xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 49cf58c0d2c85fba3b488a8ca0291c624e8f964c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
65 
66 int zio_taskq_threads = 8;
67 
68 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
69 static boolean_t spa_has_active_shared_spare(spa_t *spa);
70 
71 /*
72  * ==========================================================================
73  * SPA properties routines
74  * ==========================================================================
75  */
76 
77 /*
78  * Add a (source=src, propname=propval) list to an nvlist.
79  */
80 static void
81 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
82     uint64_t intval, zprop_source_t src)
83 {
84 	const char *propname = zpool_prop_to_name(prop);
85 	nvlist_t *propval;
86 
87 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
88 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
89 
90 	if (strval != NULL)
91 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
92 	else
93 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
94 
95 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
96 	nvlist_free(propval);
97 }
98 
99 /*
100  * Get property values from the spa configuration.
101  */
102 static void
103 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
104 {
105 	uint64_t size = spa_get_space(spa);
106 	uint64_t used = spa_get_alloc(spa);
107 	uint64_t cap, version;
108 	zprop_source_t src = ZPROP_SRC_NONE;
109 	spa_config_dirent_t *dp;
110 
111 	/*
112 	 * readonly properties
113 	 */
114 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
115 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
116 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
117 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
118 
119 	cap = (size == 0) ? 0 : (used * 100 / size);
120 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
121 
122 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
123 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
124 	    spa->spa_root_vdev->vdev_state, src);
125 
126 	/*
127 	 * settable properties that are not stored in the pool property object.
128 	 */
129 	version = spa_version(spa);
130 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
131 		src = ZPROP_SRC_DEFAULT;
132 	else
133 		src = ZPROP_SRC_LOCAL;
134 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
135 
136 	if (spa->spa_root != NULL)
137 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
138 		    0, ZPROP_SRC_LOCAL);
139 
140 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
141 		if (dp->scd_path == NULL) {
142 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
143 			    "none", 0, ZPROP_SRC_LOCAL);
144 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
145 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
146 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
147 		}
148 	}
149 }
150 
151 /*
152  * Get zpool property values.
153  */
154 int
155 spa_prop_get(spa_t *spa, nvlist_t **nvp)
156 {
157 	zap_cursor_t zc;
158 	zap_attribute_t za;
159 	objset_t *mos = spa->spa_meta_objset;
160 	int err;
161 
162 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
163 
164 	/*
165 	 * Get properties from the spa config.
166 	 */
167 	spa_prop_get_config(spa, nvp);
168 
169 	mutex_enter(&spa->spa_props_lock);
170 	/* If no pool property object, no more prop to get. */
171 	if (spa->spa_pool_props_object == 0) {
172 		mutex_exit(&spa->spa_props_lock);
173 		return (0);
174 	}
175 
176 	/*
177 	 * Get properties from the MOS pool property object.
178 	 */
179 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
180 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
181 	    zap_cursor_advance(&zc)) {
182 		uint64_t intval = 0;
183 		char *strval = NULL;
184 		zprop_source_t src = ZPROP_SRC_DEFAULT;
185 		zpool_prop_t prop;
186 
187 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
188 			continue;
189 
190 		switch (za.za_integer_length) {
191 		case 8:
192 			/* integer property */
193 			if (za.za_first_integer !=
194 			    zpool_prop_default_numeric(prop))
195 				src = ZPROP_SRC_LOCAL;
196 
197 			if (prop == ZPOOL_PROP_BOOTFS) {
198 				dsl_pool_t *dp;
199 				dsl_dataset_t *ds = NULL;
200 
201 				dp = spa_get_dsl(spa);
202 				rw_enter(&dp->dp_config_rwlock, RW_READER);
203 				if (err = dsl_dataset_hold_obj(dp,
204 				    za.za_first_integer, FTAG, &ds)) {
205 					rw_exit(&dp->dp_config_rwlock);
206 					break;
207 				}
208 
209 				strval = kmem_alloc(
210 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
211 				    KM_SLEEP);
212 				dsl_dataset_name(ds, strval);
213 				dsl_dataset_rele(ds, FTAG);
214 				rw_exit(&dp->dp_config_rwlock);
215 			} else {
216 				strval = NULL;
217 				intval = za.za_first_integer;
218 			}
219 
220 			spa_prop_add_list(*nvp, prop, strval, intval, src);
221 
222 			if (strval != NULL)
223 				kmem_free(strval,
224 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
225 
226 			break;
227 
228 		case 1:
229 			/* string property */
230 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
231 			err = zap_lookup(mos, spa->spa_pool_props_object,
232 			    za.za_name, 1, za.za_num_integers, strval);
233 			if (err) {
234 				kmem_free(strval, za.za_num_integers);
235 				break;
236 			}
237 			spa_prop_add_list(*nvp, prop, strval, 0, src);
238 			kmem_free(strval, za.za_num_integers);
239 			break;
240 
241 		default:
242 			break;
243 		}
244 	}
245 	zap_cursor_fini(&zc);
246 	mutex_exit(&spa->spa_props_lock);
247 out:
248 	if (err && err != ENOENT) {
249 		nvlist_free(*nvp);
250 		*nvp = NULL;
251 		return (err);
252 	}
253 
254 	return (0);
255 }
256 
257 /*
258  * Validate the given pool properties nvlist and modify the list
259  * for the property values to be set.
260  */
261 static int
262 spa_prop_validate(spa_t *spa, nvlist_t *props)
263 {
264 	nvpair_t *elem;
265 	int error = 0, reset_bootfs = 0;
266 	uint64_t objnum;
267 
268 	elem = NULL;
269 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
270 		zpool_prop_t prop;
271 		char *propname, *strval;
272 		uint64_t intval;
273 		objset_t *os;
274 		char *slash;
275 
276 		propname = nvpair_name(elem);
277 
278 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
279 			return (EINVAL);
280 
281 		switch (prop) {
282 		case ZPOOL_PROP_VERSION:
283 			error = nvpair_value_uint64(elem, &intval);
284 			if (!error &&
285 			    (intval < spa_version(spa) || intval > SPA_VERSION))
286 				error = EINVAL;
287 			break;
288 
289 		case ZPOOL_PROP_DELEGATION:
290 		case ZPOOL_PROP_AUTOREPLACE:
291 			error = nvpair_value_uint64(elem, &intval);
292 			if (!error && intval > 1)
293 				error = EINVAL;
294 			break;
295 
296 		case ZPOOL_PROP_BOOTFS:
297 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
298 				error = ENOTSUP;
299 				break;
300 			}
301 
302 			/*
303 			 * Make sure the vdev config is bootable
304 			 */
305 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
306 				error = ENOTSUP;
307 				break;
308 			}
309 
310 			reset_bootfs = 1;
311 
312 			error = nvpair_value_string(elem, &strval);
313 
314 			if (!error) {
315 				uint64_t compress;
316 
317 				if (strval == NULL || strval[0] == '\0') {
318 					objnum = zpool_prop_default_numeric(
319 					    ZPOOL_PROP_BOOTFS);
320 					break;
321 				}
322 
323 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
324 				    DS_MODE_USER | DS_MODE_READONLY, &os))
325 					break;
326 
327 				/* We don't support gzip bootable datasets */
328 				if ((error = dsl_prop_get_integer(strval,
329 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
330 				    &compress, NULL)) == 0 &&
331 				    !BOOTFS_COMPRESS_VALID(compress)) {
332 					error = ENOTSUP;
333 				} else {
334 					objnum = dmu_objset_id(os);
335 				}
336 				dmu_objset_close(os);
337 			}
338 			break;
339 		case ZPOOL_PROP_FAILUREMODE:
340 			error = nvpair_value_uint64(elem, &intval);
341 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
342 			    intval > ZIO_FAILURE_MODE_PANIC))
343 				error = EINVAL;
344 
345 			/*
346 			 * This is a special case which only occurs when
347 			 * the pool has completely failed. This allows
348 			 * the user to change the in-core failmode property
349 			 * without syncing it out to disk (I/Os might
350 			 * currently be blocked). We do this by returning
351 			 * EIO to the caller (spa_prop_set) to trick it
352 			 * into thinking we encountered a property validation
353 			 * error.
354 			 */
355 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
356 				spa->spa_failmode = intval;
357 				error = EIO;
358 			}
359 			break;
360 
361 		case ZPOOL_PROP_CACHEFILE:
362 			if ((error = nvpair_value_string(elem, &strval)) != 0)
363 				break;
364 
365 			if (strval[0] == '\0')
366 				break;
367 
368 			if (strcmp(strval, "none") == 0)
369 				break;
370 
371 			if (strval[0] != '/') {
372 				error = EINVAL;
373 				break;
374 			}
375 
376 			slash = strrchr(strval, '/');
377 			ASSERT(slash != NULL);
378 
379 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
380 			    strcmp(slash, "/..") == 0)
381 				error = EINVAL;
382 			break;
383 		}
384 
385 		if (error)
386 			break;
387 	}
388 
389 	if (!error && reset_bootfs) {
390 		error = nvlist_remove(props,
391 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
392 
393 		if (!error) {
394 			error = nvlist_add_uint64(props,
395 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
396 		}
397 	}
398 
399 	return (error);
400 }
401 
402 int
403 spa_prop_set(spa_t *spa, nvlist_t *nvp)
404 {
405 	int error;
406 
407 	if ((error = spa_prop_validate(spa, nvp)) != 0)
408 		return (error);
409 
410 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
411 	    spa, nvp, 3));
412 }
413 
414 /*
415  * If the bootfs property value is dsobj, clear it.
416  */
417 void
418 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
419 {
420 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
421 		VERIFY(zap_remove(spa->spa_meta_objset,
422 		    spa->spa_pool_props_object,
423 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
424 		spa->spa_bootfs = 0;
425 	}
426 }
427 
428 /*
429  * ==========================================================================
430  * SPA state manipulation (open/create/destroy/import/export)
431  * ==========================================================================
432  */
433 
434 static int
435 spa_error_entry_compare(const void *a, const void *b)
436 {
437 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
438 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
439 	int ret;
440 
441 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
442 	    sizeof (zbookmark_t));
443 
444 	if (ret < 0)
445 		return (-1);
446 	else if (ret > 0)
447 		return (1);
448 	else
449 		return (0);
450 }
451 
452 /*
453  * Utility function which retrieves copies of the current logs and
454  * re-initializes them in the process.
455  */
456 void
457 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
458 {
459 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
460 
461 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
462 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
463 
464 	avl_create(&spa->spa_errlist_scrub,
465 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
466 	    offsetof(spa_error_entry_t, se_avl));
467 	avl_create(&spa->spa_errlist_last,
468 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
469 	    offsetof(spa_error_entry_t, se_avl));
470 }
471 
472 /*
473  * Activate an uninitialized pool.
474  */
475 static void
476 spa_activate(spa_t *spa)
477 {
478 	int t;
479 
480 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
481 
482 	spa->spa_state = POOL_STATE_ACTIVE;
483 
484 	spa->spa_normal_class = metaslab_class_create();
485 	spa->spa_log_class = metaslab_class_create();
486 
487 	for (t = 0; t < ZIO_TYPES; t++) {
488 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
489 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
490 		    TASKQ_PREPOPULATE);
491 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
492 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
493 		    TASKQ_PREPOPULATE);
494 	}
495 
496 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
497 	    offsetof(vdev_t, vdev_dirty_node));
498 	list_create(&spa->spa_zio_list, sizeof (zio_t),
499 	    offsetof(zio_t, zio_link_node));
500 
501 	txg_list_create(&spa->spa_vdev_txg_list,
502 	    offsetof(struct vdev, vdev_txg_node));
503 
504 	avl_create(&spa->spa_errlist_scrub,
505 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
506 	    offsetof(spa_error_entry_t, se_avl));
507 	avl_create(&spa->spa_errlist_last,
508 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
509 	    offsetof(spa_error_entry_t, se_avl));
510 }
511 
512 /*
513  * Opposite of spa_activate().
514  */
515 static void
516 spa_deactivate(spa_t *spa)
517 {
518 	int t;
519 
520 	ASSERT(spa->spa_sync_on == B_FALSE);
521 	ASSERT(spa->spa_dsl_pool == NULL);
522 	ASSERT(spa->spa_root_vdev == NULL);
523 
524 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
525 
526 	txg_list_destroy(&spa->spa_vdev_txg_list);
527 
528 	list_destroy(&spa->spa_dirty_list);
529 	list_destroy(&spa->spa_zio_list);
530 
531 	for (t = 0; t < ZIO_TYPES; t++) {
532 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
533 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
534 		spa->spa_zio_issue_taskq[t] = NULL;
535 		spa->spa_zio_intr_taskq[t] = NULL;
536 	}
537 
538 	metaslab_class_destroy(spa->spa_normal_class);
539 	spa->spa_normal_class = NULL;
540 
541 	metaslab_class_destroy(spa->spa_log_class);
542 	spa->spa_log_class = NULL;
543 
544 	/*
545 	 * If this was part of an import or the open otherwise failed, we may
546 	 * still have errors left in the queues.  Empty them just in case.
547 	 */
548 	spa_errlog_drain(spa);
549 
550 	avl_destroy(&spa->spa_errlist_scrub);
551 	avl_destroy(&spa->spa_errlist_last);
552 
553 	spa->spa_state = POOL_STATE_UNINITIALIZED;
554 }
555 
556 /*
557  * Verify a pool configuration, and construct the vdev tree appropriately.  This
558  * will create all the necessary vdevs in the appropriate layout, with each vdev
559  * in the CLOSED state.  This will prep the pool before open/creation/import.
560  * All vdev validation is done by the vdev_alloc() routine.
561  */
562 static int
563 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
564     uint_t id, int atype)
565 {
566 	nvlist_t **child;
567 	uint_t c, children;
568 	int error;
569 
570 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
571 		return (error);
572 
573 	if ((*vdp)->vdev_ops->vdev_op_leaf)
574 		return (0);
575 
576 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
577 	    &child, &children) != 0) {
578 		vdev_free(*vdp);
579 		*vdp = NULL;
580 		return (EINVAL);
581 	}
582 
583 	for (c = 0; c < children; c++) {
584 		vdev_t *vd;
585 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
586 		    atype)) != 0) {
587 			vdev_free(*vdp);
588 			*vdp = NULL;
589 			return (error);
590 		}
591 	}
592 
593 	ASSERT(*vdp != NULL);
594 
595 	return (0);
596 }
597 
598 /*
599  * Opposite of spa_load().
600  */
601 static void
602 spa_unload(spa_t *spa)
603 {
604 	int i;
605 
606 	/*
607 	 * Stop async tasks.
608 	 */
609 	spa_async_suspend(spa);
610 
611 	/*
612 	 * Stop syncing.
613 	 */
614 	if (spa->spa_sync_on) {
615 		txg_sync_stop(spa->spa_dsl_pool);
616 		spa->spa_sync_on = B_FALSE;
617 	}
618 
619 	/*
620 	 * Wait for any outstanding prefetch I/O to complete.
621 	 */
622 	spa_config_enter(spa, RW_WRITER, FTAG);
623 	spa_config_exit(spa, FTAG);
624 
625 	/*
626 	 * Drop and purge level 2 cache
627 	 */
628 	spa_l2cache_drop(spa);
629 
630 	/*
631 	 * Close the dsl pool.
632 	 */
633 	if (spa->spa_dsl_pool) {
634 		dsl_pool_close(spa->spa_dsl_pool);
635 		spa->spa_dsl_pool = NULL;
636 	}
637 
638 	/*
639 	 * Close all vdevs.
640 	 */
641 	if (spa->spa_root_vdev)
642 		vdev_free(spa->spa_root_vdev);
643 	ASSERT(spa->spa_root_vdev == NULL);
644 
645 	for (i = 0; i < spa->spa_spares.sav_count; i++)
646 		vdev_free(spa->spa_spares.sav_vdevs[i]);
647 	if (spa->spa_spares.sav_vdevs) {
648 		kmem_free(spa->spa_spares.sav_vdevs,
649 		    spa->spa_spares.sav_count * sizeof (void *));
650 		spa->spa_spares.sav_vdevs = NULL;
651 	}
652 	if (spa->spa_spares.sav_config) {
653 		nvlist_free(spa->spa_spares.sav_config);
654 		spa->spa_spares.sav_config = NULL;
655 	}
656 
657 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
658 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
659 	if (spa->spa_l2cache.sav_vdevs) {
660 		kmem_free(spa->spa_l2cache.sav_vdevs,
661 		    spa->spa_l2cache.sav_count * sizeof (void *));
662 		spa->spa_l2cache.sav_vdevs = NULL;
663 	}
664 	if (spa->spa_l2cache.sav_config) {
665 		nvlist_free(spa->spa_l2cache.sav_config);
666 		spa->spa_l2cache.sav_config = NULL;
667 	}
668 
669 	spa->spa_async_suspended = 0;
670 }
671 
672 /*
673  * Load (or re-load) the current list of vdevs describing the active spares for
674  * this pool.  When this is called, we have some form of basic information in
675  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
676  * then re-generate a more complete list including status information.
677  */
678 static void
679 spa_load_spares(spa_t *spa)
680 {
681 	nvlist_t **spares;
682 	uint_t nspares;
683 	int i;
684 	vdev_t *vd, *tvd;
685 
686 	/*
687 	 * First, close and free any existing spare vdevs.
688 	 */
689 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
690 		vd = spa->spa_spares.sav_vdevs[i];
691 
692 		/* Undo the call to spa_activate() below */
693 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
694 		    B_FALSE)) != NULL && tvd->vdev_isspare)
695 			spa_spare_remove(tvd);
696 		vdev_close(vd);
697 		vdev_free(vd);
698 	}
699 
700 	if (spa->spa_spares.sav_vdevs)
701 		kmem_free(spa->spa_spares.sav_vdevs,
702 		    spa->spa_spares.sav_count * sizeof (void *));
703 
704 	if (spa->spa_spares.sav_config == NULL)
705 		nspares = 0;
706 	else
707 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
708 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
709 
710 	spa->spa_spares.sav_count = (int)nspares;
711 	spa->spa_spares.sav_vdevs = NULL;
712 
713 	if (nspares == 0)
714 		return;
715 
716 	/*
717 	 * Construct the array of vdevs, opening them to get status in the
718 	 * process.   For each spare, there is potentially two different vdev_t
719 	 * structures associated with it: one in the list of spares (used only
720 	 * for basic validation purposes) and one in the active vdev
721 	 * configuration (if it's spared in).  During this phase we open and
722 	 * validate each vdev on the spare list.  If the vdev also exists in the
723 	 * active configuration, then we also mark this vdev as an active spare.
724 	 */
725 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
726 	    KM_SLEEP);
727 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
728 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
729 		    VDEV_ALLOC_SPARE) == 0);
730 		ASSERT(vd != NULL);
731 
732 		spa->spa_spares.sav_vdevs[i] = vd;
733 
734 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
735 		    B_FALSE)) != NULL) {
736 			if (!tvd->vdev_isspare)
737 				spa_spare_add(tvd);
738 
739 			/*
740 			 * We only mark the spare active if we were successfully
741 			 * able to load the vdev.  Otherwise, importing a pool
742 			 * with a bad active spare would result in strange
743 			 * behavior, because multiple pool would think the spare
744 			 * is actively in use.
745 			 *
746 			 * There is a vulnerability here to an equally bizarre
747 			 * circumstance, where a dead active spare is later
748 			 * brought back to life (onlined or otherwise).  Given
749 			 * the rarity of this scenario, and the extra complexity
750 			 * it adds, we ignore the possibility.
751 			 */
752 			if (!vdev_is_dead(tvd))
753 				spa_spare_activate(tvd);
754 		}
755 
756 		if (vdev_open(vd) != 0)
757 			continue;
758 
759 		vd->vdev_top = vd;
760 		if (vdev_validate_aux(vd) == 0)
761 			spa_spare_add(vd);
762 	}
763 
764 	/*
765 	 * Recompute the stashed list of spares, with status information
766 	 * this time.
767 	 */
768 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
769 	    DATA_TYPE_NVLIST_ARRAY) == 0);
770 
771 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
772 	    KM_SLEEP);
773 	for (i = 0; i < spa->spa_spares.sav_count; i++)
774 		spares[i] = vdev_config_generate(spa,
775 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
776 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
777 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
778 	for (i = 0; i < spa->spa_spares.sav_count; i++)
779 		nvlist_free(spares[i]);
780 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
781 }
782 
783 /*
784  * Load (or re-load) the current list of vdevs describing the active l2cache for
785  * this pool.  When this is called, we have some form of basic information in
786  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
787  * then re-generate a more complete list including status information.
788  * Devices which are already active have their details maintained, and are
789  * not re-opened.
790  */
791 static void
792 spa_load_l2cache(spa_t *spa)
793 {
794 	nvlist_t **l2cache;
795 	uint_t nl2cache;
796 	int i, j, oldnvdevs;
797 	uint64_t guid, size;
798 	vdev_t *vd, **oldvdevs, **newvdevs;
799 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
800 
801 	if (sav->sav_config != NULL) {
802 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
803 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
804 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
805 	} else {
806 		nl2cache = 0;
807 	}
808 
809 	oldvdevs = sav->sav_vdevs;
810 	oldnvdevs = sav->sav_count;
811 	sav->sav_vdevs = NULL;
812 	sav->sav_count = 0;
813 
814 	/*
815 	 * Process new nvlist of vdevs.
816 	 */
817 	for (i = 0; i < nl2cache; i++) {
818 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
819 		    &guid) == 0);
820 
821 		newvdevs[i] = NULL;
822 		for (j = 0; j < oldnvdevs; j++) {
823 			vd = oldvdevs[j];
824 			if (vd != NULL && guid == vd->vdev_guid) {
825 				/*
826 				 * Retain previous vdev for add/remove ops.
827 				 */
828 				newvdevs[i] = vd;
829 				oldvdevs[j] = NULL;
830 				break;
831 			}
832 		}
833 
834 		if (newvdevs[i] == NULL) {
835 			/*
836 			 * Create new vdev
837 			 */
838 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
839 			    VDEV_ALLOC_L2CACHE) == 0);
840 			ASSERT(vd != NULL);
841 			newvdevs[i] = vd;
842 
843 			/*
844 			 * Commit this vdev as an l2cache device,
845 			 * even if it fails to open.
846 			 */
847 			spa_l2cache_add(vd);
848 
849 			vd->vdev_top = vd;
850 			vd->vdev_aux = sav;
851 
852 			spa_l2cache_activate(vd);
853 
854 			if (vdev_open(vd) != 0)
855 				continue;
856 
857 			(void) vdev_validate_aux(vd);
858 
859 			if (!vdev_is_dead(vd)) {
860 				size = vdev_get_rsize(vd);
861 				l2arc_add_vdev(spa, vd,
862 				    VDEV_LABEL_START_SIZE,
863 				    size - VDEV_LABEL_START_SIZE);
864 			}
865 		}
866 	}
867 
868 	/*
869 	 * Purge vdevs that were dropped
870 	 */
871 	for (i = 0; i < oldnvdevs; i++) {
872 		uint64_t pool;
873 
874 		vd = oldvdevs[i];
875 		if (vd != NULL) {
876 			if (spa_mode & FWRITE &&
877 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
878 			    pool != 0ULL &&
879 			    l2arc_vdev_present(vd)) {
880 				l2arc_remove_vdev(vd);
881 			}
882 			(void) vdev_close(vd);
883 			spa_l2cache_remove(vd);
884 		}
885 	}
886 
887 	if (oldvdevs)
888 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
889 
890 	if (sav->sav_config == NULL)
891 		goto out;
892 
893 	sav->sav_vdevs = newvdevs;
894 	sav->sav_count = (int)nl2cache;
895 
896 	/*
897 	 * Recompute the stashed list of l2cache devices, with status
898 	 * information this time.
899 	 */
900 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
901 	    DATA_TYPE_NVLIST_ARRAY) == 0);
902 
903 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
904 	for (i = 0; i < sav->sav_count; i++)
905 		l2cache[i] = vdev_config_generate(spa,
906 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
907 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
908 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
909 out:
910 	for (i = 0; i < sav->sav_count; i++)
911 		nvlist_free(l2cache[i]);
912 	if (sav->sav_count)
913 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
914 }
915 
916 static int
917 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
918 {
919 	dmu_buf_t *db;
920 	char *packed = NULL;
921 	size_t nvsize = 0;
922 	int error;
923 	*value = NULL;
924 
925 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
926 	nvsize = *(uint64_t *)db->db_data;
927 	dmu_buf_rele(db, FTAG);
928 
929 	packed = kmem_alloc(nvsize, KM_SLEEP);
930 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
931 	if (error == 0)
932 		error = nvlist_unpack(packed, nvsize, value, 0);
933 	kmem_free(packed, nvsize);
934 
935 	return (error);
936 }
937 
938 /*
939  * Checks to see if the given vdev could not be opened, in which case we post a
940  * sysevent to notify the autoreplace code that the device has been removed.
941  */
942 static void
943 spa_check_removed(vdev_t *vd)
944 {
945 	int c;
946 
947 	for (c = 0; c < vd->vdev_children; c++)
948 		spa_check_removed(vd->vdev_child[c]);
949 
950 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
951 		zfs_post_autoreplace(vd->vdev_spa, vd);
952 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
953 	}
954 }
955 
956 /*
957  * Check for missing log devices
958  */
959 int
960 spa_check_logs(spa_t *spa)
961 {
962 	switch (spa->spa_log_state) {
963 	case SPA_LOG_MISSING:
964 		/* need to recheck in case slog has been restored */
965 	case SPA_LOG_UNKNOWN:
966 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
967 		    DS_FIND_CHILDREN)) {
968 			spa->spa_log_state = SPA_LOG_MISSING;
969 			return (1);
970 		}
971 		break;
972 
973 	case SPA_LOG_CLEAR:
974 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
975 		    DS_FIND_CHILDREN);
976 		break;
977 	}
978 	spa->spa_log_state = SPA_LOG_GOOD;
979 	return (0);
980 }
981 
982 /*
983  * Load an existing storage pool, using the pool's builtin spa_config as a
984  * source of configuration information.
985  */
986 static int
987 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
988 {
989 	int error = 0;
990 	nvlist_t *nvroot = NULL;
991 	vdev_t *rvd;
992 	uberblock_t *ub = &spa->spa_uberblock;
993 	uint64_t config_cache_txg = spa->spa_config_txg;
994 	uint64_t pool_guid;
995 	uint64_t version;
996 	zio_t *zio;
997 	uint64_t autoreplace = 0;
998 	char *ereport = FM_EREPORT_ZFS_POOL;
999 
1000 	spa->spa_load_state = state;
1001 
1002 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1003 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1004 		error = EINVAL;
1005 		goto out;
1006 	}
1007 
1008 	/*
1009 	 * Versioning wasn't explicitly added to the label until later, so if
1010 	 * it's not present treat it as the initial version.
1011 	 */
1012 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1013 		version = SPA_VERSION_INITIAL;
1014 
1015 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1016 	    &spa->spa_config_txg);
1017 
1018 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1019 	    spa_guid_exists(pool_guid, 0)) {
1020 		error = EEXIST;
1021 		goto out;
1022 	}
1023 
1024 	spa->spa_load_guid = pool_guid;
1025 
1026 	/*
1027 	 * Parse the configuration into a vdev tree.  We explicitly set the
1028 	 * value that will be returned by spa_version() since parsing the
1029 	 * configuration requires knowing the version number.
1030 	 */
1031 	spa_config_enter(spa, RW_WRITER, FTAG);
1032 	spa->spa_ubsync.ub_version = version;
1033 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1034 	spa_config_exit(spa, FTAG);
1035 
1036 	if (error != 0)
1037 		goto out;
1038 
1039 	ASSERT(spa->spa_root_vdev == rvd);
1040 	ASSERT(spa_guid(spa) == pool_guid);
1041 
1042 	/*
1043 	 * Try to open all vdevs, loading each label in the process.
1044 	 */
1045 	error = vdev_open(rvd);
1046 	if (error != 0)
1047 		goto out;
1048 
1049 	/*
1050 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1051 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
1052 	 * flag.
1053 	 */
1054 	spa_config_enter(spa, RW_READER, FTAG);
1055 	error = vdev_validate(rvd);
1056 	spa_config_exit(spa, FTAG);
1057 
1058 	if (error != 0)
1059 		goto out;
1060 
1061 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1062 		error = ENXIO;
1063 		goto out;
1064 	}
1065 
1066 	/*
1067 	 * Find the best uberblock.
1068 	 */
1069 	bzero(ub, sizeof (uberblock_t));
1070 
1071 	zio = zio_root(spa, NULL, NULL,
1072 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1073 	vdev_uberblock_load(zio, rvd, ub);
1074 	error = zio_wait(zio);
1075 
1076 	/*
1077 	 * If we weren't able to find a single valid uberblock, return failure.
1078 	 */
1079 	if (ub->ub_txg == 0) {
1080 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1081 		    VDEV_AUX_CORRUPT_DATA);
1082 		error = ENXIO;
1083 		goto out;
1084 	}
1085 
1086 	/*
1087 	 * If the pool is newer than the code, we can't open it.
1088 	 */
1089 	if (ub->ub_version > SPA_VERSION) {
1090 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1091 		    VDEV_AUX_VERSION_NEWER);
1092 		error = ENOTSUP;
1093 		goto out;
1094 	}
1095 
1096 	/*
1097 	 * If the vdev guid sum doesn't match the uberblock, we have an
1098 	 * incomplete configuration.
1099 	 */
1100 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1101 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1102 		    VDEV_AUX_BAD_GUID_SUM);
1103 		error = ENXIO;
1104 		goto out;
1105 	}
1106 
1107 	/*
1108 	 * Initialize internal SPA structures.
1109 	 */
1110 	spa->spa_state = POOL_STATE_ACTIVE;
1111 	spa->spa_ubsync = spa->spa_uberblock;
1112 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1113 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1114 	if (error) {
1115 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1116 		    VDEV_AUX_CORRUPT_DATA);
1117 		goto out;
1118 	}
1119 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1120 
1121 	if (zap_lookup(spa->spa_meta_objset,
1122 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1123 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1124 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1125 		    VDEV_AUX_CORRUPT_DATA);
1126 		error = EIO;
1127 		goto out;
1128 	}
1129 
1130 	if (!mosconfig) {
1131 		nvlist_t *newconfig;
1132 		uint64_t hostid;
1133 
1134 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1135 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1136 			    VDEV_AUX_CORRUPT_DATA);
1137 			error = EIO;
1138 			goto out;
1139 		}
1140 
1141 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
1142 		    &hostid) == 0) {
1143 			char *hostname;
1144 			unsigned long myhostid = 0;
1145 
1146 			VERIFY(nvlist_lookup_string(newconfig,
1147 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1148 
1149 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1150 			if (hostid != 0 && myhostid != 0 &&
1151 			    (unsigned long)hostid != myhostid) {
1152 				cmn_err(CE_WARN, "pool '%s' could not be "
1153 				    "loaded as it was last accessed by "
1154 				    "another system (host: %s hostid: 0x%lx).  "
1155 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1156 				    spa->spa_name, hostname,
1157 				    (unsigned long)hostid);
1158 				error = EBADF;
1159 				goto out;
1160 			}
1161 		}
1162 
1163 		spa_config_set(spa, newconfig);
1164 		spa_unload(spa);
1165 		spa_deactivate(spa);
1166 		spa_activate(spa);
1167 
1168 		return (spa_load(spa, newconfig, state, B_TRUE));
1169 	}
1170 
1171 	if (zap_lookup(spa->spa_meta_objset,
1172 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1173 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1174 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1175 		    VDEV_AUX_CORRUPT_DATA);
1176 		error = EIO;
1177 		goto out;
1178 	}
1179 
1180 	/*
1181 	 * Load the bit that tells us to use the new accounting function
1182 	 * (raid-z deflation).  If we have an older pool, this will not
1183 	 * be present.
1184 	 */
1185 	error = zap_lookup(spa->spa_meta_objset,
1186 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1187 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1188 	if (error != 0 && error != ENOENT) {
1189 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1190 		    VDEV_AUX_CORRUPT_DATA);
1191 		error = EIO;
1192 		goto out;
1193 	}
1194 
1195 	/*
1196 	 * Load the persistent error log.  If we have an older pool, this will
1197 	 * not be present.
1198 	 */
1199 	error = zap_lookup(spa->spa_meta_objset,
1200 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1201 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1202 	if (error != 0 && error != ENOENT) {
1203 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1204 		    VDEV_AUX_CORRUPT_DATA);
1205 		error = EIO;
1206 		goto out;
1207 	}
1208 
1209 	error = zap_lookup(spa->spa_meta_objset,
1210 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1211 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1212 	if (error != 0 && error != ENOENT) {
1213 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214 		    VDEV_AUX_CORRUPT_DATA);
1215 		error = EIO;
1216 		goto out;
1217 	}
1218 
1219 	/*
1220 	 * Load the history object.  If we have an older pool, this
1221 	 * will not be present.
1222 	 */
1223 	error = zap_lookup(spa->spa_meta_objset,
1224 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1225 	    sizeof (uint64_t), 1, &spa->spa_history);
1226 	if (error != 0 && error != ENOENT) {
1227 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1228 		    VDEV_AUX_CORRUPT_DATA);
1229 		error = EIO;
1230 		goto out;
1231 	}
1232 
1233 	/*
1234 	 * Load any hot spares for this pool.
1235 	 */
1236 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1237 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1238 	if (error != 0 && error != ENOENT) {
1239 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1240 		    VDEV_AUX_CORRUPT_DATA);
1241 		error = EIO;
1242 		goto out;
1243 	}
1244 	if (error == 0) {
1245 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1246 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1247 		    &spa->spa_spares.sav_config) != 0) {
1248 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1249 			    VDEV_AUX_CORRUPT_DATA);
1250 			error = EIO;
1251 			goto out;
1252 		}
1253 
1254 		spa_config_enter(spa, RW_WRITER, FTAG);
1255 		spa_load_spares(spa);
1256 		spa_config_exit(spa, FTAG);
1257 	}
1258 
1259 	/*
1260 	 * Load any level 2 ARC devices for this pool.
1261 	 */
1262 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1263 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1264 	    &spa->spa_l2cache.sav_object);
1265 	if (error != 0 && error != ENOENT) {
1266 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267 		    VDEV_AUX_CORRUPT_DATA);
1268 		error = EIO;
1269 		goto out;
1270 	}
1271 	if (error == 0) {
1272 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1273 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1274 		    &spa->spa_l2cache.sav_config) != 0) {
1275 			vdev_set_state(rvd, B_TRUE,
1276 			    VDEV_STATE_CANT_OPEN,
1277 			    VDEV_AUX_CORRUPT_DATA);
1278 			error = EIO;
1279 			goto out;
1280 		}
1281 
1282 		spa_config_enter(spa, RW_WRITER, FTAG);
1283 		spa_load_l2cache(spa);
1284 		spa_config_exit(spa, FTAG);
1285 	}
1286 
1287 	if (spa_check_logs(spa)) {
1288 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1289 		    VDEV_AUX_BAD_LOG);
1290 		error = ENXIO;
1291 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1292 		goto out;
1293 	}
1294 
1295 
1296 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1297 
1298 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1299 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1300 
1301 	if (error && error != ENOENT) {
1302 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1303 		    VDEV_AUX_CORRUPT_DATA);
1304 		error = EIO;
1305 		goto out;
1306 	}
1307 
1308 	if (error == 0) {
1309 		(void) zap_lookup(spa->spa_meta_objset,
1310 		    spa->spa_pool_props_object,
1311 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1312 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1313 		(void) zap_lookup(spa->spa_meta_objset,
1314 		    spa->spa_pool_props_object,
1315 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1316 		    sizeof (uint64_t), 1, &autoreplace);
1317 		(void) zap_lookup(spa->spa_meta_objset,
1318 		    spa->spa_pool_props_object,
1319 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1320 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1321 		(void) zap_lookup(spa->spa_meta_objset,
1322 		    spa->spa_pool_props_object,
1323 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1324 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1325 	}
1326 
1327 	/*
1328 	 * If the 'autoreplace' property is set, then post a resource notifying
1329 	 * the ZFS DE that it should not issue any faults for unopenable
1330 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1331 	 * unopenable vdevs so that the normal autoreplace handler can take
1332 	 * over.
1333 	 */
1334 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1335 		spa_check_removed(spa->spa_root_vdev);
1336 
1337 	/*
1338 	 * Load the vdev state for all toplevel vdevs.
1339 	 */
1340 	vdev_load(rvd);
1341 
1342 	/*
1343 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1344 	 */
1345 	spa_config_enter(spa, RW_WRITER, FTAG);
1346 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1347 	spa_config_exit(spa, FTAG);
1348 
1349 	/*
1350 	 * Check the state of the root vdev.  If it can't be opened, it
1351 	 * indicates one or more toplevel vdevs are faulted.
1352 	 */
1353 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1354 		error = ENXIO;
1355 		goto out;
1356 	}
1357 
1358 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1359 		dmu_tx_t *tx;
1360 		int need_update = B_FALSE;
1361 		int c;
1362 
1363 		/*
1364 		 * Claim log blocks that haven't been committed yet.
1365 		 * This must all happen in a single txg.
1366 		 */
1367 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1368 		    spa_first_txg(spa));
1369 		(void) dmu_objset_find(spa->spa_name,
1370 		    zil_claim, tx, DS_FIND_CHILDREN);
1371 		dmu_tx_commit(tx);
1372 
1373 		spa->spa_sync_on = B_TRUE;
1374 		txg_sync_start(spa->spa_dsl_pool);
1375 
1376 		/*
1377 		 * Wait for all claims to sync.
1378 		 */
1379 		txg_wait_synced(spa->spa_dsl_pool, 0);
1380 
1381 		/*
1382 		 * If the config cache is stale, or we have uninitialized
1383 		 * metaslabs (see spa_vdev_add()), then update the config.
1384 		 */
1385 		if (config_cache_txg != spa->spa_config_txg ||
1386 		    state == SPA_LOAD_IMPORT)
1387 			need_update = B_TRUE;
1388 
1389 		for (c = 0; c < rvd->vdev_children; c++)
1390 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1391 				need_update = B_TRUE;
1392 
1393 		/*
1394 		 * Update the config cache asychronously in case we're the
1395 		 * root pool, in which case the config cache isn't writable yet.
1396 		 */
1397 		if (need_update)
1398 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1399 	}
1400 
1401 	error = 0;
1402 out:
1403 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1404 	if (error && error != EBADF)
1405 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1406 	spa->spa_load_state = SPA_LOAD_NONE;
1407 	spa->spa_ena = 0;
1408 
1409 	return (error);
1410 }
1411 
1412 /*
1413  * Pool Open/Import
1414  *
1415  * The import case is identical to an open except that the configuration is sent
1416  * down from userland, instead of grabbed from the configuration cache.  For the
1417  * case of an open, the pool configuration will exist in the
1418  * POOL_STATE_UNINITIALIZED state.
1419  *
1420  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1421  * the same time open the pool, without having to keep around the spa_t in some
1422  * ambiguous state.
1423  */
1424 static int
1425 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1426 {
1427 	spa_t *spa;
1428 	int error;
1429 	int locked = B_FALSE;
1430 
1431 	*spapp = NULL;
1432 
1433 	/*
1434 	 * As disgusting as this is, we need to support recursive calls to this
1435 	 * function because dsl_dir_open() is called during spa_load(), and ends
1436 	 * up calling spa_open() again.  The real fix is to figure out how to
1437 	 * avoid dsl_dir_open() calling this in the first place.
1438 	 */
1439 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1440 		mutex_enter(&spa_namespace_lock);
1441 		locked = B_TRUE;
1442 	}
1443 
1444 	if ((spa = spa_lookup(pool)) == NULL) {
1445 		if (locked)
1446 			mutex_exit(&spa_namespace_lock);
1447 		return (ENOENT);
1448 	}
1449 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1450 
1451 		spa_activate(spa);
1452 
1453 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1454 
1455 		if (error == EBADF) {
1456 			/*
1457 			 * If vdev_validate() returns failure (indicated by
1458 			 * EBADF), it indicates that one of the vdevs indicates
1459 			 * that the pool has been exported or destroyed.  If
1460 			 * this is the case, the config cache is out of sync and
1461 			 * we should remove the pool from the namespace.
1462 			 */
1463 			spa_unload(spa);
1464 			spa_deactivate(spa);
1465 			spa_config_sync(spa, B_TRUE, B_TRUE);
1466 			spa_remove(spa);
1467 			if (locked)
1468 				mutex_exit(&spa_namespace_lock);
1469 			return (ENOENT);
1470 		}
1471 
1472 		if (error) {
1473 			/*
1474 			 * We can't open the pool, but we still have useful
1475 			 * information: the state of each vdev after the
1476 			 * attempted vdev_open().  Return this to the user.
1477 			 */
1478 			if (config != NULL && spa->spa_root_vdev != NULL) {
1479 				spa_config_enter(spa, RW_READER, FTAG);
1480 				*config = spa_config_generate(spa, NULL, -1ULL,
1481 				    B_TRUE);
1482 				spa_config_exit(spa, FTAG);
1483 			}
1484 			spa_unload(spa);
1485 			spa_deactivate(spa);
1486 			spa->spa_last_open_failed = B_TRUE;
1487 			if (locked)
1488 				mutex_exit(&spa_namespace_lock);
1489 			*spapp = NULL;
1490 			return (error);
1491 		} else {
1492 			spa->spa_last_open_failed = B_FALSE;
1493 		}
1494 	}
1495 
1496 	spa_open_ref(spa, tag);
1497 
1498 	if (locked)
1499 		mutex_exit(&spa_namespace_lock);
1500 
1501 	*spapp = spa;
1502 
1503 	if (config != NULL) {
1504 		spa_config_enter(spa, RW_READER, FTAG);
1505 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1506 		spa_config_exit(spa, FTAG);
1507 	}
1508 
1509 	return (0);
1510 }
1511 
1512 int
1513 spa_open(const char *name, spa_t **spapp, void *tag)
1514 {
1515 	return (spa_open_common(name, spapp, tag, NULL));
1516 }
1517 
1518 /*
1519  * Lookup the given spa_t, incrementing the inject count in the process,
1520  * preventing it from being exported or destroyed.
1521  */
1522 spa_t *
1523 spa_inject_addref(char *name)
1524 {
1525 	spa_t *spa;
1526 
1527 	mutex_enter(&spa_namespace_lock);
1528 	if ((spa = spa_lookup(name)) == NULL) {
1529 		mutex_exit(&spa_namespace_lock);
1530 		return (NULL);
1531 	}
1532 	spa->spa_inject_ref++;
1533 	mutex_exit(&spa_namespace_lock);
1534 
1535 	return (spa);
1536 }
1537 
1538 void
1539 spa_inject_delref(spa_t *spa)
1540 {
1541 	mutex_enter(&spa_namespace_lock);
1542 	spa->spa_inject_ref--;
1543 	mutex_exit(&spa_namespace_lock);
1544 }
1545 
1546 /*
1547  * Add spares device information to the nvlist.
1548  */
1549 static void
1550 spa_add_spares(spa_t *spa, nvlist_t *config)
1551 {
1552 	nvlist_t **spares;
1553 	uint_t i, nspares;
1554 	nvlist_t *nvroot;
1555 	uint64_t guid;
1556 	vdev_stat_t *vs;
1557 	uint_t vsc;
1558 	uint64_t pool;
1559 
1560 	if (spa->spa_spares.sav_count == 0)
1561 		return;
1562 
1563 	VERIFY(nvlist_lookup_nvlist(config,
1564 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1565 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1566 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1567 	if (nspares != 0) {
1568 		VERIFY(nvlist_add_nvlist_array(nvroot,
1569 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1570 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1571 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1572 
1573 		/*
1574 		 * Go through and find any spares which have since been
1575 		 * repurposed as an active spare.  If this is the case, update
1576 		 * their status appropriately.
1577 		 */
1578 		for (i = 0; i < nspares; i++) {
1579 			VERIFY(nvlist_lookup_uint64(spares[i],
1580 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1581 			if (spa_spare_exists(guid, &pool, NULL) &&
1582 			    pool != 0ULL) {
1583 				VERIFY(nvlist_lookup_uint64_array(
1584 				    spares[i], ZPOOL_CONFIG_STATS,
1585 				    (uint64_t **)&vs, &vsc) == 0);
1586 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1587 				vs->vs_aux = VDEV_AUX_SPARED;
1588 			}
1589 		}
1590 	}
1591 }
1592 
1593 /*
1594  * Add l2cache device information to the nvlist, including vdev stats.
1595  */
1596 static void
1597 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1598 {
1599 	nvlist_t **l2cache;
1600 	uint_t i, j, nl2cache;
1601 	nvlist_t *nvroot;
1602 	uint64_t guid;
1603 	vdev_t *vd;
1604 	vdev_stat_t *vs;
1605 	uint_t vsc;
1606 
1607 	if (spa->spa_l2cache.sav_count == 0)
1608 		return;
1609 
1610 	spa_config_enter(spa, RW_READER, FTAG);
1611 
1612 	VERIFY(nvlist_lookup_nvlist(config,
1613 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1614 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1615 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1616 	if (nl2cache != 0) {
1617 		VERIFY(nvlist_add_nvlist_array(nvroot,
1618 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1619 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1620 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1621 
1622 		/*
1623 		 * Update level 2 cache device stats.
1624 		 */
1625 
1626 		for (i = 0; i < nl2cache; i++) {
1627 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1628 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1629 
1630 			vd = NULL;
1631 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1632 				if (guid ==
1633 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1634 					vd = spa->spa_l2cache.sav_vdevs[j];
1635 					break;
1636 				}
1637 			}
1638 			ASSERT(vd != NULL);
1639 
1640 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1641 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1642 			vdev_get_stats(vd, vs);
1643 		}
1644 	}
1645 
1646 	spa_config_exit(spa, FTAG);
1647 }
1648 
1649 int
1650 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1651 {
1652 	int error;
1653 	spa_t *spa;
1654 
1655 	*config = NULL;
1656 	error = spa_open_common(name, &spa, FTAG, config);
1657 
1658 	if (spa && *config != NULL) {
1659 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1660 		    spa_get_errlog_size(spa)) == 0);
1661 
1662 		spa_add_spares(spa, *config);
1663 		spa_add_l2cache(spa, *config);
1664 	}
1665 
1666 	/*
1667 	 * We want to get the alternate root even for faulted pools, so we cheat
1668 	 * and call spa_lookup() directly.
1669 	 */
1670 	if (altroot) {
1671 		if (spa == NULL) {
1672 			mutex_enter(&spa_namespace_lock);
1673 			spa = spa_lookup(name);
1674 			if (spa)
1675 				spa_altroot(spa, altroot, buflen);
1676 			else
1677 				altroot[0] = '\0';
1678 			spa = NULL;
1679 			mutex_exit(&spa_namespace_lock);
1680 		} else {
1681 			spa_altroot(spa, altroot, buflen);
1682 		}
1683 	}
1684 
1685 	if (spa != NULL)
1686 		spa_close(spa, FTAG);
1687 
1688 	return (error);
1689 }
1690 
1691 /*
1692  * Validate that the auxiliary device array is well formed.  We must have an
1693  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1694  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1695  * specified, as long as they are well-formed.
1696  */
1697 static int
1698 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1699     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1700     vdev_labeltype_t label)
1701 {
1702 	nvlist_t **dev;
1703 	uint_t i, ndev;
1704 	vdev_t *vd;
1705 	int error;
1706 
1707 	/*
1708 	 * It's acceptable to have no devs specified.
1709 	 */
1710 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1711 		return (0);
1712 
1713 	if (ndev == 0)
1714 		return (EINVAL);
1715 
1716 	/*
1717 	 * Make sure the pool is formatted with a version that supports this
1718 	 * device type.
1719 	 */
1720 	if (spa_version(spa) < version)
1721 		return (ENOTSUP);
1722 
1723 	/*
1724 	 * Set the pending device list so we correctly handle device in-use
1725 	 * checking.
1726 	 */
1727 	sav->sav_pending = dev;
1728 	sav->sav_npending = ndev;
1729 
1730 	for (i = 0; i < ndev; i++) {
1731 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1732 		    mode)) != 0)
1733 			goto out;
1734 
1735 		if (!vd->vdev_ops->vdev_op_leaf) {
1736 			vdev_free(vd);
1737 			error = EINVAL;
1738 			goto out;
1739 		}
1740 
1741 		/*
1742 		 * The L2ARC currently only supports disk devices.
1743 		 */
1744 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1745 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1746 			error = ENOTBLK;
1747 			goto out;
1748 		}
1749 
1750 		vd->vdev_top = vd;
1751 
1752 		if ((error = vdev_open(vd)) == 0 &&
1753 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1754 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1755 			    vd->vdev_guid) == 0);
1756 		}
1757 
1758 		vdev_free(vd);
1759 
1760 		if (error &&
1761 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1762 			goto out;
1763 		else
1764 			error = 0;
1765 	}
1766 
1767 out:
1768 	sav->sav_pending = NULL;
1769 	sav->sav_npending = 0;
1770 	return (error);
1771 }
1772 
1773 static int
1774 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1775 {
1776 	int error;
1777 
1778 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1779 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1780 	    VDEV_LABEL_SPARE)) != 0) {
1781 		return (error);
1782 	}
1783 
1784 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1785 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1786 	    VDEV_LABEL_L2CACHE));
1787 }
1788 
1789 static void
1790 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1791     const char *config)
1792 {
1793 	int i;
1794 
1795 	if (sav->sav_config != NULL) {
1796 		nvlist_t **olddevs;
1797 		uint_t oldndevs;
1798 		nvlist_t **newdevs;
1799 
1800 		/*
1801 		 * Generate new dev list by concatentating with the
1802 		 * current dev list.
1803 		 */
1804 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1805 		    &olddevs, &oldndevs) == 0);
1806 
1807 		newdevs = kmem_alloc(sizeof (void *) *
1808 		    (ndevs + oldndevs), KM_SLEEP);
1809 		for (i = 0; i < oldndevs; i++)
1810 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1811 			    KM_SLEEP) == 0);
1812 		for (i = 0; i < ndevs; i++)
1813 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1814 			    KM_SLEEP) == 0);
1815 
1816 		VERIFY(nvlist_remove(sav->sav_config, config,
1817 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1818 
1819 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1820 		    config, newdevs, ndevs + oldndevs) == 0);
1821 		for (i = 0; i < oldndevs + ndevs; i++)
1822 			nvlist_free(newdevs[i]);
1823 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1824 	} else {
1825 		/*
1826 		 * Generate a new dev list.
1827 		 */
1828 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1829 		    KM_SLEEP) == 0);
1830 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1831 		    devs, ndevs) == 0);
1832 	}
1833 }
1834 
1835 /*
1836  * Stop and drop level 2 ARC devices
1837  */
1838 void
1839 spa_l2cache_drop(spa_t *spa)
1840 {
1841 	vdev_t *vd;
1842 	int i;
1843 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1844 
1845 	for (i = 0; i < sav->sav_count; i++) {
1846 		uint64_t pool;
1847 
1848 		vd = sav->sav_vdevs[i];
1849 		ASSERT(vd != NULL);
1850 
1851 		if (spa_mode & FWRITE &&
1852 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1853 		    l2arc_vdev_present(vd)) {
1854 			l2arc_remove_vdev(vd);
1855 		}
1856 		if (vd->vdev_isl2cache)
1857 			spa_l2cache_remove(vd);
1858 		vdev_clear_stats(vd);
1859 		(void) vdev_close(vd);
1860 	}
1861 }
1862 
1863 /*
1864  * Pool Creation
1865  */
1866 int
1867 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1868     const char *history_str, nvlist_t *zplprops)
1869 {
1870 	spa_t *spa;
1871 	char *altroot = NULL;
1872 	vdev_t *rvd;
1873 	dsl_pool_t *dp;
1874 	dmu_tx_t *tx;
1875 	int c, error = 0;
1876 	uint64_t txg = TXG_INITIAL;
1877 	nvlist_t **spares, **l2cache;
1878 	uint_t nspares, nl2cache;
1879 	uint64_t version;
1880 
1881 	/*
1882 	 * If this pool already exists, return failure.
1883 	 */
1884 	mutex_enter(&spa_namespace_lock);
1885 	if (spa_lookup(pool) != NULL) {
1886 		mutex_exit(&spa_namespace_lock);
1887 		return (EEXIST);
1888 	}
1889 
1890 	/*
1891 	 * Allocate a new spa_t structure.
1892 	 */
1893 	(void) nvlist_lookup_string(props,
1894 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1895 	spa = spa_add(pool, altroot);
1896 	spa_activate(spa);
1897 
1898 	spa->spa_uberblock.ub_txg = txg - 1;
1899 
1900 	if (props && (error = spa_prop_validate(spa, props))) {
1901 		spa_unload(spa);
1902 		spa_deactivate(spa);
1903 		spa_remove(spa);
1904 		mutex_exit(&spa_namespace_lock);
1905 		return (error);
1906 	}
1907 
1908 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1909 	    &version) != 0)
1910 		version = SPA_VERSION;
1911 	ASSERT(version <= SPA_VERSION);
1912 	spa->spa_uberblock.ub_version = version;
1913 	spa->spa_ubsync = spa->spa_uberblock;
1914 
1915 	/*
1916 	 * Create the root vdev.
1917 	 */
1918 	spa_config_enter(spa, RW_WRITER, FTAG);
1919 
1920 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1921 
1922 	ASSERT(error != 0 || rvd != NULL);
1923 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1924 
1925 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1926 		error = EINVAL;
1927 
1928 	if (error == 0 &&
1929 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1930 	    (error = spa_validate_aux(spa, nvroot, txg,
1931 	    VDEV_ALLOC_ADD)) == 0) {
1932 		for (c = 0; c < rvd->vdev_children; c++)
1933 			vdev_init(rvd->vdev_child[c], txg);
1934 		vdev_config_dirty(rvd);
1935 	}
1936 
1937 	spa_config_exit(spa, FTAG);
1938 
1939 	if (error != 0) {
1940 		spa_unload(spa);
1941 		spa_deactivate(spa);
1942 		spa_remove(spa);
1943 		mutex_exit(&spa_namespace_lock);
1944 		return (error);
1945 	}
1946 
1947 	/*
1948 	 * Get the list of spares, if specified.
1949 	 */
1950 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1951 	    &spares, &nspares) == 0) {
1952 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1953 		    KM_SLEEP) == 0);
1954 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1955 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1956 		spa_config_enter(spa, RW_WRITER, FTAG);
1957 		spa_load_spares(spa);
1958 		spa_config_exit(spa, FTAG);
1959 		spa->spa_spares.sav_sync = B_TRUE;
1960 	}
1961 
1962 	/*
1963 	 * Get the list of level 2 cache devices, if specified.
1964 	 */
1965 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1966 	    &l2cache, &nl2cache) == 0) {
1967 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1968 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1969 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1970 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1971 		spa_config_enter(spa, RW_WRITER, FTAG);
1972 		spa_load_l2cache(spa);
1973 		spa_config_exit(spa, FTAG);
1974 		spa->spa_l2cache.sav_sync = B_TRUE;
1975 	}
1976 
1977 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
1978 	spa->spa_meta_objset = dp->dp_meta_objset;
1979 
1980 	tx = dmu_tx_create_assigned(dp, txg);
1981 
1982 	/*
1983 	 * Create the pool config object.
1984 	 */
1985 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1986 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1987 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1988 
1989 	if (zap_add(spa->spa_meta_objset,
1990 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1991 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1992 		cmn_err(CE_PANIC, "failed to add pool config");
1993 	}
1994 
1995 	/* Newly created pools with the right version are always deflated. */
1996 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1997 		spa->spa_deflate = TRUE;
1998 		if (zap_add(spa->spa_meta_objset,
1999 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2000 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2001 			cmn_err(CE_PANIC, "failed to add deflate");
2002 		}
2003 	}
2004 
2005 	/*
2006 	 * Create the deferred-free bplist object.  Turn off compression
2007 	 * because sync-to-convergence takes longer if the blocksize
2008 	 * keeps changing.
2009 	 */
2010 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2011 	    1 << 14, tx);
2012 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2013 	    ZIO_COMPRESS_OFF, tx);
2014 
2015 	if (zap_add(spa->spa_meta_objset,
2016 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2017 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2018 		cmn_err(CE_PANIC, "failed to add bplist");
2019 	}
2020 
2021 	/*
2022 	 * Create the pool's history object.
2023 	 */
2024 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2025 		spa_history_create_obj(spa, tx);
2026 
2027 	/*
2028 	 * Set pool properties.
2029 	 */
2030 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2031 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2032 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2033 	if (props)
2034 		spa_sync_props(spa, props, CRED(), tx);
2035 
2036 	dmu_tx_commit(tx);
2037 
2038 	spa->spa_sync_on = B_TRUE;
2039 	txg_sync_start(spa->spa_dsl_pool);
2040 
2041 	/*
2042 	 * We explicitly wait for the first transaction to complete so that our
2043 	 * bean counters are appropriately updated.
2044 	 */
2045 	txg_wait_synced(spa->spa_dsl_pool, txg);
2046 
2047 	spa_config_sync(spa, B_FALSE, B_TRUE);
2048 
2049 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2050 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2051 
2052 	mutex_exit(&spa_namespace_lock);
2053 
2054 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2055 
2056 	return (0);
2057 }
2058 
2059 /*
2060  * Import the given pool into the system.  We set up the necessary spa_t and
2061  * then call spa_load() to do the dirty work.
2062  */
2063 static int
2064 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2065     boolean_t isroot, boolean_t allowfaulted)
2066 {
2067 	spa_t *spa;
2068 	char *altroot = NULL;
2069 	int error, loaderr;
2070 	nvlist_t *nvroot;
2071 	nvlist_t **spares, **l2cache;
2072 	uint_t nspares, nl2cache;
2073 
2074 	/*
2075 	 * If a pool with this name exists, return failure.
2076 	 */
2077 	mutex_enter(&spa_namespace_lock);
2078 	if (spa_lookup(pool) != NULL) {
2079 		mutex_exit(&spa_namespace_lock);
2080 		return (EEXIST);
2081 	}
2082 
2083 	/*
2084 	 * Create and initialize the spa structure.
2085 	 */
2086 	(void) nvlist_lookup_string(props,
2087 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2088 	spa = spa_add(pool, altroot);
2089 	spa_activate(spa);
2090 
2091 	if (allowfaulted)
2092 		spa->spa_import_faulted = B_TRUE;
2093 	spa->spa_is_root = isroot;
2094 
2095 	/*
2096 	 * Pass off the heavy lifting to spa_load().
2097 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2098 	 * the user-supplied config is actually the one to trust when
2099 	 * doing an import.
2100 	 */
2101 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2102 
2103 	spa_config_enter(spa, RW_WRITER, FTAG);
2104 	/*
2105 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2106 	 * and conflicts with spa_has_spare().
2107 	 */
2108 	if (!isroot && spa->spa_spares.sav_config) {
2109 		nvlist_free(spa->spa_spares.sav_config);
2110 		spa->spa_spares.sav_config = NULL;
2111 		spa_load_spares(spa);
2112 	}
2113 	if (!isroot && spa->spa_l2cache.sav_config) {
2114 		nvlist_free(spa->spa_l2cache.sav_config);
2115 		spa->spa_l2cache.sav_config = NULL;
2116 		spa_load_l2cache(spa);
2117 	}
2118 
2119 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2120 	    &nvroot) == 0);
2121 	if (error == 0)
2122 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2123 	if (error == 0)
2124 		error = spa_validate_aux(spa, nvroot, -1ULL,
2125 		    VDEV_ALLOC_L2CACHE);
2126 	spa_config_exit(spa, FTAG);
2127 
2128 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2129 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2130 			/*
2131 			 * If we failed to load the pool, but 'allowfaulted' is
2132 			 * set, then manually set the config as if the config
2133 			 * passed in was specified in the cache file.
2134 			 */
2135 			error = 0;
2136 			spa->spa_import_faulted = B_FALSE;
2137 			if (spa->spa_config == NULL) {
2138 				spa_config_enter(spa, RW_READER, FTAG);
2139 				spa->spa_config = spa_config_generate(spa,
2140 				    NULL, -1ULL, B_TRUE);
2141 				spa_config_exit(spa, FTAG);
2142 			}
2143 			spa_unload(spa);
2144 			spa_deactivate(spa);
2145 			spa_config_sync(spa, B_FALSE, B_TRUE);
2146 		} else {
2147 			spa_unload(spa);
2148 			spa_deactivate(spa);
2149 			spa_remove(spa);
2150 		}
2151 		mutex_exit(&spa_namespace_lock);
2152 		return (error);
2153 	}
2154 
2155 	/*
2156 	 * Override any spares and level 2 cache devices as specified by
2157 	 * the user, as these may have correct device names/devids, etc.
2158 	 */
2159 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2160 	    &spares, &nspares) == 0) {
2161 		if (spa->spa_spares.sav_config)
2162 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2163 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2164 		else
2165 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2166 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2167 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2168 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2169 		spa_config_enter(spa, RW_WRITER, FTAG);
2170 		spa_load_spares(spa);
2171 		spa_config_exit(spa, FTAG);
2172 		spa->spa_spares.sav_sync = B_TRUE;
2173 	}
2174 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2175 	    &l2cache, &nl2cache) == 0) {
2176 		if (spa->spa_l2cache.sav_config)
2177 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2178 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2179 		else
2180 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2181 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2182 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2183 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2184 		spa_config_enter(spa, RW_WRITER, FTAG);
2185 		spa_load_l2cache(spa);
2186 		spa_config_exit(spa, FTAG);
2187 		spa->spa_l2cache.sav_sync = B_TRUE;
2188 	}
2189 
2190 	if (spa_mode & FWRITE) {
2191 		/*
2192 		 * Update the config cache to include the newly-imported pool.
2193 		 */
2194 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2195 	}
2196 
2197 	spa->spa_import_faulted = B_FALSE;
2198 	mutex_exit(&spa_namespace_lock);
2199 
2200 	return (0);
2201 }
2202 
2203 #ifdef _KERNEL
2204 /*
2205  * Build a "root" vdev for a top level vdev read in from a rootpool
2206  * device label.
2207  */
2208 static void
2209 spa_build_rootpool_config(nvlist_t *config)
2210 {
2211 	nvlist_t *nvtop, *nvroot;
2212 	uint64_t pgid;
2213 
2214 	/*
2215 	 * Add this top-level vdev to the child array.
2216 	 */
2217 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2218 	    == 0);
2219 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2220 	    == 0);
2221 
2222 	/*
2223 	 * Put this pool's top-level vdevs into a root vdev.
2224 	 */
2225 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2226 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2227 	    == 0);
2228 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2229 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2230 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2231 	    &nvtop, 1) == 0);
2232 
2233 	/*
2234 	 * Replace the existing vdev_tree with the new root vdev in
2235 	 * this pool's configuration (remove the old, add the new).
2236 	 */
2237 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2238 	nvlist_free(nvroot);
2239 }
2240 
2241 /*
2242  * Get the root pool information from the root disk, then import the root pool
2243  * during the system boot up time.
2244  */
2245 extern nvlist_t *vdev_disk_read_rootlabel(char *, char *);
2246 
2247 int
2248 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2249     uint64_t *besttxg)
2250 {
2251 	nvlist_t *config;
2252 	uint64_t txg;
2253 
2254 	if ((config = vdev_disk_read_rootlabel(devpath, devid)) == NULL)
2255 		return (-1);
2256 
2257 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2258 
2259 	if (bestconf != NULL)
2260 		*bestconf = config;
2261 	*besttxg = txg;
2262 	return (0);
2263 }
2264 
2265 boolean_t
2266 spa_rootdev_validate(nvlist_t *nv)
2267 {
2268 	uint64_t ival;
2269 
2270 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2271 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2272 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2273 		return (B_FALSE);
2274 
2275 	return (B_TRUE);
2276 }
2277 
2278 
2279 /*
2280  * Given the boot device's physical path or devid, check if the device
2281  * is in a valid state.  If so, return the configuration from the vdev
2282  * label.
2283  */
2284 int
2285 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2286 {
2287 	nvlist_t *conf = NULL;
2288 	uint64_t txg = 0;
2289 	nvlist_t *nvtop, **child;
2290 	char *type;
2291 	char *bootpath = NULL;
2292 	uint_t children, c;
2293 	char *tmp;
2294 
2295 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2296 		*tmp = '\0';
2297 	if (spa_check_rootconf(devpath, devid, &conf, &txg) < 0) {
2298 		cmn_err(CE_NOTE, "error reading device label");
2299 		nvlist_free(conf);
2300 		return (EINVAL);
2301 	}
2302 	if (txg == 0) {
2303 		cmn_err(CE_NOTE, "this device is detached");
2304 		nvlist_free(conf);
2305 		return (EINVAL);
2306 	}
2307 
2308 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2309 	    &nvtop) == 0);
2310 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2311 
2312 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2313 		if (spa_rootdev_validate(nvtop)) {
2314 			goto out;
2315 		} else {
2316 			nvlist_free(conf);
2317 			return (EINVAL);
2318 		}
2319 	}
2320 
2321 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2322 
2323 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2324 	    &child, &children) == 0);
2325 
2326 	/*
2327 	 * Go thru vdevs in the mirror to see if the given device
2328 	 * has the most recent txg. Only the device with the most
2329 	 * recent txg has valid information and should be booted.
2330 	 */
2331 	for (c = 0; c < children; c++) {
2332 		char *cdevid, *cpath;
2333 		uint64_t tmptxg;
2334 
2335 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2336 		    &cpath) != 0)
2337 			return (EINVAL);
2338 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID,
2339 		    &cdevid) != 0)
2340 			return (EINVAL);
2341 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2342 		    &tmptxg) == 0) && (tmptxg > txg)) {
2343 			txg = tmptxg;
2344 			VERIFY(nvlist_lookup_string(child[c],
2345 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2346 		}
2347 	}
2348 
2349 	/* Does the best device match the one we've booted from? */
2350 	if (bootpath) {
2351 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2352 		return (EINVAL);
2353 	}
2354 out:
2355 	*bestconf = conf;
2356 	return (0);
2357 }
2358 
2359 /*
2360  * Import a root pool.
2361  *
2362  * For x86. devpath_list will consist of devid and/or physpath name of
2363  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2364  * The GRUB "findroot" command will return the vdev we should boot.
2365  *
2366  * For Sparc, devpath_list consists the physpath name of the booting device
2367  * no matter the rootpool is a single device pool or a mirrored pool.
2368  * e.g.
2369  *	"/pci@1f,0/ide@d/disk@0,0:a"
2370  */
2371 int
2372 spa_import_rootpool(char *devpath, char *devid)
2373 {
2374 	nvlist_t *conf = NULL;
2375 	char *pname;
2376 	int error;
2377 
2378 	/*
2379 	 * Get the vdev pathname and configuation from the most
2380 	 * recently updated vdev (highest txg).
2381 	 */
2382 	if (error = spa_get_rootconf(devpath, devid, &conf))
2383 		goto msg_out;
2384 
2385 	/*
2386 	 * Add type "root" vdev to the config.
2387 	 */
2388 	spa_build_rootpool_config(conf);
2389 
2390 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2391 
2392 	/*
2393 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2394 	 * instead of spa_import().  This prevents us from marking vdevs as
2395 	 * persistently unavailable, and generates FMA ereports as if it were a
2396 	 * pool open, not import.
2397 	 */
2398 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2399 	if (error == EEXIST)
2400 		error = 0;
2401 
2402 	nvlist_free(conf);
2403 	return (error);
2404 
2405 msg_out:
2406 	cmn_err(CE_NOTE, "\n"
2407 	    "  ***************************************************  \n"
2408 	    "  *  This device is not bootable!                   *  \n"
2409 	    "  *  It is either offlined or detached or faulted.  *  \n"
2410 	    "  *  Please try to boot from a different device.    *  \n"
2411 	    "  ***************************************************  ");
2412 
2413 	return (error);
2414 }
2415 #endif
2416 
2417 /*
2418  * Import a non-root pool into the system.
2419  */
2420 int
2421 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2422 {
2423 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2424 }
2425 
2426 int
2427 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2428 {
2429 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2430 }
2431 
2432 
2433 /*
2434  * This (illegal) pool name is used when temporarily importing a spa_t in order
2435  * to get the vdev stats associated with the imported devices.
2436  */
2437 #define	TRYIMPORT_NAME	"$import"
2438 
2439 nvlist_t *
2440 spa_tryimport(nvlist_t *tryconfig)
2441 {
2442 	nvlist_t *config = NULL;
2443 	char *poolname;
2444 	spa_t *spa;
2445 	uint64_t state;
2446 
2447 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2448 		return (NULL);
2449 
2450 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2451 		return (NULL);
2452 
2453 	/*
2454 	 * Create and initialize the spa structure.
2455 	 */
2456 	mutex_enter(&spa_namespace_lock);
2457 	spa = spa_add(TRYIMPORT_NAME, NULL);
2458 	spa_activate(spa);
2459 
2460 	/*
2461 	 * Pass off the heavy lifting to spa_load().
2462 	 * Pass TRUE for mosconfig because the user-supplied config
2463 	 * is actually the one to trust when doing an import.
2464 	 */
2465 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2466 
2467 	/*
2468 	 * If 'tryconfig' was at least parsable, return the current config.
2469 	 */
2470 	if (spa->spa_root_vdev != NULL) {
2471 		spa_config_enter(spa, RW_READER, FTAG);
2472 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2473 		spa_config_exit(spa, FTAG);
2474 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2475 		    poolname) == 0);
2476 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2477 		    state) == 0);
2478 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2479 		    spa->spa_uberblock.ub_timestamp) == 0);
2480 
2481 		/*
2482 		 * If the bootfs property exists on this pool then we
2483 		 * copy it out so that external consumers can tell which
2484 		 * pools are bootable.
2485 		 */
2486 		if (spa->spa_bootfs) {
2487 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2488 
2489 			/*
2490 			 * We have to play games with the name since the
2491 			 * pool was opened as TRYIMPORT_NAME.
2492 			 */
2493 			if (dsl_dsobj_to_dsname(spa->spa_name,
2494 			    spa->spa_bootfs, tmpname) == 0) {
2495 				char *cp;
2496 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2497 
2498 				cp = strchr(tmpname, '/');
2499 				if (cp == NULL) {
2500 					(void) strlcpy(dsname, tmpname,
2501 					    MAXPATHLEN);
2502 				} else {
2503 					(void) snprintf(dsname, MAXPATHLEN,
2504 					    "%s/%s", poolname, ++cp);
2505 				}
2506 				VERIFY(nvlist_add_string(config,
2507 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2508 				kmem_free(dsname, MAXPATHLEN);
2509 			}
2510 			kmem_free(tmpname, MAXPATHLEN);
2511 		}
2512 
2513 		/*
2514 		 * Add the list of hot spares and level 2 cache devices.
2515 		 */
2516 		spa_add_spares(spa, config);
2517 		spa_add_l2cache(spa, config);
2518 	}
2519 
2520 	spa_unload(spa);
2521 	spa_deactivate(spa);
2522 	spa_remove(spa);
2523 	mutex_exit(&spa_namespace_lock);
2524 
2525 	return (config);
2526 }
2527 
2528 /*
2529  * Pool export/destroy
2530  *
2531  * The act of destroying or exporting a pool is very simple.  We make sure there
2532  * is no more pending I/O and any references to the pool are gone.  Then, we
2533  * update the pool state and sync all the labels to disk, removing the
2534  * configuration from the cache afterwards.
2535  */
2536 static int
2537 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2538     boolean_t force)
2539 {
2540 	spa_t *spa;
2541 
2542 	if (oldconfig)
2543 		*oldconfig = NULL;
2544 
2545 	if (!(spa_mode & FWRITE))
2546 		return (EROFS);
2547 
2548 	mutex_enter(&spa_namespace_lock);
2549 	if ((spa = spa_lookup(pool)) == NULL) {
2550 		mutex_exit(&spa_namespace_lock);
2551 		return (ENOENT);
2552 	}
2553 
2554 	/*
2555 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2556 	 * reacquire the namespace lock, and see if we can export.
2557 	 */
2558 	spa_open_ref(spa, FTAG);
2559 	mutex_exit(&spa_namespace_lock);
2560 	spa_async_suspend(spa);
2561 	mutex_enter(&spa_namespace_lock);
2562 	spa_close(spa, FTAG);
2563 
2564 	/*
2565 	 * The pool will be in core if it's openable,
2566 	 * in which case we can modify its state.
2567 	 */
2568 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2569 		/*
2570 		 * Objsets may be open only because they're dirty, so we
2571 		 * have to force it to sync before checking spa_refcnt.
2572 		 */
2573 		txg_wait_synced(spa->spa_dsl_pool, 0);
2574 
2575 		/*
2576 		 * A pool cannot be exported or destroyed if there are active
2577 		 * references.  If we are resetting a pool, allow references by
2578 		 * fault injection handlers.
2579 		 */
2580 		if (!spa_refcount_zero(spa) ||
2581 		    (spa->spa_inject_ref != 0 &&
2582 		    new_state != POOL_STATE_UNINITIALIZED)) {
2583 			spa_async_resume(spa);
2584 			mutex_exit(&spa_namespace_lock);
2585 			return (EBUSY);
2586 		}
2587 
2588 		/*
2589 		 * A pool cannot be exported if it has an active shared spare.
2590 		 * This is to prevent other pools stealing the active spare
2591 		 * from an exported pool. At user's own will, such pool can
2592 		 * be forcedly exported.
2593 		 */
2594 		if (!force && new_state == POOL_STATE_EXPORTED &&
2595 		    spa_has_active_shared_spare(spa)) {
2596 			spa_async_resume(spa);
2597 			mutex_exit(&spa_namespace_lock);
2598 			return (EXDEV);
2599 		}
2600 
2601 		/*
2602 		 * We want this to be reflected on every label,
2603 		 * so mark them all dirty.  spa_unload() will do the
2604 		 * final sync that pushes these changes out.
2605 		 */
2606 		if (new_state != POOL_STATE_UNINITIALIZED) {
2607 			spa_config_enter(spa, RW_WRITER, FTAG);
2608 			spa->spa_state = new_state;
2609 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2610 			vdev_config_dirty(spa->spa_root_vdev);
2611 			spa_config_exit(spa, FTAG);
2612 		}
2613 	}
2614 
2615 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2616 
2617 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2618 		spa_unload(spa);
2619 		spa_deactivate(spa);
2620 	}
2621 
2622 	if (oldconfig && spa->spa_config)
2623 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2624 
2625 	if (new_state != POOL_STATE_UNINITIALIZED) {
2626 		spa_config_sync(spa, B_TRUE, B_TRUE);
2627 		spa_remove(spa);
2628 	}
2629 	mutex_exit(&spa_namespace_lock);
2630 
2631 	return (0);
2632 }
2633 
2634 /*
2635  * Destroy a storage pool.
2636  */
2637 int
2638 spa_destroy(char *pool)
2639 {
2640 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE));
2641 }
2642 
2643 /*
2644  * Export a storage pool.
2645  */
2646 int
2647 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force)
2648 {
2649 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force));
2650 }
2651 
2652 /*
2653  * Similar to spa_export(), this unloads the spa_t without actually removing it
2654  * from the namespace in any way.
2655  */
2656 int
2657 spa_reset(char *pool)
2658 {
2659 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2660 	    B_FALSE));
2661 }
2662 
2663 /*
2664  * ==========================================================================
2665  * Device manipulation
2666  * ==========================================================================
2667  */
2668 
2669 /*
2670  * Add a device to a storage pool.
2671  */
2672 int
2673 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2674 {
2675 	uint64_t txg;
2676 	int c, error;
2677 	vdev_t *rvd = spa->spa_root_vdev;
2678 	vdev_t *vd, *tvd;
2679 	nvlist_t **spares, **l2cache;
2680 	uint_t nspares, nl2cache;
2681 
2682 	txg = spa_vdev_enter(spa);
2683 
2684 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2685 	    VDEV_ALLOC_ADD)) != 0)
2686 		return (spa_vdev_exit(spa, NULL, txg, error));
2687 
2688 	spa->spa_pending_vdev = vd;
2689 
2690 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2691 	    &nspares) != 0)
2692 		nspares = 0;
2693 
2694 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2695 	    &nl2cache) != 0)
2696 		nl2cache = 0;
2697 
2698 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
2699 		spa->spa_pending_vdev = NULL;
2700 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2701 	}
2702 
2703 	if (vd->vdev_children != 0) {
2704 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2705 			spa->spa_pending_vdev = NULL;
2706 			return (spa_vdev_exit(spa, vd, txg, error));
2707 		}
2708 	}
2709 
2710 	/*
2711 	 * We must validate the spares and l2cache devices after checking the
2712 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2713 	 */
2714 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
2715 		spa->spa_pending_vdev = NULL;
2716 		return (spa_vdev_exit(spa, vd, txg, error));
2717 	}
2718 
2719 	spa->spa_pending_vdev = NULL;
2720 
2721 	/*
2722 	 * Transfer each new top-level vdev from vd to rvd.
2723 	 */
2724 	for (c = 0; c < vd->vdev_children; c++) {
2725 		tvd = vd->vdev_child[c];
2726 		vdev_remove_child(vd, tvd);
2727 		tvd->vdev_id = rvd->vdev_children;
2728 		vdev_add_child(rvd, tvd);
2729 		vdev_config_dirty(tvd);
2730 	}
2731 
2732 	if (nspares != 0) {
2733 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2734 		    ZPOOL_CONFIG_SPARES);
2735 		spa_load_spares(spa);
2736 		spa->spa_spares.sav_sync = B_TRUE;
2737 	}
2738 
2739 	if (nl2cache != 0) {
2740 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2741 		    ZPOOL_CONFIG_L2CACHE);
2742 		spa_load_l2cache(spa);
2743 		spa->spa_l2cache.sav_sync = B_TRUE;
2744 	}
2745 
2746 	/*
2747 	 * We have to be careful when adding new vdevs to an existing pool.
2748 	 * If other threads start allocating from these vdevs before we
2749 	 * sync the config cache, and we lose power, then upon reboot we may
2750 	 * fail to open the pool because there are DVAs that the config cache
2751 	 * can't translate.  Therefore, we first add the vdevs without
2752 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2753 	 * and then let spa_config_update() initialize the new metaslabs.
2754 	 *
2755 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2756 	 * if we lose power at any point in this sequence, the remaining
2757 	 * steps will be completed the next time we load the pool.
2758 	 */
2759 	(void) spa_vdev_exit(spa, vd, txg, 0);
2760 
2761 	mutex_enter(&spa_namespace_lock);
2762 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2763 	mutex_exit(&spa_namespace_lock);
2764 
2765 	return (0);
2766 }
2767 
2768 /*
2769  * Attach a device to a mirror.  The arguments are the path to any device
2770  * in the mirror, and the nvroot for the new device.  If the path specifies
2771  * a device that is not mirrored, we automatically insert the mirror vdev.
2772  *
2773  * If 'replacing' is specified, the new device is intended to replace the
2774  * existing device; in this case the two devices are made into their own
2775  * mirror using the 'replacing' vdev, which is functionally identical to
2776  * the mirror vdev (it actually reuses all the same ops) but has a few
2777  * extra rules: you can't attach to it after it's been created, and upon
2778  * completion of resilvering, the first disk (the one being replaced)
2779  * is automatically detached.
2780  */
2781 int
2782 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2783 {
2784 	uint64_t txg, open_txg;
2785 	vdev_t *rvd = spa->spa_root_vdev;
2786 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2787 	vdev_ops_t *pvops;
2788 	dmu_tx_t *tx;
2789 	char *oldvdpath, *newvdpath;
2790 	int newvd_isspare;
2791 	int error;
2792 
2793 	txg = spa_vdev_enter(spa);
2794 
2795 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2796 
2797 	if (oldvd == NULL)
2798 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2799 
2800 	if (!oldvd->vdev_ops->vdev_op_leaf)
2801 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2802 
2803 	pvd = oldvd->vdev_parent;
2804 
2805 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2806 	    VDEV_ALLOC_ADD)) != 0)
2807 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2808 
2809 	if (newrootvd->vdev_children != 1)
2810 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2811 
2812 	newvd = newrootvd->vdev_child[0];
2813 
2814 	if (!newvd->vdev_ops->vdev_op_leaf)
2815 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2816 
2817 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2818 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2819 
2820 	/*
2821 	 * Spares can't replace logs
2822 	 */
2823 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2824 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2825 
2826 	if (!replacing) {
2827 		/*
2828 		 * For attach, the only allowable parent is a mirror or the root
2829 		 * vdev.
2830 		 */
2831 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2832 		    pvd->vdev_ops != &vdev_root_ops)
2833 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2834 
2835 		pvops = &vdev_mirror_ops;
2836 	} else {
2837 		/*
2838 		 * Active hot spares can only be replaced by inactive hot
2839 		 * spares.
2840 		 */
2841 		if (pvd->vdev_ops == &vdev_spare_ops &&
2842 		    pvd->vdev_child[1] == oldvd &&
2843 		    !spa_has_spare(spa, newvd->vdev_guid))
2844 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2845 
2846 		/*
2847 		 * If the source is a hot spare, and the parent isn't already a
2848 		 * spare, then we want to create a new hot spare.  Otherwise, we
2849 		 * want to create a replacing vdev.  The user is not allowed to
2850 		 * attach to a spared vdev child unless the 'isspare' state is
2851 		 * the same (spare replaces spare, non-spare replaces
2852 		 * non-spare).
2853 		 */
2854 		if (pvd->vdev_ops == &vdev_replacing_ops)
2855 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2856 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2857 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2858 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2859 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2860 		    newvd->vdev_isspare)
2861 			pvops = &vdev_spare_ops;
2862 		else
2863 			pvops = &vdev_replacing_ops;
2864 	}
2865 
2866 	/*
2867 	 * Compare the new device size with the replaceable/attachable
2868 	 * device size.
2869 	 */
2870 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2871 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2872 
2873 	/*
2874 	 * The new device cannot have a higher alignment requirement
2875 	 * than the top-level vdev.
2876 	 */
2877 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2878 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2879 
2880 	/*
2881 	 * If this is an in-place replacement, update oldvd's path and devid
2882 	 * to make it distinguishable from newvd, and unopenable from now on.
2883 	 */
2884 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2885 		spa_strfree(oldvd->vdev_path);
2886 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2887 		    KM_SLEEP);
2888 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2889 		    newvd->vdev_path, "old");
2890 		if (oldvd->vdev_devid != NULL) {
2891 			spa_strfree(oldvd->vdev_devid);
2892 			oldvd->vdev_devid = NULL;
2893 		}
2894 	}
2895 
2896 	/*
2897 	 * If the parent is not a mirror, or if we're replacing, insert the new
2898 	 * mirror/replacing/spare vdev above oldvd.
2899 	 */
2900 	if (pvd->vdev_ops != pvops)
2901 		pvd = vdev_add_parent(oldvd, pvops);
2902 
2903 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2904 	ASSERT(pvd->vdev_ops == pvops);
2905 	ASSERT(oldvd->vdev_parent == pvd);
2906 
2907 	/*
2908 	 * Extract the new device from its root and add it to pvd.
2909 	 */
2910 	vdev_remove_child(newrootvd, newvd);
2911 	newvd->vdev_id = pvd->vdev_children;
2912 	vdev_add_child(pvd, newvd);
2913 
2914 	/*
2915 	 * If newvd is smaller than oldvd, but larger than its rsize,
2916 	 * the addition of newvd may have decreased our parent's asize.
2917 	 */
2918 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2919 
2920 	tvd = newvd->vdev_top;
2921 	ASSERT(pvd->vdev_top == tvd);
2922 	ASSERT(tvd->vdev_parent == rvd);
2923 
2924 	vdev_config_dirty(tvd);
2925 
2926 	/*
2927 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2928 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2929 	 */
2930 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2931 
2932 	mutex_enter(&newvd->vdev_dtl_lock);
2933 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2934 	    open_txg - TXG_INITIAL + 1);
2935 	mutex_exit(&newvd->vdev_dtl_lock);
2936 
2937 	if (newvd->vdev_isspare)
2938 		spa_spare_activate(newvd);
2939 	oldvdpath = spa_strdup(vdev_description(oldvd));
2940 	newvdpath = spa_strdup(vdev_description(newvd));
2941 	newvd_isspare = newvd->vdev_isspare;
2942 
2943 	/*
2944 	 * Mark newvd's DTL dirty in this txg.
2945 	 */
2946 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2947 
2948 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2949 
2950 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2951 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
2952 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
2953 		    CRED(),  "%s vdev=%s %s vdev=%s",
2954 		    replacing && newvd_isspare ? "spare in" :
2955 		    replacing ? "replace" : "attach", newvdpath,
2956 		    replacing ? "for" : "to", oldvdpath);
2957 		dmu_tx_commit(tx);
2958 	} else {
2959 		dmu_tx_abort(tx);
2960 	}
2961 
2962 	spa_strfree(oldvdpath);
2963 	spa_strfree(newvdpath);
2964 
2965 	/*
2966 	 * Kick off a resilver to update newvd.
2967 	 */
2968 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
2969 
2970 	return (0);
2971 }
2972 
2973 /*
2974  * Detach a device from a mirror or replacing vdev.
2975  * If 'replace_done' is specified, only detach if the parent
2976  * is a replacing vdev.
2977  */
2978 int
2979 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2980 {
2981 	uint64_t txg;
2982 	int c, t, error;
2983 	vdev_t *rvd = spa->spa_root_vdev;
2984 	vdev_t *vd, *pvd, *cvd, *tvd;
2985 	boolean_t unspare = B_FALSE;
2986 	uint64_t unspare_guid;
2987 	size_t len;
2988 
2989 	txg = spa_vdev_enter(spa);
2990 
2991 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2992 
2993 	if (vd == NULL)
2994 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2995 
2996 	if (!vd->vdev_ops->vdev_op_leaf)
2997 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2998 
2999 	pvd = vd->vdev_parent;
3000 
3001 	/*
3002 	 * If replace_done is specified, only remove this device if it's
3003 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3004 	 * disk can be removed.
3005 	 */
3006 	if (replace_done) {
3007 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3008 			if (vd->vdev_id != 0)
3009 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3010 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3011 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3012 		}
3013 	}
3014 
3015 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3016 	    spa_version(spa) >= SPA_VERSION_SPARES);
3017 
3018 	/*
3019 	 * Only mirror, replacing, and spare vdevs support detach.
3020 	 */
3021 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3022 	    pvd->vdev_ops != &vdev_mirror_ops &&
3023 	    pvd->vdev_ops != &vdev_spare_ops)
3024 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3025 
3026 	/*
3027 	 * If there's only one replica, you can't detach it.
3028 	 */
3029 	if (pvd->vdev_children <= 1)
3030 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3031 
3032 	/*
3033 	 * If all siblings have non-empty DTLs, this device may have the only
3034 	 * valid copy of the data, which means we cannot safely detach it.
3035 	 *
3036 	 * XXX -- as in the vdev_offline() case, we really want a more
3037 	 * precise DTL check.
3038 	 */
3039 	for (c = 0; c < pvd->vdev_children; c++) {
3040 		uint64_t dirty;
3041 
3042 		cvd = pvd->vdev_child[c];
3043 		if (cvd == vd)
3044 			continue;
3045 		if (vdev_is_dead(cvd))
3046 			continue;
3047 		mutex_enter(&cvd->vdev_dtl_lock);
3048 		dirty = cvd->vdev_dtl_map.sm_space |
3049 		    cvd->vdev_dtl_scrub.sm_space;
3050 		mutex_exit(&cvd->vdev_dtl_lock);
3051 		if (!dirty)
3052 			break;
3053 	}
3054 
3055 	/*
3056 	 * If we are a replacing or spare vdev, then we can always detach the
3057 	 * latter child, as that is how one cancels the operation.
3058 	 */
3059 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
3060 	    c == pvd->vdev_children)
3061 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3062 
3063 	/*
3064 	 * If we are detaching the second disk from a replacing vdev, then
3065 	 * check to see if we changed the original vdev's path to have "/old"
3066 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3067 	 */
3068 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3069 	    pvd->vdev_child[0]->vdev_path != NULL &&
3070 	    pvd->vdev_child[1]->vdev_path != NULL) {
3071 		ASSERT(pvd->vdev_child[1] == vd);
3072 		cvd = pvd->vdev_child[0];
3073 		len = strlen(vd->vdev_path);
3074 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3075 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3076 			spa_strfree(cvd->vdev_path);
3077 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3078 		}
3079 	}
3080 
3081 	/*
3082 	 * If we are detaching the original disk from a spare, then it implies
3083 	 * that the spare should become a real disk, and be removed from the
3084 	 * active spare list for the pool.
3085 	 */
3086 	if (pvd->vdev_ops == &vdev_spare_ops &&
3087 	    vd->vdev_id == 0)
3088 		unspare = B_TRUE;
3089 
3090 	/*
3091 	 * Erase the disk labels so the disk can be used for other things.
3092 	 * This must be done after all other error cases are handled,
3093 	 * but before we disembowel vd (so we can still do I/O to it).
3094 	 * But if we can't do it, don't treat the error as fatal --
3095 	 * it may be that the unwritability of the disk is the reason
3096 	 * it's being detached!
3097 	 */
3098 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3099 
3100 	/*
3101 	 * Remove vd from its parent and compact the parent's children.
3102 	 */
3103 	vdev_remove_child(pvd, vd);
3104 	vdev_compact_children(pvd);
3105 
3106 	/*
3107 	 * Remember one of the remaining children so we can get tvd below.
3108 	 */
3109 	cvd = pvd->vdev_child[0];
3110 
3111 	/*
3112 	 * If we need to remove the remaining child from the list of hot spares,
3113 	 * do it now, marking the vdev as no longer a spare in the process.  We
3114 	 * must do this before vdev_remove_parent(), because that can change the
3115 	 * GUID if it creates a new toplevel GUID.
3116 	 */
3117 	if (unspare) {
3118 		ASSERT(cvd->vdev_isspare);
3119 		spa_spare_remove(cvd);
3120 		unspare_guid = cvd->vdev_guid;
3121 	}
3122 
3123 	/*
3124 	 * If the parent mirror/replacing vdev only has one child,
3125 	 * the parent is no longer needed.  Remove it from the tree.
3126 	 */
3127 	if (pvd->vdev_children == 1)
3128 		vdev_remove_parent(cvd);
3129 
3130 	/*
3131 	 * We don't set tvd until now because the parent we just removed
3132 	 * may have been the previous top-level vdev.
3133 	 */
3134 	tvd = cvd->vdev_top;
3135 	ASSERT(tvd->vdev_parent == rvd);
3136 
3137 	/*
3138 	 * Reevaluate the parent vdev state.
3139 	 */
3140 	vdev_propagate_state(cvd);
3141 
3142 	/*
3143 	 * If the device we just detached was smaller than the others, it may be
3144 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3145 	 * can't fail because the existing metaslabs are already in core, so
3146 	 * there's nothing to read from disk.
3147 	 */
3148 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3149 
3150 	vdev_config_dirty(tvd);
3151 
3152 	/*
3153 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3154 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3155 	 * But first make sure we're not on any *other* txg's DTL list, to
3156 	 * prevent vd from being accessed after it's freed.
3157 	 */
3158 	for (t = 0; t < TXG_SIZE; t++)
3159 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3160 	vd->vdev_detached = B_TRUE;
3161 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3162 
3163 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3164 
3165 	error = spa_vdev_exit(spa, vd, txg, 0);
3166 
3167 	/*
3168 	 * If this was the removal of the original device in a hot spare vdev,
3169 	 * then we want to go through and remove the device from the hot spare
3170 	 * list of every other pool.
3171 	 */
3172 	if (unspare) {
3173 		spa = NULL;
3174 		mutex_enter(&spa_namespace_lock);
3175 		while ((spa = spa_next(spa)) != NULL) {
3176 			if (spa->spa_state != POOL_STATE_ACTIVE)
3177 				continue;
3178 
3179 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3180 		}
3181 		mutex_exit(&spa_namespace_lock);
3182 	}
3183 
3184 	return (error);
3185 }
3186 
3187 /*
3188  * Remove a spares vdev from the nvlist config.
3189  */
3190 static int
3191 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
3192     nvlist_t **spares, int nspares, vdev_t *vd)
3193 {
3194 	nvlist_t *nv, **newspares;
3195 	int i, j;
3196 
3197 	nv = NULL;
3198 	for (i = 0; i < nspares; i++) {
3199 		uint64_t theguid;
3200 
3201 		VERIFY(nvlist_lookup_uint64(spares[i],
3202 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3203 		if (theguid == guid) {
3204 			nv = spares[i];
3205 			break;
3206 		}
3207 	}
3208 
3209 	/*
3210 	 * Only remove the hot spare if it's not currently in use in this pool.
3211 	 */
3212 	if (nv == NULL && vd == NULL)
3213 		return (ENOENT);
3214 
3215 	if (nv == NULL && vd != NULL)
3216 		return (ENOTSUP);
3217 
3218 	if (!unspare && nv != NULL && vd != NULL)
3219 		return (EBUSY);
3220 
3221 	if (nspares == 1) {
3222 		newspares = NULL;
3223 	} else {
3224 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
3225 		    KM_SLEEP);
3226 		for (i = 0, j = 0; i < nspares; i++) {
3227 			if (spares[i] != nv)
3228 				VERIFY(nvlist_dup(spares[i],
3229 				    &newspares[j++], KM_SLEEP) == 0);
3230 		}
3231 	}
3232 
3233 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
3234 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3235 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3236 	    ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
3237 	for (i = 0; i < nspares - 1; i++)
3238 		nvlist_free(newspares[i]);
3239 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
3240 
3241 	return (0);
3242 }
3243 
3244 /*
3245  * Remove an l2cache vdev from the nvlist config.
3246  */
3247 static int
3248 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
3249     int nl2cache, vdev_t *vd)
3250 {
3251 	nvlist_t *nv, **newl2cache;
3252 	int i, j;
3253 
3254 	nv = NULL;
3255 	for (i = 0; i < nl2cache; i++) {
3256 		uint64_t theguid;
3257 
3258 		VERIFY(nvlist_lookup_uint64(l2cache[i],
3259 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3260 		if (theguid == guid) {
3261 			nv = l2cache[i];
3262 			break;
3263 		}
3264 	}
3265 
3266 	if (vd == NULL) {
3267 		for (i = 0; i < nl2cache; i++) {
3268 			if (sav->sav_vdevs[i]->vdev_guid == guid) {
3269 				vd = sav->sav_vdevs[i];
3270 				break;
3271 			}
3272 		}
3273 	}
3274 
3275 	if (nv == NULL && vd == NULL)
3276 		return (ENOENT);
3277 
3278 	if (nv == NULL && vd != NULL)
3279 		return (ENOTSUP);
3280 
3281 	if (nl2cache == 1) {
3282 		newl2cache = NULL;
3283 	} else {
3284 		newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
3285 		    KM_SLEEP);
3286 		for (i = 0, j = 0; i < nl2cache; i++) {
3287 			if (l2cache[i] != nv)
3288 				VERIFY(nvlist_dup(l2cache[i],
3289 				    &newl2cache[j++], KM_SLEEP) == 0);
3290 		}
3291 	}
3292 
3293 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
3294 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3295 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3296 	    ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
3297 	for (i = 0; i < nl2cache - 1; i++)
3298 		nvlist_free(newl2cache[i]);
3299 	kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
3300 
3301 	return (0);
3302 }
3303 
3304 /*
3305  * Remove a device from the pool.  Currently, this supports removing only hot
3306  * spares and level 2 ARC devices.
3307  */
3308 int
3309 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3310 {
3311 	vdev_t *vd;
3312 	nvlist_t **spares, **l2cache;
3313 	uint_t nspares, nl2cache;
3314 	int error = 0;
3315 
3316 	spa_config_enter(spa, RW_WRITER, FTAG);
3317 
3318 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3319 
3320 	if (spa->spa_spares.sav_vdevs != NULL &&
3321 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3322 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
3323 		if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
3324 		    spares, nspares, vd)) != 0)
3325 			goto cache;
3326 		spa_load_spares(spa);
3327 		spa->spa_spares.sav_sync = B_TRUE;
3328 		goto out;
3329 	}
3330 
3331 cache:
3332 	if (spa->spa_l2cache.sav_vdevs != NULL &&
3333 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3334 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
3335 		if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
3336 		    l2cache, nl2cache, vd)) != 0)
3337 			goto out;
3338 		spa_load_l2cache(spa);
3339 		spa->spa_l2cache.sav_sync = B_TRUE;
3340 	}
3341 
3342 out:
3343 	spa_config_exit(spa, FTAG);
3344 	return (error);
3345 }
3346 
3347 /*
3348  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3349  * current spared, so we can detach it.
3350  */
3351 static vdev_t *
3352 spa_vdev_resilver_done_hunt(vdev_t *vd)
3353 {
3354 	vdev_t *newvd, *oldvd;
3355 	int c;
3356 
3357 	for (c = 0; c < vd->vdev_children; c++) {
3358 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3359 		if (oldvd != NULL)
3360 			return (oldvd);
3361 	}
3362 
3363 	/*
3364 	 * Check for a completed replacement.
3365 	 */
3366 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3367 		oldvd = vd->vdev_child[0];
3368 		newvd = vd->vdev_child[1];
3369 
3370 		mutex_enter(&newvd->vdev_dtl_lock);
3371 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3372 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3373 			mutex_exit(&newvd->vdev_dtl_lock);
3374 			return (oldvd);
3375 		}
3376 		mutex_exit(&newvd->vdev_dtl_lock);
3377 	}
3378 
3379 	/*
3380 	 * Check for a completed resilver with the 'unspare' flag set.
3381 	 */
3382 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3383 		newvd = vd->vdev_child[0];
3384 		oldvd = vd->vdev_child[1];
3385 
3386 		mutex_enter(&newvd->vdev_dtl_lock);
3387 		if (newvd->vdev_unspare &&
3388 		    newvd->vdev_dtl_map.sm_space == 0 &&
3389 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3390 			newvd->vdev_unspare = 0;
3391 			mutex_exit(&newvd->vdev_dtl_lock);
3392 			return (oldvd);
3393 		}
3394 		mutex_exit(&newvd->vdev_dtl_lock);
3395 	}
3396 
3397 	return (NULL);
3398 }
3399 
3400 static void
3401 spa_vdev_resilver_done(spa_t *spa)
3402 {
3403 	vdev_t *vd;
3404 	vdev_t *pvd;
3405 	uint64_t guid;
3406 	uint64_t pguid = 0;
3407 
3408 	spa_config_enter(spa, RW_READER, FTAG);
3409 
3410 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3411 		guid = vd->vdev_guid;
3412 		/*
3413 		 * If we have just finished replacing a hot spared device, then
3414 		 * we need to detach the parent's first child (the original hot
3415 		 * spare) as well.
3416 		 */
3417 		pvd = vd->vdev_parent;
3418 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3419 		    pvd->vdev_id == 0) {
3420 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3421 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3422 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3423 		}
3424 		spa_config_exit(spa, FTAG);
3425 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3426 			return;
3427 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3428 			return;
3429 		spa_config_enter(spa, RW_READER, FTAG);
3430 	}
3431 
3432 	spa_config_exit(spa, FTAG);
3433 }
3434 
3435 /*
3436  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3437  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3438  */
3439 int
3440 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3441 {
3442 	vdev_t *vd;
3443 	uint64_t txg;
3444 
3445 	txg = spa_vdev_enter(spa);
3446 
3447 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3448 		/*
3449 		 * Determine if this is a reference to a hot spare device.  If
3450 		 * it is, update the path manually as there is no associated
3451 		 * vdev_t that can be synced to disk.
3452 		 */
3453 		nvlist_t **spares;
3454 		uint_t i, nspares;
3455 
3456 		if (spa->spa_spares.sav_config != NULL) {
3457 			VERIFY(nvlist_lookup_nvlist_array(
3458 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3459 			    &spares, &nspares) == 0);
3460 			for (i = 0; i < nspares; i++) {
3461 				uint64_t theguid;
3462 				VERIFY(nvlist_lookup_uint64(spares[i],
3463 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3464 				if (theguid == guid) {
3465 					VERIFY(nvlist_add_string(spares[i],
3466 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3467 					spa_load_spares(spa);
3468 					spa->spa_spares.sav_sync = B_TRUE;
3469 					return (spa_vdev_exit(spa, NULL, txg,
3470 					    0));
3471 				}
3472 			}
3473 		}
3474 
3475 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3476 	}
3477 
3478 	if (!vd->vdev_ops->vdev_op_leaf)
3479 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3480 
3481 	spa_strfree(vd->vdev_path);
3482 	vd->vdev_path = spa_strdup(newpath);
3483 
3484 	vdev_config_dirty(vd->vdev_top);
3485 
3486 	return (spa_vdev_exit(spa, NULL, txg, 0));
3487 }
3488 
3489 /*
3490  * ==========================================================================
3491  * SPA Scrubbing
3492  * ==========================================================================
3493  */
3494 
3495 int
3496 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3497 {
3498 	ASSERT(!spa_config_held(spa, RW_WRITER));
3499 
3500 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3501 		return (ENOTSUP);
3502 
3503 	/*
3504 	 * If a resilver was requested, but there is no DTL on a
3505 	 * writeable leaf device, we have nothing to do.
3506 	 */
3507 	if (type == POOL_SCRUB_RESILVER &&
3508 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3509 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3510 		return (0);
3511 	}
3512 
3513 	if (type == POOL_SCRUB_EVERYTHING &&
3514 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3515 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3516 		return (EBUSY);
3517 
3518 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3519 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3520 	} else if (type == POOL_SCRUB_NONE) {
3521 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3522 	} else {
3523 		return (EINVAL);
3524 	}
3525 }
3526 
3527 /*
3528  * ==========================================================================
3529  * SPA async task processing
3530  * ==========================================================================
3531  */
3532 
3533 static void
3534 spa_async_remove(spa_t *spa, vdev_t *vd)
3535 {
3536 	int c;
3537 
3538 	if (vd->vdev_remove_wanted) {
3539 		vd->vdev_remove_wanted = 0;
3540 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3541 		vdev_clear(spa, vd, B_TRUE);
3542 		vdev_config_dirty(vd->vdev_top);
3543 	}
3544 
3545 	for (c = 0; c < vd->vdev_children; c++)
3546 		spa_async_remove(spa, vd->vdev_child[c]);
3547 }
3548 
3549 static void
3550 spa_async_thread(spa_t *spa)
3551 {
3552 	int tasks, i;
3553 	uint64_t txg;
3554 
3555 	ASSERT(spa->spa_sync_on);
3556 
3557 	mutex_enter(&spa->spa_async_lock);
3558 	tasks = spa->spa_async_tasks;
3559 	spa->spa_async_tasks = 0;
3560 	mutex_exit(&spa->spa_async_lock);
3561 
3562 	/*
3563 	 * See if the config needs to be updated.
3564 	 */
3565 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3566 		mutex_enter(&spa_namespace_lock);
3567 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3568 		mutex_exit(&spa_namespace_lock);
3569 	}
3570 
3571 	/*
3572 	 * See if any devices need to be marked REMOVED.
3573 	 *
3574 	 * XXX - We avoid doing this when we are in
3575 	 * I/O failure state since spa_vdev_enter() grabs
3576 	 * the namespace lock and would not be able to obtain
3577 	 * the writer config lock.
3578 	 */
3579 	if (tasks & SPA_ASYNC_REMOVE &&
3580 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3581 		txg = spa_vdev_enter(spa);
3582 		spa_async_remove(spa, spa->spa_root_vdev);
3583 		for (i = 0; i < spa->spa_l2cache.sav_count; i++)
3584 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3585 		for (i = 0; i < spa->spa_spares.sav_count; i++)
3586 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3587 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3588 	}
3589 
3590 	/*
3591 	 * If any devices are done replacing, detach them.
3592 	 */
3593 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3594 		spa_vdev_resilver_done(spa);
3595 
3596 	/*
3597 	 * Kick off a resilver.
3598 	 */
3599 	if (tasks & SPA_ASYNC_RESILVER)
3600 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3601 
3602 	/*
3603 	 * Let the world know that we're done.
3604 	 */
3605 	mutex_enter(&spa->spa_async_lock);
3606 	spa->spa_async_thread = NULL;
3607 	cv_broadcast(&spa->spa_async_cv);
3608 	mutex_exit(&spa->spa_async_lock);
3609 	thread_exit();
3610 }
3611 
3612 void
3613 spa_async_suspend(spa_t *spa)
3614 {
3615 	mutex_enter(&spa->spa_async_lock);
3616 	spa->spa_async_suspended++;
3617 	while (spa->spa_async_thread != NULL)
3618 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3619 	mutex_exit(&spa->spa_async_lock);
3620 }
3621 
3622 void
3623 spa_async_resume(spa_t *spa)
3624 {
3625 	mutex_enter(&spa->spa_async_lock);
3626 	ASSERT(spa->spa_async_suspended != 0);
3627 	spa->spa_async_suspended--;
3628 	mutex_exit(&spa->spa_async_lock);
3629 }
3630 
3631 static void
3632 spa_async_dispatch(spa_t *spa)
3633 {
3634 	mutex_enter(&spa->spa_async_lock);
3635 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3636 	    spa->spa_async_thread == NULL &&
3637 	    rootdir != NULL && !vn_is_readonly(rootdir))
3638 		spa->spa_async_thread = thread_create(NULL, 0,
3639 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3640 	mutex_exit(&spa->spa_async_lock);
3641 }
3642 
3643 void
3644 spa_async_request(spa_t *spa, int task)
3645 {
3646 	mutex_enter(&spa->spa_async_lock);
3647 	spa->spa_async_tasks |= task;
3648 	mutex_exit(&spa->spa_async_lock);
3649 }
3650 
3651 /*
3652  * ==========================================================================
3653  * SPA syncing routines
3654  * ==========================================================================
3655  */
3656 
3657 static void
3658 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3659 {
3660 	bplist_t *bpl = &spa->spa_sync_bplist;
3661 	dmu_tx_t *tx;
3662 	blkptr_t blk;
3663 	uint64_t itor = 0;
3664 	zio_t *zio;
3665 	int error;
3666 	uint8_t c = 1;
3667 
3668 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3669 
3670 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3671 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3672 
3673 	error = zio_wait(zio);
3674 	ASSERT3U(error, ==, 0);
3675 
3676 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3677 	bplist_vacate(bpl, tx);
3678 
3679 	/*
3680 	 * Pre-dirty the first block so we sync to convergence faster.
3681 	 * (Usually only the first block is needed.)
3682 	 */
3683 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3684 	dmu_tx_commit(tx);
3685 }
3686 
3687 static void
3688 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3689 {
3690 	char *packed = NULL;
3691 	size_t nvsize = 0;
3692 	dmu_buf_t *db;
3693 
3694 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3695 
3696 	packed = kmem_alloc(nvsize, KM_SLEEP);
3697 
3698 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3699 	    KM_SLEEP) == 0);
3700 
3701 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3702 
3703 	kmem_free(packed, nvsize);
3704 
3705 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3706 	dmu_buf_will_dirty(db, tx);
3707 	*(uint64_t *)db->db_data = nvsize;
3708 	dmu_buf_rele(db, FTAG);
3709 }
3710 
3711 static void
3712 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3713     const char *config, const char *entry)
3714 {
3715 	nvlist_t *nvroot;
3716 	nvlist_t **list;
3717 	int i;
3718 
3719 	if (!sav->sav_sync)
3720 		return;
3721 
3722 	/*
3723 	 * Update the MOS nvlist describing the list of available devices.
3724 	 * spa_validate_aux() will have already made sure this nvlist is
3725 	 * valid and the vdevs are labeled appropriately.
3726 	 */
3727 	if (sav->sav_object == 0) {
3728 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3729 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3730 		    sizeof (uint64_t), tx);
3731 		VERIFY(zap_update(spa->spa_meta_objset,
3732 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3733 		    &sav->sav_object, tx) == 0);
3734 	}
3735 
3736 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3737 	if (sav->sav_count == 0) {
3738 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3739 	} else {
3740 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3741 		for (i = 0; i < sav->sav_count; i++)
3742 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3743 			    B_FALSE, B_FALSE, B_TRUE);
3744 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3745 		    sav->sav_count) == 0);
3746 		for (i = 0; i < sav->sav_count; i++)
3747 			nvlist_free(list[i]);
3748 		kmem_free(list, sav->sav_count * sizeof (void *));
3749 	}
3750 
3751 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3752 	nvlist_free(nvroot);
3753 
3754 	sav->sav_sync = B_FALSE;
3755 }
3756 
3757 static void
3758 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3759 {
3760 	nvlist_t *config;
3761 
3762 	if (list_is_empty(&spa->spa_dirty_list))
3763 		return;
3764 
3765 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3766 
3767 	if (spa->spa_config_syncing)
3768 		nvlist_free(spa->spa_config_syncing);
3769 	spa->spa_config_syncing = config;
3770 
3771 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3772 }
3773 
3774 /*
3775  * Set zpool properties.
3776  */
3777 static void
3778 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3779 {
3780 	spa_t *spa = arg1;
3781 	objset_t *mos = spa->spa_meta_objset;
3782 	nvlist_t *nvp = arg2;
3783 	nvpair_t *elem;
3784 	uint64_t intval;
3785 	char *strval;
3786 	zpool_prop_t prop;
3787 	const char *propname;
3788 	zprop_type_t proptype;
3789 	spa_config_dirent_t *dp;
3790 
3791 	elem = NULL;
3792 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3793 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3794 		case ZPOOL_PROP_VERSION:
3795 			/*
3796 			 * Only set version for non-zpool-creation cases
3797 			 * (set/import). spa_create() needs special care
3798 			 * for version setting.
3799 			 */
3800 			if (tx->tx_txg != TXG_INITIAL) {
3801 				VERIFY(nvpair_value_uint64(elem,
3802 				    &intval) == 0);
3803 				ASSERT(intval <= SPA_VERSION);
3804 				ASSERT(intval >= spa_version(spa));
3805 				spa->spa_uberblock.ub_version = intval;
3806 				vdev_config_dirty(spa->spa_root_vdev);
3807 			}
3808 			break;
3809 
3810 		case ZPOOL_PROP_ALTROOT:
3811 			/*
3812 			 * 'altroot' is a non-persistent property. It should
3813 			 * have been set temporarily at creation or import time.
3814 			 */
3815 			ASSERT(spa->spa_root != NULL);
3816 			break;
3817 
3818 		case ZPOOL_PROP_CACHEFILE:
3819 			/*
3820 			 * 'cachefile' is a non-persistent property, but note
3821 			 * an async request that the config cache needs to be
3822 			 * udpated.
3823 			 */
3824 			VERIFY(nvpair_value_string(elem, &strval) == 0);
3825 
3826 			dp = kmem_alloc(sizeof (spa_config_dirent_t),
3827 			    KM_SLEEP);
3828 
3829 			if (strval[0] == '\0')
3830 				dp->scd_path = spa_strdup(spa_config_path);
3831 			else if (strcmp(strval, "none") == 0)
3832 				dp->scd_path = NULL;
3833 			else
3834 				dp->scd_path = spa_strdup(strval);
3835 
3836 			list_insert_head(&spa->spa_config_list, dp);
3837 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3838 			break;
3839 		default:
3840 			/*
3841 			 * Set pool property values in the poolprops mos object.
3842 			 */
3843 			mutex_enter(&spa->spa_props_lock);
3844 			if (spa->spa_pool_props_object == 0) {
3845 				objset_t *mos = spa->spa_meta_objset;
3846 
3847 				VERIFY((spa->spa_pool_props_object =
3848 				    zap_create(mos, DMU_OT_POOL_PROPS,
3849 				    DMU_OT_NONE, 0, tx)) > 0);
3850 
3851 				VERIFY(zap_update(mos,
3852 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3853 				    8, 1, &spa->spa_pool_props_object, tx)
3854 				    == 0);
3855 			}
3856 			mutex_exit(&spa->spa_props_lock);
3857 
3858 			/* normalize the property name */
3859 			propname = zpool_prop_to_name(prop);
3860 			proptype = zpool_prop_get_type(prop);
3861 
3862 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3863 				ASSERT(proptype == PROP_TYPE_STRING);
3864 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3865 				VERIFY(zap_update(mos,
3866 				    spa->spa_pool_props_object, propname,
3867 				    1, strlen(strval) + 1, strval, tx) == 0);
3868 
3869 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3870 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3871 
3872 				if (proptype == PROP_TYPE_INDEX) {
3873 					const char *unused;
3874 					VERIFY(zpool_prop_index_to_string(
3875 					    prop, intval, &unused) == 0);
3876 				}
3877 				VERIFY(zap_update(mos,
3878 				    spa->spa_pool_props_object, propname,
3879 				    8, 1, &intval, tx) == 0);
3880 			} else {
3881 				ASSERT(0); /* not allowed */
3882 			}
3883 
3884 			switch (prop) {
3885 			case ZPOOL_PROP_DELEGATION:
3886 				spa->spa_delegation = intval;
3887 				break;
3888 			case ZPOOL_PROP_BOOTFS:
3889 				spa->spa_bootfs = intval;
3890 				break;
3891 			case ZPOOL_PROP_FAILUREMODE:
3892 				spa->spa_failmode = intval;
3893 				break;
3894 			default:
3895 				break;
3896 			}
3897 		}
3898 
3899 		/* log internal history if this is not a zpool create */
3900 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3901 		    tx->tx_txg != TXG_INITIAL) {
3902 			spa_history_internal_log(LOG_POOL_PROPSET,
3903 			    spa, tx, cr, "%s %lld %s",
3904 			    nvpair_name(elem), intval, spa->spa_name);
3905 		}
3906 	}
3907 }
3908 
3909 /*
3910  * Sync the specified transaction group.  New blocks may be dirtied as
3911  * part of the process, so we iterate until it converges.
3912  */
3913 void
3914 spa_sync(spa_t *spa, uint64_t txg)
3915 {
3916 	dsl_pool_t *dp = spa->spa_dsl_pool;
3917 	objset_t *mos = spa->spa_meta_objset;
3918 	bplist_t *bpl = &spa->spa_sync_bplist;
3919 	vdev_t *rvd = spa->spa_root_vdev;
3920 	vdev_t *vd;
3921 	dmu_tx_t *tx;
3922 	int dirty_vdevs;
3923 
3924 	/*
3925 	 * Lock out configuration changes.
3926 	 */
3927 	spa_config_enter(spa, RW_READER, FTAG);
3928 
3929 	spa->spa_syncing_txg = txg;
3930 	spa->spa_sync_pass = 0;
3931 
3932 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3933 
3934 	tx = dmu_tx_create_assigned(dp, txg);
3935 
3936 	/*
3937 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3938 	 * set spa_deflate if we have no raid-z vdevs.
3939 	 */
3940 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3941 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3942 		int i;
3943 
3944 		for (i = 0; i < rvd->vdev_children; i++) {
3945 			vd = rvd->vdev_child[i];
3946 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3947 				break;
3948 		}
3949 		if (i == rvd->vdev_children) {
3950 			spa->spa_deflate = TRUE;
3951 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3952 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3953 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3954 		}
3955 	}
3956 
3957 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
3958 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
3959 		dsl_pool_create_origin(dp, tx);
3960 
3961 		/* Keeping the origin open increases spa_minref */
3962 		spa->spa_minref += 3;
3963 	}
3964 
3965 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
3966 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
3967 		dsl_pool_upgrade_clones(dp, tx);
3968 	}
3969 
3970 	/*
3971 	 * If anything has changed in this txg, push the deferred frees
3972 	 * from the previous txg.  If not, leave them alone so that we
3973 	 * don't generate work on an otherwise idle system.
3974 	 */
3975 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3976 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3977 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3978 		spa_sync_deferred_frees(spa, txg);
3979 
3980 	/*
3981 	 * Iterate to convergence.
3982 	 */
3983 	do {
3984 		spa->spa_sync_pass++;
3985 
3986 		spa_sync_config_object(spa, tx);
3987 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
3988 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
3989 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
3990 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
3991 		spa_errlog_sync(spa, txg);
3992 		dsl_pool_sync(dp, txg);
3993 
3994 		dirty_vdevs = 0;
3995 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3996 			vdev_sync(vd, txg);
3997 			dirty_vdevs++;
3998 		}
3999 
4000 		bplist_sync(bpl, tx);
4001 	} while (dirty_vdevs);
4002 
4003 	bplist_close(bpl);
4004 
4005 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4006 
4007 	/*
4008 	 * Rewrite the vdev configuration (which includes the uberblock)
4009 	 * to commit the transaction group.
4010 	 *
4011 	 * If there are no dirty vdevs, we sync the uberblock to a few
4012 	 * random top-level vdevs that are known to be visible in the
4013 	 * config cache (see spa_vdev_add() for details).  If there *are*
4014 	 * dirty vdevs -- or if the sync to our random subset fails --
4015 	 * then sync the uberblock to all vdevs.
4016 	 */
4017 	if (list_is_empty(&spa->spa_dirty_list)) {
4018 		vdev_t *svd[SPA_DVAS_PER_BP];
4019 		int svdcount = 0;
4020 		int children = rvd->vdev_children;
4021 		int c0 = spa_get_random(children);
4022 		int c;
4023 
4024 		for (c = 0; c < children; c++) {
4025 			vd = rvd->vdev_child[(c0 + c) % children];
4026 			if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4027 				continue;
4028 			svd[svdcount++] = vd;
4029 			if (svdcount == SPA_DVAS_PER_BP)
4030 				break;
4031 		}
4032 		vdev_config_sync(svd, svdcount, txg);
4033 	} else {
4034 		vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg);
4035 	}
4036 	dmu_tx_commit(tx);
4037 
4038 	/*
4039 	 * Clear the dirty config list.
4040 	 */
4041 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
4042 		vdev_config_clean(vd);
4043 
4044 	/*
4045 	 * Now that the new config has synced transactionally,
4046 	 * let it become visible to the config cache.
4047 	 */
4048 	if (spa->spa_config_syncing != NULL) {
4049 		spa_config_set(spa, spa->spa_config_syncing);
4050 		spa->spa_config_txg = txg;
4051 		spa->spa_config_syncing = NULL;
4052 	}
4053 
4054 	spa->spa_traverse_wanted = B_TRUE;
4055 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
4056 	spa->spa_traverse_wanted = B_FALSE;
4057 	spa->spa_ubsync = spa->spa_uberblock;
4058 	rw_exit(&spa->spa_traverse_lock);
4059 
4060 	/*
4061 	 * Clean up the ZIL records for the synced txg.
4062 	 */
4063 	dsl_pool_zil_clean(dp);
4064 
4065 	/*
4066 	 * Update usable space statistics.
4067 	 */
4068 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4069 		vdev_sync_done(vd, txg);
4070 
4071 	/*
4072 	 * It had better be the case that we didn't dirty anything
4073 	 * since vdev_config_sync().
4074 	 */
4075 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4076 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4077 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4078 	ASSERT(bpl->bpl_queue == NULL);
4079 
4080 	spa_config_exit(spa, FTAG);
4081 
4082 	/*
4083 	 * If any async tasks have been requested, kick them off.
4084 	 */
4085 	spa_async_dispatch(spa);
4086 }
4087 
4088 /*
4089  * Sync all pools.  We don't want to hold the namespace lock across these
4090  * operations, so we take a reference on the spa_t and drop the lock during the
4091  * sync.
4092  */
4093 void
4094 spa_sync_allpools(void)
4095 {
4096 	spa_t *spa = NULL;
4097 	mutex_enter(&spa_namespace_lock);
4098 	while ((spa = spa_next(spa)) != NULL) {
4099 		if (spa_state(spa) != POOL_STATE_ACTIVE)
4100 			continue;
4101 		spa_open_ref(spa, FTAG);
4102 		mutex_exit(&spa_namespace_lock);
4103 		txg_wait_synced(spa_get_dsl(spa), 0);
4104 		mutex_enter(&spa_namespace_lock);
4105 		spa_close(spa, FTAG);
4106 	}
4107 	mutex_exit(&spa_namespace_lock);
4108 }
4109 
4110 /*
4111  * ==========================================================================
4112  * Miscellaneous routines
4113  * ==========================================================================
4114  */
4115 
4116 /*
4117  * Remove all pools in the system.
4118  */
4119 void
4120 spa_evict_all(void)
4121 {
4122 	spa_t *spa;
4123 
4124 	/*
4125 	 * Remove all cached state.  All pools should be closed now,
4126 	 * so every spa in the AVL tree should be unreferenced.
4127 	 */
4128 	mutex_enter(&spa_namespace_lock);
4129 	while ((spa = spa_next(NULL)) != NULL) {
4130 		/*
4131 		 * Stop async tasks.  The async thread may need to detach
4132 		 * a device that's been replaced, which requires grabbing
4133 		 * spa_namespace_lock, so we must drop it here.
4134 		 */
4135 		spa_open_ref(spa, FTAG);
4136 		mutex_exit(&spa_namespace_lock);
4137 		spa_async_suspend(spa);
4138 		mutex_enter(&spa_namespace_lock);
4139 		spa_close(spa, FTAG);
4140 
4141 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4142 			spa_unload(spa);
4143 			spa_deactivate(spa);
4144 		}
4145 		spa_remove(spa);
4146 	}
4147 	mutex_exit(&spa_namespace_lock);
4148 }
4149 
4150 vdev_t *
4151 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4152 {
4153 	vdev_t *vd;
4154 	int i;
4155 
4156 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4157 		return (vd);
4158 
4159 	if (l2cache) {
4160 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4161 			vd = spa->spa_l2cache.sav_vdevs[i];
4162 			if (vd->vdev_guid == guid)
4163 				return (vd);
4164 		}
4165 	}
4166 
4167 	return (NULL);
4168 }
4169 
4170 void
4171 spa_upgrade(spa_t *spa, uint64_t version)
4172 {
4173 	spa_config_enter(spa, RW_WRITER, FTAG);
4174 
4175 	/*
4176 	 * This should only be called for a non-faulted pool, and since a
4177 	 * future version would result in an unopenable pool, this shouldn't be
4178 	 * possible.
4179 	 */
4180 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4181 	ASSERT(version >= spa->spa_uberblock.ub_version);
4182 
4183 	spa->spa_uberblock.ub_version = version;
4184 	vdev_config_dirty(spa->spa_root_vdev);
4185 
4186 	spa_config_exit(spa, FTAG);
4187 
4188 	txg_wait_synced(spa_get_dsl(spa), 0);
4189 }
4190 
4191 boolean_t
4192 spa_has_spare(spa_t *spa, uint64_t guid)
4193 {
4194 	int i;
4195 	uint64_t spareguid;
4196 	spa_aux_vdev_t *sav = &spa->spa_spares;
4197 
4198 	for (i = 0; i < sav->sav_count; i++)
4199 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4200 			return (B_TRUE);
4201 
4202 	for (i = 0; i < sav->sav_npending; i++) {
4203 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4204 		    &spareguid) == 0 && spareguid == guid)
4205 			return (B_TRUE);
4206 	}
4207 
4208 	return (B_FALSE);
4209 }
4210 
4211 /*
4212  * Check if a pool has an active shared spare device.
4213  * Note: reference count of an active spare is 2, as a spare and as a replace
4214  */
4215 static boolean_t
4216 spa_has_active_shared_spare(spa_t *spa)
4217 {
4218 	int i, refcnt;
4219 	uint64_t pool;
4220 	spa_aux_vdev_t *sav = &spa->spa_spares;
4221 
4222 	for (i = 0; i < sav->sav_count; i++) {
4223 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4224 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4225 		    refcnt > 2)
4226 			return (B_TRUE);
4227 	}
4228 
4229 	return (B_FALSE);
4230 }
4231 
4232 /*
4233  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4234  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4235  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4236  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4237  * or zdb as real changes.
4238  */
4239 void
4240 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4241 {
4242 #ifdef _KERNEL
4243 	sysevent_t		*ev;
4244 	sysevent_attr_list_t	*attr = NULL;
4245 	sysevent_value_t	value;
4246 	sysevent_id_t		eid;
4247 
4248 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4249 	    SE_SLEEP);
4250 
4251 	value.value_type = SE_DATA_TYPE_STRING;
4252 	value.value.sv_string = spa_name(spa);
4253 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4254 		goto done;
4255 
4256 	value.value_type = SE_DATA_TYPE_UINT64;
4257 	value.value.sv_uint64 = spa_guid(spa);
4258 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4259 		goto done;
4260 
4261 	if (vd) {
4262 		value.value_type = SE_DATA_TYPE_UINT64;
4263 		value.value.sv_uint64 = vd->vdev_guid;
4264 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4265 		    SE_SLEEP) != 0)
4266 			goto done;
4267 
4268 		if (vd->vdev_path) {
4269 			value.value_type = SE_DATA_TYPE_STRING;
4270 			value.value.sv_string = vd->vdev_path;
4271 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4272 			    &value, SE_SLEEP) != 0)
4273 				goto done;
4274 		}
4275 	}
4276 
4277 	if (sysevent_attach_attributes(ev, attr) != 0)
4278 		goto done;
4279 	attr = NULL;
4280 
4281 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4282 
4283 done:
4284 	if (attr)
4285 		sysevent_free_attr(attr);
4286 	sysevent_free(ev);
4287 #endif
4288 }
4289