xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 468c413a79615e77179e8d98f22a7e513a8135bd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/uberblock_impl.h>
47 #include <sys/txg.h>
48 #include <sys/avl.h>
49 #include <sys/dmu_traverse.h>
50 #include <sys/dmu_objset.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dataset.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/dsl_synctask.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/arc.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 
65 #ifdef	_KERNEL
66 #include <sys/zone.h>
67 #include <sys/bootprops.h>
68 #endif	/* _KERNEL */
69 
70 #include "zfs_prop.h"
71 #include "zfs_comutil.h"
72 
73 enum zti_modes {
74 	zti_mode_fixed,			/* value is # of threads (min 1) */
75 	zti_mode_online_percent,	/* value is % of online CPUs */
76 	zti_mode_tune,			/* fill from zio_taskq_tune_* */
77 	zti_nmodes
78 };
79 
80 #define	ZTI_THREAD_FIX(n)	{ zti_mode_fixed, (n) }
81 #define	ZTI_THREAD_PCT(n)	{ zti_mode_online_percent, (n) }
82 #define	ZTI_THREAD_TUNE		{ zti_mode_tune, 0 }
83 
84 #define	ZTI_THREAD_ONE		ZTI_THREAD_FIX(1)
85 
86 typedef struct zio_taskq_info {
87 	const char *zti_name;
88 	struct {
89 		enum zti_modes zti_mode;
90 		uint_t zti_value;
91 	} zti_nthreads[ZIO_TASKQ_TYPES];
92 } zio_taskq_info_t;
93 
94 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
95 				"issue",		"intr"
96 };
97 
98 const zio_taskq_info_t zio_taskqs[ZIO_TYPES] = {
99 	/*			ISSUE			INTR		*/
100 	{ "spa_zio_null",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
101 	{ "spa_zio_read",	{ ZTI_THREAD_FIX(8),	ZTI_THREAD_TUNE } },
102 	{ "spa_zio_write",	{ ZTI_THREAD_TUNE,	ZTI_THREAD_FIX(8) } },
103 	{ "spa_zio_free",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
104 	{ "spa_zio_claim",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
105 	{ "spa_zio_ioctl",	{ ZTI_THREAD_ONE,	ZTI_THREAD_ONE } },
106 };
107 
108 enum zti_modes zio_taskq_tune_mode = zti_mode_online_percent;
109 uint_t zio_taskq_tune_value = 80;	/* #threads = 80% of # online CPUs */
110 
111 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
112 static boolean_t spa_has_active_shared_spare(spa_t *spa);
113 
114 /*
115  * ==========================================================================
116  * SPA properties routines
117  * ==========================================================================
118  */
119 
120 /*
121  * Add a (source=src, propname=propval) list to an nvlist.
122  */
123 static void
124 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
125     uint64_t intval, zprop_source_t src)
126 {
127 	const char *propname = zpool_prop_to_name(prop);
128 	nvlist_t *propval;
129 
130 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
131 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
132 
133 	if (strval != NULL)
134 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
135 	else
136 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
137 
138 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
139 	nvlist_free(propval);
140 }
141 
142 /*
143  * Get property values from the spa configuration.
144  */
145 static void
146 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
147 {
148 	uint64_t size;
149 	uint64_t used;
150 	uint64_t cap, version;
151 	zprop_source_t src = ZPROP_SRC_NONE;
152 	spa_config_dirent_t *dp;
153 
154 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
155 
156 	if (spa->spa_root_vdev != NULL) {
157 		size = spa_get_space(spa);
158 		used = spa_get_alloc(spa);
159 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
160 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
161 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
162 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
163 		    size - used, src);
164 
165 		cap = (size == 0) ? 0 : (used * 100 / size);
166 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
167 
168 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
169 		    spa->spa_root_vdev->vdev_state, src);
170 
171 		version = spa_version(spa);
172 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
173 			src = ZPROP_SRC_DEFAULT;
174 		else
175 			src = ZPROP_SRC_LOCAL;
176 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
177 	}
178 
179 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
180 
181 	if (spa->spa_root != NULL)
182 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
183 		    0, ZPROP_SRC_LOCAL);
184 
185 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
186 		if (dp->scd_path == NULL) {
187 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
188 			    "none", 0, ZPROP_SRC_LOCAL);
189 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
190 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
191 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
192 		}
193 	}
194 }
195 
196 /*
197  * Get zpool property values.
198  */
199 int
200 spa_prop_get(spa_t *spa, nvlist_t **nvp)
201 {
202 	zap_cursor_t zc;
203 	zap_attribute_t za;
204 	objset_t *mos = spa->spa_meta_objset;
205 	int err;
206 
207 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
208 
209 	mutex_enter(&spa->spa_props_lock);
210 
211 	/*
212 	 * Get properties from the spa config.
213 	 */
214 	spa_prop_get_config(spa, nvp);
215 
216 	/* If no pool property object, no more prop to get. */
217 	if (spa->spa_pool_props_object == 0) {
218 		mutex_exit(&spa->spa_props_lock);
219 		return (0);
220 	}
221 
222 	/*
223 	 * Get properties from the MOS pool property object.
224 	 */
225 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
226 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
227 	    zap_cursor_advance(&zc)) {
228 		uint64_t intval = 0;
229 		char *strval = NULL;
230 		zprop_source_t src = ZPROP_SRC_DEFAULT;
231 		zpool_prop_t prop;
232 
233 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
234 			continue;
235 
236 		switch (za.za_integer_length) {
237 		case 8:
238 			/* integer property */
239 			if (za.za_first_integer !=
240 			    zpool_prop_default_numeric(prop))
241 				src = ZPROP_SRC_LOCAL;
242 
243 			if (prop == ZPOOL_PROP_BOOTFS) {
244 				dsl_pool_t *dp;
245 				dsl_dataset_t *ds = NULL;
246 
247 				dp = spa_get_dsl(spa);
248 				rw_enter(&dp->dp_config_rwlock, RW_READER);
249 				if (err = dsl_dataset_hold_obj(dp,
250 				    za.za_first_integer, FTAG, &ds)) {
251 					rw_exit(&dp->dp_config_rwlock);
252 					break;
253 				}
254 
255 				strval = kmem_alloc(
256 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
257 				    KM_SLEEP);
258 				dsl_dataset_name(ds, strval);
259 				dsl_dataset_rele(ds, FTAG);
260 				rw_exit(&dp->dp_config_rwlock);
261 			} else {
262 				strval = NULL;
263 				intval = za.za_first_integer;
264 			}
265 
266 			spa_prop_add_list(*nvp, prop, strval, intval, src);
267 
268 			if (strval != NULL)
269 				kmem_free(strval,
270 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
271 
272 			break;
273 
274 		case 1:
275 			/* string property */
276 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
277 			err = zap_lookup(mos, spa->spa_pool_props_object,
278 			    za.za_name, 1, za.za_num_integers, strval);
279 			if (err) {
280 				kmem_free(strval, za.za_num_integers);
281 				break;
282 			}
283 			spa_prop_add_list(*nvp, prop, strval, 0, src);
284 			kmem_free(strval, za.za_num_integers);
285 			break;
286 
287 		default:
288 			break;
289 		}
290 	}
291 	zap_cursor_fini(&zc);
292 	mutex_exit(&spa->spa_props_lock);
293 out:
294 	if (err && err != ENOENT) {
295 		nvlist_free(*nvp);
296 		*nvp = NULL;
297 		return (err);
298 	}
299 
300 	return (0);
301 }
302 
303 /*
304  * Validate the given pool properties nvlist and modify the list
305  * for the property values to be set.
306  */
307 static int
308 spa_prop_validate(spa_t *spa, nvlist_t *props)
309 {
310 	nvpair_t *elem;
311 	int error = 0, reset_bootfs = 0;
312 	uint64_t objnum;
313 
314 	elem = NULL;
315 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
316 		zpool_prop_t prop;
317 		char *propname, *strval;
318 		uint64_t intval;
319 		objset_t *os;
320 		char *slash;
321 
322 		propname = nvpair_name(elem);
323 
324 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
325 			return (EINVAL);
326 
327 		switch (prop) {
328 		case ZPOOL_PROP_VERSION:
329 			error = nvpair_value_uint64(elem, &intval);
330 			if (!error &&
331 			    (intval < spa_version(spa) || intval > SPA_VERSION))
332 				error = EINVAL;
333 			break;
334 
335 		case ZPOOL_PROP_DELEGATION:
336 		case ZPOOL_PROP_AUTOREPLACE:
337 		case ZPOOL_PROP_LISTSNAPS:
338 		case ZPOOL_PROP_AUTOEXPAND:
339 			error = nvpair_value_uint64(elem, &intval);
340 			if (!error && intval > 1)
341 				error = EINVAL;
342 			break;
343 
344 		case ZPOOL_PROP_BOOTFS:
345 			/*
346 			 * If the pool version is less than SPA_VERSION_BOOTFS,
347 			 * or the pool is still being created (version == 0),
348 			 * the bootfs property cannot be set.
349 			 */
350 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
351 				error = ENOTSUP;
352 				break;
353 			}
354 
355 			/*
356 			 * Make sure the vdev config is bootable
357 			 */
358 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
359 				error = ENOTSUP;
360 				break;
361 			}
362 
363 			reset_bootfs = 1;
364 
365 			error = nvpair_value_string(elem, &strval);
366 
367 			if (!error) {
368 				uint64_t compress;
369 
370 				if (strval == NULL || strval[0] == '\0') {
371 					objnum = zpool_prop_default_numeric(
372 					    ZPOOL_PROP_BOOTFS);
373 					break;
374 				}
375 
376 				if (error = dmu_objset_hold(strval, FTAG, &os))
377 					break;
378 
379 				/* Must be ZPL and not gzip compressed. */
380 
381 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
382 					error = ENOTSUP;
383 				} else if ((error = dsl_prop_get_integer(strval,
384 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
385 				    &compress, NULL)) == 0 &&
386 				    !BOOTFS_COMPRESS_VALID(compress)) {
387 					error = ENOTSUP;
388 				} else {
389 					objnum = dmu_objset_id(os);
390 				}
391 				dmu_objset_rele(os, FTAG);
392 			}
393 			break;
394 
395 		case ZPOOL_PROP_FAILUREMODE:
396 			error = nvpair_value_uint64(elem, &intval);
397 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
398 			    intval > ZIO_FAILURE_MODE_PANIC))
399 				error = EINVAL;
400 
401 			/*
402 			 * This is a special case which only occurs when
403 			 * the pool has completely failed. This allows
404 			 * the user to change the in-core failmode property
405 			 * without syncing it out to disk (I/Os might
406 			 * currently be blocked). We do this by returning
407 			 * EIO to the caller (spa_prop_set) to trick it
408 			 * into thinking we encountered a property validation
409 			 * error.
410 			 */
411 			if (!error && spa_suspended(spa)) {
412 				spa->spa_failmode = intval;
413 				error = EIO;
414 			}
415 			break;
416 
417 		case ZPOOL_PROP_CACHEFILE:
418 			if ((error = nvpair_value_string(elem, &strval)) != 0)
419 				break;
420 
421 			if (strval[0] == '\0')
422 				break;
423 
424 			if (strcmp(strval, "none") == 0)
425 				break;
426 
427 			if (strval[0] != '/') {
428 				error = EINVAL;
429 				break;
430 			}
431 
432 			slash = strrchr(strval, '/');
433 			ASSERT(slash != NULL);
434 
435 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
436 			    strcmp(slash, "/..") == 0)
437 				error = EINVAL;
438 			break;
439 		}
440 
441 		if (error)
442 			break;
443 	}
444 
445 	if (!error && reset_bootfs) {
446 		error = nvlist_remove(props,
447 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
448 
449 		if (!error) {
450 			error = nvlist_add_uint64(props,
451 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
452 		}
453 	}
454 
455 	return (error);
456 }
457 
458 void
459 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
460 {
461 	char *cachefile;
462 	spa_config_dirent_t *dp;
463 
464 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
465 	    &cachefile) != 0)
466 		return;
467 
468 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
469 	    KM_SLEEP);
470 
471 	if (cachefile[0] == '\0')
472 		dp->scd_path = spa_strdup(spa_config_path);
473 	else if (strcmp(cachefile, "none") == 0)
474 		dp->scd_path = NULL;
475 	else
476 		dp->scd_path = spa_strdup(cachefile);
477 
478 	list_insert_head(&spa->spa_config_list, dp);
479 	if (need_sync)
480 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
481 }
482 
483 int
484 spa_prop_set(spa_t *spa, nvlist_t *nvp)
485 {
486 	int error;
487 	nvpair_t *elem;
488 	boolean_t need_sync = B_FALSE;
489 	zpool_prop_t prop;
490 
491 	if ((error = spa_prop_validate(spa, nvp)) != 0)
492 		return (error);
493 
494 	elem = NULL;
495 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
496 		if ((prop = zpool_name_to_prop(
497 		    nvpair_name(elem))) == ZPROP_INVAL)
498 			return (EINVAL);
499 
500 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
501 			continue;
502 
503 		need_sync = B_TRUE;
504 		break;
505 	}
506 
507 	if (need_sync)
508 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
509 		    spa, nvp, 3));
510 	else
511 		return (0);
512 }
513 
514 /*
515  * If the bootfs property value is dsobj, clear it.
516  */
517 void
518 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
519 {
520 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
521 		VERIFY(zap_remove(spa->spa_meta_objset,
522 		    spa->spa_pool_props_object,
523 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
524 		spa->spa_bootfs = 0;
525 	}
526 }
527 
528 /*
529  * ==========================================================================
530  * SPA state manipulation (open/create/destroy/import/export)
531  * ==========================================================================
532  */
533 
534 static int
535 spa_error_entry_compare(const void *a, const void *b)
536 {
537 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
538 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
539 	int ret;
540 
541 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
542 	    sizeof (zbookmark_t));
543 
544 	if (ret < 0)
545 		return (-1);
546 	else if (ret > 0)
547 		return (1);
548 	else
549 		return (0);
550 }
551 
552 /*
553  * Utility function which retrieves copies of the current logs and
554  * re-initializes them in the process.
555  */
556 void
557 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
558 {
559 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
560 
561 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
562 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
563 
564 	avl_create(&spa->spa_errlist_scrub,
565 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
566 	    offsetof(spa_error_entry_t, se_avl));
567 	avl_create(&spa->spa_errlist_last,
568 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
569 	    offsetof(spa_error_entry_t, se_avl));
570 }
571 
572 /*
573  * Activate an uninitialized pool.
574  */
575 static void
576 spa_activate(spa_t *spa, int mode)
577 {
578 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
579 
580 	spa->spa_state = POOL_STATE_ACTIVE;
581 	spa->spa_mode = mode;
582 
583 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
584 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
585 
586 	for (int t = 0; t < ZIO_TYPES; t++) {
587 		const zio_taskq_info_t *ztip = &zio_taskqs[t];
588 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
589 			enum zti_modes mode = ztip->zti_nthreads[q].zti_mode;
590 			uint_t value = ztip->zti_nthreads[q].zti_value;
591 			char name[32];
592 
593 			(void) snprintf(name, sizeof (name),
594 			    "%s_%s", ztip->zti_name, zio_taskq_types[q]);
595 
596 			if (mode == zti_mode_tune) {
597 				mode = zio_taskq_tune_mode;
598 				value = zio_taskq_tune_value;
599 				if (mode == zti_mode_tune)
600 					mode = zti_mode_online_percent;
601 			}
602 
603 			switch (mode) {
604 			case zti_mode_fixed:
605 				ASSERT3U(value, >=, 1);
606 				value = MAX(value, 1);
607 
608 				spa->spa_zio_taskq[t][q] = taskq_create(name,
609 				    value, maxclsyspri, 50, INT_MAX,
610 				    TASKQ_PREPOPULATE);
611 				break;
612 
613 			case zti_mode_online_percent:
614 				spa->spa_zio_taskq[t][q] = taskq_create(name,
615 				    value, maxclsyspri, 50, INT_MAX,
616 				    TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
617 				break;
618 
619 			case zti_mode_tune:
620 			default:
621 				panic("unrecognized mode for "
622 				    "zio_taskqs[%u]->zti_nthreads[%u] (%u:%u) "
623 				    "in spa_activate()",
624 				    t, q, mode, value);
625 				break;
626 			}
627 		}
628 	}
629 
630 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
631 	    offsetof(vdev_t, vdev_config_dirty_node));
632 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
633 	    offsetof(vdev_t, vdev_state_dirty_node));
634 
635 	txg_list_create(&spa->spa_vdev_txg_list,
636 	    offsetof(struct vdev, vdev_txg_node));
637 
638 	avl_create(&spa->spa_errlist_scrub,
639 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
640 	    offsetof(spa_error_entry_t, se_avl));
641 	avl_create(&spa->spa_errlist_last,
642 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
643 	    offsetof(spa_error_entry_t, se_avl));
644 }
645 
646 /*
647  * Opposite of spa_activate().
648  */
649 static void
650 spa_deactivate(spa_t *spa)
651 {
652 	ASSERT(spa->spa_sync_on == B_FALSE);
653 	ASSERT(spa->spa_dsl_pool == NULL);
654 	ASSERT(spa->spa_root_vdev == NULL);
655 	ASSERT(spa->spa_async_zio_root == NULL);
656 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
657 
658 	txg_list_destroy(&spa->spa_vdev_txg_list);
659 
660 	list_destroy(&spa->spa_config_dirty_list);
661 	list_destroy(&spa->spa_state_dirty_list);
662 
663 	for (int t = 0; t < ZIO_TYPES; t++) {
664 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
665 			taskq_destroy(spa->spa_zio_taskq[t][q]);
666 			spa->spa_zio_taskq[t][q] = NULL;
667 		}
668 	}
669 
670 	metaslab_class_destroy(spa->spa_normal_class);
671 	spa->spa_normal_class = NULL;
672 
673 	metaslab_class_destroy(spa->spa_log_class);
674 	spa->spa_log_class = NULL;
675 
676 	/*
677 	 * If this was part of an import or the open otherwise failed, we may
678 	 * still have errors left in the queues.  Empty them just in case.
679 	 */
680 	spa_errlog_drain(spa);
681 
682 	avl_destroy(&spa->spa_errlist_scrub);
683 	avl_destroy(&spa->spa_errlist_last);
684 
685 	spa->spa_state = POOL_STATE_UNINITIALIZED;
686 }
687 
688 /*
689  * Verify a pool configuration, and construct the vdev tree appropriately.  This
690  * will create all the necessary vdevs in the appropriate layout, with each vdev
691  * in the CLOSED state.  This will prep the pool before open/creation/import.
692  * All vdev validation is done by the vdev_alloc() routine.
693  */
694 static int
695 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
696     uint_t id, int atype)
697 {
698 	nvlist_t **child;
699 	uint_t children;
700 	int error;
701 
702 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
703 		return (error);
704 
705 	if ((*vdp)->vdev_ops->vdev_op_leaf)
706 		return (0);
707 
708 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
709 	    &child, &children);
710 
711 	if (error == ENOENT)
712 		return (0);
713 
714 	if (error) {
715 		vdev_free(*vdp);
716 		*vdp = NULL;
717 		return (EINVAL);
718 	}
719 
720 	for (int c = 0; c < children; c++) {
721 		vdev_t *vd;
722 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
723 		    atype)) != 0) {
724 			vdev_free(*vdp);
725 			*vdp = NULL;
726 			return (error);
727 		}
728 	}
729 
730 	ASSERT(*vdp != NULL);
731 
732 	return (0);
733 }
734 
735 /*
736  * Opposite of spa_load().
737  */
738 static void
739 spa_unload(spa_t *spa)
740 {
741 	int i;
742 
743 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
744 
745 	/*
746 	 * Stop async tasks.
747 	 */
748 	spa_async_suspend(spa);
749 
750 	/*
751 	 * Stop syncing.
752 	 */
753 	if (spa->spa_sync_on) {
754 		txg_sync_stop(spa->spa_dsl_pool);
755 		spa->spa_sync_on = B_FALSE;
756 	}
757 
758 	/*
759 	 * Wait for any outstanding async I/O to complete.
760 	 */
761 	if (spa->spa_async_zio_root != NULL) {
762 		(void) zio_wait(spa->spa_async_zio_root);
763 		spa->spa_async_zio_root = NULL;
764 	}
765 
766 	/*
767 	 * Close the dsl pool.
768 	 */
769 	if (spa->spa_dsl_pool) {
770 		dsl_pool_close(spa->spa_dsl_pool);
771 		spa->spa_dsl_pool = NULL;
772 	}
773 
774 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
775 
776 	/*
777 	 * Drop and purge level 2 cache
778 	 */
779 	spa_l2cache_drop(spa);
780 
781 	/*
782 	 * Close all vdevs.
783 	 */
784 	if (spa->spa_root_vdev)
785 		vdev_free(spa->spa_root_vdev);
786 	ASSERT(spa->spa_root_vdev == NULL);
787 
788 	for (i = 0; i < spa->spa_spares.sav_count; i++)
789 		vdev_free(spa->spa_spares.sav_vdevs[i]);
790 	if (spa->spa_spares.sav_vdevs) {
791 		kmem_free(spa->spa_spares.sav_vdevs,
792 		    spa->spa_spares.sav_count * sizeof (void *));
793 		spa->spa_spares.sav_vdevs = NULL;
794 	}
795 	if (spa->spa_spares.sav_config) {
796 		nvlist_free(spa->spa_spares.sav_config);
797 		spa->spa_spares.sav_config = NULL;
798 	}
799 	spa->spa_spares.sav_count = 0;
800 
801 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
802 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
803 	if (spa->spa_l2cache.sav_vdevs) {
804 		kmem_free(spa->spa_l2cache.sav_vdevs,
805 		    spa->spa_l2cache.sav_count * sizeof (void *));
806 		spa->spa_l2cache.sav_vdevs = NULL;
807 	}
808 	if (spa->spa_l2cache.sav_config) {
809 		nvlist_free(spa->spa_l2cache.sav_config);
810 		spa->spa_l2cache.sav_config = NULL;
811 	}
812 	spa->spa_l2cache.sav_count = 0;
813 
814 	spa->spa_async_suspended = 0;
815 
816 	spa_config_exit(spa, SCL_ALL, FTAG);
817 }
818 
819 /*
820  * Load (or re-load) the current list of vdevs describing the active spares for
821  * this pool.  When this is called, we have some form of basic information in
822  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
823  * then re-generate a more complete list including status information.
824  */
825 static void
826 spa_load_spares(spa_t *spa)
827 {
828 	nvlist_t **spares;
829 	uint_t nspares;
830 	int i;
831 	vdev_t *vd, *tvd;
832 
833 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
834 
835 	/*
836 	 * First, close and free any existing spare vdevs.
837 	 */
838 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
839 		vd = spa->spa_spares.sav_vdevs[i];
840 
841 		/* Undo the call to spa_activate() below */
842 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
843 		    B_FALSE)) != NULL && tvd->vdev_isspare)
844 			spa_spare_remove(tvd);
845 		vdev_close(vd);
846 		vdev_free(vd);
847 	}
848 
849 	if (spa->spa_spares.sav_vdevs)
850 		kmem_free(spa->spa_spares.sav_vdevs,
851 		    spa->spa_spares.sav_count * sizeof (void *));
852 
853 	if (spa->spa_spares.sav_config == NULL)
854 		nspares = 0;
855 	else
856 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
857 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
858 
859 	spa->spa_spares.sav_count = (int)nspares;
860 	spa->spa_spares.sav_vdevs = NULL;
861 
862 	if (nspares == 0)
863 		return;
864 
865 	/*
866 	 * Construct the array of vdevs, opening them to get status in the
867 	 * process.   For each spare, there is potentially two different vdev_t
868 	 * structures associated with it: one in the list of spares (used only
869 	 * for basic validation purposes) and one in the active vdev
870 	 * configuration (if it's spared in).  During this phase we open and
871 	 * validate each vdev on the spare list.  If the vdev also exists in the
872 	 * active configuration, then we also mark this vdev as an active spare.
873 	 */
874 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
875 	    KM_SLEEP);
876 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
877 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
878 		    VDEV_ALLOC_SPARE) == 0);
879 		ASSERT(vd != NULL);
880 
881 		spa->spa_spares.sav_vdevs[i] = vd;
882 
883 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
884 		    B_FALSE)) != NULL) {
885 			if (!tvd->vdev_isspare)
886 				spa_spare_add(tvd);
887 
888 			/*
889 			 * We only mark the spare active if we were successfully
890 			 * able to load the vdev.  Otherwise, importing a pool
891 			 * with a bad active spare would result in strange
892 			 * behavior, because multiple pool would think the spare
893 			 * is actively in use.
894 			 *
895 			 * There is a vulnerability here to an equally bizarre
896 			 * circumstance, where a dead active spare is later
897 			 * brought back to life (onlined or otherwise).  Given
898 			 * the rarity of this scenario, and the extra complexity
899 			 * it adds, we ignore the possibility.
900 			 */
901 			if (!vdev_is_dead(tvd))
902 				spa_spare_activate(tvd);
903 		}
904 
905 		vd->vdev_top = vd;
906 		vd->vdev_aux = &spa->spa_spares;
907 
908 		if (vdev_open(vd) != 0)
909 			continue;
910 
911 		if (vdev_validate_aux(vd) == 0)
912 			spa_spare_add(vd);
913 	}
914 
915 	/*
916 	 * Recompute the stashed list of spares, with status information
917 	 * this time.
918 	 */
919 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
920 	    DATA_TYPE_NVLIST_ARRAY) == 0);
921 
922 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
923 	    KM_SLEEP);
924 	for (i = 0; i < spa->spa_spares.sav_count; i++)
925 		spares[i] = vdev_config_generate(spa,
926 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
927 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
928 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
929 	for (i = 0; i < spa->spa_spares.sav_count; i++)
930 		nvlist_free(spares[i]);
931 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
932 }
933 
934 /*
935  * Load (or re-load) the current list of vdevs describing the active l2cache for
936  * this pool.  When this is called, we have some form of basic information in
937  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
938  * then re-generate a more complete list including status information.
939  * Devices which are already active have their details maintained, and are
940  * not re-opened.
941  */
942 static void
943 spa_load_l2cache(spa_t *spa)
944 {
945 	nvlist_t **l2cache;
946 	uint_t nl2cache;
947 	int i, j, oldnvdevs;
948 	uint64_t guid;
949 	vdev_t *vd, **oldvdevs, **newvdevs;
950 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
951 
952 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
953 
954 	if (sav->sav_config != NULL) {
955 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
956 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
957 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
958 	} else {
959 		nl2cache = 0;
960 	}
961 
962 	oldvdevs = sav->sav_vdevs;
963 	oldnvdevs = sav->sav_count;
964 	sav->sav_vdevs = NULL;
965 	sav->sav_count = 0;
966 
967 	/*
968 	 * Process new nvlist of vdevs.
969 	 */
970 	for (i = 0; i < nl2cache; i++) {
971 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
972 		    &guid) == 0);
973 
974 		newvdevs[i] = NULL;
975 		for (j = 0; j < oldnvdevs; j++) {
976 			vd = oldvdevs[j];
977 			if (vd != NULL && guid == vd->vdev_guid) {
978 				/*
979 				 * Retain previous vdev for add/remove ops.
980 				 */
981 				newvdevs[i] = vd;
982 				oldvdevs[j] = NULL;
983 				break;
984 			}
985 		}
986 
987 		if (newvdevs[i] == NULL) {
988 			/*
989 			 * Create new vdev
990 			 */
991 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
992 			    VDEV_ALLOC_L2CACHE) == 0);
993 			ASSERT(vd != NULL);
994 			newvdevs[i] = vd;
995 
996 			/*
997 			 * Commit this vdev as an l2cache device,
998 			 * even if it fails to open.
999 			 */
1000 			spa_l2cache_add(vd);
1001 
1002 			vd->vdev_top = vd;
1003 			vd->vdev_aux = sav;
1004 
1005 			spa_l2cache_activate(vd);
1006 
1007 			if (vdev_open(vd) != 0)
1008 				continue;
1009 
1010 			(void) vdev_validate_aux(vd);
1011 
1012 			if (!vdev_is_dead(vd))
1013 				l2arc_add_vdev(spa, vd);
1014 		}
1015 	}
1016 
1017 	/*
1018 	 * Purge vdevs that were dropped
1019 	 */
1020 	for (i = 0; i < oldnvdevs; i++) {
1021 		uint64_t pool;
1022 
1023 		vd = oldvdevs[i];
1024 		if (vd != NULL) {
1025 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1026 			    pool != 0ULL && l2arc_vdev_present(vd))
1027 				l2arc_remove_vdev(vd);
1028 			(void) vdev_close(vd);
1029 			spa_l2cache_remove(vd);
1030 		}
1031 	}
1032 
1033 	if (oldvdevs)
1034 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1035 
1036 	if (sav->sav_config == NULL)
1037 		goto out;
1038 
1039 	sav->sav_vdevs = newvdevs;
1040 	sav->sav_count = (int)nl2cache;
1041 
1042 	/*
1043 	 * Recompute the stashed list of l2cache devices, with status
1044 	 * information this time.
1045 	 */
1046 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1047 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1048 
1049 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1050 	for (i = 0; i < sav->sav_count; i++)
1051 		l2cache[i] = vdev_config_generate(spa,
1052 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1053 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1054 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1055 out:
1056 	for (i = 0; i < sav->sav_count; i++)
1057 		nvlist_free(l2cache[i]);
1058 	if (sav->sav_count)
1059 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1060 }
1061 
1062 static int
1063 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1064 {
1065 	dmu_buf_t *db;
1066 	char *packed = NULL;
1067 	size_t nvsize = 0;
1068 	int error;
1069 	*value = NULL;
1070 
1071 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1072 	nvsize = *(uint64_t *)db->db_data;
1073 	dmu_buf_rele(db, FTAG);
1074 
1075 	packed = kmem_alloc(nvsize, KM_SLEEP);
1076 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1077 	    DMU_READ_PREFETCH);
1078 	if (error == 0)
1079 		error = nvlist_unpack(packed, nvsize, value, 0);
1080 	kmem_free(packed, nvsize);
1081 
1082 	return (error);
1083 }
1084 
1085 /*
1086  * Checks to see if the given vdev could not be opened, in which case we post a
1087  * sysevent to notify the autoreplace code that the device has been removed.
1088  */
1089 static void
1090 spa_check_removed(vdev_t *vd)
1091 {
1092 	for (int c = 0; c < vd->vdev_children; c++)
1093 		spa_check_removed(vd->vdev_child[c]);
1094 
1095 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1096 		zfs_post_autoreplace(vd->vdev_spa, vd);
1097 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1098 	}
1099 }
1100 
1101 /*
1102  * Load the slog device state from the config object since it's possible
1103  * that the label does not contain the most up-to-date information.
1104  */
1105 void
1106 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1107 {
1108 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1109 
1110 	/*
1111 	 * Load the original root vdev tree from the passed config.
1112 	 */
1113 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1114 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1115 
1116 	for (int c = 0; c < rvd->vdev_children; c++) {
1117 		vdev_t *cvd = rvd->vdev_child[c];
1118 		if (cvd->vdev_islog)
1119 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1120 	}
1121 	vdev_free(ovd);
1122 	spa_config_exit(spa, SCL_ALL, FTAG);
1123 }
1124 
1125 /*
1126  * Check for missing log devices
1127  */
1128 int
1129 spa_check_logs(spa_t *spa)
1130 {
1131 	switch (spa->spa_log_state) {
1132 	case SPA_LOG_MISSING:
1133 		/* need to recheck in case slog has been restored */
1134 	case SPA_LOG_UNKNOWN:
1135 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1136 		    DS_FIND_CHILDREN)) {
1137 			spa->spa_log_state = SPA_LOG_MISSING;
1138 			return (1);
1139 		}
1140 		break;
1141 	}
1142 	return (0);
1143 }
1144 
1145 static void
1146 spa_aux_check_removed(spa_aux_vdev_t *sav)
1147 {
1148 	int i;
1149 
1150 	for (i = 0; i < sav->sav_count; i++)
1151 		spa_check_removed(sav->sav_vdevs[i]);
1152 }
1153 
1154 typedef struct spa_load_error {
1155 	uint64_t	sle_metadata_count;
1156 	uint64_t	sle_data_count;
1157 } spa_load_error_t;
1158 
1159 static void
1160 spa_load_verify_done(zio_t *zio)
1161 {
1162 	blkptr_t *bp = zio->io_bp;
1163 	spa_load_error_t *sle = zio->io_private;
1164 	dmu_object_type_t type = BP_GET_TYPE(bp);
1165 	int error = zio->io_error;
1166 
1167 	if (error) {
1168 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1169 		    type != DMU_OT_INTENT_LOG)
1170 			atomic_add_64(&sle->sle_metadata_count, 1);
1171 		else
1172 			atomic_add_64(&sle->sle_data_count, 1);
1173 	}
1174 	zio_data_buf_free(zio->io_data, zio->io_size);
1175 }
1176 
1177 /*ARGSUSED*/
1178 static int
1179 spa_load_verify_cb(spa_t *spa, blkptr_t *bp, const zbookmark_t *zb,
1180     const dnode_phys_t *dnp, void *arg)
1181 {
1182 	if (bp != NULL) {
1183 		zio_t *rio = arg;
1184 		size_t size = BP_GET_PSIZE(bp);
1185 		void *data = zio_data_buf_alloc(size);
1186 
1187 		zio_nowait(zio_read(rio, spa, bp, data, size,
1188 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1189 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1190 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1191 	}
1192 	return (0);
1193 }
1194 
1195 static int
1196 spa_load_verify(spa_t *spa)
1197 {
1198 	zio_t *rio;
1199 	spa_load_error_t sle = { 0 };
1200 	zpool_rewind_policy_t policy;
1201 	boolean_t verify_ok = B_FALSE;
1202 	int error;
1203 
1204 	rio = zio_root(spa, NULL, &sle,
1205 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1206 
1207 	error = traverse_pool(spa, spa_load_verify_cb, rio,
1208 	    spa->spa_verify_min_txg);
1209 
1210 	(void) zio_wait(rio);
1211 
1212 	zpool_get_rewind_policy(spa->spa_config, &policy);
1213 
1214 	spa->spa_load_meta_errors = sle.sle_metadata_count;
1215 	spa->spa_load_data_errors = sle.sle_data_count;
1216 
1217 	if (!error && sle.sle_metadata_count <= policy.zrp_maxmeta &&
1218 	    sle.sle_data_count <= policy.zrp_maxdata) {
1219 		verify_ok = B_TRUE;
1220 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1221 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1222 	}
1223 
1224 	if (error) {
1225 		if (error != ENXIO && error != EIO)
1226 			error = EIO;
1227 		return (error);
1228 	}
1229 
1230 	return (verify_ok ? 0 : EIO);
1231 }
1232 
1233 /*
1234  * Load an existing storage pool, using the pool's builtin spa_config as a
1235  * source of configuration information.
1236  */
1237 static int
1238 spa_load(spa_t *spa, spa_load_state_t state, int mosconfig)
1239 {
1240 	int error = 0;
1241 	nvlist_t *nvconfig, *nvroot = NULL;
1242 	vdev_t *rvd;
1243 	uberblock_t *ub = &spa->spa_uberblock;
1244 	uint64_t config_cache_txg = spa->spa_config_txg;
1245 	uint64_t pool_guid;
1246 	uint64_t version;
1247 	uint64_t autoreplace = 0;
1248 	int orig_mode = spa->spa_mode;
1249 	char *ereport = FM_EREPORT_ZFS_POOL;
1250 	nvlist_t *config = spa->spa_config;
1251 
1252 	/*
1253 	 * If this is an untrusted config, access the pool in read-only mode.
1254 	 * This prevents things like resilvering recently removed devices.
1255 	 */
1256 	if (!mosconfig)
1257 		spa->spa_mode = FREAD;
1258 
1259 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1260 
1261 	spa->spa_load_state = state;
1262 
1263 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1264 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1265 		error = EINVAL;
1266 		goto out;
1267 	}
1268 
1269 	/*
1270 	 * Versioning wasn't explicitly added to the label until later, so if
1271 	 * it's not present treat it as the initial version.
1272 	 */
1273 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1274 		version = SPA_VERSION_INITIAL;
1275 
1276 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1277 	    &spa->spa_config_txg);
1278 
1279 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1280 	    spa_guid_exists(pool_guid, 0)) {
1281 		error = EEXIST;
1282 		goto out;
1283 	}
1284 
1285 	spa->spa_load_guid = pool_guid;
1286 
1287 	/*
1288 	 * Create "The Godfather" zio to hold all async IOs
1289 	 */
1290 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1291 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1292 
1293 	/*
1294 	 * Parse the configuration into a vdev tree.  We explicitly set the
1295 	 * value that will be returned by spa_version() since parsing the
1296 	 * configuration requires knowing the version number.
1297 	 */
1298 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1299 	spa->spa_ubsync.ub_version = version;
1300 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1301 	spa_config_exit(spa, SCL_ALL, FTAG);
1302 
1303 	if (error != 0)
1304 		goto out;
1305 
1306 	ASSERT(spa->spa_root_vdev == rvd);
1307 	ASSERT(spa_guid(spa) == pool_guid);
1308 
1309 	/*
1310 	 * Try to open all vdevs, loading each label in the process.
1311 	 */
1312 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1313 	error = vdev_open(rvd);
1314 	spa_config_exit(spa, SCL_ALL, FTAG);
1315 	if (error != 0)
1316 		goto out;
1317 
1318 	/*
1319 	 * We need to validate the vdev labels against the configuration that
1320 	 * we have in hand, which is dependent on the setting of mosconfig. If
1321 	 * mosconfig is true then we're validating the vdev labels based on
1322 	 * that config. Otherwise, we're validating against the cached config
1323 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1324 	 * later we will recursively call spa_load() and validate against
1325 	 * the vdev config.
1326 	 */
1327 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1328 	error = vdev_validate(rvd);
1329 	spa_config_exit(spa, SCL_ALL, FTAG);
1330 	if (error != 0)
1331 		goto out;
1332 
1333 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1334 		error = ENXIO;
1335 		goto out;
1336 	}
1337 
1338 	/*
1339 	 * Find the best uberblock.
1340 	 */
1341 	vdev_uberblock_load(NULL, rvd, ub);
1342 
1343 	/*
1344 	 * If we weren't able to find a single valid uberblock, return failure.
1345 	 */
1346 	if (ub->ub_txg == 0) {
1347 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1348 		    VDEV_AUX_CORRUPT_DATA);
1349 		error = ENXIO;
1350 		goto out;
1351 	}
1352 
1353 	/*
1354 	 * If the pool is newer than the code, we can't open it.
1355 	 */
1356 	if (ub->ub_version > SPA_VERSION) {
1357 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1358 		    VDEV_AUX_VERSION_NEWER);
1359 		error = ENOTSUP;
1360 		goto out;
1361 	}
1362 
1363 	/*
1364 	 * If the vdev guid sum doesn't match the uberblock, we have an
1365 	 * incomplete configuration.
1366 	 */
1367 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1368 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1369 		    VDEV_AUX_BAD_GUID_SUM);
1370 		error = ENXIO;
1371 		goto out;
1372 	}
1373 
1374 	/*
1375 	 * Initialize internal SPA structures.
1376 	 */
1377 	spa->spa_state = POOL_STATE_ACTIVE;
1378 	spa->spa_ubsync = spa->spa_uberblock;
1379 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1380 	    TXG_INITIAL : spa_last_synced_txg(spa) - TXG_DEFER_SIZE;
1381 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1382 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1383 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1384 	if (error) {
1385 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1386 		    VDEV_AUX_CORRUPT_DATA);
1387 		error = EIO;
1388 		goto out;
1389 	}
1390 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1391 
1392 	if (zap_lookup(spa->spa_meta_objset,
1393 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1394 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1395 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1396 		    VDEV_AUX_CORRUPT_DATA);
1397 		error = EIO;
1398 		goto out;
1399 	}
1400 
1401 	if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) {
1402 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1403 		    VDEV_AUX_CORRUPT_DATA);
1404 		error = EIO;
1405 		goto out;
1406 	}
1407 
1408 	if (!mosconfig) {
1409 		uint64_t hostid;
1410 
1411 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1412 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1413 			char *hostname;
1414 			unsigned long myhostid = 0;
1415 
1416 			VERIFY(nvlist_lookup_string(nvconfig,
1417 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1418 
1419 #ifdef	_KERNEL
1420 			myhostid = zone_get_hostid(NULL);
1421 #else	/* _KERNEL */
1422 			/*
1423 			 * We're emulating the system's hostid in userland, so
1424 			 * we can't use zone_get_hostid().
1425 			 */
1426 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1427 #endif	/* _KERNEL */
1428 			if (hostid != 0 && myhostid != 0 &&
1429 			    hostid != myhostid) {
1430 				cmn_err(CE_WARN, "pool '%s' could not be "
1431 				    "loaded as it was last accessed by "
1432 				    "another system (host: %s hostid: 0x%lx). "
1433 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1434 				    spa_name(spa), hostname,
1435 				    (unsigned long)hostid);
1436 				error = EBADF;
1437 				goto out;
1438 			}
1439 		}
1440 
1441 		spa_config_set(spa, nvconfig);
1442 		spa_unload(spa);
1443 		spa_deactivate(spa);
1444 		spa_activate(spa, orig_mode);
1445 
1446 		return (spa_load(spa, state, B_TRUE));
1447 	}
1448 
1449 	if (zap_lookup(spa->spa_meta_objset,
1450 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1451 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1452 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1453 		    VDEV_AUX_CORRUPT_DATA);
1454 		error = EIO;
1455 		goto out;
1456 	}
1457 
1458 	/*
1459 	 * Load the bit that tells us to use the new accounting function
1460 	 * (raid-z deflation).  If we have an older pool, this will not
1461 	 * be present.
1462 	 */
1463 	error = zap_lookup(spa->spa_meta_objset,
1464 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1465 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1466 	if (error != 0 && error != ENOENT) {
1467 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1468 		    VDEV_AUX_CORRUPT_DATA);
1469 		error = EIO;
1470 		goto out;
1471 	}
1472 
1473 	/*
1474 	 * Load the persistent error log.  If we have an older pool, this will
1475 	 * not be present.
1476 	 */
1477 	error = zap_lookup(spa->spa_meta_objset,
1478 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1479 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1480 	if (error != 0 && error != ENOENT) {
1481 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1482 		    VDEV_AUX_CORRUPT_DATA);
1483 		error = EIO;
1484 		goto out;
1485 	}
1486 
1487 	error = zap_lookup(spa->spa_meta_objset,
1488 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1489 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1490 	if (error != 0 && error != ENOENT) {
1491 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1492 		    VDEV_AUX_CORRUPT_DATA);
1493 		error = EIO;
1494 		goto out;
1495 	}
1496 
1497 	/*
1498 	 * Load the history object.  If we have an older pool, this
1499 	 * will not be present.
1500 	 */
1501 	error = zap_lookup(spa->spa_meta_objset,
1502 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1503 	    sizeof (uint64_t), 1, &spa->spa_history);
1504 	if (error != 0 && error != ENOENT) {
1505 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1506 		    VDEV_AUX_CORRUPT_DATA);
1507 		error = EIO;
1508 		goto out;
1509 	}
1510 
1511 	/*
1512 	 * Load any hot spares for this pool.
1513 	 */
1514 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1515 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1516 	if (error != 0 && error != ENOENT) {
1517 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1518 		    VDEV_AUX_CORRUPT_DATA);
1519 		error = EIO;
1520 		goto out;
1521 	}
1522 	if (error == 0) {
1523 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1524 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1525 		    &spa->spa_spares.sav_config) != 0) {
1526 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1527 			    VDEV_AUX_CORRUPT_DATA);
1528 			error = EIO;
1529 			goto out;
1530 		}
1531 
1532 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1533 		spa_load_spares(spa);
1534 		spa_config_exit(spa, SCL_ALL, FTAG);
1535 	}
1536 
1537 	/*
1538 	 * Load any level 2 ARC devices for this pool.
1539 	 */
1540 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1541 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1542 	    &spa->spa_l2cache.sav_object);
1543 	if (error != 0 && error != ENOENT) {
1544 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1545 		    VDEV_AUX_CORRUPT_DATA);
1546 		error = EIO;
1547 		goto out;
1548 	}
1549 	if (error == 0) {
1550 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1551 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1552 		    &spa->spa_l2cache.sav_config) != 0) {
1553 			vdev_set_state(rvd, B_TRUE,
1554 			    VDEV_STATE_CANT_OPEN,
1555 			    VDEV_AUX_CORRUPT_DATA);
1556 			error = EIO;
1557 			goto out;
1558 		}
1559 
1560 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1561 		spa_load_l2cache(spa);
1562 		spa_config_exit(spa, SCL_ALL, FTAG);
1563 	}
1564 
1565 	VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
1566 	    &nvroot) == 0);
1567 	spa_load_log_state(spa, nvroot);
1568 	nvlist_free(nvconfig);
1569 
1570 	if (spa_check_logs(spa)) {
1571 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1572 		    VDEV_AUX_BAD_LOG);
1573 		error = ENXIO;
1574 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1575 		goto out;
1576 	}
1577 
1578 
1579 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1580 
1581 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1582 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1583 
1584 	if (error && error != ENOENT) {
1585 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1586 		    VDEV_AUX_CORRUPT_DATA);
1587 		error = EIO;
1588 		goto out;
1589 	}
1590 
1591 	if (error == 0) {
1592 		(void) zap_lookup(spa->spa_meta_objset,
1593 		    spa->spa_pool_props_object,
1594 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1595 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1596 		(void) zap_lookup(spa->spa_meta_objset,
1597 		    spa->spa_pool_props_object,
1598 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1599 		    sizeof (uint64_t), 1, &autoreplace);
1600 		spa->spa_autoreplace = (autoreplace != 0);
1601 		(void) zap_lookup(spa->spa_meta_objset,
1602 		    spa->spa_pool_props_object,
1603 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1604 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1605 		(void) zap_lookup(spa->spa_meta_objset,
1606 		    spa->spa_pool_props_object,
1607 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1608 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1609 		(void) zap_lookup(spa->spa_meta_objset,
1610 		    spa->spa_pool_props_object,
1611 		    zpool_prop_to_name(ZPOOL_PROP_AUTOEXPAND),
1612 		    sizeof (uint64_t), 1, &spa->spa_autoexpand);
1613 	}
1614 
1615 	/*
1616 	 * If the 'autoreplace' property is set, then post a resource notifying
1617 	 * the ZFS DE that it should not issue any faults for unopenable
1618 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1619 	 * unopenable vdevs so that the normal autoreplace handler can take
1620 	 * over.
1621 	 */
1622 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1623 		spa_check_removed(spa->spa_root_vdev);
1624 		/*
1625 		 * For the import case, this is done in spa_import(), because
1626 		 * at this point we're using the spare definitions from
1627 		 * the MOS config, not necessarily from the userland config.
1628 		 */
1629 		if (state != SPA_LOAD_IMPORT) {
1630 			spa_aux_check_removed(&spa->spa_spares);
1631 			spa_aux_check_removed(&spa->spa_l2cache);
1632 		}
1633 	}
1634 
1635 	/*
1636 	 * Load the vdev state for all toplevel vdevs.
1637 	 */
1638 	vdev_load(rvd);
1639 
1640 	/*
1641 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1642 	 */
1643 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1644 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1645 	spa_config_exit(spa, SCL_ALL, FTAG);
1646 
1647 	/*
1648 	 * Check the state of the root vdev.  If it can't be opened, it
1649 	 * indicates one or more toplevel vdevs are faulted.
1650 	 */
1651 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1652 		error = ENXIO;
1653 		goto out;
1654 	}
1655 
1656 	if (state != SPA_LOAD_TRYIMPORT) {
1657 		error = spa_load_verify(spa);
1658 		if (error) {
1659 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1660 			    VDEV_AUX_CORRUPT_DATA);
1661 			goto out;
1662 		}
1663 	}
1664 
1665 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
1666 	    spa->spa_load_max_txg == UINT64_MAX)) {
1667 		dmu_tx_t *tx;
1668 		int need_update = B_FALSE;
1669 
1670 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1671 
1672 		/*
1673 		 * Claim log blocks that haven't been committed yet.
1674 		 * This must all happen in a single txg.
1675 		 * Price of rollback is that we abandon the log.
1676 		 */
1677 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1678 		    spa_first_txg(spa));
1679 		(void) dmu_objset_find(spa_name(spa),
1680 		    zil_claim, tx, DS_FIND_CHILDREN);
1681 		dmu_tx_commit(tx);
1682 
1683 		spa->spa_log_state = SPA_LOG_GOOD;
1684 		spa->spa_sync_on = B_TRUE;
1685 		txg_sync_start(spa->spa_dsl_pool);
1686 
1687 		/*
1688 		 * Wait for all claims to sync.
1689 		 */
1690 		txg_wait_synced(spa->spa_dsl_pool, 0);
1691 
1692 		/*
1693 		 * If the config cache is stale, or we have uninitialized
1694 		 * metaslabs (see spa_vdev_add()), then update the config.
1695 		 *
1696 		 * If spa_load_verbatim is true, trust the current
1697 		 * in-core spa_config and update the disk labels.
1698 		 */
1699 		if (config_cache_txg != spa->spa_config_txg ||
1700 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
1701 		    state == SPA_LOAD_RECOVER)
1702 			need_update = B_TRUE;
1703 
1704 		for (int c = 0; c < rvd->vdev_children; c++)
1705 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1706 				need_update = B_TRUE;
1707 
1708 		/*
1709 		 * Update the config cache asychronously in case we're the
1710 		 * root pool, in which case the config cache isn't writable yet.
1711 		 */
1712 		if (need_update)
1713 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1714 
1715 		/*
1716 		 * Check all DTLs to see if anything needs resilvering.
1717 		 */
1718 		if (vdev_resilver_needed(rvd, NULL, NULL))
1719 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1720 
1721 		/*
1722 		 * Delete any inconsistent datasets.
1723 		 */
1724 		(void) dmu_objset_find(spa_name(spa),
1725 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
1726 
1727 		/*
1728 		 * Clean up any stale temporary dataset userrefs.
1729 		 */
1730 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
1731 	}
1732 
1733 	error = 0;
1734 out:
1735 
1736 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1737 	if (error && error != EBADF)
1738 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1739 	spa->spa_load_state = SPA_LOAD_NONE;
1740 	spa->spa_ena = 0;
1741 
1742 	return (error);
1743 }
1744 
1745 static int
1746 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
1747 {
1748 	spa_unload(spa);
1749 	spa_deactivate(spa);
1750 
1751 	spa->spa_load_max_txg--;
1752 
1753 	spa_activate(spa, spa_mode_global);
1754 	spa_async_suspend(spa);
1755 
1756 	return (spa_load(spa, state, mosconfig));
1757 }
1758 
1759 static int
1760 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
1761     uint64_t max_request, boolean_t extreme)
1762 {
1763 	nvlist_t *config = NULL;
1764 	int load_error, rewind_error;
1765 	uint64_t safe_rollback_txg;
1766 	uint64_t min_txg;
1767 
1768 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER)
1769 		spa->spa_load_max_txg = spa->spa_load_txg;
1770 	else
1771 		spa->spa_load_max_txg = max_request;
1772 
1773 	load_error = rewind_error = spa_load(spa, state, mosconfig);
1774 	if (load_error == 0)
1775 		return (0);
1776 
1777 	if (spa->spa_root_vdev != NULL)
1778 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1779 
1780 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
1781 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
1782 
1783 	/* specific txg requested */
1784 	if (spa->spa_load_max_txg != UINT64_MAX && !extreme) {
1785 		nvlist_free(config);
1786 		return (load_error);
1787 	}
1788 
1789 	/* Price of rolling back is discarding txgs, including log */
1790 	if (state == SPA_LOAD_RECOVER)
1791 		spa->spa_log_state = SPA_LOG_CLEAR;
1792 
1793 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1794 	safe_rollback_txg = spa->spa_uberblock.ub_txg - TXG_DEFER_SIZE;
1795 
1796 	min_txg = extreme ? TXG_INITIAL : safe_rollback_txg;
1797 	while (rewind_error && (spa->spa_uberblock.ub_txg >= min_txg)) {
1798 		if (spa->spa_load_max_txg < safe_rollback_txg)
1799 			spa->spa_extreme_rewind = B_TRUE;
1800 		rewind_error = spa_load_retry(spa, state, mosconfig);
1801 	}
1802 
1803 	if (config)
1804 		spa_rewind_data_to_nvlist(spa, config);
1805 
1806 	spa->spa_extreme_rewind = B_FALSE;
1807 	spa->spa_load_max_txg = UINT64_MAX;
1808 
1809 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
1810 		spa_config_set(spa, config);
1811 
1812 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
1813 }
1814 
1815 /*
1816  * Pool Open/Import
1817  *
1818  * The import case is identical to an open except that the configuration is sent
1819  * down from userland, instead of grabbed from the configuration cache.  For the
1820  * case of an open, the pool configuration will exist in the
1821  * POOL_STATE_UNINITIALIZED state.
1822  *
1823  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1824  * the same time open the pool, without having to keep around the spa_t in some
1825  * ambiguous state.
1826  */
1827 static int
1828 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
1829     nvlist_t **config)
1830 {
1831 	spa_t *spa;
1832 	boolean_t norewind;
1833 	boolean_t extreme;
1834 	zpool_rewind_policy_t policy;
1835 	spa_load_state_t state = SPA_LOAD_OPEN;
1836 	int error;
1837 	int locked = B_FALSE;
1838 
1839 	*spapp = NULL;
1840 
1841 	zpool_get_rewind_policy(nvpolicy, &policy);
1842 	if (policy.zrp_request & ZPOOL_DO_REWIND)
1843 		state = SPA_LOAD_RECOVER;
1844 	norewind = (policy.zrp_request == ZPOOL_NO_REWIND);
1845 	extreme = ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0);
1846 
1847 	/*
1848 	 * As disgusting as this is, we need to support recursive calls to this
1849 	 * function because dsl_dir_open() is called during spa_load(), and ends
1850 	 * up calling spa_open() again.  The real fix is to figure out how to
1851 	 * avoid dsl_dir_open() calling this in the first place.
1852 	 */
1853 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1854 		mutex_enter(&spa_namespace_lock);
1855 		locked = B_TRUE;
1856 	}
1857 
1858 	if ((spa = spa_lookup(pool)) == NULL) {
1859 		if (locked)
1860 			mutex_exit(&spa_namespace_lock);
1861 		return (ENOENT);
1862 	}
1863 
1864 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1865 
1866 		spa_activate(spa, spa_mode_global);
1867 
1868 		if (spa->spa_last_open_failed && norewind) {
1869 			if (config != NULL && spa->spa_config)
1870 				VERIFY(nvlist_dup(spa->spa_config,
1871 				    config, KM_SLEEP) == 0);
1872 			spa_deactivate(spa);
1873 			if (locked)
1874 				mutex_exit(&spa_namespace_lock);
1875 			return (spa->spa_last_open_failed);
1876 		}
1877 
1878 		if (state != SPA_LOAD_RECOVER)
1879 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
1880 
1881 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
1882 		    extreme);
1883 
1884 		if (error == EBADF) {
1885 			/*
1886 			 * If vdev_validate() returns failure (indicated by
1887 			 * EBADF), it indicates that one of the vdevs indicates
1888 			 * that the pool has been exported or destroyed.  If
1889 			 * this is the case, the config cache is out of sync and
1890 			 * we should remove the pool from the namespace.
1891 			 */
1892 			spa_unload(spa);
1893 			spa_deactivate(spa);
1894 			spa_config_sync(spa, B_TRUE, B_TRUE);
1895 			spa_remove(spa);
1896 			if (locked)
1897 				mutex_exit(&spa_namespace_lock);
1898 			return (ENOENT);
1899 		}
1900 
1901 		if (error) {
1902 			/*
1903 			 * We can't open the pool, but we still have useful
1904 			 * information: the state of each vdev after the
1905 			 * attempted vdev_open().  Return this to the user.
1906 			 */
1907 			if (config != NULL && spa->spa_config)
1908 				VERIFY(nvlist_dup(spa->spa_config, config,
1909 				    KM_SLEEP) == 0);
1910 			spa_unload(spa);
1911 			spa_deactivate(spa);
1912 			spa->spa_last_open_failed = error;
1913 			if (locked)
1914 				mutex_exit(&spa_namespace_lock);
1915 			*spapp = NULL;
1916 			return (error);
1917 		}
1918 
1919 	}
1920 
1921 	spa_open_ref(spa, tag);
1922 
1923 	spa->spa_last_open_failed = 0;
1924 
1925 	if (config != NULL)
1926 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1927 
1928 	spa->spa_last_ubsync_txg = 0;
1929 	spa->spa_load_txg = 0;
1930 
1931 	if (locked)
1932 		mutex_exit(&spa_namespace_lock);
1933 
1934 	*spapp = spa;
1935 
1936 	return (0);
1937 }
1938 
1939 int
1940 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
1941     nvlist_t **config)
1942 {
1943 	return (spa_open_common(name, spapp, tag, policy, config));
1944 }
1945 
1946 int
1947 spa_open(const char *name, spa_t **spapp, void *tag)
1948 {
1949 	return (spa_open_common(name, spapp, tag, NULL, NULL));
1950 }
1951 
1952 /*
1953  * Lookup the given spa_t, incrementing the inject count in the process,
1954  * preventing it from being exported or destroyed.
1955  */
1956 spa_t *
1957 spa_inject_addref(char *name)
1958 {
1959 	spa_t *spa;
1960 
1961 	mutex_enter(&spa_namespace_lock);
1962 	if ((spa = spa_lookup(name)) == NULL) {
1963 		mutex_exit(&spa_namespace_lock);
1964 		return (NULL);
1965 	}
1966 	spa->spa_inject_ref++;
1967 	mutex_exit(&spa_namespace_lock);
1968 
1969 	return (spa);
1970 }
1971 
1972 void
1973 spa_inject_delref(spa_t *spa)
1974 {
1975 	mutex_enter(&spa_namespace_lock);
1976 	spa->spa_inject_ref--;
1977 	mutex_exit(&spa_namespace_lock);
1978 }
1979 
1980 /*
1981  * Add spares device information to the nvlist.
1982  */
1983 static void
1984 spa_add_spares(spa_t *spa, nvlist_t *config)
1985 {
1986 	nvlist_t **spares;
1987 	uint_t i, nspares;
1988 	nvlist_t *nvroot;
1989 	uint64_t guid;
1990 	vdev_stat_t *vs;
1991 	uint_t vsc;
1992 	uint64_t pool;
1993 
1994 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
1995 
1996 	if (spa->spa_spares.sav_count == 0)
1997 		return;
1998 
1999 	VERIFY(nvlist_lookup_nvlist(config,
2000 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2001 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2002 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2003 	if (nspares != 0) {
2004 		VERIFY(nvlist_add_nvlist_array(nvroot,
2005 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2006 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2007 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2008 
2009 		/*
2010 		 * Go through and find any spares which have since been
2011 		 * repurposed as an active spare.  If this is the case, update
2012 		 * their status appropriately.
2013 		 */
2014 		for (i = 0; i < nspares; i++) {
2015 			VERIFY(nvlist_lookup_uint64(spares[i],
2016 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2017 			if (spa_spare_exists(guid, &pool, NULL) &&
2018 			    pool != 0ULL) {
2019 				VERIFY(nvlist_lookup_uint64_array(
2020 				    spares[i], ZPOOL_CONFIG_STATS,
2021 				    (uint64_t **)&vs, &vsc) == 0);
2022 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2023 				vs->vs_aux = VDEV_AUX_SPARED;
2024 			}
2025 		}
2026 	}
2027 }
2028 
2029 /*
2030  * Add l2cache device information to the nvlist, including vdev stats.
2031  */
2032 static void
2033 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2034 {
2035 	nvlist_t **l2cache;
2036 	uint_t i, j, nl2cache;
2037 	nvlist_t *nvroot;
2038 	uint64_t guid;
2039 	vdev_t *vd;
2040 	vdev_stat_t *vs;
2041 	uint_t vsc;
2042 
2043 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2044 
2045 	if (spa->spa_l2cache.sav_count == 0)
2046 		return;
2047 
2048 	VERIFY(nvlist_lookup_nvlist(config,
2049 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2050 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2051 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2052 	if (nl2cache != 0) {
2053 		VERIFY(nvlist_add_nvlist_array(nvroot,
2054 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2055 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2056 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2057 
2058 		/*
2059 		 * Update level 2 cache device stats.
2060 		 */
2061 
2062 		for (i = 0; i < nl2cache; i++) {
2063 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2064 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2065 
2066 			vd = NULL;
2067 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2068 				if (guid ==
2069 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2070 					vd = spa->spa_l2cache.sav_vdevs[j];
2071 					break;
2072 				}
2073 			}
2074 			ASSERT(vd != NULL);
2075 
2076 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2077 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2078 			vdev_get_stats(vd, vs);
2079 		}
2080 	}
2081 }
2082 
2083 int
2084 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2085 {
2086 	int error;
2087 	spa_t *spa;
2088 
2089 	*config = NULL;
2090 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2091 
2092 	if (spa != NULL) {
2093 		/*
2094 		 * This still leaves a window of inconsistency where the spares
2095 		 * or l2cache devices could change and the config would be
2096 		 * self-inconsistent.
2097 		 */
2098 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2099 
2100 		if (*config != NULL) {
2101 			VERIFY(nvlist_add_uint64(*config,
2102 			    ZPOOL_CONFIG_ERRCOUNT,
2103 			    spa_get_errlog_size(spa)) == 0);
2104 
2105 			if (spa_suspended(spa))
2106 				VERIFY(nvlist_add_uint64(*config,
2107 				    ZPOOL_CONFIG_SUSPENDED,
2108 				    spa->spa_failmode) == 0);
2109 
2110 			spa_add_spares(spa, *config);
2111 			spa_add_l2cache(spa, *config);
2112 		}
2113 	}
2114 
2115 	/*
2116 	 * We want to get the alternate root even for faulted pools, so we cheat
2117 	 * and call spa_lookup() directly.
2118 	 */
2119 	if (altroot) {
2120 		if (spa == NULL) {
2121 			mutex_enter(&spa_namespace_lock);
2122 			spa = spa_lookup(name);
2123 			if (spa)
2124 				spa_altroot(spa, altroot, buflen);
2125 			else
2126 				altroot[0] = '\0';
2127 			spa = NULL;
2128 			mutex_exit(&spa_namespace_lock);
2129 		} else {
2130 			spa_altroot(spa, altroot, buflen);
2131 		}
2132 	}
2133 
2134 	if (spa != NULL) {
2135 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2136 		spa_close(spa, FTAG);
2137 	}
2138 
2139 	return (error);
2140 }
2141 
2142 /*
2143  * Validate that the auxiliary device array is well formed.  We must have an
2144  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2145  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2146  * specified, as long as they are well-formed.
2147  */
2148 static int
2149 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2150     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2151     vdev_labeltype_t label)
2152 {
2153 	nvlist_t **dev;
2154 	uint_t i, ndev;
2155 	vdev_t *vd;
2156 	int error;
2157 
2158 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2159 
2160 	/*
2161 	 * It's acceptable to have no devs specified.
2162 	 */
2163 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2164 		return (0);
2165 
2166 	if (ndev == 0)
2167 		return (EINVAL);
2168 
2169 	/*
2170 	 * Make sure the pool is formatted with a version that supports this
2171 	 * device type.
2172 	 */
2173 	if (spa_version(spa) < version)
2174 		return (ENOTSUP);
2175 
2176 	/*
2177 	 * Set the pending device list so we correctly handle device in-use
2178 	 * checking.
2179 	 */
2180 	sav->sav_pending = dev;
2181 	sav->sav_npending = ndev;
2182 
2183 	for (i = 0; i < ndev; i++) {
2184 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2185 		    mode)) != 0)
2186 			goto out;
2187 
2188 		if (!vd->vdev_ops->vdev_op_leaf) {
2189 			vdev_free(vd);
2190 			error = EINVAL;
2191 			goto out;
2192 		}
2193 
2194 		/*
2195 		 * The L2ARC currently only supports disk devices in
2196 		 * kernel context.  For user-level testing, we allow it.
2197 		 */
2198 #ifdef _KERNEL
2199 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2200 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2201 			error = ENOTBLK;
2202 			goto out;
2203 		}
2204 #endif
2205 		vd->vdev_top = vd;
2206 
2207 		if ((error = vdev_open(vd)) == 0 &&
2208 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2209 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2210 			    vd->vdev_guid) == 0);
2211 		}
2212 
2213 		vdev_free(vd);
2214 
2215 		if (error &&
2216 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2217 			goto out;
2218 		else
2219 			error = 0;
2220 	}
2221 
2222 out:
2223 	sav->sav_pending = NULL;
2224 	sav->sav_npending = 0;
2225 	return (error);
2226 }
2227 
2228 static int
2229 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2230 {
2231 	int error;
2232 
2233 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2234 
2235 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2236 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2237 	    VDEV_LABEL_SPARE)) != 0) {
2238 		return (error);
2239 	}
2240 
2241 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2242 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2243 	    VDEV_LABEL_L2CACHE));
2244 }
2245 
2246 static void
2247 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2248     const char *config)
2249 {
2250 	int i;
2251 
2252 	if (sav->sav_config != NULL) {
2253 		nvlist_t **olddevs;
2254 		uint_t oldndevs;
2255 		nvlist_t **newdevs;
2256 
2257 		/*
2258 		 * Generate new dev list by concatentating with the
2259 		 * current dev list.
2260 		 */
2261 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2262 		    &olddevs, &oldndevs) == 0);
2263 
2264 		newdevs = kmem_alloc(sizeof (void *) *
2265 		    (ndevs + oldndevs), KM_SLEEP);
2266 		for (i = 0; i < oldndevs; i++)
2267 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2268 			    KM_SLEEP) == 0);
2269 		for (i = 0; i < ndevs; i++)
2270 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2271 			    KM_SLEEP) == 0);
2272 
2273 		VERIFY(nvlist_remove(sav->sav_config, config,
2274 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2275 
2276 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2277 		    config, newdevs, ndevs + oldndevs) == 0);
2278 		for (i = 0; i < oldndevs + ndevs; i++)
2279 			nvlist_free(newdevs[i]);
2280 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2281 	} else {
2282 		/*
2283 		 * Generate a new dev list.
2284 		 */
2285 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2286 		    KM_SLEEP) == 0);
2287 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2288 		    devs, ndevs) == 0);
2289 	}
2290 }
2291 
2292 /*
2293  * Stop and drop level 2 ARC devices
2294  */
2295 void
2296 spa_l2cache_drop(spa_t *spa)
2297 {
2298 	vdev_t *vd;
2299 	int i;
2300 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2301 
2302 	for (i = 0; i < sav->sav_count; i++) {
2303 		uint64_t pool;
2304 
2305 		vd = sav->sav_vdevs[i];
2306 		ASSERT(vd != NULL);
2307 
2308 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2309 		    pool != 0ULL && l2arc_vdev_present(vd))
2310 			l2arc_remove_vdev(vd);
2311 		if (vd->vdev_isl2cache)
2312 			spa_l2cache_remove(vd);
2313 		vdev_clear_stats(vd);
2314 		(void) vdev_close(vd);
2315 	}
2316 }
2317 
2318 /*
2319  * Pool Creation
2320  */
2321 int
2322 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2323     const char *history_str, nvlist_t *zplprops)
2324 {
2325 	spa_t *spa;
2326 	char *altroot = NULL;
2327 	vdev_t *rvd;
2328 	dsl_pool_t *dp;
2329 	dmu_tx_t *tx;
2330 	int error = 0;
2331 	uint64_t txg = TXG_INITIAL;
2332 	nvlist_t **spares, **l2cache;
2333 	uint_t nspares, nl2cache;
2334 	uint64_t version;
2335 
2336 	/*
2337 	 * If this pool already exists, return failure.
2338 	 */
2339 	mutex_enter(&spa_namespace_lock);
2340 	if (spa_lookup(pool) != NULL) {
2341 		mutex_exit(&spa_namespace_lock);
2342 		return (EEXIST);
2343 	}
2344 
2345 	/*
2346 	 * Allocate a new spa_t structure.
2347 	 */
2348 	(void) nvlist_lookup_string(props,
2349 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2350 	spa = spa_add(pool, NULL, altroot);
2351 	spa_activate(spa, spa_mode_global);
2352 
2353 	spa->spa_uberblock.ub_txg = txg - 1;
2354 
2355 	if (props && (error = spa_prop_validate(spa, props))) {
2356 		spa_deactivate(spa);
2357 		spa_remove(spa);
2358 		mutex_exit(&spa_namespace_lock);
2359 		return (error);
2360 	}
2361 
2362 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2363 	    &version) != 0)
2364 		version = SPA_VERSION;
2365 	ASSERT(version <= SPA_VERSION);
2366 	spa->spa_uberblock.ub_version = version;
2367 	spa->spa_ubsync = spa->spa_uberblock;
2368 
2369 	/*
2370 	 * Create "The Godfather" zio to hold all async IOs
2371 	 */
2372 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2373 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2374 
2375 	/*
2376 	 * Create the root vdev.
2377 	 */
2378 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2379 
2380 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2381 
2382 	ASSERT(error != 0 || rvd != NULL);
2383 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2384 
2385 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2386 		error = EINVAL;
2387 
2388 	if (error == 0 &&
2389 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2390 	    (error = spa_validate_aux(spa, nvroot, txg,
2391 	    VDEV_ALLOC_ADD)) == 0) {
2392 		for (int c = 0; c < rvd->vdev_children; c++) {
2393 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2394 			vdev_expand(rvd->vdev_child[c], txg);
2395 		}
2396 	}
2397 
2398 	spa_config_exit(spa, SCL_ALL, FTAG);
2399 
2400 	if (error != 0) {
2401 		spa_unload(spa);
2402 		spa_deactivate(spa);
2403 		spa_remove(spa);
2404 		mutex_exit(&spa_namespace_lock);
2405 		return (error);
2406 	}
2407 
2408 	/*
2409 	 * Get the list of spares, if specified.
2410 	 */
2411 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2412 	    &spares, &nspares) == 0) {
2413 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2414 		    KM_SLEEP) == 0);
2415 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2416 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2417 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2418 		spa_load_spares(spa);
2419 		spa_config_exit(spa, SCL_ALL, FTAG);
2420 		spa->spa_spares.sav_sync = B_TRUE;
2421 	}
2422 
2423 	/*
2424 	 * Get the list of level 2 cache devices, if specified.
2425 	 */
2426 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2427 	    &l2cache, &nl2cache) == 0) {
2428 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2429 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2430 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2431 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2432 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2433 		spa_load_l2cache(spa);
2434 		spa_config_exit(spa, SCL_ALL, FTAG);
2435 		spa->spa_l2cache.sav_sync = B_TRUE;
2436 	}
2437 
2438 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2439 	spa->spa_meta_objset = dp->dp_meta_objset;
2440 
2441 	tx = dmu_tx_create_assigned(dp, txg);
2442 
2443 	/*
2444 	 * Create the pool config object.
2445 	 */
2446 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2447 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2448 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2449 
2450 	if (zap_add(spa->spa_meta_objset,
2451 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2452 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2453 		cmn_err(CE_PANIC, "failed to add pool config");
2454 	}
2455 
2456 	/* Newly created pools with the right version are always deflated. */
2457 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2458 		spa->spa_deflate = TRUE;
2459 		if (zap_add(spa->spa_meta_objset,
2460 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2461 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2462 			cmn_err(CE_PANIC, "failed to add deflate");
2463 		}
2464 	}
2465 
2466 	/*
2467 	 * Create the deferred-free bplist object.  Turn off compression
2468 	 * because sync-to-convergence takes longer if the blocksize
2469 	 * keeps changing.
2470 	 */
2471 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2472 	    1 << 14, tx);
2473 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2474 	    ZIO_COMPRESS_OFF, tx);
2475 
2476 	if (zap_add(spa->spa_meta_objset,
2477 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2478 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2479 		cmn_err(CE_PANIC, "failed to add bplist");
2480 	}
2481 
2482 	/*
2483 	 * Create the pool's history object.
2484 	 */
2485 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2486 		spa_history_create_obj(spa, tx);
2487 
2488 	/*
2489 	 * Set pool properties.
2490 	 */
2491 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2492 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2493 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2494 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2495 	if (props != NULL) {
2496 		spa_configfile_set(spa, props, B_FALSE);
2497 		spa_sync_props(spa, props, CRED(), tx);
2498 	}
2499 
2500 	dmu_tx_commit(tx);
2501 
2502 	spa->spa_sync_on = B_TRUE;
2503 	txg_sync_start(spa->spa_dsl_pool);
2504 
2505 	/*
2506 	 * We explicitly wait for the first transaction to complete so that our
2507 	 * bean counters are appropriately updated.
2508 	 */
2509 	txg_wait_synced(spa->spa_dsl_pool, txg);
2510 
2511 	spa_config_sync(spa, B_FALSE, B_TRUE);
2512 
2513 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2514 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2515 	spa_history_log_version(spa, LOG_POOL_CREATE);
2516 
2517 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2518 
2519 	mutex_exit(&spa_namespace_lock);
2520 
2521 	return (0);
2522 }
2523 
2524 #ifdef _KERNEL
2525 /*
2526  * Get the root pool information from the root disk, then import the root pool
2527  * during the system boot up time.
2528  */
2529 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2530 
2531 static nvlist_t *
2532 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2533 {
2534 	nvlist_t *config;
2535 	nvlist_t *nvtop, *nvroot;
2536 	uint64_t pgid;
2537 
2538 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2539 		return (NULL);
2540 
2541 	/*
2542 	 * Add this top-level vdev to the child array.
2543 	 */
2544 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2545 	    &nvtop) == 0);
2546 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2547 	    &pgid) == 0);
2548 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2549 
2550 	/*
2551 	 * Put this pool's top-level vdevs into a root vdev.
2552 	 */
2553 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2554 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2555 	    VDEV_TYPE_ROOT) == 0);
2556 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2557 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2558 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2559 	    &nvtop, 1) == 0);
2560 
2561 	/*
2562 	 * Replace the existing vdev_tree with the new root vdev in
2563 	 * this pool's configuration (remove the old, add the new).
2564 	 */
2565 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2566 	nvlist_free(nvroot);
2567 	return (config);
2568 }
2569 
2570 /*
2571  * Walk the vdev tree and see if we can find a device with "better"
2572  * configuration. A configuration is "better" if the label on that
2573  * device has a more recent txg.
2574  */
2575 static void
2576 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2577 {
2578 	for (int c = 0; c < vd->vdev_children; c++)
2579 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2580 
2581 	if (vd->vdev_ops->vdev_op_leaf) {
2582 		nvlist_t *label;
2583 		uint64_t label_txg;
2584 
2585 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2586 		    &label) != 0)
2587 			return;
2588 
2589 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2590 		    &label_txg) == 0);
2591 
2592 		/*
2593 		 * Do we have a better boot device?
2594 		 */
2595 		if (label_txg > *txg) {
2596 			*txg = label_txg;
2597 			*avd = vd;
2598 		}
2599 		nvlist_free(label);
2600 	}
2601 }
2602 
2603 /*
2604  * Import a root pool.
2605  *
2606  * For x86. devpath_list will consist of devid and/or physpath name of
2607  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2608  * The GRUB "findroot" command will return the vdev we should boot.
2609  *
2610  * For Sparc, devpath_list consists the physpath name of the booting device
2611  * no matter the rootpool is a single device pool or a mirrored pool.
2612  * e.g.
2613  *	"/pci@1f,0/ide@d/disk@0,0:a"
2614  */
2615 int
2616 spa_import_rootpool(char *devpath, char *devid)
2617 {
2618 	spa_t *spa;
2619 	vdev_t *rvd, *bvd, *avd = NULL;
2620 	nvlist_t *config, *nvtop;
2621 	uint64_t guid, txg;
2622 	char *pname;
2623 	int error;
2624 
2625 	/*
2626 	 * Read the label from the boot device and generate a configuration.
2627 	 */
2628 	config = spa_generate_rootconf(devpath, devid, &guid);
2629 #if defined(_OBP) && defined(_KERNEL)
2630 	if (config == NULL) {
2631 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
2632 			/* iscsi boot */
2633 			get_iscsi_bootpath_phy(devpath);
2634 			config = spa_generate_rootconf(devpath, devid, &guid);
2635 		}
2636 	}
2637 #endif
2638 	if (config == NULL) {
2639 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
2640 		    devpath);
2641 		return (EIO);
2642 	}
2643 
2644 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
2645 	    &pname) == 0);
2646 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2647 
2648 	mutex_enter(&spa_namespace_lock);
2649 	if ((spa = spa_lookup(pname)) != NULL) {
2650 		/*
2651 		 * Remove the existing root pool from the namespace so that we
2652 		 * can replace it with the correct config we just read in.
2653 		 */
2654 		spa_remove(spa);
2655 	}
2656 
2657 	spa = spa_add(pname, config, NULL);
2658 	spa->spa_is_root = B_TRUE;
2659 	spa->spa_load_verbatim = B_TRUE;
2660 
2661 	/*
2662 	 * Build up a vdev tree based on the boot device's label config.
2663 	 */
2664 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2665 	    &nvtop) == 0);
2666 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2667 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
2668 	    VDEV_ALLOC_ROOTPOOL);
2669 	spa_config_exit(spa, SCL_ALL, FTAG);
2670 	if (error) {
2671 		mutex_exit(&spa_namespace_lock);
2672 		nvlist_free(config);
2673 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
2674 		    pname);
2675 		return (error);
2676 	}
2677 
2678 	/*
2679 	 * Get the boot vdev.
2680 	 */
2681 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2682 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
2683 		    (u_longlong_t)guid);
2684 		error = ENOENT;
2685 		goto out;
2686 	}
2687 
2688 	/*
2689 	 * Determine if there is a better boot device.
2690 	 */
2691 	avd = bvd;
2692 	spa_alt_rootvdev(rvd, &avd, &txg);
2693 	if (avd != bvd) {
2694 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
2695 		    "try booting from '%s'", avd->vdev_path);
2696 		error = EINVAL;
2697 		goto out;
2698 	}
2699 
2700 	/*
2701 	 * If the boot device is part of a spare vdev then ensure that
2702 	 * we're booting off the active spare.
2703 	 */
2704 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2705 	    !bvd->vdev_isspare) {
2706 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
2707 		    "try booting from '%s'",
2708 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
2709 		error = EINVAL;
2710 		goto out;
2711 	}
2712 
2713 	VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
2714 	error = 0;
2715 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2716 out:
2717 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2718 	vdev_free(rvd);
2719 	spa_config_exit(spa, SCL_ALL, FTAG);
2720 	mutex_exit(&spa_namespace_lock);
2721 
2722 	nvlist_free(config);
2723 	return (error);
2724 }
2725 
2726 #endif
2727 
2728 /*
2729  * Take a pool and insert it into the namespace as if it had been loaded at
2730  * boot.
2731  */
2732 int
2733 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
2734 {
2735 	spa_t *spa;
2736 	zpool_rewind_policy_t policy;
2737 	char *altroot = NULL;
2738 
2739 	mutex_enter(&spa_namespace_lock);
2740 	if (spa_lookup(pool) != NULL) {
2741 		mutex_exit(&spa_namespace_lock);
2742 		return (EEXIST);
2743 	}
2744 
2745 	(void) nvlist_lookup_string(props,
2746 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2747 	spa = spa_add(pool, config, altroot);
2748 
2749 	zpool_get_rewind_policy(config, &policy);
2750 	spa->spa_load_max_txg = policy.zrp_txg;
2751 
2752 	spa->spa_load_verbatim = B_TRUE;
2753 
2754 	if (props != NULL)
2755 		spa_configfile_set(spa, props, B_FALSE);
2756 
2757 	spa_config_sync(spa, B_FALSE, B_TRUE);
2758 
2759 	mutex_exit(&spa_namespace_lock);
2760 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2761 
2762 	return (0);
2763 }
2764 
2765 /*
2766  * Import a non-root pool into the system.
2767  */
2768 int
2769 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2770 {
2771 	spa_t *spa;
2772 	char *altroot = NULL;
2773 	spa_load_state_t state = SPA_LOAD_IMPORT;
2774 	zpool_rewind_policy_t policy;
2775 	int error;
2776 	nvlist_t *nvroot;
2777 	nvlist_t **spares, **l2cache;
2778 	uint_t nspares, nl2cache;
2779 
2780 	/*
2781 	 * If a pool with this name exists, return failure.
2782 	 */
2783 	mutex_enter(&spa_namespace_lock);
2784 	if ((spa = spa_lookup(pool)) != NULL) {
2785 		mutex_exit(&spa_namespace_lock);
2786 		return (EEXIST);
2787 	}
2788 
2789 	zpool_get_rewind_policy(config, &policy);
2790 	if (policy.zrp_request & ZPOOL_DO_REWIND)
2791 		state = SPA_LOAD_RECOVER;
2792 
2793 	/*
2794 	 * Create and initialize the spa structure.
2795 	 */
2796 	(void) nvlist_lookup_string(props,
2797 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2798 	spa = spa_add(pool, config, altroot);
2799 	spa_activate(spa, spa_mode_global);
2800 
2801 	/*
2802 	 * Don't start async tasks until we know everything is healthy.
2803 	 */
2804 	spa_async_suspend(spa);
2805 
2806 	/*
2807 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
2808 	 * because the user-supplied config is actually the one to trust when
2809 	 * doing an import.
2810 	 */
2811 	if (state != SPA_LOAD_RECOVER)
2812 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2813 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
2814 	    ((policy.zrp_request & ZPOOL_EXTREME_REWIND) != 0));
2815 
2816 	/*
2817 	 * Propagate anything learned about failing or best txgs
2818 	 * back to caller
2819 	 */
2820 	spa_rewind_data_to_nvlist(spa, config);
2821 
2822 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2823 	/*
2824 	 * Toss any existing sparelist, as it doesn't have any validity
2825 	 * anymore, and conflicts with spa_has_spare().
2826 	 */
2827 	if (spa->spa_spares.sav_config) {
2828 		nvlist_free(spa->spa_spares.sav_config);
2829 		spa->spa_spares.sav_config = NULL;
2830 		spa_load_spares(spa);
2831 	}
2832 	if (spa->spa_l2cache.sav_config) {
2833 		nvlist_free(spa->spa_l2cache.sav_config);
2834 		spa->spa_l2cache.sav_config = NULL;
2835 		spa_load_l2cache(spa);
2836 	}
2837 
2838 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2839 	    &nvroot) == 0);
2840 	if (error == 0)
2841 		error = spa_validate_aux(spa, nvroot, -1ULL,
2842 		    VDEV_ALLOC_SPARE);
2843 	if (error == 0)
2844 		error = spa_validate_aux(spa, nvroot, -1ULL,
2845 		    VDEV_ALLOC_L2CACHE);
2846 	spa_config_exit(spa, SCL_ALL, FTAG);
2847 
2848 	if (props != NULL)
2849 		spa_configfile_set(spa, props, B_FALSE);
2850 
2851 	if (error != 0 || (props && spa_writeable(spa) &&
2852 	    (error = spa_prop_set(spa, props)))) {
2853 		spa_unload(spa);
2854 		spa_deactivate(spa);
2855 		spa_remove(spa);
2856 		mutex_exit(&spa_namespace_lock);
2857 		return (error);
2858 	}
2859 
2860 	spa_async_resume(spa);
2861 
2862 	/*
2863 	 * Override any spares and level 2 cache devices as specified by
2864 	 * the user, as these may have correct device names/devids, etc.
2865 	 */
2866 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2867 	    &spares, &nspares) == 0) {
2868 		if (spa->spa_spares.sav_config)
2869 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2870 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2871 		else
2872 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2873 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2874 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2875 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2876 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2877 		spa_load_spares(spa);
2878 		spa_config_exit(spa, SCL_ALL, FTAG);
2879 		spa->spa_spares.sav_sync = B_TRUE;
2880 	}
2881 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2882 	    &l2cache, &nl2cache) == 0) {
2883 		if (spa->spa_l2cache.sav_config)
2884 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2885 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2886 		else
2887 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2888 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2889 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2890 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2891 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2892 		spa_load_l2cache(spa);
2893 		spa_config_exit(spa, SCL_ALL, FTAG);
2894 		spa->spa_l2cache.sav_sync = B_TRUE;
2895 	}
2896 
2897 	/*
2898 	 * Check for any removed devices.
2899 	 */
2900 	if (spa->spa_autoreplace) {
2901 		spa_aux_check_removed(&spa->spa_spares);
2902 		spa_aux_check_removed(&spa->spa_l2cache);
2903 	}
2904 
2905 	if (spa_writeable(spa)) {
2906 		/*
2907 		 * Update the config cache to include the newly-imported pool.
2908 		 */
2909 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2910 	}
2911 
2912 	/*
2913 	 * It's possible that the pool was expanded while it was exported.
2914 	 * We kick off an async task to handle this for us.
2915 	 */
2916 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
2917 
2918 	mutex_exit(&spa_namespace_lock);
2919 	spa_history_log_version(spa, LOG_POOL_IMPORT);
2920 
2921 	return (0);
2922 }
2923 
2924 
2925 /*
2926  * This (illegal) pool name is used when temporarily importing a spa_t in order
2927  * to get the vdev stats associated with the imported devices.
2928  */
2929 #define	TRYIMPORT_NAME	"$import"
2930 
2931 nvlist_t *
2932 spa_tryimport(nvlist_t *tryconfig)
2933 {
2934 	nvlist_t *config = NULL;
2935 	char *poolname;
2936 	spa_t *spa;
2937 	uint64_t state;
2938 	int error;
2939 
2940 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2941 		return (NULL);
2942 
2943 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2944 		return (NULL);
2945 
2946 	/*
2947 	 * Create and initialize the spa structure.
2948 	 */
2949 	mutex_enter(&spa_namespace_lock);
2950 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
2951 	spa_activate(spa, FREAD);
2952 
2953 	/*
2954 	 * Pass off the heavy lifting to spa_load().
2955 	 * Pass TRUE for mosconfig because the user-supplied config
2956 	 * is actually the one to trust when doing an import.
2957 	 */
2958 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, B_TRUE);
2959 
2960 	/*
2961 	 * If 'tryconfig' was at least parsable, return the current config.
2962 	 */
2963 	if (spa->spa_root_vdev != NULL) {
2964 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2965 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2966 		    poolname) == 0);
2967 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2968 		    state) == 0);
2969 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2970 		    spa->spa_uberblock.ub_timestamp) == 0);
2971 
2972 		/*
2973 		 * If the bootfs property exists on this pool then we
2974 		 * copy it out so that external consumers can tell which
2975 		 * pools are bootable.
2976 		 */
2977 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
2978 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2979 
2980 			/*
2981 			 * We have to play games with the name since the
2982 			 * pool was opened as TRYIMPORT_NAME.
2983 			 */
2984 			if (dsl_dsobj_to_dsname(spa_name(spa),
2985 			    spa->spa_bootfs, tmpname) == 0) {
2986 				char *cp;
2987 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2988 
2989 				cp = strchr(tmpname, '/');
2990 				if (cp == NULL) {
2991 					(void) strlcpy(dsname, tmpname,
2992 					    MAXPATHLEN);
2993 				} else {
2994 					(void) snprintf(dsname, MAXPATHLEN,
2995 					    "%s/%s", poolname, ++cp);
2996 				}
2997 				VERIFY(nvlist_add_string(config,
2998 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2999 				kmem_free(dsname, MAXPATHLEN);
3000 			}
3001 			kmem_free(tmpname, MAXPATHLEN);
3002 		}
3003 
3004 		/*
3005 		 * Add the list of hot spares and level 2 cache devices.
3006 		 */
3007 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3008 		spa_add_spares(spa, config);
3009 		spa_add_l2cache(spa, config);
3010 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3011 	}
3012 
3013 	spa_unload(spa);
3014 	spa_deactivate(spa);
3015 	spa_remove(spa);
3016 	mutex_exit(&spa_namespace_lock);
3017 
3018 	return (config);
3019 }
3020 
3021 /*
3022  * Pool export/destroy
3023  *
3024  * The act of destroying or exporting a pool is very simple.  We make sure there
3025  * is no more pending I/O and any references to the pool are gone.  Then, we
3026  * update the pool state and sync all the labels to disk, removing the
3027  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3028  * we don't sync the labels or remove the configuration cache.
3029  */
3030 static int
3031 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3032     boolean_t force, boolean_t hardforce)
3033 {
3034 	spa_t *spa;
3035 
3036 	if (oldconfig)
3037 		*oldconfig = NULL;
3038 
3039 	if (!(spa_mode_global & FWRITE))
3040 		return (EROFS);
3041 
3042 	mutex_enter(&spa_namespace_lock);
3043 	if ((spa = spa_lookup(pool)) == NULL) {
3044 		mutex_exit(&spa_namespace_lock);
3045 		return (ENOENT);
3046 	}
3047 
3048 	/*
3049 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3050 	 * reacquire the namespace lock, and see if we can export.
3051 	 */
3052 	spa_open_ref(spa, FTAG);
3053 	mutex_exit(&spa_namespace_lock);
3054 	spa_async_suspend(spa);
3055 	mutex_enter(&spa_namespace_lock);
3056 	spa_close(spa, FTAG);
3057 
3058 	/*
3059 	 * The pool will be in core if it's openable,
3060 	 * in which case we can modify its state.
3061 	 */
3062 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3063 		/*
3064 		 * Objsets may be open only because they're dirty, so we
3065 		 * have to force it to sync before checking spa_refcnt.
3066 		 */
3067 		txg_wait_synced(spa->spa_dsl_pool, 0);
3068 
3069 		/*
3070 		 * A pool cannot be exported or destroyed if there are active
3071 		 * references.  If we are resetting a pool, allow references by
3072 		 * fault injection handlers.
3073 		 */
3074 		if (!spa_refcount_zero(spa) ||
3075 		    (spa->spa_inject_ref != 0 &&
3076 		    new_state != POOL_STATE_UNINITIALIZED)) {
3077 			spa_async_resume(spa);
3078 			mutex_exit(&spa_namespace_lock);
3079 			return (EBUSY);
3080 		}
3081 
3082 		/*
3083 		 * A pool cannot be exported if it has an active shared spare.
3084 		 * This is to prevent other pools stealing the active spare
3085 		 * from an exported pool. At user's own will, such pool can
3086 		 * be forcedly exported.
3087 		 */
3088 		if (!force && new_state == POOL_STATE_EXPORTED &&
3089 		    spa_has_active_shared_spare(spa)) {
3090 			spa_async_resume(spa);
3091 			mutex_exit(&spa_namespace_lock);
3092 			return (EXDEV);
3093 		}
3094 
3095 		/*
3096 		 * We want this to be reflected on every label,
3097 		 * so mark them all dirty.  spa_unload() will do the
3098 		 * final sync that pushes these changes out.
3099 		 */
3100 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3101 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3102 			spa->spa_state = new_state;
3103 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3104 			vdev_config_dirty(spa->spa_root_vdev);
3105 			spa_config_exit(spa, SCL_ALL, FTAG);
3106 		}
3107 	}
3108 
3109 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3110 
3111 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3112 		spa_unload(spa);
3113 		spa_deactivate(spa);
3114 	}
3115 
3116 	if (oldconfig && spa->spa_config)
3117 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3118 
3119 	if (new_state != POOL_STATE_UNINITIALIZED) {
3120 		if (!hardforce)
3121 			spa_config_sync(spa, B_TRUE, B_TRUE);
3122 		spa_remove(spa);
3123 	}
3124 	mutex_exit(&spa_namespace_lock);
3125 
3126 	return (0);
3127 }
3128 
3129 /*
3130  * Destroy a storage pool.
3131  */
3132 int
3133 spa_destroy(char *pool)
3134 {
3135 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3136 	    B_FALSE, B_FALSE));
3137 }
3138 
3139 /*
3140  * Export a storage pool.
3141  */
3142 int
3143 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3144     boolean_t hardforce)
3145 {
3146 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3147 	    force, hardforce));
3148 }
3149 
3150 /*
3151  * Similar to spa_export(), this unloads the spa_t without actually removing it
3152  * from the namespace in any way.
3153  */
3154 int
3155 spa_reset(char *pool)
3156 {
3157 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3158 	    B_FALSE, B_FALSE));
3159 }
3160 
3161 /*
3162  * ==========================================================================
3163  * Device manipulation
3164  * ==========================================================================
3165  */
3166 
3167 /*
3168  * Add a device to a storage pool.
3169  */
3170 int
3171 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3172 {
3173 	uint64_t txg, id;
3174 	int error;
3175 	vdev_t *rvd = spa->spa_root_vdev;
3176 	vdev_t *vd, *tvd;
3177 	nvlist_t **spares, **l2cache;
3178 	uint_t nspares, nl2cache;
3179 
3180 	txg = spa_vdev_enter(spa);
3181 
3182 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3183 	    VDEV_ALLOC_ADD)) != 0)
3184 		return (spa_vdev_exit(spa, NULL, txg, error));
3185 
3186 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3187 
3188 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3189 	    &nspares) != 0)
3190 		nspares = 0;
3191 
3192 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3193 	    &nl2cache) != 0)
3194 		nl2cache = 0;
3195 
3196 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3197 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3198 
3199 	if (vd->vdev_children != 0 &&
3200 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3201 		return (spa_vdev_exit(spa, vd, txg, error));
3202 
3203 	/*
3204 	 * We must validate the spares and l2cache devices after checking the
3205 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3206 	 */
3207 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3208 		return (spa_vdev_exit(spa, vd, txg, error));
3209 
3210 	/*
3211 	 * Transfer each new top-level vdev from vd to rvd.
3212 	 */
3213 	for (int c = 0; c < vd->vdev_children; c++) {
3214 
3215 		/*
3216 		 * Set the vdev id to the first hole, if one exists.
3217 		 */
3218 		for (id = 0; id < rvd->vdev_children; id++) {
3219 			if (rvd->vdev_child[id]->vdev_ishole) {
3220 				vdev_free(rvd->vdev_child[id]);
3221 				break;
3222 			}
3223 		}
3224 		tvd = vd->vdev_child[c];
3225 		vdev_remove_child(vd, tvd);
3226 		tvd->vdev_id = id;
3227 		vdev_add_child(rvd, tvd);
3228 		vdev_config_dirty(tvd);
3229 	}
3230 
3231 	if (nspares != 0) {
3232 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3233 		    ZPOOL_CONFIG_SPARES);
3234 		spa_load_spares(spa);
3235 		spa->spa_spares.sav_sync = B_TRUE;
3236 	}
3237 
3238 	if (nl2cache != 0) {
3239 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3240 		    ZPOOL_CONFIG_L2CACHE);
3241 		spa_load_l2cache(spa);
3242 		spa->spa_l2cache.sav_sync = B_TRUE;
3243 	}
3244 
3245 	/*
3246 	 * We have to be careful when adding new vdevs to an existing pool.
3247 	 * If other threads start allocating from these vdevs before we
3248 	 * sync the config cache, and we lose power, then upon reboot we may
3249 	 * fail to open the pool because there are DVAs that the config cache
3250 	 * can't translate.  Therefore, we first add the vdevs without
3251 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3252 	 * and then let spa_config_update() initialize the new metaslabs.
3253 	 *
3254 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3255 	 * if we lose power at any point in this sequence, the remaining
3256 	 * steps will be completed the next time we load the pool.
3257 	 */
3258 	(void) spa_vdev_exit(spa, vd, txg, 0);
3259 
3260 	mutex_enter(&spa_namespace_lock);
3261 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3262 	mutex_exit(&spa_namespace_lock);
3263 
3264 	return (0);
3265 }
3266 
3267 /*
3268  * Attach a device to a mirror.  The arguments are the path to any device
3269  * in the mirror, and the nvroot for the new device.  If the path specifies
3270  * a device that is not mirrored, we automatically insert the mirror vdev.
3271  *
3272  * If 'replacing' is specified, the new device is intended to replace the
3273  * existing device; in this case the two devices are made into their own
3274  * mirror using the 'replacing' vdev, which is functionally identical to
3275  * the mirror vdev (it actually reuses all the same ops) but has a few
3276  * extra rules: you can't attach to it after it's been created, and upon
3277  * completion of resilvering, the first disk (the one being replaced)
3278  * is automatically detached.
3279  */
3280 int
3281 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3282 {
3283 	uint64_t txg, open_txg;
3284 	vdev_t *rvd = spa->spa_root_vdev;
3285 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3286 	vdev_ops_t *pvops;
3287 	char *oldvdpath, *newvdpath;
3288 	int newvd_isspare;
3289 	int error;
3290 
3291 	txg = spa_vdev_enter(spa);
3292 
3293 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3294 
3295 	if (oldvd == NULL)
3296 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3297 
3298 	if (!oldvd->vdev_ops->vdev_op_leaf)
3299 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3300 
3301 	pvd = oldvd->vdev_parent;
3302 
3303 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3304 	    VDEV_ALLOC_ADD)) != 0)
3305 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3306 
3307 	if (newrootvd->vdev_children != 1)
3308 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3309 
3310 	newvd = newrootvd->vdev_child[0];
3311 
3312 	if (!newvd->vdev_ops->vdev_op_leaf)
3313 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3314 
3315 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3316 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3317 
3318 	/*
3319 	 * Spares can't replace logs
3320 	 */
3321 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3322 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3323 
3324 	if (!replacing) {
3325 		/*
3326 		 * For attach, the only allowable parent is a mirror or the root
3327 		 * vdev.
3328 		 */
3329 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3330 		    pvd->vdev_ops != &vdev_root_ops)
3331 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3332 
3333 		pvops = &vdev_mirror_ops;
3334 	} else {
3335 		/*
3336 		 * Active hot spares can only be replaced by inactive hot
3337 		 * spares.
3338 		 */
3339 		if (pvd->vdev_ops == &vdev_spare_ops &&
3340 		    pvd->vdev_child[1] == oldvd &&
3341 		    !spa_has_spare(spa, newvd->vdev_guid))
3342 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3343 
3344 		/*
3345 		 * If the source is a hot spare, and the parent isn't already a
3346 		 * spare, then we want to create a new hot spare.  Otherwise, we
3347 		 * want to create a replacing vdev.  The user is not allowed to
3348 		 * attach to a spared vdev child unless the 'isspare' state is
3349 		 * the same (spare replaces spare, non-spare replaces
3350 		 * non-spare).
3351 		 */
3352 		if (pvd->vdev_ops == &vdev_replacing_ops)
3353 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3354 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3355 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3356 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3357 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3358 		    newvd->vdev_isspare)
3359 			pvops = &vdev_spare_ops;
3360 		else
3361 			pvops = &vdev_replacing_ops;
3362 	}
3363 
3364 	/*
3365 	 * Make sure the new device is big enough.
3366 	 */
3367 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3368 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3369 
3370 	/*
3371 	 * The new device cannot have a higher alignment requirement
3372 	 * than the top-level vdev.
3373 	 */
3374 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3375 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3376 
3377 	/*
3378 	 * If this is an in-place replacement, update oldvd's path and devid
3379 	 * to make it distinguishable from newvd, and unopenable from now on.
3380 	 */
3381 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3382 		spa_strfree(oldvd->vdev_path);
3383 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3384 		    KM_SLEEP);
3385 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3386 		    newvd->vdev_path, "old");
3387 		if (oldvd->vdev_devid != NULL) {
3388 			spa_strfree(oldvd->vdev_devid);
3389 			oldvd->vdev_devid = NULL;
3390 		}
3391 	}
3392 
3393 	/*
3394 	 * If the parent is not a mirror, or if we're replacing, insert the new
3395 	 * mirror/replacing/spare vdev above oldvd.
3396 	 */
3397 	if (pvd->vdev_ops != pvops)
3398 		pvd = vdev_add_parent(oldvd, pvops);
3399 
3400 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3401 	ASSERT(pvd->vdev_ops == pvops);
3402 	ASSERT(oldvd->vdev_parent == pvd);
3403 
3404 	/*
3405 	 * Extract the new device from its root and add it to pvd.
3406 	 */
3407 	vdev_remove_child(newrootvd, newvd);
3408 	newvd->vdev_id = pvd->vdev_children;
3409 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3410 	vdev_add_child(pvd, newvd);
3411 
3412 	tvd = newvd->vdev_top;
3413 	ASSERT(pvd->vdev_top == tvd);
3414 	ASSERT(tvd->vdev_parent == rvd);
3415 
3416 	vdev_config_dirty(tvd);
3417 
3418 	/*
3419 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3420 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3421 	 */
3422 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3423 
3424 	vdev_dtl_dirty(newvd, DTL_MISSING,
3425 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3426 
3427 	if (newvd->vdev_isspare) {
3428 		spa_spare_activate(newvd);
3429 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3430 	}
3431 
3432 	oldvdpath = spa_strdup(oldvd->vdev_path);
3433 	newvdpath = spa_strdup(newvd->vdev_path);
3434 	newvd_isspare = newvd->vdev_isspare;
3435 
3436 	/*
3437 	 * Mark newvd's DTL dirty in this txg.
3438 	 */
3439 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3440 
3441 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3442 
3443 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3444 	    CRED(),  "%s vdev=%s %s vdev=%s",
3445 	    replacing && newvd_isspare ? "spare in" :
3446 	    replacing ? "replace" : "attach", newvdpath,
3447 	    replacing ? "for" : "to", oldvdpath);
3448 
3449 	spa_strfree(oldvdpath);
3450 	spa_strfree(newvdpath);
3451 
3452 	/*
3453 	 * Kick off a resilver to update newvd.
3454 	 */
3455 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3456 
3457 	return (0);
3458 }
3459 
3460 /*
3461  * Detach a device from a mirror or replacing vdev.
3462  * If 'replace_done' is specified, only detach if the parent
3463  * is a replacing vdev.
3464  */
3465 int
3466 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3467 {
3468 	uint64_t txg;
3469 	int error;
3470 	vdev_t *rvd = spa->spa_root_vdev;
3471 	vdev_t *vd, *pvd, *cvd, *tvd;
3472 	boolean_t unspare = B_FALSE;
3473 	uint64_t unspare_guid;
3474 	size_t len;
3475 
3476 	txg = spa_vdev_enter(spa);
3477 
3478 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3479 
3480 	if (vd == NULL)
3481 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3482 
3483 	if (!vd->vdev_ops->vdev_op_leaf)
3484 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3485 
3486 	pvd = vd->vdev_parent;
3487 
3488 	/*
3489 	 * If the parent/child relationship is not as expected, don't do it.
3490 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3491 	 * vdev that's replacing B with C.  The user's intent in replacing
3492 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3493 	 * the replace by detaching C, the expected behavior is to end up
3494 	 * M(A,B).  But suppose that right after deciding to detach C,
3495 	 * the replacement of B completes.  We would have M(A,C), and then
3496 	 * ask to detach C, which would leave us with just A -- not what
3497 	 * the user wanted.  To prevent this, we make sure that the
3498 	 * parent/child relationship hasn't changed -- in this example,
3499 	 * that C's parent is still the replacing vdev R.
3500 	 */
3501 	if (pvd->vdev_guid != pguid && pguid != 0)
3502 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3503 
3504 	/*
3505 	 * If replace_done is specified, only remove this device if it's
3506 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3507 	 * disk can be removed.
3508 	 */
3509 	if (replace_done) {
3510 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3511 			if (vd->vdev_id != 0)
3512 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3513 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3514 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3515 		}
3516 	}
3517 
3518 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3519 	    spa_version(spa) >= SPA_VERSION_SPARES);
3520 
3521 	/*
3522 	 * Only mirror, replacing, and spare vdevs support detach.
3523 	 */
3524 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3525 	    pvd->vdev_ops != &vdev_mirror_ops &&
3526 	    pvd->vdev_ops != &vdev_spare_ops)
3527 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3528 
3529 	/*
3530 	 * If this device has the only valid copy of some data,
3531 	 * we cannot safely detach it.
3532 	 */
3533 	if (vdev_dtl_required(vd))
3534 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3535 
3536 	ASSERT(pvd->vdev_children >= 2);
3537 
3538 	/*
3539 	 * If we are detaching the second disk from a replacing vdev, then
3540 	 * check to see if we changed the original vdev's path to have "/old"
3541 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3542 	 */
3543 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3544 	    pvd->vdev_child[0]->vdev_path != NULL &&
3545 	    pvd->vdev_child[1]->vdev_path != NULL) {
3546 		ASSERT(pvd->vdev_child[1] == vd);
3547 		cvd = pvd->vdev_child[0];
3548 		len = strlen(vd->vdev_path);
3549 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3550 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3551 			spa_strfree(cvd->vdev_path);
3552 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3553 		}
3554 	}
3555 
3556 	/*
3557 	 * If we are detaching the original disk from a spare, then it implies
3558 	 * that the spare should become a real disk, and be removed from the
3559 	 * active spare list for the pool.
3560 	 */
3561 	if (pvd->vdev_ops == &vdev_spare_ops &&
3562 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3563 		unspare = B_TRUE;
3564 
3565 	/*
3566 	 * Erase the disk labels so the disk can be used for other things.
3567 	 * This must be done after all other error cases are handled,
3568 	 * but before we disembowel vd (so we can still do I/O to it).
3569 	 * But if we can't do it, don't treat the error as fatal --
3570 	 * it may be that the unwritability of the disk is the reason
3571 	 * it's being detached!
3572 	 */
3573 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3574 
3575 	/*
3576 	 * Remove vd from its parent and compact the parent's children.
3577 	 */
3578 	vdev_remove_child(pvd, vd);
3579 	vdev_compact_children(pvd);
3580 
3581 	/*
3582 	 * Remember one of the remaining children so we can get tvd below.
3583 	 */
3584 	cvd = pvd->vdev_child[0];
3585 
3586 	/*
3587 	 * If we need to remove the remaining child from the list of hot spares,
3588 	 * do it now, marking the vdev as no longer a spare in the process.
3589 	 * We must do this before vdev_remove_parent(), because that can
3590 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3591 	 * reason, we must remove the spare now, in the same txg as the detach;
3592 	 * otherwise someone could attach a new sibling, change the GUID, and
3593 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3594 	 */
3595 	if (unspare) {
3596 		ASSERT(cvd->vdev_isspare);
3597 		spa_spare_remove(cvd);
3598 		unspare_guid = cvd->vdev_guid;
3599 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3600 	}
3601 
3602 	/*
3603 	 * If the parent mirror/replacing vdev only has one child,
3604 	 * the parent is no longer needed.  Remove it from the tree.
3605 	 */
3606 	if (pvd->vdev_children == 1)
3607 		vdev_remove_parent(cvd);
3608 
3609 	/*
3610 	 * We don't set tvd until now because the parent we just removed
3611 	 * may have been the previous top-level vdev.
3612 	 */
3613 	tvd = cvd->vdev_top;
3614 	ASSERT(tvd->vdev_parent == rvd);
3615 
3616 	/*
3617 	 * Reevaluate the parent vdev state.
3618 	 */
3619 	vdev_propagate_state(cvd);
3620 
3621 	/*
3622 	 * If the 'autoexpand' property is set on the pool then automatically
3623 	 * try to expand the size of the pool. For example if the device we
3624 	 * just detached was smaller than the others, it may be possible to
3625 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3626 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3627 	 */
3628 	if (spa->spa_autoexpand) {
3629 		vdev_reopen(tvd);
3630 		vdev_expand(tvd, txg);
3631 	}
3632 
3633 	vdev_config_dirty(tvd);
3634 
3635 	/*
3636 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3637 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3638 	 * But first make sure we're not on any *other* txg's DTL list, to
3639 	 * prevent vd from being accessed after it's freed.
3640 	 */
3641 	for (int t = 0; t < TXG_SIZE; t++)
3642 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3643 	vd->vdev_detached = B_TRUE;
3644 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3645 
3646 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3647 
3648 	error = spa_vdev_exit(spa, vd, txg, 0);
3649 
3650 	/*
3651 	 * If this was the removal of the original device in a hot spare vdev,
3652 	 * then we want to go through and remove the device from the hot spare
3653 	 * list of every other pool.
3654 	 */
3655 	if (unspare) {
3656 		spa_t *myspa = spa;
3657 		spa = NULL;
3658 		mutex_enter(&spa_namespace_lock);
3659 		while ((spa = spa_next(spa)) != NULL) {
3660 			if (spa->spa_state != POOL_STATE_ACTIVE)
3661 				continue;
3662 			if (spa == myspa)
3663 				continue;
3664 			spa_open_ref(spa, FTAG);
3665 			mutex_exit(&spa_namespace_lock);
3666 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3667 			mutex_enter(&spa_namespace_lock);
3668 			spa_close(spa, FTAG);
3669 		}
3670 		mutex_exit(&spa_namespace_lock);
3671 	}
3672 
3673 	return (error);
3674 }
3675 
3676 static nvlist_t *
3677 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3678 {
3679 	for (int i = 0; i < count; i++) {
3680 		uint64_t guid;
3681 
3682 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3683 		    &guid) == 0);
3684 
3685 		if (guid == target_guid)
3686 			return (nvpp[i]);
3687 	}
3688 
3689 	return (NULL);
3690 }
3691 
3692 static void
3693 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3694 	nvlist_t *dev_to_remove)
3695 {
3696 	nvlist_t **newdev = NULL;
3697 
3698 	if (count > 1)
3699 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3700 
3701 	for (int i = 0, j = 0; i < count; i++) {
3702 		if (dev[i] == dev_to_remove)
3703 			continue;
3704 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3705 	}
3706 
3707 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3708 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3709 
3710 	for (int i = 0; i < count - 1; i++)
3711 		nvlist_free(newdev[i]);
3712 
3713 	if (count > 1)
3714 		kmem_free(newdev, (count - 1) * sizeof (void *));
3715 }
3716 
3717 /*
3718  * Removing a device from the vdev namespace requires several steps
3719  * and can take a significant amount of time.  As a result we use
3720  * the spa_vdev_config_[enter/exit] functions which allow us to
3721  * grab and release the spa_config_lock while still holding the namespace
3722  * lock.  During each step the configuration is synced out.
3723  */
3724 
3725 /*
3726  * Initial phase of device removal - stop future allocations from this device.
3727  */
3728 void
3729 spa_vdev_remove_start(spa_t *spa, vdev_t *vd)
3730 {
3731 	metaslab_group_t *mg = vd->vdev_mg;
3732 
3733 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3734 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3735 
3736 	/*
3737 	 * Remove our vdev from the allocatable vdevs
3738 	 */
3739 	if (mg)
3740 		metaslab_class_remove(mg->mg_class, mg);
3741 }
3742 
3743 /*
3744  * Evacuate the device.
3745  */
3746 int
3747 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
3748 {
3749 	uint64_t txg;
3750 	int error;
3751 
3752 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3753 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3754 
3755 	/*
3756 	 * Evacuate the device.  We don't hold the config lock as writer
3757 	 * since we need to do I/O but we do keep the
3758 	 * spa_namespace_lock held.  Once this completes the device
3759 	 * should no longer have any blocks allocated on it.
3760 	 */
3761 	if (vd->vdev_islog) {
3762 		/*
3763 		 * Evacuate the device.
3764 		 */
3765 		if (error = dmu_objset_find(spa_name(spa),
3766 		    zil_vdev_offline, NULL, DS_FIND_CHILDREN)) {
3767 			uint64_t txg;
3768 
3769 			txg = spa_vdev_config_enter(spa);
3770 			metaslab_class_add(spa->spa_log_class,
3771 			    vd->vdev_mg);
3772 			return (spa_vdev_exit(spa, NULL, txg, error));
3773 		}
3774 		txg_wait_synced(spa_get_dsl(spa), 0);
3775 	}
3776 
3777 	/*
3778 	 * Remove any remaining MOS metadata associated with the device.
3779 	 */
3780 	txg = spa_vdev_config_enter(spa);
3781 	vd->vdev_removing = B_TRUE;
3782 	vdev_dirty(vd, 0, NULL, txg);
3783 	vdev_config_dirty(vd);
3784 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3785 
3786 	return (0);
3787 }
3788 
3789 /*
3790  * Complete the removal by cleaning up the namespace.
3791  */
3792 void
3793 spa_vdev_remove_done(spa_t *spa, vdev_t *vd)
3794 {
3795 	vdev_t *rvd = spa->spa_root_vdev;
3796 	metaslab_group_t *mg = vd->vdev_mg;
3797 	uint64_t id = vd->vdev_id;
3798 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
3799 
3800 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3801 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3802 
3803 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3804 	vdev_free(vd);
3805 
3806 	/*
3807 	 * It's possible that another thread is trying todo a spa_vdev_add()
3808 	 * at the same time we're trying remove it. As a result the
3809 	 * added vdev may not have initialized its metaslabs yet.
3810 	 */
3811 	if (mg != NULL)
3812 		metaslab_group_destroy(mg);
3813 
3814 	if (last_vdev) {
3815 		vdev_compact_children(rvd);
3816 	} else {
3817 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
3818 		vdev_add_child(rvd, vd);
3819 	}
3820 	vdev_config_dirty(rvd);
3821 
3822 	/*
3823 	 * Reassess the health of our root vdev.
3824 	 */
3825 	vdev_reopen(rvd);
3826 }
3827 
3828 /*
3829  * Remove a device from the pool.  Currently, this supports removing only hot
3830  * spares, slogs, and level 2 ARC devices.
3831  */
3832 int
3833 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3834 {
3835 	vdev_t *vd;
3836 	nvlist_t **spares, **l2cache, *nv;
3837 	uint64_t txg = 0;
3838 	uint_t nspares, nl2cache;
3839 	int error = 0;
3840 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3841 
3842 	if (!locked)
3843 		txg = spa_vdev_enter(spa);
3844 
3845 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3846 
3847 	if (spa->spa_spares.sav_vdevs != NULL &&
3848 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3849 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3850 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3851 		/*
3852 		 * Only remove the hot spare if it's not currently in use
3853 		 * in this pool.
3854 		 */
3855 		if (vd == NULL || unspare) {
3856 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3857 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3858 			spa_load_spares(spa);
3859 			spa->spa_spares.sav_sync = B_TRUE;
3860 		} else {
3861 			error = EBUSY;
3862 		}
3863 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3864 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3865 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3866 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3867 		/*
3868 		 * Cache devices can always be removed.
3869 		 */
3870 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3871 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3872 		spa_load_l2cache(spa);
3873 		spa->spa_l2cache.sav_sync = B_TRUE;
3874 	} else if (vd != NULL && vd->vdev_islog) {
3875 		ASSERT(!locked);
3876 
3877 		/*
3878 		 * XXX - Once we have bp-rewrite this should
3879 		 * become the common case.
3880 		 */
3881 
3882 		/*
3883 		 * 1. Stop allocations
3884 		 * 2. Evacuate the device (i.e. kill off stubby and
3885 		 *    metadata) and wait for it to complete (i.e. sync).
3886 		 * 3. Cleanup the vdev namespace.
3887 		 */
3888 		spa_vdev_remove_start(spa, vd);
3889 
3890 		spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
3891 		if ((error = spa_vdev_remove_evacuate(spa, vd)) != 0)
3892 			return (error);
3893 		txg = spa_vdev_config_enter(spa);
3894 
3895 		spa_vdev_remove_done(spa, vd);
3896 
3897 	} else if (vd != NULL) {
3898 		/*
3899 		 * Normal vdevs cannot be removed (yet).
3900 		 */
3901 		error = ENOTSUP;
3902 	} else {
3903 		/*
3904 		 * There is no vdev of any kind with the specified guid.
3905 		 */
3906 		error = ENOENT;
3907 	}
3908 
3909 	if (!locked)
3910 		return (spa_vdev_exit(spa, NULL, txg, error));
3911 
3912 	return (error);
3913 }
3914 
3915 /*
3916  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3917  * current spared, so we can detach it.
3918  */
3919 static vdev_t *
3920 spa_vdev_resilver_done_hunt(vdev_t *vd)
3921 {
3922 	vdev_t *newvd, *oldvd;
3923 
3924 	for (int c = 0; c < vd->vdev_children; c++) {
3925 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3926 		if (oldvd != NULL)
3927 			return (oldvd);
3928 	}
3929 
3930 	/*
3931 	 * Check for a completed replacement.
3932 	 */
3933 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3934 		oldvd = vd->vdev_child[0];
3935 		newvd = vd->vdev_child[1];
3936 
3937 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3938 		    !vdev_dtl_required(oldvd))
3939 			return (oldvd);
3940 	}
3941 
3942 	/*
3943 	 * Check for a completed resilver with the 'unspare' flag set.
3944 	 */
3945 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3946 		newvd = vd->vdev_child[0];
3947 		oldvd = vd->vdev_child[1];
3948 
3949 		if (newvd->vdev_unspare &&
3950 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3951 		    !vdev_dtl_required(oldvd)) {
3952 			newvd->vdev_unspare = 0;
3953 			return (oldvd);
3954 		}
3955 	}
3956 
3957 	return (NULL);
3958 }
3959 
3960 static void
3961 spa_vdev_resilver_done(spa_t *spa)
3962 {
3963 	vdev_t *vd, *pvd, *ppvd;
3964 	uint64_t guid, sguid, pguid, ppguid;
3965 
3966 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3967 
3968 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3969 		pvd = vd->vdev_parent;
3970 		ppvd = pvd->vdev_parent;
3971 		guid = vd->vdev_guid;
3972 		pguid = pvd->vdev_guid;
3973 		ppguid = ppvd->vdev_guid;
3974 		sguid = 0;
3975 		/*
3976 		 * If we have just finished replacing a hot spared device, then
3977 		 * we need to detach the parent's first child (the original hot
3978 		 * spare) as well.
3979 		 */
3980 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3981 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3982 			ASSERT(ppvd->vdev_children == 2);
3983 			sguid = ppvd->vdev_child[1]->vdev_guid;
3984 		}
3985 		spa_config_exit(spa, SCL_ALL, FTAG);
3986 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3987 			return;
3988 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3989 			return;
3990 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3991 	}
3992 
3993 	spa_config_exit(spa, SCL_ALL, FTAG);
3994 }
3995 
3996 /*
3997  * Update the stored path or FRU for this vdev.  Dirty the vdev configuration,
3998  * relying on spa_vdev_enter/exit() to synchronize the labels and cache.
3999  */
4000 int
4001 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4002     boolean_t ispath)
4003 {
4004 	vdev_t *vd;
4005 	uint64_t txg;
4006 
4007 	txg = spa_vdev_enter(spa);
4008 
4009 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4010 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
4011 
4012 	if (!vd->vdev_ops->vdev_op_leaf)
4013 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4014 
4015 	if (ispath) {
4016 		spa_strfree(vd->vdev_path);
4017 		vd->vdev_path = spa_strdup(value);
4018 	} else {
4019 		if (vd->vdev_fru != NULL)
4020 			spa_strfree(vd->vdev_fru);
4021 		vd->vdev_fru = spa_strdup(value);
4022 	}
4023 
4024 	vdev_config_dirty(vd->vdev_top);
4025 
4026 	return (spa_vdev_exit(spa, NULL, txg, 0));
4027 }
4028 
4029 int
4030 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4031 {
4032 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4033 }
4034 
4035 int
4036 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4037 {
4038 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4039 }
4040 
4041 /*
4042  * ==========================================================================
4043  * SPA Scrubbing
4044  * ==========================================================================
4045  */
4046 
4047 int
4048 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4049 {
4050 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4051 
4052 	if ((uint_t)type >= POOL_SCRUB_TYPES)
4053 		return (ENOTSUP);
4054 
4055 	/*
4056 	 * If a resilver was requested, but there is no DTL on a
4057 	 * writeable leaf device, we have nothing to do.
4058 	 */
4059 	if (type == POOL_SCRUB_RESILVER &&
4060 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4061 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4062 		return (0);
4063 	}
4064 
4065 	if (type == POOL_SCRUB_EVERYTHING &&
4066 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4067 	    spa->spa_dsl_pool->dp_scrub_isresilver)
4068 		return (EBUSY);
4069 
4070 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4071 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4072 	} else if (type == POOL_SCRUB_NONE) {
4073 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4074 	} else {
4075 		return (EINVAL);
4076 	}
4077 }
4078 
4079 /*
4080  * ==========================================================================
4081  * SPA async task processing
4082  * ==========================================================================
4083  */
4084 
4085 static void
4086 spa_async_remove(spa_t *spa, vdev_t *vd)
4087 {
4088 	if (vd->vdev_remove_wanted) {
4089 		vd->vdev_remove_wanted = 0;
4090 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4091 
4092 		/*
4093 		 * We want to clear the stats, but we don't want to do a full
4094 		 * vdev_clear() as that will cause us to throw away
4095 		 * degraded/faulted state as well as attempt to reopen the
4096 		 * device, all of which is a waste.
4097 		 */
4098 		vd->vdev_stat.vs_read_errors = 0;
4099 		vd->vdev_stat.vs_write_errors = 0;
4100 		vd->vdev_stat.vs_checksum_errors = 0;
4101 
4102 		vdev_state_dirty(vd->vdev_top);
4103 	}
4104 
4105 	for (int c = 0; c < vd->vdev_children; c++)
4106 		spa_async_remove(spa, vd->vdev_child[c]);
4107 }
4108 
4109 static void
4110 spa_async_probe(spa_t *spa, vdev_t *vd)
4111 {
4112 	if (vd->vdev_probe_wanted) {
4113 		vd->vdev_probe_wanted = 0;
4114 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4115 	}
4116 
4117 	for (int c = 0; c < vd->vdev_children; c++)
4118 		spa_async_probe(spa, vd->vdev_child[c]);
4119 }
4120 
4121 static void
4122 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4123 {
4124 	sysevent_id_t eid;
4125 	nvlist_t *attr;
4126 	char *physpath;
4127 
4128 	if (!spa->spa_autoexpand)
4129 		return;
4130 
4131 	for (int c = 0; c < vd->vdev_children; c++) {
4132 		vdev_t *cvd = vd->vdev_child[c];
4133 		spa_async_autoexpand(spa, cvd);
4134 	}
4135 
4136 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4137 		return;
4138 
4139 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4140 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4141 
4142 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4143 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4144 
4145 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4146 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4147 
4148 	nvlist_free(attr);
4149 	kmem_free(physpath, MAXPATHLEN);
4150 }
4151 
4152 static void
4153 spa_async_thread(spa_t *spa)
4154 {
4155 	int tasks;
4156 
4157 	ASSERT(spa->spa_sync_on);
4158 
4159 	mutex_enter(&spa->spa_async_lock);
4160 	tasks = spa->spa_async_tasks;
4161 	spa->spa_async_tasks = 0;
4162 	mutex_exit(&spa->spa_async_lock);
4163 
4164 	/*
4165 	 * See if the config needs to be updated.
4166 	 */
4167 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4168 		uint64_t oldsz, space_update;
4169 
4170 		mutex_enter(&spa_namespace_lock);
4171 		oldsz = spa_get_space(spa);
4172 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4173 		space_update = spa_get_space(spa) - oldsz;
4174 		mutex_exit(&spa_namespace_lock);
4175 
4176 		/*
4177 		 * If the pool grew as a result of the config update,
4178 		 * then log an internal history event.
4179 		 */
4180 		if (space_update) {
4181 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4182 			    spa, NULL, CRED(),
4183 			    "pool '%s' size: %llu(+%llu)",
4184 			    spa_name(spa), spa_get_space(spa),
4185 			    space_update);
4186 		}
4187 	}
4188 
4189 	/*
4190 	 * See if any devices need to be marked REMOVED.
4191 	 */
4192 	if (tasks & SPA_ASYNC_REMOVE) {
4193 		spa_vdev_state_enter(spa, SCL_NONE);
4194 		spa_async_remove(spa, spa->spa_root_vdev);
4195 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4196 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4197 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4198 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4199 		(void) spa_vdev_state_exit(spa, NULL, 0);
4200 	}
4201 
4202 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4203 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4204 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4205 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4206 	}
4207 
4208 	/*
4209 	 * See if any devices need to be probed.
4210 	 */
4211 	if (tasks & SPA_ASYNC_PROBE) {
4212 		spa_vdev_state_enter(spa, SCL_NONE);
4213 		spa_async_probe(spa, spa->spa_root_vdev);
4214 		(void) spa_vdev_state_exit(spa, NULL, 0);
4215 	}
4216 
4217 	/*
4218 	 * If any devices are done replacing, detach them.
4219 	 */
4220 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4221 		spa_vdev_resilver_done(spa);
4222 
4223 	/*
4224 	 * Kick off a resilver.
4225 	 */
4226 	if (tasks & SPA_ASYNC_RESILVER)
4227 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4228 
4229 	/*
4230 	 * Let the world know that we're done.
4231 	 */
4232 	mutex_enter(&spa->spa_async_lock);
4233 	spa->spa_async_thread = NULL;
4234 	cv_broadcast(&spa->spa_async_cv);
4235 	mutex_exit(&spa->spa_async_lock);
4236 	thread_exit();
4237 }
4238 
4239 void
4240 spa_async_suspend(spa_t *spa)
4241 {
4242 	mutex_enter(&spa->spa_async_lock);
4243 	spa->spa_async_suspended++;
4244 	while (spa->spa_async_thread != NULL)
4245 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4246 	mutex_exit(&spa->spa_async_lock);
4247 }
4248 
4249 void
4250 spa_async_resume(spa_t *spa)
4251 {
4252 	mutex_enter(&spa->spa_async_lock);
4253 	ASSERT(spa->spa_async_suspended != 0);
4254 	spa->spa_async_suspended--;
4255 	mutex_exit(&spa->spa_async_lock);
4256 }
4257 
4258 static void
4259 spa_async_dispatch(spa_t *spa)
4260 {
4261 	mutex_enter(&spa->spa_async_lock);
4262 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4263 	    spa->spa_async_thread == NULL &&
4264 	    rootdir != NULL && !vn_is_readonly(rootdir))
4265 		spa->spa_async_thread = thread_create(NULL, 0,
4266 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4267 	mutex_exit(&spa->spa_async_lock);
4268 }
4269 
4270 void
4271 spa_async_request(spa_t *spa, int task)
4272 {
4273 	mutex_enter(&spa->spa_async_lock);
4274 	spa->spa_async_tasks |= task;
4275 	mutex_exit(&spa->spa_async_lock);
4276 }
4277 
4278 /*
4279  * ==========================================================================
4280  * SPA syncing routines
4281  * ==========================================================================
4282  */
4283 
4284 static void
4285 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
4286 {
4287 	bplist_t *bpl = &spa->spa_sync_bplist;
4288 	dmu_tx_t *tx;
4289 	blkptr_t blk;
4290 	uint64_t itor = 0;
4291 	zio_t *zio;
4292 	int error;
4293 	uint8_t c = 1;
4294 
4295 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
4296 
4297 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4298 		ASSERT(blk.blk_birth < txg);
4299 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
4300 		    ZIO_FLAG_MUSTSUCCEED));
4301 	}
4302 
4303 	error = zio_wait(zio);
4304 	ASSERT3U(error, ==, 0);
4305 
4306 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
4307 	bplist_vacate(bpl, tx);
4308 
4309 	/*
4310 	 * Pre-dirty the first block so we sync to convergence faster.
4311 	 * (Usually only the first block is needed.)
4312 	 */
4313 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
4314 	dmu_tx_commit(tx);
4315 }
4316 
4317 static void
4318 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4319 {
4320 	char *packed = NULL;
4321 	size_t bufsize;
4322 	size_t nvsize = 0;
4323 	dmu_buf_t *db;
4324 
4325 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4326 
4327 	/*
4328 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4329 	 * information.  This avoids the dbuf_will_dirty() path and
4330 	 * saves us a pre-read to get data we don't actually care about.
4331 	 */
4332 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4333 	packed = kmem_alloc(bufsize, KM_SLEEP);
4334 
4335 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4336 	    KM_SLEEP) == 0);
4337 	bzero(packed + nvsize, bufsize - nvsize);
4338 
4339 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4340 
4341 	kmem_free(packed, bufsize);
4342 
4343 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4344 	dmu_buf_will_dirty(db, tx);
4345 	*(uint64_t *)db->db_data = nvsize;
4346 	dmu_buf_rele(db, FTAG);
4347 }
4348 
4349 static void
4350 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4351     const char *config, const char *entry)
4352 {
4353 	nvlist_t *nvroot;
4354 	nvlist_t **list;
4355 	int i;
4356 
4357 	if (!sav->sav_sync)
4358 		return;
4359 
4360 	/*
4361 	 * Update the MOS nvlist describing the list of available devices.
4362 	 * spa_validate_aux() will have already made sure this nvlist is
4363 	 * valid and the vdevs are labeled appropriately.
4364 	 */
4365 	if (sav->sav_object == 0) {
4366 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
4367 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
4368 		    sizeof (uint64_t), tx);
4369 		VERIFY(zap_update(spa->spa_meta_objset,
4370 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
4371 		    &sav->sav_object, tx) == 0);
4372 	}
4373 
4374 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4375 	if (sav->sav_count == 0) {
4376 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
4377 	} else {
4378 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
4379 		for (i = 0; i < sav->sav_count; i++)
4380 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
4381 			    B_FALSE, B_FALSE, B_TRUE);
4382 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
4383 		    sav->sav_count) == 0);
4384 		for (i = 0; i < sav->sav_count; i++)
4385 			nvlist_free(list[i]);
4386 		kmem_free(list, sav->sav_count * sizeof (void *));
4387 	}
4388 
4389 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
4390 	nvlist_free(nvroot);
4391 
4392 	sav->sav_sync = B_FALSE;
4393 }
4394 
4395 static void
4396 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
4397 {
4398 	nvlist_t *config;
4399 
4400 	if (list_is_empty(&spa->spa_config_dirty_list))
4401 		return;
4402 
4403 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4404 
4405 	config = spa_config_generate(spa, spa->spa_root_vdev,
4406 	    dmu_tx_get_txg(tx), B_FALSE);
4407 
4408 	spa_config_exit(spa, SCL_STATE, FTAG);
4409 
4410 	if (spa->spa_config_syncing)
4411 		nvlist_free(spa->spa_config_syncing);
4412 	spa->spa_config_syncing = config;
4413 
4414 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
4415 }
4416 
4417 /*
4418  * Set zpool properties.
4419  */
4420 static void
4421 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
4422 {
4423 	spa_t *spa = arg1;
4424 	objset_t *mos = spa->spa_meta_objset;
4425 	nvlist_t *nvp = arg2;
4426 	nvpair_t *elem;
4427 	uint64_t intval;
4428 	char *strval;
4429 	zpool_prop_t prop;
4430 	const char *propname;
4431 	zprop_type_t proptype;
4432 
4433 	mutex_enter(&spa->spa_props_lock);
4434 
4435 	elem = NULL;
4436 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
4437 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
4438 		case ZPOOL_PROP_VERSION:
4439 			/*
4440 			 * Only set version for non-zpool-creation cases
4441 			 * (set/import). spa_create() needs special care
4442 			 * for version setting.
4443 			 */
4444 			if (tx->tx_txg != TXG_INITIAL) {
4445 				VERIFY(nvpair_value_uint64(elem,
4446 				    &intval) == 0);
4447 				ASSERT(intval <= SPA_VERSION);
4448 				ASSERT(intval >= spa_version(spa));
4449 				spa->spa_uberblock.ub_version = intval;
4450 				vdev_config_dirty(spa->spa_root_vdev);
4451 			}
4452 			break;
4453 
4454 		case ZPOOL_PROP_ALTROOT:
4455 			/*
4456 			 * 'altroot' is a non-persistent property. It should
4457 			 * have been set temporarily at creation or import time.
4458 			 */
4459 			ASSERT(spa->spa_root != NULL);
4460 			break;
4461 
4462 		case ZPOOL_PROP_CACHEFILE:
4463 			/*
4464 			 * 'cachefile' is also a non-persisitent property.
4465 			 */
4466 			break;
4467 		default:
4468 			/*
4469 			 * Set pool property values in the poolprops mos object.
4470 			 */
4471 			if (spa->spa_pool_props_object == 0) {
4472 				objset_t *mos = spa->spa_meta_objset;
4473 
4474 				VERIFY((spa->spa_pool_props_object =
4475 				    zap_create(mos, DMU_OT_POOL_PROPS,
4476 				    DMU_OT_NONE, 0, tx)) > 0);
4477 
4478 				VERIFY(zap_update(mos,
4479 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
4480 				    8, 1, &spa->spa_pool_props_object, tx)
4481 				    == 0);
4482 			}
4483 
4484 			/* normalize the property name */
4485 			propname = zpool_prop_to_name(prop);
4486 			proptype = zpool_prop_get_type(prop);
4487 
4488 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
4489 				ASSERT(proptype == PROP_TYPE_STRING);
4490 				VERIFY(nvpair_value_string(elem, &strval) == 0);
4491 				VERIFY(zap_update(mos,
4492 				    spa->spa_pool_props_object, propname,
4493 				    1, strlen(strval) + 1, strval, tx) == 0);
4494 
4495 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
4496 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
4497 
4498 				if (proptype == PROP_TYPE_INDEX) {
4499 					const char *unused;
4500 					VERIFY(zpool_prop_index_to_string(
4501 					    prop, intval, &unused) == 0);
4502 				}
4503 				VERIFY(zap_update(mos,
4504 				    spa->spa_pool_props_object, propname,
4505 				    8, 1, &intval, tx) == 0);
4506 			} else {
4507 				ASSERT(0); /* not allowed */
4508 			}
4509 
4510 			switch (prop) {
4511 			case ZPOOL_PROP_DELEGATION:
4512 				spa->spa_delegation = intval;
4513 				break;
4514 			case ZPOOL_PROP_BOOTFS:
4515 				spa->spa_bootfs = intval;
4516 				break;
4517 			case ZPOOL_PROP_FAILUREMODE:
4518 				spa->spa_failmode = intval;
4519 				break;
4520 			case ZPOOL_PROP_AUTOEXPAND:
4521 				spa->spa_autoexpand = intval;
4522 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4523 				break;
4524 			default:
4525 				break;
4526 			}
4527 		}
4528 
4529 		/* log internal history if this is not a zpool create */
4530 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
4531 		    tx->tx_txg != TXG_INITIAL) {
4532 			spa_history_internal_log(LOG_POOL_PROPSET,
4533 			    spa, tx, cr, "%s %lld %s",
4534 			    nvpair_name(elem), intval, spa_name(spa));
4535 		}
4536 	}
4537 
4538 	mutex_exit(&spa->spa_props_lock);
4539 }
4540 
4541 /*
4542  * Sync the specified transaction group.  New blocks may be dirtied as
4543  * part of the process, so we iterate until it converges.
4544  */
4545 void
4546 spa_sync(spa_t *spa, uint64_t txg)
4547 {
4548 	dsl_pool_t *dp = spa->spa_dsl_pool;
4549 	objset_t *mos = spa->spa_meta_objset;
4550 	bplist_t *bpl = &spa->spa_sync_bplist;
4551 	vdev_t *rvd = spa->spa_root_vdev;
4552 	vdev_t *vd;
4553 	dmu_tx_t *tx;
4554 	int dirty_vdevs;
4555 	int error;
4556 
4557 	/*
4558 	 * Lock out configuration changes.
4559 	 */
4560 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4561 
4562 	spa->spa_syncing_txg = txg;
4563 	spa->spa_sync_pass = 0;
4564 
4565 	/*
4566 	 * If there are any pending vdev state changes, convert them
4567 	 * into config changes that go out with this transaction group.
4568 	 */
4569 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4570 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
4571 		/*
4572 		 * We need the write lock here because, for aux vdevs,
4573 		 * calling vdev_config_dirty() modifies sav_config.
4574 		 * This is ugly and will become unnecessary when we
4575 		 * eliminate the aux vdev wart by integrating all vdevs
4576 		 * into the root vdev tree.
4577 		 */
4578 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4579 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
4580 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
4581 			vdev_state_clean(vd);
4582 			vdev_config_dirty(vd);
4583 		}
4584 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
4585 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
4586 	}
4587 	spa_config_exit(spa, SCL_STATE, FTAG);
4588 
4589 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4590 
4591 	tx = dmu_tx_create_assigned(dp, txg);
4592 
4593 	/*
4594 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4595 	 * set spa_deflate if we have no raid-z vdevs.
4596 	 */
4597 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4598 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4599 		int i;
4600 
4601 		for (i = 0; i < rvd->vdev_children; i++) {
4602 			vd = rvd->vdev_child[i];
4603 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4604 				break;
4605 		}
4606 		if (i == rvd->vdev_children) {
4607 			spa->spa_deflate = TRUE;
4608 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4609 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4610 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4611 		}
4612 	}
4613 
4614 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4615 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4616 		dsl_pool_create_origin(dp, tx);
4617 
4618 		/* Keeping the origin open increases spa_minref */
4619 		spa->spa_minref += 3;
4620 	}
4621 
4622 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4623 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4624 		dsl_pool_upgrade_clones(dp, tx);
4625 	}
4626 
4627 	/*
4628 	 * If anything has changed in this txg, push the deferred frees
4629 	 * from the previous txg.  If not, leave them alone so that we
4630 	 * don't generate work on an otherwise idle system.
4631 	 */
4632 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4633 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4634 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4635 		spa_sync_deferred_frees(spa, txg);
4636 
4637 	/*
4638 	 * Iterate to convergence.
4639 	 */
4640 	do {
4641 		spa->spa_sync_pass++;
4642 
4643 		spa_sync_config_object(spa, tx);
4644 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4645 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4646 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4647 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4648 		spa_errlog_sync(spa, txg);
4649 		dsl_pool_sync(dp, txg);
4650 
4651 		dirty_vdevs = 0;
4652 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4653 			vdev_sync(vd, txg);
4654 			dirty_vdevs++;
4655 		}
4656 
4657 		bplist_sync(bpl, tx);
4658 	} while (dirty_vdevs);
4659 
4660 	bplist_close(bpl);
4661 
4662 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4663 
4664 	/*
4665 	 * Rewrite the vdev configuration (which includes the uberblock)
4666 	 * to commit the transaction group.
4667 	 *
4668 	 * If there are no dirty vdevs, we sync the uberblock to a few
4669 	 * random top-level vdevs that are known to be visible in the
4670 	 * config cache (see spa_vdev_add() for a complete description).
4671 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4672 	 */
4673 	for (;;) {
4674 		/*
4675 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4676 		 * while we're attempting to write the vdev labels.
4677 		 */
4678 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4679 
4680 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4681 			vdev_t *svd[SPA_DVAS_PER_BP];
4682 			int svdcount = 0;
4683 			int children = rvd->vdev_children;
4684 			int c0 = spa_get_random(children);
4685 
4686 			for (int c = 0; c < children; c++) {
4687 				vd = rvd->vdev_child[(c0 + c) % children];
4688 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4689 					continue;
4690 				svd[svdcount++] = vd;
4691 				if (svdcount == SPA_DVAS_PER_BP)
4692 					break;
4693 			}
4694 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
4695 			if (error != 0)
4696 				error = vdev_config_sync(svd, svdcount, txg,
4697 				    B_TRUE);
4698 		} else {
4699 			error = vdev_config_sync(rvd->vdev_child,
4700 			    rvd->vdev_children, txg, B_FALSE);
4701 			if (error != 0)
4702 				error = vdev_config_sync(rvd->vdev_child,
4703 				    rvd->vdev_children, txg, B_TRUE);
4704 		}
4705 
4706 		spa_config_exit(spa, SCL_STATE, FTAG);
4707 
4708 		if (error == 0)
4709 			break;
4710 		zio_suspend(spa, NULL);
4711 		zio_resume_wait(spa);
4712 	}
4713 	dmu_tx_commit(tx);
4714 
4715 	/*
4716 	 * Clear the dirty config list.
4717 	 */
4718 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4719 		vdev_config_clean(vd);
4720 
4721 	/*
4722 	 * Now that the new config has synced transactionally,
4723 	 * let it become visible to the config cache.
4724 	 */
4725 	if (spa->spa_config_syncing != NULL) {
4726 		spa_config_set(spa, spa->spa_config_syncing);
4727 		spa->spa_config_txg = txg;
4728 		spa->spa_config_syncing = NULL;
4729 	}
4730 
4731 	spa->spa_ubsync = spa->spa_uberblock;
4732 
4733 	/*
4734 	 * Clean up the ZIL records for the synced txg.
4735 	 */
4736 	dsl_pool_zil_clean(dp);
4737 
4738 	/*
4739 	 * Update usable space statistics.
4740 	 */
4741 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4742 		vdev_sync_done(vd, txg);
4743 
4744 	/*
4745 	 * It had better be the case that we didn't dirty anything
4746 	 * since vdev_config_sync().
4747 	 */
4748 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4749 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4750 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4751 	ASSERT(bpl->bpl_queue == NULL);
4752 
4753 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4754 
4755 	spa_handle_ignored_writes(spa);
4756 
4757 	/*
4758 	 * If any async tasks have been requested, kick them off.
4759 	 */
4760 	spa_async_dispatch(spa);
4761 }
4762 
4763 /*
4764  * Sync all pools.  We don't want to hold the namespace lock across these
4765  * operations, so we take a reference on the spa_t and drop the lock during the
4766  * sync.
4767  */
4768 void
4769 spa_sync_allpools(void)
4770 {
4771 	spa_t *spa = NULL;
4772 	mutex_enter(&spa_namespace_lock);
4773 	while ((spa = spa_next(spa)) != NULL) {
4774 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4775 			continue;
4776 		spa_open_ref(spa, FTAG);
4777 		mutex_exit(&spa_namespace_lock);
4778 		txg_wait_synced(spa_get_dsl(spa), 0);
4779 		mutex_enter(&spa_namespace_lock);
4780 		spa_close(spa, FTAG);
4781 	}
4782 	mutex_exit(&spa_namespace_lock);
4783 }
4784 
4785 /*
4786  * ==========================================================================
4787  * Miscellaneous routines
4788  * ==========================================================================
4789  */
4790 
4791 /*
4792  * Remove all pools in the system.
4793  */
4794 void
4795 spa_evict_all(void)
4796 {
4797 	spa_t *spa;
4798 
4799 	/*
4800 	 * Remove all cached state.  All pools should be closed now,
4801 	 * so every spa in the AVL tree should be unreferenced.
4802 	 */
4803 	mutex_enter(&spa_namespace_lock);
4804 	while ((spa = spa_next(NULL)) != NULL) {
4805 		/*
4806 		 * Stop async tasks.  The async thread may need to detach
4807 		 * a device that's been replaced, which requires grabbing
4808 		 * spa_namespace_lock, so we must drop it here.
4809 		 */
4810 		spa_open_ref(spa, FTAG);
4811 		mutex_exit(&spa_namespace_lock);
4812 		spa_async_suspend(spa);
4813 		mutex_enter(&spa_namespace_lock);
4814 		spa_close(spa, FTAG);
4815 
4816 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4817 			spa_unload(spa);
4818 			spa_deactivate(spa);
4819 		}
4820 		spa_remove(spa);
4821 	}
4822 	mutex_exit(&spa_namespace_lock);
4823 }
4824 
4825 vdev_t *
4826 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
4827 {
4828 	vdev_t *vd;
4829 	int i;
4830 
4831 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4832 		return (vd);
4833 
4834 	if (aux) {
4835 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4836 			vd = spa->spa_l2cache.sav_vdevs[i];
4837 			if (vd->vdev_guid == guid)
4838 				return (vd);
4839 		}
4840 
4841 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
4842 			vd = spa->spa_spares.sav_vdevs[i];
4843 			if (vd->vdev_guid == guid)
4844 				return (vd);
4845 		}
4846 	}
4847 
4848 	return (NULL);
4849 }
4850 
4851 void
4852 spa_upgrade(spa_t *spa, uint64_t version)
4853 {
4854 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4855 
4856 	/*
4857 	 * This should only be called for a non-faulted pool, and since a
4858 	 * future version would result in an unopenable pool, this shouldn't be
4859 	 * possible.
4860 	 */
4861 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4862 	ASSERT(version >= spa->spa_uberblock.ub_version);
4863 
4864 	spa->spa_uberblock.ub_version = version;
4865 	vdev_config_dirty(spa->spa_root_vdev);
4866 
4867 	spa_config_exit(spa, SCL_ALL, FTAG);
4868 
4869 	txg_wait_synced(spa_get_dsl(spa), 0);
4870 }
4871 
4872 boolean_t
4873 spa_has_spare(spa_t *spa, uint64_t guid)
4874 {
4875 	int i;
4876 	uint64_t spareguid;
4877 	spa_aux_vdev_t *sav = &spa->spa_spares;
4878 
4879 	for (i = 0; i < sav->sav_count; i++)
4880 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4881 			return (B_TRUE);
4882 
4883 	for (i = 0; i < sav->sav_npending; i++) {
4884 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4885 		    &spareguid) == 0 && spareguid == guid)
4886 			return (B_TRUE);
4887 	}
4888 
4889 	return (B_FALSE);
4890 }
4891 
4892 /*
4893  * Check if a pool has an active shared spare device.
4894  * Note: reference count of an active spare is 2, as a spare and as a replace
4895  */
4896 static boolean_t
4897 spa_has_active_shared_spare(spa_t *spa)
4898 {
4899 	int i, refcnt;
4900 	uint64_t pool;
4901 	spa_aux_vdev_t *sav = &spa->spa_spares;
4902 
4903 	for (i = 0; i < sav->sav_count; i++) {
4904 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4905 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4906 		    refcnt > 2)
4907 			return (B_TRUE);
4908 	}
4909 
4910 	return (B_FALSE);
4911 }
4912 
4913 /*
4914  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4915  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4916  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4917  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4918  * or zdb as real changes.
4919  */
4920 void
4921 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4922 {
4923 #ifdef _KERNEL
4924 	sysevent_t		*ev;
4925 	sysevent_attr_list_t	*attr = NULL;
4926 	sysevent_value_t	value;
4927 	sysevent_id_t		eid;
4928 
4929 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4930 	    SE_SLEEP);
4931 
4932 	value.value_type = SE_DATA_TYPE_STRING;
4933 	value.value.sv_string = spa_name(spa);
4934 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4935 		goto done;
4936 
4937 	value.value_type = SE_DATA_TYPE_UINT64;
4938 	value.value.sv_uint64 = spa_guid(spa);
4939 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4940 		goto done;
4941 
4942 	if (vd) {
4943 		value.value_type = SE_DATA_TYPE_UINT64;
4944 		value.value.sv_uint64 = vd->vdev_guid;
4945 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4946 		    SE_SLEEP) != 0)
4947 			goto done;
4948 
4949 		if (vd->vdev_path) {
4950 			value.value_type = SE_DATA_TYPE_STRING;
4951 			value.value.sv_string = vd->vdev_path;
4952 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4953 			    &value, SE_SLEEP) != 0)
4954 				goto done;
4955 		}
4956 	}
4957 
4958 	if (sysevent_attach_attributes(ev, attr) != 0)
4959 		goto done;
4960 	attr = NULL;
4961 
4962 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4963 
4964 done:
4965 	if (attr)
4966 		sysevent_free_attr(attr);
4967 	sysevent_free(ev);
4968 #endif
4969 }
4970