOAD_NONE;
1606	spa->spa_ena = 0;
1607
1608	return (error);
1609}
1610
1611/*
1612 * Pool Open/Import
1613 *
1614 * The import case is identical to an open except that the configuration is sent
1615 * down from userland, instead of grabbed from the configuration cache.  For the
1616 * case of an open, the pool configuration will exist in the
1617 * POOL_STATE_UNINITIALIZED state.
1618 *
1619 * The stats information (gen/count/ustats) is used to gather vdev statistics at
1620 * the same time open the pool, without having to keep around the spa_t in some
1621 * ambiguous state.
1622 */
1623static int
1624spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1625{
1626	spa_t *spa;
1627	int error;
1628	int locked = B_FALSE;
1629
1630	*spapp = NULL;
1631
1632	/*
1633	 * As disgusting as this is, we need to support recursive calls to this
1634	 * function because dsl_dir_open() is called during spa_load(), and ends
1635	 * up calling spa_open() again.  The real fix is to figure out how to
1636	 * avoid dsl_dir_open() calling this in the first place.
1637	 */
1638	if (mutex_owner(&spa_namespace_lock) != curthread) {
1639		mutex_enter(&spa_namespace_lock);
1640		locked = B_TRUE;
1641	}
1642
1643	if ((spa = spa_lookup(pool)) == NULL) {
1644		if (locked)
1645			mutex_exit(&spa_namespace_lock);
1646		return (ENOENT);
1647	}
1648	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1649
1650		spa_activate(spa, spa_mode_global);
1651
1652		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1653
1654		if (error == EBADF) {
1655			/*
1656			 * If vdev_validate() returns failure (indicated by
1657			 * EBADF), it indicates that one of the vdevs indicates
1658			 * that the pool has been exported or destroyed.  If
1659			 * this is the case, the config cache is out of sync and
1660			 * we should remove the pool from the namespace.
1661			 */
1662			spa_unload(spa);
1663			spa_deactivate(spa);
1664			spa_config_sync(spa, B_TRUE, B_TRUE);
1665			spa_remove(spa);
1666			if (locked)
1667				mutex_exit(&spa_namespace_lock);
1668			return (ENOENT);
1669		}
1670
1671		if (error) {
1672			/*
1673			 * We can't open the pool, but we still have useful
1674			 * information: the state of each vdev after the
1675			 * attempted vdev_open().  Return this to the user.
1676			 */
1677			if (config != NULL && spa->spa_root_vdev != NULL)
1678				*config = spa_config_generate(spa, NULL, -1ULL,
1679				    B_TRUE);
1680			spa_unload(spa);
1681			spa_deactivate(spa);
1682			spa->spa_last_open_failed = B_TRUE;
1683			if (locked)
1684				mutex_exit(&spa_namespace_lock);
1685			*spapp = NULL;
1686			return (error);
1687		} else {
1688			spa->spa_last_open_failed = B_FALSE;
1689		}
1690	}
1691
1692	spa_open_ref(spa, tag);
1693
1694	if (locked)
1695		mutex_exit(&spa_namespace_lock);
1696
1697	*spapp = spa;
1698
1699	if (config != NULL)
1700		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1701
1702	return (0);
1703}
1704
1705int
1706spa_open(const char *name, spa_t **spapp, void *tag)
1707{
1708	return (spa_open_common(name, spapp, tag, NULL));
1709}
1710
1711/*
1712 * Lookup the given spa_t, incrementing the inject count in the process,
1713 * preventing it from being exported or destroyed.
1714 */
1715spa_t *
1716spa_inject_addref(char *name)
1717{
1718	spa_t *spa;
1719
1720	mutex_enter(&spa_namespace_lock);
1721	if ((spa = spa_lookup(name)) == NULL) {
1722		mutex_exit(&spa_namespace_lock);
1723		return (NULL);
1724	}
1725	spa->spa_inject_ref++;
1726	mutex_exit(&spa_namespace_lock);
1727
1728	return (spa);
1729}
1730
1731void
1732spa_inject_delref(spa_t *spa)
1733{
1734	mutex_enter(&spa_namespace_lock);
1735	spa->spa_inject_ref--;
1736	mutex_exit(&spa_namespace_lock);
1737}
1738
1739/*
1740 * Add spares device information to the nvlist.
1741 */
1742static void
1743spa_add_spares(spa_t *spa, nvlist_t *config)
1744{
1745	nvlist_t **spares;
1746	uint_t i, nspares;
1747	nvlist_t *nvroot;
1748	uint64_t guid;
1749	vdev_stat_t *vs;
1750	uint_t vsc;
1751	uint64_t pool;
1752
1753	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1754
1755	if (spa->spa_spares.sav_count == 0)
1756		return;
1757
1758	VERIFY(nvlist_lookup_nvlist(config,
1759	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1760	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1761	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1762	if (nspares != 0) {
1763		VERIFY(nvlist_add_nvlist_array(nvroot,
1764		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1765		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1766		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1767
1768		/*
1769		 * Go through and find any spares which have since been
1770		 * repurposed as an active spare.  If this is the case, update
1771		 * their status appropriately.
1772		 */
1773		for (i = 0; i < nspares; i++) {
1774			VERIFY(nvlist_lookup_uint64(spares[i],
1775			    ZPOOL_CONFIG_GUID, &guid) == 0);
1776			if (spa_spare_exists(guid, &pool, NULL) &&
1777			    pool != 0ULL) {
1778				VERIFY(nvlist_lookup_uint64_array(
1779				    spares[i], ZPOOL_CONFIG_STATS,
1780				    (uint64_t **)&vs, &vsc) == 0);
1781				vs->vs_state = VDEV_STATE_CANT_OPEN;
1782				vs->vs_aux = VDEV_AUX_SPARED;
1783			}
1784		}
1785	}
1786}
1787
1788/*
1789 * Add l2cache device information to the nvlist, including vdev stats.
1790 */
1791static void
1792spa_add_l2cache(spa_t *spa, nvlist_t *config)
1793{
1794	nvlist_t **l2cache;
1795	uint_t i, j, nl2cache;
1796	nvlist_t *nvroot;
1797	uint64_t guid;
1798	vdev_t *vd;
1799	vdev_stat_t *vs;
1800	uint_t vsc;
1801
1802	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1803
1804	if (spa->spa_l2cache.sav_count == 0)
1805		return;
1806
1807	VERIFY(nvlist_lookup_nvlist(config,
1808	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1809	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1810	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1811	if (nl2cache != 0) {
1812		VERIFY(nvlist_add_nvlist_array(nvroot,
1813		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1814		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1815		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1816
1817		/*
1818		 * Update level 2 cache device stats.
1819		 */
1820
1821		for (i = 0; i < nl2cache; i++) {
1822			VERIFY(nvlist_lookup_uint64(l2cache[i],
1823			    ZPOOL_CONFIG_GUID, &guid) == 0);
1824
1825			vd = NULL;
1826			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1827				if (guid ==
1828				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1829					vd = spa->spa_l2cache.sav_vdevs[j];
1830					break;
1831				}
1832			}
1833			ASSERT(vd != NULL);
1834
1835			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1836			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1837			vdev_get_stats(vd, vs);
1838		}
1839	}
1840}
1841
1842int
1843spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1844{
1845	int error;
1846	spa_t *spa;
1847
1848	*config = NULL;
1849	error = spa_open_common(name, &spa, FTAG, config);
1850
1851	if (spa != NULL) {
1852		/*
1853		 * This still leaves a window of inconsistency where the spares
1854		 * or l2cache devices could change and the config would be
1855		 * self-inconsistent.
1856		 */
1857		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1858
1859		if (*config != NULL) {
1860			VERIFY(nvlist_add_uint64(*config,
1861			    ZPOOL_CONFIG_ERRCOUNT,
1862			    spa_get_errlog_size(spa)) == 0);
1863
1864			if (spa_suspended(spa))
1865				VERIFY(nvlist_add_uint64(*config,
1866				    ZPOOL_CONFIG_SUSPENDED,
1867				    spa->spa_failmode) == 0);
1868
1869			spa_add_spares(spa, *config);
1870			spa_add_l2cache(spa, *config);
1871		}
1872	}
1873
1874	/*
1875	 * We want to get the alternate root even for faulted pools, so we cheat
1876	 * and call spa_lookup() directly.
1877	 */
1878	if (altroot) {
1879		if (spa == NULL) {
1880			mutex_enter(&spa_namespace_lock);
1881			spa = spa_lookup(name);
1882			if (spa)
1883				spa_altroot(spa, altroot, buflen);
1884			else
1885				altroot[0] = '\0';
1886			spa = NULL;
1887			mutex_exit(&spa_namespace_lock);
1888		} else {
1889			spa_altroot(spa, altroot, buflen);
1890		}
1891	}
1892
1893	if (spa != NULL) {
1894		spa_config_exit(spa, SCL_CONFIG, FTAG);
1895		spa_close(spa, FTAG);
1896	}
1897
1898	return (error);
1899}
1900
1901/*
1902 * Validate that the auxiliary device array is well formed.  We must have an
1903 * array of nvlists, each which describes a valid leaf vdev.  If this is an
1904 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1905 * specified, as long as they are well-formed.
1906 */
1907static int
1908spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1909    spa_aux_vdev_t *sav, const char *config, uint64_t version,
1910    vdev_labeltype_t label)
1911{
1912	nvlist_t **dev;
1913	uint_t i, ndev;
1914	vdev_t *vd;
1915	int error;
1916
1917	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1918
1919	/*
1920	 * It's acceptable to have no devs specified.
1921	 */
1922	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1923		return (0);
1924
1925	if (ndev == 0)
1926		return (EINVAL);
1927
1928	/*
1929	 * Make sure the pool is formatted with a version that supports this
1930	 * device type.
1931	 */
1932	if (spa_version(spa) < version)
1933		return (ENOTSUP);
1934
1935	/*
1936	 * Set the pending device list so we correctly handle device in-use
1937	 * checking.
1938	 */
1939	sav->sav_pending = dev;
1940	sav->sav_npending = ndev;
1941
1942	for (i = 0; i < ndev; i++) {
1943		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1944		    mode)) != 0)
1945			goto out;
1946
1947		if (!vd->vdev_ops->vdev_op_leaf) {
1948			vdev_free(vd);
1949			error = EINVAL;
1950			goto out;
1951		}
1952
1953		/*
1954		 * The L2ARC currently only supports disk devices in
1955		 * kernel context.  For user-level testing, we allow it.
1956		 */
1957#ifdef _KERNEL
1958		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1959		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1960			error = ENOTBLK;
1961			goto out;
1962		}
1963#endif
1964		vd->vdev_top = vd;
1965
1966		if ((error = vdev_open(vd)) == 0 &&
1967		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1968			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1969			    vd->vdev_guid) == 0);
1970		}
1971
1972		vdev_free(vd);
1973
1974		if (error &&
1975		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1976			goto out;
1977		else
1978			error = 0;
1979	}
1980
1981out:
1982	sav->sav_pending = NULL;
1983	sav->sav_npending = 0;
1984	return (error);
1985}
1986
1987static int
1988spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1989{
1990	int error;
1991
1992	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1993
1994	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1995	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1996	    VDEV_LABEL_SPARE)) != 0) {
1997		return (error);
1998	}
1999
2000	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2001	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2002	    VDEV_LABEL_L2CACHE));
2003}
2004
2005static void
2006spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2007    const char *config)
2008{
2009	int i;
2010
2011	if (sav->sav_config != NULL) {
2012		nvlist_t **olddevs;
2013		uint_t oldndevs;
2014		nvlist_t **newdevs;
2015
2016		/*
2017		 * Generate new dev list by concatentating with the
2018		 * current dev list.
2019		 */
2020		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2021		    &olddevs, &oldndevs) == 0);
2022
2023		newdevs = kmem_alloc(sizeof (void *) *
2024		    (ndevs + oldndevs), KM_SLEEP);
2025		for (i = 0; i < oldndevs; i++)
2026			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2027			    KM_SLEEP) == 0);
2028		for (i = 0; i < ndevs; i++)
2029			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2030			    KM_SLEEP) == 0);
2031
2032		VERIFY(nvlist_remove(sav->sav_config, config,
2033		    DATA_TYPE_NVLIST_ARRAY) == 0);
2034
2035		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2036		    config, newdevs, ndevs + oldndevs) == 0);
2037		for (i = 0; i < oldndevs + ndevs; i++)
2038			nvlist_free(newdevs[i]);
2039		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2040	} else {
2041		/*
2042		 * Generate a new dev list.
2043		 */
2044		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2045		    KM_SLEEP) == 0);
2046		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2047		    devs, ndevs) == 0);
2048	}
2049}
2050
2051/*
2052 * Stop and drop level 2 ARC devices
2053 */
2054void
2055spa_l2cache_drop(spa_t *spa)
2056{
2057	vdev_t *vd;
2058	int i;
2059	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2060
2061	for (i = 0; i < sav->sav_count; i++) {
2062		uint64_t pool;
2063
2064		vd = sav->sav_vdevs[i];
2065		ASSERT(vd != NULL);
2066
2067		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2068		    pool != 0ULL && l2arc_vdev_present(vd))
2069			l2arc_remove_vdev(vd);
2070		if (vd->vdev_isl2cache)
2071			spa_l2cache_remove(vd);
2072		vdev_clear_stats(vd);
2073		(void) vdev_close(vd);
2074	}
2075}
2076
2077/*
2078 * Pool Creation
2079 */
2080int
2081spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2082    const char *history_str, nvlist_t *zplprops)
2083{
2084	spa_t *spa;
2085	char *altroot = NULL;
2086	vdev_t *rvd;
2087	dsl_pool_t *dp;
2088	dmu_tx_t *tx;
2089	int error = 0;
2090	uint64_t txg = TXG_INITIAL;
2091	nvlist_t **spares, **l2cache;
2092	uint_t nspares, nl2cache;
2093	uint64_t version;
2094
2095	/*
2096	 * If this pool already exists, return failure.
2097	 */
2098	mutex_enter(&spa_namespace_lock);
2099	if (spa_lookup(pool) != NULL) {
2100		mutex_exit(&spa_namespace_lock);
2101		return (EEXIST);
2102	}
2103
2104	/*
2105	 * Allocate a new spa_t structure.
2106	 */
2107	(void) nvlist_lookup_string(props,
2108	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2109	spa = spa_add(pool, altroot);
2110	spa_activate(spa, spa_mode_global);
2111
2112	spa->spa_uberblock.ub_txg = txg - 1;
2113
2114	if (props && (error = spa_prop_validate(spa, props))) {
2115		spa_deactivate(spa);
2116		spa_remove(spa);
2117		mutex_exit(&spa_namespace_lock);
2118		return (error);
2119	}
2120
2121	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2122	    &version) != 0)
2123		version = SPA_VERSION;
2124	ASSERT(version <= SPA_VERSION);
2125	spa->spa_uberblock.ub_version = version;
2126	spa->spa_ubsync = spa->spa_uberblock;
2127
2128	/*
2129	 * Create "The Godfather" zio to hold all async IOs
2130	 */
2131	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2132	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2133
2134	/*
2135	 * Create the root vdev.
2136	 */
2137	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2138
2139	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2140
2141	ASSERT(error != 0 || rvd != NULL);
2142	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2143
2144	if (error == 0 && !zfs_allocatable_devs(nvroot))
2145		error = EINVAL;
2146
2147	if (error == 0 &&
2148	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2149	    (error = spa_validate_aux(spa, nvroot, txg,
2150	    VDEV_ALLOC_ADD)) == 0) {
2151		for (int c = 0; c < rvd->vdev_children; c++) {
2152			vdev_metaslab_set_size(rvd->vdev_child[c]);
2153			vdev_expand(rvd->vdev_child[c], txg);
2154		}
2155	}
2156
2157	spa_config_exit(spa, SCL_ALL, FTAG);
2158
2159	if (error != 0) {
2160		spa_unload(spa);
2161		spa_deactivate(spa);
2162		spa_remove(spa);
2163		mutex_exit(&spa_namespace_lock);
2164		return (error);
2165	}
2166
2167	/*
2168	 * Get the list of spares, if specified.
2169	 */
2170	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2171	    &spares, &nspares) == 0) {
2172		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2173		    KM_SLEEP) == 0);
2174		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2175		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2176		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2177		spa_load_spares(spa);
2178		spa_config_exit(spa, SCL_ALL, FTAG);
2179		spa->spa_spares.sav_sync = B_TRUE;
2180	}
2181
2182	/*
2183	 * Get the list of level 2 cache devices, if specified.
2184	 */
2185	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2186	    &l2cache, &nl2cache) == 0) {
2187		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2188		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2189		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2190		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2191		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2192		spa_load_l2cache(spa);
2193		spa_config_exit(spa, SCL_ALL, FTAG);
2194		spa->spa_l2cache.sav_sync = B_TRUE;
2195	}
2196
2197	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2198	spa->spa_meta_objset = dp->dp_meta_objset;
2199
2200	tx = dmu_tx_create_assigned(dp, txg);
2201
2202	/*
2203	 * Create the pool config object.
2204	 */
2205	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2206	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2207	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2208
2209	if (zap_add(spa->spa_meta_objset,
2210	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2211	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2212		cmn_err(CE_PANIC, "failed to add pool config");
2213	}
2214
2215	/* Newly created pools with the right version are always deflated. */
2216	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2217		spa->spa_deflate = TRUE;
2218		if (zap_add(spa->spa_meta_objset,
2219		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2220		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2221			cmn_err(CE_PANIC, "failed to add deflate");
2222		}
2223	}
2224
2225	/*
2226	 * Create the deferred-free bplist object.  Turn off compression
2227	 * because sync-to-convergence takes longer if the blocksize
2228	 * keeps changing.
2229	 */
2230	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2231	    1 << 14, tx);
2232	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2233	    ZIO_COMPRESS_OFF, tx);
2234
2235	if (zap_add(spa->spa_meta_objset,
2236	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2237	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2238		cmn_err(CE_PANIC, "failed to add bplist");
2239	}
2240
2241	/*
2242	 * Create the pool's history object.
2243	 */
2244	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2245		spa_history_create_obj(spa, tx);
2246
2247	/*
2248	 * Set pool properties.
2249	 */
2250	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2251	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2252	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2253	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2254	if (props != NULL) {
2255		spa_configfile_set(spa, props, B_FALSE);
2256		spa_sync_props(spa, props, CRED(), tx);
2257	}
2258
2259	dmu_tx_commit(tx);
2260
2261	spa->spa_sync_on = B_TRUE;
2262	txg_sync_start(spa->spa_dsl_pool);
2263
2264	/*
2265	 * We explicitly wait for the first transaction to complete so that our
2266	 * bean counters are appropriately updated.
2267	 */
2268	txg_wait_synced(spa->spa_dsl_pool, txg);
2269
2270	spa_config_sync(spa, B_FALSE, B_TRUE);
2271
2272	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2273		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2274	spa_history_log_version(spa, LOG_POOL_CREATE);
2275
2276	spa->spa_minref = refcount_count(&spa->spa_refcount);
2277
2278	mutex_exit(&spa_namespace_lock);
2279
2280	return (0);
2281}
2282
2283#ifdef _KERNEL
2284/*
2285 * Get the root pool information from the root disk, then import the root pool
2286 * during the system boot up time.
2287 */
2288extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2289
2290static nvlist_t *
2291spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2292{
2293	nvlist_t *config;
2294	nvlist_t *nvtop, *nvroot;
2295	uint64_t pgid;
2296
2297	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2298		return (NULL);
2299
2300	/*
2301	 * Add this top-level vdev to the child array.
2302	 */
2303	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2304	    &nvtop) == 0);
2305	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2306	    &pgid) == 0);
2307	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2308
2309	/*
2310	 * Put this pool's top-level vdevs into a root vdev.
2311	 */
2312	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2313	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2314	    VDEV_TYPE_ROOT) == 0);
2315	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2316	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2317	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2318	    &nvtop, 1) == 0);
2319
2320	/*
2321	 * Replace the existing vdev_tree with the new root vdev in
2322	 * this pool's configuration (remove the old, add the new).
2323	 */
2324	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2325	nvlist_free(nvroot);
2326	return (config);
2327}
2328
2329/*
2330 * Walk the vdev tree and see if we can find a device with "better"
2331 * configuration. A configuration is "better" if the label on that
2332 * device has a more recent txg.
2333 */
2334static void
2335spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2336{
2337	for (int c = 0; c < vd->vdev_children; c++)
2338		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2339
2340	if (vd->vdev_ops->vdev_op_leaf) {
2341		nvlist_t *label;
2342		uint64_t label_txg;
2343
2344		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2345		    &label) != 0)
2346			return;
2347
2348		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2349		    &label_txg) == 0);
2350
2351		/*
2352		 * Do we have a better boot device?
2353		 */
2354		if (label_txg > *txg) {
2355			*txg = label_txg;
2356			*avd = vd;
2357		}
2358		nvlist_free(label);
2359	}
2360}
2361
2362/*
2363 * Import a root pool.
2364 *
2365 * For x86. devpath_list will consist of devid and/or physpath name of
2366 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2367 * The GRUB "findroot" command will return the vdev we should boot.
2368 *
2369 * For Sparc, devpath_list consists the physpath name of the booting device
2370 * no matter the rootpool is a single device pool or a mirrored pool.
2371 * e.g.
2372 *	"/pci@1f,0/ide@d/disk@0,0:a"
2373 */
2374int
2375spa_import_rootpool(char *devpath, char *devid)
2376{
2377	spa_t *spa;
2378	vdev_t *rvd, *bvd, *avd = NULL;
2379	nvlist_t *config, *nvtop;
2380	uint64_t guid, txg;
2381	char *pname;
2382	int error;
2383
2384	/*
2385	 * Read the label from the boot device and generate a configuration.
2386	 */
2387	if ((config = spa_generate_rootconf(devpath, devid, &guid)) == NULL) {
2388		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2389		    devpath);
2390		return (EIO);
2391	}
2392
2393	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2394	    &pname) == 0);
2395	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2396
2397	mutex_enter(&spa_namespace_lock);
2398	if ((spa = spa_lookup(pname)) != NULL) {
2399		/*
2400		 * Remove the existing root pool from the namespace so that we
2401		 * can replace it with the correct config we just read in.
2402		 */
2403		spa_remove(spa);
2404	}
2405
2406	spa = spa_add(pname, NULL);
2407	spa->spa_is_root = B_TRUE;
2408
2409	/*
2410	 * Build up a vdev tree based on the boot device's label config.
2411	 */
2412	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2413	    &nvtop) == 0);
2414	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2415	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2416	    VDEV_ALLOC_ROOTPOOL);
2417	spa_config_exit(spa, SCL_ALL, FTAG);
2418	if (error) {
2419		mutex_exit(&spa_namespace_lock);
2420		nvlist_free(config);
2421		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2422		    pname);
2423		return (error);
2424	}
2425
2426	/*
2427	 * Get the boot vdev.
2428	 */
2429	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2430		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2431		    (u_longlong_t)guid);
2432		error = ENOENT;
2433		goto out;
2434	}
2435
2436	/*
2437	 * Determine if there is a better boot device.
2438	 */
2439	avd = bvd;
2440	spa_alt_rootvdev(rvd, &avd, &txg);
2441	if (avd != bvd) {
2442		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2443		    "try booting from '%s'", avd->vdev_path);
2444		error = EINVAL;
2445		goto out;
2446	}
2447
2448	/*
2449	 * If the boot device is part of a spare vdev then ensure that
2450	 * we're booting off the active spare.
2451	 */
2452	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2453	    !bvd->vdev_isspare) {
2454		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2455		    "try booting from '%s'",
2456		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2457		error = EINVAL;
2458		goto out;
2459	}
2460
2461	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2462	error = 0;
2463	spa_history_log_version(spa, LOG_POOL_IMPORT);
2464out:
2465	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2466	vdev_free(rvd);
2467	spa_config_exit(spa, SCL_ALL, FTAG);
2468	mutex_exit(&spa_namespace_lock);
2469
2470	nvlist_free(config);
2471	return (error);
2472}
2473
2474#endif
2475
2476/*
2477 * Take a pool and insert it into the namespace as if it had been loaded at
2478 * boot.
2479 */
2480int
2481spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2482{
2483	spa_t *spa;
2484	char *altroot = NULL;
2485
2486	mutex_enter(&spa_namespace_lock);
2487	if (spa_lookup(pool) != NULL) {
2488		mutex_exit(&spa_namespace_lock);
2489		return (EEXIST);
2490	}
2491
2492	(void) nvlist_lookup_string(props,
2493	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2494	spa = spa_add(pool, altroot);
2495
2496	spa->spa_inactive_states_ok = B_TRUE;
2497
2498	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2499
2500	if (props != NULL)
2501		spa_configfile_set(spa, props, B_FALSE);
2502
2503	spa_config_sync(spa, B_FALSE, B_TRUE);
2504
2505	mutex_exit(&spa_namespace_lock);
2506	spa_history_log_version(spa, LOG_POOL_IMPORT);
2507
2508	return (0);
2509}
2510
2511/*
2512 * Import a non-root pool into the system.
2513 */
2514int
2515spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2516{
2517	spa_t *spa;
2518	char *altroot = NULL;
2519	int error;
2520	nvlist_t *nvroot;
2521	nvlist_t **spares, **l2cache;
2522	uint_t nspares, nl2cache;
2523
2524	/*
2525	 * If a pool with this name exists, return failure.
2526	 */
2527	mutex_enter(&spa_namespace_lock);
2528	if ((spa = spa_lookup(pool)) != NULL) {
2529		mutex_exit(&spa_namespace_lock);
2530		return (EEXIST);
2531	}
2532
2533	/*
2534	 * Create and initialize the spa structure.
2535	 */
2536	(void) nvlist_lookup_string(props,
2537	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2538	spa = spa_add(pool, altroot);
2539	spa_activate(spa, spa_mode_global);
2540
2541	/*
2542	 * Don't start async tasks until we know everything is healthy.
2543	 */
2544	spa_async_suspend(spa);
2545
2546	/*
2547	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2548	 * because the user-supplied config is actually the one to trust when
2549	 * doing an import.
2550	 */
2551	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
2552
2553	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2554	/*
2555	 * Toss any existing sparelist, as it doesn't have any validity
2556	 * anymore, and conflicts with spa_has_spare().
2557	 */
2558	if (spa->spa_spares.sav_config) {
2559		nvlist_free(spa->spa_spares.sav_config);
2560		spa->spa_spares.sav_config = NULL;
2561		spa_load_spares(spa);
2562	}
2563	if (spa->spa_l2cache.sav_config) {
2564		nvlist_free(spa->spa_l2cache.sav_config);
2565		spa->spa_l2cache.sav_config = NULL;
2566		spa_load_l2cache(spa);
2567	}
2568
2569	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2570	    &nvroot) == 0);
2571	if (error == 0)
2572		error = spa_validate_aux(spa, nvroot, -1ULL,
2573		    VDEV_ALLOC_SPARE);
2574	if (error == 0)
2575		error = spa_validate_aux(spa, nvroot, -1ULL,
2576		    VDEV_ALLOC_L2CACHE);
2577	spa_config_exit(spa, SCL_ALL, FTAG);
2578
2579	if (props != NULL)
2580		spa_configfile_set(spa, props, B_FALSE);
2581
2582	if (error != 0 || (props && spa_writeable(spa) &&
2583	    (error = spa_prop_set(spa, props)))) {
2584		spa_unload(spa);
2585		spa_deactivate(spa);
2586		spa_remove(spa);
2587		mutex_exit(&spa_namespace_lock);
2588		return (error);
2589	}
2590
2591	spa_async_resume(spa);
2592
2593	/*
2594	 * Override any spares and level 2 cache devices as specified by
2595	 * the user, as these may have correct device names/devids, etc.
2596	 */
2597	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2598	    &spares, &nspares) == 0) {
2599		if (spa->spa_spares.sav_config)
2600			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2601			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2602		else
2603			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2604			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2605		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2606		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2607		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2608		spa_load_spares(spa);
2609		spa_config_exit(spa, SCL_ALL, FTAG);
2610		spa->spa_spares.sav_sync = B_TRUE;
2611	}
2612	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2613	    &l2cache, &nl2cache) == 0) {
2614		if (spa->spa_l2cache.sav_config)
2615			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2616			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2617		else
2618			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2619			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2620		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2621		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2622		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2623		spa_load_l2cache(spa);
2624		spa_config_exit(spa, SCL_ALL, FTAG);
2625		spa->spa_l2cache.sav_sync = B_TRUE;
2626	}
2627
2628	if (spa_writeable(spa)) {
2629		/*
2630		 * Update the config cache to include the newly-imported pool.
2631		 */
2632		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, B_FALSE);
2633	}
2634
2635	/*
2636	 * It's possible that the pool was expanded while it was exported.
2637	 * We kick off an async task to handle this for us.
2638	 */
2639	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2640
2641	mutex_exit(&spa_namespace_lock);
2642	spa_history_log_version(spa, LOG_POOL_IMPORT);
2643
2644	return (0);
2645}
2646
2647
2648/*
2649 * This (illegal) pool name is used when temporarily importing a spa_t in order
2650 * to get the vdev stats associated with the imported devices.
2651 */
2652#define	TRYIMPORT_NAME	"$import"
2653
2654nvlist_t *
2655spa_tryimport(nvlist_t *tryconfig)
2656{
2657	nvlist_t *config = NULL;
2658	char *poolname;
2659	spa_t *spa;
2660	uint64_t state;
2661	int error;
2662
2663	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2664		return (NULL);
2665
2666	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2667		return (NULL);
2668
2669	/*
2670	 * Create and initialize the spa structure.
2671	 */
2672	mutex_enter(&spa_namespace_lock);
2673	spa = spa_add(TRYIMPORT_NAME, NULL);
2674	spa_activate(spa, FREAD);
2675
2676	/*
2677	 * Pass off the heavy lifting to spa_load().
2678	 * Pass TRUE for mosconfig because the user-supplied config
2679	 * is actually the one to trust when doing an import.
2680	 */
2681	error = spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2682
2683	/*
2684	 * If 'tryconfig' was at least parsable, return the current config.
2685	 */
2686	if (spa->spa_root_vdev != NULL) {
2687		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2688		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2689		    poolname) == 0);
2690		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2691		    state) == 0);
2692		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2693		    spa->spa_uberblock.ub_timestamp) == 0);
2694
2695		/*
2696		 * If the bootfs property exists on this pool then we
2697		 * copy it out so that external consumers can tell which
2698		 * pools are bootable.
2699		 */
2700		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2701			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2702
2703			/*
2704			 * We have to play games with the name since the
2705			 * pool was opened as TRYIMPORT_NAME.
2706			 */
2707			if (dsl_dsobj_to_dsname(spa_name(spa),
2708			    spa->spa_bootfs, tmpname) == 0) {
2709				char *cp;
2710				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2711
2712				cp = strchr(tmpname, '/');
2713				if (cp == NULL) {
2714					(void) strlcpy(dsname, tmpname,
2715					    MAXPATHLEN);
2716				} else {
2717					(void) snprintf(dsname, MAXPATHLEN,
2718					    "%s/%s", poolname, ++cp);
2719				}
2720				VERIFY(nvlist_add_string(config,
2721				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2722				kmem_free(dsname, MAXPATHLEN);
2723			}
2724			kmem_free(tmpname, MAXPATHLEN);
2725		}
2726
2727		/*
2728		 * Add the list of hot spares and level 2 cache devices.
2729		 */
2730		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2731		spa_add_spares(spa, config);
2732		spa_add_l2cache(spa, config);
2733		spa_config_exit(spa, SCL_CONFIG, FTAG);
2734	}
2735
2736	spa_unload(spa);
2737	spa_deactivate(spa);
2738	spa_remove(spa);
2739	mutex_exit(&spa_namespace_lock);
2740
2741	return (config);
2742}
2743
2744/*
2745 * Pool export/destroy
2746 *
2747 * The act of destroying or exporting a pool is very simple.  We make sure there
2748 * is no more pending I/O and any references to the pool are gone.  Then, we
2749 * update the pool state and sync all the labels to disk, removing the
2750 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2751 * we don't sync the labels or remove the configuration cache.
2752 */
2753static int
2754spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2755    boolean_t force, boolean_t hardforce)
2756{
2757	spa_t *spa;
2758
2759	if (oldconfig)
2760		*oldconfig = NULL;
2761
2762	if (!(spa_mode_global & FWRITE))
2763		return (EROFS);
2764
2765	mutex_enter(&spa_namespace_lock);
2766	if ((spa = spa_lookup(pool)) == NULL) {
2767		mutex_exit(&spa_namespace_lock);
2768		return (ENOENT);
2769	}
2770
2771	/*
2772	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2773	 * reacquire the namespace lock, and see if we can export.
2774	 */
2775	spa_open_ref(spa, FTAG);
2776	mutex_exit(&spa_namespace_lock);
2777	spa_async_suspend(spa);
2778	mutex_enter(&spa_namespace_lock);
2779	spa_close(spa, FTAG);
2780
2781	/*
2782	 * The pool will be in core if it's openable,
2783	 * in which case we can modify its state.
2784	 */
2785	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2786		/*
2787		 * Objsets may be open only because they're dirty, so we
2788		 * have to force it to sync before checking spa_refcnt.
2789		 */
2790		txg_wait_synced(spa->spa_dsl_pool, 0);
2791
2792		/*
2793		 * A pool cannot be exported or destroyed if there are active
2794		 * references.  If we are resetting a pool, allow references by
2795		 * fault injection handlers.
2796		 */
2797		if (!spa_refcount_zero(spa) ||
2798		    (spa->spa_inject_ref != 0 &&
2799		    new_state != POOL_STATE_UNINITIALIZED)) {
2800			spa_async_resume(spa);
2801			mutex_exit(&spa_namespace_lock);
2802			return (EBUSY);
2803		}
2804
2805		/*
2806		 * A pool cannot be exported if it has an active shared spare.
2807		 * This is to prevent other pools stealing the active spare
2808		 * from an exported pool. At user's own will, such pool can
2809		 * be forcedly exported.
2810		 */
2811		if (!force && new_state == POOL_STATE_EXPORTED &&
2812		    spa_has_active_shared_spare(spa)) {
2813			spa_async_resume(spa);
2814			mutex_exit(&spa_namespace_lock);
2815			return (EXDEV);
2816		}
2817
2818		/*
2819		 * We want this to be reflected on every label,
2820		 * so mark them all dirty.  spa_unload() will do the
2821		 * final sync that pushes these changes out.
2822		 */
2823		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2824			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2825			spa->spa_state = new_state;
2826			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2827			vdev_config_dirty(spa->spa_root_vdev);
2828			spa_config_exit(spa, SCL_ALL, FTAG);
2829		}
2830	}
2831
2832	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2833
2834	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2835		spa_unload(spa);
2836		spa_deactivate(spa);
2837	}
2838
2839	if (oldconfig && spa->spa_config)
2840		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2841
2842	if (new_state != POOL_STATE_UNINITIALIZED) {
2843		if (!hardforce)
2844			spa_config_sync(spa, B_TRUE, B_TRUE);
2845		spa_remove(spa);
2846	}
2847	mutex_exit(&spa_namespace_lock);
2848
2849	return (0);
2850}
2851
2852/*
2853 * Destroy a storage pool.
2854 */
2855int
2856spa_destroy(char *pool)
2857{
2858	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2859	    B_FALSE, B_FALSE));
2860}
2861
2862/*
2863 * Export a storage pool.
2864 */
2865int
2866spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2867    boolean_t hardforce)
2868{
2869	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2870	    force, hardforce));
2871}
2872
2873/*
2874 * Similar to spa_export(), this unloads the spa_t without actually removing it
2875 * from the namespace in any way.
2876 */
2877int
2878spa_reset(char *pool)
2879{
2880	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2881	    B_FALSE, B_FALSE));
2882}
2883
2884/*
2885 * ==========================================================================
2886 * Device manipulation
2887 * ==========================================================================
2888 */
2889
2890/*
2891 * Add a device to a storage pool.
2892 */
2893int
2894spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2895{
2896	uint64_t txg;
2897	int error;
2898	vdev_t *rvd = spa->spa_root_vdev;
2899	vdev_t *vd, *tvd;
2900	nvlist_t **spares, **l2cache;
2901	uint_t nspares, nl2cache;
2902
2903	txg = spa_vdev_enter(spa);
2904
2905	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2906	    VDEV_ALLOC_ADD)) != 0)
2907		return (spa_vdev_exit(spa, NULL, txg, error));
2908
2909	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2910
2911	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2912	    &nspares) != 0)
2913		nspares = 0;
2914
2915	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2916	    &nl2cache) != 0)
2917		nl2cache = 0;
2918
2919	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2920		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2921
2922	if (vd->vdev_children != 0 &&
2923	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2924		return (spa_vdev_exit(spa, vd, txg, error));
2925
2926	/*
2927	 * We must validate the spares and l2cache devices after checking the
2928	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2929	 */
2930	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2931		return (spa_vdev_exit(spa, vd, txg, error));
2932
2933	/*
2934	 * Transfer each new top-level vdev from vd to rvd.
2935	 */
2936	for (int c = 0; c < vd->vdev_children; c++) {
2937		tvd = vd->vdev_child[c];
2938		vdev_remove_child(vd, tvd);
2939		tvd->vdev_id = rvd->vdev_children;
2940		vdev_add_child(rvd, tvd);
2941		vdev_config_dirty(tvd);
2942	}
2943
2944	if (nspares != 0) {
2945		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2946		    ZPOOL_CONFIG_SPARES);
2947		spa_load_spares(spa);
2948		spa->spa_spares.sav_sync = B_TRUE;
2949	}
2950
2951	if (nl2cache != 0) {
2952		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2953		    ZPOOL_CONFIG_L2CACHE);
2954		spa_load_l2cache(spa);
2955		spa->spa_l2cache.sav_sync = B_TRUE;
2956	}
2957
2958	/*
2959	 * We have to be careful when adding new vdevs to an existing pool.
2960	 * If other threads start allocating from these vdevs before we
2961	 * sync the config cache, and we lose power, then upon reboot we may
2962	 * fail to open the pool because there are DVAs that the config cache
2963	 * can't translate.  Therefore, we first add the vdevs without
2964	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2965	 * and then let spa_config_update() initialize the new metaslabs.
2966	 *
2967	 * spa_load() checks for added-but-not-initialized vdevs, so that
2968	 * if we lose power at any point in this sequence, the remaining
2969	 * steps will be completed the next time we load the pool.
2970	 */
2971	(void) spa_vdev_exit(spa, vd, txg, 0);
2972
2973	mutex_enter(&spa_namespace_lock);
2974	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2975	mutex_exit(&spa_namespace_lock);
2976
2977	return (0);
2978}
2979
2980/*
2981 * Attach a device to a mirror.  The arguments are the path to any device
2982 * in the mirror, and the nvroot for the new device.  If the path specifies
2983 * a device that is not mirrored, we automatically insert the mirror vdev.
2984 *
2985 * If 'replacing' is specified, the new device is intended to replace the
2986 * existing device; in this case the two devices are made into their own
2987 * mirror using the 'replacing' vdev, which is functionally identical to
2988 * the mirror vdev (it actually reuses all the same ops) but has a few
2989 * extra rules: you can't attach to it after it's been created, and upon
2990 * completion of resilvering, the first disk (the one being replaced)
2991 * is automatically detached.
2992 */
2993int
2994spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2995{
2996	uint64_t txg, open_txg;
2997	vdev_t *rvd = spa->spa_root_vdev;
2998	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2999	vdev_ops_t *pvops;
3000	char *oldvdpath, *newvdpath;
3001	int newvd_isspare;
3002	int error;
3003
3004	txg = spa_vdev_enter(spa);
3005
3006	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3007
3008	if (oldvd == NULL)
3009		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3010
3011	if (!oldvd->vdev_ops->vdev_op_leaf)
3012		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3013
3014	pvd = oldvd->vdev_parent;
3015
3016	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3017	    VDEV_ALLOC_ADD)) != 0)
3018		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3019
3020	if (newrootvd->vdev_children != 1)
3021		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3022
3023	newvd = newrootvd->vdev_child[0];
3024
3025	if (!newvd->vdev_ops->vdev_op_leaf)
3026		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3027
3028	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3029		return (spa_vdev_exit(spa, newrootvd, txg, error));
3030
3031	/*
3032	 * Spares can't replace logs
3033	 */
3034	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3035		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3036
3037	if (!replacing) {
3038		/*
3039		 * For attach, the only allowable parent is a mirror or the root
3040		 * vdev.
3041		 */
3042		if (pvd->vdev_ops != &vdev_mirror_ops &&
3043		    pvd->vdev_ops != &vdev_root_ops)
3044			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3045
3046		pvops = &vdev_mirror_ops;
3047	} else {
3048		/*
3049		 * Active hot spares can only be replaced by inactive hot
3050		 * spares.
3051		 */
3052		if (pvd->vdev_ops == &vdev_spare_ops &&
3053		    pvd->vdev_child[1] == oldvd &&
3054		    !spa_has_spare(spa, newvd->vdev_guid))
3055			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3056
3057		/*
3058		 * If the source is a hot spare, and the parent isn't already a
3059		 * spare, then we want to create a new hot spare.  Otherwise, we
3060		 * want to create a replacing vdev.  The user is not allowed to
3061		 * attach to a spared vdev child unless the 'isspare' state is
3062		 * the same (spare replaces spare, non-spare replaces
3063		 * non-spare).
3064		 */
3065		if (pvd->vdev_ops == &vdev_replacing_ops)
3066			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3067		else if (pvd->vdev_ops == &vdev_spare_ops &&
3068		    newvd->vdev_isspare != oldvd->vdev_isspare)
3069			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3070		else if (pvd->vdev_ops != &vdev_spare_ops &&
3071		    newvd->vdev_isspare)
3072			pvops = &vdev_spare_ops;
3073		else
3074			pvops = &vdev_replacing_ops;
3075	}
3076
3077	/*
3078	 * Make sure the new device is big enough.
3079	 */
3080	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3081		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3082
3083	/*
3084	 * The new device cannot have a higher alignment requirement
3085	 * than the top-level vdev.
3086	 */
3087	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3088		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3089
3090	/*
3091	 * If this is an in-place replacement, update oldvd's path and devid
3092	 * to make it distinguishable from newvd, and unopenable from now on.
3093	 */
3094	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3095		spa_strfree(oldvd->vdev_path);
3096		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3097		    KM_SLEEP);
3098		(void) sprintf(oldvd->vdev_path, "%s/%s",
3099		    newvd->vdev_path, "old");
3100		if (oldvd->vdev_devid != NULL) {
3101			spa_strfree(oldvd->vdev_devid);
3102			oldvd->vdev_devid = NULL;
3103		}
3104	}
3105
3106	/*
3107	 * If the parent is not a mirror, or if we're replacing, insert the new
3108	 * mirror/replacing/spare vdev above oldvd.
3109	 */
3110	if (pvd->vdev_ops != pvops)
3111		pvd = vdev_add_parent(oldvd, pvops);
3112
3113	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3114	ASSERT(pvd->vdev_ops == pvops);
3115	ASSERT(oldvd->vdev_parent == pvd);
3116
3117	/*
3118	 * Extract the new device from its root and add it to pvd.
3119	 */
3120	vdev_remove_child(newrootvd, newvd);
3121	newvd->vdev_id = pvd->vdev_children;
3122	vdev_add_child(pvd, newvd);
3123
3124	tvd = newvd->vdev_top;
3125	ASSERT(pvd->vdev_top == tvd);
3126	ASSERT(tvd->vdev_parent == rvd);
3127
3128	vdev_config_dirty(tvd);
3129
3130	/*
3131	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3132	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3133	 */
3134	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3135
3136	vdev_dtl_dirty(newvd, DTL_MISSING,
3137	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3138
3139	if (newvd->vdev_isspare) {
3140		spa_spare_activate(newvd);
3141		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3142	}
3143
3144	oldvdpath = spa_strdup(oldvd->vdev_path);
3145	newvdpath = spa_strdup(newvd->vdev_path);
3146	newvd_isspare = newvd->vdev_isspare;
3147
3148	/*
3149	 * Mark newvd's DTL dirty in this txg.
3150	 */
3151	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3152
3153	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3154
3155	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3156	    CRED(),  "%s vdev=%s %s vdev=%s",
3157	    replacing && newvd_isspare ? "spare in" :
3158	    replacing ? "replace" : "attach", newvdpath,
3159	    replacing ? "for" : "to", oldvdpath);
3160
3161	spa_strfree(oldvdpath);
3162	spa_strfree(newvdpath);
3163
3164	/*
3165	 * Kick off a resilver to update newvd.
3166	 */
3167	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3168
3169	return (0);
3170}
3171
3172/*
3173 * Detach a device from a mirror or replacing vdev.
3174 * If 'replace_done' is specified, only detach if the parent
3175 * is a replacing vdev.
3176 */
3177int
3178spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3179{
3180	uint64_t txg;
3181	int error;
3182	vdev_t *rvd = spa->spa_root_vdev;
3183	vdev_t *vd, *pvd, *cvd, *tvd;
3184	boolean_t unspare = B_FALSE;
3185	uint64_t unspare_guid;
3186	size_t len;
3187
3188	txg = spa_vdev_enter(spa);
3189
3190	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3191
3192	if (vd == NULL)
3193		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3194
3195	if (!vd->vdev_ops->vdev_op_leaf)
3196		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3197
3198	pvd = vd->vdev_parent;
3199
3200	/*
3201	 * If the parent/child relationship is not as expected, don't do it.
3202	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3203	 * vdev that's replacing B with C.  The user's intent in replacing
3204	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3205	 * the replace by detaching C, the expected behavior is to end up
3206	 * M(A,B).  But suppose that right after deciding to detach C,
3207	 * the replacement of B completes.  We would have M(A,C), and then
3208	 * ask to detach C, which would leave us with just A -- not what
3209	 * the user wanted.  To prevent this, we make sure that the
3210	 * parent/child relationship hasn't changed -- in this example,
3211	 * that C's parent is still the replacing vdev R.
3212	 */
3213	if (pvd->vdev_guid != pguid && pguid != 0)
3214		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3215
3216	/*
3217	 * If replace_done is specified, only remove this device if it's
3218	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3219	 * disk can be removed.
3220	 */
3221	if (replace_done) {
3222		if (pvd->vdev_ops == &vdev_replacing_ops) {
3223			if (vd->vdev_id != 0)
3224				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3225		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3226			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3227		}
3228	}
3229
3230	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3231	    spa_version(spa) >= SPA_VERSION_SPARES);
3232
3233	/*
3234	 * Only mirror, replacing, and spare vdevs support detach.
3235	 */
3236	if (pvd->vdev_ops != &vdev_replacing_ops &&
3237	    pvd->vdev_ops != &vdev_mirror_ops &&
3238	    pvd->vdev_ops != &vdev_spare_ops)
3239		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3240
3241	/*
3242	 * If this device has the only valid copy of some data,
3243	 * we cannot safely detach it.
3244	 */
3245	if (vdev_dtl_required(vd))
3246		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3247
3248	ASSERT(pvd->vdev_children >= 2);
3249
3250	/*
3251	 * If we are detaching the second disk from a replacing vdev, then
3252	 * check to see if we changed the original vdev's path to have "/old"
3253	 * at the end in spa_vdev_attach().  If so, undo that change now.
3254	 */
3255	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3256	    pvd->vdev_child[0]->vdev_path != NULL &&
3257	    pvd->vdev_child[1]->vdev_path != NULL) {
3258		ASSERT(pvd->vdev_child[1] == vd);
3259		cvd = pvd->vdev_child[0];
3260		len = strlen(vd->vdev_path);
3261		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3262		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3263			spa_strfree(cvd->vdev_path);
3264			cvd->vdev_path = spa_strdup(vd->vdev_path);
3265		}
3266	}
3267
3268	/*
3269	 * If we are detaching the original disk from a spare, then it implies
3270	 * that the spare should become a real disk, and be removed from the
3271	 * active spare list for the pool.
3272	 */
3273	if (pvd->vdev_ops == &vdev_spare_ops &&
3274	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3275		unspare = B_TRUE;
3276
3277	/*
3278	 * Erase the disk labels so the disk can be used for other things.
3279	 * This must be done after all other error cases are handled,
3280	 * but before we disembowel vd (so we can still do I/O to it).
3281	 * But if we can't do it, don't treat the error as fatal --
3282	 * it may be that the unwritability of the disk is the reason
3283	 * it's being detached!
3284	 */
3285	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3286
3287	/*
3288	 * Remove vd from its parent and compact the parent's children.
3289	 */
3290	vdev_remove_child(pvd, vd);
3291	vdev_compact_children(pvd);
3292
3293	/*
3294	 * Remember one of the remaining children so we can get tvd below.
3295	 */
3296	cvd = pvd->vdev_child[0];
3297
3298	/*
3299	 * If we need to remove the remaining child from the list of hot spares,
3300	 * do it now, marking the vdev as no longer a spare in the process.
3301	 * We must do this before vdev_remove_parent(), because that can
3302	 * change the GUID if it creates a new toplevel GUID.  For a similar
3303	 * reason, we must remove the spare now, in the same txg as the detach;
3304	 * otherwise someone could attach a new sibling, change the GUID, and
3305	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3306	 */
3307	if (unspare) {
3308		ASSERT(cvd->vdev_isspare);
3309		spa_spare_remove(cvd);
3310		unspare_guid = cvd->vdev_guid;
3311		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3312	}
3313
3314	/*
3315	 * If the parent mirror/replacing vdev only has one child,
3316	 * the parent is no longer needed.  Remove it from the tree.
3317	 */
3318	if (pvd->vdev_children == 1)
3319		vdev_remove_parent(cvd);
3320
3321	/*
3322	 * We don't set tvd until now because the parent we just removed
3323	 * may have been the previous top-level vdev.
3324	 */
3325	tvd = cvd->vdev_top;
3326	ASSERT(tvd->vdev_parent == rvd);
3327
3328	/*
3329	 * Reevaluate the parent vdev state.
3330	 */
3331	vdev_propagate_state(cvd);
3332
3333	/*
3334	 * If the 'autoexpand' property is set on the pool then automatically
3335	 * try to expand the size of the pool. For example if the device we
3336	 * just detached was smaller than the others, it may be possible to
3337	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3338	 * first so that we can obtain the updated sizes of the leaf vdevs.
3339	 */
3340	if (spa->spa_autoexpand) {
3341		vdev_reopen(tvd);
3342		vdev_expand(tvd, txg);
3343	}
3344
3345	vdev_config_dirty(tvd);
3346
3347	/*
3348	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3349	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3350	 * But first make sure we're not on any *other* txg's DTL list, to
3351	 * prevent vd from being accessed after it's freed.
3352	 */
3353	for (int t = 0; t < TXG_SIZE; t++)
3354		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3355	vd->vdev_detached = B_TRUE;
3356	vdev_dirty(tvd, VDD_DTL, vd, txg);
3357
3358	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3359
3360	error = spa_vdev_exit(spa, vd, txg, 0);
3361
3362	/*
3363	 * If this was the removal of the original device in a hot spare vdev,
3364	 * then we want to go through and remove the device from the hot spare
3365	 * list of every other pool.
3366	 */
3367	if (unspare) {
3368		spa_t *myspa = spa;
3369		spa = NULL;
3370		mutex_enter(&spa_namespace_lock);
3371		while ((spa = spa_next(spa)) != NULL) {
3372			if (spa->spa_state != POOL_STATE_ACTIVE)
3373				continue;
3374			if (spa == myspa)
3375				continue;
3376			spa_open_ref(spa, FTAG);
3377			mutex_exit(&spa_namespace_lock);
3378			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3379			mutex_enter(&spa_namespace_lock);
3380			spa_close(spa, FTAG);
3381		}
3382		mutex_exit(&spa_namespace_lock);
3383	}
3384
3385	return (error);
3386}
3387
3388static nvlist_t *
3389spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3390{
3391	for (int i = 0; i < count; i++) {
3392		uint64_t guid;
3393
3394		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3395		    &guid) == 0);
3396
3397		if (guid == target_guid)
3398			return (nvpp[i]);
3399	}
3400
3401	return (NULL);
3402}
3403
3404static void
3405spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3406	nvlist_t *dev_to_remove)
3407{
3408	nvlist_t **newdev = NULL;
3409
3410	if (count > 1)
3411		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3412
3413	for (int i = 0, j = 0; i < count; i++) {
3414		if (dev[i] == dev_to_remove)
3415			continue;
3416		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3417	}
3418
3419	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3420	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3421
3422	for (int i = 0; i < count - 1; i++)
3423		nvlist_free(newdev[i]);
3424
3425	if (count > 1)
3426		kmem_free(newdev, (count - 1) * sizeof (void *));
3427}
3428
3429/*
3430 * Remove a device from the pool.  Currently, this supports removing only hot
3431 * spares and level 2 ARC devices.
3432 */
3433int
3434spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3435{
3436	vdev_t *vd;
3437	nvlist_t **spares, **l2cache, *nv;
3438	uint_t nspares, nl2cache;
3439	uint64_t txg = 0;
3440	int error = 0;
3441	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3442
3443	if (!locked)
3444		txg = spa_vdev_enter(spa);
3445
3446	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3447
3448	if (spa->spa_spares.sav_vdevs != NULL &&
3449	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3450	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3451	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3452		/*
3453		 * Only remove the hot spare if it's not currently in use
3454		 * in this pool.
3455		 */
3456		if (vd == NULL || unspare) {
3457			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3458			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3459			spa_load_spares(spa);
3460			spa->spa_spares.sav_sync = B_TRUE;
3461		} else {
3462			error = EBUSY;
3463		}
3464	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3465	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3466	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3467	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3468		/*
3469		 * Cache devices can always be removed.
3470		 */
3471		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3472		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3473		spa_load_l2cache(spa);
3474		spa->spa_l2cache.sav_sync = B_TRUE;
3475	} else if (vd != NULL) {
3476		/*
3477		 * Normal vdevs cannot be removed (yet).
3478		 */
3479		error = ENOTSUP;
3480	} else {
3481		/*
3482		 * There is no vdev of any kind with the specified guid.
3483		 */
3484		error = ENOENT;
3485	}
3486
3487	if (!locked)
3488		return (spa_vdev_exit(spa, NULL, txg, error));
3489
3490	return (error);
3491}
3492
3493/*
3494 * Find any device that's done replacing, or a vdev marked 'unspare' that's
3495 * current spared, so we can detach it.
3496 */
3497static vdev_t *
3498spa_vdev_resilver_done_hunt(vdev_t *vd)
3499{
3500	vdev_t *newvd, *oldvd;
3501
3502	for (int c = 0; c < vd->vdev_children; c++) {
3503		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3504		if (oldvd != NULL)
3505			return (oldvd);
3506	}
3507
3508	/*
3509	 * Check for a completed replacement.
3510	 */
3511	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3512		oldvd = vd->vdev_child[0];
3513		newvd = vd->vdev_child[1];
3514
3515		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3516		    !vdev_dtl_required(oldvd))
3517			return (oldvd);
3518	}
3519
3520	/*
3521	 * Check for a completed resilver with the 'unspare' flag set.
3522	 */
3523	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3524		newvd = vd->vdev_child[0];
3525		oldvd = vd->vdev_child[1];
3526
3527		if (newvd->vdev_unspare &&
3528		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3529		    !vdev_dtl_required(oldvd)) {
3530			newvd->vdev_unspare = 0;
3531			return (oldvd);
3532		}
3533	}
3534
3535	return (NULL);
3536}
3537
3538static void
3539spa_vdev_resilver_done(spa_t *spa)
3540{
3541	vdev_t *vd, *pvd, *ppvd;
3542	uint64_t guid, sguid, pguid, ppguid;
3543
3544	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3545
3546	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3547		pvd = vd->vdev_parent;
3548		ppvd = pvd->vdev_parent;
3549		guid = vd->vdev_guid;
3550		pguid = pvd->vdev_guid;
3551		ppguid = ppvd->vdev_guid;
3552		sguid = 0;
3553		/*
3554		 * If we have just finished replacing a hot spared device, then
3555		 * we need to detach the parent's first child (the original hot
3556		 * spare) as well.
3557		 */
3558		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3559			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3560			ASSERT(ppvd->vdev_children == 2);
3561			sguid = ppvd->vdev_child[1]->vdev_guid;
3562		}
3563		spa_config_exit(spa, SCL_ALL, FTAG);
3564		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3565			return;
3566		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3567			return;
3568		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3569	}
3570
3571	spa_config_exit(spa, SCL_ALL, FTAG);
3572}
3573
3574/*
3575 * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3576 * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3577 */
3578int
3579spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
3580    boolean_t ispath)
3581{
3582	vdev_t *vd;
3583	uint64_t txg;
3584
3585	txg = spa_vdev_enter(spa);
3586
3587	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3588		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3589
3590	if (!vd->vdev_ops->vdev_op_leaf)
3591		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3592
3593	if (ispath) {
3594		spa_strfree(vd->vdev_path);
3595		vd->vdev_path = spa_strdup(value);
3596	} else {
3597		if (vd->vdev_fru != NULL)
3598			spa_strfree(vd->vdev_fru);
3599		vd->vdev_fru = spa_strdup(value);
3600	}
3601
3602	vdev_config_dirty(vd->vdev_top);
3603
3604	return (spa_vdev_exit(spa, NULL, txg, 0));
3605}
3606
3607int
3608spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3609{
3610	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
3611}
3612
3613int
3614spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
3615{
3616	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
3617}
3618
3619/*
3620 * ==========================================================================
3621 * SPA Scrubbing
3622 * ==========================================================================
3623 */
3624
3625int
3626spa_scrub(spa_t *spa, pool_scrub_type_t type)
3627{
3628	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3629
3630	if ((uint_t)type >= POOL_SCRUB_TYPES)
3631		return (ENOTSUP);
3632
3633	/*
3634	 * If a resilver was requested, but there is no DTL on a
3635	 * writeable leaf device, we have nothing to do.
3636	 */
3637	if (type == POOL_SCRUB_RESILVER &&
3638	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3639		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3640		return (0);
3641	}
3642
3643	if (type == POOL_SCRUB_EVERYTHING &&
3644	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3645	    spa->spa_dsl_pool->dp_scrub_isresilver)
3646		return (EBUSY);
3647
3648	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3649		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3650	} else if (type == POOL_SCRUB_NONE) {
3651		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3652	} else {
3653		return (EINVAL);
3654	}
3655}
3656
3657/*
3658 * ==========================================================================
3659 * SPA async task processing
3660 * ==========================================================================
3661 */
3662
3663static void
3664spa_async_remove(spa_t *spa, vdev_t *vd)
3665{
3666	if (vd->vdev_remove_wanted) {
3667		vd->vdev_remove_wanted = 0;
3668		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3669		vdev_clear(spa, vd);
3670		vdev_state_dirty(vd->vdev_top);
3671	}
3672
3673	for (int c = 0; c < vd->vdev_children; c++)
3674		spa_async_remove(spa, vd->vdev_child[c]);
3675}
3676
3677static void
3678spa_async_probe(spa_t *spa, vdev_t *vd)
3679{
3680	if (vd->vdev_probe_wanted) {
3681		vd->vdev_probe_wanted = 0;
3682		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3683	}
3684
3685	for (int c = 0; c < vd->vdev_children; c++)
3686		spa_async_probe(spa, vd->vdev_child[c]);
3687}
3688
3689static void
3690spa_async_autoexpand(spa_t *spa, vdev_t *vd)
3691{
3692	sysevent_id_t eid;
3693	nvlist_t *attr;
3694	char *physpath;
3695
3696	if (!spa->spa_autoexpand)
3697		return;
3698
3699	for (int c = 0; c < vd->vdev_children; c++) {
3700		vdev_t *cvd = vd->vdev_child[c];
3701		spa_async_autoexpand(spa, cvd);
3702	}
3703
3704	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
3705		return;
3706
3707	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
3708	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
3709
3710	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3711	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
3712
3713	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
3714	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
3715
3716	nvlist_free(attr);
3717	kmem_free(physpath, MAXPATHLEN);
3718}
3719
3720static void
3721spa_async_thread(spa_t *spa)
3722{
3723	int tasks;
3724
3725	ASSERT(spa->spa_sync_on);
3726
3727	mutex_enter(&spa->spa_async_lock);
3728	tasks = spa->spa_async_tasks;
3729	spa->spa_async_tasks = 0;
3730	mutex_exit(&spa->spa_async_lock);
3731
3732	/*
3733	 * See if the config needs to be updated.
3734	 */
3735	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3736		uint64_t oldsz, space_update;
3737
3738		mutex_enter(&spa_namespace_lock);
3739		oldsz = spa_get_space(spa);
3740		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3741		space_update = spa_get_space(spa) - oldsz;
3742		mutex_exit(&spa_namespace_lock);
3743
3744		/*
3745		 * If the pool grew as a result of the config update,
3746		 * then log an internal history event.
3747		 */
3748		if (space_update) {
3749			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
3750			    spa, NULL, CRED(),
3751			    "pool '%s' size: %llu(+%llu)",
3752			    spa_name(spa), spa_get_space(spa),
3753			    space_update);
3754		}
3755	}
3756
3757	/*
3758	 * See if any devices need to be marked REMOVED.
3759	 */
3760	if (tasks & SPA_ASYNC_REMOVE) {
3761		spa_vdev_state_enter(spa);
3762		spa_async_remove(spa, spa->spa_root_vdev);
3763		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3764			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3765		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3766			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3767		(void) spa_vdev_state_exit(spa, NULL, 0);
3768	}
3769
3770	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
3771		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3772		spa_async_autoexpand(spa, spa->spa_root_vdev);
3773		spa_config_exit(spa, SCL_CONFIG, FTAG);
3774	}
3775
3776	/*
3777	 * See if any devices need to be probed.
3778	 */
3779	if (tasks & SPA_ASYNC_PROBE) {
3780		spa_vdev_state_enter(spa);
3781		spa_async_probe(spa, spa->spa_root_vdev);
3782		(void) spa_vdev_state_exit(spa, NULL, 0);
3783	}
3784
3785	/*
3786	 * If any devices are done replacing, detach them.
3787	 */
3788	if (tasks & SPA_ASYNC_RESILVER_DONE)
3789		spa_vdev_resilver_done(spa);
3790
3791	/*
3792	 * Kick off a resilver.
3793	 */
3794	if (tasks & SPA_ASYNC_RESILVER)
3795		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3796
3797	/*
3798	 * Let the world know that we're done.
3799	 */
3800	mutex_enter(&spa->spa_async_lock);
3801	spa->spa_async_thread = NULL;
3802	cv_broadcast(&spa->spa_async_cv);
3803	mutex_exit(&spa->spa_async_lock);
3804	thread_exit();
3805}
3806
3807void
3808spa_async_suspend(spa_t *spa)
3809{
3810	mutex_enter(&spa->spa_async_lock);
3811	spa->spa_async_suspended++;
3812	while (spa->spa_async_thread != NULL)
3813		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3814	mutex_exit(&spa->spa_async_lock);
3815}
3816
3817void
3818spa_async_resume(spa_t *spa)
3819{
3820	mutex_enter(&spa->spa_async_lock);
3821	ASSERT(spa->spa_async_suspended != 0);
3822	spa->spa_async_suspended--;
3823	mutex_exit(&spa->spa_async_lock);
3824}
3825
3826static void
3827spa_async_dispatch(spa_t *spa)
3828{
3829	mutex_enter(&spa->spa_async_lock);
3830	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3831	    spa->spa_async_thread == NULL &&
3832	    rootdir != NULL && !vn_is_readonly(rootdir))
3833		spa->spa_async_thread = thread_create(NULL, 0,
3834		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3835	mutex_exit(&spa->spa_async_lock);
3836}
3837
3838void
3839spa_async_request(spa_t *spa, int task)
3840{
3841	mutex_enter(&spa->spa_async_lock);
3842	spa->spa_async_tasks |= task;
3843	mutex_exit(&spa->spa_async_lock);
3844}
3845
3846/*
3847 * ==========================================================================
3848 * SPA syncing routines
3849 * ==========================================================================
3850 */
3851
3852static void
3853spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3854{
3855	bplist_t *bpl = &spa->spa_sync_bplist;
3856	dmu_tx_t *tx;
3857	blkptr_t blk;
3858	uint64_t itor = 0;
3859	zio_t *zio;
3860	int error;
3861	uint8_t c = 1;
3862
3863	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3864
3865	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3866		ASSERT(blk.blk_birth < txg);
3867		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3868		    ZIO_FLAG_MUSTSUCCEED));
3869	}
3870
3871	error = zio_wait(zio);
3872	ASSERT3U(error, ==, 0);
3873
3874	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3875	bplist_vacate(bpl, tx);
3876
3877	/*
3878	 * Pre-dirty the first block so we sync to convergence faster.
3879	 * (Usually only the first block is needed.)
3880	 */
3881	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3882	dmu_tx_commit(tx);
3883}
3884
3885static void
3886spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3887{
3888	char *packed = NULL;
3889	size_t bufsize;
3890	size_t nvsize = 0;
3891	dmu_buf_t *db;
3892
3893	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3894
3895	/*
3896	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3897	 * information.  This avoids the dbuf_will_dirty() path and
3898	 * saves us a pre-read to get data we don't actually care about.
3899	 */
3900	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3901	packed = kmem_alloc(bufsize, KM_SLEEP);
3902
3903	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3904	    KM_SLEEP) == 0);
3905	bzero(packed + nvsize, bufsize - nvsize);
3906
3907	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3908
3909	kmem_free(packed, bufsize);
3910
3911	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3912	dmu_buf_will_dirty(db, tx);
3913	*(uint64_t *)db->db_data = nvsize;
3914	dmu_buf_rele(db, FTAG);
3915}
3916
3917static void
3918spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3919    const char *config, const char *entry)
3920{
3921	nvlist_t *nvroot;
3922	nvlist_t **list;
3923	int i;
3924
3925	if (!sav->sav_sync)
3926		return;
3927
3928	/*
3929	 * Update the MOS nvlist describing the list of available devices.
3930	 * spa_validate_aux() will have already made sure this nvlist is
3931	 * valid and the vdevs are labeled appropriately.
3932	 */
3933	if (sav->sav_object == 0) {
3934		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3935		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3936		    sizeof (uint64_t), tx);
3937		VERIFY(zap_update(spa->spa_meta_objset,
3938		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3939		    &sav->sav_object, tx) == 0);
3940	}
3941
3942	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3943	if (sav->sav_count == 0) {
3944		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3945	} else {
3946		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3947		for (i = 0; i < sav->sav_count; i++)
3948			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3949			    B_FALSE, B_FALSE, B_TRUE);
3950		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3951		    sav->sav_count) == 0);
3952		for (i = 0; i < sav->sav_count; i++)
3953			nvlist_free(list[i]);
3954		kmem_free(list, sav->sav_count * sizeof (void *));
3955	}
3956
3957	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3958	nvlist_free(nvroot);
3959
3960	sav->sav_sync = B_FALSE;
3961}
3962
3963static void
3964spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3965{
3966	nvlist_t *config;
3967
3968	if (list_is_empty(&spa->spa_config_dirty_list))
3969		return;
3970
3971	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3972
3973	config = spa_config_generate(spa, spa->spa_root_vdev,
3974	    dmu_tx_get_txg(tx), B_FALSE);
3975
3976	spa_config_exit(spa, SCL_STATE, FTAG);
3977
3978	if (spa->spa_config_syncing)
3979		nvlist_free(spa->spa_config_syncing);
3980	spa->spa_config_syncing = config;
3981
3982	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3983}
3984
3985/*
3986 * Set zpool properties.
3987 */
3988static void
3989spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3990{
3991	spa_t *spa = arg1;
3992	objset_t *mos = spa->spa_meta_objset;
3993	nvlist_t *nvp = arg2;
3994	nvpair_t *elem;
3995	uint64_t intval;
3996	char *strval;
3997	zpool_prop_t prop;
3998	const char *propname;
3999	zprop_type_t proptype;
4000
4001	mutex_enter(&spa->spa_props_lock);
4002
4003	elem = NULL;
4004	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4005		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4006		case ZPOOL_PROP_VERSION:
4007			/*
4008			 * Only set version for non-zpool-creation cases
4009			 * (set/import). spa_create() needs special care
4010			 * for version setting.
4011			 */
4012			if (tx->tx_txg != TXG_INITIAL) {
4013				VERIFY(nvpair_value_uint64(elem,
4014				    &intval) == 0);
4015				ASSERT(intval <= SPA_VERSION);
4016				ASSERT(intval >= spa_version(spa));
4017				spa->spa_uberblock.ub_version = intval;
4018				vdev_config_dirty(spa->spa_root_vdev);
4019			}
4020			break;
4021
4022		case ZPOOL_PROP_ALTROOT:
4023			/*
4024			 * 'altroot' is a non-persistent property. It should
4025			 * have been set temporarily at creation or import time.
4026			 */
4027			ASSERT(spa->spa_root != NULL);
4028			break;
4029
4030		case ZPOOL_PROP_CACHEFILE:
4031			/*
4032			 * 'cachefile' is also a non-persisitent property.
4033			 */
4034			break;
4035		default:
4036			/*
4037			 * Set pool property values in the poolprops mos object.
4038			 */
4039			if (spa->spa_pool_props_object == 0) {
4040				objset_t *mos = spa->spa_meta_objset;
4041
4042				VERIFY((spa->spa_pool_props_object =
4043				    zap_create(mos, DMU_OT_POOL_PROPS,
4044				    DMU_OT_NONE, 0, tx)) > 0);
4045
4046				VERIFY(zap_update(mos,
4047				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4048				    8, 1, &spa->spa_pool_props_object, tx)
4049				    == 0);
4050			}
4051
4052			/* normalize the property name */
4053			propname = zpool_prop_to_name(prop);
4054			proptype = zpool_prop_get_type(prop);
4055
4056			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4057				ASSERT(proptype == PROP_TYPE_STRING);
4058				VERIFY(nvpair_value_string(elem, &strval) == 0);
4059				VERIFY(zap_update(mos,
4060				    spa->spa_pool_props_object, propname,
4061				    1, strlen(strval) + 1, strval, tx) == 0);
4062
4063			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4064				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4065
4066				if (proptype == PROP_TYPE_INDEX) {
4067					const char *unused;
4068					VERIFY(zpool_prop_index_to_string(
4069					    prop, intval, &unused) == 0);
4070				}
4071				VERIFY(zap_update(mos,
4072				    spa->spa_pool_props_object, propname,
4073				    8, 1, &intval, tx) == 0);
4074			} else {
4075				ASSERT(0); /* not allowed */
4076			}
4077
4078			switch (prop) {
4079			case ZPOOL_PROP_DELEGATION:
4080				spa->spa_delegation = intval;
4081				break;
4082			case ZPOOL_PROP_BOOTFS:
4083				spa->spa_bootfs = intval;
4084				break;
4085			case ZPOOL_PROP_FAILUREMODE:
4086				spa->spa_failmode = intval;
4087				break;
4088			case ZPOOL_PROP_AUTOEXPAND:
4089				spa->spa_autoexpand = intval;
4090				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4091				break;
4092			default:
4093				break;
4094			}
4095		}
4096
4097		/* log internal history if this is not a zpool create */
4098		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4099		    tx->tx_txg != TXG_INITIAL) {
4100			spa_history_internal_log(LOG_POOL_PROPSET,
4101			    spa, tx, cr, "%s %lld %s",
4102			    nvpair_name(elem), intval, spa_name(spa));
4103		}
4104	}
4105
4106	mutex_exit(&spa->spa_props_lock);
4107}
4108
4109/*
4110 * Sync the specified transaction group.  New blocks may be dirtied as
4111 * part of the process, so we iterate until it converges.
4112 */
4113void
4114spa_sync(spa_t *spa, uint64_t txg)
4115{
4116	dsl_pool_t *dp = spa->spa_dsl_pool;
4117	objset_t *mos = spa->spa_meta_objset;
4118	bplist_t *bpl = &spa->spa_sync_bplist;
4119	vdev_t *rvd = spa->spa_root_vdev;
4120	vdev_t *vd;
4121	dmu_tx_t *tx;
4122	int dirty_vdevs;
4123	int error;
4124
4125	/*
4126	 * Lock out configuration changes.
4127	 */
4128	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4129
4130	spa->spa_syncing_txg = txg;
4131	spa->spa_sync_pass = 0;
4132
4133	/*
4134	 * If there are any pending vdev state changes, convert them
4135	 * into config changes that go out with this transaction group.
4136	 */
4137	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4138	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4139		/*
4140		 * We need the write lock here because, for aux vdevs,
4141		 * calling vdev_config_dirty() modifies sav_config.
4142		 * This is ugly and will become unnecessary when we
4143		 * eliminate the aux vdev wart by integrating all vdevs
4144		 * into the root vdev tree.
4145		 */
4146		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4147		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4148		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4149			vdev_state_clean(vd);
4150			vdev_config_dirty(vd);
4151		}
4152		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4153		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4154	}
4155	spa_config_exit(spa, SCL_STATE, FTAG);
4156
4157	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4158
4159	tx = dmu_tx_create_assigned(dp, txg);
4160
4161	/*
4162	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4163	 * set spa_deflate if we have no raid-z vdevs.
4164	 */
4165	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4166	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4167		int i;
4168
4169		for (i = 0; i < rvd->vdev_children; i++) {
4170			vd = rvd->vdev_child[i];
4171			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4172				break;
4173		}
4174		if (i == rvd->vdev_children) {
4175			spa->spa_deflate = TRUE;
4176			VERIFY(0 == zap_add(spa->spa_meta_objset,
4177			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4178			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4179		}
4180	}
4181
4182	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4183	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4184		dsl_pool_create_origin(dp, tx);
4185
4186		/* Keeping the origin open increases spa_minref */
4187		spa->spa_minref += 3;
4188	}
4189
4190	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4191	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4192		dsl_pool_upgrade_clones(dp, tx);
4193	}
4194
4195	/*
4196	 * If anything has changed in this txg, push the deferred frees
4197	 * from the previous txg.  If not, leave them alone so that we
4198	 * don't generate work on an otherwise idle system.
4199	 */
4200	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4201	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4202	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4203		spa_sync_deferred_frees(spa, txg);
4204
4205	/*
4206	 * Iterate to convergence.
4207	 */
4208	do {
4209		spa->spa_sync_pass++;
4210
4211		spa_sync_config_object(spa, tx);
4212		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4213		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4214		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4215		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4216		spa_errlog_sync(spa, txg);
4217		dsl_pool_sync(dp, txg);
4218
4219		dirty_vdevs = 0;
4220		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4221			vdev_sync(vd, txg);
4222			dirty_vdevs++;
4223		}
4224
4225		bplist_sync(bpl, tx);
4226	} while (dirty_vdevs);
4227
4228	bplist_close(bpl);
4229
4230	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4231
4232	/*
4233	 * Rewrite the vdev configuration (which includes the uberblock)
4234	 * to commit the transaction group.
4235	 *
4236	 * If there are no dirty vdevs, we sync the uberblock to a few
4237	 * random top-level vdevs that are known to be visible in the
4238	 * config cache (see spa_vdev_add() for a complete description).
4239	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4240	 */
4241	for (;;) {
4242		/*
4243		 * We hold SCL_STATE to prevent vdev open/close/etc.
4244		 * while we're attempting to write the vdev labels.
4245		 */
4246		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4247
4248		if (list_is_empty(&spa->spa_config_dirty_list)) {
4249			vdev_t *svd[SPA_DVAS_PER_BP];
4250			int svdcount = 0;
4251			int children = rvd->vdev_children;
4252			int c0 = spa_get_random(children);
4253
4254			for (int c = 0; c < children; c++) {
4255				vd = rvd->vdev_child[(c0 + c) % children];
4256				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4257					continue;
4258				svd[svdcount++] = vd;
4259				if (svdcount == SPA_DVAS_PER_BP)
4260					break;
4261			}
4262			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4263			if (error != 0)
4264				error = vdev_config_sync(svd, svdcount, txg,
4265				    B_TRUE);
4266		} else {
4267			error = vdev_config_sync(rvd->vdev_child,
4268			    rvd->vdev_children, txg, B_FALSE);
4269			if (error != 0)
4270				error = vdev_config_sync(rvd->vdev_child,
4271				    rvd->vdev_children, txg, B_TRUE);
4272		}
4273
4274		spa_config_exit(spa, SCL_STATE, FTAG);
4275
4276		if (error == 0)
4277			break;
4278		zio_suspend(spa, NULL);
4279		zio_resume_wait(spa);
4280	}
4281	dmu_tx_commit(tx);
4282
4283	/*
4284	 * Clear the dirty config list.
4285	 */
4286	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4287		vdev_config_clean(vd);
4288
4289	/*
4290	 * Now that the new config has synced transactionally,
4291	 * let it become visible to the config cache.
4292	 */
4293	if (spa->spa_config_syncing != NULL) {
4294		spa_config_set(spa, spa->spa_config_syncing);
4295		spa->spa_config_txg = txg;
4296		spa->spa_config_syncing = NULL;
4297	}
4298
4299	spa->spa_ubsync = spa->spa_uberblock;
4300
4301	/*
4302	 * Clean up the ZIL records for the synced txg.
4303	 */
4304	dsl_pool_zil_clean(dp);
4305
4306	/*
4307	 * Update usable space statistics.
4308	 */
4309	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4310		vdev_sync_done(vd, txg);
4311
4312	/*
4313	 * It had better be the case that we didn't dirty anything
4314	 * since vdev_config_sync().
4315	 */
4316	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4317	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4318	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4319	ASSERT(bpl->bpl_queue == NULL);
4320
4321	spa_config_exit(spa, SCL_CONFIG, FTAG);
4322
4323	/*
4324	 * If any async tasks have been requested, kick them off.
4325	 */
4326	spa_async_dispatch(spa);
4327}
4328
4329/*
4330 * Sync all pools.  We don't want to hold the namespace lock across these
4331 * operations, so we take a reference on the spa_t and drop the lock during the
4332 * sync.
4333 */
4334void
4335spa_sync_allpools(void)
4336{
4337	spa_t *spa = NULL;
4338	mutex_enter(&spa_namespace_lock);
4339	while ((spa = spa_next(spa)) != NULL) {
4340		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4341			continue;
4342		spa_open_ref(spa, FTAG);
4343		mutex_exit(&spa_namespace_lock);
4344		txg_wait_synced(spa_get_dsl(spa), 0);
4345		mutex_enter(&spa_namespace_lock);
4346		spa_close(spa, FTAG);
4347	}
4348	mutex_exit(&spa_namespace_lock);
4349}
4350
4351/*
4352 * ==========================================================================
4353 * Miscellaneous routines
4354 * ==========================================================================
4355 */
4356
4357/*
4358 * Remove all pools in the system.
4359 */
4360void
4361spa_evict_all(void)
4362{
4363	spa_t *spa;
4364
4365	/*
4366	 * Remove all cached state.  All pools should be closed now,
4367	 * so every spa in the AVL tree should be unreferenced.
4368	 */
4369	mutex_enter(&spa_namespace_lock);
4370	while ((spa = spa_next(NULL)) != NULL) {
4371		/*
4372		 * Stop async tasks.  The async thread may need to detach
4373		 * a device that's been replaced, which requires grabbing
4374		 * spa_namespace_lock, so we must drop it here.
4375		 */
4376		spa_open_ref(spa, FTAG);
4377		mutex_exit(&spa_namespace_lock);
4378		spa_async_suspend(spa);
4379		mutex_enter(&spa_namespace_lock);
4380		spa_close(spa, FTAG);
4381
4382		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4383			spa_unload(spa);
4384			spa_deactivate(spa);
4385		}
4386		spa_remove(spa);
4387	}
4388	mutex_exit(&spa_namespace_lock);
4389}
4390
4391vdev_t *
4392spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4393{
4394	vdev_t *vd;
4395	int i;
4396
4397	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4398		return (vd);
4399
4400	if (aux) {
4401		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4402			vd = spa->spa_l2cache.sav_vdevs[i];
4403			if (vd->vdev_guid == guid)
4404				return (vd);
4405		}
4406
4407		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4408			vd = spa->spa_spares.sav_vdevs[i];
4409			if (vd->vdev_guid == guid)
4410				return (vd);
4411		}
4412	}
4413
4414	return (NULL);
4415}
4416
4417void
4418spa_upgrade(spa_t *spa, uint64_t version)
4419{
4420	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4421
4422	/*
4423	 * This should only be called for a non-faulted pool, and since a
4424	 * future version would result in an unopenable pool, this shouldn't be
4425	 * possible.
4426	 */
4427	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4428	ASSERT(version >= spa->spa_uberblock.ub_version);
4429
4430	spa->spa_uberblock.ub_version = version;
4431	vdev_config_dirty(spa->spa_root_vdev);
4432
4433	spa_config_exit(spa, SCL_ALL, FTAG);
4434
4435	txg_wait_synced(spa_get_dsl(spa), 0);
4436}
4437
4438boolean_t
4439spa_has_spare(spa_t *spa, uint64_t guid)
4440{
4441	int i;
4442	uint64_t spareguid;
4443	spa_aux_vdev_t *sav = &spa->spa_spares;
4444
4445	for (i = 0; i < sav->sav_count; i++)
4446		if (sav->sav_vdevs[i]->vdev_guid == guid)
4447			return (B_TRUE);
4448
4449	for (i = 0; i < sav->sav_npending; i++) {
4450		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4451		    &spareguid) == 0 && spareguid == guid)
4452			return (B_TRUE);
4453	}
4454
4455	return (B_FALSE);
4456}
4457
4458/*
4459 * Check if a pool has an active shared spare device.
4460 * Note: reference count of an active spare is 2, as a spare and as a replace
4461 */
4462static boolean_t
4463spa_has_active_shared_spare(spa_t *spa)
4464{
4465	int i, refcnt;
4466	uint64_t pool;
4467	spa_aux_vdev_t *sav = &spa->spa_spares;
4468
4469	for (i = 0; i < sav->sav_count; i++) {
4470		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4471		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4472		    refcnt > 2)
4473			return (B_TRUE);
4474	}
4475
4476	return (B_FALSE);
4477}
4478
4479/*
4480 * Post a sysevent corresponding to the given event.  The 'name' must be one of
4481 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4482 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4483 * in the userland libzpool, as we don't want consumers to misinterpret ztest
4484 * or zdb as real changes.
4485 */
4486void
4487spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4488{
4489#ifdef _KERNEL
4490	sysevent_t		*ev;
4491	sysevent_attr_list_t	*attr = NULL;
4492	sysevent_value_t	value;
4493	sysevent_id_t		eid;
4494
4495	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4496	    SE_SLEEP);
4497
4498	value.value_type = SE_DATA_TYPE_STRING;
4499	value.value.sv_string = spa_name(spa);
4500	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4501		goto done;
4502
4503	value.value_type = SE_DATA_TYPE_UINT64;
4504	value.value.sv_uint64 = spa_guid(spa);
4505	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4506		goto done;
4507
4508	if (vd) {
4509		value.value_type = SE_DATA_TYPE_UINT64;
4510		value.value.sv_uint64 = vd->vdev_guid;
4511		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4512		    SE_SLEEP) != 0)
4513			goto done;
4514
4515		if (vd->vdev_path) {
4516			value.value_type = SE_DATA_TYPE_STRING;
4517			value.value.sv_string = vd->vdev_path;
4518			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4519			    &value, SE_SLEEP) != 0)
4520				goto done;
4521		}
4522	}
4523
4524	if (sysevent_attach_attributes(ev, attr) != 0)
4525		goto done;
4526	attr = NULL;
4527
4528	(void) log_sysevent(ev, SE_SLEEP, &eid);
4529
4530done:
4531	if (attr)
4532		sysevent_free_attr(attr);
4533	sysevent_free(ev);
4534#endif
4535}
4536