xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 4ae5f5f06c6c2d1db8167480f7d9e3b5378ba2f2)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2017 Joyent, Inc.
31  * Copyright (c) 2017 Datto Inc.
32  */
33 
34 /*
35  * SPA: Storage Pool Allocator
36  *
37  * This file contains all the routines used when modifying on-disk SPA state.
38  * This includes opening, importing, destroying, exporting a pool, and syncing a
39  * pool.
40  */
41 
42 #include <sys/zfs_context.h>
43 #include <sys/fm/fs/zfs.h>
44 #include <sys/spa_impl.h>
45 #include <sys/zio.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_tx.h>
49 #include <sys/zap.h>
50 #include <sys/zil.h>
51 #include <sys/ddt.h>
52 #include <sys/vdev_impl.h>
53 #include <sys/vdev_removal.h>
54 #include <sys/vdev_indirect_mapping.h>
55 #include <sys/vdev_indirect_births.h>
56 #include <sys/metaslab.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/uberblock_impl.h>
59 #include <sys/txg.h>
60 #include <sys/avl.h>
61 #include <sys/bpobj.h>
62 #include <sys/dmu_traverse.h>
63 #include <sys/dmu_objset.h>
64 #include <sys/unique.h>
65 #include <sys/dsl_pool.h>
66 #include <sys/dsl_dataset.h>
67 #include <sys/dsl_dir.h>
68 #include <sys/dsl_prop.h>
69 #include <sys/dsl_synctask.h>
70 #include <sys/fs/zfs.h>
71 #include <sys/arc.h>
72 #include <sys/callb.h>
73 #include <sys/systeminfo.h>
74 #include <sys/spa_boot.h>
75 #include <sys/zfs_ioctl.h>
76 #include <sys/dsl_scan.h>
77 #include <sys/zfeature.h>
78 #include <sys/dsl_destroy.h>
79 #include <sys/abd.h>
80 
81 #ifdef	_KERNEL
82 #include <sys/bootprops.h>
83 #include <sys/callb.h>
84 #include <sys/cpupart.h>
85 #include <sys/pool.h>
86 #include <sys/sysdc.h>
87 #include <sys/zone.h>
88 #endif	/* _KERNEL */
89 
90 #include "zfs_prop.h"
91 #include "zfs_comutil.h"
92 
93 /*
94  * The interval, in seconds, at which failed configuration cache file writes
95  * should be retried.
96  */
97 int zfs_ccw_retry_interval = 300;
98 
99 typedef enum zti_modes {
100 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
101 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
102 	ZTI_MODE_NULL,			/* don't create a taskq */
103 	ZTI_NMODES
104 } zti_modes_t;
105 
106 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
107 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
108 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
109 
110 #define	ZTI_N(n)	ZTI_P(n, 1)
111 #define	ZTI_ONE		ZTI_N(1)
112 
113 typedef struct zio_taskq_info {
114 	zti_modes_t zti_mode;
115 	uint_t zti_value;
116 	uint_t zti_count;
117 } zio_taskq_info_t;
118 
119 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
120 	"issue", "issue_high", "intr", "intr_high"
121 };
122 
123 /*
124  * This table defines the taskq settings for each ZFS I/O type. When
125  * initializing a pool, we use this table to create an appropriately sized
126  * taskq. Some operations are low volume and therefore have a small, static
127  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
128  * macros. Other operations process a large amount of data; the ZTI_BATCH
129  * macro causes us to create a taskq oriented for throughput. Some operations
130  * are so high frequency and short-lived that the taskq itself can become a a
131  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
132  * additional degree of parallelism specified by the number of threads per-
133  * taskq and the number of taskqs; when dispatching an event in this case, the
134  * particular taskq is chosen at random.
135  *
136  * The different taskq priorities are to handle the different contexts (issue
137  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
138  * need to be handled with minimum delay.
139  */
140 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
141 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
142 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
143 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
144 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
145 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
146 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
148 };
149 
150 static void spa_sync_version(void *arg, dmu_tx_t *tx);
151 static void spa_sync_props(void *arg, dmu_tx_t *tx);
152 static boolean_t spa_has_active_shared_spare(spa_t *spa);
153 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
154     spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
155     char **ereport);
156 static void spa_vdev_resilver_done(spa_t *spa);
157 
158 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
159 id_t		zio_taskq_psrset_bind = PS_NONE;
160 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
161 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
162 
163 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
164 extern int	zfs_sync_pass_deferred_free;
165 
166 /*
167  * This (illegal) pool name is used when temporarily importing a spa_t in order
168  * to get the vdev stats associated with the imported devices.
169  */
170 #define	TRYIMPORT_NAME	"$import"
171 
172 /*
173  * ==========================================================================
174  * SPA properties routines
175  * ==========================================================================
176  */
177 
178 /*
179  * Add a (source=src, propname=propval) list to an nvlist.
180  */
181 static void
182 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
183     uint64_t intval, zprop_source_t src)
184 {
185 	const char *propname = zpool_prop_to_name(prop);
186 	nvlist_t *propval;
187 
188 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
189 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
190 
191 	if (strval != NULL)
192 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
193 	else
194 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
195 
196 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
197 	nvlist_free(propval);
198 }
199 
200 /*
201  * Get property values from the spa configuration.
202  */
203 static void
204 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
205 {
206 	vdev_t *rvd = spa->spa_root_vdev;
207 	dsl_pool_t *pool = spa->spa_dsl_pool;
208 	uint64_t size, alloc, cap, version;
209 	zprop_source_t src = ZPROP_SRC_NONE;
210 	spa_config_dirent_t *dp;
211 	metaslab_class_t *mc = spa_normal_class(spa);
212 
213 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
214 
215 	if (rvd != NULL) {
216 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
217 		size = metaslab_class_get_space(spa_normal_class(spa));
218 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
219 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
222 		    size - alloc, src);
223 
224 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
225 		    metaslab_class_fragmentation(mc), src);
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
227 		    metaslab_class_expandable_space(mc), src);
228 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
229 		    (spa_mode(spa) == FREAD), src);
230 
231 		cap = (size == 0) ? 0 : (alloc * 100 / size);
232 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
233 
234 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
235 		    ddt_get_pool_dedup_ratio(spa), src);
236 
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
238 		    rvd->vdev_state, src);
239 
240 		version = spa_version(spa);
241 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
242 			src = ZPROP_SRC_DEFAULT;
243 		else
244 			src = ZPROP_SRC_LOCAL;
245 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
246 	}
247 
248 	if (pool != NULL) {
249 		/*
250 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
251 		 * when opening pools before this version freedir will be NULL.
252 		 */
253 		if (pool->dp_free_dir != NULL) {
254 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
255 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
256 			    src);
257 		} else {
258 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
259 			    NULL, 0, src);
260 		}
261 
262 		if (pool->dp_leak_dir != NULL) {
263 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
264 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
265 			    src);
266 		} else {
267 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
268 			    NULL, 0, src);
269 		}
270 	}
271 
272 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
273 
274 	if (spa->spa_comment != NULL) {
275 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
276 		    0, ZPROP_SRC_LOCAL);
277 	}
278 
279 	if (spa->spa_root != NULL)
280 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
281 		    0, ZPROP_SRC_LOCAL);
282 
283 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
284 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
285 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
286 	} else {
287 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
288 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
289 	}
290 
291 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
292 		if (dp->scd_path == NULL) {
293 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
294 			    "none", 0, ZPROP_SRC_LOCAL);
295 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
296 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
297 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
298 		}
299 	}
300 }
301 
302 /*
303  * Get zpool property values.
304  */
305 int
306 spa_prop_get(spa_t *spa, nvlist_t **nvp)
307 {
308 	objset_t *mos = spa->spa_meta_objset;
309 	zap_cursor_t zc;
310 	zap_attribute_t za;
311 	int err;
312 
313 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
314 
315 	mutex_enter(&spa->spa_props_lock);
316 
317 	/*
318 	 * Get properties from the spa config.
319 	 */
320 	spa_prop_get_config(spa, nvp);
321 
322 	/* If no pool property object, no more prop to get. */
323 	if (mos == NULL || spa->spa_pool_props_object == 0) {
324 		mutex_exit(&spa->spa_props_lock);
325 		return (0);
326 	}
327 
328 	/*
329 	 * Get properties from the MOS pool property object.
330 	 */
331 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
332 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
333 	    zap_cursor_advance(&zc)) {
334 		uint64_t intval = 0;
335 		char *strval = NULL;
336 		zprop_source_t src = ZPROP_SRC_DEFAULT;
337 		zpool_prop_t prop;
338 
339 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
340 			continue;
341 
342 		switch (za.za_integer_length) {
343 		case 8:
344 			/* integer property */
345 			if (za.za_first_integer !=
346 			    zpool_prop_default_numeric(prop))
347 				src = ZPROP_SRC_LOCAL;
348 
349 			if (prop == ZPOOL_PROP_BOOTFS) {
350 				dsl_pool_t *dp;
351 				dsl_dataset_t *ds = NULL;
352 
353 				dp = spa_get_dsl(spa);
354 				dsl_pool_config_enter(dp, FTAG);
355 				if (err = dsl_dataset_hold_obj(dp,
356 				    za.za_first_integer, FTAG, &ds)) {
357 					dsl_pool_config_exit(dp, FTAG);
358 					break;
359 				}
360 
361 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
362 				    KM_SLEEP);
363 				dsl_dataset_name(ds, strval);
364 				dsl_dataset_rele(ds, FTAG);
365 				dsl_pool_config_exit(dp, FTAG);
366 			} else {
367 				strval = NULL;
368 				intval = za.za_first_integer;
369 			}
370 
371 			spa_prop_add_list(*nvp, prop, strval, intval, src);
372 
373 			if (strval != NULL)
374 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
375 
376 			break;
377 
378 		case 1:
379 			/* string property */
380 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
381 			err = zap_lookup(mos, spa->spa_pool_props_object,
382 			    za.za_name, 1, za.za_num_integers, strval);
383 			if (err) {
384 				kmem_free(strval, za.za_num_integers);
385 				break;
386 			}
387 			spa_prop_add_list(*nvp, prop, strval, 0, src);
388 			kmem_free(strval, za.za_num_integers);
389 			break;
390 
391 		default:
392 			break;
393 		}
394 	}
395 	zap_cursor_fini(&zc);
396 	mutex_exit(&spa->spa_props_lock);
397 out:
398 	if (err && err != ENOENT) {
399 		nvlist_free(*nvp);
400 		*nvp = NULL;
401 		return (err);
402 	}
403 
404 	return (0);
405 }
406 
407 /*
408  * Validate the given pool properties nvlist and modify the list
409  * for the property values to be set.
410  */
411 static int
412 spa_prop_validate(spa_t *spa, nvlist_t *props)
413 {
414 	nvpair_t *elem;
415 	int error = 0, reset_bootfs = 0;
416 	uint64_t objnum = 0;
417 	boolean_t has_feature = B_FALSE;
418 
419 	elem = NULL;
420 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
421 		uint64_t intval;
422 		char *strval, *slash, *check, *fname;
423 		const char *propname = nvpair_name(elem);
424 		zpool_prop_t prop = zpool_name_to_prop(propname);
425 
426 		switch (prop) {
427 		case ZPOOL_PROP_INVAL:
428 			if (!zpool_prop_feature(propname)) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			/*
434 			 * Sanitize the input.
435 			 */
436 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
437 				error = SET_ERROR(EINVAL);
438 				break;
439 			}
440 
441 			if (nvpair_value_uint64(elem, &intval) != 0) {
442 				error = SET_ERROR(EINVAL);
443 				break;
444 			}
445 
446 			if (intval != 0) {
447 				error = SET_ERROR(EINVAL);
448 				break;
449 			}
450 
451 			fname = strchr(propname, '@') + 1;
452 			if (zfeature_lookup_name(fname, NULL) != 0) {
453 				error = SET_ERROR(EINVAL);
454 				break;
455 			}
456 
457 			has_feature = B_TRUE;
458 			break;
459 
460 		case ZPOOL_PROP_VERSION:
461 			error = nvpair_value_uint64(elem, &intval);
462 			if (!error &&
463 			    (intval < spa_version(spa) ||
464 			    intval > SPA_VERSION_BEFORE_FEATURES ||
465 			    has_feature))
466 				error = SET_ERROR(EINVAL);
467 			break;
468 
469 		case ZPOOL_PROP_DELEGATION:
470 		case ZPOOL_PROP_AUTOREPLACE:
471 		case ZPOOL_PROP_LISTSNAPS:
472 		case ZPOOL_PROP_AUTOEXPAND:
473 			error = nvpair_value_uint64(elem, &intval);
474 			if (!error && intval > 1)
475 				error = SET_ERROR(EINVAL);
476 			break;
477 
478 		case ZPOOL_PROP_BOOTFS:
479 			/*
480 			 * If the pool version is less than SPA_VERSION_BOOTFS,
481 			 * or the pool is still being created (version == 0),
482 			 * the bootfs property cannot be set.
483 			 */
484 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
485 				error = SET_ERROR(ENOTSUP);
486 				break;
487 			}
488 
489 			/*
490 			 * Make sure the vdev config is bootable
491 			 */
492 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
493 				error = SET_ERROR(ENOTSUP);
494 				break;
495 			}
496 
497 			reset_bootfs = 1;
498 
499 			error = nvpair_value_string(elem, &strval);
500 
501 			if (!error) {
502 				objset_t *os;
503 				uint64_t propval;
504 
505 				if (strval == NULL || strval[0] == '\0') {
506 					objnum = zpool_prop_default_numeric(
507 					    ZPOOL_PROP_BOOTFS);
508 					break;
509 				}
510 
511 				if (error = dmu_objset_hold(strval, FTAG, &os))
512 					break;
513 
514 				/*
515 				 * Must be ZPL, and its property settings
516 				 * must be supported by GRUB (compression
517 				 * is not gzip, and large blocks are not used).
518 				 */
519 
520 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
521 					error = SET_ERROR(ENOTSUP);
522 				} else if ((error =
523 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
524 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
525 				    &propval)) == 0 &&
526 				    !BOOTFS_COMPRESS_VALID(propval)) {
527 					error = SET_ERROR(ENOTSUP);
528 				} else {
529 					objnum = dmu_objset_id(os);
530 				}
531 				dmu_objset_rele(os, FTAG);
532 			}
533 			break;
534 
535 		case ZPOOL_PROP_FAILUREMODE:
536 			error = nvpair_value_uint64(elem, &intval);
537 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
538 			    intval > ZIO_FAILURE_MODE_PANIC))
539 				error = SET_ERROR(EINVAL);
540 
541 			/*
542 			 * This is a special case which only occurs when
543 			 * the pool has completely failed. This allows
544 			 * the user to change the in-core failmode property
545 			 * without syncing it out to disk (I/Os might
546 			 * currently be blocked). We do this by returning
547 			 * EIO to the caller (spa_prop_set) to trick it
548 			 * into thinking we encountered a property validation
549 			 * error.
550 			 */
551 			if (!error && spa_suspended(spa)) {
552 				spa->spa_failmode = intval;
553 				error = SET_ERROR(EIO);
554 			}
555 			break;
556 
557 		case ZPOOL_PROP_CACHEFILE:
558 			if ((error = nvpair_value_string(elem, &strval)) != 0)
559 				break;
560 
561 			if (strval[0] == '\0')
562 				break;
563 
564 			if (strcmp(strval, "none") == 0)
565 				break;
566 
567 			if (strval[0] != '/') {
568 				error = SET_ERROR(EINVAL);
569 				break;
570 			}
571 
572 			slash = strrchr(strval, '/');
573 			ASSERT(slash != NULL);
574 
575 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
576 			    strcmp(slash, "/..") == 0)
577 				error = SET_ERROR(EINVAL);
578 			break;
579 
580 		case ZPOOL_PROP_COMMENT:
581 			if ((error = nvpair_value_string(elem, &strval)) != 0)
582 				break;
583 			for (check = strval; *check != '\0'; check++) {
584 				/*
585 				 * The kernel doesn't have an easy isprint()
586 				 * check.  For this kernel check, we merely
587 				 * check ASCII apart from DEL.  Fix this if
588 				 * there is an easy-to-use kernel isprint().
589 				 */
590 				if (*check >= 0x7f) {
591 					error = SET_ERROR(EINVAL);
592 					break;
593 				}
594 			}
595 			if (strlen(strval) > ZPROP_MAX_COMMENT)
596 				error = E2BIG;
597 			break;
598 
599 		case ZPOOL_PROP_DEDUPDITTO:
600 			if (spa_version(spa) < SPA_VERSION_DEDUP)
601 				error = SET_ERROR(ENOTSUP);
602 			else
603 				error = nvpair_value_uint64(elem, &intval);
604 			if (error == 0 &&
605 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
606 				error = SET_ERROR(EINVAL);
607 			break;
608 		}
609 
610 		if (error)
611 			break;
612 	}
613 
614 	if (!error && reset_bootfs) {
615 		error = nvlist_remove(props,
616 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
617 
618 		if (!error) {
619 			error = nvlist_add_uint64(props,
620 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
621 		}
622 	}
623 
624 	return (error);
625 }
626 
627 void
628 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
629 {
630 	char *cachefile;
631 	spa_config_dirent_t *dp;
632 
633 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
634 	    &cachefile) != 0)
635 		return;
636 
637 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
638 	    KM_SLEEP);
639 
640 	if (cachefile[0] == '\0')
641 		dp->scd_path = spa_strdup(spa_config_path);
642 	else if (strcmp(cachefile, "none") == 0)
643 		dp->scd_path = NULL;
644 	else
645 		dp->scd_path = spa_strdup(cachefile);
646 
647 	list_insert_head(&spa->spa_config_list, dp);
648 	if (need_sync)
649 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
650 }
651 
652 int
653 spa_prop_set(spa_t *spa, nvlist_t *nvp)
654 {
655 	int error;
656 	nvpair_t *elem = NULL;
657 	boolean_t need_sync = B_FALSE;
658 
659 	if ((error = spa_prop_validate(spa, nvp)) != 0)
660 		return (error);
661 
662 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
663 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
664 
665 		if (prop == ZPOOL_PROP_CACHEFILE ||
666 		    prop == ZPOOL_PROP_ALTROOT ||
667 		    prop == ZPOOL_PROP_READONLY)
668 			continue;
669 
670 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
671 			uint64_t ver;
672 
673 			if (prop == ZPOOL_PROP_VERSION) {
674 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
675 			} else {
676 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
677 				ver = SPA_VERSION_FEATURES;
678 				need_sync = B_TRUE;
679 			}
680 
681 			/* Save time if the version is already set. */
682 			if (ver == spa_version(spa))
683 				continue;
684 
685 			/*
686 			 * In addition to the pool directory object, we might
687 			 * create the pool properties object, the features for
688 			 * read object, the features for write object, or the
689 			 * feature descriptions object.
690 			 */
691 			error = dsl_sync_task(spa->spa_name, NULL,
692 			    spa_sync_version, &ver,
693 			    6, ZFS_SPACE_CHECK_RESERVED);
694 			if (error)
695 				return (error);
696 			continue;
697 		}
698 
699 		need_sync = B_TRUE;
700 		break;
701 	}
702 
703 	if (need_sync) {
704 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
705 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
706 	}
707 
708 	return (0);
709 }
710 
711 /*
712  * If the bootfs property value is dsobj, clear it.
713  */
714 void
715 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
716 {
717 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
718 		VERIFY(zap_remove(spa->spa_meta_objset,
719 		    spa->spa_pool_props_object,
720 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
721 		spa->spa_bootfs = 0;
722 	}
723 }
724 
725 /*ARGSUSED*/
726 static int
727 spa_change_guid_check(void *arg, dmu_tx_t *tx)
728 {
729 	uint64_t *newguid = arg;
730 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
731 	vdev_t *rvd = spa->spa_root_vdev;
732 	uint64_t vdev_state;
733 
734 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
735 	vdev_state = rvd->vdev_state;
736 	spa_config_exit(spa, SCL_STATE, FTAG);
737 
738 	if (vdev_state != VDEV_STATE_HEALTHY)
739 		return (SET_ERROR(ENXIO));
740 
741 	ASSERT3U(spa_guid(spa), !=, *newguid);
742 
743 	return (0);
744 }
745 
746 static void
747 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
748 {
749 	uint64_t *newguid = arg;
750 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751 	uint64_t oldguid;
752 	vdev_t *rvd = spa->spa_root_vdev;
753 
754 	oldguid = spa_guid(spa);
755 
756 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
757 	rvd->vdev_guid = *newguid;
758 	rvd->vdev_guid_sum += (*newguid - oldguid);
759 	vdev_config_dirty(rvd);
760 	spa_config_exit(spa, SCL_STATE, FTAG);
761 
762 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
763 	    oldguid, *newguid);
764 }
765 
766 /*
767  * Change the GUID for the pool.  This is done so that we can later
768  * re-import a pool built from a clone of our own vdevs.  We will modify
769  * the root vdev's guid, our own pool guid, and then mark all of our
770  * vdevs dirty.  Note that we must make sure that all our vdevs are
771  * online when we do this, or else any vdevs that weren't present
772  * would be orphaned from our pool.  We are also going to issue a
773  * sysevent to update any watchers.
774  */
775 int
776 spa_change_guid(spa_t *spa)
777 {
778 	int error;
779 	uint64_t guid;
780 
781 	mutex_enter(&spa->spa_vdev_top_lock);
782 	mutex_enter(&spa_namespace_lock);
783 	guid = spa_generate_guid(NULL);
784 
785 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
786 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
787 
788 	if (error == 0) {
789 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
790 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
791 	}
792 
793 	mutex_exit(&spa_namespace_lock);
794 	mutex_exit(&spa->spa_vdev_top_lock);
795 
796 	return (error);
797 }
798 
799 /*
800  * ==========================================================================
801  * SPA state manipulation (open/create/destroy/import/export)
802  * ==========================================================================
803  */
804 
805 static int
806 spa_error_entry_compare(const void *a, const void *b)
807 {
808 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
809 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
810 	int ret;
811 
812 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
813 	    sizeof (zbookmark_phys_t));
814 
815 	if (ret < 0)
816 		return (-1);
817 	else if (ret > 0)
818 		return (1);
819 	else
820 		return (0);
821 }
822 
823 /*
824  * Utility function which retrieves copies of the current logs and
825  * re-initializes them in the process.
826  */
827 void
828 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
829 {
830 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
831 
832 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
833 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
834 
835 	avl_create(&spa->spa_errlist_scrub,
836 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
837 	    offsetof(spa_error_entry_t, se_avl));
838 	avl_create(&spa->spa_errlist_last,
839 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
840 	    offsetof(spa_error_entry_t, se_avl));
841 }
842 
843 static void
844 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
845 {
846 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
847 	enum zti_modes mode = ztip->zti_mode;
848 	uint_t value = ztip->zti_value;
849 	uint_t count = ztip->zti_count;
850 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
851 	char name[32];
852 	uint_t flags = 0;
853 	boolean_t batch = B_FALSE;
854 
855 	if (mode == ZTI_MODE_NULL) {
856 		tqs->stqs_count = 0;
857 		tqs->stqs_taskq = NULL;
858 		return;
859 	}
860 
861 	ASSERT3U(count, >, 0);
862 
863 	tqs->stqs_count = count;
864 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
865 
866 	switch (mode) {
867 	case ZTI_MODE_FIXED:
868 		ASSERT3U(value, >=, 1);
869 		value = MAX(value, 1);
870 		break;
871 
872 	case ZTI_MODE_BATCH:
873 		batch = B_TRUE;
874 		flags |= TASKQ_THREADS_CPU_PCT;
875 		value = zio_taskq_batch_pct;
876 		break;
877 
878 	default:
879 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
880 		    "spa_activate()",
881 		    zio_type_name[t], zio_taskq_types[q], mode, value);
882 		break;
883 	}
884 
885 	for (uint_t i = 0; i < count; i++) {
886 		taskq_t *tq;
887 
888 		if (count > 1) {
889 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
890 			    zio_type_name[t], zio_taskq_types[q], i);
891 		} else {
892 			(void) snprintf(name, sizeof (name), "%s_%s",
893 			    zio_type_name[t], zio_taskq_types[q]);
894 		}
895 
896 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
897 			if (batch)
898 				flags |= TASKQ_DC_BATCH;
899 
900 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
901 			    spa->spa_proc, zio_taskq_basedc, flags);
902 		} else {
903 			pri_t pri = maxclsyspri;
904 			/*
905 			 * The write issue taskq can be extremely CPU
906 			 * intensive.  Run it at slightly lower priority
907 			 * than the other taskqs.
908 			 */
909 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
910 				pri--;
911 
912 			tq = taskq_create_proc(name, value, pri, 50,
913 			    INT_MAX, spa->spa_proc, flags);
914 		}
915 
916 		tqs->stqs_taskq[i] = tq;
917 	}
918 }
919 
920 static void
921 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
922 {
923 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
924 
925 	if (tqs->stqs_taskq == NULL) {
926 		ASSERT0(tqs->stqs_count);
927 		return;
928 	}
929 
930 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
931 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
932 		taskq_destroy(tqs->stqs_taskq[i]);
933 	}
934 
935 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
936 	tqs->stqs_taskq = NULL;
937 }
938 
939 /*
940  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
941  * Note that a type may have multiple discrete taskqs to avoid lock contention
942  * on the taskq itself. In that case we choose which taskq at random by using
943  * the low bits of gethrtime().
944  */
945 void
946 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
947     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
948 {
949 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
950 	taskq_t *tq;
951 
952 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
953 	ASSERT3U(tqs->stqs_count, !=, 0);
954 
955 	if (tqs->stqs_count == 1) {
956 		tq = tqs->stqs_taskq[0];
957 	} else {
958 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
959 	}
960 
961 	taskq_dispatch_ent(tq, func, arg, flags, ent);
962 }
963 
964 static void
965 spa_create_zio_taskqs(spa_t *spa)
966 {
967 	for (int t = 0; t < ZIO_TYPES; t++) {
968 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
969 			spa_taskqs_init(spa, t, q);
970 		}
971 	}
972 }
973 
974 #ifdef _KERNEL
975 static void
976 spa_thread(void *arg)
977 {
978 	callb_cpr_t cprinfo;
979 
980 	spa_t *spa = arg;
981 	user_t *pu = PTOU(curproc);
982 
983 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
984 	    spa->spa_name);
985 
986 	ASSERT(curproc != &p0);
987 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
988 	    "zpool-%s", spa->spa_name);
989 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
990 
991 	/* bind this thread to the requested psrset */
992 	if (zio_taskq_psrset_bind != PS_NONE) {
993 		pool_lock();
994 		mutex_enter(&cpu_lock);
995 		mutex_enter(&pidlock);
996 		mutex_enter(&curproc->p_lock);
997 
998 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999 		    0, NULL, NULL) == 0)  {
1000 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001 		} else {
1002 			cmn_err(CE_WARN,
1003 			    "Couldn't bind process for zfs pool \"%s\" to "
1004 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005 		}
1006 
1007 		mutex_exit(&curproc->p_lock);
1008 		mutex_exit(&pidlock);
1009 		mutex_exit(&cpu_lock);
1010 		pool_unlock();
1011 	}
1012 
1013 	if (zio_taskq_sysdc) {
1014 		sysdc_thread_enter(curthread, 100, 0);
1015 	}
1016 
1017 	spa->spa_proc = curproc;
1018 	spa->spa_did = curthread->t_did;
1019 
1020 	spa_create_zio_taskqs(spa);
1021 
1022 	mutex_enter(&spa->spa_proc_lock);
1023 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1024 
1025 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1026 	cv_broadcast(&spa->spa_proc_cv);
1027 
1028 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1029 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1030 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1031 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1032 
1033 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1034 	spa->spa_proc_state = SPA_PROC_GONE;
1035 	spa->spa_proc = &p0;
1036 	cv_broadcast(&spa->spa_proc_cv);
1037 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1038 
1039 	mutex_enter(&curproc->p_lock);
1040 	lwp_exit();
1041 }
1042 #endif
1043 
1044 /*
1045  * Activate an uninitialized pool.
1046  */
1047 static void
1048 spa_activate(spa_t *spa, int mode)
1049 {
1050 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1051 
1052 	spa->spa_state = POOL_STATE_ACTIVE;
1053 	spa->spa_mode = mode;
1054 
1055 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 
1058 	/* Try to create a covering process */
1059 	mutex_enter(&spa->spa_proc_lock);
1060 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1061 	ASSERT(spa->spa_proc == &p0);
1062 	spa->spa_did = 0;
1063 
1064 	/* Only create a process if we're going to be around a while. */
1065 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1066 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1067 		    NULL, 0) == 0) {
1068 			spa->spa_proc_state = SPA_PROC_CREATED;
1069 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1070 				cv_wait(&spa->spa_proc_cv,
1071 				    &spa->spa_proc_lock);
1072 			}
1073 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1074 			ASSERT(spa->spa_proc != &p0);
1075 			ASSERT(spa->spa_did != 0);
1076 		} else {
1077 #ifdef _KERNEL
1078 			cmn_err(CE_WARN,
1079 			    "Couldn't create process for zfs pool \"%s\"\n",
1080 			    spa->spa_name);
1081 #endif
1082 		}
1083 	}
1084 	mutex_exit(&spa->spa_proc_lock);
1085 
1086 	/* If we didn't create a process, we need to create our taskqs. */
1087 	if (spa->spa_proc == &p0) {
1088 		spa_create_zio_taskqs(spa);
1089 	}
1090 
1091 	for (size_t i = 0; i < TXG_SIZE; i++)
1092 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1093 
1094 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1095 	    offsetof(vdev_t, vdev_config_dirty_node));
1096 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1097 	    offsetof(objset_t, os_evicting_node));
1098 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1099 	    offsetof(vdev_t, vdev_state_dirty_node));
1100 
1101 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1102 	    offsetof(struct vdev, vdev_txg_node));
1103 
1104 	avl_create(&spa->spa_errlist_scrub,
1105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1106 	    offsetof(spa_error_entry_t, se_avl));
1107 	avl_create(&spa->spa_errlist_last,
1108 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1109 	    offsetof(spa_error_entry_t, se_avl));
1110 }
1111 
1112 /*
1113  * Opposite of spa_activate().
1114  */
1115 static void
1116 spa_deactivate(spa_t *spa)
1117 {
1118 	ASSERT(spa->spa_sync_on == B_FALSE);
1119 	ASSERT(spa->spa_dsl_pool == NULL);
1120 	ASSERT(spa->spa_root_vdev == NULL);
1121 	ASSERT(spa->spa_async_zio_root == NULL);
1122 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1123 
1124 	spa_evicting_os_wait(spa);
1125 
1126 	txg_list_destroy(&spa->spa_vdev_txg_list);
1127 
1128 	list_destroy(&spa->spa_config_dirty_list);
1129 	list_destroy(&spa->spa_evicting_os_list);
1130 	list_destroy(&spa->spa_state_dirty_list);
1131 
1132 	for (int t = 0; t < ZIO_TYPES; t++) {
1133 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1134 			spa_taskqs_fini(spa, t, q);
1135 		}
1136 	}
1137 
1138 	for (size_t i = 0; i < TXG_SIZE; i++) {
1139 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1140 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1141 		spa->spa_txg_zio[i] = NULL;
1142 	}
1143 
1144 	metaslab_class_destroy(spa->spa_normal_class);
1145 	spa->spa_normal_class = NULL;
1146 
1147 	metaslab_class_destroy(spa->spa_log_class);
1148 	spa->spa_log_class = NULL;
1149 
1150 	/*
1151 	 * If this was part of an import or the open otherwise failed, we may
1152 	 * still have errors left in the queues.  Empty them just in case.
1153 	 */
1154 	spa_errlog_drain(spa);
1155 
1156 	avl_destroy(&spa->spa_errlist_scrub);
1157 	avl_destroy(&spa->spa_errlist_last);
1158 
1159 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1160 
1161 	mutex_enter(&spa->spa_proc_lock);
1162 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1163 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1164 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1165 		cv_broadcast(&spa->spa_proc_cv);
1166 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1167 			ASSERT(spa->spa_proc != &p0);
1168 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1169 		}
1170 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1171 		spa->spa_proc_state = SPA_PROC_NONE;
1172 	}
1173 	ASSERT(spa->spa_proc == &p0);
1174 	mutex_exit(&spa->spa_proc_lock);
1175 
1176 	/*
1177 	 * We want to make sure spa_thread() has actually exited the ZFS
1178 	 * module, so that the module can't be unloaded out from underneath
1179 	 * it.
1180 	 */
1181 	if (spa->spa_did != 0) {
1182 		thread_join(spa->spa_did);
1183 		spa->spa_did = 0;
1184 	}
1185 }
1186 
1187 /*
1188  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1189  * will create all the necessary vdevs in the appropriate layout, with each vdev
1190  * in the CLOSED state.  This will prep the pool before open/creation/import.
1191  * All vdev validation is done by the vdev_alloc() routine.
1192  */
1193 static int
1194 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1195     uint_t id, int atype)
1196 {
1197 	nvlist_t **child;
1198 	uint_t children;
1199 	int error;
1200 
1201 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1202 		return (error);
1203 
1204 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1205 		return (0);
1206 
1207 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1208 	    &child, &children);
1209 
1210 	if (error == ENOENT)
1211 		return (0);
1212 
1213 	if (error) {
1214 		vdev_free(*vdp);
1215 		*vdp = NULL;
1216 		return (SET_ERROR(EINVAL));
1217 	}
1218 
1219 	for (int c = 0; c < children; c++) {
1220 		vdev_t *vd;
1221 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1222 		    atype)) != 0) {
1223 			vdev_free(*vdp);
1224 			*vdp = NULL;
1225 			return (error);
1226 		}
1227 	}
1228 
1229 	ASSERT(*vdp != NULL);
1230 
1231 	return (0);
1232 }
1233 
1234 /*
1235  * Opposite of spa_load().
1236  */
1237 static void
1238 spa_unload(spa_t *spa)
1239 {
1240 	int i;
1241 
1242 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1243 
1244 	/*
1245 	 * Stop async tasks.
1246 	 */
1247 	spa_async_suspend(spa);
1248 
1249 	/*
1250 	 * Stop syncing.
1251 	 */
1252 	if (spa->spa_sync_on) {
1253 		txg_sync_stop(spa->spa_dsl_pool);
1254 		spa->spa_sync_on = B_FALSE;
1255 	}
1256 
1257 	/*
1258 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1259 	 * to call it earlier, before we wait for async i/o to complete.
1260 	 * This ensures that there is no async metaslab prefetching, by
1261 	 * calling taskq_wait(mg_taskq).
1262 	 */
1263 	if (spa->spa_root_vdev != NULL) {
1264 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1265 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1266 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1267 		spa_config_exit(spa, SCL_ALL, FTAG);
1268 	}
1269 
1270 	/*
1271 	 * Wait for any outstanding async I/O to complete.
1272 	 */
1273 	if (spa->spa_async_zio_root != NULL) {
1274 		for (int i = 0; i < max_ncpus; i++)
1275 			(void) zio_wait(spa->spa_async_zio_root[i]);
1276 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1277 		spa->spa_async_zio_root = NULL;
1278 	}
1279 
1280 	if (spa->spa_vdev_removal != NULL) {
1281 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1282 		spa->spa_vdev_removal = NULL;
1283 	}
1284 
1285 	spa_condense_fini(spa);
1286 
1287 	bpobj_close(&spa->spa_deferred_bpobj);
1288 
1289 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1290 
1291 	/*
1292 	 * Close all vdevs.
1293 	 */
1294 	if (spa->spa_root_vdev)
1295 		vdev_free(spa->spa_root_vdev);
1296 	ASSERT(spa->spa_root_vdev == NULL);
1297 
1298 	/*
1299 	 * Close the dsl pool.
1300 	 */
1301 	if (spa->spa_dsl_pool) {
1302 		dsl_pool_close(spa->spa_dsl_pool);
1303 		spa->spa_dsl_pool = NULL;
1304 		spa->spa_meta_objset = NULL;
1305 	}
1306 
1307 	ddt_unload(spa);
1308 
1309 	/*
1310 	 * Drop and purge level 2 cache
1311 	 */
1312 	spa_l2cache_drop(spa);
1313 
1314 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1315 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1316 	if (spa->spa_spares.sav_vdevs) {
1317 		kmem_free(spa->spa_spares.sav_vdevs,
1318 		    spa->spa_spares.sav_count * sizeof (void *));
1319 		spa->spa_spares.sav_vdevs = NULL;
1320 	}
1321 	if (spa->spa_spares.sav_config) {
1322 		nvlist_free(spa->spa_spares.sav_config);
1323 		spa->spa_spares.sav_config = NULL;
1324 	}
1325 	spa->spa_spares.sav_count = 0;
1326 
1327 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1328 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1329 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1330 	}
1331 	if (spa->spa_l2cache.sav_vdevs) {
1332 		kmem_free(spa->spa_l2cache.sav_vdevs,
1333 		    spa->spa_l2cache.sav_count * sizeof (void *));
1334 		spa->spa_l2cache.sav_vdevs = NULL;
1335 	}
1336 	if (spa->spa_l2cache.sav_config) {
1337 		nvlist_free(spa->spa_l2cache.sav_config);
1338 		spa->spa_l2cache.sav_config = NULL;
1339 	}
1340 	spa->spa_l2cache.sav_count = 0;
1341 
1342 	spa->spa_async_suspended = 0;
1343 
1344 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1345 
1346 	if (spa->spa_comment != NULL) {
1347 		spa_strfree(spa->spa_comment);
1348 		spa->spa_comment = NULL;
1349 	}
1350 
1351 	spa_config_exit(spa, SCL_ALL, FTAG);
1352 }
1353 
1354 /*
1355  * Load (or re-load) the current list of vdevs describing the active spares for
1356  * this pool.  When this is called, we have some form of basic information in
1357  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1358  * then re-generate a more complete list including status information.
1359  */
1360 void
1361 spa_load_spares(spa_t *spa)
1362 {
1363 	nvlist_t **spares;
1364 	uint_t nspares;
1365 	int i;
1366 	vdev_t *vd, *tvd;
1367 
1368 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1369 
1370 	/*
1371 	 * First, close and free any existing spare vdevs.
1372 	 */
1373 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1374 		vd = spa->spa_spares.sav_vdevs[i];
1375 
1376 		/* Undo the call to spa_activate() below */
1377 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1378 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1379 			spa_spare_remove(tvd);
1380 		vdev_close(vd);
1381 		vdev_free(vd);
1382 	}
1383 
1384 	if (spa->spa_spares.sav_vdevs)
1385 		kmem_free(spa->spa_spares.sav_vdevs,
1386 		    spa->spa_spares.sav_count * sizeof (void *));
1387 
1388 	if (spa->spa_spares.sav_config == NULL)
1389 		nspares = 0;
1390 	else
1391 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1392 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1393 
1394 	spa->spa_spares.sav_count = (int)nspares;
1395 	spa->spa_spares.sav_vdevs = NULL;
1396 
1397 	if (nspares == 0)
1398 		return;
1399 
1400 	/*
1401 	 * Construct the array of vdevs, opening them to get status in the
1402 	 * process.   For each spare, there is potentially two different vdev_t
1403 	 * structures associated with it: one in the list of spares (used only
1404 	 * for basic validation purposes) and one in the active vdev
1405 	 * configuration (if it's spared in).  During this phase we open and
1406 	 * validate each vdev on the spare list.  If the vdev also exists in the
1407 	 * active configuration, then we also mark this vdev as an active spare.
1408 	 */
1409 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1410 	    KM_SLEEP);
1411 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1412 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1413 		    VDEV_ALLOC_SPARE) == 0);
1414 		ASSERT(vd != NULL);
1415 
1416 		spa->spa_spares.sav_vdevs[i] = vd;
1417 
1418 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1419 		    B_FALSE)) != NULL) {
1420 			if (!tvd->vdev_isspare)
1421 				spa_spare_add(tvd);
1422 
1423 			/*
1424 			 * We only mark the spare active if we were successfully
1425 			 * able to load the vdev.  Otherwise, importing a pool
1426 			 * with a bad active spare would result in strange
1427 			 * behavior, because multiple pool would think the spare
1428 			 * is actively in use.
1429 			 *
1430 			 * There is a vulnerability here to an equally bizarre
1431 			 * circumstance, where a dead active spare is later
1432 			 * brought back to life (onlined or otherwise).  Given
1433 			 * the rarity of this scenario, and the extra complexity
1434 			 * it adds, we ignore the possibility.
1435 			 */
1436 			if (!vdev_is_dead(tvd))
1437 				spa_spare_activate(tvd);
1438 		}
1439 
1440 		vd->vdev_top = vd;
1441 		vd->vdev_aux = &spa->spa_spares;
1442 
1443 		if (vdev_open(vd) != 0)
1444 			continue;
1445 
1446 		if (vdev_validate_aux(vd) == 0)
1447 			spa_spare_add(vd);
1448 	}
1449 
1450 	/*
1451 	 * Recompute the stashed list of spares, with status information
1452 	 * this time.
1453 	 */
1454 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1455 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1456 
1457 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1458 	    KM_SLEEP);
1459 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1460 		spares[i] = vdev_config_generate(spa,
1461 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1462 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1463 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1464 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1465 		nvlist_free(spares[i]);
1466 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1467 }
1468 
1469 /*
1470  * Load (or re-load) the current list of vdevs describing the active l2cache for
1471  * this pool.  When this is called, we have some form of basic information in
1472  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1473  * then re-generate a more complete list including status information.
1474  * Devices which are already active have their details maintained, and are
1475  * not re-opened.
1476  */
1477 void
1478 spa_load_l2cache(spa_t *spa)
1479 {
1480 	nvlist_t **l2cache;
1481 	uint_t nl2cache;
1482 	int i, j, oldnvdevs;
1483 	uint64_t guid;
1484 	vdev_t *vd, **oldvdevs, **newvdevs;
1485 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1486 
1487 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1488 
1489 	if (sav->sav_config != NULL) {
1490 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1491 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1492 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1493 	} else {
1494 		nl2cache = 0;
1495 		newvdevs = NULL;
1496 	}
1497 
1498 	oldvdevs = sav->sav_vdevs;
1499 	oldnvdevs = sav->sav_count;
1500 	sav->sav_vdevs = NULL;
1501 	sav->sav_count = 0;
1502 
1503 	/*
1504 	 * Process new nvlist of vdevs.
1505 	 */
1506 	for (i = 0; i < nl2cache; i++) {
1507 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1508 		    &guid) == 0);
1509 
1510 		newvdevs[i] = NULL;
1511 		for (j = 0; j < oldnvdevs; j++) {
1512 			vd = oldvdevs[j];
1513 			if (vd != NULL && guid == vd->vdev_guid) {
1514 				/*
1515 				 * Retain previous vdev for add/remove ops.
1516 				 */
1517 				newvdevs[i] = vd;
1518 				oldvdevs[j] = NULL;
1519 				break;
1520 			}
1521 		}
1522 
1523 		if (newvdevs[i] == NULL) {
1524 			/*
1525 			 * Create new vdev
1526 			 */
1527 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1528 			    VDEV_ALLOC_L2CACHE) == 0);
1529 			ASSERT(vd != NULL);
1530 			newvdevs[i] = vd;
1531 
1532 			/*
1533 			 * Commit this vdev as an l2cache device,
1534 			 * even if it fails to open.
1535 			 */
1536 			spa_l2cache_add(vd);
1537 
1538 			vd->vdev_top = vd;
1539 			vd->vdev_aux = sav;
1540 
1541 			spa_l2cache_activate(vd);
1542 
1543 			if (vdev_open(vd) != 0)
1544 				continue;
1545 
1546 			(void) vdev_validate_aux(vd);
1547 
1548 			if (!vdev_is_dead(vd))
1549 				l2arc_add_vdev(spa, vd);
1550 		}
1551 	}
1552 
1553 	/*
1554 	 * Purge vdevs that were dropped
1555 	 */
1556 	for (i = 0; i < oldnvdevs; i++) {
1557 		uint64_t pool;
1558 
1559 		vd = oldvdevs[i];
1560 		if (vd != NULL) {
1561 			ASSERT(vd->vdev_isl2cache);
1562 
1563 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1564 			    pool != 0ULL && l2arc_vdev_present(vd))
1565 				l2arc_remove_vdev(vd);
1566 			vdev_clear_stats(vd);
1567 			vdev_free(vd);
1568 		}
1569 	}
1570 
1571 	if (oldvdevs)
1572 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1573 
1574 	if (sav->sav_config == NULL)
1575 		goto out;
1576 
1577 	sav->sav_vdevs = newvdevs;
1578 	sav->sav_count = (int)nl2cache;
1579 
1580 	/*
1581 	 * Recompute the stashed list of l2cache devices, with status
1582 	 * information this time.
1583 	 */
1584 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1585 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1586 
1587 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1588 	for (i = 0; i < sav->sav_count; i++)
1589 		l2cache[i] = vdev_config_generate(spa,
1590 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1591 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1592 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1593 out:
1594 	for (i = 0; i < sav->sav_count; i++)
1595 		nvlist_free(l2cache[i]);
1596 	if (sav->sav_count)
1597 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1598 }
1599 
1600 static int
1601 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1602 {
1603 	dmu_buf_t *db;
1604 	char *packed = NULL;
1605 	size_t nvsize = 0;
1606 	int error;
1607 	*value = NULL;
1608 
1609 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1610 	if (error != 0)
1611 		return (error);
1612 
1613 	nvsize = *(uint64_t *)db->db_data;
1614 	dmu_buf_rele(db, FTAG);
1615 
1616 	packed = kmem_alloc(nvsize, KM_SLEEP);
1617 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1618 	    DMU_READ_PREFETCH);
1619 	if (error == 0)
1620 		error = nvlist_unpack(packed, nvsize, value, 0);
1621 	kmem_free(packed, nvsize);
1622 
1623 	return (error);
1624 }
1625 
1626 /*
1627  * Checks to see if the given vdev could not be opened, in which case we post a
1628  * sysevent to notify the autoreplace code that the device has been removed.
1629  */
1630 static void
1631 spa_check_removed(vdev_t *vd)
1632 {
1633 	for (int c = 0; c < vd->vdev_children; c++)
1634 		spa_check_removed(vd->vdev_child[c]);
1635 
1636 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1637 	    vdev_is_concrete(vd)) {
1638 		zfs_post_autoreplace(vd->vdev_spa, vd);
1639 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1640 	}
1641 }
1642 
1643 static void
1644 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1645 {
1646 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1647 
1648 	vd->vdev_top_zap = mvd->vdev_top_zap;
1649 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1650 
1651 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1652 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1653 	}
1654 }
1655 
1656 /*
1657  * Validate the current config against the MOS config
1658  */
1659 static boolean_t
1660 spa_config_valid(spa_t *spa, nvlist_t *config)
1661 {
1662 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1663 	nvlist_t *nv;
1664 
1665 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1666 
1667 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1668 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1669 
1670 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1671 
1672 	/*
1673 	 * If we're doing a normal import, then build up any additional
1674 	 * diagnostic information about missing devices in this config.
1675 	 * We'll pass this up to the user for further processing.
1676 	 */
1677 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1678 		nvlist_t **child, *nv;
1679 		uint64_t idx = 0;
1680 
1681 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1682 		    KM_SLEEP);
1683 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1684 
1685 		for (int c = 0; c < rvd->vdev_children; c++) {
1686 			vdev_t *tvd = rvd->vdev_child[c];
1687 			vdev_t *mtvd  = mrvd->vdev_child[c];
1688 
1689 			if (tvd->vdev_ops == &vdev_missing_ops &&
1690 			    mtvd->vdev_ops != &vdev_missing_ops &&
1691 			    mtvd->vdev_islog)
1692 				child[idx++] = vdev_config_generate(spa, mtvd,
1693 				    B_FALSE, 0);
1694 		}
1695 
1696 		if (idx) {
1697 			VERIFY(nvlist_add_nvlist_array(nv,
1698 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1699 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1700 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1701 
1702 			for (int i = 0; i < idx; i++)
1703 				nvlist_free(child[i]);
1704 		}
1705 		nvlist_free(nv);
1706 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1707 	}
1708 
1709 	/*
1710 	 * Compare the root vdev tree with the information we have
1711 	 * from the MOS config (mrvd). Check each top-level vdev
1712 	 * with the corresponding MOS config top-level (mtvd).
1713 	 */
1714 	for (int c = 0; c < rvd->vdev_children; c++) {
1715 		vdev_t *tvd = rvd->vdev_child[c];
1716 		vdev_t *mtvd  = mrvd->vdev_child[c];
1717 
1718 		/*
1719 		 * Resolve any "missing" vdevs in the current configuration.
1720 		 * Also trust the MOS config about any "indirect" vdevs.
1721 		 * If we find that the MOS config has more accurate information
1722 		 * about the top-level vdev then use that vdev instead.
1723 		 */
1724 		if ((tvd->vdev_ops == &vdev_missing_ops &&
1725 		    mtvd->vdev_ops != &vdev_missing_ops) ||
1726 		    (mtvd->vdev_ops == &vdev_indirect_ops &&
1727 		    tvd->vdev_ops != &vdev_indirect_ops)) {
1728 
1729 			/*
1730 			 * Device specific actions.
1731 			 */
1732 			if (mtvd->vdev_islog) {
1733 				if (!(spa->spa_import_flags &
1734 				    ZFS_IMPORT_MISSING_LOG)) {
1735 					continue;
1736 				}
1737 
1738 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1739 			} else if (mtvd->vdev_ops != &vdev_indirect_ops) {
1740 				continue;
1741 			}
1742 
1743 			/*
1744 			 * Swap the missing vdev with the data we were
1745 			 * able to obtain from the MOS config.
1746 			 */
1747 			vdev_remove_child(rvd, tvd);
1748 			vdev_remove_child(mrvd, mtvd);
1749 
1750 			vdev_add_child(rvd, mtvd);
1751 			vdev_add_child(mrvd, tvd);
1752 
1753 			vdev_reopen(rvd);
1754 		} else {
1755 			if (mtvd->vdev_islog) {
1756 				/*
1757 				 * Load the slog device's state from the MOS
1758 				 * config since it's possible that the label
1759 				 * does not contain the most up-to-date
1760 				 * information.
1761 				 */
1762 				vdev_load_log_state(tvd, mtvd);
1763 				vdev_reopen(tvd);
1764 			}
1765 
1766 			/*
1767 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1768 			 */
1769 			spa_config_valid_zaps(tvd, mtvd);
1770 		}
1771 
1772 		/*
1773 		 * Never trust this info from userland; always use what's
1774 		 * in the MOS.  This prevents it from getting out of sync
1775 		 * with the rest of the info in the MOS.
1776 		 */
1777 		tvd->vdev_removing = mtvd->vdev_removing;
1778 		tvd->vdev_indirect_config = mtvd->vdev_indirect_config;
1779 	}
1780 
1781 	vdev_free(mrvd);
1782 	spa_config_exit(spa, SCL_ALL, FTAG);
1783 
1784 	/*
1785 	 * Ensure we were able to validate the config.
1786 	 */
1787 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1788 }
1789 
1790 /*
1791  * Check for missing log devices
1792  */
1793 static boolean_t
1794 spa_check_logs(spa_t *spa)
1795 {
1796 	boolean_t rv = B_FALSE;
1797 	dsl_pool_t *dp = spa_get_dsl(spa);
1798 
1799 	switch (spa->spa_log_state) {
1800 	case SPA_LOG_MISSING:
1801 		/* need to recheck in case slog has been restored */
1802 	case SPA_LOG_UNKNOWN:
1803 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1804 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1805 		if (rv)
1806 			spa_set_log_state(spa, SPA_LOG_MISSING);
1807 		break;
1808 	}
1809 	return (rv);
1810 }
1811 
1812 static boolean_t
1813 spa_passivate_log(spa_t *spa)
1814 {
1815 	vdev_t *rvd = spa->spa_root_vdev;
1816 	boolean_t slog_found = B_FALSE;
1817 
1818 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1819 
1820 	if (!spa_has_slogs(spa))
1821 		return (B_FALSE);
1822 
1823 	for (int c = 0; c < rvd->vdev_children; c++) {
1824 		vdev_t *tvd = rvd->vdev_child[c];
1825 		metaslab_group_t *mg = tvd->vdev_mg;
1826 
1827 		if (tvd->vdev_islog) {
1828 			metaslab_group_passivate(mg);
1829 			slog_found = B_TRUE;
1830 		}
1831 	}
1832 
1833 	return (slog_found);
1834 }
1835 
1836 static void
1837 spa_activate_log(spa_t *spa)
1838 {
1839 	vdev_t *rvd = spa->spa_root_vdev;
1840 
1841 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1842 
1843 	for (int c = 0; c < rvd->vdev_children; c++) {
1844 		vdev_t *tvd = rvd->vdev_child[c];
1845 		metaslab_group_t *mg = tvd->vdev_mg;
1846 
1847 		if (tvd->vdev_islog)
1848 			metaslab_group_activate(mg);
1849 	}
1850 }
1851 
1852 int
1853 spa_reset_logs(spa_t *spa)
1854 {
1855 	int error;
1856 
1857 	error = dmu_objset_find(spa_name(spa), zil_reset,
1858 	    NULL, DS_FIND_CHILDREN);
1859 	if (error == 0) {
1860 		/*
1861 		 * We successfully offlined the log device, sync out the
1862 		 * current txg so that the "stubby" block can be removed
1863 		 * by zil_sync().
1864 		 */
1865 		txg_wait_synced(spa->spa_dsl_pool, 0);
1866 	}
1867 	return (error);
1868 }
1869 
1870 static void
1871 spa_aux_check_removed(spa_aux_vdev_t *sav)
1872 {
1873 	for (int i = 0; i < sav->sav_count; i++)
1874 		spa_check_removed(sav->sav_vdevs[i]);
1875 }
1876 
1877 void
1878 spa_claim_notify(zio_t *zio)
1879 {
1880 	spa_t *spa = zio->io_spa;
1881 
1882 	if (zio->io_error)
1883 		return;
1884 
1885 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1886 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1887 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1888 	mutex_exit(&spa->spa_props_lock);
1889 }
1890 
1891 typedef struct spa_load_error {
1892 	uint64_t	sle_meta_count;
1893 	uint64_t	sle_data_count;
1894 } spa_load_error_t;
1895 
1896 static void
1897 spa_load_verify_done(zio_t *zio)
1898 {
1899 	blkptr_t *bp = zio->io_bp;
1900 	spa_load_error_t *sle = zio->io_private;
1901 	dmu_object_type_t type = BP_GET_TYPE(bp);
1902 	int error = zio->io_error;
1903 	spa_t *spa = zio->io_spa;
1904 
1905 	abd_free(zio->io_abd);
1906 	if (error) {
1907 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1908 		    type != DMU_OT_INTENT_LOG)
1909 			atomic_inc_64(&sle->sle_meta_count);
1910 		else
1911 			atomic_inc_64(&sle->sle_data_count);
1912 	}
1913 
1914 	mutex_enter(&spa->spa_scrub_lock);
1915 	spa->spa_scrub_inflight--;
1916 	cv_broadcast(&spa->spa_scrub_io_cv);
1917 	mutex_exit(&spa->spa_scrub_lock);
1918 }
1919 
1920 /*
1921  * Maximum number of concurrent scrub i/os to create while verifying
1922  * a pool while importing it.
1923  */
1924 int spa_load_verify_maxinflight = 10000;
1925 boolean_t spa_load_verify_metadata = B_TRUE;
1926 boolean_t spa_load_verify_data = B_TRUE;
1927 
1928 /*ARGSUSED*/
1929 static int
1930 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1931     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1932 {
1933 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1934 		return (0);
1935 	/*
1936 	 * Note: normally this routine will not be called if
1937 	 * spa_load_verify_metadata is not set.  However, it may be useful
1938 	 * to manually set the flag after the traversal has begun.
1939 	 */
1940 	if (!spa_load_verify_metadata)
1941 		return (0);
1942 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1943 		return (0);
1944 
1945 	zio_t *rio = arg;
1946 	size_t size = BP_GET_PSIZE(bp);
1947 
1948 	mutex_enter(&spa->spa_scrub_lock);
1949 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1950 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1951 	spa->spa_scrub_inflight++;
1952 	mutex_exit(&spa->spa_scrub_lock);
1953 
1954 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1955 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1956 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1957 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1958 	return (0);
1959 }
1960 
1961 /* ARGSUSED */
1962 int
1963 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1964 {
1965 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1966 		return (SET_ERROR(ENAMETOOLONG));
1967 
1968 	return (0);
1969 }
1970 
1971 static int
1972 spa_load_verify(spa_t *spa)
1973 {
1974 	zio_t *rio;
1975 	spa_load_error_t sle = { 0 };
1976 	zpool_rewind_policy_t policy;
1977 	boolean_t verify_ok = B_FALSE;
1978 	int error = 0;
1979 
1980 	zpool_get_rewind_policy(spa->spa_config, &policy);
1981 
1982 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1983 		return (0);
1984 
1985 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1986 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1987 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1988 	    DS_FIND_CHILDREN);
1989 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1990 	if (error != 0)
1991 		return (error);
1992 
1993 	rio = zio_root(spa, NULL, &sle,
1994 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1995 
1996 	if (spa_load_verify_metadata) {
1997 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1998 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1999 		    spa_load_verify_cb, rio);
2000 	}
2001 
2002 	(void) zio_wait(rio);
2003 
2004 	spa->spa_load_meta_errors = sle.sle_meta_count;
2005 	spa->spa_load_data_errors = sle.sle_data_count;
2006 
2007 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2008 	    sle.sle_data_count <= policy.zrp_maxdata) {
2009 		int64_t loss = 0;
2010 
2011 		verify_ok = B_TRUE;
2012 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2013 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2014 
2015 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2016 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2017 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2018 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2019 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2020 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2021 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2022 	} else {
2023 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2024 	}
2025 
2026 	if (error) {
2027 		if (error != ENXIO && error != EIO)
2028 			error = SET_ERROR(EIO);
2029 		return (error);
2030 	}
2031 
2032 	return (verify_ok ? 0 : EIO);
2033 }
2034 
2035 /*
2036  * Find a value in the pool props object.
2037  */
2038 static void
2039 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2040 {
2041 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2042 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2043 }
2044 
2045 /*
2046  * Find a value in the pool directory object.
2047  */
2048 static int
2049 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2050 {
2051 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2052 	    name, sizeof (uint64_t), 1, val));
2053 }
2054 
2055 static int
2056 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2057 {
2058 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2059 	return (SET_ERROR(err));
2060 }
2061 
2062 /*
2063  * Fix up config after a partly-completed split.  This is done with the
2064  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2065  * pool have that entry in their config, but only the splitting one contains
2066  * a list of all the guids of the vdevs that are being split off.
2067  *
2068  * This function determines what to do with that list: either rejoin
2069  * all the disks to the pool, or complete the splitting process.  To attempt
2070  * the rejoin, each disk that is offlined is marked online again, and
2071  * we do a reopen() call.  If the vdev label for every disk that was
2072  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2073  * then we call vdev_split() on each disk, and complete the split.
2074  *
2075  * Otherwise we leave the config alone, with all the vdevs in place in
2076  * the original pool.
2077  */
2078 static void
2079 spa_try_repair(spa_t *spa, nvlist_t *config)
2080 {
2081 	uint_t extracted;
2082 	uint64_t *glist;
2083 	uint_t i, gcount;
2084 	nvlist_t *nvl;
2085 	vdev_t **vd;
2086 	boolean_t attempt_reopen;
2087 
2088 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2089 		return;
2090 
2091 	/* check that the config is complete */
2092 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2093 	    &glist, &gcount) != 0)
2094 		return;
2095 
2096 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2097 
2098 	/* attempt to online all the vdevs & validate */
2099 	attempt_reopen = B_TRUE;
2100 	for (i = 0; i < gcount; i++) {
2101 		if (glist[i] == 0)	/* vdev is hole */
2102 			continue;
2103 
2104 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2105 		if (vd[i] == NULL) {
2106 			/*
2107 			 * Don't bother attempting to reopen the disks;
2108 			 * just do the split.
2109 			 */
2110 			attempt_reopen = B_FALSE;
2111 		} else {
2112 			/* attempt to re-online it */
2113 			vd[i]->vdev_offline = B_FALSE;
2114 		}
2115 	}
2116 
2117 	if (attempt_reopen) {
2118 		vdev_reopen(spa->spa_root_vdev);
2119 
2120 		/* check each device to see what state it's in */
2121 		for (extracted = 0, i = 0; i < gcount; i++) {
2122 			if (vd[i] != NULL &&
2123 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2124 				break;
2125 			++extracted;
2126 		}
2127 	}
2128 
2129 	/*
2130 	 * If every disk has been moved to the new pool, or if we never
2131 	 * even attempted to look at them, then we split them off for
2132 	 * good.
2133 	 */
2134 	if (!attempt_reopen || gcount == extracted) {
2135 		for (i = 0; i < gcount; i++)
2136 			if (vd[i] != NULL)
2137 				vdev_split(vd[i]);
2138 		vdev_reopen(spa->spa_root_vdev);
2139 	}
2140 
2141 	kmem_free(vd, gcount * sizeof (vdev_t *));
2142 }
2143 
2144 static int
2145 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2146     boolean_t mosconfig)
2147 {
2148 	nvlist_t *config = spa->spa_config;
2149 	char *ereport = FM_EREPORT_ZFS_POOL;
2150 	char *comment;
2151 	int error;
2152 	uint64_t pool_guid;
2153 	nvlist_t *nvl;
2154 
2155 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2156 		return (SET_ERROR(EINVAL));
2157 
2158 	ASSERT(spa->spa_comment == NULL);
2159 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2160 		spa->spa_comment = spa_strdup(comment);
2161 
2162 	/*
2163 	 * Versioning wasn't explicitly added to the label until later, so if
2164 	 * it's not present treat it as the initial version.
2165 	 */
2166 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2167 	    &spa->spa_ubsync.ub_version) != 0)
2168 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2169 
2170 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2171 	    &spa->spa_config_txg);
2172 
2173 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2174 	    spa_guid_exists(pool_guid, 0)) {
2175 		error = SET_ERROR(EEXIST);
2176 	} else {
2177 		spa->spa_config_guid = pool_guid;
2178 
2179 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2180 		    &nvl) == 0) {
2181 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2182 			    KM_SLEEP) == 0);
2183 		}
2184 
2185 		nvlist_free(spa->spa_load_info);
2186 		spa->spa_load_info = fnvlist_alloc();
2187 
2188 		gethrestime(&spa->spa_loaded_ts);
2189 		error = spa_load_impl(spa, pool_guid, config, state, type,
2190 		    mosconfig, &ereport);
2191 	}
2192 
2193 	/*
2194 	 * Don't count references from objsets that are already closed
2195 	 * and are making their way through the eviction process.
2196 	 */
2197 	spa_evicting_os_wait(spa);
2198 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2199 	if (error) {
2200 		if (error != EEXIST) {
2201 			spa->spa_loaded_ts.tv_sec = 0;
2202 			spa->spa_loaded_ts.tv_nsec = 0;
2203 		}
2204 		if (error != EBADF) {
2205 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2206 		}
2207 	}
2208 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2209 	spa->spa_ena = 0;
2210 
2211 	return (error);
2212 }
2213 
2214 /*
2215  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2216  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2217  * spa's per-vdev ZAP list.
2218  */
2219 static uint64_t
2220 vdev_count_verify_zaps(vdev_t *vd)
2221 {
2222 	spa_t *spa = vd->vdev_spa;
2223 	uint64_t total = 0;
2224 	if (vd->vdev_top_zap != 0) {
2225 		total++;
2226 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2227 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2228 	}
2229 	if (vd->vdev_leaf_zap != 0) {
2230 		total++;
2231 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2232 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2233 	}
2234 
2235 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2236 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2237 	}
2238 
2239 	return (total);
2240 }
2241 
2242 /*
2243  * Load an existing storage pool, using the pool's builtin spa_config as a
2244  * source of configuration information.
2245  */
2246 static int
2247 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2248     spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
2249     char **ereport)
2250 {
2251 	int error = 0;
2252 	nvlist_t *nvroot = NULL;
2253 	nvlist_t *label;
2254 	vdev_t *rvd;
2255 	uberblock_t *ub = &spa->spa_uberblock;
2256 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2257 	int orig_mode = spa->spa_mode;
2258 	int parse;
2259 	uint64_t obj;
2260 	boolean_t missing_feat_write = B_FALSE;
2261 
2262 	/*
2263 	 * If this is an untrusted config, access the pool in read-only mode.
2264 	 * This prevents things like resilvering recently removed devices.
2265 	 */
2266 	if (!trust_config)
2267 		spa->spa_mode = FREAD;
2268 
2269 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2270 
2271 	spa->spa_load_state = state;
2272 
2273 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2274 		return (SET_ERROR(EINVAL));
2275 
2276 	parse = (type == SPA_IMPORT_EXISTING ?
2277 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2278 
2279 	/*
2280 	 * Create "The Godfather" zio to hold all async IOs
2281 	 */
2282 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2283 	    KM_SLEEP);
2284 	for (int i = 0; i < max_ncpus; i++) {
2285 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2286 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2287 		    ZIO_FLAG_GODFATHER);
2288 	}
2289 
2290 	/*
2291 	 * Parse the configuration into a vdev tree.  We explicitly set the
2292 	 * value that will be returned by spa_version() since parsing the
2293 	 * configuration requires knowing the version number.
2294 	 */
2295 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2296 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2297 	spa_config_exit(spa, SCL_ALL, FTAG);
2298 
2299 	if (error != 0)
2300 		return (error);
2301 
2302 	ASSERT(spa->spa_root_vdev == rvd);
2303 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2304 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2305 
2306 	if (type != SPA_IMPORT_ASSEMBLE) {
2307 		ASSERT(spa_guid(spa) == pool_guid);
2308 	}
2309 
2310 	/*
2311 	 * Try to open all vdevs, loading each label in the process.
2312 	 */
2313 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2314 	error = vdev_open(rvd);
2315 	spa_config_exit(spa, SCL_ALL, FTAG);
2316 	if (error != 0)
2317 		return (error);
2318 
2319 	/*
2320 	 * We need to validate the vdev labels against the configuration that
2321 	 * we have in hand, which is dependent on the setting of mosconfig. If
2322 	 * mosconfig is true then we're validating the vdev labels based on
2323 	 * that config.  Otherwise, we're validating against the cached config
2324 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2325 	 * later we will recursively call spa_load() and validate against
2326 	 * the vdev config.
2327 	 *
2328 	 * If we're assembling a new pool that's been split off from an
2329 	 * existing pool, the labels haven't yet been updated so we skip
2330 	 * validation for now.
2331 	 */
2332 	if (type != SPA_IMPORT_ASSEMBLE) {
2333 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2334 		error = vdev_validate(rvd, trust_config);
2335 		spa_config_exit(spa, SCL_ALL, FTAG);
2336 
2337 		if (error != 0)
2338 			return (error);
2339 
2340 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2341 			return (SET_ERROR(ENXIO));
2342 	}
2343 
2344 	/*
2345 	 * Find the best uberblock.
2346 	 */
2347 	vdev_uberblock_load(rvd, ub, &label);
2348 
2349 	/*
2350 	 * If we weren't able to find a single valid uberblock, return failure.
2351 	 */
2352 	if (ub->ub_txg == 0) {
2353 		nvlist_free(label);
2354 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2355 	}
2356 
2357 	/*
2358 	 * If the pool has an unsupported version we can't open it.
2359 	 */
2360 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2361 		nvlist_free(label);
2362 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2363 	}
2364 
2365 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2366 		nvlist_t *features;
2367 
2368 		/*
2369 		 * If we weren't able to find what's necessary for reading the
2370 		 * MOS in the label, return failure.
2371 		 */
2372 		if (label == NULL || nvlist_lookup_nvlist(label,
2373 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2374 			nvlist_free(label);
2375 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2376 			    ENXIO));
2377 		}
2378 
2379 		/*
2380 		 * Update our in-core representation with the definitive values
2381 		 * from the label.
2382 		 */
2383 		nvlist_free(spa->spa_label_features);
2384 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2385 	}
2386 
2387 	nvlist_free(label);
2388 
2389 	/*
2390 	 * Look through entries in the label nvlist's features_for_read. If
2391 	 * there is a feature listed there which we don't understand then we
2392 	 * cannot open a pool.
2393 	 */
2394 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2395 		nvlist_t *unsup_feat;
2396 
2397 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2398 		    0);
2399 
2400 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2401 		    NULL); nvp != NULL;
2402 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2403 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2404 				VERIFY(nvlist_add_string(unsup_feat,
2405 				    nvpair_name(nvp), "") == 0);
2406 			}
2407 		}
2408 
2409 		if (!nvlist_empty(unsup_feat)) {
2410 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2411 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2412 			nvlist_free(unsup_feat);
2413 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2414 			    ENOTSUP));
2415 		}
2416 
2417 		nvlist_free(unsup_feat);
2418 	}
2419 
2420 	/*
2421 	 * If the vdev guid sum doesn't match the uberblock, we have an
2422 	 * incomplete configuration.  We first check to see if the pool
2423 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2424 	 * If it is, defer the vdev_guid_sum check till later so we
2425 	 * can handle missing vdevs.
2426 	 */
2427 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2428 	    &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE &&
2429 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2430 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2431 
2432 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2433 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2434 		spa_try_repair(spa, config);
2435 		spa_config_exit(spa, SCL_ALL, FTAG);
2436 		nvlist_free(spa->spa_config_splitting);
2437 		spa->spa_config_splitting = NULL;
2438 	}
2439 
2440 	/*
2441 	 * Initialize internal SPA structures.
2442 	 */
2443 	spa->spa_state = POOL_STATE_ACTIVE;
2444 	spa->spa_ubsync = spa->spa_uberblock;
2445 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2446 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2447 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2448 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2449 	spa->spa_claim_max_txg = spa->spa_first_txg;
2450 	spa->spa_prev_software_version = ub->ub_software_version;
2451 
2452 	/*
2453 	 * Everything that we read before we do spa_remove_init() must
2454 	 * have been rewritten after the last device removal was initiated.
2455 	 * Otherwise we could be reading from indirect vdevs before
2456 	 * we have loaded their mappings.
2457 	 */
2458 
2459 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2460 	if (error)
2461 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2462 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2463 
2464 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2465 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466 
2467 	/*
2468 	 * Validate the config, using the MOS config to fill in any
2469 	 * information which might be missing.  If we fail to validate
2470 	 * the config then declare the pool unfit for use. If we're
2471 	 * assembling a pool from a split, the log is not transferred
2472 	 * over.
2473 	 */
2474 	if (type != SPA_IMPORT_ASSEMBLE) {
2475 		nvlist_t *mos_config;
2476 		if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2477 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2478 
2479 		if (!spa_config_valid(spa, mos_config)) {
2480 			nvlist_free(mos_config);
2481 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2482 			    ENXIO));
2483 		}
2484 		nvlist_free(mos_config);
2485 
2486 		/*
2487 		 * Now that we've validated the config, check the state of the
2488 		 * root vdev.  If it can't be opened, it indicates one or
2489 		 * more toplevel vdevs are faulted.
2490 		 */
2491 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2492 			return (SET_ERROR(ENXIO));
2493 	}
2494 
2495 	/*
2496 	 * Everything that we read before spa_remove_init() must be stored
2497 	 * on concreted vdevs.  Therefore we do this as early as possible.
2498 	 */
2499 	if (spa_remove_init(spa) != 0)
2500 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501 
2502 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2503 		boolean_t missing_feat_read = B_FALSE;
2504 		nvlist_t *unsup_feat, *enabled_feat;
2505 
2506 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2507 		    &spa->spa_feat_for_read_obj) != 0) {
2508 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2509 		}
2510 
2511 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2512 		    &spa->spa_feat_for_write_obj) != 0) {
2513 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514 		}
2515 
2516 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2517 		    &spa->spa_feat_desc_obj) != 0) {
2518 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2519 		}
2520 
2521 		enabled_feat = fnvlist_alloc();
2522 		unsup_feat = fnvlist_alloc();
2523 
2524 		if (!spa_features_check(spa, B_FALSE,
2525 		    unsup_feat, enabled_feat))
2526 			missing_feat_read = B_TRUE;
2527 
2528 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2529 			if (!spa_features_check(spa, B_TRUE,
2530 			    unsup_feat, enabled_feat)) {
2531 				missing_feat_write = B_TRUE;
2532 			}
2533 		}
2534 
2535 		fnvlist_add_nvlist(spa->spa_load_info,
2536 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2537 
2538 		if (!nvlist_empty(unsup_feat)) {
2539 			fnvlist_add_nvlist(spa->spa_load_info,
2540 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2541 		}
2542 
2543 		fnvlist_free(enabled_feat);
2544 		fnvlist_free(unsup_feat);
2545 
2546 		if (!missing_feat_read) {
2547 			fnvlist_add_boolean(spa->spa_load_info,
2548 			    ZPOOL_CONFIG_CAN_RDONLY);
2549 		}
2550 
2551 		/*
2552 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2553 		 * twofold: to determine whether the pool is available for
2554 		 * import in read-write mode and (if it is not) whether the
2555 		 * pool is available for import in read-only mode. If the pool
2556 		 * is available for import in read-write mode, it is displayed
2557 		 * as available in userland; if it is not available for import
2558 		 * in read-only mode, it is displayed as unavailable in
2559 		 * userland. If the pool is available for import in read-only
2560 		 * mode but not read-write mode, it is displayed as unavailable
2561 		 * in userland with a special note that the pool is actually
2562 		 * available for open in read-only mode.
2563 		 *
2564 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2565 		 * missing a feature for write, we must first determine whether
2566 		 * the pool can be opened read-only before returning to
2567 		 * userland in order to know whether to display the
2568 		 * abovementioned note.
2569 		 */
2570 		if (missing_feat_read || (missing_feat_write &&
2571 		    spa_writeable(spa))) {
2572 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2573 			    ENOTSUP));
2574 		}
2575 
2576 		/*
2577 		 * Load refcounts for ZFS features from disk into an in-memory
2578 		 * cache during SPA initialization.
2579 		 */
2580 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2581 			uint64_t refcount;
2582 
2583 			error = feature_get_refcount_from_disk(spa,
2584 			    &spa_feature_table[i], &refcount);
2585 			if (error == 0) {
2586 				spa->spa_feat_refcount_cache[i] = refcount;
2587 			} else if (error == ENOTSUP) {
2588 				spa->spa_feat_refcount_cache[i] =
2589 				    SPA_FEATURE_DISABLED;
2590 			} else {
2591 				return (spa_vdev_err(rvd,
2592 				    VDEV_AUX_CORRUPT_DATA, EIO));
2593 			}
2594 		}
2595 	}
2596 
2597 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2598 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2599 		    &spa->spa_feat_enabled_txg_obj) != 0)
2600 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601 	}
2602 
2603 	spa->spa_is_initializing = B_TRUE;
2604 	error = dsl_pool_open(spa->spa_dsl_pool);
2605 	spa->spa_is_initializing = B_FALSE;
2606 	if (error != 0)
2607 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2608 
2609 	if (!trust_config) {
2610 		uint64_t hostid;
2611 		nvlist_t *policy = NULL;
2612 		nvlist_t *mos_config;
2613 
2614 		if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2615 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2616 
2617 		if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2618 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2619 			char *hostname;
2620 			unsigned long myhostid = 0;
2621 
2622 			VERIFY(nvlist_lookup_string(mos_config,
2623 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2624 
2625 #ifdef	_KERNEL
2626 			myhostid = zone_get_hostid(NULL);
2627 #else	/* _KERNEL */
2628 			/*
2629 			 * We're emulating the system's hostid in userland, so
2630 			 * we can't use zone_get_hostid().
2631 			 */
2632 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2633 #endif	/* _KERNEL */
2634 			if (hostid != 0 && myhostid != 0 &&
2635 			    hostid != myhostid) {
2636 				nvlist_free(mos_config);
2637 				cmn_err(CE_WARN, "pool '%s' could not be "
2638 				    "loaded as it was last accessed by "
2639 				    "another system (host: %s hostid: 0x%lx). "
2640 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2641 				    spa_name(spa), hostname,
2642 				    (unsigned long)hostid);
2643 				return (SET_ERROR(EBADF));
2644 			}
2645 		}
2646 		if (nvlist_lookup_nvlist(spa->spa_config,
2647 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2648 			VERIFY(nvlist_add_nvlist(mos_config,
2649 			    ZPOOL_REWIND_POLICY, policy) == 0);
2650 
2651 		spa_config_set(spa, mos_config);
2652 		spa_unload(spa);
2653 		spa_deactivate(spa);
2654 		spa_activate(spa, orig_mode);
2655 
2656 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2657 	}
2658 
2659 	/* Grab the secret checksum salt from the MOS. */
2660 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2661 	    DMU_POOL_CHECKSUM_SALT, 1,
2662 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2663 	    spa->spa_cksum_salt.zcs_bytes);
2664 	if (error == ENOENT) {
2665 		/* Generate a new salt for subsequent use */
2666 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2667 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2668 	} else if (error != 0) {
2669 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2670 	}
2671 
2672 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2673 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2674 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2675 	if (error != 0)
2676 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2677 
2678 	/*
2679 	 * Load the bit that tells us to use the new accounting function
2680 	 * (raid-z deflation).  If we have an older pool, this will not
2681 	 * be present.
2682 	 */
2683 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2684 	if (error != 0 && error != ENOENT)
2685 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2686 
2687 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2688 	    &spa->spa_creation_version);
2689 	if (error != 0 && error != ENOENT)
2690 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2691 
2692 	/*
2693 	 * Load the persistent error log.  If we have an older pool, this will
2694 	 * not be present.
2695 	 */
2696 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2697 	if (error != 0 && error != ENOENT)
2698 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2699 
2700 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2701 	    &spa->spa_errlog_scrub);
2702 	if (error != 0 && error != ENOENT)
2703 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2704 
2705 	/*
2706 	 * Load the history object.  If we have an older pool, this
2707 	 * will not be present.
2708 	 */
2709 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2710 	if (error != 0 && error != ENOENT)
2711 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2712 
2713 	/*
2714 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2715 	 * be present; in this case, defer its creation to a later time to
2716 	 * avoid dirtying the MOS this early / out of sync context. See
2717 	 * spa_sync_config_object.
2718 	 */
2719 
2720 	/* The sentinel is only available in the MOS config. */
2721 	nvlist_t *mos_config;
2722 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2723 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2724 
2725 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2726 	    &spa->spa_all_vdev_zaps);
2727 
2728 	if (error == ENOENT) {
2729 		VERIFY(!nvlist_exists(mos_config,
2730 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2731 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2732 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2733 	} else if (error != 0) {
2734 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2735 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2736 		/*
2737 		 * An older version of ZFS overwrote the sentinel value, so
2738 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2739 		 * destruction to later; see spa_sync_config_object.
2740 		 */
2741 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2742 		/*
2743 		 * We're assuming that no vdevs have had their ZAPs created
2744 		 * before this. Better be sure of it.
2745 		 */
2746 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2747 	}
2748 	nvlist_free(mos_config);
2749 
2750 	/*
2751 	 * If we're assembling the pool from the split-off vdevs of
2752 	 * an existing pool, we don't want to attach the spares & cache
2753 	 * devices.
2754 	 */
2755 
2756 	/*
2757 	 * Load any hot spares for this pool.
2758 	 */
2759 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2760 	if (error != 0 && error != ENOENT)
2761 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2762 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2763 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2764 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2765 		    &spa->spa_spares.sav_config) != 0)
2766 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2767 
2768 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2769 		spa_load_spares(spa);
2770 		spa_config_exit(spa, SCL_ALL, FTAG);
2771 	} else if (error == 0) {
2772 		spa->spa_spares.sav_sync = B_TRUE;
2773 	}
2774 
2775 	/*
2776 	 * Load any level 2 ARC devices for this pool.
2777 	 */
2778 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2779 	    &spa->spa_l2cache.sav_object);
2780 	if (error != 0 && error != ENOENT)
2781 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2782 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2783 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2784 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2785 		    &spa->spa_l2cache.sav_config) != 0)
2786 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2787 
2788 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2789 		spa_load_l2cache(spa);
2790 		spa_config_exit(spa, SCL_ALL, FTAG);
2791 	} else if (error == 0) {
2792 		spa->spa_l2cache.sav_sync = B_TRUE;
2793 	}
2794 
2795 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2796 
2797 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2798 	if (error && error != ENOENT)
2799 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2800 
2801 	if (error == 0) {
2802 		uint64_t autoreplace;
2803 
2804 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2805 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2806 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2807 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2808 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2809 		spa_prop_find(spa, ZPOOL_PROP_BOOTSIZE, &spa->spa_bootsize);
2810 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2811 		    &spa->spa_dedup_ditto);
2812 
2813 		spa->spa_autoreplace = (autoreplace != 0);
2814 	}
2815 
2816 	/*
2817 	 * If the 'autoreplace' property is set, then post a resource notifying
2818 	 * the ZFS DE that it should not issue any faults for unopenable
2819 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2820 	 * unopenable vdevs so that the normal autoreplace handler can take
2821 	 * over.
2822 	 */
2823 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2824 		spa_check_removed(spa->spa_root_vdev);
2825 		/*
2826 		 * For the import case, this is done in spa_import(), because
2827 		 * at this point we're using the spare definitions from
2828 		 * the MOS config, not necessarily from the userland config.
2829 		 */
2830 		if (state != SPA_LOAD_IMPORT) {
2831 			spa_aux_check_removed(&spa->spa_spares);
2832 			spa_aux_check_removed(&spa->spa_l2cache);
2833 		}
2834 	}
2835 
2836 	/*
2837 	 * Load the vdev state for all toplevel vdevs.
2838 	 */
2839 	error = vdev_load(rvd);
2840 	if (error != 0) {
2841 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2842 	}
2843 
2844 	error = spa_condense_init(spa);
2845 	if (error != 0) {
2846 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2847 	}
2848 
2849 	/*
2850 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2851 	 */
2852 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2853 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2854 	spa_config_exit(spa, SCL_ALL, FTAG);
2855 
2856 	/*
2857 	 * Load the DDTs (dedup tables).
2858 	 */
2859 	error = ddt_load(spa);
2860 	if (error != 0)
2861 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2862 
2863 	spa_update_dspace(spa);
2864 
2865 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa) &&
2866 	    spa_check_logs(spa)) {
2867 		*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2868 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2869 	}
2870 
2871 	if (missing_feat_write) {
2872 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2873 
2874 		/*
2875 		 * At this point, we know that we can open the pool in
2876 		 * read-only mode but not read-write mode. We now have enough
2877 		 * information and can return to userland.
2878 		 */
2879 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2880 	}
2881 
2882 	/*
2883 	 * We've successfully opened the pool, verify that we're ready
2884 	 * to start pushing transactions.
2885 	 */
2886 	if (state != SPA_LOAD_TRYIMPORT) {
2887 		if (error = spa_load_verify(spa))
2888 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2889 			    error));
2890 	}
2891 
2892 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2893 	    spa->spa_load_max_txg == UINT64_MAX)) {
2894 		dmu_tx_t *tx;
2895 		int need_update = B_FALSE;
2896 		dsl_pool_t *dp = spa_get_dsl(spa);
2897 
2898 		/*
2899 		 * We must check this before we start the sync thread, because
2900 		 * we only want to start a condense thread for condense
2901 		 * operations that were in progress when the pool was
2902 		 * imported.  Once we start syncing, spa_sync() could
2903 		 * initiate a condense (and start a thread for it).  In
2904 		 * that case it would be wrong to start a second
2905 		 * condense thread.
2906 		 */
2907 		boolean_t condense_in_progress =
2908 		    (spa->spa_condensing_indirect != NULL);
2909 
2910 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2911 
2912 		/*
2913 		 * Claim log blocks that haven't been committed yet.
2914 		 * This must all happen in a single txg.
2915 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2916 		 * invoked from zil_claim_log_block()'s i/o done callback.
2917 		 * Price of rollback is that we abandon the log.
2918 		 */
2919 		spa->spa_claiming = B_TRUE;
2920 
2921 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2922 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2923 		    zil_claim, tx, DS_FIND_CHILDREN);
2924 		dmu_tx_commit(tx);
2925 
2926 		spa->spa_claiming = B_FALSE;
2927 
2928 		spa_set_log_state(spa, SPA_LOG_GOOD);
2929 		spa->spa_sync_on = B_TRUE;
2930 		txg_sync_start(spa->spa_dsl_pool);
2931 
2932 		/*
2933 		 * Wait for all claims to sync.  We sync up to the highest
2934 		 * claimed log block birth time so that claimed log blocks
2935 		 * don't appear to be from the future.  spa_claim_max_txg
2936 		 * will have been set for us by either zil_check_log_chain()
2937 		 * (invoked from spa_check_logs()) or zil_claim() above.
2938 		 */
2939 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2940 
2941 		/*
2942 		 * If the config cache is stale, or we have uninitialized
2943 		 * metaslabs (see spa_vdev_add()), then update the config.
2944 		 *
2945 		 * If this is a verbatim import, trust the current
2946 		 * in-core spa_config and update the disk labels.
2947 		 */
2948 		if (config_cache_txg != spa->spa_config_txg ||
2949 		    state == SPA_LOAD_IMPORT ||
2950 		    state == SPA_LOAD_RECOVER ||
2951 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2952 			need_update = B_TRUE;
2953 
2954 		for (int c = 0; c < rvd->vdev_children; c++)
2955 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2956 				need_update = B_TRUE;
2957 
2958 		/*
2959 		 * Update the config cache asychronously in case we're the
2960 		 * root pool, in which case the config cache isn't writable yet.
2961 		 */
2962 		if (need_update)
2963 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2964 
2965 		/*
2966 		 * Check all DTLs to see if anything needs resilvering.
2967 		 */
2968 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2969 		    vdev_resilver_needed(rvd, NULL, NULL))
2970 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2971 
2972 		/*
2973 		 * Log the fact that we booted up (so that we can detect if
2974 		 * we rebooted in the middle of an operation).
2975 		 */
2976 		spa_history_log_version(spa, "open");
2977 
2978 		/*
2979 		 * Delete any inconsistent datasets.
2980 		 */
2981 		(void) dmu_objset_find(spa_name(spa),
2982 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2983 
2984 		/*
2985 		 * Clean up any stale temporary dataset userrefs.
2986 		 */
2987 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2988 
2989 		/*
2990 		 * Note: unlike condensing, we don't need an analogous
2991 		 * "removal_in_progress" dance because no other thread
2992 		 * can start a removal while we hold the spa_namespace_lock.
2993 		 */
2994 		spa_restart_removal(spa);
2995 
2996 		if (condense_in_progress)
2997 			spa_condense_indirect_restart(spa);
2998 	}
2999 
3000 	return (0);
3001 }
3002 
3003 static int
3004 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
3005 {
3006 	int mode = spa->spa_mode;
3007 
3008 	spa_unload(spa);
3009 	spa_deactivate(spa);
3010 
3011 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3012 
3013 	spa_activate(spa, mode);
3014 	spa_async_suspend(spa);
3015 
3016 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3017 }
3018 
3019 /*
3020  * If spa_load() fails this function will try loading prior txg's. If
3021  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3022  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3023  * function will not rewind the pool and will return the same error as
3024  * spa_load().
3025  */
3026 static int
3027 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3028     uint64_t max_request, int rewind_flags)
3029 {
3030 	nvlist_t *loadinfo = NULL;
3031 	nvlist_t *config = NULL;
3032 	int load_error, rewind_error;
3033 	uint64_t safe_rewind_txg;
3034 	uint64_t min_txg;
3035 
3036 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3037 		spa->spa_load_max_txg = spa->spa_load_txg;
3038 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3039 	} else {
3040 		spa->spa_load_max_txg = max_request;
3041 		if (max_request != UINT64_MAX)
3042 			spa->spa_extreme_rewind = B_TRUE;
3043 	}
3044 
3045 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3046 	    mosconfig);
3047 	if (load_error == 0)
3048 		return (0);
3049 
3050 	if (spa->spa_root_vdev != NULL)
3051 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3052 
3053 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3054 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3055 
3056 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3057 		nvlist_free(config);
3058 		return (load_error);
3059 	}
3060 
3061 	if (state == SPA_LOAD_RECOVER) {
3062 		/* Price of rolling back is discarding txgs, including log */
3063 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3064 	} else {
3065 		/*
3066 		 * If we aren't rolling back save the load info from our first
3067 		 * import attempt so that we can restore it after attempting
3068 		 * to rewind.
3069 		 */
3070 		loadinfo = spa->spa_load_info;
3071 		spa->spa_load_info = fnvlist_alloc();
3072 	}
3073 
3074 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3075 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3076 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3077 	    TXG_INITIAL : safe_rewind_txg;
3078 
3079 	/*
3080 	 * Continue as long as we're finding errors, we're still within
3081 	 * the acceptable rewind range, and we're still finding uberblocks
3082 	 */
3083 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3084 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3085 		if (spa->spa_load_max_txg < safe_rewind_txg)
3086 			spa->spa_extreme_rewind = B_TRUE;
3087 		rewind_error = spa_load_retry(spa, state, mosconfig);
3088 	}
3089 
3090 	spa->spa_extreme_rewind = B_FALSE;
3091 	spa->spa_load_max_txg = UINT64_MAX;
3092 
3093 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3094 		spa_config_set(spa, config);
3095 	else
3096 		nvlist_free(config);
3097 
3098 	if (state == SPA_LOAD_RECOVER) {
3099 		ASSERT3P(loadinfo, ==, NULL);
3100 		return (rewind_error);
3101 	} else {
3102 		/* Store the rewind info as part of the initial load info */
3103 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3104 		    spa->spa_load_info);
3105 
3106 		/* Restore the initial load info */
3107 		fnvlist_free(spa->spa_load_info);
3108 		spa->spa_load_info = loadinfo;
3109 
3110 		return (load_error);
3111 	}
3112 }
3113 
3114 /*
3115  * Pool Open/Import
3116  *
3117  * The import case is identical to an open except that the configuration is sent
3118  * down from userland, instead of grabbed from the configuration cache.  For the
3119  * case of an open, the pool configuration will exist in the
3120  * POOL_STATE_UNINITIALIZED state.
3121  *
3122  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3123  * the same time open the pool, without having to keep around the spa_t in some
3124  * ambiguous state.
3125  */
3126 static int
3127 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3128     nvlist_t **config)
3129 {
3130 	spa_t *spa;
3131 	spa_load_state_t state = SPA_LOAD_OPEN;
3132 	int error;
3133 	int locked = B_FALSE;
3134 
3135 	*spapp = NULL;
3136 
3137 	/*
3138 	 * As disgusting as this is, we need to support recursive calls to this
3139 	 * function because dsl_dir_open() is called during spa_load(), and ends
3140 	 * up calling spa_open() again.  The real fix is to figure out how to
3141 	 * avoid dsl_dir_open() calling this in the first place.
3142 	 */
3143 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3144 		mutex_enter(&spa_namespace_lock);
3145 		locked = B_TRUE;
3146 	}
3147 
3148 	if ((spa = spa_lookup(pool)) == NULL) {
3149 		if (locked)
3150 			mutex_exit(&spa_namespace_lock);
3151 		return (SET_ERROR(ENOENT));
3152 	}
3153 
3154 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3155 		zpool_rewind_policy_t policy;
3156 
3157 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3158 		    &policy);
3159 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3160 			state = SPA_LOAD_RECOVER;
3161 
3162 		spa_activate(spa, spa_mode_global);
3163 
3164 		if (state != SPA_LOAD_RECOVER)
3165 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3166 
3167 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3168 		    policy.zrp_request);
3169 
3170 		if (error == EBADF) {
3171 			/*
3172 			 * If vdev_validate() returns failure (indicated by
3173 			 * EBADF), it indicates that one of the vdevs indicates
3174 			 * that the pool has been exported or destroyed.  If
3175 			 * this is the case, the config cache is out of sync and
3176 			 * we should remove the pool from the namespace.
3177 			 */
3178 			spa_unload(spa);
3179 			spa_deactivate(spa);
3180 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
3181 			spa_remove(spa);
3182 			if (locked)
3183 				mutex_exit(&spa_namespace_lock);
3184 			return (SET_ERROR(ENOENT));
3185 		}
3186 
3187 		if (error) {
3188 			/*
3189 			 * We can't open the pool, but we still have useful
3190 			 * information: the state of each vdev after the
3191 			 * attempted vdev_open().  Return this to the user.
3192 			 */
3193 			if (config != NULL && spa->spa_config) {
3194 				VERIFY(nvlist_dup(spa->spa_config, config,
3195 				    KM_SLEEP) == 0);
3196 				VERIFY(nvlist_add_nvlist(*config,
3197 				    ZPOOL_CONFIG_LOAD_INFO,
3198 				    spa->spa_load_info) == 0);
3199 			}
3200 			spa_unload(spa);
3201 			spa_deactivate(spa);
3202 			spa->spa_last_open_failed = error;
3203 			if (locked)
3204 				mutex_exit(&spa_namespace_lock);
3205 			*spapp = NULL;
3206 			return (error);
3207 		}
3208 	}
3209 
3210 	spa_open_ref(spa, tag);
3211 
3212 	if (config != NULL)
3213 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3214 
3215 	/*
3216 	 * If we've recovered the pool, pass back any information we
3217 	 * gathered while doing the load.
3218 	 */
3219 	if (state == SPA_LOAD_RECOVER) {
3220 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3221 		    spa->spa_load_info) == 0);
3222 	}
3223 
3224 	if (locked) {
3225 		spa->spa_last_open_failed = 0;
3226 		spa->spa_last_ubsync_txg = 0;
3227 		spa->spa_load_txg = 0;
3228 		mutex_exit(&spa_namespace_lock);
3229 	}
3230 
3231 	*spapp = spa;
3232 
3233 	return (0);
3234 }
3235 
3236 int
3237 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3238     nvlist_t **config)
3239 {
3240 	return (spa_open_common(name, spapp, tag, policy, config));
3241 }
3242 
3243 int
3244 spa_open(const char *name, spa_t **spapp, void *tag)
3245 {
3246 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3247 }
3248 
3249 /*
3250  * Lookup the given spa_t, incrementing the inject count in the process,
3251  * preventing it from being exported or destroyed.
3252  */
3253 spa_t *
3254 spa_inject_addref(char *name)
3255 {
3256 	spa_t *spa;
3257 
3258 	mutex_enter(&spa_namespace_lock);
3259 	if ((spa = spa_lookup(name)) == NULL) {
3260 		mutex_exit(&spa_namespace_lock);
3261 		return (NULL);
3262 	}
3263 	spa->spa_inject_ref++;
3264 	mutex_exit(&spa_namespace_lock);
3265 
3266 	return (spa);
3267 }
3268 
3269 void
3270 spa_inject_delref(spa_t *spa)
3271 {
3272 	mutex_enter(&spa_namespace_lock);
3273 	spa->spa_inject_ref--;
3274 	mutex_exit(&spa_namespace_lock);
3275 }
3276 
3277 /*
3278  * Add spares device information to the nvlist.
3279  */
3280 static void
3281 spa_add_spares(spa_t *spa, nvlist_t *config)
3282 {
3283 	nvlist_t **spares;
3284 	uint_t i, nspares;
3285 	nvlist_t *nvroot;
3286 	uint64_t guid;
3287 	vdev_stat_t *vs;
3288 	uint_t vsc;
3289 	uint64_t pool;
3290 
3291 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3292 
3293 	if (spa->spa_spares.sav_count == 0)
3294 		return;
3295 
3296 	VERIFY(nvlist_lookup_nvlist(config,
3297 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3298 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3299 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3300 	if (nspares != 0) {
3301 		VERIFY(nvlist_add_nvlist_array(nvroot,
3302 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3303 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3304 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3305 
3306 		/*
3307 		 * Go through and find any spares which have since been
3308 		 * repurposed as an active spare.  If this is the case, update
3309 		 * their status appropriately.
3310 		 */
3311 		for (i = 0; i < nspares; i++) {
3312 			VERIFY(nvlist_lookup_uint64(spares[i],
3313 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3314 			if (spa_spare_exists(guid, &pool, NULL) &&
3315 			    pool != 0ULL) {
3316 				VERIFY(nvlist_lookup_uint64_array(
3317 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3318 				    (uint64_t **)&vs, &vsc) == 0);
3319 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3320 				vs->vs_aux = VDEV_AUX_SPARED;
3321 			}
3322 		}
3323 	}
3324 }
3325 
3326 /*
3327  * Add l2cache device information to the nvlist, including vdev stats.
3328  */
3329 static void
3330 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3331 {
3332 	nvlist_t **l2cache;
3333 	uint_t i, j, nl2cache;
3334 	nvlist_t *nvroot;
3335 	uint64_t guid;
3336 	vdev_t *vd;
3337 	vdev_stat_t *vs;
3338 	uint_t vsc;
3339 
3340 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3341 
3342 	if (spa->spa_l2cache.sav_count == 0)
3343 		return;
3344 
3345 	VERIFY(nvlist_lookup_nvlist(config,
3346 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3347 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3348 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3349 	if (nl2cache != 0) {
3350 		VERIFY(nvlist_add_nvlist_array(nvroot,
3351 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3352 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3353 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3354 
3355 		/*
3356 		 * Update level 2 cache device stats.
3357 		 */
3358 
3359 		for (i = 0; i < nl2cache; i++) {
3360 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3361 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3362 
3363 			vd = NULL;
3364 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3365 				if (guid ==
3366 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3367 					vd = spa->spa_l2cache.sav_vdevs[j];
3368 					break;
3369 				}
3370 			}
3371 			ASSERT(vd != NULL);
3372 
3373 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3374 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3375 			    == 0);
3376 			vdev_get_stats(vd, vs);
3377 		}
3378 	}
3379 }
3380 
3381 static void
3382 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3383 {
3384 	nvlist_t *features;
3385 	zap_cursor_t zc;
3386 	zap_attribute_t za;
3387 
3388 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3389 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3390 
3391 	if (spa->spa_feat_for_read_obj != 0) {
3392 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3393 		    spa->spa_feat_for_read_obj);
3394 		    zap_cursor_retrieve(&zc, &za) == 0;
3395 		    zap_cursor_advance(&zc)) {
3396 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3397 			    za.za_num_integers == 1);
3398 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3399 			    za.za_first_integer));
3400 		}
3401 		zap_cursor_fini(&zc);
3402 	}
3403 
3404 	if (spa->spa_feat_for_write_obj != 0) {
3405 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3406 		    spa->spa_feat_for_write_obj);
3407 		    zap_cursor_retrieve(&zc, &za) == 0;
3408 		    zap_cursor_advance(&zc)) {
3409 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3410 			    za.za_num_integers == 1);
3411 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3412 			    za.za_first_integer));
3413 		}
3414 		zap_cursor_fini(&zc);
3415 	}
3416 
3417 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3418 	    features) == 0);
3419 	nvlist_free(features);
3420 }
3421 
3422 int
3423 spa_get_stats(const char *name, nvlist_t **config,
3424     char *altroot, size_t buflen)
3425 {
3426 	int error;
3427 	spa_t *spa;
3428 
3429 	*config = NULL;
3430 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3431 
3432 	if (spa != NULL) {
3433 		/*
3434 		 * This still leaves a window of inconsistency where the spares
3435 		 * or l2cache devices could change and the config would be
3436 		 * self-inconsistent.
3437 		 */
3438 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3439 
3440 		if (*config != NULL) {
3441 			uint64_t loadtimes[2];
3442 
3443 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3444 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3445 			VERIFY(nvlist_add_uint64_array(*config,
3446 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3447 
3448 			VERIFY(nvlist_add_uint64(*config,
3449 			    ZPOOL_CONFIG_ERRCOUNT,
3450 			    spa_get_errlog_size(spa)) == 0);
3451 
3452 			if (spa_suspended(spa))
3453 				VERIFY(nvlist_add_uint64(*config,
3454 				    ZPOOL_CONFIG_SUSPENDED,
3455 				    spa->spa_failmode) == 0);
3456 
3457 			spa_add_spares(spa, *config);
3458 			spa_add_l2cache(spa, *config);
3459 			spa_add_feature_stats(spa, *config);
3460 		}
3461 	}
3462 
3463 	/*
3464 	 * We want to get the alternate root even for faulted pools, so we cheat
3465 	 * and call spa_lookup() directly.
3466 	 */
3467 	if (altroot) {
3468 		if (spa == NULL) {
3469 			mutex_enter(&spa_namespace_lock);
3470 			spa = spa_lookup(name);
3471 			if (spa)
3472 				spa_altroot(spa, altroot, buflen);
3473 			else
3474 				altroot[0] = '\0';
3475 			spa = NULL;
3476 			mutex_exit(&spa_namespace_lock);
3477 		} else {
3478 			spa_altroot(spa, altroot, buflen);
3479 		}
3480 	}
3481 
3482 	if (spa != NULL) {
3483 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3484 		spa_close(spa, FTAG);
3485 	}
3486 
3487 	return (error);
3488 }
3489 
3490 /*
3491  * Validate that the auxiliary device array is well formed.  We must have an
3492  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3493  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3494  * specified, as long as they are well-formed.
3495  */
3496 static int
3497 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3498     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3499     vdev_labeltype_t label)
3500 {
3501 	nvlist_t **dev;
3502 	uint_t i, ndev;
3503 	vdev_t *vd;
3504 	int error;
3505 
3506 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3507 
3508 	/*
3509 	 * It's acceptable to have no devs specified.
3510 	 */
3511 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3512 		return (0);
3513 
3514 	if (ndev == 0)
3515 		return (SET_ERROR(EINVAL));
3516 
3517 	/*
3518 	 * Make sure the pool is formatted with a version that supports this
3519 	 * device type.
3520 	 */
3521 	if (spa_version(spa) < version)
3522 		return (SET_ERROR(ENOTSUP));
3523 
3524 	/*
3525 	 * Set the pending device list so we correctly handle device in-use
3526 	 * checking.
3527 	 */
3528 	sav->sav_pending = dev;
3529 	sav->sav_npending = ndev;
3530 
3531 	for (i = 0; i < ndev; i++) {
3532 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3533 		    mode)) != 0)
3534 			goto out;
3535 
3536 		if (!vd->vdev_ops->vdev_op_leaf) {
3537 			vdev_free(vd);
3538 			error = SET_ERROR(EINVAL);
3539 			goto out;
3540 		}
3541 
3542 		/*
3543 		 * The L2ARC currently only supports disk devices in
3544 		 * kernel context.  For user-level testing, we allow it.
3545 		 */
3546 #ifdef _KERNEL
3547 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3548 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3549 			error = SET_ERROR(ENOTBLK);
3550 			vdev_free(vd);
3551 			goto out;
3552 		}
3553 #endif
3554 		vd->vdev_top = vd;
3555 
3556 		if ((error = vdev_open(vd)) == 0 &&
3557 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3558 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3559 			    vd->vdev_guid) == 0);
3560 		}
3561 
3562 		vdev_free(vd);
3563 
3564 		if (error &&
3565 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3566 			goto out;
3567 		else
3568 			error = 0;
3569 	}
3570 
3571 out:
3572 	sav->sav_pending = NULL;
3573 	sav->sav_npending = 0;
3574 	return (error);
3575 }
3576 
3577 static int
3578 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3579 {
3580 	int error;
3581 
3582 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3583 
3584 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3585 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3586 	    VDEV_LABEL_SPARE)) != 0) {
3587 		return (error);
3588 	}
3589 
3590 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3591 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3592 	    VDEV_LABEL_L2CACHE));
3593 }
3594 
3595 static void
3596 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3597     const char *config)
3598 {
3599 	int i;
3600 
3601 	if (sav->sav_config != NULL) {
3602 		nvlist_t **olddevs;
3603 		uint_t oldndevs;
3604 		nvlist_t **newdevs;
3605 
3606 		/*
3607 		 * Generate new dev list by concatentating with the
3608 		 * current dev list.
3609 		 */
3610 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3611 		    &olddevs, &oldndevs) == 0);
3612 
3613 		newdevs = kmem_alloc(sizeof (void *) *
3614 		    (ndevs + oldndevs), KM_SLEEP);
3615 		for (i = 0; i < oldndevs; i++)
3616 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3617 			    KM_SLEEP) == 0);
3618 		for (i = 0; i < ndevs; i++)
3619 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3620 			    KM_SLEEP) == 0);
3621 
3622 		VERIFY(nvlist_remove(sav->sav_config, config,
3623 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3624 
3625 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3626 		    config, newdevs, ndevs + oldndevs) == 0);
3627 		for (i = 0; i < oldndevs + ndevs; i++)
3628 			nvlist_free(newdevs[i]);
3629 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3630 	} else {
3631 		/*
3632 		 * Generate a new dev list.
3633 		 */
3634 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3635 		    KM_SLEEP) == 0);
3636 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3637 		    devs, ndevs) == 0);
3638 	}
3639 }
3640 
3641 /*
3642  * Stop and drop level 2 ARC devices
3643  */
3644 void
3645 spa_l2cache_drop(spa_t *spa)
3646 {
3647 	vdev_t *vd;
3648 	int i;
3649 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3650 
3651 	for (i = 0; i < sav->sav_count; i++) {
3652 		uint64_t pool;
3653 
3654 		vd = sav->sav_vdevs[i];
3655 		ASSERT(vd != NULL);
3656 
3657 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3658 		    pool != 0ULL && l2arc_vdev_present(vd))
3659 			l2arc_remove_vdev(vd);
3660 	}
3661 }
3662 
3663 /*
3664  * Pool Creation
3665  */
3666 int
3667 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3668     nvlist_t *zplprops)
3669 {
3670 	spa_t *spa;
3671 	char *altroot = NULL;
3672 	vdev_t *rvd;
3673 	dsl_pool_t *dp;
3674 	dmu_tx_t *tx;
3675 	int error = 0;
3676 	uint64_t txg = TXG_INITIAL;
3677 	nvlist_t **spares, **l2cache;
3678 	uint_t nspares, nl2cache;
3679 	uint64_t version, obj;
3680 	boolean_t has_features;
3681 
3682 	/*
3683 	 * If this pool already exists, return failure.
3684 	 */
3685 	mutex_enter(&spa_namespace_lock);
3686 	if (spa_lookup(pool) != NULL) {
3687 		mutex_exit(&spa_namespace_lock);
3688 		return (SET_ERROR(EEXIST));
3689 	}
3690 
3691 	/*
3692 	 * Allocate a new spa_t structure.
3693 	 */
3694 	(void) nvlist_lookup_string(props,
3695 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3696 	spa = spa_add(pool, NULL, altroot);
3697 	spa_activate(spa, spa_mode_global);
3698 
3699 	if (props && (error = spa_prop_validate(spa, props))) {
3700 		spa_deactivate(spa);
3701 		spa_remove(spa);
3702 		mutex_exit(&spa_namespace_lock);
3703 		return (error);
3704 	}
3705 
3706 	has_features = B_FALSE;
3707 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3708 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3709 		if (zpool_prop_feature(nvpair_name(elem)))
3710 			has_features = B_TRUE;
3711 	}
3712 
3713 	if (has_features || nvlist_lookup_uint64(props,
3714 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3715 		version = SPA_VERSION;
3716 	}
3717 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3718 
3719 	spa->spa_first_txg = txg;
3720 	spa->spa_uberblock.ub_txg = txg - 1;
3721 	spa->spa_uberblock.ub_version = version;
3722 	spa->spa_ubsync = spa->spa_uberblock;
3723 	spa->spa_load_state = SPA_LOAD_CREATE;
3724 	spa->spa_removing_phys.sr_state = DSS_NONE;
3725 	spa->spa_removing_phys.sr_removing_vdev = -1;
3726 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
3727 
3728 	/*
3729 	 * Create "The Godfather" zio to hold all async IOs
3730 	 */
3731 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3732 	    KM_SLEEP);
3733 	for (int i = 0; i < max_ncpus; i++) {
3734 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3735 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3736 		    ZIO_FLAG_GODFATHER);
3737 	}
3738 
3739 	/*
3740 	 * Create the root vdev.
3741 	 */
3742 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3743 
3744 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3745 
3746 	ASSERT(error != 0 || rvd != NULL);
3747 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3748 
3749 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3750 		error = SET_ERROR(EINVAL);
3751 
3752 	if (error == 0 &&
3753 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3754 	    (error = spa_validate_aux(spa, nvroot, txg,
3755 	    VDEV_ALLOC_ADD)) == 0) {
3756 		for (int c = 0; c < rvd->vdev_children; c++) {
3757 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3758 			vdev_expand(rvd->vdev_child[c], txg);
3759 		}
3760 	}
3761 
3762 	spa_config_exit(spa, SCL_ALL, FTAG);
3763 
3764 	if (error != 0) {
3765 		spa_unload(spa);
3766 		spa_deactivate(spa);
3767 		spa_remove(spa);
3768 		mutex_exit(&spa_namespace_lock);
3769 		return (error);
3770 	}
3771 
3772 	/*
3773 	 * Get the list of spares, if specified.
3774 	 */
3775 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3776 	    &spares, &nspares) == 0) {
3777 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3778 		    KM_SLEEP) == 0);
3779 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3780 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3781 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3782 		spa_load_spares(spa);
3783 		spa_config_exit(spa, SCL_ALL, FTAG);
3784 		spa->spa_spares.sav_sync = B_TRUE;
3785 	}
3786 
3787 	/*
3788 	 * Get the list of level 2 cache devices, if specified.
3789 	 */
3790 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3791 	    &l2cache, &nl2cache) == 0) {
3792 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3793 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3794 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3795 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3796 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3797 		spa_load_l2cache(spa);
3798 		spa_config_exit(spa, SCL_ALL, FTAG);
3799 		spa->spa_l2cache.sav_sync = B_TRUE;
3800 	}
3801 
3802 	spa->spa_is_initializing = B_TRUE;
3803 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3804 	spa->spa_meta_objset = dp->dp_meta_objset;
3805 	spa->spa_is_initializing = B_FALSE;
3806 
3807 	/*
3808 	 * Create DDTs (dedup tables).
3809 	 */
3810 	ddt_create(spa);
3811 
3812 	spa_update_dspace(spa);
3813 
3814 	tx = dmu_tx_create_assigned(dp, txg);
3815 
3816 	/*
3817 	 * Create the pool config object.
3818 	 */
3819 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3820 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3821 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3822 
3823 	if (zap_add(spa->spa_meta_objset,
3824 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3825 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3826 		cmn_err(CE_PANIC, "failed to add pool config");
3827 	}
3828 
3829 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3830 		spa_feature_create_zap_objects(spa, tx);
3831 
3832 	if (zap_add(spa->spa_meta_objset,
3833 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3834 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3835 		cmn_err(CE_PANIC, "failed to add pool version");
3836 	}
3837 
3838 	/* Newly created pools with the right version are always deflated. */
3839 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3840 		spa->spa_deflate = TRUE;
3841 		if (zap_add(spa->spa_meta_objset,
3842 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3843 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3844 			cmn_err(CE_PANIC, "failed to add deflate");
3845 		}
3846 	}
3847 
3848 	/*
3849 	 * Create the deferred-free bpobj.  Turn off compression
3850 	 * because sync-to-convergence takes longer if the blocksize
3851 	 * keeps changing.
3852 	 */
3853 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3854 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3855 	    ZIO_COMPRESS_OFF, tx);
3856 	if (zap_add(spa->spa_meta_objset,
3857 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3858 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3859 		cmn_err(CE_PANIC, "failed to add bpobj");
3860 	}
3861 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3862 	    spa->spa_meta_objset, obj));
3863 
3864 	/*
3865 	 * Create the pool's history object.
3866 	 */
3867 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3868 		spa_history_create_obj(spa, tx);
3869 
3870 	/*
3871 	 * Generate some random noise for salted checksums to operate on.
3872 	 */
3873 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3874 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3875 
3876 	/*
3877 	 * Set pool properties.
3878 	 */
3879 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3880 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3881 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3882 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3883 
3884 	if (props != NULL) {
3885 		spa_configfile_set(spa, props, B_FALSE);
3886 		spa_sync_props(props, tx);
3887 	}
3888 
3889 	dmu_tx_commit(tx);
3890 
3891 	spa->spa_sync_on = B_TRUE;
3892 	txg_sync_start(spa->spa_dsl_pool);
3893 
3894 	/*
3895 	 * We explicitly wait for the first transaction to complete so that our
3896 	 * bean counters are appropriately updated.
3897 	 */
3898 	txg_wait_synced(spa->spa_dsl_pool, txg);
3899 
3900 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
3901 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
3902 
3903 	spa_history_log_version(spa, "create");
3904 
3905 	/*
3906 	 * Don't count references from objsets that are already closed
3907 	 * and are making their way through the eviction process.
3908 	 */
3909 	spa_evicting_os_wait(spa);
3910 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3911 	spa->spa_load_state = SPA_LOAD_NONE;
3912 
3913 	mutex_exit(&spa_namespace_lock);
3914 
3915 	return (0);
3916 }
3917 
3918 #ifdef _KERNEL
3919 /*
3920  * Get the root pool information from the root disk, then import the root pool
3921  * during the system boot up time.
3922  */
3923 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3924 
3925 static nvlist_t *
3926 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3927 {
3928 	nvlist_t *config;
3929 	nvlist_t *nvtop, *nvroot;
3930 	uint64_t pgid;
3931 
3932 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3933 		return (NULL);
3934 
3935 	/*
3936 	 * Add this top-level vdev to the child array.
3937 	 */
3938 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3939 	    &nvtop) == 0);
3940 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3941 	    &pgid) == 0);
3942 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3943 
3944 	/*
3945 	 * Put this pool's top-level vdevs into a root vdev.
3946 	 */
3947 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3948 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3949 	    VDEV_TYPE_ROOT) == 0);
3950 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3951 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3952 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3953 	    &nvtop, 1) == 0);
3954 
3955 	/*
3956 	 * Replace the existing vdev_tree with the new root vdev in
3957 	 * this pool's configuration (remove the old, add the new).
3958 	 */
3959 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3960 	nvlist_free(nvroot);
3961 	return (config);
3962 }
3963 
3964 /*
3965  * Walk the vdev tree and see if we can find a device with "better"
3966  * configuration. A configuration is "better" if the label on that
3967  * device has a more recent txg.
3968  */
3969 static void
3970 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3971 {
3972 	for (int c = 0; c < vd->vdev_children; c++)
3973 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3974 
3975 	if (vd->vdev_ops->vdev_op_leaf) {
3976 		nvlist_t *label;
3977 		uint64_t label_txg;
3978 
3979 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3980 		    &label) != 0)
3981 			return;
3982 
3983 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3984 		    &label_txg) == 0);
3985 
3986 		/*
3987 		 * Do we have a better boot device?
3988 		 */
3989 		if (label_txg > *txg) {
3990 			*txg = label_txg;
3991 			*avd = vd;
3992 		}
3993 		nvlist_free(label);
3994 	}
3995 }
3996 
3997 /*
3998  * Import a root pool.
3999  *
4000  * For x86. devpath_list will consist of devid and/or physpath name of
4001  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4002  * The GRUB "findroot" command will return the vdev we should boot.
4003  *
4004  * For Sparc, devpath_list consists the physpath name of the booting device
4005  * no matter the rootpool is a single device pool or a mirrored pool.
4006  * e.g.
4007  *	"/pci@1f,0/ide@d/disk@0,0:a"
4008  */
4009 int
4010 spa_import_rootpool(char *devpath, char *devid)
4011 {
4012 	spa_t *spa;
4013 	vdev_t *rvd, *bvd, *avd = NULL;
4014 	nvlist_t *config, *nvtop;
4015 	uint64_t guid, txg;
4016 	char *pname;
4017 	int error;
4018 
4019 	/*
4020 	 * Read the label from the boot device and generate a configuration.
4021 	 */
4022 	config = spa_generate_rootconf(devpath, devid, &guid);
4023 #if defined(_OBP) && defined(_KERNEL)
4024 	if (config == NULL) {
4025 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4026 			/* iscsi boot */
4027 			get_iscsi_bootpath_phy(devpath);
4028 			config = spa_generate_rootconf(devpath, devid, &guid);
4029 		}
4030 	}
4031 #endif
4032 	if (config == NULL) {
4033 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4034 		    devpath);
4035 		return (SET_ERROR(EIO));
4036 	}
4037 
4038 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4039 	    &pname) == 0);
4040 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4041 
4042 	mutex_enter(&spa_namespace_lock);
4043 	if ((spa = spa_lookup(pname)) != NULL) {
4044 		/*
4045 		 * Remove the existing root pool from the namespace so that we
4046 		 * can replace it with the correct config we just read in.
4047 		 */
4048 		spa_remove(spa);
4049 	}
4050 
4051 	spa = spa_add(pname, config, NULL);
4052 	spa->spa_is_root = B_TRUE;
4053 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4054 
4055 	/*
4056 	 * Build up a vdev tree based on the boot device's label config.
4057 	 */
4058 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4059 	    &nvtop) == 0);
4060 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4062 	    VDEV_ALLOC_ROOTPOOL);
4063 	spa_config_exit(spa, SCL_ALL, FTAG);
4064 	if (error) {
4065 		mutex_exit(&spa_namespace_lock);
4066 		nvlist_free(config);
4067 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4068 		    pname);
4069 		return (error);
4070 	}
4071 
4072 	/*
4073 	 * Get the boot vdev.
4074 	 */
4075 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4076 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4077 		    (u_longlong_t)guid);
4078 		error = SET_ERROR(ENOENT);
4079 		goto out;
4080 	}
4081 
4082 	/*
4083 	 * Determine if there is a better boot device.
4084 	 */
4085 	avd = bvd;
4086 	spa_alt_rootvdev(rvd, &avd, &txg);
4087 	if (avd != bvd) {
4088 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4089 		    "try booting from '%s'", avd->vdev_path);
4090 		error = SET_ERROR(EINVAL);
4091 		goto out;
4092 	}
4093 
4094 	/*
4095 	 * If the boot device is part of a spare vdev then ensure that
4096 	 * we're booting off the active spare.
4097 	 */
4098 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4099 	    !bvd->vdev_isspare) {
4100 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4101 		    "try booting from '%s'",
4102 		    bvd->vdev_parent->
4103 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4104 		error = SET_ERROR(EINVAL);
4105 		goto out;
4106 	}
4107 
4108 	error = 0;
4109 out:
4110 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4111 	vdev_free(rvd);
4112 	spa_config_exit(spa, SCL_ALL, FTAG);
4113 	mutex_exit(&spa_namespace_lock);
4114 
4115 	nvlist_free(config);
4116 	return (error);
4117 }
4118 
4119 #endif
4120 
4121 /*
4122  * Import a non-root pool into the system.
4123  */
4124 int
4125 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4126 {
4127 	spa_t *spa;
4128 	char *altroot = NULL;
4129 	spa_load_state_t state = SPA_LOAD_IMPORT;
4130 	zpool_rewind_policy_t policy;
4131 	uint64_t mode = spa_mode_global;
4132 	uint64_t readonly = B_FALSE;
4133 	int error;
4134 	nvlist_t *nvroot;
4135 	nvlist_t **spares, **l2cache;
4136 	uint_t nspares, nl2cache;
4137 
4138 	/*
4139 	 * If a pool with this name exists, return failure.
4140 	 */
4141 	mutex_enter(&spa_namespace_lock);
4142 	if (spa_lookup(pool) != NULL) {
4143 		mutex_exit(&spa_namespace_lock);
4144 		return (SET_ERROR(EEXIST));
4145 	}
4146 
4147 	/*
4148 	 * Create and initialize the spa structure.
4149 	 */
4150 	(void) nvlist_lookup_string(props,
4151 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4152 	(void) nvlist_lookup_uint64(props,
4153 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4154 	if (readonly)
4155 		mode = FREAD;
4156 	spa = spa_add(pool, config, altroot);
4157 	spa->spa_import_flags = flags;
4158 
4159 	/*
4160 	 * Verbatim import - Take a pool and insert it into the namespace
4161 	 * as if it had been loaded at boot.
4162 	 */
4163 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4164 		if (props != NULL)
4165 			spa_configfile_set(spa, props, B_FALSE);
4166 
4167 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
4168 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4169 
4170 		mutex_exit(&spa_namespace_lock);
4171 		return (0);
4172 	}
4173 
4174 	spa_activate(spa, mode);
4175 
4176 	/*
4177 	 * Don't start async tasks until we know everything is healthy.
4178 	 */
4179 	spa_async_suspend(spa);
4180 
4181 	zpool_get_rewind_policy(config, &policy);
4182 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4183 		state = SPA_LOAD_RECOVER;
4184 
4185 	/*
4186 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4187 	 * because the user-supplied config is actually the one to trust when
4188 	 * doing an import.
4189 	 */
4190 	if (state != SPA_LOAD_RECOVER)
4191 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4192 
4193 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4194 	    policy.zrp_request);
4195 
4196 	/*
4197 	 * Propagate anything learned while loading the pool and pass it
4198 	 * back to caller (i.e. rewind info, missing devices, etc).
4199 	 */
4200 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4201 	    spa->spa_load_info) == 0);
4202 
4203 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4204 	/*
4205 	 * Toss any existing sparelist, as it doesn't have any validity
4206 	 * anymore, and conflicts with spa_has_spare().
4207 	 */
4208 	if (spa->spa_spares.sav_config) {
4209 		nvlist_free(spa->spa_spares.sav_config);
4210 		spa->spa_spares.sav_config = NULL;
4211 		spa_load_spares(spa);
4212 	}
4213 	if (spa->spa_l2cache.sav_config) {
4214 		nvlist_free(spa->spa_l2cache.sav_config);
4215 		spa->spa_l2cache.sav_config = NULL;
4216 		spa_load_l2cache(spa);
4217 	}
4218 
4219 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4220 	    &nvroot) == 0);
4221 	if (error == 0)
4222 		error = spa_validate_aux(spa, nvroot, -1ULL,
4223 		    VDEV_ALLOC_SPARE);
4224 	if (error == 0)
4225 		error = spa_validate_aux(spa, nvroot, -1ULL,
4226 		    VDEV_ALLOC_L2CACHE);
4227 	spa_config_exit(spa, SCL_ALL, FTAG);
4228 
4229 	if (props != NULL)
4230 		spa_configfile_set(spa, props, B_FALSE);
4231 
4232 	if (error != 0 || (props && spa_writeable(spa) &&
4233 	    (error = spa_prop_set(spa, props)))) {
4234 		spa_unload(spa);
4235 		spa_deactivate(spa);
4236 		spa_remove(spa);
4237 		mutex_exit(&spa_namespace_lock);
4238 		return (error);
4239 	}
4240 
4241 	spa_async_resume(spa);
4242 
4243 	/*
4244 	 * Override any spares and level 2 cache devices as specified by
4245 	 * the user, as these may have correct device names/devids, etc.
4246 	 */
4247 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4248 	    &spares, &nspares) == 0) {
4249 		if (spa->spa_spares.sav_config)
4250 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4251 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4252 		else
4253 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4254 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4255 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4256 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4257 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4258 		spa_load_spares(spa);
4259 		spa_config_exit(spa, SCL_ALL, FTAG);
4260 		spa->spa_spares.sav_sync = B_TRUE;
4261 	}
4262 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4263 	    &l2cache, &nl2cache) == 0) {
4264 		if (spa->spa_l2cache.sav_config)
4265 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4266 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4267 		else
4268 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4269 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4270 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4271 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4272 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4273 		spa_load_l2cache(spa);
4274 		spa_config_exit(spa, SCL_ALL, FTAG);
4275 		spa->spa_l2cache.sav_sync = B_TRUE;
4276 	}
4277 
4278 	/*
4279 	 * Check for any removed devices.
4280 	 */
4281 	if (spa->spa_autoreplace) {
4282 		spa_aux_check_removed(&spa->spa_spares);
4283 		spa_aux_check_removed(&spa->spa_l2cache);
4284 	}
4285 
4286 	if (spa_writeable(spa)) {
4287 		/*
4288 		 * Update the config cache to include the newly-imported pool.
4289 		 */
4290 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4291 	}
4292 
4293 	/*
4294 	 * It's possible that the pool was expanded while it was exported.
4295 	 * We kick off an async task to handle this for us.
4296 	 */
4297 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4298 
4299 	spa_history_log_version(spa, "import");
4300 
4301 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4302 
4303 	mutex_exit(&spa_namespace_lock);
4304 
4305 	return (0);
4306 }
4307 
4308 nvlist_t *
4309 spa_tryimport(nvlist_t *tryconfig)
4310 {
4311 	nvlist_t *config = NULL;
4312 	char *poolname;
4313 	spa_t *spa;
4314 	uint64_t state;
4315 	int error;
4316 
4317 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4318 		return (NULL);
4319 
4320 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4321 		return (NULL);
4322 
4323 	/*
4324 	 * Create and initialize the spa structure.
4325 	 */
4326 	mutex_enter(&spa_namespace_lock);
4327 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4328 	spa_activate(spa, FREAD);
4329 
4330 	/*
4331 	 * Pass off the heavy lifting to spa_load().
4332 	 * Pass TRUE for mosconfig because the user-supplied config
4333 	 * is actually the one to trust when doing an import.
4334 	 */
4335 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4336 
4337 	/*
4338 	 * If 'tryconfig' was at least parsable, return the current config.
4339 	 */
4340 	if (spa->spa_root_vdev != NULL) {
4341 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4342 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4343 		    poolname) == 0);
4344 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4345 		    state) == 0);
4346 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4347 		    spa->spa_uberblock.ub_timestamp) == 0);
4348 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4349 		    spa->spa_load_info) == 0);
4350 
4351 		/*
4352 		 * If the bootfs property exists on this pool then we
4353 		 * copy it out so that external consumers can tell which
4354 		 * pools are bootable.
4355 		 */
4356 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4357 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4358 
4359 			/*
4360 			 * We have to play games with the name since the
4361 			 * pool was opened as TRYIMPORT_NAME.
4362 			 */
4363 			if (dsl_dsobj_to_dsname(spa_name(spa),
4364 			    spa->spa_bootfs, tmpname) == 0) {
4365 				char *cp;
4366 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4367 
4368 				cp = strchr(tmpname, '/');
4369 				if (cp == NULL) {
4370 					(void) strlcpy(dsname, tmpname,
4371 					    MAXPATHLEN);
4372 				} else {
4373 					(void) snprintf(dsname, MAXPATHLEN,
4374 					    "%s/%s", poolname, ++cp);
4375 				}
4376 				VERIFY(nvlist_add_string(config,
4377 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4378 				kmem_free(dsname, MAXPATHLEN);
4379 			}
4380 			kmem_free(tmpname, MAXPATHLEN);
4381 		}
4382 
4383 		/*
4384 		 * Add the list of hot spares and level 2 cache devices.
4385 		 */
4386 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4387 		spa_add_spares(spa, config);
4388 		spa_add_l2cache(spa, config);
4389 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4390 	}
4391 
4392 	spa_unload(spa);
4393 	spa_deactivate(spa);
4394 	spa_remove(spa);
4395 	mutex_exit(&spa_namespace_lock);
4396 
4397 	return (config);
4398 }
4399 
4400 /*
4401  * Pool export/destroy
4402  *
4403  * The act of destroying or exporting a pool is very simple.  We make sure there
4404  * is no more pending I/O and any references to the pool are gone.  Then, we
4405  * update the pool state and sync all the labels to disk, removing the
4406  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4407  * we don't sync the labels or remove the configuration cache.
4408  */
4409 static int
4410 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4411     boolean_t force, boolean_t hardforce)
4412 {
4413 	spa_t *spa;
4414 
4415 	if (oldconfig)
4416 		*oldconfig = NULL;
4417 
4418 	if (!(spa_mode_global & FWRITE))
4419 		return (SET_ERROR(EROFS));
4420 
4421 	mutex_enter(&spa_namespace_lock);
4422 	if ((spa = spa_lookup(pool)) == NULL) {
4423 		mutex_exit(&spa_namespace_lock);
4424 		return (SET_ERROR(ENOENT));
4425 	}
4426 
4427 	/*
4428 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4429 	 * reacquire the namespace lock, and see if we can export.
4430 	 */
4431 	spa_open_ref(spa, FTAG);
4432 	mutex_exit(&spa_namespace_lock);
4433 	spa_async_suspend(spa);
4434 	mutex_enter(&spa_namespace_lock);
4435 	spa_close(spa, FTAG);
4436 
4437 	/*
4438 	 * The pool will be in core if it's openable,
4439 	 * in which case we can modify its state.
4440 	 */
4441 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4442 		/*
4443 		 * Objsets may be open only because they're dirty, so we
4444 		 * have to force it to sync before checking spa_refcnt.
4445 		 */
4446 		txg_wait_synced(spa->spa_dsl_pool, 0);
4447 		spa_evicting_os_wait(spa);
4448 
4449 		/*
4450 		 * A pool cannot be exported or destroyed if there are active
4451 		 * references.  If we are resetting a pool, allow references by
4452 		 * fault injection handlers.
4453 		 */
4454 		if (!spa_refcount_zero(spa) ||
4455 		    (spa->spa_inject_ref != 0 &&
4456 		    new_state != POOL_STATE_UNINITIALIZED)) {
4457 			spa_async_resume(spa);
4458 			mutex_exit(&spa_namespace_lock);
4459 			return (SET_ERROR(EBUSY));
4460 		}
4461 
4462 		/*
4463 		 * A pool cannot be exported if it has an active shared spare.
4464 		 * This is to prevent other pools stealing the active spare
4465 		 * from an exported pool. At user's own will, such pool can
4466 		 * be forcedly exported.
4467 		 */
4468 		if (!force && new_state == POOL_STATE_EXPORTED &&
4469 		    spa_has_active_shared_spare(spa)) {
4470 			spa_async_resume(spa);
4471 			mutex_exit(&spa_namespace_lock);
4472 			return (SET_ERROR(EXDEV));
4473 		}
4474 
4475 		/*
4476 		 * We want this to be reflected on every label,
4477 		 * so mark them all dirty.  spa_unload() will do the
4478 		 * final sync that pushes these changes out.
4479 		 */
4480 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4481 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4482 			spa->spa_state = new_state;
4483 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4484 			    TXG_DEFER_SIZE + 1;
4485 			vdev_config_dirty(spa->spa_root_vdev);
4486 			spa_config_exit(spa, SCL_ALL, FTAG);
4487 		}
4488 	}
4489 
4490 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4491 
4492 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4493 		spa_unload(spa);
4494 		spa_deactivate(spa);
4495 	}
4496 
4497 	if (oldconfig && spa->spa_config)
4498 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4499 
4500 	if (new_state != POOL_STATE_UNINITIALIZED) {
4501 		if (!hardforce)
4502 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4503 		spa_remove(spa);
4504 	}
4505 	mutex_exit(&spa_namespace_lock);
4506 
4507 	return (0);
4508 }
4509 
4510 /*
4511  * Destroy a storage pool.
4512  */
4513 int
4514 spa_destroy(char *pool)
4515 {
4516 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4517 	    B_FALSE, B_FALSE));
4518 }
4519 
4520 /*
4521  * Export a storage pool.
4522  */
4523 int
4524 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4525     boolean_t hardforce)
4526 {
4527 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4528 	    force, hardforce));
4529 }
4530 
4531 /*
4532  * Similar to spa_export(), this unloads the spa_t without actually removing it
4533  * from the namespace in any way.
4534  */
4535 int
4536 spa_reset(char *pool)
4537 {
4538 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4539 	    B_FALSE, B_FALSE));
4540 }
4541 
4542 /*
4543  * ==========================================================================
4544  * Device manipulation
4545  * ==========================================================================
4546  */
4547 
4548 /*
4549  * Add a device to a storage pool.
4550  */
4551 int
4552 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4553 {
4554 	uint64_t txg, id;
4555 	int error;
4556 	vdev_t *rvd = spa->spa_root_vdev;
4557 	vdev_t *vd, *tvd;
4558 	nvlist_t **spares, **l2cache;
4559 	uint_t nspares, nl2cache;
4560 
4561 	ASSERT(spa_writeable(spa));
4562 
4563 	txg = spa_vdev_enter(spa);
4564 
4565 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4566 	    VDEV_ALLOC_ADD)) != 0)
4567 		return (spa_vdev_exit(spa, NULL, txg, error));
4568 
4569 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4570 
4571 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4572 	    &nspares) != 0)
4573 		nspares = 0;
4574 
4575 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4576 	    &nl2cache) != 0)
4577 		nl2cache = 0;
4578 
4579 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4580 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4581 
4582 	if (vd->vdev_children != 0 &&
4583 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4584 		return (spa_vdev_exit(spa, vd, txg, error));
4585 
4586 	/*
4587 	 * We must validate the spares and l2cache devices after checking the
4588 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4589 	 */
4590 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4591 		return (spa_vdev_exit(spa, vd, txg, error));
4592 
4593 	/*
4594 	 * If we are in the middle of a device removal, we can only add
4595 	 * devices which match the existing devices in the pool.
4596 	 * If we are in the middle of a removal, or have some indirect
4597 	 * vdevs, we can not add raidz toplevels.
4598 	 */
4599 	if (spa->spa_vdev_removal != NULL ||
4600 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
4601 		for (int c = 0; c < vd->vdev_children; c++) {
4602 			tvd = vd->vdev_child[c];
4603 			if (spa->spa_vdev_removal != NULL &&
4604 			    tvd->vdev_ashift !=
4605 			    spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
4606 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
4607 			}
4608 			/* Fail if top level vdev is raidz */
4609 			if (tvd->vdev_ops == &vdev_raidz_ops) {
4610 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
4611 			}
4612 			/*
4613 			 * Need the top level mirror to be
4614 			 * a mirror of leaf vdevs only
4615 			 */
4616 			if (tvd->vdev_ops == &vdev_mirror_ops) {
4617 				for (uint64_t cid = 0;
4618 				    cid < tvd->vdev_children; cid++) {
4619 					vdev_t *cvd = tvd->vdev_child[cid];
4620 					if (!cvd->vdev_ops->vdev_op_leaf) {
4621 						return (spa_vdev_exit(spa, vd,
4622 						    txg, EINVAL));
4623 					}
4624 				}
4625 			}
4626 		}
4627 	}
4628 
4629 	for (int c = 0; c < vd->vdev_children; c++) {
4630 
4631 		/*
4632 		 * Set the vdev id to the first hole, if one exists.
4633 		 */
4634 		for (id = 0; id < rvd->vdev_children; id++) {
4635 			if (rvd->vdev_child[id]->vdev_ishole) {
4636 				vdev_free(rvd->vdev_child[id]);
4637 				break;
4638 			}
4639 		}
4640 		tvd = vd->vdev_child[c];
4641 		vdev_remove_child(vd, tvd);
4642 		tvd->vdev_id = id;
4643 		vdev_add_child(rvd, tvd);
4644 		vdev_config_dirty(tvd);
4645 	}
4646 
4647 	if (nspares != 0) {
4648 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4649 		    ZPOOL_CONFIG_SPARES);
4650 		spa_load_spares(spa);
4651 		spa->spa_spares.sav_sync = B_TRUE;
4652 	}
4653 
4654 	if (nl2cache != 0) {
4655 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4656 		    ZPOOL_CONFIG_L2CACHE);
4657 		spa_load_l2cache(spa);
4658 		spa->spa_l2cache.sav_sync = B_TRUE;
4659 	}
4660 
4661 	/*
4662 	 * We have to be careful when adding new vdevs to an existing pool.
4663 	 * If other threads start allocating from these vdevs before we
4664 	 * sync the config cache, and we lose power, then upon reboot we may
4665 	 * fail to open the pool because there are DVAs that the config cache
4666 	 * can't translate.  Therefore, we first add the vdevs without
4667 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4668 	 * and then let spa_config_update() initialize the new metaslabs.
4669 	 *
4670 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4671 	 * if we lose power at any point in this sequence, the remaining
4672 	 * steps will be completed the next time we load the pool.
4673 	 */
4674 	(void) spa_vdev_exit(spa, vd, txg, 0);
4675 
4676 	mutex_enter(&spa_namespace_lock);
4677 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4678 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
4679 	mutex_exit(&spa_namespace_lock);
4680 
4681 	return (0);
4682 }
4683 
4684 /*
4685  * Attach a device to a mirror.  The arguments are the path to any device
4686  * in the mirror, and the nvroot for the new device.  If the path specifies
4687  * a device that is not mirrored, we automatically insert the mirror vdev.
4688  *
4689  * If 'replacing' is specified, the new device is intended to replace the
4690  * existing device; in this case the two devices are made into their own
4691  * mirror using the 'replacing' vdev, which is functionally identical to
4692  * the mirror vdev (it actually reuses all the same ops) but has a few
4693  * extra rules: you can't attach to it after it's been created, and upon
4694  * completion of resilvering, the first disk (the one being replaced)
4695  * is automatically detached.
4696  */
4697 int
4698 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4699 {
4700 	uint64_t txg, dtl_max_txg;
4701 	vdev_t *rvd = spa->spa_root_vdev;
4702 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4703 	vdev_ops_t *pvops;
4704 	char *oldvdpath, *newvdpath;
4705 	int newvd_isspare;
4706 	int error;
4707 
4708 	ASSERT(spa_writeable(spa));
4709 
4710 	txg = spa_vdev_enter(spa);
4711 
4712 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4713 
4714 	if (spa->spa_vdev_removal != NULL ||
4715 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
4716 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4717 	}
4718 
4719 	if (oldvd == NULL)
4720 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4721 
4722 	if (!oldvd->vdev_ops->vdev_op_leaf)
4723 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4724 
4725 	pvd = oldvd->vdev_parent;
4726 
4727 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4728 	    VDEV_ALLOC_ATTACH)) != 0)
4729 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4730 
4731 	if (newrootvd->vdev_children != 1)
4732 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4733 
4734 	newvd = newrootvd->vdev_child[0];
4735 
4736 	if (!newvd->vdev_ops->vdev_op_leaf)
4737 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4738 
4739 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4740 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4741 
4742 	/*
4743 	 * Spares can't replace logs
4744 	 */
4745 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4746 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4747 
4748 	if (!replacing) {
4749 		/*
4750 		 * For attach, the only allowable parent is a mirror or the root
4751 		 * vdev.
4752 		 */
4753 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4754 		    pvd->vdev_ops != &vdev_root_ops)
4755 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4756 
4757 		pvops = &vdev_mirror_ops;
4758 	} else {
4759 		/*
4760 		 * Active hot spares can only be replaced by inactive hot
4761 		 * spares.
4762 		 */
4763 		if (pvd->vdev_ops == &vdev_spare_ops &&
4764 		    oldvd->vdev_isspare &&
4765 		    !spa_has_spare(spa, newvd->vdev_guid))
4766 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4767 
4768 		/*
4769 		 * If the source is a hot spare, and the parent isn't already a
4770 		 * spare, then we want to create a new hot spare.  Otherwise, we
4771 		 * want to create a replacing vdev.  The user is not allowed to
4772 		 * attach to a spared vdev child unless the 'isspare' state is
4773 		 * the same (spare replaces spare, non-spare replaces
4774 		 * non-spare).
4775 		 */
4776 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4777 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4778 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4779 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4780 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4781 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4782 		}
4783 
4784 		if (newvd->vdev_isspare)
4785 			pvops = &vdev_spare_ops;
4786 		else
4787 			pvops = &vdev_replacing_ops;
4788 	}
4789 
4790 	/*
4791 	 * Make sure the new device is big enough.
4792 	 */
4793 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4794 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4795 
4796 	/*
4797 	 * The new device cannot have a higher alignment requirement
4798 	 * than the top-level vdev.
4799 	 */
4800 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4801 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4802 
4803 	/*
4804 	 * If this is an in-place replacement, update oldvd's path and devid
4805 	 * to make it distinguishable from newvd, and unopenable from now on.
4806 	 */
4807 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4808 		spa_strfree(oldvd->vdev_path);
4809 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4810 		    KM_SLEEP);
4811 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4812 		    newvd->vdev_path, "old");
4813 		if (oldvd->vdev_devid != NULL) {
4814 			spa_strfree(oldvd->vdev_devid);
4815 			oldvd->vdev_devid = NULL;
4816 		}
4817 	}
4818 
4819 	/* mark the device being resilvered */
4820 	newvd->vdev_resilver_txg = txg;
4821 
4822 	/*
4823 	 * If the parent is not a mirror, or if we're replacing, insert the new
4824 	 * mirror/replacing/spare vdev above oldvd.
4825 	 */
4826 	if (pvd->vdev_ops != pvops)
4827 		pvd = vdev_add_parent(oldvd, pvops);
4828 
4829 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4830 	ASSERT(pvd->vdev_ops == pvops);
4831 	ASSERT(oldvd->vdev_parent == pvd);
4832 
4833 	/*
4834 	 * Extract the new device from its root and add it to pvd.
4835 	 */
4836 	vdev_remove_child(newrootvd, newvd);
4837 	newvd->vdev_id = pvd->vdev_children;
4838 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4839 	vdev_add_child(pvd, newvd);
4840 
4841 	tvd = newvd->vdev_top;
4842 	ASSERT(pvd->vdev_top == tvd);
4843 	ASSERT(tvd->vdev_parent == rvd);
4844 
4845 	vdev_config_dirty(tvd);
4846 
4847 	/*
4848 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4849 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4850 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4851 	 */
4852 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4853 
4854 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4855 	    dtl_max_txg - TXG_INITIAL);
4856 
4857 	if (newvd->vdev_isspare) {
4858 		spa_spare_activate(newvd);
4859 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
4860 	}
4861 
4862 	oldvdpath = spa_strdup(oldvd->vdev_path);
4863 	newvdpath = spa_strdup(newvd->vdev_path);
4864 	newvd_isspare = newvd->vdev_isspare;
4865 
4866 	/*
4867 	 * Mark newvd's DTL dirty in this txg.
4868 	 */
4869 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4870 
4871 	/*
4872 	 * Schedule the resilver to restart in the future. We do this to
4873 	 * ensure that dmu_sync-ed blocks have been stitched into the
4874 	 * respective datasets.
4875 	 */
4876 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4877 
4878 	if (spa->spa_bootfs)
4879 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4880 
4881 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
4882 
4883 	/*
4884 	 * Commit the config
4885 	 */
4886 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4887 
4888 	spa_history_log_internal(spa, "vdev attach", NULL,
4889 	    "%s vdev=%s %s vdev=%s",
4890 	    replacing && newvd_isspare ? "spare in" :
4891 	    replacing ? "replace" : "attach", newvdpath,
4892 	    replacing ? "for" : "to", oldvdpath);
4893 
4894 	spa_strfree(oldvdpath);
4895 	spa_strfree(newvdpath);
4896 
4897 	return (0);
4898 }
4899 
4900 /*
4901  * Detach a device from a mirror or replacing vdev.
4902  *
4903  * If 'replace_done' is specified, only detach if the parent
4904  * is a replacing vdev.
4905  */
4906 int
4907 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4908 {
4909 	uint64_t txg;
4910 	int error;
4911 	vdev_t *rvd = spa->spa_root_vdev;
4912 	vdev_t *vd, *pvd, *cvd, *tvd;
4913 	boolean_t unspare = B_FALSE;
4914 	uint64_t unspare_guid = 0;
4915 	char *vdpath;
4916 
4917 	ASSERT(spa_writeable(spa));
4918 
4919 	txg = spa_vdev_enter(spa);
4920 
4921 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4922 
4923 	if (vd == NULL)
4924 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4925 
4926 	if (!vd->vdev_ops->vdev_op_leaf)
4927 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4928 
4929 	pvd = vd->vdev_parent;
4930 
4931 	/*
4932 	 * If the parent/child relationship is not as expected, don't do it.
4933 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4934 	 * vdev that's replacing B with C.  The user's intent in replacing
4935 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4936 	 * the replace by detaching C, the expected behavior is to end up
4937 	 * M(A,B).  But suppose that right after deciding to detach C,
4938 	 * the replacement of B completes.  We would have M(A,C), and then
4939 	 * ask to detach C, which would leave us with just A -- not what
4940 	 * the user wanted.  To prevent this, we make sure that the
4941 	 * parent/child relationship hasn't changed -- in this example,
4942 	 * that C's parent is still the replacing vdev R.
4943 	 */
4944 	if (pvd->vdev_guid != pguid && pguid != 0)
4945 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4946 
4947 	/*
4948 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4949 	 */
4950 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4951 	    pvd->vdev_ops != &vdev_spare_ops)
4952 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4953 
4954 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4955 	    spa_version(spa) >= SPA_VERSION_SPARES);
4956 
4957 	/*
4958 	 * Only mirror, replacing, and spare vdevs support detach.
4959 	 */
4960 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4961 	    pvd->vdev_ops != &vdev_mirror_ops &&
4962 	    pvd->vdev_ops != &vdev_spare_ops)
4963 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4964 
4965 	/*
4966 	 * If this device has the only valid copy of some data,
4967 	 * we cannot safely detach it.
4968 	 */
4969 	if (vdev_dtl_required(vd))
4970 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4971 
4972 	ASSERT(pvd->vdev_children >= 2);
4973 
4974 	/*
4975 	 * If we are detaching the second disk from a replacing vdev, then
4976 	 * check to see if we changed the original vdev's path to have "/old"
4977 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4978 	 */
4979 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4980 	    vd->vdev_path != NULL) {
4981 		size_t len = strlen(vd->vdev_path);
4982 
4983 		for (int c = 0; c < pvd->vdev_children; c++) {
4984 			cvd = pvd->vdev_child[c];
4985 
4986 			if (cvd == vd || cvd->vdev_path == NULL)
4987 				continue;
4988 
4989 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4990 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4991 				spa_strfree(cvd->vdev_path);
4992 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4993 				break;
4994 			}
4995 		}
4996 	}
4997 
4998 	/*
4999 	 * If we are detaching the original disk from a spare, then it implies
5000 	 * that the spare should become a real disk, and be removed from the
5001 	 * active spare list for the pool.
5002 	 */
5003 	if (pvd->vdev_ops == &vdev_spare_ops &&
5004 	    vd->vdev_id == 0 &&
5005 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5006 		unspare = B_TRUE;
5007 
5008 	/*
5009 	 * Erase the disk labels so the disk can be used for other things.
5010 	 * This must be done after all other error cases are handled,
5011 	 * but before we disembowel vd (so we can still do I/O to it).
5012 	 * But if we can't do it, don't treat the error as fatal --
5013 	 * it may be that the unwritability of the disk is the reason
5014 	 * it's being detached!
5015 	 */
5016 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5017 
5018 	/*
5019 	 * Remove vd from its parent and compact the parent's children.
5020 	 */
5021 	vdev_remove_child(pvd, vd);
5022 	vdev_compact_children(pvd);
5023 
5024 	/*
5025 	 * Remember one of the remaining children so we can get tvd below.
5026 	 */
5027 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5028 
5029 	/*
5030 	 * If we need to remove the remaining child from the list of hot spares,
5031 	 * do it now, marking the vdev as no longer a spare in the process.
5032 	 * We must do this before vdev_remove_parent(), because that can
5033 	 * change the GUID if it creates a new toplevel GUID.  For a similar
5034 	 * reason, we must remove the spare now, in the same txg as the detach;
5035 	 * otherwise someone could attach a new sibling, change the GUID, and
5036 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5037 	 */
5038 	if (unspare) {
5039 		ASSERT(cvd->vdev_isspare);
5040 		spa_spare_remove(cvd);
5041 		unspare_guid = cvd->vdev_guid;
5042 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5043 		cvd->vdev_unspare = B_TRUE;
5044 	}
5045 
5046 	/*
5047 	 * If the parent mirror/replacing vdev only has one child,
5048 	 * the parent is no longer needed.  Remove it from the tree.
5049 	 */
5050 	if (pvd->vdev_children == 1) {
5051 		if (pvd->vdev_ops == &vdev_spare_ops)
5052 			cvd->vdev_unspare = B_FALSE;
5053 		vdev_remove_parent(cvd);
5054 	}
5055 
5056 
5057 	/*
5058 	 * We don't set tvd until now because the parent we just removed
5059 	 * may have been the previous top-level vdev.
5060 	 */
5061 	tvd = cvd->vdev_top;
5062 	ASSERT(tvd->vdev_parent == rvd);
5063 
5064 	/*
5065 	 * Reevaluate the parent vdev state.
5066 	 */
5067 	vdev_propagate_state(cvd);
5068 
5069 	/*
5070 	 * If the 'autoexpand' property is set on the pool then automatically
5071 	 * try to expand the size of the pool. For example if the device we
5072 	 * just detached was smaller than the others, it may be possible to
5073 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5074 	 * first so that we can obtain the updated sizes of the leaf vdevs.
5075 	 */
5076 	if (spa->spa_autoexpand) {
5077 		vdev_reopen(tvd);
5078 		vdev_expand(tvd, txg);
5079 	}
5080 
5081 	vdev_config_dirty(tvd);
5082 
5083 	/*
5084 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5085 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5086 	 * But first make sure we're not on any *other* txg's DTL list, to
5087 	 * prevent vd from being accessed after it's freed.
5088 	 */
5089 	vdpath = spa_strdup(vd->vdev_path);
5090 	for (int t = 0; t < TXG_SIZE; t++)
5091 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5092 	vd->vdev_detached = B_TRUE;
5093 	vdev_dirty(tvd, VDD_DTL, vd, txg);
5094 
5095 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5096 
5097 	/* hang on to the spa before we release the lock */
5098 	spa_open_ref(spa, FTAG);
5099 
5100 	error = spa_vdev_exit(spa, vd, txg, 0);
5101 
5102 	spa_history_log_internal(spa, "detach", NULL,
5103 	    "vdev=%s", vdpath);
5104 	spa_strfree(vdpath);
5105 
5106 	/*
5107 	 * If this was the removal of the original device in a hot spare vdev,
5108 	 * then we want to go through and remove the device from the hot spare
5109 	 * list of every other pool.
5110 	 */
5111 	if (unspare) {
5112 		spa_t *altspa = NULL;
5113 
5114 		mutex_enter(&spa_namespace_lock);
5115 		while ((altspa = spa_next(altspa)) != NULL) {
5116 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5117 			    altspa == spa)
5118 				continue;
5119 
5120 			spa_open_ref(altspa, FTAG);
5121 			mutex_exit(&spa_namespace_lock);
5122 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5123 			mutex_enter(&spa_namespace_lock);
5124 			spa_close(altspa, FTAG);
5125 		}
5126 		mutex_exit(&spa_namespace_lock);
5127 
5128 		/* search the rest of the vdevs for spares to remove */
5129 		spa_vdev_resilver_done(spa);
5130 	}
5131 
5132 	/* all done with the spa; OK to release */
5133 	mutex_enter(&spa_namespace_lock);
5134 	spa_close(spa, FTAG);
5135 	mutex_exit(&spa_namespace_lock);
5136 
5137 	return (error);
5138 }
5139 
5140 /*
5141  * Split a set of devices from their mirrors, and create a new pool from them.
5142  */
5143 int
5144 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5145     nvlist_t *props, boolean_t exp)
5146 {
5147 	int error = 0;
5148 	uint64_t txg, *glist;
5149 	spa_t *newspa;
5150 	uint_t c, children, lastlog;
5151 	nvlist_t **child, *nvl, *tmp;
5152 	dmu_tx_t *tx;
5153 	char *altroot = NULL;
5154 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5155 	boolean_t activate_slog;
5156 
5157 	ASSERT(spa_writeable(spa));
5158 
5159 	txg = spa_vdev_enter(spa);
5160 
5161 	/* clear the log and flush everything up to now */
5162 	activate_slog = spa_passivate_log(spa);
5163 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5164 	error = spa_reset_logs(spa);
5165 	txg = spa_vdev_config_enter(spa);
5166 
5167 	if (activate_slog)
5168 		spa_activate_log(spa);
5169 
5170 	if (error != 0)
5171 		return (spa_vdev_exit(spa, NULL, txg, error));
5172 
5173 	/* check new spa name before going any further */
5174 	if (spa_lookup(newname) != NULL)
5175 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5176 
5177 	/*
5178 	 * scan through all the children to ensure they're all mirrors
5179 	 */
5180 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5181 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5182 	    &children) != 0)
5183 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5184 
5185 	/* first, check to ensure we've got the right child count */
5186 	rvd = spa->spa_root_vdev;
5187 	lastlog = 0;
5188 	for (c = 0; c < rvd->vdev_children; c++) {
5189 		vdev_t *vd = rvd->vdev_child[c];
5190 
5191 		/* don't count the holes & logs as children */
5192 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
5193 			if (lastlog == 0)
5194 				lastlog = c;
5195 			continue;
5196 		}
5197 
5198 		lastlog = 0;
5199 	}
5200 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5201 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5202 
5203 	/* next, ensure no spare or cache devices are part of the split */
5204 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5205 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5206 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5207 
5208 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5209 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5210 
5211 	/* then, loop over each vdev and validate it */
5212 	for (c = 0; c < children; c++) {
5213 		uint64_t is_hole = 0;
5214 
5215 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5216 		    &is_hole);
5217 
5218 		if (is_hole != 0) {
5219 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5220 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5221 				continue;
5222 			} else {
5223 				error = SET_ERROR(EINVAL);
5224 				break;
5225 			}
5226 		}
5227 
5228 		/* which disk is going to be split? */
5229 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5230 		    &glist[c]) != 0) {
5231 			error = SET_ERROR(EINVAL);
5232 			break;
5233 		}
5234 
5235 		/* look it up in the spa */
5236 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5237 		if (vml[c] == NULL) {
5238 			error = SET_ERROR(ENODEV);
5239 			break;
5240 		}
5241 
5242 		/* make sure there's nothing stopping the split */
5243 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5244 		    vml[c]->vdev_islog ||
5245 		    !vdev_is_concrete(vml[c]) ||
5246 		    vml[c]->vdev_isspare ||
5247 		    vml[c]->vdev_isl2cache ||
5248 		    !vdev_writeable(vml[c]) ||
5249 		    vml[c]->vdev_children != 0 ||
5250 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5251 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5252 			error = SET_ERROR(EINVAL);
5253 			break;
5254 		}
5255 
5256 		if (vdev_dtl_required(vml[c])) {
5257 			error = SET_ERROR(EBUSY);
5258 			break;
5259 		}
5260 
5261 		/* we need certain info from the top level */
5262 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5263 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5264 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5265 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5266 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5267 		    vml[c]->vdev_top->vdev_asize) == 0);
5268 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5269 		    vml[c]->vdev_top->vdev_ashift) == 0);
5270 
5271 		/* transfer per-vdev ZAPs */
5272 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5273 		VERIFY0(nvlist_add_uint64(child[c],
5274 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5275 
5276 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5277 		VERIFY0(nvlist_add_uint64(child[c],
5278 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5279 		    vml[c]->vdev_parent->vdev_top_zap));
5280 	}
5281 
5282 	if (error != 0) {
5283 		kmem_free(vml, children * sizeof (vdev_t *));
5284 		kmem_free(glist, children * sizeof (uint64_t));
5285 		return (spa_vdev_exit(spa, NULL, txg, error));
5286 	}
5287 
5288 	/* stop writers from using the disks */
5289 	for (c = 0; c < children; c++) {
5290 		if (vml[c] != NULL)
5291 			vml[c]->vdev_offline = B_TRUE;
5292 	}
5293 	vdev_reopen(spa->spa_root_vdev);
5294 
5295 	/*
5296 	 * Temporarily record the splitting vdevs in the spa config.  This
5297 	 * will disappear once the config is regenerated.
5298 	 */
5299 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5300 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5301 	    glist, children) == 0);
5302 	kmem_free(glist, children * sizeof (uint64_t));
5303 
5304 	mutex_enter(&spa->spa_props_lock);
5305 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5306 	    nvl) == 0);
5307 	mutex_exit(&spa->spa_props_lock);
5308 	spa->spa_config_splitting = nvl;
5309 	vdev_config_dirty(spa->spa_root_vdev);
5310 
5311 	/* configure and create the new pool */
5312 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5313 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5314 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5315 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5316 	    spa_version(spa)) == 0);
5317 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5318 	    spa->spa_config_txg) == 0);
5319 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5320 	    spa_generate_guid(NULL)) == 0);
5321 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5322 	(void) nvlist_lookup_string(props,
5323 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5324 
5325 	/* add the new pool to the namespace */
5326 	newspa = spa_add(newname, config, altroot);
5327 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5328 	newspa->spa_config_txg = spa->spa_config_txg;
5329 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5330 
5331 	/* release the spa config lock, retaining the namespace lock */
5332 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5333 
5334 	if (zio_injection_enabled)
5335 		zio_handle_panic_injection(spa, FTAG, 1);
5336 
5337 	spa_activate(newspa, spa_mode_global);
5338 	spa_async_suspend(newspa);
5339 
5340 	/* create the new pool from the disks of the original pool */
5341 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5342 	if (error)
5343 		goto out;
5344 
5345 	/* if that worked, generate a real config for the new pool */
5346 	if (newspa->spa_root_vdev != NULL) {
5347 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5348 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5349 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5350 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5351 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5352 		    B_TRUE));
5353 	}
5354 
5355 	/* set the props */
5356 	if (props != NULL) {
5357 		spa_configfile_set(newspa, props, B_FALSE);
5358 		error = spa_prop_set(newspa, props);
5359 		if (error)
5360 			goto out;
5361 	}
5362 
5363 	/* flush everything */
5364 	txg = spa_vdev_config_enter(newspa);
5365 	vdev_config_dirty(newspa->spa_root_vdev);
5366 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5367 
5368 	if (zio_injection_enabled)
5369 		zio_handle_panic_injection(spa, FTAG, 2);
5370 
5371 	spa_async_resume(newspa);
5372 
5373 	/* finally, update the original pool's config */
5374 	txg = spa_vdev_config_enter(spa);
5375 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5376 	error = dmu_tx_assign(tx, TXG_WAIT);
5377 	if (error != 0)
5378 		dmu_tx_abort(tx);
5379 	for (c = 0; c < children; c++) {
5380 		if (vml[c] != NULL) {
5381 			vdev_split(vml[c]);
5382 			if (error == 0)
5383 				spa_history_log_internal(spa, "detach", tx,
5384 				    "vdev=%s", vml[c]->vdev_path);
5385 
5386 			vdev_free(vml[c]);
5387 		}
5388 	}
5389 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5390 	vdev_config_dirty(spa->spa_root_vdev);
5391 	spa->spa_config_splitting = NULL;
5392 	nvlist_free(nvl);
5393 	if (error == 0)
5394 		dmu_tx_commit(tx);
5395 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5396 
5397 	if (zio_injection_enabled)
5398 		zio_handle_panic_injection(spa, FTAG, 3);
5399 
5400 	/* split is complete; log a history record */
5401 	spa_history_log_internal(newspa, "split", NULL,
5402 	    "from pool %s", spa_name(spa));
5403 
5404 	kmem_free(vml, children * sizeof (vdev_t *));
5405 
5406 	/* if we're not going to mount the filesystems in userland, export */
5407 	if (exp)
5408 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5409 		    B_FALSE, B_FALSE);
5410 
5411 	return (error);
5412 
5413 out:
5414 	spa_unload(newspa);
5415 	spa_deactivate(newspa);
5416 	spa_remove(newspa);
5417 
5418 	txg = spa_vdev_config_enter(spa);
5419 
5420 	/* re-online all offlined disks */
5421 	for (c = 0; c < children; c++) {
5422 		if (vml[c] != NULL)
5423 			vml[c]->vdev_offline = B_FALSE;
5424 	}
5425 	vdev_reopen(spa->spa_root_vdev);
5426 
5427 	nvlist_free(spa->spa_config_splitting);
5428 	spa->spa_config_splitting = NULL;
5429 	(void) spa_vdev_exit(spa, NULL, txg, error);
5430 
5431 	kmem_free(vml, children * sizeof (vdev_t *));
5432 	return (error);
5433 }
5434 
5435 /*
5436  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5437  * currently spared, so we can detach it.
5438  */
5439 static vdev_t *
5440 spa_vdev_resilver_done_hunt(vdev_t *vd)
5441 {
5442 	vdev_t *newvd, *oldvd;
5443 
5444 	for (int c = 0; c < vd->vdev_children; c++) {
5445 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5446 		if (oldvd != NULL)
5447 			return (oldvd);
5448 	}
5449 
5450 	/*
5451 	 * Check for a completed replacement.  We always consider the first
5452 	 * vdev in the list to be the oldest vdev, and the last one to be
5453 	 * the newest (see spa_vdev_attach() for how that works).  In
5454 	 * the case where the newest vdev is faulted, we will not automatically
5455 	 * remove it after a resilver completes.  This is OK as it will require
5456 	 * user intervention to determine which disk the admin wishes to keep.
5457 	 */
5458 	if (vd->vdev_ops == &vdev_replacing_ops) {
5459 		ASSERT(vd->vdev_children > 1);
5460 
5461 		newvd = vd->vdev_child[vd->vdev_children - 1];
5462 		oldvd = vd->vdev_child[0];
5463 
5464 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5465 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5466 		    !vdev_dtl_required(oldvd))
5467 			return (oldvd);
5468 	}
5469 
5470 	/*
5471 	 * Check for a completed resilver with the 'unspare' flag set.
5472 	 */
5473 	if (vd->vdev_ops == &vdev_spare_ops) {
5474 		vdev_t *first = vd->vdev_child[0];
5475 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5476 
5477 		if (last->vdev_unspare) {
5478 			oldvd = first;
5479 			newvd = last;
5480 		} else if (first->vdev_unspare) {
5481 			oldvd = last;
5482 			newvd = first;
5483 		} else {
5484 			oldvd = NULL;
5485 		}
5486 
5487 		if (oldvd != NULL &&
5488 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5489 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5490 		    !vdev_dtl_required(oldvd))
5491 			return (oldvd);
5492 
5493 		/*
5494 		 * If there are more than two spares attached to a disk,
5495 		 * and those spares are not required, then we want to
5496 		 * attempt to free them up now so that they can be used
5497 		 * by other pools.  Once we're back down to a single
5498 		 * disk+spare, we stop removing them.
5499 		 */
5500 		if (vd->vdev_children > 2) {
5501 			newvd = vd->vdev_child[1];
5502 
5503 			if (newvd->vdev_isspare && last->vdev_isspare &&
5504 			    vdev_dtl_empty(last, DTL_MISSING) &&
5505 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5506 			    !vdev_dtl_required(newvd))
5507 				return (newvd);
5508 		}
5509 	}
5510 
5511 	return (NULL);
5512 }
5513 
5514 static void
5515 spa_vdev_resilver_done(spa_t *spa)
5516 {
5517 	vdev_t *vd, *pvd, *ppvd;
5518 	uint64_t guid, sguid, pguid, ppguid;
5519 
5520 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5521 
5522 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5523 		pvd = vd->vdev_parent;
5524 		ppvd = pvd->vdev_parent;
5525 		guid = vd->vdev_guid;
5526 		pguid = pvd->vdev_guid;
5527 		ppguid = ppvd->vdev_guid;
5528 		sguid = 0;
5529 		/*
5530 		 * If we have just finished replacing a hot spared device, then
5531 		 * we need to detach the parent's first child (the original hot
5532 		 * spare) as well.
5533 		 */
5534 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5535 		    ppvd->vdev_children == 2) {
5536 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5537 			sguid = ppvd->vdev_child[1]->vdev_guid;
5538 		}
5539 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5540 
5541 		spa_config_exit(spa, SCL_ALL, FTAG);
5542 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5543 			return;
5544 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5545 			return;
5546 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5547 	}
5548 
5549 	spa_config_exit(spa, SCL_ALL, FTAG);
5550 }
5551 
5552 /*
5553  * Update the stored path or FRU for this vdev.
5554  */
5555 int
5556 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5557     boolean_t ispath)
5558 {
5559 	vdev_t *vd;
5560 	boolean_t sync = B_FALSE;
5561 
5562 	ASSERT(spa_writeable(spa));
5563 
5564 	spa_vdev_state_enter(spa, SCL_ALL);
5565 
5566 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5567 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5568 
5569 	if (!vd->vdev_ops->vdev_op_leaf)
5570 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5571 
5572 	if (ispath) {
5573 		if (strcmp(value, vd->vdev_path) != 0) {
5574 			spa_strfree(vd->vdev_path);
5575 			vd->vdev_path = spa_strdup(value);
5576 			sync = B_TRUE;
5577 		}
5578 	} else {
5579 		if (vd->vdev_fru == NULL) {
5580 			vd->vdev_fru = spa_strdup(value);
5581 			sync = B_TRUE;
5582 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5583 			spa_strfree(vd->vdev_fru);
5584 			vd->vdev_fru = spa_strdup(value);
5585 			sync = B_TRUE;
5586 		}
5587 	}
5588 
5589 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5590 }
5591 
5592 int
5593 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5594 {
5595 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5596 }
5597 
5598 int
5599 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5600 {
5601 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5602 }
5603 
5604 /*
5605  * ==========================================================================
5606  * SPA Scanning
5607  * ==========================================================================
5608  */
5609 int
5610 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
5611 {
5612 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5613 
5614 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5615 		return (SET_ERROR(EBUSY));
5616 
5617 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
5618 }
5619 
5620 int
5621 spa_scan_stop(spa_t *spa)
5622 {
5623 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5624 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5625 		return (SET_ERROR(EBUSY));
5626 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5627 }
5628 
5629 int
5630 spa_scan(spa_t *spa, pool_scan_func_t func)
5631 {
5632 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5633 
5634 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5635 		return (SET_ERROR(ENOTSUP));
5636 
5637 	/*
5638 	 * If a resilver was requested, but there is no DTL on a
5639 	 * writeable leaf device, we have nothing to do.
5640 	 */
5641 	if (func == POOL_SCAN_RESILVER &&
5642 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5643 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5644 		return (0);
5645 	}
5646 
5647 	return (dsl_scan(spa->spa_dsl_pool, func));
5648 }
5649 
5650 /*
5651  * ==========================================================================
5652  * SPA async task processing
5653  * ==========================================================================
5654  */
5655 
5656 static void
5657 spa_async_remove(spa_t *spa, vdev_t *vd)
5658 {
5659 	if (vd->vdev_remove_wanted) {
5660 		vd->vdev_remove_wanted = B_FALSE;
5661 		vd->vdev_delayed_close = B_FALSE;
5662 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5663 
5664 		/*
5665 		 * We want to clear the stats, but we don't want to do a full
5666 		 * vdev_clear() as that will cause us to throw away
5667 		 * degraded/faulted state as well as attempt to reopen the
5668 		 * device, all of which is a waste.
5669 		 */
5670 		vd->vdev_stat.vs_read_errors = 0;
5671 		vd->vdev_stat.vs_write_errors = 0;
5672 		vd->vdev_stat.vs_checksum_errors = 0;
5673 
5674 		vdev_state_dirty(vd->vdev_top);
5675 	}
5676 
5677 	for (int c = 0; c < vd->vdev_children; c++)
5678 		spa_async_remove(spa, vd->vdev_child[c]);
5679 }
5680 
5681 static void
5682 spa_async_probe(spa_t *spa, vdev_t *vd)
5683 {
5684 	if (vd->vdev_probe_wanted) {
5685 		vd->vdev_probe_wanted = B_FALSE;
5686 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5687 	}
5688 
5689 	for (int c = 0; c < vd->vdev_children; c++)
5690 		spa_async_probe(spa, vd->vdev_child[c]);
5691 }
5692 
5693 static void
5694 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5695 {
5696 	sysevent_id_t eid;
5697 	nvlist_t *attr;
5698 	char *physpath;
5699 
5700 	if (!spa->spa_autoexpand)
5701 		return;
5702 
5703 	for (int c = 0; c < vd->vdev_children; c++) {
5704 		vdev_t *cvd = vd->vdev_child[c];
5705 		spa_async_autoexpand(spa, cvd);
5706 	}
5707 
5708 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5709 		return;
5710 
5711 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5712 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5713 
5714 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5715 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5716 
5717 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5718 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5719 
5720 	nvlist_free(attr);
5721 	kmem_free(physpath, MAXPATHLEN);
5722 }
5723 
5724 static void
5725 spa_async_thread(void *arg)
5726 {
5727 	spa_t *spa = (spa_t *)arg;
5728 	int tasks;
5729 
5730 	ASSERT(spa->spa_sync_on);
5731 
5732 	mutex_enter(&spa->spa_async_lock);
5733 	tasks = spa->spa_async_tasks;
5734 	spa->spa_async_tasks = 0;
5735 	mutex_exit(&spa->spa_async_lock);
5736 
5737 	/*
5738 	 * See if the config needs to be updated.
5739 	 */
5740 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5741 		uint64_t old_space, new_space;
5742 
5743 		mutex_enter(&spa_namespace_lock);
5744 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5745 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5746 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5747 		mutex_exit(&spa_namespace_lock);
5748 
5749 		/*
5750 		 * If the pool grew as a result of the config update,
5751 		 * then log an internal history event.
5752 		 */
5753 		if (new_space != old_space) {
5754 			spa_history_log_internal(spa, "vdev online", NULL,
5755 			    "pool '%s' size: %llu(+%llu)",
5756 			    spa_name(spa), new_space, new_space - old_space);
5757 		}
5758 	}
5759 
5760 	/*
5761 	 * See if any devices need to be marked REMOVED.
5762 	 */
5763 	if (tasks & SPA_ASYNC_REMOVE) {
5764 		spa_vdev_state_enter(spa, SCL_NONE);
5765 		spa_async_remove(spa, spa->spa_root_vdev);
5766 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5767 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5768 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5769 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5770 		(void) spa_vdev_state_exit(spa, NULL, 0);
5771 	}
5772 
5773 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5774 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5775 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5776 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5777 	}
5778 
5779 	/*
5780 	 * See if any devices need to be probed.
5781 	 */
5782 	if (tasks & SPA_ASYNC_PROBE) {
5783 		spa_vdev_state_enter(spa, SCL_NONE);
5784 		spa_async_probe(spa, spa->spa_root_vdev);
5785 		(void) spa_vdev_state_exit(spa, NULL, 0);
5786 	}
5787 
5788 	/*
5789 	 * If any devices are done replacing, detach them.
5790 	 */
5791 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5792 		spa_vdev_resilver_done(spa);
5793 
5794 	/*
5795 	 * Kick off a resilver.
5796 	 */
5797 	if (tasks & SPA_ASYNC_RESILVER)
5798 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5799 
5800 	/*
5801 	 * Let the world know that we're done.
5802 	 */
5803 	mutex_enter(&spa->spa_async_lock);
5804 	spa->spa_async_thread = NULL;
5805 	cv_broadcast(&spa->spa_async_cv);
5806 	mutex_exit(&spa->spa_async_lock);
5807 	thread_exit();
5808 }
5809 
5810 void
5811 spa_async_suspend(spa_t *spa)
5812 {
5813 	mutex_enter(&spa->spa_async_lock);
5814 	spa->spa_async_suspended++;
5815 	while (spa->spa_async_thread != NULL ||
5816 	    spa->spa_condense_thread != NULL)
5817 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5818 	mutex_exit(&spa->spa_async_lock);
5819 
5820 	spa_vdev_remove_suspend(spa);
5821 }
5822 
5823 void
5824 spa_async_resume(spa_t *spa)
5825 {
5826 	mutex_enter(&spa->spa_async_lock);
5827 	ASSERT(spa->spa_async_suspended != 0);
5828 	spa->spa_async_suspended--;
5829 	mutex_exit(&spa->spa_async_lock);
5830 	spa_restart_removal(spa);
5831 }
5832 
5833 static boolean_t
5834 spa_async_tasks_pending(spa_t *spa)
5835 {
5836 	uint_t non_config_tasks;
5837 	uint_t config_task;
5838 	boolean_t config_task_suspended;
5839 
5840 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5841 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5842 	if (spa->spa_ccw_fail_time == 0) {
5843 		config_task_suspended = B_FALSE;
5844 	} else {
5845 		config_task_suspended =
5846 		    (gethrtime() - spa->spa_ccw_fail_time) <
5847 		    (zfs_ccw_retry_interval * NANOSEC);
5848 	}
5849 
5850 	return (non_config_tasks || (config_task && !config_task_suspended));
5851 }
5852 
5853 static void
5854 spa_async_dispatch(spa_t *spa)
5855 {
5856 	mutex_enter(&spa->spa_async_lock);
5857 	if (spa_async_tasks_pending(spa) &&
5858 	    !spa->spa_async_suspended &&
5859 	    spa->spa_async_thread == NULL &&
5860 	    rootdir != NULL)
5861 		spa->spa_async_thread = thread_create(NULL, 0,
5862 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5863 	mutex_exit(&spa->spa_async_lock);
5864 }
5865 
5866 void
5867 spa_async_request(spa_t *spa, int task)
5868 {
5869 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5870 	mutex_enter(&spa->spa_async_lock);
5871 	spa->spa_async_tasks |= task;
5872 	mutex_exit(&spa->spa_async_lock);
5873 }
5874 
5875 /*
5876  * ==========================================================================
5877  * SPA syncing routines
5878  * ==========================================================================
5879  */
5880 
5881 static int
5882 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5883 {
5884 	bpobj_t *bpo = arg;
5885 	bpobj_enqueue(bpo, bp, tx);
5886 	return (0);
5887 }
5888 
5889 static int
5890 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5891 {
5892 	zio_t *zio = arg;
5893 
5894 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5895 	    zio->io_flags));
5896 	return (0);
5897 }
5898 
5899 /*
5900  * Note: this simple function is not inlined to make it easier to dtrace the
5901  * amount of time spent syncing frees.
5902  */
5903 static void
5904 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5905 {
5906 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5907 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5908 	VERIFY(zio_wait(zio) == 0);
5909 }
5910 
5911 /*
5912  * Note: this simple function is not inlined to make it easier to dtrace the
5913  * amount of time spent syncing deferred frees.
5914  */
5915 static void
5916 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5917 {
5918 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5919 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5920 	    spa_free_sync_cb, zio, tx), ==, 0);
5921 	VERIFY0(zio_wait(zio));
5922 }
5923 
5924 
5925 static void
5926 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5927 {
5928 	char *packed = NULL;
5929 	size_t bufsize;
5930 	size_t nvsize = 0;
5931 	dmu_buf_t *db;
5932 
5933 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5934 
5935 	/*
5936 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5937 	 * information.  This avoids the dmu_buf_will_dirty() path and
5938 	 * saves us a pre-read to get data we don't actually care about.
5939 	 */
5940 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5941 	packed = kmem_alloc(bufsize, KM_SLEEP);
5942 
5943 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5944 	    KM_SLEEP) == 0);
5945 	bzero(packed + nvsize, bufsize - nvsize);
5946 
5947 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5948 
5949 	kmem_free(packed, bufsize);
5950 
5951 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5952 	dmu_buf_will_dirty(db, tx);
5953 	*(uint64_t *)db->db_data = nvsize;
5954 	dmu_buf_rele(db, FTAG);
5955 }
5956 
5957 static void
5958 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5959     const char *config, const char *entry)
5960 {
5961 	nvlist_t *nvroot;
5962 	nvlist_t **list;
5963 	int i;
5964 
5965 	if (!sav->sav_sync)
5966 		return;
5967 
5968 	/*
5969 	 * Update the MOS nvlist describing the list of available devices.
5970 	 * spa_validate_aux() will have already made sure this nvlist is
5971 	 * valid and the vdevs are labeled appropriately.
5972 	 */
5973 	if (sav->sav_object == 0) {
5974 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5975 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5976 		    sizeof (uint64_t), tx);
5977 		VERIFY(zap_update(spa->spa_meta_objset,
5978 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5979 		    &sav->sav_object, tx) == 0);
5980 	}
5981 
5982 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5983 	if (sav->sav_count == 0) {
5984 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5985 	} else {
5986 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5987 		for (i = 0; i < sav->sav_count; i++)
5988 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5989 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5990 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5991 		    sav->sav_count) == 0);
5992 		for (i = 0; i < sav->sav_count; i++)
5993 			nvlist_free(list[i]);
5994 		kmem_free(list, sav->sav_count * sizeof (void *));
5995 	}
5996 
5997 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5998 	nvlist_free(nvroot);
5999 
6000 	sav->sav_sync = B_FALSE;
6001 }
6002 
6003 /*
6004  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6005  * The all-vdev ZAP must be empty.
6006  */
6007 static void
6008 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6009 {
6010 	spa_t *spa = vd->vdev_spa;
6011 	if (vd->vdev_top_zap != 0) {
6012 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6013 		    vd->vdev_top_zap, tx));
6014 	}
6015 	if (vd->vdev_leaf_zap != 0) {
6016 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6017 		    vd->vdev_leaf_zap, tx));
6018 	}
6019 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6020 		spa_avz_build(vd->vdev_child[i], avz, tx);
6021 	}
6022 }
6023 
6024 static void
6025 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6026 {
6027 	nvlist_t *config;
6028 
6029 	/*
6030 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6031 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6032 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6033 	 * need to rebuild the AVZ although the config may not be dirty.
6034 	 */
6035 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6036 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6037 		return;
6038 
6039 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6040 
6041 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6042 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6043 	    spa->spa_all_vdev_zaps != 0);
6044 
6045 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6046 		/* Make and build the new AVZ */
6047 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6048 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6049 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6050 
6051 		/* Diff old AVZ with new one */
6052 		zap_cursor_t zc;
6053 		zap_attribute_t za;
6054 
6055 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6056 		    spa->spa_all_vdev_zaps);
6057 		    zap_cursor_retrieve(&zc, &za) == 0;
6058 		    zap_cursor_advance(&zc)) {
6059 			uint64_t vdzap = za.za_first_integer;
6060 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6061 			    vdzap) == ENOENT) {
6062 				/*
6063 				 * ZAP is listed in old AVZ but not in new one;
6064 				 * destroy it
6065 				 */
6066 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6067 				    tx));
6068 			}
6069 		}
6070 
6071 		zap_cursor_fini(&zc);
6072 
6073 		/* Destroy the old AVZ */
6074 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6075 		    spa->spa_all_vdev_zaps, tx));
6076 
6077 		/* Replace the old AVZ in the dir obj with the new one */
6078 		VERIFY0(zap_update(spa->spa_meta_objset,
6079 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6080 		    sizeof (new_avz), 1, &new_avz, tx));
6081 
6082 		spa->spa_all_vdev_zaps = new_avz;
6083 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6084 		zap_cursor_t zc;
6085 		zap_attribute_t za;
6086 
6087 		/* Walk through the AVZ and destroy all listed ZAPs */
6088 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6089 		    spa->spa_all_vdev_zaps);
6090 		    zap_cursor_retrieve(&zc, &za) == 0;
6091 		    zap_cursor_advance(&zc)) {
6092 			uint64_t zap = za.za_first_integer;
6093 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6094 		}
6095 
6096 		zap_cursor_fini(&zc);
6097 
6098 		/* Destroy and unlink the AVZ itself */
6099 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6100 		    spa->spa_all_vdev_zaps, tx));
6101 		VERIFY0(zap_remove(spa->spa_meta_objset,
6102 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6103 		spa->spa_all_vdev_zaps = 0;
6104 	}
6105 
6106 	if (spa->spa_all_vdev_zaps == 0) {
6107 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6108 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6109 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6110 	}
6111 	spa->spa_avz_action = AVZ_ACTION_NONE;
6112 
6113 	/* Create ZAPs for vdevs that don't have them. */
6114 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6115 
6116 	config = spa_config_generate(spa, spa->spa_root_vdev,
6117 	    dmu_tx_get_txg(tx), B_FALSE);
6118 
6119 	/*
6120 	 * If we're upgrading the spa version then make sure that
6121 	 * the config object gets updated with the correct version.
6122 	 */
6123 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6124 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6125 		    spa->spa_uberblock.ub_version);
6126 
6127 	spa_config_exit(spa, SCL_STATE, FTAG);
6128 
6129 	nvlist_free(spa->spa_config_syncing);
6130 	spa->spa_config_syncing = config;
6131 
6132 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6133 }
6134 
6135 static void
6136 spa_sync_version(void *arg, dmu_tx_t *tx)
6137 {
6138 	uint64_t *versionp = arg;
6139 	uint64_t version = *versionp;
6140 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6141 
6142 	/*
6143 	 * Setting the version is special cased when first creating the pool.
6144 	 */
6145 	ASSERT(tx->tx_txg != TXG_INITIAL);
6146 
6147 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6148 	ASSERT(version >= spa_version(spa));
6149 
6150 	spa->spa_uberblock.ub_version = version;
6151 	vdev_config_dirty(spa->spa_root_vdev);
6152 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6153 }
6154 
6155 /*
6156  * Set zpool properties.
6157  */
6158 static void
6159 spa_sync_props(void *arg, dmu_tx_t *tx)
6160 {
6161 	nvlist_t *nvp = arg;
6162 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6163 	objset_t *mos = spa->spa_meta_objset;
6164 	nvpair_t *elem = NULL;
6165 
6166 	mutex_enter(&spa->spa_props_lock);
6167 
6168 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6169 		uint64_t intval;
6170 		char *strval, *fname;
6171 		zpool_prop_t prop;
6172 		const char *propname;
6173 		zprop_type_t proptype;
6174 		spa_feature_t fid;
6175 
6176 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6177 		case ZPOOL_PROP_INVAL:
6178 			/*
6179 			 * We checked this earlier in spa_prop_validate().
6180 			 */
6181 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6182 
6183 			fname = strchr(nvpair_name(elem), '@') + 1;
6184 			VERIFY0(zfeature_lookup_name(fname, &fid));
6185 
6186 			spa_feature_enable(spa, fid, tx);
6187 			spa_history_log_internal(spa, "set", tx,
6188 			    "%s=enabled", nvpair_name(elem));
6189 			break;
6190 
6191 		case ZPOOL_PROP_VERSION:
6192 			intval = fnvpair_value_uint64(elem);
6193 			/*
6194 			 * The version is synced seperatly before other
6195 			 * properties and should be correct by now.
6196 			 */
6197 			ASSERT3U(spa_version(spa), >=, intval);
6198 			break;
6199 
6200 		case ZPOOL_PROP_ALTROOT:
6201 			/*
6202 			 * 'altroot' is a non-persistent property. It should
6203 			 * have been set temporarily at creation or import time.
6204 			 */
6205 			ASSERT(spa->spa_root != NULL);
6206 			break;
6207 
6208 		case ZPOOL_PROP_READONLY:
6209 		case ZPOOL_PROP_CACHEFILE:
6210 			/*
6211 			 * 'readonly' and 'cachefile' are also non-persisitent
6212 			 * properties.
6213 			 */
6214 			break;
6215 		case ZPOOL_PROP_COMMENT:
6216 			strval = fnvpair_value_string(elem);
6217 			if (spa->spa_comment != NULL)
6218 				spa_strfree(spa->spa_comment);
6219 			spa->spa_comment = spa_strdup(strval);
6220 			/*
6221 			 * We need to dirty the configuration on all the vdevs
6222 			 * so that their labels get updated.  It's unnecessary
6223 			 * to do this for pool creation since the vdev's
6224 			 * configuratoin has already been dirtied.
6225 			 */
6226 			if (tx->tx_txg != TXG_INITIAL)
6227 				vdev_config_dirty(spa->spa_root_vdev);
6228 			spa_history_log_internal(spa, "set", tx,
6229 			    "%s=%s", nvpair_name(elem), strval);
6230 			break;
6231 		default:
6232 			/*
6233 			 * Set pool property values in the poolprops mos object.
6234 			 */
6235 			if (spa->spa_pool_props_object == 0) {
6236 				spa->spa_pool_props_object =
6237 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6238 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6239 				    tx);
6240 			}
6241 
6242 			/* normalize the property name */
6243 			propname = zpool_prop_to_name(prop);
6244 			proptype = zpool_prop_get_type(prop);
6245 
6246 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6247 				ASSERT(proptype == PROP_TYPE_STRING);
6248 				strval = fnvpair_value_string(elem);
6249 				VERIFY0(zap_update(mos,
6250 				    spa->spa_pool_props_object, propname,
6251 				    1, strlen(strval) + 1, strval, tx));
6252 				spa_history_log_internal(spa, "set", tx,
6253 				    "%s=%s", nvpair_name(elem), strval);
6254 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6255 				intval = fnvpair_value_uint64(elem);
6256 
6257 				if (proptype == PROP_TYPE_INDEX) {
6258 					const char *unused;
6259 					VERIFY0(zpool_prop_index_to_string(
6260 					    prop, intval, &unused));
6261 				}
6262 				VERIFY0(zap_update(mos,
6263 				    spa->spa_pool_props_object, propname,
6264 				    8, 1, &intval, tx));
6265 				spa_history_log_internal(spa, "set", tx,
6266 				    "%s=%lld", nvpair_name(elem), intval);
6267 			} else {
6268 				ASSERT(0); /* not allowed */
6269 			}
6270 
6271 			switch (prop) {
6272 			case ZPOOL_PROP_DELEGATION:
6273 				spa->spa_delegation = intval;
6274 				break;
6275 			case ZPOOL_PROP_BOOTFS:
6276 				spa->spa_bootfs = intval;
6277 				break;
6278 			case ZPOOL_PROP_FAILUREMODE:
6279 				spa->spa_failmode = intval;
6280 				break;
6281 			case ZPOOL_PROP_AUTOEXPAND:
6282 				spa->spa_autoexpand = intval;
6283 				if (tx->tx_txg != TXG_INITIAL)
6284 					spa_async_request(spa,
6285 					    SPA_ASYNC_AUTOEXPAND);
6286 				break;
6287 			case ZPOOL_PROP_DEDUPDITTO:
6288 				spa->spa_dedup_ditto = intval;
6289 				break;
6290 			default:
6291 				break;
6292 			}
6293 		}
6294 
6295 	}
6296 
6297 	mutex_exit(&spa->spa_props_lock);
6298 }
6299 
6300 /*
6301  * Perform one-time upgrade on-disk changes.  spa_version() does not
6302  * reflect the new version this txg, so there must be no changes this
6303  * txg to anything that the upgrade code depends on after it executes.
6304  * Therefore this must be called after dsl_pool_sync() does the sync
6305  * tasks.
6306  */
6307 static void
6308 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6309 {
6310 	dsl_pool_t *dp = spa->spa_dsl_pool;
6311 
6312 	ASSERT(spa->spa_sync_pass == 1);
6313 
6314 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6315 
6316 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6317 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6318 		dsl_pool_create_origin(dp, tx);
6319 
6320 		/* Keeping the origin open increases spa_minref */
6321 		spa->spa_minref += 3;
6322 	}
6323 
6324 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6325 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6326 		dsl_pool_upgrade_clones(dp, tx);
6327 	}
6328 
6329 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6330 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6331 		dsl_pool_upgrade_dir_clones(dp, tx);
6332 
6333 		/* Keeping the freedir open increases spa_minref */
6334 		spa->spa_minref += 3;
6335 	}
6336 
6337 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6338 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6339 		spa_feature_create_zap_objects(spa, tx);
6340 	}
6341 
6342 	/*
6343 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6344 	 * when possibility to use lz4 compression for metadata was added
6345 	 * Old pools that have this feature enabled must be upgraded to have
6346 	 * this feature active
6347 	 */
6348 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6349 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6350 		    SPA_FEATURE_LZ4_COMPRESS);
6351 		boolean_t lz4_ac = spa_feature_is_active(spa,
6352 		    SPA_FEATURE_LZ4_COMPRESS);
6353 
6354 		if (lz4_en && !lz4_ac)
6355 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6356 	}
6357 
6358 	/*
6359 	 * If we haven't written the salt, do so now.  Note that the
6360 	 * feature may not be activated yet, but that's fine since
6361 	 * the presence of this ZAP entry is backwards compatible.
6362 	 */
6363 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6364 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6365 		VERIFY0(zap_add(spa->spa_meta_objset,
6366 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6367 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6368 		    spa->spa_cksum_salt.zcs_bytes, tx));
6369 	}
6370 
6371 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6372 }
6373 
6374 static void
6375 vdev_indirect_state_sync_verify(vdev_t *vd)
6376 {
6377 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6378 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
6379 
6380 	if (vd->vdev_ops == &vdev_indirect_ops) {
6381 		ASSERT(vim != NULL);
6382 		ASSERT(vib != NULL);
6383 	}
6384 
6385 	if (vdev_obsolete_sm_object(vd) != 0) {
6386 		ASSERT(vd->vdev_obsolete_sm != NULL);
6387 		ASSERT(vd->vdev_removing ||
6388 		    vd->vdev_ops == &vdev_indirect_ops);
6389 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
6390 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
6391 
6392 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
6393 		    space_map_object(vd->vdev_obsolete_sm));
6394 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
6395 		    space_map_allocated(vd->vdev_obsolete_sm));
6396 	}
6397 	ASSERT(vd->vdev_obsolete_segments != NULL);
6398 
6399 	/*
6400 	 * Since frees / remaps to an indirect vdev can only
6401 	 * happen in syncing context, the obsolete segments
6402 	 * tree must be empty when we start syncing.
6403 	 */
6404 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
6405 }
6406 
6407 /*
6408  * Sync the specified transaction group.  New blocks may be dirtied as
6409  * part of the process, so we iterate until it converges.
6410  */
6411 void
6412 spa_sync(spa_t *spa, uint64_t txg)
6413 {
6414 	dsl_pool_t *dp = spa->spa_dsl_pool;
6415 	objset_t *mos = spa->spa_meta_objset;
6416 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6417 	vdev_t *rvd = spa->spa_root_vdev;
6418 	vdev_t *vd;
6419 	dmu_tx_t *tx;
6420 	int error;
6421 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6422 	    zfs_vdev_queue_depth_pct / 100;
6423 
6424 	VERIFY(spa_writeable(spa));
6425 
6426 	/*
6427 	 * Wait for i/os issued in open context that need to complete
6428 	 * before this txg syncs.
6429 	 */
6430 	VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
6431 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
6432 
6433 	/*
6434 	 * Lock out configuration changes.
6435 	 */
6436 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6437 
6438 	spa->spa_syncing_txg = txg;
6439 	spa->spa_sync_pass = 0;
6440 
6441 	mutex_enter(&spa->spa_alloc_lock);
6442 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6443 	mutex_exit(&spa->spa_alloc_lock);
6444 
6445 	/*
6446 	 * If there are any pending vdev state changes, convert them
6447 	 * into config changes that go out with this transaction group.
6448 	 */
6449 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6450 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6451 		/*
6452 		 * We need the write lock here because, for aux vdevs,
6453 		 * calling vdev_config_dirty() modifies sav_config.
6454 		 * This is ugly and will become unnecessary when we
6455 		 * eliminate the aux vdev wart by integrating all vdevs
6456 		 * into the root vdev tree.
6457 		 */
6458 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6459 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6460 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6461 			vdev_state_clean(vd);
6462 			vdev_config_dirty(vd);
6463 		}
6464 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6465 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6466 	}
6467 	spa_config_exit(spa, SCL_STATE, FTAG);
6468 
6469 	tx = dmu_tx_create_assigned(dp, txg);
6470 
6471 	spa->spa_sync_starttime = gethrtime();
6472 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6473 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6474 
6475 	/*
6476 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6477 	 * set spa_deflate if we have no raid-z vdevs.
6478 	 */
6479 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6480 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6481 		int i;
6482 
6483 		for (i = 0; i < rvd->vdev_children; i++) {
6484 			vd = rvd->vdev_child[i];
6485 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6486 				break;
6487 		}
6488 		if (i == rvd->vdev_children) {
6489 			spa->spa_deflate = TRUE;
6490 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6491 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6492 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6493 		}
6494 	}
6495 
6496 	/*
6497 	 * Set the top-level vdev's max queue depth. Evaluate each
6498 	 * top-level's async write queue depth in case it changed.
6499 	 * The max queue depth will not change in the middle of syncing
6500 	 * out this txg.
6501 	 */
6502 	uint64_t queue_depth_total = 0;
6503 	for (int c = 0; c < rvd->vdev_children; c++) {
6504 		vdev_t *tvd = rvd->vdev_child[c];
6505 		metaslab_group_t *mg = tvd->vdev_mg;
6506 
6507 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6508 		    !metaslab_group_initialized(mg))
6509 			continue;
6510 
6511 		/*
6512 		 * It is safe to do a lock-free check here because only async
6513 		 * allocations look at mg_max_alloc_queue_depth, and async
6514 		 * allocations all happen from spa_sync().
6515 		 */
6516 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6517 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6518 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6519 	}
6520 	metaslab_class_t *mc = spa_normal_class(spa);
6521 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6522 	mc->mc_alloc_max_slots = queue_depth_total;
6523 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6524 
6525 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6526 	    max_queue_depth * rvd->vdev_children);
6527 
6528 	for (int c = 0; c < rvd->vdev_children; c++) {
6529 		vdev_t *vd = rvd->vdev_child[c];
6530 		vdev_indirect_state_sync_verify(vd);
6531 
6532 		if (vdev_indirect_should_condense(vd)) {
6533 			spa_condense_indirect_start_sync(vd, tx);
6534 			break;
6535 		}
6536 	}
6537 
6538 	/*
6539 	 * Iterate to convergence.
6540 	 */
6541 	do {
6542 		int pass = ++spa->spa_sync_pass;
6543 
6544 		spa_sync_config_object(spa, tx);
6545 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6546 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6547 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6548 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6549 		spa_errlog_sync(spa, txg);
6550 		dsl_pool_sync(dp, txg);
6551 
6552 		if (pass < zfs_sync_pass_deferred_free) {
6553 			spa_sync_frees(spa, free_bpl, tx);
6554 		} else {
6555 			/*
6556 			 * We can not defer frees in pass 1, because
6557 			 * we sync the deferred frees later in pass 1.
6558 			 */
6559 			ASSERT3U(pass, >, 1);
6560 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6561 			    &spa->spa_deferred_bpobj, tx);
6562 		}
6563 
6564 		ddt_sync(spa, txg);
6565 		dsl_scan_sync(dp, tx);
6566 
6567 		if (spa->spa_vdev_removal != NULL)
6568 			svr_sync(spa, tx);
6569 
6570 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6571 		    != NULL)
6572 			vdev_sync(vd, txg);
6573 
6574 		if (pass == 1) {
6575 			spa_sync_upgrades(spa, tx);
6576 			ASSERT3U(txg, >=,
6577 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6578 			/*
6579 			 * Note: We need to check if the MOS is dirty
6580 			 * because we could have marked the MOS dirty
6581 			 * without updating the uberblock (e.g. if we
6582 			 * have sync tasks but no dirty user data).  We
6583 			 * need to check the uberblock's rootbp because
6584 			 * it is updated if we have synced out dirty
6585 			 * data (though in this case the MOS will most
6586 			 * likely also be dirty due to second order
6587 			 * effects, we don't want to rely on that here).
6588 			 */
6589 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6590 			    !dmu_objset_is_dirty(mos, txg)) {
6591 				/*
6592 				 * Nothing changed on the first pass,
6593 				 * therefore this TXG is a no-op.  Avoid
6594 				 * syncing deferred frees, so that we
6595 				 * can keep this TXG as a no-op.
6596 				 */
6597 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6598 				    txg));
6599 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6600 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6601 				break;
6602 			}
6603 			spa_sync_deferred_frees(spa, tx);
6604 		}
6605 
6606 	} while (dmu_objset_is_dirty(mos, txg));
6607 
6608 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6609 		/*
6610 		 * Make sure that the number of ZAPs for all the vdevs matches
6611 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6612 		 * called if the config is dirty; otherwise there may be
6613 		 * outstanding AVZ operations that weren't completed in
6614 		 * spa_sync_config_object.
6615 		 */
6616 		uint64_t all_vdev_zap_entry_count;
6617 		ASSERT0(zap_count(spa->spa_meta_objset,
6618 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6619 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6620 		    all_vdev_zap_entry_count);
6621 	}
6622 
6623 	if (spa->spa_vdev_removal != NULL) {
6624 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
6625 	}
6626 
6627 	/*
6628 	 * Rewrite the vdev configuration (which includes the uberblock)
6629 	 * to commit the transaction group.
6630 	 *
6631 	 * If there are no dirty vdevs, we sync the uberblock to a few
6632 	 * random top-level vdevs that are known to be visible in the
6633 	 * config cache (see spa_vdev_add() for a complete description).
6634 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6635 	 */
6636 	for (;;) {
6637 		/*
6638 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6639 		 * while we're attempting to write the vdev labels.
6640 		 */
6641 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6642 
6643 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6644 			vdev_t *svd[SPA_DVAS_PER_BP];
6645 			int svdcount = 0;
6646 			int children = rvd->vdev_children;
6647 			int c0 = spa_get_random(children);
6648 
6649 			for (int c = 0; c < children; c++) {
6650 				vd = rvd->vdev_child[(c0 + c) % children];
6651 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
6652 				    !vdev_is_concrete(vd))
6653 					continue;
6654 				svd[svdcount++] = vd;
6655 				if (svdcount == SPA_DVAS_PER_BP)
6656 					break;
6657 			}
6658 			error = vdev_config_sync(svd, svdcount, txg);
6659 		} else {
6660 			error = vdev_config_sync(rvd->vdev_child,
6661 			    rvd->vdev_children, txg);
6662 		}
6663 
6664 		if (error == 0)
6665 			spa->spa_last_synced_guid = rvd->vdev_guid;
6666 
6667 		spa_config_exit(spa, SCL_STATE, FTAG);
6668 
6669 		if (error == 0)
6670 			break;
6671 		zio_suspend(spa, NULL);
6672 		zio_resume_wait(spa);
6673 	}
6674 	dmu_tx_commit(tx);
6675 
6676 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6677 
6678 	/*
6679 	 * Clear the dirty config list.
6680 	 */
6681 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6682 		vdev_config_clean(vd);
6683 
6684 	/*
6685 	 * Now that the new config has synced transactionally,
6686 	 * let it become visible to the config cache.
6687 	 */
6688 	if (spa->spa_config_syncing != NULL) {
6689 		spa_config_set(spa, spa->spa_config_syncing);
6690 		spa->spa_config_txg = txg;
6691 		spa->spa_config_syncing = NULL;
6692 	}
6693 
6694 	dsl_pool_sync_done(dp, txg);
6695 
6696 	mutex_enter(&spa->spa_alloc_lock);
6697 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6698 	mutex_exit(&spa->spa_alloc_lock);
6699 
6700 	/*
6701 	 * Update usable space statistics.
6702 	 */
6703 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6704 		vdev_sync_done(vd, txg);
6705 
6706 	spa_update_dspace(spa);
6707 
6708 	/*
6709 	 * It had better be the case that we didn't dirty anything
6710 	 * since vdev_config_sync().
6711 	 */
6712 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6713 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6714 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6715 
6716 	spa->spa_sync_pass = 0;
6717 
6718 	/*
6719 	 * Update the last synced uberblock here. We want to do this at
6720 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
6721 	 * will be guaranteed that all the processing associated with
6722 	 * that txg has been completed.
6723 	 */
6724 	spa->spa_ubsync = spa->spa_uberblock;
6725 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6726 
6727 	spa_handle_ignored_writes(spa);
6728 
6729 	/*
6730 	 * If any async tasks have been requested, kick them off.
6731 	 */
6732 	spa_async_dispatch(spa);
6733 }
6734 
6735 /*
6736  * Sync all pools.  We don't want to hold the namespace lock across these
6737  * operations, so we take a reference on the spa_t and drop the lock during the
6738  * sync.
6739  */
6740 void
6741 spa_sync_allpools(void)
6742 {
6743 	spa_t *spa = NULL;
6744 	mutex_enter(&spa_namespace_lock);
6745 	while ((spa = spa_next(spa)) != NULL) {
6746 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6747 		    !spa_writeable(spa) || spa_suspended(spa))
6748 			continue;
6749 		spa_open_ref(spa, FTAG);
6750 		mutex_exit(&spa_namespace_lock);
6751 		txg_wait_synced(spa_get_dsl(spa), 0);
6752 		mutex_enter(&spa_namespace_lock);
6753 		spa_close(spa, FTAG);
6754 	}
6755 	mutex_exit(&spa_namespace_lock);
6756 }
6757 
6758 /*
6759  * ==========================================================================
6760  * Miscellaneous routines
6761  * ==========================================================================
6762  */
6763 
6764 /*
6765  * Remove all pools in the system.
6766  */
6767 void
6768 spa_evict_all(void)
6769 {
6770 	spa_t *spa;
6771 
6772 	/*
6773 	 * Remove all cached state.  All pools should be closed now,
6774 	 * so every spa in the AVL tree should be unreferenced.
6775 	 */
6776 	mutex_enter(&spa_namespace_lock);
6777 	while ((spa = spa_next(NULL)) != NULL) {
6778 		/*
6779 		 * Stop async tasks.  The async thread may need to detach
6780 		 * a device that's been replaced, which requires grabbing
6781 		 * spa_namespace_lock, so we must drop it here.
6782 		 */
6783 		spa_open_ref(spa, FTAG);
6784 		mutex_exit(&spa_namespace_lock);
6785 		spa_async_suspend(spa);
6786 		mutex_enter(&spa_namespace_lock);
6787 		spa_close(spa, FTAG);
6788 
6789 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6790 			spa_unload(spa);
6791 			spa_deactivate(spa);
6792 		}
6793 		spa_remove(spa);
6794 	}
6795 	mutex_exit(&spa_namespace_lock);
6796 }
6797 
6798 vdev_t *
6799 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6800 {
6801 	vdev_t *vd;
6802 	int i;
6803 
6804 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6805 		return (vd);
6806 
6807 	if (aux) {
6808 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6809 			vd = spa->spa_l2cache.sav_vdevs[i];
6810 			if (vd->vdev_guid == guid)
6811 				return (vd);
6812 		}
6813 
6814 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6815 			vd = spa->spa_spares.sav_vdevs[i];
6816 			if (vd->vdev_guid == guid)
6817 				return (vd);
6818 		}
6819 	}
6820 
6821 	return (NULL);
6822 }
6823 
6824 void
6825 spa_upgrade(spa_t *spa, uint64_t version)
6826 {
6827 	ASSERT(spa_writeable(spa));
6828 
6829 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6830 
6831 	/*
6832 	 * This should only be called for a non-faulted pool, and since a
6833 	 * future version would result in an unopenable pool, this shouldn't be
6834 	 * possible.
6835 	 */
6836 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6837 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6838 
6839 	spa->spa_uberblock.ub_version = version;
6840 	vdev_config_dirty(spa->spa_root_vdev);
6841 
6842 	spa_config_exit(spa, SCL_ALL, FTAG);
6843 
6844 	txg_wait_synced(spa_get_dsl(spa), 0);
6845 }
6846 
6847 boolean_t
6848 spa_has_spare(spa_t *spa, uint64_t guid)
6849 {
6850 	int i;
6851 	uint64_t spareguid;
6852 	spa_aux_vdev_t *sav = &spa->spa_spares;
6853 
6854 	for (i = 0; i < sav->sav_count; i++)
6855 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6856 			return (B_TRUE);
6857 
6858 	for (i = 0; i < sav->sav_npending; i++) {
6859 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6860 		    &spareguid) == 0 && spareguid == guid)
6861 			return (B_TRUE);
6862 	}
6863 
6864 	return (B_FALSE);
6865 }
6866 
6867 /*
6868  * Check if a pool has an active shared spare device.
6869  * Note: reference count of an active spare is 2, as a spare and as a replace
6870  */
6871 static boolean_t
6872 spa_has_active_shared_spare(spa_t *spa)
6873 {
6874 	int i, refcnt;
6875 	uint64_t pool;
6876 	spa_aux_vdev_t *sav = &spa->spa_spares;
6877 
6878 	for (i = 0; i < sav->sav_count; i++) {
6879 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6880 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6881 		    refcnt > 2)
6882 			return (B_TRUE);
6883 	}
6884 
6885 	return (B_FALSE);
6886 }
6887 
6888 sysevent_t *
6889 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
6890 {
6891 	sysevent_t		*ev = NULL;
6892 #ifdef _KERNEL
6893 	sysevent_attr_list_t	*attr = NULL;
6894 	sysevent_value_t	value;
6895 
6896 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6897 	    SE_SLEEP);
6898 	ASSERT(ev != NULL);
6899 
6900 	value.value_type = SE_DATA_TYPE_STRING;
6901 	value.value.sv_string = spa_name(spa);
6902 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6903 		goto done;
6904 
6905 	value.value_type = SE_DATA_TYPE_UINT64;
6906 	value.value.sv_uint64 = spa_guid(spa);
6907 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6908 		goto done;
6909 
6910 	if (vd) {
6911 		value.value_type = SE_DATA_TYPE_UINT64;
6912 		value.value.sv_uint64 = vd->vdev_guid;
6913 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6914 		    SE_SLEEP) != 0)
6915 			goto done;
6916 
6917 		if (vd->vdev_path) {
6918 			value.value_type = SE_DATA_TYPE_STRING;
6919 			value.value.sv_string = vd->vdev_path;
6920 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6921 			    &value, SE_SLEEP) != 0)
6922 				goto done;
6923 		}
6924 	}
6925 
6926 	if (hist_nvl != NULL) {
6927 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
6928 	}
6929 
6930 	if (sysevent_attach_attributes(ev, attr) != 0)
6931 		goto done;
6932 	attr = NULL;
6933 
6934 done:
6935 	if (attr)
6936 		sysevent_free_attr(attr);
6937 
6938 #endif
6939 	return (ev);
6940 }
6941 
6942 void
6943 spa_event_post(sysevent_t *ev)
6944 {
6945 #ifdef _KERNEL
6946 	sysevent_id_t		eid;
6947 
6948 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6949 	sysevent_free(ev);
6950 #endif
6951 }
6952 
6953 void
6954 spa_event_discard(sysevent_t *ev)
6955 {
6956 #ifdef _KERNEL
6957 	sysevent_free(ev);
6958 #endif
6959 }
6960 
6961 /*
6962  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6963  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6964  * filled in from the spa and (optionally) the vdev and history nvl.  This
6965  * doesn't do anything in the userland libzpool, as we don't want consumers to
6966  * misinterpret ztest or zdb as real changes.
6967  */
6968 void
6969 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
6970 {
6971 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
6972 }
6973