xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 3ee8c80c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  * Copyright 2016 Toomas Soome <tsoome@me.com>
30  * Copyright 2017 Joyent, Inc.
31  * Copyright (c) 2017 Datto Inc.
32  * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
33  */
34 
35 /*
36  * SPA: Storage Pool Allocator
37  *
38  * This file contains all the routines used when modifying on-disk SPA state.
39  * This includes opening, importing, destroying, exporting a pool, and syncing a
40  * pool.
41  */
42 
43 #include <sys/zfs_context.h>
44 #include <sys/fm/fs/zfs.h>
45 #include <sys/spa_impl.h>
46 #include <sys/zio.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/dmu.h>
49 #include <sys/dmu_tx.h>
50 #include <sys/zap.h>
51 #include <sys/zil.h>
52 #include <sys/ddt.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/vdev_removal.h>
55 #include <sys/vdev_indirect_mapping.h>
56 #include <sys/vdev_indirect_births.h>
57 #include <sys/metaslab.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/uberblock_impl.h>
60 #include <sys/txg.h>
61 #include <sys/avl.h>
62 #include <sys/bpobj.h>
63 #include <sys/dmu_traverse.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/unique.h>
66 #include <sys/dsl_pool.h>
67 #include <sys/dsl_dataset.h>
68 #include <sys/dsl_dir.h>
69 #include <sys/dsl_prop.h>
70 #include <sys/dsl_synctask.h>
71 #include <sys/fs/zfs.h>
72 #include <sys/arc.h>
73 #include <sys/callb.h>
74 #include <sys/systeminfo.h>
75 #include <sys/spa_boot.h>
76 #include <sys/zfs_ioctl.h>
77 #include <sys/dsl_scan.h>
78 #include <sys/zfeature.h>
79 #include <sys/dsl_destroy.h>
80 #include <sys/abd.h>
81 
82 #ifdef	_KERNEL
83 #include <sys/bootprops.h>
84 #include <sys/callb.h>
85 #include <sys/cpupart.h>
86 #include <sys/pool.h>
87 #include <sys/sysdc.h>
88 #include <sys/zone.h>
89 #endif	/* _KERNEL */
90 
91 #include "zfs_prop.h"
92 #include "zfs_comutil.h"
93 
94 /*
95  * The interval, in seconds, at which failed configuration cache file writes
96  * should be retried.
97  */
98 int zfs_ccw_retry_interval = 300;
99 
100 typedef enum zti_modes {
101 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
102 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
103 	ZTI_MODE_NULL,			/* don't create a taskq */
104 	ZTI_NMODES
105 } zti_modes_t;
106 
107 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
108 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
109 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
110 
111 #define	ZTI_N(n)	ZTI_P(n, 1)
112 #define	ZTI_ONE		ZTI_N(1)
113 
114 typedef struct zio_taskq_info {
115 	zti_modes_t zti_mode;
116 	uint_t zti_value;
117 	uint_t zti_count;
118 } zio_taskq_info_t;
119 
120 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
121 	"issue", "issue_high", "intr", "intr_high"
122 };
123 
124 /*
125  * This table defines the taskq settings for each ZFS I/O type. When
126  * initializing a pool, we use this table to create an appropriately sized
127  * taskq. Some operations are low volume and therefore have a small, static
128  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
129  * macros. Other operations process a large amount of data; the ZTI_BATCH
130  * macro causes us to create a taskq oriented for throughput. Some operations
131  * are so high frequency and short-lived that the taskq itself can become a a
132  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
133  * additional degree of parallelism specified by the number of threads per-
134  * taskq and the number of taskqs; when dispatching an event in this case, the
135  * particular taskq is chosen at random.
136  *
137  * The different taskq priorities are to handle the different contexts (issue
138  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
139  * need to be handled with minimum delay.
140  */
141 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
142 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
143 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
144 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
145 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
146 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
147 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
148 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
149 };
150 
151 static void spa_sync_version(void *arg, dmu_tx_t *tx);
152 static void spa_sync_props(void *arg, dmu_tx_t *tx);
153 static boolean_t spa_has_active_shared_spare(spa_t *spa);
154 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
155     spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
156     char **ereport);
157 static void spa_vdev_resilver_done(spa_t *spa);
158 
159 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
160 id_t		zio_taskq_psrset_bind = PS_NONE;
161 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
163 
164 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
165 extern int	zfs_sync_pass_deferred_free;
166 
167 /*
168  * This (illegal) pool name is used when temporarily importing a spa_t in order
169  * to get the vdev stats associated with the imported devices.
170  */
171 #define	TRYIMPORT_NAME	"$import"
172 
173 /*
174  * ==========================================================================
175  * SPA properties routines
176  * ==========================================================================
177  */
178 
179 /*
180  * Add a (source=src, propname=propval) list to an nvlist.
181  */
182 static void
183 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
184     uint64_t intval, zprop_source_t src)
185 {
186 	const char *propname = zpool_prop_to_name(prop);
187 	nvlist_t *propval;
188 
189 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
190 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
191 
192 	if (strval != NULL)
193 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
194 	else
195 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
196 
197 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
198 	nvlist_free(propval);
199 }
200 
201 /*
202  * Get property values from the spa configuration.
203  */
204 static void
205 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
206 {
207 	vdev_t *rvd = spa->spa_root_vdev;
208 	dsl_pool_t *pool = spa->spa_dsl_pool;
209 	uint64_t size, alloc, cap, version;
210 	zprop_source_t src = ZPROP_SRC_NONE;
211 	spa_config_dirent_t *dp;
212 	metaslab_class_t *mc = spa_normal_class(spa);
213 
214 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
215 
216 	if (rvd != NULL) {
217 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
218 		size = metaslab_class_get_space(spa_normal_class(spa));
219 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
222 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
223 		    size - alloc, src);
224 
225 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
226 		    metaslab_class_fragmentation(mc), src);
227 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
228 		    metaslab_class_expandable_space(mc), src);
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
230 		    (spa_mode(spa) == FREAD), src);
231 
232 		cap = (size == 0) ? 0 : (alloc * 100 / size);
233 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
234 
235 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
236 		    ddt_get_pool_dedup_ratio(spa), src);
237 
238 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
239 		    rvd->vdev_state, src);
240 
241 		version = spa_version(spa);
242 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
243 			src = ZPROP_SRC_DEFAULT;
244 		else
245 			src = ZPROP_SRC_LOCAL;
246 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
247 	}
248 
249 	if (pool != NULL) {
250 		/*
251 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
252 		 * when opening pools before this version freedir will be NULL.
253 		 */
254 		if (pool->dp_free_dir != NULL) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
256 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
257 			    src);
258 		} else {
259 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
260 			    NULL, 0, src);
261 		}
262 
263 		if (pool->dp_leak_dir != NULL) {
264 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
265 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
266 			    src);
267 		} else {
268 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
269 			    NULL, 0, src);
270 		}
271 	}
272 
273 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
274 
275 	if (spa->spa_comment != NULL) {
276 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
277 		    0, ZPROP_SRC_LOCAL);
278 	}
279 
280 	if (spa->spa_root != NULL)
281 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
282 		    0, ZPROP_SRC_LOCAL);
283 
284 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
285 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
286 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
287 	} else {
288 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
289 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
290 	}
291 
292 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
293 		if (dp->scd_path == NULL) {
294 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
295 			    "none", 0, ZPROP_SRC_LOCAL);
296 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
297 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
298 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
299 		}
300 	}
301 }
302 
303 /*
304  * Get zpool property values.
305  */
306 int
307 spa_prop_get(spa_t *spa, nvlist_t **nvp)
308 {
309 	objset_t *mos = spa->spa_meta_objset;
310 	zap_cursor_t zc;
311 	zap_attribute_t za;
312 	int err;
313 
314 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
315 
316 	mutex_enter(&spa->spa_props_lock);
317 
318 	/*
319 	 * Get properties from the spa config.
320 	 */
321 	spa_prop_get_config(spa, nvp);
322 
323 	/* If no pool property object, no more prop to get. */
324 	if (mos == NULL || spa->spa_pool_props_object == 0) {
325 		mutex_exit(&spa->spa_props_lock);
326 		return (0);
327 	}
328 
329 	/*
330 	 * Get properties from the MOS pool property object.
331 	 */
332 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
333 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
334 	    zap_cursor_advance(&zc)) {
335 		uint64_t intval = 0;
336 		char *strval = NULL;
337 		zprop_source_t src = ZPROP_SRC_DEFAULT;
338 		zpool_prop_t prop;
339 
340 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
341 			continue;
342 
343 		switch (za.za_integer_length) {
344 		case 8:
345 			/* integer property */
346 			if (za.za_first_integer !=
347 			    zpool_prop_default_numeric(prop))
348 				src = ZPROP_SRC_LOCAL;
349 
350 			if (prop == ZPOOL_PROP_BOOTFS) {
351 				dsl_pool_t *dp;
352 				dsl_dataset_t *ds = NULL;
353 
354 				dp = spa_get_dsl(spa);
355 				dsl_pool_config_enter(dp, FTAG);
356 				if (err = dsl_dataset_hold_obj(dp,
357 				    za.za_first_integer, FTAG, &ds)) {
358 					dsl_pool_config_exit(dp, FTAG);
359 					break;
360 				}
361 
362 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
363 				    KM_SLEEP);
364 				dsl_dataset_name(ds, strval);
365 				dsl_dataset_rele(ds, FTAG);
366 				dsl_pool_config_exit(dp, FTAG);
367 			} else {
368 				strval = NULL;
369 				intval = za.za_first_integer;
370 			}
371 
372 			spa_prop_add_list(*nvp, prop, strval, intval, src);
373 
374 			if (strval != NULL)
375 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
376 
377 			break;
378 
379 		case 1:
380 			/* string property */
381 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
382 			err = zap_lookup(mos, spa->spa_pool_props_object,
383 			    za.za_name, 1, za.za_num_integers, strval);
384 			if (err) {
385 				kmem_free(strval, za.za_num_integers);
386 				break;
387 			}
388 			spa_prop_add_list(*nvp, prop, strval, 0, src);
389 			kmem_free(strval, za.za_num_integers);
390 			break;
391 
392 		default:
393 			break;
394 		}
395 	}
396 	zap_cursor_fini(&zc);
397 	mutex_exit(&spa->spa_props_lock);
398 out:
399 	if (err && err != ENOENT) {
400 		nvlist_free(*nvp);
401 		*nvp = NULL;
402 		return (err);
403 	}
404 
405 	return (0);
406 }
407 
408 /*
409  * Validate the given pool properties nvlist and modify the list
410  * for the property values to be set.
411  */
412 static int
413 spa_prop_validate(spa_t *spa, nvlist_t *props)
414 {
415 	nvpair_t *elem;
416 	int error = 0, reset_bootfs = 0;
417 	uint64_t objnum = 0;
418 	boolean_t has_feature = B_FALSE;
419 
420 	elem = NULL;
421 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
422 		uint64_t intval;
423 		char *strval, *slash, *check, *fname;
424 		const char *propname = nvpair_name(elem);
425 		zpool_prop_t prop = zpool_name_to_prop(propname);
426 
427 		switch (prop) {
428 		case ZPOOL_PROP_INVAL:
429 			if (!zpool_prop_feature(propname)) {
430 				error = SET_ERROR(EINVAL);
431 				break;
432 			}
433 
434 			/*
435 			 * Sanitize the input.
436 			 */
437 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
438 				error = SET_ERROR(EINVAL);
439 				break;
440 			}
441 
442 			if (nvpair_value_uint64(elem, &intval) != 0) {
443 				error = SET_ERROR(EINVAL);
444 				break;
445 			}
446 
447 			if (intval != 0) {
448 				error = SET_ERROR(EINVAL);
449 				break;
450 			}
451 
452 			fname = strchr(propname, '@') + 1;
453 			if (zfeature_lookup_name(fname, NULL) != 0) {
454 				error = SET_ERROR(EINVAL);
455 				break;
456 			}
457 
458 			has_feature = B_TRUE;
459 			break;
460 
461 		case ZPOOL_PROP_VERSION:
462 			error = nvpair_value_uint64(elem, &intval);
463 			if (!error &&
464 			    (intval < spa_version(spa) ||
465 			    intval > SPA_VERSION_BEFORE_FEATURES ||
466 			    has_feature))
467 				error = SET_ERROR(EINVAL);
468 			break;
469 
470 		case ZPOOL_PROP_DELEGATION:
471 		case ZPOOL_PROP_AUTOREPLACE:
472 		case ZPOOL_PROP_LISTSNAPS:
473 		case ZPOOL_PROP_AUTOEXPAND:
474 			error = nvpair_value_uint64(elem, &intval);
475 			if (!error && intval > 1)
476 				error = SET_ERROR(EINVAL);
477 			break;
478 
479 		case ZPOOL_PROP_BOOTFS:
480 			/*
481 			 * If the pool version is less than SPA_VERSION_BOOTFS,
482 			 * or the pool is still being created (version == 0),
483 			 * the bootfs property cannot be set.
484 			 */
485 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
486 				error = SET_ERROR(ENOTSUP);
487 				break;
488 			}
489 
490 			/*
491 			 * Make sure the vdev config is bootable
492 			 */
493 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
494 				error = SET_ERROR(ENOTSUP);
495 				break;
496 			}
497 
498 			reset_bootfs = 1;
499 
500 			error = nvpair_value_string(elem, &strval);
501 
502 			if (!error) {
503 				objset_t *os;
504 				uint64_t propval;
505 
506 				if (strval == NULL || strval[0] == '\0') {
507 					objnum = zpool_prop_default_numeric(
508 					    ZPOOL_PROP_BOOTFS);
509 					break;
510 				}
511 
512 				if (error = dmu_objset_hold(strval, FTAG, &os))
513 					break;
514 
515 				/*
516 				 * Must be ZPL, and its property settings
517 				 * must be supported by GRUB (compression
518 				 * is not gzip, and large blocks are not used).
519 				 */
520 
521 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
522 					error = SET_ERROR(ENOTSUP);
523 				} else if ((error =
524 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
525 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
526 				    &propval)) == 0 &&
527 				    !BOOTFS_COMPRESS_VALID(propval)) {
528 					error = SET_ERROR(ENOTSUP);
529 				} else {
530 					objnum = dmu_objset_id(os);
531 				}
532 				dmu_objset_rele(os, FTAG);
533 			}
534 			break;
535 
536 		case ZPOOL_PROP_FAILUREMODE:
537 			error = nvpair_value_uint64(elem, &intval);
538 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
539 			    intval > ZIO_FAILURE_MODE_PANIC))
540 				error = SET_ERROR(EINVAL);
541 
542 			/*
543 			 * This is a special case which only occurs when
544 			 * the pool has completely failed. This allows
545 			 * the user to change the in-core failmode property
546 			 * without syncing it out to disk (I/Os might
547 			 * currently be blocked). We do this by returning
548 			 * EIO to the caller (spa_prop_set) to trick it
549 			 * into thinking we encountered a property validation
550 			 * error.
551 			 */
552 			if (!error && spa_suspended(spa)) {
553 				spa->spa_failmode = intval;
554 				error = SET_ERROR(EIO);
555 			}
556 			break;
557 
558 		case ZPOOL_PROP_CACHEFILE:
559 			if ((error = nvpair_value_string(elem, &strval)) != 0)
560 				break;
561 
562 			if (strval[0] == '\0')
563 				break;
564 
565 			if (strcmp(strval, "none") == 0)
566 				break;
567 
568 			if (strval[0] != '/') {
569 				error = SET_ERROR(EINVAL);
570 				break;
571 			}
572 
573 			slash = strrchr(strval, '/');
574 			ASSERT(slash != NULL);
575 
576 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
577 			    strcmp(slash, "/..") == 0)
578 				error = SET_ERROR(EINVAL);
579 			break;
580 
581 		case ZPOOL_PROP_COMMENT:
582 			if ((error = nvpair_value_string(elem, &strval)) != 0)
583 				break;
584 			for (check = strval; *check != '\0'; check++) {
585 				/*
586 				 * The kernel doesn't have an easy isprint()
587 				 * check.  For this kernel check, we merely
588 				 * check ASCII apart from DEL.  Fix this if
589 				 * there is an easy-to-use kernel isprint().
590 				 */
591 				if (*check >= 0x7f) {
592 					error = SET_ERROR(EINVAL);
593 					break;
594 				}
595 			}
596 			if (strlen(strval) > ZPROP_MAX_COMMENT)
597 				error = E2BIG;
598 			break;
599 
600 		case ZPOOL_PROP_DEDUPDITTO:
601 			if (spa_version(spa) < SPA_VERSION_DEDUP)
602 				error = SET_ERROR(ENOTSUP);
603 			else
604 				error = nvpair_value_uint64(elem, &intval);
605 			if (error == 0 &&
606 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
607 				error = SET_ERROR(EINVAL);
608 			break;
609 		}
610 
611 		if (error)
612 			break;
613 	}
614 
615 	if (!error && reset_bootfs) {
616 		error = nvlist_remove(props,
617 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
618 
619 		if (!error) {
620 			error = nvlist_add_uint64(props,
621 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
622 		}
623 	}
624 
625 	return (error);
626 }
627 
628 void
629 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
630 {
631 	char *cachefile;
632 	spa_config_dirent_t *dp;
633 
634 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
635 	    &cachefile) != 0)
636 		return;
637 
638 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
639 	    KM_SLEEP);
640 
641 	if (cachefile[0] == '\0')
642 		dp->scd_path = spa_strdup(spa_config_path);
643 	else if (strcmp(cachefile, "none") == 0)
644 		dp->scd_path = NULL;
645 	else
646 		dp->scd_path = spa_strdup(cachefile);
647 
648 	list_insert_head(&spa->spa_config_list, dp);
649 	if (need_sync)
650 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
651 }
652 
653 int
654 spa_prop_set(spa_t *spa, nvlist_t *nvp)
655 {
656 	int error;
657 	nvpair_t *elem = NULL;
658 	boolean_t need_sync = B_FALSE;
659 
660 	if ((error = spa_prop_validate(spa, nvp)) != 0)
661 		return (error);
662 
663 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
664 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
665 
666 		if (prop == ZPOOL_PROP_CACHEFILE ||
667 		    prop == ZPOOL_PROP_ALTROOT ||
668 		    prop == ZPOOL_PROP_READONLY)
669 			continue;
670 
671 		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
672 			uint64_t ver;
673 
674 			if (prop == ZPOOL_PROP_VERSION) {
675 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
676 			} else {
677 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
678 				ver = SPA_VERSION_FEATURES;
679 				need_sync = B_TRUE;
680 			}
681 
682 			/* Save time if the version is already set. */
683 			if (ver == spa_version(spa))
684 				continue;
685 
686 			/*
687 			 * In addition to the pool directory object, we might
688 			 * create the pool properties object, the features for
689 			 * read object, the features for write object, or the
690 			 * feature descriptions object.
691 			 */
692 			error = dsl_sync_task(spa->spa_name, NULL,
693 			    spa_sync_version, &ver,
694 			    6, ZFS_SPACE_CHECK_RESERVED);
695 			if (error)
696 				return (error);
697 			continue;
698 		}
699 
700 		need_sync = B_TRUE;
701 		break;
702 	}
703 
704 	if (need_sync) {
705 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
706 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
707 	}
708 
709 	return (0);
710 }
711 
712 /*
713  * If the bootfs property value is dsobj, clear it.
714  */
715 void
716 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
717 {
718 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
719 		VERIFY(zap_remove(spa->spa_meta_objset,
720 		    spa->spa_pool_props_object,
721 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
722 		spa->spa_bootfs = 0;
723 	}
724 }
725 
726 /*ARGSUSED*/
727 static int
728 spa_change_guid_check(void *arg, dmu_tx_t *tx)
729 {
730 	uint64_t *newguid = arg;
731 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
732 	vdev_t *rvd = spa->spa_root_vdev;
733 	uint64_t vdev_state;
734 
735 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736 	vdev_state = rvd->vdev_state;
737 	spa_config_exit(spa, SCL_STATE, FTAG);
738 
739 	if (vdev_state != VDEV_STATE_HEALTHY)
740 		return (SET_ERROR(ENXIO));
741 
742 	ASSERT3U(spa_guid(spa), !=, *newguid);
743 
744 	return (0);
745 }
746 
747 static void
748 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
749 {
750 	uint64_t *newguid = arg;
751 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752 	uint64_t oldguid;
753 	vdev_t *rvd = spa->spa_root_vdev;
754 
755 	oldguid = spa_guid(spa);
756 
757 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
758 	rvd->vdev_guid = *newguid;
759 	rvd->vdev_guid_sum += (*newguid - oldguid);
760 	vdev_config_dirty(rvd);
761 	spa_config_exit(spa, SCL_STATE, FTAG);
762 
763 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
764 	    oldguid, *newguid);
765 }
766 
767 /*
768  * Change the GUID for the pool.  This is done so that we can later
769  * re-import a pool built from a clone of our own vdevs.  We will modify
770  * the root vdev's guid, our own pool guid, and then mark all of our
771  * vdevs dirty.  Note that we must make sure that all our vdevs are
772  * online when we do this, or else any vdevs that weren't present
773  * would be orphaned from our pool.  We are also going to issue a
774  * sysevent to update any watchers.
775  */
776 int
777 spa_change_guid(spa_t *spa)
778 {
779 	int error;
780 	uint64_t guid;
781 
782 	mutex_enter(&spa->spa_vdev_top_lock);
783 	mutex_enter(&spa_namespace_lock);
784 	guid = spa_generate_guid(NULL);
785 
786 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
787 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
788 
789 	if (error == 0) {
790 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
791 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
792 	}
793 
794 	mutex_exit(&spa_namespace_lock);
795 	mutex_exit(&spa->spa_vdev_top_lock);
796 
797 	return (error);
798 }
799 
800 /*
801  * ==========================================================================
802  * SPA state manipulation (open/create/destroy/import/export)
803  * ==========================================================================
804  */
805 
806 static int
807 spa_error_entry_compare(const void *a, const void *b)
808 {
809 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
810 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
811 	int ret;
812 
813 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
814 	    sizeof (zbookmark_phys_t));
815 
816 	if (ret < 0)
817 		return (-1);
818 	else if (ret > 0)
819 		return (1);
820 	else
821 		return (0);
822 }
823 
824 /*
825  * Utility function which retrieves copies of the current logs and
826  * re-initializes them in the process.
827  */
828 void
829 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
830 {
831 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
832 
833 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
834 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
835 
836 	avl_create(&spa->spa_errlist_scrub,
837 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838 	    offsetof(spa_error_entry_t, se_avl));
839 	avl_create(&spa->spa_errlist_last,
840 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
841 	    offsetof(spa_error_entry_t, se_avl));
842 }
843 
844 static void
845 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
846 {
847 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
848 	enum zti_modes mode = ztip->zti_mode;
849 	uint_t value = ztip->zti_value;
850 	uint_t count = ztip->zti_count;
851 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
852 	char name[32];
853 	uint_t flags = 0;
854 	boolean_t batch = B_FALSE;
855 
856 	if (mode == ZTI_MODE_NULL) {
857 		tqs->stqs_count = 0;
858 		tqs->stqs_taskq = NULL;
859 		return;
860 	}
861 
862 	ASSERT3U(count, >, 0);
863 
864 	tqs->stqs_count = count;
865 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
866 
867 	switch (mode) {
868 	case ZTI_MODE_FIXED:
869 		ASSERT3U(value, >=, 1);
870 		value = MAX(value, 1);
871 		break;
872 
873 	case ZTI_MODE_BATCH:
874 		batch = B_TRUE;
875 		flags |= TASKQ_THREADS_CPU_PCT;
876 		value = zio_taskq_batch_pct;
877 		break;
878 
879 	default:
880 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
881 		    "spa_activate()",
882 		    zio_type_name[t], zio_taskq_types[q], mode, value);
883 		break;
884 	}
885 
886 	for (uint_t i = 0; i < count; i++) {
887 		taskq_t *tq;
888 
889 		if (count > 1) {
890 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
891 			    zio_type_name[t], zio_taskq_types[q], i);
892 		} else {
893 			(void) snprintf(name, sizeof (name), "%s_%s",
894 			    zio_type_name[t], zio_taskq_types[q]);
895 		}
896 
897 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
898 			if (batch)
899 				flags |= TASKQ_DC_BATCH;
900 
901 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
902 			    spa->spa_proc, zio_taskq_basedc, flags);
903 		} else {
904 			pri_t pri = maxclsyspri;
905 			/*
906 			 * The write issue taskq can be extremely CPU
907 			 * intensive.  Run it at slightly lower priority
908 			 * than the other taskqs.
909 			 */
910 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
911 				pri--;
912 
913 			tq = taskq_create_proc(name, value, pri, 50,
914 			    INT_MAX, spa->spa_proc, flags);
915 		}
916 
917 		tqs->stqs_taskq[i] = tq;
918 	}
919 }
920 
921 static void
922 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
923 {
924 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
925 
926 	if (tqs->stqs_taskq == NULL) {
927 		ASSERT0(tqs->stqs_count);
928 		return;
929 	}
930 
931 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
932 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
933 		taskq_destroy(tqs->stqs_taskq[i]);
934 	}
935 
936 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
937 	tqs->stqs_taskq = NULL;
938 }
939 
940 /*
941  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
942  * Note that a type may have multiple discrete taskqs to avoid lock contention
943  * on the taskq itself. In that case we choose which taskq at random by using
944  * the low bits of gethrtime().
945  */
946 void
947 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
948     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
949 {
950 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
951 	taskq_t *tq;
952 
953 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
954 	ASSERT3U(tqs->stqs_count, !=, 0);
955 
956 	if (tqs->stqs_count == 1) {
957 		tq = tqs->stqs_taskq[0];
958 	} else {
959 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
960 	}
961 
962 	taskq_dispatch_ent(tq, func, arg, flags, ent);
963 }
964 
965 static void
966 spa_create_zio_taskqs(spa_t *spa)
967 {
968 	for (int t = 0; t < ZIO_TYPES; t++) {
969 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
970 			spa_taskqs_init(spa, t, q);
971 		}
972 	}
973 }
974 
975 #ifdef _KERNEL
976 static void
977 spa_thread(void *arg)
978 {
979 	callb_cpr_t cprinfo;
980 
981 	spa_t *spa = arg;
982 	user_t *pu = PTOU(curproc);
983 
984 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
985 	    spa->spa_name);
986 
987 	ASSERT(curproc != &p0);
988 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
989 	    "zpool-%s", spa->spa_name);
990 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
991 
992 	/* bind this thread to the requested psrset */
993 	if (zio_taskq_psrset_bind != PS_NONE) {
994 		pool_lock();
995 		mutex_enter(&cpu_lock);
996 		mutex_enter(&pidlock);
997 		mutex_enter(&curproc->p_lock);
998 
999 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1000 		    0, NULL, NULL) == 0)  {
1001 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1002 		} else {
1003 			cmn_err(CE_WARN,
1004 			    "Couldn't bind process for zfs pool \"%s\" to "
1005 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1006 		}
1007 
1008 		mutex_exit(&curproc->p_lock);
1009 		mutex_exit(&pidlock);
1010 		mutex_exit(&cpu_lock);
1011 		pool_unlock();
1012 	}
1013 
1014 	if (zio_taskq_sysdc) {
1015 		sysdc_thread_enter(curthread, 100, 0);
1016 	}
1017 
1018 	spa->spa_proc = curproc;
1019 	spa->spa_did = curthread->t_did;
1020 
1021 	spa_create_zio_taskqs(spa);
1022 
1023 	mutex_enter(&spa->spa_proc_lock);
1024 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1025 
1026 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1027 	cv_broadcast(&spa->spa_proc_cv);
1028 
1029 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1030 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1031 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1032 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1033 
1034 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1035 	spa->spa_proc_state = SPA_PROC_GONE;
1036 	spa->spa_proc = &p0;
1037 	cv_broadcast(&spa->spa_proc_cv);
1038 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1039 
1040 	mutex_enter(&curproc->p_lock);
1041 	lwp_exit();
1042 }
1043 #endif
1044 
1045 /*
1046  * Activate an uninitialized pool.
1047  */
1048 static void
1049 spa_activate(spa_t *spa, int mode)
1050 {
1051 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1052 
1053 	spa->spa_state = POOL_STATE_ACTIVE;
1054 	spa->spa_mode = mode;
1055 
1056 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1057 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1058 
1059 	/* Try to create a covering process */
1060 	mutex_enter(&spa->spa_proc_lock);
1061 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1062 	ASSERT(spa->spa_proc == &p0);
1063 	spa->spa_did = 0;
1064 
1065 	/* Only create a process if we're going to be around a while. */
1066 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1067 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1068 		    NULL, 0) == 0) {
1069 			spa->spa_proc_state = SPA_PROC_CREATED;
1070 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1071 				cv_wait(&spa->spa_proc_cv,
1072 				    &spa->spa_proc_lock);
1073 			}
1074 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1075 			ASSERT(spa->spa_proc != &p0);
1076 			ASSERT(spa->spa_did != 0);
1077 		} else {
1078 #ifdef _KERNEL
1079 			cmn_err(CE_WARN,
1080 			    "Couldn't create process for zfs pool \"%s\"\n",
1081 			    spa->spa_name);
1082 #endif
1083 		}
1084 	}
1085 	mutex_exit(&spa->spa_proc_lock);
1086 
1087 	/* If we didn't create a process, we need to create our taskqs. */
1088 	if (spa->spa_proc == &p0) {
1089 		spa_create_zio_taskqs(spa);
1090 	}
1091 
1092 	for (size_t i = 0; i < TXG_SIZE; i++)
1093 		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1094 
1095 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1096 	    offsetof(vdev_t, vdev_config_dirty_node));
1097 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1098 	    offsetof(objset_t, os_evicting_node));
1099 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1100 	    offsetof(vdev_t, vdev_state_dirty_node));
1101 
1102 	txg_list_create(&spa->spa_vdev_txg_list, spa,
1103 	    offsetof(struct vdev, vdev_txg_node));
1104 
1105 	avl_create(&spa->spa_errlist_scrub,
1106 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1107 	    offsetof(spa_error_entry_t, se_avl));
1108 	avl_create(&spa->spa_errlist_last,
1109 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1110 	    offsetof(spa_error_entry_t, se_avl));
1111 }
1112 
1113 /*
1114  * Opposite of spa_activate().
1115  */
1116 static void
1117 spa_deactivate(spa_t *spa)
1118 {
1119 	ASSERT(spa->spa_sync_on == B_FALSE);
1120 	ASSERT(spa->spa_dsl_pool == NULL);
1121 	ASSERT(spa->spa_root_vdev == NULL);
1122 	ASSERT(spa->spa_async_zio_root == NULL);
1123 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1124 
1125 	spa_evicting_os_wait(spa);
1126 
1127 	txg_list_destroy(&spa->spa_vdev_txg_list);
1128 
1129 	list_destroy(&spa->spa_config_dirty_list);
1130 	list_destroy(&spa->spa_evicting_os_list);
1131 	list_destroy(&spa->spa_state_dirty_list);
1132 
1133 	for (int t = 0; t < ZIO_TYPES; t++) {
1134 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1135 			spa_taskqs_fini(spa, t, q);
1136 		}
1137 	}
1138 
1139 	for (size_t i = 0; i < TXG_SIZE; i++) {
1140 		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1141 		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1142 		spa->spa_txg_zio[i] = NULL;
1143 	}
1144 
1145 	metaslab_class_destroy(spa->spa_normal_class);
1146 	spa->spa_normal_class = NULL;
1147 
1148 	metaslab_class_destroy(spa->spa_log_class);
1149 	spa->spa_log_class = NULL;
1150 
1151 	/*
1152 	 * If this was part of an import or the open otherwise failed, we may
1153 	 * still have errors left in the queues.  Empty them just in case.
1154 	 */
1155 	spa_errlog_drain(spa);
1156 
1157 	avl_destroy(&spa->spa_errlist_scrub);
1158 	avl_destroy(&spa->spa_errlist_last);
1159 
1160 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1161 
1162 	mutex_enter(&spa->spa_proc_lock);
1163 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1164 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1165 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1166 		cv_broadcast(&spa->spa_proc_cv);
1167 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1168 			ASSERT(spa->spa_proc != &p0);
1169 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1170 		}
1171 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1172 		spa->spa_proc_state = SPA_PROC_NONE;
1173 	}
1174 	ASSERT(spa->spa_proc == &p0);
1175 	mutex_exit(&spa->spa_proc_lock);
1176 
1177 	/*
1178 	 * We want to make sure spa_thread() has actually exited the ZFS
1179 	 * module, so that the module can't be unloaded out from underneath
1180 	 * it.
1181 	 */
1182 	if (spa->spa_did != 0) {
1183 		thread_join(spa->spa_did);
1184 		spa->spa_did = 0;
1185 	}
1186 }
1187 
1188 /*
1189  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1190  * will create all the necessary vdevs in the appropriate layout, with each vdev
1191  * in the CLOSED state.  This will prep the pool before open/creation/import.
1192  * All vdev validation is done by the vdev_alloc() routine.
1193  */
1194 static int
1195 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1196     uint_t id, int atype)
1197 {
1198 	nvlist_t **child;
1199 	uint_t children;
1200 	int error;
1201 
1202 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1203 		return (error);
1204 
1205 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1206 		return (0);
1207 
1208 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1209 	    &child, &children);
1210 
1211 	if (error == ENOENT)
1212 		return (0);
1213 
1214 	if (error) {
1215 		vdev_free(*vdp);
1216 		*vdp = NULL;
1217 		return (SET_ERROR(EINVAL));
1218 	}
1219 
1220 	for (int c = 0; c < children; c++) {
1221 		vdev_t *vd;
1222 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1223 		    atype)) != 0) {
1224 			vdev_free(*vdp);
1225 			*vdp = NULL;
1226 			return (error);
1227 		}
1228 	}
1229 
1230 	ASSERT(*vdp != NULL);
1231 
1232 	return (0);
1233 }
1234 
1235 /*
1236  * Opposite of spa_load().
1237  */
1238 static void
1239 spa_unload(spa_t *spa)
1240 {
1241 	int i;
1242 
1243 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1244 
1245 	spa_load_note(spa, "UNLOADING");
1246 
1247 	/*
1248 	 * Stop async tasks.
1249 	 */
1250 	spa_async_suspend(spa);
1251 
1252 	/*
1253 	 * Stop syncing.
1254 	 */
1255 	if (spa->spa_sync_on) {
1256 		txg_sync_stop(spa->spa_dsl_pool);
1257 		spa->spa_sync_on = B_FALSE;
1258 	}
1259 
1260 	/*
1261 	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1262 	 * to call it earlier, before we wait for async i/o to complete.
1263 	 * This ensures that there is no async metaslab prefetching, by
1264 	 * calling taskq_wait(mg_taskq).
1265 	 */
1266 	if (spa->spa_root_vdev != NULL) {
1267 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1268 		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1269 			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1270 		spa_config_exit(spa, SCL_ALL, FTAG);
1271 	}
1272 
1273 	/*
1274 	 * Wait for any outstanding async I/O to complete.
1275 	 */
1276 	if (spa->spa_async_zio_root != NULL) {
1277 		for (int i = 0; i < max_ncpus; i++)
1278 			(void) zio_wait(spa->spa_async_zio_root[i]);
1279 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1280 		spa->spa_async_zio_root = NULL;
1281 	}
1282 
1283 	if (spa->spa_vdev_removal != NULL) {
1284 		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1285 		spa->spa_vdev_removal = NULL;
1286 	}
1287 
1288 	spa_condense_fini(spa);
1289 
1290 	bpobj_close(&spa->spa_deferred_bpobj);
1291 
1292 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1293 
1294 	/*
1295 	 * Close all vdevs.
1296 	 */
1297 	if (spa->spa_root_vdev)
1298 		vdev_free(spa->spa_root_vdev);
1299 	ASSERT(spa->spa_root_vdev == NULL);
1300 
1301 	/*
1302 	 * Close the dsl pool.
1303 	 */
1304 	if (spa->spa_dsl_pool) {
1305 		dsl_pool_close(spa->spa_dsl_pool);
1306 		spa->spa_dsl_pool = NULL;
1307 		spa->spa_meta_objset = NULL;
1308 	}
1309 
1310 	ddt_unload(spa);
1311 
1312 	/*
1313 	 * Drop and purge level 2 cache
1314 	 */
1315 	spa_l2cache_drop(spa);
1316 
1317 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1318 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1319 	if (spa->spa_spares.sav_vdevs) {
1320 		kmem_free(spa->spa_spares.sav_vdevs,
1321 		    spa->spa_spares.sav_count * sizeof (void *));
1322 		spa->spa_spares.sav_vdevs = NULL;
1323 	}
1324 	if (spa->spa_spares.sav_config) {
1325 		nvlist_free(spa->spa_spares.sav_config);
1326 		spa->spa_spares.sav_config = NULL;
1327 	}
1328 	spa->spa_spares.sav_count = 0;
1329 
1330 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1331 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1332 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1333 	}
1334 	if (spa->spa_l2cache.sav_vdevs) {
1335 		kmem_free(spa->spa_l2cache.sav_vdevs,
1336 		    spa->spa_l2cache.sav_count * sizeof (void *));
1337 		spa->spa_l2cache.sav_vdevs = NULL;
1338 	}
1339 	if (spa->spa_l2cache.sav_config) {
1340 		nvlist_free(spa->spa_l2cache.sav_config);
1341 		spa->spa_l2cache.sav_config = NULL;
1342 	}
1343 	spa->spa_l2cache.sav_count = 0;
1344 
1345 	spa->spa_async_suspended = 0;
1346 
1347 	spa->spa_indirect_vdevs_loaded = B_FALSE;
1348 
1349 	if (spa->spa_comment != NULL) {
1350 		spa_strfree(spa->spa_comment);
1351 		spa->spa_comment = NULL;
1352 	}
1353 
1354 	spa_config_exit(spa, SCL_ALL, FTAG);
1355 }
1356 
1357 /*
1358  * Load (or re-load) the current list of vdevs describing the active spares for
1359  * this pool.  When this is called, we have some form of basic information in
1360  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1361  * then re-generate a more complete list including status information.
1362  */
1363 void
1364 spa_load_spares(spa_t *spa)
1365 {
1366 	nvlist_t **spares;
1367 	uint_t nspares;
1368 	int i;
1369 	vdev_t *vd, *tvd;
1370 
1371 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1372 
1373 	/*
1374 	 * First, close and free any existing spare vdevs.
1375 	 */
1376 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1377 		vd = spa->spa_spares.sav_vdevs[i];
1378 
1379 		/* Undo the call to spa_activate() below */
1380 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1381 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1382 			spa_spare_remove(tvd);
1383 		vdev_close(vd);
1384 		vdev_free(vd);
1385 	}
1386 
1387 	if (spa->spa_spares.sav_vdevs)
1388 		kmem_free(spa->spa_spares.sav_vdevs,
1389 		    spa->spa_spares.sav_count * sizeof (void *));
1390 
1391 	if (spa->spa_spares.sav_config == NULL)
1392 		nspares = 0;
1393 	else
1394 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1395 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1396 
1397 	spa->spa_spares.sav_count = (int)nspares;
1398 	spa->spa_spares.sav_vdevs = NULL;
1399 
1400 	if (nspares == 0)
1401 		return;
1402 
1403 	/*
1404 	 * Construct the array of vdevs, opening them to get status in the
1405 	 * process.   For each spare, there is potentially two different vdev_t
1406 	 * structures associated with it: one in the list of spares (used only
1407 	 * for basic validation purposes) and one in the active vdev
1408 	 * configuration (if it's spared in).  During this phase we open and
1409 	 * validate each vdev on the spare list.  If the vdev also exists in the
1410 	 * active configuration, then we also mark this vdev as an active spare.
1411 	 */
1412 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1413 	    KM_SLEEP);
1414 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1415 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1416 		    VDEV_ALLOC_SPARE) == 0);
1417 		ASSERT(vd != NULL);
1418 
1419 		spa->spa_spares.sav_vdevs[i] = vd;
1420 
1421 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1422 		    B_FALSE)) != NULL) {
1423 			if (!tvd->vdev_isspare)
1424 				spa_spare_add(tvd);
1425 
1426 			/*
1427 			 * We only mark the spare active if we were successfully
1428 			 * able to load the vdev.  Otherwise, importing a pool
1429 			 * with a bad active spare would result in strange
1430 			 * behavior, because multiple pool would think the spare
1431 			 * is actively in use.
1432 			 *
1433 			 * There is a vulnerability here to an equally bizarre
1434 			 * circumstance, where a dead active spare is later
1435 			 * brought back to life (onlined or otherwise).  Given
1436 			 * the rarity of this scenario, and the extra complexity
1437 			 * it adds, we ignore the possibility.
1438 			 */
1439 			if (!vdev_is_dead(tvd))
1440 				spa_spare_activate(tvd);
1441 		}
1442 
1443 		vd->vdev_top = vd;
1444 		vd->vdev_aux = &spa->spa_spares;
1445 
1446 		if (vdev_open(vd) != 0)
1447 			continue;
1448 
1449 		if (vdev_validate_aux(vd) == 0)
1450 			spa_spare_add(vd);
1451 	}
1452 
1453 	/*
1454 	 * Recompute the stashed list of spares, with status information
1455 	 * this time.
1456 	 */
1457 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1458 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1459 
1460 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1461 	    KM_SLEEP);
1462 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1463 		spares[i] = vdev_config_generate(spa,
1464 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1465 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1466 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1467 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1468 		nvlist_free(spares[i]);
1469 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1470 }
1471 
1472 /*
1473  * Load (or re-load) the current list of vdevs describing the active l2cache for
1474  * this pool.  When this is called, we have some form of basic information in
1475  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1476  * then re-generate a more complete list including status information.
1477  * Devices which are already active have their details maintained, and are
1478  * not re-opened.
1479  */
1480 void
1481 spa_load_l2cache(spa_t *spa)
1482 {
1483 	nvlist_t **l2cache;
1484 	uint_t nl2cache;
1485 	int i, j, oldnvdevs;
1486 	uint64_t guid;
1487 	vdev_t *vd, **oldvdevs, **newvdevs;
1488 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1489 
1490 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1491 
1492 	if (sav->sav_config != NULL) {
1493 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1494 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1495 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1496 	} else {
1497 		nl2cache = 0;
1498 		newvdevs = NULL;
1499 	}
1500 
1501 	oldvdevs = sav->sav_vdevs;
1502 	oldnvdevs = sav->sav_count;
1503 	sav->sav_vdevs = NULL;
1504 	sav->sav_count = 0;
1505 
1506 	/*
1507 	 * Process new nvlist of vdevs.
1508 	 */
1509 	for (i = 0; i < nl2cache; i++) {
1510 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1511 		    &guid) == 0);
1512 
1513 		newvdevs[i] = NULL;
1514 		for (j = 0; j < oldnvdevs; j++) {
1515 			vd = oldvdevs[j];
1516 			if (vd != NULL && guid == vd->vdev_guid) {
1517 				/*
1518 				 * Retain previous vdev for add/remove ops.
1519 				 */
1520 				newvdevs[i] = vd;
1521 				oldvdevs[j] = NULL;
1522 				break;
1523 			}
1524 		}
1525 
1526 		if (newvdevs[i] == NULL) {
1527 			/*
1528 			 * Create new vdev
1529 			 */
1530 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1531 			    VDEV_ALLOC_L2CACHE) == 0);
1532 			ASSERT(vd != NULL);
1533 			newvdevs[i] = vd;
1534 
1535 			/*
1536 			 * Commit this vdev as an l2cache device,
1537 			 * even if it fails to open.
1538 			 */
1539 			spa_l2cache_add(vd);
1540 
1541 			vd->vdev_top = vd;
1542 			vd->vdev_aux = sav;
1543 
1544 			spa_l2cache_activate(vd);
1545 
1546 			if (vdev_open(vd) != 0)
1547 				continue;
1548 
1549 			(void) vdev_validate_aux(vd);
1550 
1551 			if (!vdev_is_dead(vd))
1552 				l2arc_add_vdev(spa, vd);
1553 		}
1554 	}
1555 
1556 	/*
1557 	 * Purge vdevs that were dropped
1558 	 */
1559 	for (i = 0; i < oldnvdevs; i++) {
1560 		uint64_t pool;
1561 
1562 		vd = oldvdevs[i];
1563 		if (vd != NULL) {
1564 			ASSERT(vd->vdev_isl2cache);
1565 
1566 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1567 			    pool != 0ULL && l2arc_vdev_present(vd))
1568 				l2arc_remove_vdev(vd);
1569 			vdev_clear_stats(vd);
1570 			vdev_free(vd);
1571 		}
1572 	}
1573 
1574 	if (oldvdevs)
1575 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1576 
1577 	if (sav->sav_config == NULL)
1578 		goto out;
1579 
1580 	sav->sav_vdevs = newvdevs;
1581 	sav->sav_count = (int)nl2cache;
1582 
1583 	/*
1584 	 * Recompute the stashed list of l2cache devices, with status
1585 	 * information this time.
1586 	 */
1587 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1588 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1589 
1590 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1591 	for (i = 0; i < sav->sav_count; i++)
1592 		l2cache[i] = vdev_config_generate(spa,
1593 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1594 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1595 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1596 out:
1597 	for (i = 0; i < sav->sav_count; i++)
1598 		nvlist_free(l2cache[i]);
1599 	if (sav->sav_count)
1600 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1601 }
1602 
1603 static int
1604 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1605 {
1606 	dmu_buf_t *db;
1607 	char *packed = NULL;
1608 	size_t nvsize = 0;
1609 	int error;
1610 	*value = NULL;
1611 
1612 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1613 	if (error != 0)
1614 		return (error);
1615 
1616 	nvsize = *(uint64_t *)db->db_data;
1617 	dmu_buf_rele(db, FTAG);
1618 
1619 	packed = kmem_alloc(nvsize, KM_SLEEP);
1620 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1621 	    DMU_READ_PREFETCH);
1622 	if (error == 0)
1623 		error = nvlist_unpack(packed, nvsize, value, 0);
1624 	kmem_free(packed, nvsize);
1625 
1626 	return (error);
1627 }
1628 
1629 /*
1630  * Checks to see if the given vdev could not be opened, in which case we post a
1631  * sysevent to notify the autoreplace code that the device has been removed.
1632  */
1633 static void
1634 spa_check_removed(vdev_t *vd)
1635 {
1636 	for (int c = 0; c < vd->vdev_children; c++)
1637 		spa_check_removed(vd->vdev_child[c]);
1638 
1639 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1640 	    vdev_is_concrete(vd)) {
1641 		zfs_post_autoreplace(vd->vdev_spa, vd);
1642 		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1643 	}
1644 }
1645 
1646 static void
1647 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1648 {
1649 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1650 
1651 	vd->vdev_top_zap = mvd->vdev_top_zap;
1652 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1653 
1654 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1655 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1656 	}
1657 }
1658 
1659 /*
1660  * Validate the current config against the MOS config
1661  */
1662 static boolean_t
1663 spa_config_valid(spa_t *spa, nvlist_t *config)
1664 {
1665 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1666 	nvlist_t *nv;
1667 
1668 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1669 
1670 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1671 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1672 
1673 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1674 
1675 	/*
1676 	 * If we're doing a normal import, then build up any additional
1677 	 * diagnostic information about missing devices in this config.
1678 	 * We'll pass this up to the user for further processing.
1679 	 */
1680 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1681 		nvlist_t **child, *nv;
1682 		uint64_t idx = 0;
1683 
1684 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1685 		    KM_SLEEP);
1686 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1687 
1688 		for (int c = 0; c < rvd->vdev_children; c++) {
1689 			vdev_t *tvd = rvd->vdev_child[c];
1690 			vdev_t *mtvd  = mrvd->vdev_child[c];
1691 
1692 			if (tvd->vdev_ops == &vdev_missing_ops &&
1693 			    mtvd->vdev_ops != &vdev_missing_ops &&
1694 			    mtvd->vdev_islog)
1695 				child[idx++] = vdev_config_generate(spa, mtvd,
1696 				    B_FALSE, 0);
1697 		}
1698 
1699 		if (idx) {
1700 			VERIFY(nvlist_add_nvlist_array(nv,
1701 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1702 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1703 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1704 
1705 			for (int i = 0; i < idx; i++)
1706 				nvlist_free(child[i]);
1707 		}
1708 		nvlist_free(nv);
1709 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1710 	}
1711 
1712 	/*
1713 	 * Compare the root vdev tree with the information we have
1714 	 * from the MOS config (mrvd). Check each top-level vdev
1715 	 * with the corresponding MOS config top-level (mtvd).
1716 	 */
1717 	for (int c = 0; c < rvd->vdev_children; c++) {
1718 		vdev_t *tvd = rvd->vdev_child[c];
1719 		vdev_t *mtvd  = mrvd->vdev_child[c];
1720 
1721 		/*
1722 		 * Resolve any "missing" vdevs in the current configuration.
1723 		 * Also trust the MOS config about any "indirect" vdevs.
1724 		 * If we find that the MOS config has more accurate information
1725 		 * about the top-level vdev then use that vdev instead.
1726 		 */
1727 		if ((tvd->vdev_ops == &vdev_missing_ops &&
1728 		    mtvd->vdev_ops != &vdev_missing_ops) ||
1729 		    (mtvd->vdev_ops == &vdev_indirect_ops &&
1730 		    tvd->vdev_ops != &vdev_indirect_ops)) {
1731 
1732 			/*
1733 			 * Device specific actions.
1734 			 */
1735 			if (mtvd->vdev_islog) {
1736 				if (!(spa->spa_import_flags &
1737 				    ZFS_IMPORT_MISSING_LOG)) {
1738 					continue;
1739 				}
1740 
1741 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1742 			} else if (mtvd->vdev_ops != &vdev_indirect_ops) {
1743 				continue;
1744 			}
1745 
1746 			/*
1747 			 * Swap the missing vdev with the data we were
1748 			 * able to obtain from the MOS config.
1749 			 */
1750 			vdev_remove_child(rvd, tvd);
1751 			vdev_remove_child(mrvd, mtvd);
1752 
1753 			vdev_add_child(rvd, mtvd);
1754 			vdev_add_child(mrvd, tvd);
1755 
1756 			vdev_reopen(rvd);
1757 		} else {
1758 			if (mtvd->vdev_islog) {
1759 				/*
1760 				 * Load the slog device's state from the MOS
1761 				 * config since it's possible that the label
1762 				 * does not contain the most up-to-date
1763 				 * information.
1764 				 */
1765 				vdev_load_log_state(tvd, mtvd);
1766 				vdev_reopen(tvd);
1767 			}
1768 
1769 			/*
1770 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1771 			 */
1772 			spa_config_valid_zaps(tvd, mtvd);
1773 		}
1774 
1775 		/*
1776 		 * Never trust this info from userland; always use what's
1777 		 * in the MOS.  This prevents it from getting out of sync
1778 		 * with the rest of the info in the MOS.
1779 		 */
1780 		tvd->vdev_removing = mtvd->vdev_removing;
1781 		tvd->vdev_indirect_config = mtvd->vdev_indirect_config;
1782 	}
1783 
1784 	vdev_free(mrvd);
1785 	spa_config_exit(spa, SCL_ALL, FTAG);
1786 
1787 	/*
1788 	 * Ensure we were able to validate the config.
1789 	 */
1790 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1791 }
1792 
1793 /*
1794  * Check for missing log devices
1795  */
1796 static boolean_t
1797 spa_check_logs(spa_t *spa)
1798 {
1799 	boolean_t rv = B_FALSE;
1800 	dsl_pool_t *dp = spa_get_dsl(spa);
1801 
1802 	switch (spa->spa_log_state) {
1803 	case SPA_LOG_MISSING:
1804 		/* need to recheck in case slog has been restored */
1805 	case SPA_LOG_UNKNOWN:
1806 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1807 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1808 		if (rv)
1809 			spa_set_log_state(spa, SPA_LOG_MISSING);
1810 		break;
1811 	}
1812 	return (rv);
1813 }
1814 
1815 static boolean_t
1816 spa_passivate_log(spa_t *spa)
1817 {
1818 	vdev_t *rvd = spa->spa_root_vdev;
1819 	boolean_t slog_found = B_FALSE;
1820 
1821 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1822 
1823 	if (!spa_has_slogs(spa))
1824 		return (B_FALSE);
1825 
1826 	for (int c = 0; c < rvd->vdev_children; c++) {
1827 		vdev_t *tvd = rvd->vdev_child[c];
1828 		metaslab_group_t *mg = tvd->vdev_mg;
1829 
1830 		if (tvd->vdev_islog) {
1831 			metaslab_group_passivate(mg);
1832 			slog_found = B_TRUE;
1833 		}
1834 	}
1835 
1836 	return (slog_found);
1837 }
1838 
1839 static void
1840 spa_activate_log(spa_t *spa)
1841 {
1842 	vdev_t *rvd = spa->spa_root_vdev;
1843 
1844 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1845 
1846 	for (int c = 0; c < rvd->vdev_children; c++) {
1847 		vdev_t *tvd = rvd->vdev_child[c];
1848 		metaslab_group_t *mg = tvd->vdev_mg;
1849 
1850 		if (tvd->vdev_islog)
1851 			metaslab_group_activate(mg);
1852 	}
1853 }
1854 
1855 int
1856 spa_reset_logs(spa_t *spa)
1857 {
1858 	int error;
1859 
1860 	error = dmu_objset_find(spa_name(spa), zil_reset,
1861 	    NULL, DS_FIND_CHILDREN);
1862 	if (error == 0) {
1863 		/*
1864 		 * We successfully offlined the log device, sync out the
1865 		 * current txg so that the "stubby" block can be removed
1866 		 * by zil_sync().
1867 		 */
1868 		txg_wait_synced(spa->spa_dsl_pool, 0);
1869 	}
1870 	return (error);
1871 }
1872 
1873 static void
1874 spa_aux_check_removed(spa_aux_vdev_t *sav)
1875 {
1876 	for (int i = 0; i < sav->sav_count; i++)
1877 		spa_check_removed(sav->sav_vdevs[i]);
1878 }
1879 
1880 void
1881 spa_claim_notify(zio_t *zio)
1882 {
1883 	spa_t *spa = zio->io_spa;
1884 
1885 	if (zio->io_error)
1886 		return;
1887 
1888 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1889 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1890 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1891 	mutex_exit(&spa->spa_props_lock);
1892 }
1893 
1894 typedef struct spa_load_error {
1895 	uint64_t	sle_meta_count;
1896 	uint64_t	sle_data_count;
1897 } spa_load_error_t;
1898 
1899 static void
1900 spa_load_verify_done(zio_t *zio)
1901 {
1902 	blkptr_t *bp = zio->io_bp;
1903 	spa_load_error_t *sle = zio->io_private;
1904 	dmu_object_type_t type = BP_GET_TYPE(bp);
1905 	int error = zio->io_error;
1906 	spa_t *spa = zio->io_spa;
1907 
1908 	abd_free(zio->io_abd);
1909 	if (error) {
1910 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1911 		    type != DMU_OT_INTENT_LOG)
1912 			atomic_inc_64(&sle->sle_meta_count);
1913 		else
1914 			atomic_inc_64(&sle->sle_data_count);
1915 	}
1916 
1917 	mutex_enter(&spa->spa_scrub_lock);
1918 	spa->spa_scrub_inflight--;
1919 	cv_broadcast(&spa->spa_scrub_io_cv);
1920 	mutex_exit(&spa->spa_scrub_lock);
1921 }
1922 
1923 /*
1924  * Maximum number of concurrent scrub i/os to create while verifying
1925  * a pool while importing it.
1926  */
1927 int spa_load_verify_maxinflight = 10000;
1928 boolean_t spa_load_verify_metadata = B_TRUE;
1929 boolean_t spa_load_verify_data = B_TRUE;
1930 
1931 /*ARGSUSED*/
1932 static int
1933 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1934     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1935 {
1936 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1937 		return (0);
1938 	/*
1939 	 * Note: normally this routine will not be called if
1940 	 * spa_load_verify_metadata is not set.  However, it may be useful
1941 	 * to manually set the flag after the traversal has begun.
1942 	 */
1943 	if (!spa_load_verify_metadata)
1944 		return (0);
1945 	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
1946 		return (0);
1947 
1948 	zio_t *rio = arg;
1949 	size_t size = BP_GET_PSIZE(bp);
1950 
1951 	mutex_enter(&spa->spa_scrub_lock);
1952 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1953 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1954 	spa->spa_scrub_inflight++;
1955 	mutex_exit(&spa->spa_scrub_lock);
1956 
1957 	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
1958 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1959 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1960 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1961 	return (0);
1962 }
1963 
1964 /* ARGSUSED */
1965 int
1966 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1967 {
1968 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1969 		return (SET_ERROR(ENAMETOOLONG));
1970 
1971 	return (0);
1972 }
1973 
1974 static int
1975 spa_load_verify(spa_t *spa)
1976 {
1977 	zio_t *rio;
1978 	spa_load_error_t sle = { 0 };
1979 	zpool_rewind_policy_t policy;
1980 	boolean_t verify_ok = B_FALSE;
1981 	int error = 0;
1982 
1983 	zpool_get_rewind_policy(spa->spa_config, &policy);
1984 
1985 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1986 		return (0);
1987 
1988 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1989 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1990 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1991 	    DS_FIND_CHILDREN);
1992 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1993 	if (error != 0)
1994 		return (error);
1995 
1996 	rio = zio_root(spa, NULL, &sle,
1997 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1998 
1999 	if (spa_load_verify_metadata) {
2000 		if (spa->spa_extreme_rewind) {
2001 			spa_load_note(spa, "performing a complete scan of the "
2002 			    "pool since extreme rewind is on. This may take "
2003 			    "a very long time.\n  (spa_load_verify_data=%u, "
2004 			    "spa_load_verify_metadata=%u)",
2005 			    spa_load_verify_data, spa_load_verify_metadata);
2006 		}
2007 		error = traverse_pool(spa, spa->spa_verify_min_txg,
2008 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2009 		    spa_load_verify_cb, rio);
2010 	}
2011 
2012 	(void) zio_wait(rio);
2013 
2014 	spa->spa_load_meta_errors = sle.sle_meta_count;
2015 	spa->spa_load_data_errors = sle.sle_data_count;
2016 
2017 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2018 	    sle.sle_data_count <= policy.zrp_maxdata) {
2019 		int64_t loss = 0;
2020 
2021 		verify_ok = B_TRUE;
2022 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2023 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2024 
2025 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2026 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2027 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2028 		VERIFY(nvlist_add_int64(spa->spa_load_info,
2029 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2030 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2031 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2032 	} else {
2033 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2034 	}
2035 
2036 	if (error) {
2037 		if (error != ENXIO && error != EIO)
2038 			error = SET_ERROR(EIO);
2039 		return (error);
2040 	}
2041 
2042 	return (verify_ok ? 0 : EIO);
2043 }
2044 
2045 /*
2046  * Find a value in the pool props object.
2047  */
2048 static void
2049 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2050 {
2051 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2052 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2053 }
2054 
2055 /*
2056  * Find a value in the pool directory object.
2057  */
2058 static int
2059 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2060 {
2061 	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2062 	    name, sizeof (uint64_t), 1, val);
2063 
2064 	if (error != 0 && (error != ENOENT || log_enoent)) {
2065 		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2066 		    "[error=%d]", name, error);
2067 	}
2068 
2069 	return (error);
2070 }
2071 
2072 static int
2073 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2074 {
2075 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2076 	return (SET_ERROR(err));
2077 }
2078 
2079 /*
2080  * Fix up config after a partly-completed split.  This is done with the
2081  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2082  * pool have that entry in their config, but only the splitting one contains
2083  * a list of all the guids of the vdevs that are being split off.
2084  *
2085  * This function determines what to do with that list: either rejoin
2086  * all the disks to the pool, or complete the splitting process.  To attempt
2087  * the rejoin, each disk that is offlined is marked online again, and
2088  * we do a reopen() call.  If the vdev label for every disk that was
2089  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2090  * then we call vdev_split() on each disk, and complete the split.
2091  *
2092  * Otherwise we leave the config alone, with all the vdevs in place in
2093  * the original pool.
2094  */
2095 static void
2096 spa_try_repair(spa_t *spa, nvlist_t *config)
2097 {
2098 	uint_t extracted;
2099 	uint64_t *glist;
2100 	uint_t i, gcount;
2101 	nvlist_t *nvl;
2102 	vdev_t **vd;
2103 	boolean_t attempt_reopen;
2104 
2105 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2106 		return;
2107 
2108 	/* check that the config is complete */
2109 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2110 	    &glist, &gcount) != 0)
2111 		return;
2112 
2113 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2114 
2115 	/* attempt to online all the vdevs & validate */
2116 	attempt_reopen = B_TRUE;
2117 	for (i = 0; i < gcount; i++) {
2118 		if (glist[i] == 0)	/* vdev is hole */
2119 			continue;
2120 
2121 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2122 		if (vd[i] == NULL) {
2123 			/*
2124 			 * Don't bother attempting to reopen the disks;
2125 			 * just do the split.
2126 			 */
2127 			attempt_reopen = B_FALSE;
2128 		} else {
2129 			/* attempt to re-online it */
2130 			vd[i]->vdev_offline = B_FALSE;
2131 		}
2132 	}
2133 
2134 	if (attempt_reopen) {
2135 		vdev_reopen(spa->spa_root_vdev);
2136 
2137 		/* check each device to see what state it's in */
2138 		for (extracted = 0, i = 0; i < gcount; i++) {
2139 			if (vd[i] != NULL &&
2140 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2141 				break;
2142 			++extracted;
2143 		}
2144 	}
2145 
2146 	/*
2147 	 * If every disk has been moved to the new pool, or if we never
2148 	 * even attempted to look at them, then we split them off for
2149 	 * good.
2150 	 */
2151 	if (!attempt_reopen || gcount == extracted) {
2152 		for (i = 0; i < gcount; i++)
2153 			if (vd[i] != NULL)
2154 				vdev_split(vd[i]);
2155 		vdev_reopen(spa->spa_root_vdev);
2156 	}
2157 
2158 	kmem_free(vd, gcount * sizeof (vdev_t *));
2159 }
2160 
2161 static int
2162 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2163     boolean_t trust_config)
2164 {
2165 	nvlist_t *config = spa->spa_config;
2166 	char *ereport = FM_EREPORT_ZFS_POOL;
2167 	char *comment;
2168 	int error;
2169 	uint64_t pool_guid;
2170 	nvlist_t *nvl;
2171 
2172 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2173 		return (SET_ERROR(EINVAL));
2174 
2175 	ASSERT(spa->spa_comment == NULL);
2176 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2177 		spa->spa_comment = spa_strdup(comment);
2178 
2179 	/*
2180 	 * Versioning wasn't explicitly added to the label until later, so if
2181 	 * it's not present treat it as the initial version.
2182 	 */
2183 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2184 	    &spa->spa_ubsync.ub_version) != 0)
2185 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2186 
2187 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2188 	    &spa->spa_config_txg);
2189 
2190 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2191 	    spa_guid_exists(pool_guid, 0)) {
2192 		error = SET_ERROR(EEXIST);
2193 	} else {
2194 		spa->spa_config_guid = pool_guid;
2195 
2196 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2197 		    &nvl) == 0) {
2198 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2199 			    KM_SLEEP) == 0);
2200 		}
2201 
2202 		nvlist_free(spa->spa_load_info);
2203 		spa->spa_load_info = fnvlist_alloc();
2204 
2205 		gethrestime(&spa->spa_loaded_ts);
2206 		error = spa_load_impl(spa, pool_guid, config, state, type,
2207 		    trust_config, &ereport);
2208 	}
2209 
2210 	/*
2211 	 * Don't count references from objsets that are already closed
2212 	 * and are making their way through the eviction process.
2213 	 */
2214 	spa_evicting_os_wait(spa);
2215 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2216 	if (error) {
2217 		if (error != EEXIST) {
2218 			spa->spa_loaded_ts.tv_sec = 0;
2219 			spa->spa_loaded_ts.tv_nsec = 0;
2220 		}
2221 		if (error != EBADF) {
2222 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2223 		}
2224 	}
2225 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2226 	spa->spa_ena = 0;
2227 
2228 	return (error);
2229 }
2230 
2231 /*
2232  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2233  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2234  * spa's per-vdev ZAP list.
2235  */
2236 static uint64_t
2237 vdev_count_verify_zaps(vdev_t *vd)
2238 {
2239 	spa_t *spa = vd->vdev_spa;
2240 	uint64_t total = 0;
2241 	if (vd->vdev_top_zap != 0) {
2242 		total++;
2243 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2244 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2245 	}
2246 	if (vd->vdev_leaf_zap != 0) {
2247 		total++;
2248 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2249 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2250 	}
2251 
2252 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2253 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2254 	}
2255 
2256 	return (total);
2257 }
2258 
2259 static int
2260 spa_ld_parse_config(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2261     spa_import_type_t type)
2262 {
2263 	int error = 0;
2264 	nvlist_t *nvtree = NULL;
2265 	int parse;
2266 	vdev_t *rvd;
2267 
2268 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2269 		spa_load_failed(spa, "invalid config provided: '%s' missing",
2270 		    ZPOOL_CONFIG_VDEV_TREE);
2271 		return (SET_ERROR(EINVAL));
2272 	}
2273 
2274 	parse = (type == SPA_IMPORT_EXISTING ?
2275 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2276 
2277 	/*
2278 	 * Create "The Godfather" zio to hold all async IOs
2279 	 */
2280 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2281 	    KM_SLEEP);
2282 	for (int i = 0; i < max_ncpus; i++) {
2283 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2284 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2285 		    ZIO_FLAG_GODFATHER);
2286 	}
2287 
2288 	/*
2289 	 * Parse the configuration into a vdev tree.  We explicitly set the
2290 	 * value that will be returned by spa_version() since parsing the
2291 	 * configuration requires knowing the version number.
2292 	 */
2293 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2294 	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2295 	spa_config_exit(spa, SCL_ALL, FTAG);
2296 
2297 	if (error != 0) {
2298 		spa_load_failed(spa, "unable to parse config [error=%d]",
2299 		    error);
2300 		return (error);
2301 	}
2302 
2303 	ASSERT(spa->spa_root_vdev == rvd);
2304 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2305 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2306 
2307 	if (type != SPA_IMPORT_ASSEMBLE) {
2308 		ASSERT(spa_guid(spa) == pool_guid);
2309 	}
2310 
2311 	return (0);
2312 }
2313 
2314 static int
2315 spa_ld_open_vdevs(spa_t *spa)
2316 {
2317 	int error = 0;
2318 
2319 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2320 	error = vdev_open(spa->spa_root_vdev);
2321 	spa_config_exit(spa, SCL_ALL, FTAG);
2322 	if (error != 0) {
2323 		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2324 		    error);
2325 	}
2326 
2327 	return (error);
2328 }
2329 
2330 static int
2331 spa_ld_validate_vdevs(spa_t *spa, spa_import_type_t type,
2332     boolean_t trust_config)
2333 {
2334 	int error = 0;
2335 	vdev_t *rvd = spa->spa_root_vdev;
2336 
2337 	/*
2338 	 * We need to validate the vdev labels against the configuration that
2339 	 * we have in hand, which is dependent on the setting of trust_config.
2340 	 * If trust_config is true then we're validating the vdev labels based
2341 	 * on that config.  Otherwise, we're validating against the cached
2342 	 * config (zpool.cache) that was read when we loaded the zfs module, and
2343 	 * then later we will recursively call spa_load() and validate against
2344 	 * the vdev config.
2345 	 *
2346 	 * If we're assembling a new pool that's been split off from an
2347 	 * existing pool, the labels haven't yet been updated so we skip
2348 	 * validation for now.
2349 	 */
2350 	if (type != SPA_IMPORT_ASSEMBLE) {
2351 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2352 		error = vdev_validate(rvd, trust_config);
2353 		spa_config_exit(spa, SCL_ALL, FTAG);
2354 
2355 		if (error != 0) {
2356 			spa_load_failed(spa, "vdev_validate failed [error=%d]",
2357 			    error);
2358 			return (error);
2359 		}
2360 
2361 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2362 			spa_load_failed(spa, "cannot open vdev tree after "
2363 			    "invalidating some vdevs");
2364 			return (SET_ERROR(ENXIO));
2365 		}
2366 	}
2367 
2368 	return (0);
2369 }
2370 
2371 static int
2372 spa_ld_select_uberblock(spa_t *spa, nvlist_t *config, spa_import_type_t type,
2373     boolean_t trust_config)
2374 {
2375 	vdev_t *rvd = spa->spa_root_vdev;
2376 	nvlist_t *label;
2377 	uberblock_t *ub = &spa->spa_uberblock;
2378 	uint64_t children;
2379 
2380 	/*
2381 	 * Find the best uberblock.
2382 	 */
2383 	vdev_uberblock_load(rvd, ub, &label);
2384 
2385 	/*
2386 	 * If we weren't able to find a single valid uberblock, return failure.
2387 	 */
2388 	if (ub->ub_txg == 0) {
2389 		nvlist_free(label);
2390 		spa_load_failed(spa, "no valid uberblock found");
2391 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2392 	}
2393 
2394 	spa_load_note(spa, "using uberblock with txg=%llu",
2395 	    (u_longlong_t)ub->ub_txg);
2396 
2397 	/*
2398 	 * If the pool has an unsupported version we can't open it.
2399 	 */
2400 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2401 		nvlist_free(label);
2402 		spa_load_failed(spa, "version %llu is not supported",
2403 		    (u_longlong_t)ub->ub_version);
2404 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2405 	}
2406 
2407 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2408 		nvlist_t *features;
2409 
2410 		/*
2411 		 * If we weren't able to find what's necessary for reading the
2412 		 * MOS in the label, return failure.
2413 		 */
2414 		if (label == NULL) {
2415 			spa_load_failed(spa, "label config unavailable");
2416 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2417 			    ENXIO));
2418 		}
2419 
2420 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2421 		    &features) != 0) {
2422 			nvlist_free(label);
2423 			spa_load_failed(spa, "invalid label: '%s' missing",
2424 			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2425 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2426 			    ENXIO));
2427 		}
2428 
2429 		/*
2430 		 * Update our in-core representation with the definitive values
2431 		 * from the label.
2432 		 */
2433 		nvlist_free(spa->spa_label_features);
2434 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2435 	}
2436 
2437 	nvlist_free(label);
2438 
2439 	/*
2440 	 * Look through entries in the label nvlist's features_for_read. If
2441 	 * there is a feature listed there which we don't understand then we
2442 	 * cannot open a pool.
2443 	 */
2444 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2445 		nvlist_t *unsup_feat;
2446 
2447 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2448 		    0);
2449 
2450 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2451 		    NULL); nvp != NULL;
2452 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2453 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2454 				VERIFY(nvlist_add_string(unsup_feat,
2455 				    nvpair_name(nvp), "") == 0);
2456 			}
2457 		}
2458 
2459 		if (!nvlist_empty(unsup_feat)) {
2460 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2461 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2462 			nvlist_free(unsup_feat);
2463 			spa_load_failed(spa, "some features are unsupported");
2464 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2465 			    ENOTSUP));
2466 		}
2467 
2468 		nvlist_free(unsup_feat);
2469 	}
2470 
2471 	/*
2472 	 * If the vdev guid sum doesn't match the uberblock, we have an
2473 	 * incomplete configuration.  We first check to see if the pool
2474 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2475 	 * If it is, defer the vdev_guid_sum check till later so we
2476 	 * can handle missing vdevs.
2477 	 */
2478 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2479 	    &children) != 0 && trust_config && type != SPA_IMPORT_ASSEMBLE &&
2480 	    rvd->vdev_guid_sum != ub->ub_guid_sum) {
2481 		spa_load_failed(spa, "guid sum in config doesn't match guid "
2482 		    "sum in uberblock (%llu != %llu)",
2483 		    (u_longlong_t)rvd->vdev_guid_sum,
2484 		    (u_longlong_t)ub->ub_guid_sum);
2485 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2486 	}
2487 
2488 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2489 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2490 		spa_try_repair(spa, config);
2491 		spa_config_exit(spa, SCL_ALL, FTAG);
2492 		nvlist_free(spa->spa_config_splitting);
2493 		spa->spa_config_splitting = NULL;
2494 	}
2495 
2496 	/*
2497 	 * Initialize internal SPA structures.
2498 	 */
2499 	spa->spa_state = POOL_STATE_ACTIVE;
2500 	spa->spa_ubsync = spa->spa_uberblock;
2501 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2502 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2503 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2504 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2505 	spa->spa_claim_max_txg = spa->spa_first_txg;
2506 	spa->spa_prev_software_version = ub->ub_software_version;
2507 
2508 	return (0);
2509 }
2510 
2511 static int
2512 spa_ld_open_rootbp(spa_t *spa)
2513 {
2514 	int error = 0;
2515 	vdev_t *rvd = spa->spa_root_vdev;
2516 
2517 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2518 	if (error != 0) {
2519 		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2520 		    "[error=%d]", error);
2521 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2522 	}
2523 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2524 
2525 	return (0);
2526 }
2527 
2528 static int
2529 spa_ld_validate_config(spa_t *spa, spa_import_type_t type)
2530 {
2531 	vdev_t *rvd = spa->spa_root_vdev;
2532 
2533 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2534 	    != 0)
2535 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536 
2537 	/*
2538 	 * Validate the config, using the MOS config to fill in any
2539 	 * information which might be missing.  If we fail to validate
2540 	 * the config then declare the pool unfit for use. If we're
2541 	 * assembling a pool from a split, the log is not transferred
2542 	 * over.
2543 	 */
2544 	if (type != SPA_IMPORT_ASSEMBLE) {
2545 		nvlist_t *mos_config;
2546 		if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2547 		    != 0) {
2548 			spa_load_failed(spa, "unable to retrieve MOS config");
2549 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2550 		}
2551 
2552 		if (!spa_config_valid(spa, mos_config)) {
2553 			nvlist_free(mos_config);
2554 			spa_load_failed(spa, "mismatch between config provided "
2555 			    "and config stored in MOS");
2556 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2557 			    ENXIO));
2558 		}
2559 		nvlist_free(mos_config);
2560 
2561 		/*
2562 		 * Now that we've validated the config, check the state of the
2563 		 * root vdev.  If it can't be opened, it indicates one or
2564 		 * more toplevel vdevs are faulted.
2565 		 */
2566 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2567 			spa_load_failed(spa, "some top vdevs are unavailable");
2568 			return (SET_ERROR(ENXIO));
2569 		}
2570 	}
2571 
2572 	return (0);
2573 }
2574 
2575 static int
2576 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2577 {
2578 	int error = 0;
2579 	vdev_t *rvd = spa->spa_root_vdev;
2580 
2581 	/*
2582 	 * Everything that we read before spa_remove_init() must be stored
2583 	 * on concreted vdevs.  Therefore we do this as early as possible.
2584 	 */
2585 	error = spa_remove_init(spa);
2586 	if (error != 0) {
2587 		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2588 		    error);
2589 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2590 	}
2591 
2592 	/*
2593 	 * Retrieve information needed to condense indirect vdev mappings.
2594 	 */
2595 	error = spa_condense_init(spa);
2596 	if (error != 0) {
2597 		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2598 		    error);
2599 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2600 	}
2601 
2602 	return (0);
2603 }
2604 
2605 static int
2606 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2607 {
2608 	int error = 0;
2609 	vdev_t *rvd = spa->spa_root_vdev;
2610 
2611 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2612 		boolean_t missing_feat_read = B_FALSE;
2613 		nvlist_t *unsup_feat, *enabled_feat;
2614 
2615 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2616 		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2617 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618 		}
2619 
2620 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2621 		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2622 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623 		}
2624 
2625 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2626 		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2627 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2628 		}
2629 
2630 		enabled_feat = fnvlist_alloc();
2631 		unsup_feat = fnvlist_alloc();
2632 
2633 		if (!spa_features_check(spa, B_FALSE,
2634 		    unsup_feat, enabled_feat))
2635 			missing_feat_read = B_TRUE;
2636 
2637 		if (spa_writeable(spa) ||
2638 		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
2639 			if (!spa_features_check(spa, B_TRUE,
2640 			    unsup_feat, enabled_feat)) {
2641 				*missing_feat_writep = B_TRUE;
2642 			}
2643 		}
2644 
2645 		fnvlist_add_nvlist(spa->spa_load_info,
2646 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2647 
2648 		if (!nvlist_empty(unsup_feat)) {
2649 			fnvlist_add_nvlist(spa->spa_load_info,
2650 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2651 		}
2652 
2653 		fnvlist_free(enabled_feat);
2654 		fnvlist_free(unsup_feat);
2655 
2656 		if (!missing_feat_read) {
2657 			fnvlist_add_boolean(spa->spa_load_info,
2658 			    ZPOOL_CONFIG_CAN_RDONLY);
2659 		}
2660 
2661 		/*
2662 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2663 		 * twofold: to determine whether the pool is available for
2664 		 * import in read-write mode and (if it is not) whether the
2665 		 * pool is available for import in read-only mode. If the pool
2666 		 * is available for import in read-write mode, it is displayed
2667 		 * as available in userland; if it is not available for import
2668 		 * in read-only mode, it is displayed as unavailable in
2669 		 * userland. If the pool is available for import in read-only
2670 		 * mode but not read-write mode, it is displayed as unavailable
2671 		 * in userland with a special note that the pool is actually
2672 		 * available for open in read-only mode.
2673 		 *
2674 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2675 		 * missing a feature for write, we must first determine whether
2676 		 * the pool can be opened read-only before returning to
2677 		 * userland in order to know whether to display the
2678 		 * abovementioned note.
2679 		 */
2680 		if (missing_feat_read || (*missing_feat_writep &&
2681 		    spa_writeable(spa))) {
2682 			spa_load_failed(spa, "pool uses unsupported features");
2683 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2684 			    ENOTSUP));
2685 		}
2686 
2687 		/*
2688 		 * Load refcounts for ZFS features from disk into an in-memory
2689 		 * cache during SPA initialization.
2690 		 */
2691 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2692 			uint64_t refcount;
2693 
2694 			error = feature_get_refcount_from_disk(spa,
2695 			    &spa_feature_table[i], &refcount);
2696 			if (error == 0) {
2697 				spa->spa_feat_refcount_cache[i] = refcount;
2698 			} else if (error == ENOTSUP) {
2699 				spa->spa_feat_refcount_cache[i] =
2700 				    SPA_FEATURE_DISABLED;
2701 			} else {
2702 				spa_load_failed(spa, "error getting refcount "
2703 				    "for feature %s [error=%d]",
2704 				    spa_feature_table[i].fi_guid, error);
2705 				return (spa_vdev_err(rvd,
2706 				    VDEV_AUX_CORRUPT_DATA, EIO));
2707 			}
2708 		}
2709 	}
2710 
2711 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2712 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2713 		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
2714 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2715 	}
2716 
2717 	return (0);
2718 }
2719 
2720 static int
2721 spa_ld_load_special_directories(spa_t *spa)
2722 {
2723 	int error = 0;
2724 	vdev_t *rvd = spa->spa_root_vdev;
2725 
2726 	spa->spa_is_initializing = B_TRUE;
2727 	error = dsl_pool_open(spa->spa_dsl_pool);
2728 	spa->spa_is_initializing = B_FALSE;
2729 	if (error != 0) {
2730 		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
2731 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2732 	}
2733 
2734 	return (0);
2735 }
2736 
2737 static int
2738 spa_ld_prepare_for_reload(spa_t *spa, int orig_mode)
2739 {
2740 	vdev_t *rvd = spa->spa_root_vdev;
2741 
2742 	uint64_t hostid;
2743 	nvlist_t *policy = NULL;
2744 	nvlist_t *mos_config;
2745 
2746 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2747 		spa_load_failed(spa, "unable to retrieve MOS config");
2748 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2749 	}
2750 
2751 	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2752 	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2753 		char *hostname;
2754 		unsigned long myhostid = 0;
2755 
2756 		VERIFY(nvlist_lookup_string(mos_config,
2757 		    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2758 
2759 #ifdef	_KERNEL
2760 		myhostid = zone_get_hostid(NULL);
2761 #else	/* _KERNEL */
2762 		/*
2763 		 * We're emulating the system's hostid in userland, so
2764 		 * we can't use zone_get_hostid().
2765 		 */
2766 		(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2767 #endif	/* _KERNEL */
2768 		if (hostid != 0 && myhostid != 0 &&
2769 		    hostid != myhostid) {
2770 			nvlist_free(mos_config);
2771 			cmn_err(CE_WARN, "pool '%s' could not be "
2772 			    "loaded as it was last accessed by "
2773 			    "another system (host: %s hostid: 0x%lx). "
2774 			    "See: http://illumos.org/msg/ZFS-8000-EY",
2775 			    spa_name(spa), hostname,
2776 			    (unsigned long)hostid);
2777 			return (SET_ERROR(EBADF));
2778 		}
2779 	}
2780 	if (nvlist_lookup_nvlist(spa->spa_config,
2781 	    ZPOOL_REWIND_POLICY, &policy) == 0)
2782 		VERIFY(nvlist_add_nvlist(mos_config,
2783 		    ZPOOL_REWIND_POLICY, policy) == 0);
2784 
2785 	spa_config_set(spa, mos_config);
2786 	spa_unload(spa);
2787 	spa_deactivate(spa);
2788 	spa_activate(spa, orig_mode);
2789 
2790 	return (0);
2791 }
2792 
2793 static int
2794 spa_ld_get_props(spa_t *spa)
2795 {
2796 	int error = 0;
2797 	uint64_t obj;
2798 	vdev_t *rvd = spa->spa_root_vdev;
2799 
2800 	/* Grab the secret checksum salt from the MOS. */
2801 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2802 	    DMU_POOL_CHECKSUM_SALT, 1,
2803 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2804 	    spa->spa_cksum_salt.zcs_bytes);
2805 	if (error == ENOENT) {
2806 		/* Generate a new salt for subsequent use */
2807 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2808 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2809 	} else if (error != 0) {
2810 		spa_load_failed(spa, "unable to retrieve checksum salt from "
2811 		    "MOS [error=%d]", error);
2812 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2813 	}
2814 
2815 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
2816 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2817 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2818 	if (error != 0) {
2819 		spa_load_failed(spa, "error opening deferred-frees bpobj "
2820 		    "[error=%d]", error);
2821 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2822 	}
2823 
2824 	/*
2825 	 * Load the bit that tells us to use the new accounting function
2826 	 * (raid-z deflation).  If we have an older pool, this will not
2827 	 * be present.
2828 	 */
2829 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
2830 	if (error != 0 && error != ENOENT)
2831 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2832 
2833 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2834 	    &spa->spa_creation_version, B_FALSE);
2835 	if (error != 0 && error != ENOENT)
2836 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2837 
2838 	/*
2839 	 * Load the persistent error log.  If we have an older pool, this will
2840 	 * not be present.
2841 	 */
2842 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
2843 	    B_FALSE);
2844 	if (error != 0 && error != ENOENT)
2845 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2846 
2847 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2848 	    &spa->spa_errlog_scrub, B_FALSE);
2849 	if (error != 0 && error != ENOENT)
2850 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2851 
2852 	/*
2853 	 * Load the history object.  If we have an older pool, this
2854 	 * will not be present.
2855 	 */
2856 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
2857 	if (error != 0 && error != ENOENT)
2858 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2859 
2860 	/*
2861 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2862 	 * be present; in this case, defer its creation to a later time to
2863 	 * avoid dirtying the MOS this early / out of sync context. See
2864 	 * spa_sync_config_object.
2865 	 */
2866 
2867 	/* The sentinel is only available in the MOS config. */
2868 	nvlist_t *mos_config;
2869 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
2870 		spa_load_failed(spa, "unable to retrieve MOS config");
2871 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2872 	}
2873 
2874 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2875 	    &spa->spa_all_vdev_zaps, B_FALSE);
2876 
2877 	if (error == ENOENT) {
2878 		VERIFY(!nvlist_exists(mos_config,
2879 		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
2880 		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
2881 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2882 	} else if (error != 0) {
2883 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2884 	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2885 		/*
2886 		 * An older version of ZFS overwrote the sentinel value, so
2887 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2888 		 * destruction to later; see spa_sync_config_object.
2889 		 */
2890 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2891 		/*
2892 		 * We're assuming that no vdevs have had their ZAPs created
2893 		 * before this. Better be sure of it.
2894 		 */
2895 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2896 	}
2897 	nvlist_free(mos_config);
2898 
2899 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2900 
2901 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
2902 	    B_FALSE);
2903 	if (error && error != ENOENT)
2904 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2905 
2906 	if (error == 0) {
2907 		uint64_t autoreplace;
2908 
2909 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2910 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2911 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2912 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2913 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2914 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2915 		    &spa->spa_dedup_ditto);
2916 
2917 		spa->spa_autoreplace = (autoreplace != 0);
2918 	}
2919 
2920 	return (0);
2921 }
2922 
2923 static int
2924 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
2925 {
2926 	int error = 0;
2927 	vdev_t *rvd = spa->spa_root_vdev;
2928 
2929 	/*
2930 	 * If we're assembling the pool from the split-off vdevs of
2931 	 * an existing pool, we don't want to attach the spares & cache
2932 	 * devices.
2933 	 */
2934 
2935 	/*
2936 	 * Load any hot spares for this pool.
2937 	 */
2938 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
2939 	    B_FALSE);
2940 	if (error != 0 && error != ENOENT)
2941 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2942 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2943 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2944 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2945 		    &spa->spa_spares.sav_config) != 0) {
2946 			spa_load_failed(spa, "error loading spares nvlist");
2947 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2948 		}
2949 
2950 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2951 		spa_load_spares(spa);
2952 		spa_config_exit(spa, SCL_ALL, FTAG);
2953 	} else if (error == 0) {
2954 		spa->spa_spares.sav_sync = B_TRUE;
2955 	}
2956 
2957 	/*
2958 	 * Load any level 2 ARC devices for this pool.
2959 	 */
2960 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2961 	    &spa->spa_l2cache.sav_object, B_FALSE);
2962 	if (error != 0 && error != ENOENT)
2963 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2964 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2965 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2966 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2967 		    &spa->spa_l2cache.sav_config) != 0) {
2968 			spa_load_failed(spa, "error loading l2cache nvlist");
2969 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2970 		}
2971 
2972 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2973 		spa_load_l2cache(spa);
2974 		spa_config_exit(spa, SCL_ALL, FTAG);
2975 	} else if (error == 0) {
2976 		spa->spa_l2cache.sav_sync = B_TRUE;
2977 	}
2978 
2979 	return (0);
2980 }
2981 
2982 static int
2983 spa_ld_load_vdev_metadata(spa_t *spa)
2984 {
2985 	int error = 0;
2986 	vdev_t *rvd = spa->spa_root_vdev;
2987 
2988 	/*
2989 	 * If the 'autoreplace' property is set, then post a resource notifying
2990 	 * the ZFS DE that it should not issue any faults for unopenable
2991 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2992 	 * unopenable vdevs so that the normal autoreplace handler can take
2993 	 * over.
2994 	 */
2995 	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
2996 		spa_check_removed(spa->spa_root_vdev);
2997 		/*
2998 		 * For the import case, this is done in spa_import(), because
2999 		 * at this point we're using the spare definitions from
3000 		 * the MOS config, not necessarily from the userland config.
3001 		 */
3002 		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3003 			spa_aux_check_removed(&spa->spa_spares);
3004 			spa_aux_check_removed(&spa->spa_l2cache);
3005 		}
3006 	}
3007 
3008 	/*
3009 	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3010 	 */
3011 	error = vdev_load(rvd);
3012 	if (error != 0) {
3013 		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3014 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3015 	}
3016 
3017 	/*
3018 	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3019 	 */
3020 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3021 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3022 	spa_config_exit(spa, SCL_ALL, FTAG);
3023 
3024 	return (0);
3025 }
3026 
3027 static int
3028 spa_ld_load_dedup_tables(spa_t *spa)
3029 {
3030 	int error = 0;
3031 	vdev_t *rvd = spa->spa_root_vdev;
3032 
3033 	error = ddt_load(spa);
3034 	if (error != 0) {
3035 		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3036 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3037 	}
3038 
3039 	return (0);
3040 }
3041 
3042 static int
3043 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3044 {
3045 	vdev_t *rvd = spa->spa_root_vdev;
3046 
3047 	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3048 		boolean_t missing = spa_check_logs(spa);
3049 		if (missing) {
3050 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3051 			spa_load_failed(spa, "spa_check_logs failed");
3052 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
3053 		}
3054 	}
3055 
3056 	return (0);
3057 }
3058 
3059 static int
3060 spa_ld_verify_pool_data(spa_t *spa)
3061 {
3062 	int error = 0;
3063 	vdev_t *rvd = spa->spa_root_vdev;
3064 
3065 	/*
3066 	 * We've successfully opened the pool, verify that we're ready
3067 	 * to start pushing transactions.
3068 	 */
3069 	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3070 		error = spa_load_verify(spa);
3071 		if (error != 0) {
3072 			spa_load_failed(spa, "spa_load_verify failed "
3073 			    "[error=%d]", error);
3074 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3075 			    error));
3076 		}
3077 	}
3078 
3079 	return (0);
3080 }
3081 
3082 static void
3083 spa_ld_claim_log_blocks(spa_t *spa)
3084 {
3085 	dmu_tx_t *tx;
3086 	dsl_pool_t *dp = spa_get_dsl(spa);
3087 
3088 	/*
3089 	 * Claim log blocks that haven't been committed yet.
3090 	 * This must all happen in a single txg.
3091 	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3092 	 * invoked from zil_claim_log_block()'s i/o done callback.
3093 	 * Price of rollback is that we abandon the log.
3094 	 */
3095 	spa->spa_claiming = B_TRUE;
3096 
3097 	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3098 	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3099 	    zil_claim, tx, DS_FIND_CHILDREN);
3100 	dmu_tx_commit(tx);
3101 
3102 	spa->spa_claiming = B_FALSE;
3103 
3104 	spa_set_log_state(spa, SPA_LOG_GOOD);
3105 }
3106 
3107 static void
3108 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg)
3109 {
3110 	vdev_t *rvd = spa->spa_root_vdev;
3111 	int need_update = B_FALSE;
3112 
3113 	/*
3114 	 * If the config cache is stale, or we have uninitialized
3115 	 * metaslabs (see spa_vdev_add()), then update the config.
3116 	 *
3117 	 * If this is a verbatim import, trust the current
3118 	 * in-core spa_config and update the disk labels.
3119 	 */
3120 	if (config_cache_txg != spa->spa_config_txg ||
3121 	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3122 	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3123 	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3124 		need_update = B_TRUE;
3125 
3126 	for (int c = 0; c < rvd->vdev_children; c++)
3127 		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3128 			need_update = B_TRUE;
3129 
3130 	/*
3131 	 * Update the config cache asychronously in case we're the
3132 	 * root pool, in which case the config cache isn't writable yet.
3133 	 */
3134 	if (need_update)
3135 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3136 }
3137 
3138 /*
3139  * Load an existing storage pool, using the config provided. This config
3140  * describes which vdevs are part of the pool and is later validated against
3141  * partial configs present in each vdev's label and an entire copy of the
3142  * config stored in the MOS.
3143  */
3144 static int
3145 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
3146     spa_load_state_t state, spa_import_type_t type, boolean_t trust_config,
3147     char **ereport)
3148 {
3149 	int error = 0;
3150 	uint64_t config_cache_txg = spa->spa_config_txg;
3151 	int orig_mode = spa->spa_mode;
3152 	boolean_t missing_feat_write = B_FALSE;
3153 
3154 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3155 
3156 	spa->spa_load_state = state;
3157 	spa_load_note(spa, "LOADING");
3158 
3159 	/*
3160 	 * If this is an untrusted config, first access the pool in read-only
3161 	 * mode. We will then retrieve a trusted copy of the config from the MOS
3162 	 * and use it to reopen the pool in read-write mode.
3163 	 */
3164 	if (!trust_config)
3165 		spa->spa_mode = FREAD;
3166 
3167 	/*
3168 	 * Parse the config provided to create a vdev tree.
3169 	 */
3170 	error = spa_ld_parse_config(spa, pool_guid, config, type);
3171 	if (error != 0)
3172 		return (error);
3173 
3174 	/*
3175 	 * Now that we have the vdev tree, try to open each vdev. This involves
3176 	 * opening the underlying physical device, retrieving its geometry and
3177 	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3178 	 * based on the success of those operations. After this we'll be ready
3179 	 * to read from the vdevs.
3180 	 */
3181 	error = spa_ld_open_vdevs(spa);
3182 	if (error != 0)
3183 		return (error);
3184 
3185 	/*
3186 	 * Read the label of each vdev and make sure that the GUIDs stored
3187 	 * there match the GUIDs in the config provided.
3188 	 */
3189 	error = spa_ld_validate_vdevs(spa, type, trust_config);
3190 	if (error != 0)
3191 		return (error);
3192 
3193 	/*
3194 	 * Read vdev labels to find the best uberblock (i.e. latest, unless
3195 	 * spa_load_max_txg is set) and store it in spa_uberblock. We get the
3196 	 * list of features required to read blkptrs in the MOS from the vdev
3197 	 * label with the best uberblock and verify that our version of zfs
3198 	 * supports them all.
3199 	 */
3200 	error = spa_ld_select_uberblock(spa, config, type, trust_config);
3201 	if (error != 0)
3202 		return (error);
3203 
3204 	/*
3205 	 * Pass that uberblock to the dsl_pool layer which will open the root
3206 	 * blkptr. This blkptr points to the latest version of the MOS and will
3207 	 * allow us to read its contents.
3208 	 */
3209 	error = spa_ld_open_rootbp(spa);
3210 	if (error != 0)
3211 		return (error);
3212 
3213 	/*
3214 	 * Retrieve the config stored in the MOS and use it to validate the
3215 	 * config provided. Also extract some information from the MOS config
3216 	 * to update our vdev tree.
3217 	 */
3218 	error = spa_ld_validate_config(spa, type);
3219 	if (error != 0)
3220 		return (error);
3221 
3222 	/*
3223 	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3224 	 * from the pool and their contents were re-mapped to other vdevs. Note
3225 	 * that everything that we read before this step must have been
3226 	 * rewritten on concrete vdevs after the last device removal was
3227 	 * initiated. Otherwise we could be reading from indirect vdevs before
3228 	 * we have loaded their mappings.
3229 	 */
3230 	error = spa_ld_open_indirect_vdev_metadata(spa);
3231 	if (error != 0)
3232 		return (error);
3233 
3234 	/*
3235 	 * Retrieve the full list of active features from the MOS and check if
3236 	 * they are all supported.
3237 	 */
3238 	error = spa_ld_check_features(spa, &missing_feat_write);
3239 	if (error != 0)
3240 		return (error);
3241 
3242 	/*
3243 	 * Load several special directories from the MOS needed by the dsl_pool
3244 	 * layer.
3245 	 */
3246 	error = spa_ld_load_special_directories(spa);
3247 	if (error != 0)
3248 		return (error);
3249 
3250 	/*
3251 	 * If the config provided is not trusted, discard it and use the config
3252 	 * from the MOS to reload the pool.
3253 	 */
3254 	if (!trust_config) {
3255 		error = spa_ld_prepare_for_reload(spa, orig_mode);
3256 		if (error != 0)
3257 			return (error);
3258 
3259 		spa_load_note(spa, "RELOADING");
3260 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
3261 	}
3262 
3263 	/*
3264 	 * Retrieve pool properties from the MOS.
3265 	 */
3266 	error = spa_ld_get_props(spa);
3267 	if (error != 0)
3268 		return (error);
3269 
3270 	/*
3271 	 * Retrieve the list of auxiliary devices - cache devices and spares -
3272 	 * and open them.
3273 	 */
3274 	error = spa_ld_open_aux_vdevs(spa, type);
3275 	if (error != 0)
3276 		return (error);
3277 
3278 	/*
3279 	 * Load the metadata for all vdevs. Also check if unopenable devices
3280 	 * should be autoreplaced.
3281 	 */
3282 	error = spa_ld_load_vdev_metadata(spa);
3283 	if (error != 0)
3284 		return (error);
3285 
3286 	error = spa_ld_load_dedup_tables(spa);
3287 	if (error != 0)
3288 		return (error);
3289 
3290 	/*
3291 	 * Verify the logs now to make sure we don't have any unexpected errors
3292 	 * when we claim log blocks later.
3293 	 */
3294 	error = spa_ld_verify_logs(spa, type, ereport);
3295 	if (error != 0)
3296 		return (error);
3297 
3298 	if (missing_feat_write) {
3299 		ASSERT(state == SPA_LOAD_TRYIMPORT);
3300 
3301 		/*
3302 		 * At this point, we know that we can open the pool in
3303 		 * read-only mode but not read-write mode. We now have enough
3304 		 * information and can return to userland.
3305 		 */
3306 		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3307 		    ENOTSUP));
3308 	}
3309 
3310 	/*
3311 	 * Traverse the last txgs to make sure the pool was left off in a safe
3312 	 * state. When performing an extreme rewind, we verify the whole pool,
3313 	 * which can take a very long time.
3314 	 */
3315 	error = spa_ld_verify_pool_data(spa);
3316 	if (error != 0)
3317 		return (error);
3318 
3319 	/*
3320 	 * Calculate the deflated space for the pool. This must be done before
3321 	 * we write anything to the pool because we'd need to update the space
3322 	 * accounting using the deflated sizes.
3323 	 */
3324 	spa_update_dspace(spa);
3325 
3326 	/*
3327 	 * We have now retrieved all the information we needed to open the
3328 	 * pool. If we are importing the pool in read-write mode, a few
3329 	 * additional steps must be performed to finish the import.
3330 	 */
3331 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
3332 	    spa->spa_load_max_txg == UINT64_MAX)) {
3333 		ASSERT(state != SPA_LOAD_TRYIMPORT);
3334 
3335 		/*
3336 		 * We must check this before we start the sync thread, because
3337 		 * we only want to start a condense thread for condense
3338 		 * operations that were in progress when the pool was
3339 		 * imported.  Once we start syncing, spa_sync() could
3340 		 * initiate a condense (and start a thread for it).  In
3341 		 * that case it would be wrong to start a second
3342 		 * condense thread.
3343 		 */
3344 		boolean_t condense_in_progress =
3345 		    (spa->spa_condensing_indirect != NULL);
3346 
3347 		/*
3348 		 * Traverse the ZIL and claim all blocks.
3349 		 */
3350 		spa_ld_claim_log_blocks(spa);
3351 
3352 		/*
3353 		 * Kick-off the syncing thread.
3354 		 */
3355 		spa->spa_sync_on = B_TRUE;
3356 		txg_sync_start(spa->spa_dsl_pool);
3357 
3358 		/*
3359 		 * Wait for all claims to sync.  We sync up to the highest
3360 		 * claimed log block birth time so that claimed log blocks
3361 		 * don't appear to be from the future.  spa_claim_max_txg
3362 		 * will have been set for us by ZIL traversal operations
3363 		 * performed above.
3364 		 */
3365 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3366 
3367 		/*
3368 		 * Check if we need to request an update of the config. On the
3369 		 * next sync, we would update the config stored in vdev labels
3370 		 * and the cachefile (by default /etc/zfs/zpool.cache).
3371 		 */
3372 		spa_ld_check_for_config_update(spa, config_cache_txg);
3373 
3374 		/*
3375 		 * Check all DTLs to see if anything needs resilvering.
3376 		 */
3377 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3378 		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3379 			spa_async_request(spa, SPA_ASYNC_RESILVER);
3380 
3381 		/*
3382 		 * Log the fact that we booted up (so that we can detect if
3383 		 * we rebooted in the middle of an operation).
3384 		 */
3385 		spa_history_log_version(spa, "open");
3386 
3387 		/*
3388 		 * Delete any inconsistent datasets.
3389 		 */
3390 		(void) dmu_objset_find(spa_name(spa),
3391 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3392 
3393 		/*
3394 		 * Clean up any stale temporary dataset userrefs.
3395 		 */
3396 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3397 
3398 		/*
3399 		 * Note: unlike condensing, we don't need an analogous
3400 		 * "removal_in_progress" dance because no other thread
3401 		 * can start a removal while we hold the spa_namespace_lock.
3402 		 */
3403 		spa_restart_removal(spa);
3404 
3405 		if (condense_in_progress)
3406 			spa_condense_indirect_restart(spa);
3407 	}
3408 
3409 	spa_load_note(spa, "LOADED");
3410 
3411 	return (0);
3412 }
3413 
3414 static int
3415 spa_load_retry(spa_t *spa, spa_load_state_t state, int trust_config)
3416 {
3417 	int mode = spa->spa_mode;
3418 
3419 	spa_unload(spa);
3420 	spa_deactivate(spa);
3421 
3422 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3423 
3424 	spa_activate(spa, mode);
3425 	spa_async_suspend(spa);
3426 
3427 	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3428 	    (u_longlong_t)spa->spa_load_max_txg);
3429 
3430 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, trust_config));
3431 }
3432 
3433 /*
3434  * If spa_load() fails this function will try loading prior txg's. If
3435  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3436  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3437  * function will not rewind the pool and will return the same error as
3438  * spa_load().
3439  */
3440 static int
3441 spa_load_best(spa_t *spa, spa_load_state_t state, int trust_config,
3442     uint64_t max_request, int rewind_flags)
3443 {
3444 	nvlist_t *loadinfo = NULL;
3445 	nvlist_t *config = NULL;
3446 	int load_error, rewind_error;
3447 	uint64_t safe_rewind_txg;
3448 	uint64_t min_txg;
3449 
3450 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3451 		spa->spa_load_max_txg = spa->spa_load_txg;
3452 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3453 	} else {
3454 		spa->spa_load_max_txg = max_request;
3455 		if (max_request != UINT64_MAX)
3456 			spa->spa_extreme_rewind = B_TRUE;
3457 	}
3458 
3459 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3460 	    trust_config);
3461 	if (load_error == 0)
3462 		return (0);
3463 
3464 	if (spa->spa_root_vdev != NULL)
3465 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3466 
3467 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3468 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3469 
3470 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3471 		nvlist_free(config);
3472 		return (load_error);
3473 	}
3474 
3475 	if (state == SPA_LOAD_RECOVER) {
3476 		/* Price of rolling back is discarding txgs, including log */
3477 		spa_set_log_state(spa, SPA_LOG_CLEAR);
3478 	} else {
3479 		/*
3480 		 * If we aren't rolling back save the load info from our first
3481 		 * import attempt so that we can restore it after attempting
3482 		 * to rewind.
3483 		 */
3484 		loadinfo = spa->spa_load_info;
3485 		spa->spa_load_info = fnvlist_alloc();
3486 	}
3487 
3488 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3489 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3490 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3491 	    TXG_INITIAL : safe_rewind_txg;
3492 
3493 	/*
3494 	 * Continue as long as we're finding errors, we're still within
3495 	 * the acceptable rewind range, and we're still finding uberblocks
3496 	 */
3497 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3498 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3499 		if (spa->spa_load_max_txg < safe_rewind_txg)
3500 			spa->spa_extreme_rewind = B_TRUE;
3501 		rewind_error = spa_load_retry(spa, state, trust_config);
3502 	}
3503 
3504 	spa->spa_extreme_rewind = B_FALSE;
3505 	spa->spa_load_max_txg = UINT64_MAX;
3506 
3507 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3508 		spa_config_set(spa, config);
3509 	else
3510 		nvlist_free(config);
3511 
3512 	if (state == SPA_LOAD_RECOVER) {
3513 		ASSERT3P(loadinfo, ==, NULL);
3514 		return (rewind_error);
3515 	} else {
3516 		/* Store the rewind info as part of the initial load info */
3517 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3518 		    spa->spa_load_info);
3519 
3520 		/* Restore the initial load info */
3521 		fnvlist_free(spa->spa_load_info);
3522 		spa->spa_load_info = loadinfo;
3523 
3524 		return (load_error);
3525 	}
3526 }
3527 
3528 /*
3529  * Pool Open/Import
3530  *
3531  * The import case is identical to an open except that the configuration is sent
3532  * down from userland, instead of grabbed from the configuration cache.  For the
3533  * case of an open, the pool configuration will exist in the
3534  * POOL_STATE_UNINITIALIZED state.
3535  *
3536  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3537  * the same time open the pool, without having to keep around the spa_t in some
3538  * ambiguous state.
3539  */
3540 static int
3541 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3542     nvlist_t **config)
3543 {
3544 	spa_t *spa;
3545 	spa_load_state_t state = SPA_LOAD_OPEN;
3546 	int error;
3547 	int locked = B_FALSE;
3548 
3549 	*spapp = NULL;
3550 
3551 	/*
3552 	 * As disgusting as this is, we need to support recursive calls to this
3553 	 * function because dsl_dir_open() is called during spa_load(), and ends
3554 	 * up calling spa_open() again.  The real fix is to figure out how to
3555 	 * avoid dsl_dir_open() calling this in the first place.
3556 	 */
3557 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3558 		mutex_enter(&spa_namespace_lock);
3559 		locked = B_TRUE;
3560 	}
3561 
3562 	if ((spa = spa_lookup(pool)) == NULL) {
3563 		if (locked)
3564 			mutex_exit(&spa_namespace_lock);
3565 		return (SET_ERROR(ENOENT));
3566 	}
3567 
3568 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3569 		zpool_rewind_policy_t policy;
3570 
3571 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3572 		    &policy);
3573 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3574 			state = SPA_LOAD_RECOVER;
3575 
3576 		spa_activate(spa, spa_mode_global);
3577 
3578 		if (state != SPA_LOAD_RECOVER)
3579 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3580 
3581 		zfs_dbgmsg("spa_open_common: opening %s", pool);
3582 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3583 		    policy.zrp_request);
3584 
3585 		if (error == EBADF) {
3586 			/*
3587 			 * If vdev_validate() returns failure (indicated by
3588 			 * EBADF), it indicates that one of the vdevs indicates
3589 			 * that the pool has been exported or destroyed.  If
3590 			 * this is the case, the config cache is out of sync and
3591 			 * we should remove the pool from the namespace.
3592 			 */
3593 			spa_unload(spa);
3594 			spa_deactivate(spa);
3595 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
3596 			spa_remove(spa);
3597 			if (locked)
3598 				mutex_exit(&spa_namespace_lock);
3599 			return (SET_ERROR(ENOENT));
3600 		}
3601 
3602 		if (error) {
3603 			/*
3604 			 * We can't open the pool, but we still have useful
3605 			 * information: the state of each vdev after the
3606 			 * attempted vdev_open().  Return this to the user.
3607 			 */
3608 			if (config != NULL && spa->spa_config) {
3609 				VERIFY(nvlist_dup(spa->spa_config, config,
3610 				    KM_SLEEP) == 0);
3611 				VERIFY(nvlist_add_nvlist(*config,
3612 				    ZPOOL_CONFIG_LOAD_INFO,
3613 				    spa->spa_load_info) == 0);
3614 			}
3615 			spa_unload(spa);
3616 			spa_deactivate(spa);
3617 			spa->spa_last_open_failed = error;
3618 			if (locked)
3619 				mutex_exit(&spa_namespace_lock);
3620 			*spapp = NULL;
3621 			return (error);
3622 		}
3623 	}
3624 
3625 	spa_open_ref(spa, tag);
3626 
3627 	if (config != NULL)
3628 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3629 
3630 	/*
3631 	 * If we've recovered the pool, pass back any information we
3632 	 * gathered while doing the load.
3633 	 */
3634 	if (state == SPA_LOAD_RECOVER) {
3635 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3636 		    spa->spa_load_info) == 0);
3637 	}
3638 
3639 	if (locked) {
3640 		spa->spa_last_open_failed = 0;
3641 		spa->spa_last_ubsync_txg = 0;
3642 		spa->spa_load_txg = 0;
3643 		mutex_exit(&spa_namespace_lock);
3644 	}
3645 
3646 	*spapp = spa;
3647 
3648 	return (0);
3649 }
3650 
3651 int
3652 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3653     nvlist_t **config)
3654 {
3655 	return (spa_open_common(name, spapp, tag, policy, config));
3656 }
3657 
3658 int
3659 spa_open(const char *name, spa_t **spapp, void *tag)
3660 {
3661 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3662 }
3663 
3664 /*
3665  * Lookup the given spa_t, incrementing the inject count in the process,
3666  * preventing it from being exported or destroyed.
3667  */
3668 spa_t *
3669 spa_inject_addref(char *name)
3670 {
3671 	spa_t *spa;
3672 
3673 	mutex_enter(&spa_namespace_lock);
3674 	if ((spa = spa_lookup(name)) == NULL) {
3675 		mutex_exit(&spa_namespace_lock);
3676 		return (NULL);
3677 	}
3678 	spa->spa_inject_ref++;
3679 	mutex_exit(&spa_namespace_lock);
3680 
3681 	return (spa);
3682 }
3683 
3684 void
3685 spa_inject_delref(spa_t *spa)
3686 {
3687 	mutex_enter(&spa_namespace_lock);
3688 	spa->spa_inject_ref--;
3689 	mutex_exit(&spa_namespace_lock);
3690 }
3691 
3692 /*
3693  * Add spares device information to the nvlist.
3694  */
3695 static void
3696 spa_add_spares(spa_t *spa, nvlist_t *config)
3697 {
3698 	nvlist_t **spares;
3699 	uint_t i, nspares;
3700 	nvlist_t *nvroot;
3701 	uint64_t guid;
3702 	vdev_stat_t *vs;
3703 	uint_t vsc;
3704 	uint64_t pool;
3705 
3706 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3707 
3708 	if (spa->spa_spares.sav_count == 0)
3709 		return;
3710 
3711 	VERIFY(nvlist_lookup_nvlist(config,
3712 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3713 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3714 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3715 	if (nspares != 0) {
3716 		VERIFY(nvlist_add_nvlist_array(nvroot,
3717 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3718 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3719 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3720 
3721 		/*
3722 		 * Go through and find any spares which have since been
3723 		 * repurposed as an active spare.  If this is the case, update
3724 		 * their status appropriately.
3725 		 */
3726 		for (i = 0; i < nspares; i++) {
3727 			VERIFY(nvlist_lookup_uint64(spares[i],
3728 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3729 			if (spa_spare_exists(guid, &pool, NULL) &&
3730 			    pool != 0ULL) {
3731 				VERIFY(nvlist_lookup_uint64_array(
3732 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3733 				    (uint64_t **)&vs, &vsc) == 0);
3734 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3735 				vs->vs_aux = VDEV_AUX_SPARED;
3736 			}
3737 		}
3738 	}
3739 }
3740 
3741 /*
3742  * Add l2cache device information to the nvlist, including vdev stats.
3743  */
3744 static void
3745 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3746 {
3747 	nvlist_t **l2cache;
3748 	uint_t i, j, nl2cache;
3749 	nvlist_t *nvroot;
3750 	uint64_t guid;
3751 	vdev_t *vd;
3752 	vdev_stat_t *vs;
3753 	uint_t vsc;
3754 
3755 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3756 
3757 	if (spa->spa_l2cache.sav_count == 0)
3758 		return;
3759 
3760 	VERIFY(nvlist_lookup_nvlist(config,
3761 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3762 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3763 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3764 	if (nl2cache != 0) {
3765 		VERIFY(nvlist_add_nvlist_array(nvroot,
3766 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3767 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3768 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3769 
3770 		/*
3771 		 * Update level 2 cache device stats.
3772 		 */
3773 
3774 		for (i = 0; i < nl2cache; i++) {
3775 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3776 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3777 
3778 			vd = NULL;
3779 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3780 				if (guid ==
3781 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3782 					vd = spa->spa_l2cache.sav_vdevs[j];
3783 					break;
3784 				}
3785 			}
3786 			ASSERT(vd != NULL);
3787 
3788 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3789 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3790 			    == 0);
3791 			vdev_get_stats(vd, vs);
3792 		}
3793 	}
3794 }
3795 
3796 static void
3797 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3798 {
3799 	nvlist_t *features;
3800 	zap_cursor_t zc;
3801 	zap_attribute_t za;
3802 
3803 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3804 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3805 
3806 	if (spa->spa_feat_for_read_obj != 0) {
3807 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3808 		    spa->spa_feat_for_read_obj);
3809 		    zap_cursor_retrieve(&zc, &za) == 0;
3810 		    zap_cursor_advance(&zc)) {
3811 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3812 			    za.za_num_integers == 1);
3813 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3814 			    za.za_first_integer));
3815 		}
3816 		zap_cursor_fini(&zc);
3817 	}
3818 
3819 	if (spa->spa_feat_for_write_obj != 0) {
3820 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3821 		    spa->spa_feat_for_write_obj);
3822 		    zap_cursor_retrieve(&zc, &za) == 0;
3823 		    zap_cursor_advance(&zc)) {
3824 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3825 			    za.za_num_integers == 1);
3826 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3827 			    za.za_first_integer));
3828 		}
3829 		zap_cursor_fini(&zc);
3830 	}
3831 
3832 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3833 	    features) == 0);
3834 	nvlist_free(features);
3835 }
3836 
3837 int
3838 spa_get_stats(const char *name, nvlist_t **config,
3839     char *altroot, size_t buflen)
3840 {
3841 	int error;
3842 	spa_t *spa;
3843 
3844 	*config = NULL;
3845 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3846 
3847 	if (spa != NULL) {
3848 		/*
3849 		 * This still leaves a window of inconsistency where the spares
3850 		 * or l2cache devices could change and the config would be
3851 		 * self-inconsistent.
3852 		 */
3853 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3854 
3855 		if (*config != NULL) {
3856 			uint64_t loadtimes[2];
3857 
3858 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3859 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3860 			VERIFY(nvlist_add_uint64_array(*config,
3861 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3862 
3863 			VERIFY(nvlist_add_uint64(*config,
3864 			    ZPOOL_CONFIG_ERRCOUNT,
3865 			    spa_get_errlog_size(spa)) == 0);
3866 
3867 			if (spa_suspended(spa))
3868 				VERIFY(nvlist_add_uint64(*config,
3869 				    ZPOOL_CONFIG_SUSPENDED,
3870 				    spa->spa_failmode) == 0);
3871 
3872 			spa_add_spares(spa, *config);
3873 			spa_add_l2cache(spa, *config);
3874 			spa_add_feature_stats(spa, *config);
3875 		}
3876 	}
3877 
3878 	/*
3879 	 * We want to get the alternate root even for faulted pools, so we cheat
3880 	 * and call spa_lookup() directly.
3881 	 */
3882 	if (altroot) {
3883 		if (spa == NULL) {
3884 			mutex_enter(&spa_namespace_lock);
3885 			spa = spa_lookup(name);
3886 			if (spa)
3887 				spa_altroot(spa, altroot, buflen);
3888 			else
3889 				altroot[0] = '\0';
3890 			spa = NULL;
3891 			mutex_exit(&spa_namespace_lock);
3892 		} else {
3893 			spa_altroot(spa, altroot, buflen);
3894 		}
3895 	}
3896 
3897 	if (spa != NULL) {
3898 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3899 		spa_close(spa, FTAG);
3900 	}
3901 
3902 	return (error);
3903 }
3904 
3905 /*
3906  * Validate that the auxiliary device array is well formed.  We must have an
3907  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3908  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3909  * specified, as long as they are well-formed.
3910  */
3911 static int
3912 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3913     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3914     vdev_labeltype_t label)
3915 {
3916 	nvlist_t **dev;
3917 	uint_t i, ndev;
3918 	vdev_t *vd;
3919 	int error;
3920 
3921 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3922 
3923 	/*
3924 	 * It's acceptable to have no devs specified.
3925 	 */
3926 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3927 		return (0);
3928 
3929 	if (ndev == 0)
3930 		return (SET_ERROR(EINVAL));
3931 
3932 	/*
3933 	 * Make sure the pool is formatted with a version that supports this
3934 	 * device type.
3935 	 */
3936 	if (spa_version(spa) < version)
3937 		return (SET_ERROR(ENOTSUP));
3938 
3939 	/*
3940 	 * Set the pending device list so we correctly handle device in-use
3941 	 * checking.
3942 	 */
3943 	sav->sav_pending = dev;
3944 	sav->sav_npending = ndev;
3945 
3946 	for (i = 0; i < ndev; i++) {
3947 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3948 		    mode)) != 0)
3949 			goto out;
3950 
3951 		if (!vd->vdev_ops->vdev_op_leaf) {
3952 			vdev_free(vd);
3953 			error = SET_ERROR(EINVAL);
3954 			goto out;
3955 		}
3956 
3957 		/*
3958 		 * The L2ARC currently only supports disk devices in
3959 		 * kernel context.  For user-level testing, we allow it.
3960 		 */
3961 #ifdef _KERNEL
3962 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3963 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3964 			error = SET_ERROR(ENOTBLK);
3965 			vdev_free(vd);
3966 			goto out;
3967 		}
3968 #endif
3969 		vd->vdev_top = vd;
3970 
3971 		if ((error = vdev_open(vd)) == 0 &&
3972 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3973 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3974 			    vd->vdev_guid) == 0);
3975 		}
3976 
3977 		vdev_free(vd);
3978 
3979 		if (error &&
3980 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3981 			goto out;
3982 		else
3983 			error = 0;
3984 	}
3985 
3986 out:
3987 	sav->sav_pending = NULL;
3988 	sav->sav_npending = 0;
3989 	return (error);
3990 }
3991 
3992 static int
3993 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3994 {
3995 	int error;
3996 
3997 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3998 
3999 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4000 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4001 	    VDEV_LABEL_SPARE)) != 0) {
4002 		return (error);
4003 	}
4004 
4005 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4006 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4007 	    VDEV_LABEL_L2CACHE));
4008 }
4009 
4010 static void
4011 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4012     const char *config)
4013 {
4014 	int i;
4015 
4016 	if (sav->sav_config != NULL) {
4017 		nvlist_t **olddevs;
4018 		uint_t oldndevs;
4019 		nvlist_t **newdevs;
4020 
4021 		/*
4022 		 * Generate new dev list by concatentating with the
4023 		 * current dev list.
4024 		 */
4025 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4026 		    &olddevs, &oldndevs) == 0);
4027 
4028 		newdevs = kmem_alloc(sizeof (void *) *
4029 		    (ndevs + oldndevs), KM_SLEEP);
4030 		for (i = 0; i < oldndevs; i++)
4031 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4032 			    KM_SLEEP) == 0);
4033 		for (i = 0; i < ndevs; i++)
4034 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4035 			    KM_SLEEP) == 0);
4036 
4037 		VERIFY(nvlist_remove(sav->sav_config, config,
4038 		    DATA_TYPE_NVLIST_ARRAY) == 0);
4039 
4040 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4041 		    config, newdevs, ndevs + oldndevs) == 0);
4042 		for (i = 0; i < oldndevs + ndevs; i++)
4043 			nvlist_free(newdevs[i]);
4044 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4045 	} else {
4046 		/*
4047 		 * Generate a new dev list.
4048 		 */
4049 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4050 		    KM_SLEEP) == 0);
4051 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4052 		    devs, ndevs) == 0);
4053 	}
4054 }
4055 
4056 /*
4057  * Stop and drop level 2 ARC devices
4058  */
4059 void
4060 spa_l2cache_drop(spa_t *spa)
4061 {
4062 	vdev_t *vd;
4063 	int i;
4064 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4065 
4066 	for (i = 0; i < sav->sav_count; i++) {
4067 		uint64_t pool;
4068 
4069 		vd = sav->sav_vdevs[i];
4070 		ASSERT(vd != NULL);
4071 
4072 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4073 		    pool != 0ULL && l2arc_vdev_present(vd))
4074 			l2arc_remove_vdev(vd);
4075 	}
4076 }
4077 
4078 /*
4079  * Pool Creation
4080  */
4081 int
4082 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4083     nvlist_t *zplprops)
4084 {
4085 	spa_t *spa;
4086 	char *altroot = NULL;
4087 	vdev_t *rvd;
4088 	dsl_pool_t *dp;
4089 	dmu_tx_t *tx;
4090 	int error = 0;
4091 	uint64_t txg = TXG_INITIAL;
4092 	nvlist_t **spares, **l2cache;
4093 	uint_t nspares, nl2cache;
4094 	uint64_t version, obj;
4095 	boolean_t has_features;
4096 
4097 	/*
4098 	 * If this pool already exists, return failure.
4099 	 */
4100 	mutex_enter(&spa_namespace_lock);
4101 	if (spa_lookup(pool) != NULL) {
4102 		mutex_exit(&spa_namespace_lock);
4103 		return (SET_ERROR(EEXIST));
4104 	}
4105 
4106 	/*
4107 	 * Allocate a new spa_t structure.
4108 	 */
4109 	(void) nvlist_lookup_string(props,
4110 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4111 	spa = spa_add(pool, NULL, altroot);
4112 	spa_activate(spa, spa_mode_global);
4113 
4114 	if (props && (error = spa_prop_validate(spa, props))) {
4115 		spa_deactivate(spa);
4116 		spa_remove(spa);
4117 		mutex_exit(&spa_namespace_lock);
4118 		return (error);
4119 	}
4120 
4121 	has_features = B_FALSE;
4122 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4123 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4124 		if (zpool_prop_feature(nvpair_name(elem)))
4125 			has_features = B_TRUE;
4126 	}
4127 
4128 	if (has_features || nvlist_lookup_uint64(props,
4129 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4130 		version = SPA_VERSION;
4131 	}
4132 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4133 
4134 	spa->spa_first_txg = txg;
4135 	spa->spa_uberblock.ub_txg = txg - 1;
4136 	spa->spa_uberblock.ub_version = version;
4137 	spa->spa_ubsync = spa->spa_uberblock;
4138 	spa->spa_load_state = SPA_LOAD_CREATE;
4139 	spa->spa_removing_phys.sr_state = DSS_NONE;
4140 	spa->spa_removing_phys.sr_removing_vdev = -1;
4141 	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4142 
4143 	/*
4144 	 * Create "The Godfather" zio to hold all async IOs
4145 	 */
4146 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4147 	    KM_SLEEP);
4148 	for (int i = 0; i < max_ncpus; i++) {
4149 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4150 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4151 		    ZIO_FLAG_GODFATHER);
4152 	}
4153 
4154 	/*
4155 	 * Create the root vdev.
4156 	 */
4157 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4158 
4159 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4160 
4161 	ASSERT(error != 0 || rvd != NULL);
4162 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4163 
4164 	if (error == 0 && !zfs_allocatable_devs(nvroot))
4165 		error = SET_ERROR(EINVAL);
4166 
4167 	if (error == 0 &&
4168 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4169 	    (error = spa_validate_aux(spa, nvroot, txg,
4170 	    VDEV_ALLOC_ADD)) == 0) {
4171 		for (int c = 0; c < rvd->vdev_children; c++) {
4172 			vdev_metaslab_set_size(rvd->vdev_child[c]);
4173 			vdev_expand(rvd->vdev_child[c], txg);
4174 		}
4175 	}
4176 
4177 	spa_config_exit(spa, SCL_ALL, FTAG);
4178 
4179 	if (error != 0) {
4180 		spa_unload(spa);
4181 		spa_deactivate(spa);
4182 		spa_remove(spa);
4183 		mutex_exit(&spa_namespace_lock);
4184 		return (error);
4185 	}
4186 
4187 	/*
4188 	 * Get the list of spares, if specified.
4189 	 */
4190 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4191 	    &spares, &nspares) == 0) {
4192 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4193 		    KM_SLEEP) == 0);
4194 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4195 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4196 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4197 		spa_load_spares(spa);
4198 		spa_config_exit(spa, SCL_ALL, FTAG);
4199 		spa->spa_spares.sav_sync = B_TRUE;
4200 	}
4201 
4202 	/*
4203 	 * Get the list of level 2 cache devices, if specified.
4204 	 */
4205 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4206 	    &l2cache, &nl2cache) == 0) {
4207 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4208 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4209 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4210 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4211 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4212 		spa_load_l2cache(spa);
4213 		spa_config_exit(spa, SCL_ALL, FTAG);
4214 		spa->spa_l2cache.sav_sync = B_TRUE;
4215 	}
4216 
4217 	spa->spa_is_initializing = B_TRUE;
4218 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4219 	spa->spa_meta_objset = dp->dp_meta_objset;
4220 	spa->spa_is_initializing = B_FALSE;
4221 
4222 	/*
4223 	 * Create DDTs (dedup tables).
4224 	 */
4225 	ddt_create(spa);
4226 
4227 	spa_update_dspace(spa);
4228 
4229 	tx = dmu_tx_create_assigned(dp, txg);
4230 
4231 	/*
4232 	 * Create the pool config object.
4233 	 */
4234 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4235 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4236 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4237 
4238 	if (zap_add(spa->spa_meta_objset,
4239 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4240 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4241 		cmn_err(CE_PANIC, "failed to add pool config");
4242 	}
4243 
4244 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4245 		spa_feature_create_zap_objects(spa, tx);
4246 
4247 	if (zap_add(spa->spa_meta_objset,
4248 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4249 	    sizeof (uint64_t), 1, &version, tx) != 0) {
4250 		cmn_err(CE_PANIC, "failed to add pool version");
4251 	}
4252 
4253 	/* Newly created pools with the right version are always deflated. */
4254 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4255 		spa->spa_deflate = TRUE;
4256 		if (zap_add(spa->spa_meta_objset,
4257 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4258 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4259 			cmn_err(CE_PANIC, "failed to add deflate");
4260 		}
4261 	}
4262 
4263 	/*
4264 	 * Create the deferred-free bpobj.  Turn off compression
4265 	 * because sync-to-convergence takes longer if the blocksize
4266 	 * keeps changing.
4267 	 */
4268 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4269 	dmu_object_set_compress(spa->spa_meta_objset, obj,
4270 	    ZIO_COMPRESS_OFF, tx);
4271 	if (zap_add(spa->spa_meta_objset,
4272 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4273 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4274 		cmn_err(CE_PANIC, "failed to add bpobj");
4275 	}
4276 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4277 	    spa->spa_meta_objset, obj));
4278 
4279 	/*
4280 	 * Create the pool's history object.
4281 	 */
4282 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4283 		spa_history_create_obj(spa, tx);
4284 
4285 	/*
4286 	 * Generate some random noise for salted checksums to operate on.
4287 	 */
4288 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4289 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4290 
4291 	/*
4292 	 * Set pool properties.
4293 	 */
4294 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4295 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4296 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4297 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4298 
4299 	if (props != NULL) {
4300 		spa_configfile_set(spa, props, B_FALSE);
4301 		spa_sync_props(props, tx);
4302 	}
4303 
4304 	dmu_tx_commit(tx);
4305 
4306 	spa->spa_sync_on = B_TRUE;
4307 	txg_sync_start(spa->spa_dsl_pool);
4308 
4309 	/*
4310 	 * We explicitly wait for the first transaction to complete so that our
4311 	 * bean counters are appropriately updated.
4312 	 */
4313 	txg_wait_synced(spa->spa_dsl_pool, txg);
4314 
4315 	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4316 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4317 
4318 	spa_history_log_version(spa, "create");
4319 
4320 	/*
4321 	 * Don't count references from objsets that are already closed
4322 	 * and are making their way through the eviction process.
4323 	 */
4324 	spa_evicting_os_wait(spa);
4325 	spa->spa_minref = refcount_count(&spa->spa_refcount);
4326 	spa->spa_load_state = SPA_LOAD_NONE;
4327 
4328 	mutex_exit(&spa_namespace_lock);
4329 
4330 	return (0);
4331 }
4332 
4333 #ifdef _KERNEL
4334 /*
4335  * Get the root pool information from the root disk, then import the root pool
4336  * during the system boot up time.
4337  */
4338 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4339 
4340 static nvlist_t *
4341 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4342 {
4343 	nvlist_t *config;
4344 	nvlist_t *nvtop, *nvroot;
4345 	uint64_t pgid;
4346 
4347 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4348 		return (NULL);
4349 
4350 	/*
4351 	 * Add this top-level vdev to the child array.
4352 	 */
4353 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4354 	    &nvtop) == 0);
4355 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4356 	    &pgid) == 0);
4357 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4358 
4359 	/*
4360 	 * Put this pool's top-level vdevs into a root vdev.
4361 	 */
4362 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4363 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4364 	    VDEV_TYPE_ROOT) == 0);
4365 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4366 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4367 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4368 	    &nvtop, 1) == 0);
4369 
4370 	/*
4371 	 * Replace the existing vdev_tree with the new root vdev in
4372 	 * this pool's configuration (remove the old, add the new).
4373 	 */
4374 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4375 	nvlist_free(nvroot);
4376 	return (config);
4377 }
4378 
4379 /*
4380  * Walk the vdev tree and see if we can find a device with "better"
4381  * configuration. A configuration is "better" if the label on that
4382  * device has a more recent txg.
4383  */
4384 static void
4385 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4386 {
4387 	for (int c = 0; c < vd->vdev_children; c++)
4388 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4389 
4390 	if (vd->vdev_ops->vdev_op_leaf) {
4391 		nvlist_t *label;
4392 		uint64_t label_txg;
4393 
4394 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4395 		    &label) != 0)
4396 			return;
4397 
4398 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4399 		    &label_txg) == 0);
4400 
4401 		/*
4402 		 * Do we have a better boot device?
4403 		 */
4404 		if (label_txg > *txg) {
4405 			*txg = label_txg;
4406 			*avd = vd;
4407 		}
4408 		nvlist_free(label);
4409 	}
4410 }
4411 
4412 /*
4413  * Import a root pool.
4414  *
4415  * For x86. devpath_list will consist of devid and/or physpath name of
4416  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4417  * The GRUB "findroot" command will return the vdev we should boot.
4418  *
4419  * For Sparc, devpath_list consists the physpath name of the booting device
4420  * no matter the rootpool is a single device pool or a mirrored pool.
4421  * e.g.
4422  *	"/pci@1f,0/ide@d/disk@0,0:a"
4423  */
4424 int
4425 spa_import_rootpool(char *devpath, char *devid)
4426 {
4427 	spa_t *spa;
4428 	vdev_t *rvd, *bvd, *avd = NULL;
4429 	nvlist_t *config, *nvtop;
4430 	uint64_t guid, txg;
4431 	char *pname;
4432 	int error;
4433 
4434 	/*
4435 	 * Read the label from the boot device and generate a configuration.
4436 	 */
4437 	config = spa_generate_rootconf(devpath, devid, &guid);
4438 #if defined(_OBP) && defined(_KERNEL)
4439 	if (config == NULL) {
4440 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4441 			/* iscsi boot */
4442 			get_iscsi_bootpath_phy(devpath);
4443 			config = spa_generate_rootconf(devpath, devid, &guid);
4444 		}
4445 	}
4446 #endif
4447 	if (config == NULL) {
4448 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4449 		    devpath);
4450 		return (SET_ERROR(EIO));
4451 	}
4452 
4453 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4454 	    &pname) == 0);
4455 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4456 
4457 	mutex_enter(&spa_namespace_lock);
4458 	if ((spa = spa_lookup(pname)) != NULL) {
4459 		/*
4460 		 * Remove the existing root pool from the namespace so that we
4461 		 * can replace it with the correct config we just read in.
4462 		 */
4463 		spa_remove(spa);
4464 	}
4465 
4466 	spa = spa_add(pname, config, NULL);
4467 	spa->spa_is_root = B_TRUE;
4468 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4469 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4470 	    &spa->spa_ubsync.ub_version) != 0)
4471 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4472 
4473 	/*
4474 	 * Build up a vdev tree based on the boot device's label config.
4475 	 */
4476 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4477 	    &nvtop) == 0);
4478 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4479 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4480 	    VDEV_ALLOC_ROOTPOOL);
4481 	spa_config_exit(spa, SCL_ALL, FTAG);
4482 	if (error) {
4483 		mutex_exit(&spa_namespace_lock);
4484 		nvlist_free(config);
4485 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4486 		    pname);
4487 		return (error);
4488 	}
4489 
4490 	/*
4491 	 * Get the boot vdev.
4492 	 */
4493 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4494 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4495 		    (u_longlong_t)guid);
4496 		error = SET_ERROR(ENOENT);
4497 		goto out;
4498 	}
4499 
4500 	/*
4501 	 * Determine if there is a better boot device.
4502 	 */
4503 	avd = bvd;
4504 	spa_alt_rootvdev(rvd, &avd, &txg);
4505 	if (avd != bvd) {
4506 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4507 		    "try booting from '%s'", avd->vdev_path);
4508 		error = SET_ERROR(EINVAL);
4509 		goto out;
4510 	}
4511 
4512 	/*
4513 	 * If the boot device is part of a spare vdev then ensure that
4514 	 * we're booting off the active spare.
4515 	 */
4516 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4517 	    !bvd->vdev_isspare) {
4518 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4519 		    "try booting from '%s'",
4520 		    bvd->vdev_parent->
4521 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4522 		error = SET_ERROR(EINVAL);
4523 		goto out;
4524 	}
4525 
4526 	error = 0;
4527 out:
4528 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4529 	vdev_free(rvd);
4530 	spa_config_exit(spa, SCL_ALL, FTAG);
4531 	mutex_exit(&spa_namespace_lock);
4532 
4533 	nvlist_free(config);
4534 	return (error);
4535 }
4536 
4537 #endif
4538 
4539 /*
4540  * Import a non-root pool into the system.
4541  */
4542 int
4543 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4544 {
4545 	spa_t *spa;
4546 	char *altroot = NULL;
4547 	spa_load_state_t state = SPA_LOAD_IMPORT;
4548 	zpool_rewind_policy_t policy;
4549 	uint64_t mode = spa_mode_global;
4550 	uint64_t readonly = B_FALSE;
4551 	int error;
4552 	nvlist_t *nvroot;
4553 	nvlist_t **spares, **l2cache;
4554 	uint_t nspares, nl2cache;
4555 
4556 	/*
4557 	 * If a pool with this name exists, return failure.
4558 	 */
4559 	mutex_enter(&spa_namespace_lock);
4560 	if (spa_lookup(pool) != NULL) {
4561 		mutex_exit(&spa_namespace_lock);
4562 		return (SET_ERROR(EEXIST));
4563 	}
4564 
4565 	/*
4566 	 * Create and initialize the spa structure.
4567 	 */
4568 	(void) nvlist_lookup_string(props,
4569 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4570 	(void) nvlist_lookup_uint64(props,
4571 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4572 	if (readonly)
4573 		mode = FREAD;
4574 	spa = spa_add(pool, config, altroot);
4575 	spa->spa_import_flags = flags;
4576 
4577 	/*
4578 	 * Verbatim import - Take a pool and insert it into the namespace
4579 	 * as if it had been loaded at boot.
4580 	 */
4581 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4582 		if (props != NULL)
4583 			spa_configfile_set(spa, props, B_FALSE);
4584 
4585 		spa_write_cachefile(spa, B_FALSE, B_TRUE);
4586 		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4587 		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
4588 		mutex_exit(&spa_namespace_lock);
4589 		return (0);
4590 	}
4591 
4592 	spa_activate(spa, mode);
4593 
4594 	/*
4595 	 * Don't start async tasks until we know everything is healthy.
4596 	 */
4597 	spa_async_suspend(spa);
4598 
4599 	zpool_get_rewind_policy(config, &policy);
4600 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4601 		state = SPA_LOAD_RECOVER;
4602 
4603 	/*
4604 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for trust_config
4605 	 * because the user-supplied config is actually the one to trust when
4606 	 * doing an import.
4607 	 */
4608 	if (state != SPA_LOAD_RECOVER)
4609 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4610 
4611 	zfs_dbgmsg("spa_import: importing %s%s", pool,
4612 	    (state == SPA_LOAD_RECOVER) ? " (RECOVERY MODE)" : "");
4613 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4614 	    policy.zrp_request);
4615 
4616 	/*
4617 	 * Propagate anything learned while loading the pool and pass it
4618 	 * back to caller (i.e. rewind info, missing devices, etc).
4619 	 */
4620 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4621 	    spa->spa_load_info) == 0);
4622 
4623 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4624 	/*
4625 	 * Toss any existing sparelist, as it doesn't have any validity
4626 	 * anymore, and conflicts with spa_has_spare().
4627 	 */
4628 	if (spa->spa_spares.sav_config) {
4629 		nvlist_free(spa->spa_spares.sav_config);
4630 		spa->spa_spares.sav_config = NULL;
4631 		spa_load_spares(spa);
4632 	}
4633 	if (spa->spa_l2cache.sav_config) {
4634 		nvlist_free(spa->spa_l2cache.sav_config);
4635 		spa->spa_l2cache.sav_config = NULL;
4636 		spa_load_l2cache(spa);
4637 	}
4638 
4639 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4640 	    &nvroot) == 0);
4641 	if (error == 0)
4642 		error = spa_validate_aux(spa, nvroot, -1ULL,
4643 		    VDEV_ALLOC_SPARE);
4644 	if (error == 0)
4645 		error = spa_validate_aux(spa, nvroot, -1ULL,
4646 		    VDEV_ALLOC_L2CACHE);
4647 	spa_config_exit(spa, SCL_ALL, FTAG);
4648 
4649 	if (props != NULL)
4650 		spa_configfile_set(spa, props, B_FALSE);
4651 
4652 	if (error != 0 || (props && spa_writeable(spa) &&
4653 	    (error = spa_prop_set(spa, props)))) {
4654 		spa_unload(spa);
4655 		spa_deactivate(spa);
4656 		spa_remove(spa);
4657 		mutex_exit(&spa_namespace_lock);
4658 		return (error);
4659 	}
4660 
4661 	spa_async_resume(spa);
4662 
4663 	/*
4664 	 * Override any spares and level 2 cache devices as specified by
4665 	 * the user, as these may have correct device names/devids, etc.
4666 	 */
4667 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4668 	    &spares, &nspares) == 0) {
4669 		if (spa->spa_spares.sav_config)
4670 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4671 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4672 		else
4673 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4674 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4675 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4676 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4677 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4678 		spa_load_spares(spa);
4679 		spa_config_exit(spa, SCL_ALL, FTAG);
4680 		spa->spa_spares.sav_sync = B_TRUE;
4681 	}
4682 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4683 	    &l2cache, &nl2cache) == 0) {
4684 		if (spa->spa_l2cache.sav_config)
4685 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4686 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4687 		else
4688 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4689 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4690 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4691 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4692 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4693 		spa_load_l2cache(spa);
4694 		spa_config_exit(spa, SCL_ALL, FTAG);
4695 		spa->spa_l2cache.sav_sync = B_TRUE;
4696 	}
4697 
4698 	/*
4699 	 * Check for any removed devices.
4700 	 */
4701 	if (spa->spa_autoreplace) {
4702 		spa_aux_check_removed(&spa->spa_spares);
4703 		spa_aux_check_removed(&spa->spa_l2cache);
4704 	}
4705 
4706 	if (spa_writeable(spa)) {
4707 		/*
4708 		 * Update the config cache to include the newly-imported pool.
4709 		 */
4710 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4711 	}
4712 
4713 	/*
4714 	 * It's possible that the pool was expanded while it was exported.
4715 	 * We kick off an async task to handle this for us.
4716 	 */
4717 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4718 
4719 	spa_history_log_version(spa, "import");
4720 
4721 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
4722 
4723 	mutex_exit(&spa_namespace_lock);
4724 
4725 	return (0);
4726 }
4727 
4728 nvlist_t *
4729 spa_tryimport(nvlist_t *tryconfig)
4730 {
4731 	nvlist_t *config = NULL;
4732 	char *poolname;
4733 	spa_t *spa;
4734 	uint64_t state;
4735 	int error;
4736 
4737 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4738 		return (NULL);
4739 
4740 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4741 		return (NULL);
4742 
4743 	/*
4744 	 * Create and initialize the spa structure.
4745 	 */
4746 	mutex_enter(&spa_namespace_lock);
4747 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4748 	spa_activate(spa, FREAD);
4749 
4750 	zfs_dbgmsg("spa_tryimport: importing %s", poolname);
4751 
4752 	/*
4753 	 * Pass off the heavy lifting to spa_load().
4754 	 * Pass TRUE for trust_config because the user-supplied config
4755 	 * is actually the one to trust when doing an import.
4756 	 */
4757 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4758 
4759 	/*
4760 	 * If 'tryconfig' was at least parsable, return the current config.
4761 	 */
4762 	if (spa->spa_root_vdev != NULL) {
4763 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4764 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4765 		    poolname) == 0);
4766 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4767 		    state) == 0);
4768 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4769 		    spa->spa_uberblock.ub_timestamp) == 0);
4770 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4771 		    spa->spa_load_info) == 0);
4772 
4773 		/*
4774 		 * If the bootfs property exists on this pool then we
4775 		 * copy it out so that external consumers can tell which
4776 		 * pools are bootable.
4777 		 */
4778 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4779 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4780 
4781 			/*
4782 			 * We have to play games with the name since the
4783 			 * pool was opened as TRYIMPORT_NAME.
4784 			 */
4785 			if (dsl_dsobj_to_dsname(spa_name(spa),
4786 			    spa->spa_bootfs, tmpname) == 0) {
4787 				char *cp;
4788 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4789 
4790 				cp = strchr(tmpname, '/');
4791 				if (cp == NULL) {
4792 					(void) strlcpy(dsname, tmpname,
4793 					    MAXPATHLEN);
4794 				} else {
4795 					(void) snprintf(dsname, MAXPATHLEN,
4796 					    "%s/%s", poolname, ++cp);
4797 				}
4798 				VERIFY(nvlist_add_string(config,
4799 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4800 				kmem_free(dsname, MAXPATHLEN);
4801 			}
4802 			kmem_free(tmpname, MAXPATHLEN);
4803 		}
4804 
4805 		/*
4806 		 * Add the list of hot spares and level 2 cache devices.
4807 		 */
4808 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4809 		spa_add_spares(spa, config);
4810 		spa_add_l2cache(spa, config);
4811 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4812 	}
4813 
4814 	spa_unload(spa);
4815 	spa_deactivate(spa);
4816 	spa_remove(spa);
4817 	mutex_exit(&spa_namespace_lock);
4818 
4819 	return (config);
4820 }
4821 
4822 /*
4823  * Pool export/destroy
4824  *
4825  * The act of destroying or exporting a pool is very simple.  We make sure there
4826  * is no more pending I/O and any references to the pool are gone.  Then, we
4827  * update the pool state and sync all the labels to disk, removing the
4828  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4829  * we don't sync the labels or remove the configuration cache.
4830  */
4831 static int
4832 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4833     boolean_t force, boolean_t hardforce)
4834 {
4835 	spa_t *spa;
4836 
4837 	if (oldconfig)
4838 		*oldconfig = NULL;
4839 
4840 	if (!(spa_mode_global & FWRITE))
4841 		return (SET_ERROR(EROFS));
4842 
4843 	mutex_enter(&spa_namespace_lock);
4844 	if ((spa = spa_lookup(pool)) == NULL) {
4845 		mutex_exit(&spa_namespace_lock);
4846 		return (SET_ERROR(ENOENT));
4847 	}
4848 
4849 	/*
4850 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4851 	 * reacquire the namespace lock, and see if we can export.
4852 	 */
4853 	spa_open_ref(spa, FTAG);
4854 	mutex_exit(&spa_namespace_lock);
4855 	spa_async_suspend(spa);
4856 	mutex_enter(&spa_namespace_lock);
4857 	spa_close(spa, FTAG);
4858 
4859 	/*
4860 	 * The pool will be in core if it's openable,
4861 	 * in which case we can modify its state.
4862 	 */
4863 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4864 		/*
4865 		 * Objsets may be open only because they're dirty, so we
4866 		 * have to force it to sync before checking spa_refcnt.
4867 		 */
4868 		txg_wait_synced(spa->spa_dsl_pool, 0);
4869 		spa_evicting_os_wait(spa);
4870 
4871 		/*
4872 		 * A pool cannot be exported or destroyed if there are active
4873 		 * references.  If we are resetting a pool, allow references by
4874 		 * fault injection handlers.
4875 		 */
4876 		if (!spa_refcount_zero(spa) ||
4877 		    (spa->spa_inject_ref != 0 &&
4878 		    new_state != POOL_STATE_UNINITIALIZED)) {
4879 			spa_async_resume(spa);
4880 			mutex_exit(&spa_namespace_lock);
4881 			return (SET_ERROR(EBUSY));
4882 		}
4883 
4884 		/*
4885 		 * A pool cannot be exported if it has an active shared spare.
4886 		 * This is to prevent other pools stealing the active spare
4887 		 * from an exported pool. At user's own will, such pool can
4888 		 * be forcedly exported.
4889 		 */
4890 		if (!force && new_state == POOL_STATE_EXPORTED &&
4891 		    spa_has_active_shared_spare(spa)) {
4892 			spa_async_resume(spa);
4893 			mutex_exit(&spa_namespace_lock);
4894 			return (SET_ERROR(EXDEV));
4895 		}
4896 
4897 		/*
4898 		 * We want this to be reflected on every label,
4899 		 * so mark them all dirty.  spa_unload() will do the
4900 		 * final sync that pushes these changes out.
4901 		 */
4902 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4903 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4904 			spa->spa_state = new_state;
4905 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4906 			    TXG_DEFER_SIZE + 1;
4907 			vdev_config_dirty(spa->spa_root_vdev);
4908 			spa_config_exit(spa, SCL_ALL, FTAG);
4909 		}
4910 	}
4911 
4912 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
4913 
4914 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4915 		spa_unload(spa);
4916 		spa_deactivate(spa);
4917 	}
4918 
4919 	if (oldconfig && spa->spa_config)
4920 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4921 
4922 	if (new_state != POOL_STATE_UNINITIALIZED) {
4923 		if (!hardforce)
4924 			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4925 		spa_remove(spa);
4926 	}
4927 	mutex_exit(&spa_namespace_lock);
4928 
4929 	return (0);
4930 }
4931 
4932 /*
4933  * Destroy a storage pool.
4934  */
4935 int
4936 spa_destroy(char *pool)
4937 {
4938 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4939 	    B_FALSE, B_FALSE));
4940 }
4941 
4942 /*
4943  * Export a storage pool.
4944  */
4945 int
4946 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4947     boolean_t hardforce)
4948 {
4949 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4950 	    force, hardforce));
4951 }
4952 
4953 /*
4954  * Similar to spa_export(), this unloads the spa_t without actually removing it
4955  * from the namespace in any way.
4956  */
4957 int
4958 spa_reset(char *pool)
4959 {
4960 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4961 	    B_FALSE, B_FALSE));
4962 }
4963 
4964 /*
4965  * ==========================================================================
4966  * Device manipulation
4967  * ==========================================================================
4968  */
4969 
4970 /*
4971  * Add a device to a storage pool.
4972  */
4973 int
4974 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4975 {
4976 	uint64_t txg, id;
4977 	int error;
4978 	vdev_t *rvd = spa->spa_root_vdev;
4979 	vdev_t *vd, *tvd;
4980 	nvlist_t **spares, **l2cache;
4981 	uint_t nspares, nl2cache;
4982 
4983 	ASSERT(spa_writeable(spa));
4984 
4985 	txg = spa_vdev_enter(spa);
4986 
4987 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4988 	    VDEV_ALLOC_ADD)) != 0)
4989 		return (spa_vdev_exit(spa, NULL, txg, error));
4990 
4991 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4992 
4993 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4994 	    &nspares) != 0)
4995 		nspares = 0;
4996 
4997 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4998 	    &nl2cache) != 0)
4999 		nl2cache = 0;
5000 
5001 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5002 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5003 
5004 	if (vd->vdev_children != 0 &&
5005 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5006 		return (spa_vdev_exit(spa, vd, txg, error));
5007 
5008 	/*
5009 	 * We must validate the spares and l2cache devices after checking the
5010 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5011 	 */
5012 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5013 		return (spa_vdev_exit(spa, vd, txg, error));
5014 
5015 	/*
5016 	 * If we are in the middle of a device removal, we can only add
5017 	 * devices which match the existing devices in the pool.
5018 	 * If we are in the middle of a removal, or have some indirect
5019 	 * vdevs, we can not add raidz toplevels.
5020 	 */
5021 	if (spa->spa_vdev_removal != NULL ||
5022 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5023 		for (int c = 0; c < vd->vdev_children; c++) {
5024 			tvd = vd->vdev_child[c];
5025 			if (spa->spa_vdev_removal != NULL &&
5026 			    tvd->vdev_ashift !=
5027 			    spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5028 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5029 			}
5030 			/* Fail if top level vdev is raidz */
5031 			if (tvd->vdev_ops == &vdev_raidz_ops) {
5032 				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5033 			}
5034 			/*
5035 			 * Need the top level mirror to be
5036 			 * a mirror of leaf vdevs only
5037 			 */
5038 			if (tvd->vdev_ops == &vdev_mirror_ops) {
5039 				for (uint64_t cid = 0;
5040 				    cid < tvd->vdev_children; cid++) {
5041 					vdev_t *cvd = tvd->vdev_child[cid];
5042 					if (!cvd->vdev_ops->vdev_op_leaf) {
5043 						return (spa_vdev_exit(spa, vd,
5044 						    txg, EINVAL));
5045 					}
5046 				}
5047 			}
5048 		}
5049 	}
5050 
5051 	for (int c = 0; c < vd->vdev_children; c++) {
5052 
5053 		/*
5054 		 * Set the vdev id to the first hole, if one exists.
5055 		 */
5056 		for (id = 0; id < rvd->vdev_children; id++) {
5057 			if (rvd->vdev_child[id]->vdev_ishole) {
5058 				vdev_free(rvd->vdev_child[id]);
5059 				break;
5060 			}
5061 		}
5062 		tvd = vd->vdev_child[c];
5063 		vdev_remove_child(vd, tvd);
5064 		tvd->vdev_id = id;
5065 		vdev_add_child(rvd, tvd);
5066 		vdev_config_dirty(tvd);
5067 	}
5068 
5069 	if (nspares != 0) {
5070 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5071 		    ZPOOL_CONFIG_SPARES);
5072 		spa_load_spares(spa);
5073 		spa->spa_spares.sav_sync = B_TRUE;
5074 	}
5075 
5076 	if (nl2cache != 0) {
5077 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5078 		    ZPOOL_CONFIG_L2CACHE);
5079 		spa_load_l2cache(spa);
5080 		spa->spa_l2cache.sav_sync = B_TRUE;
5081 	}
5082 
5083 	/*
5084 	 * We have to be careful when adding new vdevs to an existing pool.
5085 	 * If other threads start allocating from these vdevs before we
5086 	 * sync the config cache, and we lose power, then upon reboot we may
5087 	 * fail to open the pool because there are DVAs that the config cache
5088 	 * can't translate.  Therefore, we first add the vdevs without
5089 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5090 	 * and then let spa_config_update() initialize the new metaslabs.
5091 	 *
5092 	 * spa_load() checks for added-but-not-initialized vdevs, so that
5093 	 * if we lose power at any point in this sequence, the remaining
5094 	 * steps will be completed the next time we load the pool.
5095 	 */
5096 	(void) spa_vdev_exit(spa, vd, txg, 0);
5097 
5098 	mutex_enter(&spa_namespace_lock);
5099 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5100 	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5101 	mutex_exit(&spa_namespace_lock);
5102 
5103 	return (0);
5104 }
5105 
5106 /*
5107  * Attach a device to a mirror.  The arguments are the path to any device
5108  * in the mirror, and the nvroot for the new device.  If the path specifies
5109  * a device that is not mirrored, we automatically insert the mirror vdev.
5110  *
5111  * If 'replacing' is specified, the new device is intended to replace the
5112  * existing device; in this case the two devices are made into their own
5113  * mirror using the 'replacing' vdev, which is functionally identical to
5114  * the mirror vdev (it actually reuses all the same ops) but has a few
5115  * extra rules: you can't attach to it after it's been created, and upon
5116  * completion of resilvering, the first disk (the one being replaced)
5117  * is automatically detached.
5118  */
5119 int
5120 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5121 {
5122 	uint64_t txg, dtl_max_txg;
5123 	vdev_t *rvd = spa->spa_root_vdev;
5124 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5125 	vdev_ops_t *pvops;
5126 	char *oldvdpath, *newvdpath;
5127 	int newvd_isspare;
5128 	int error;
5129 
5130 	ASSERT(spa_writeable(spa));
5131 
5132 	txg = spa_vdev_enter(spa);
5133 
5134 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5135 
5136 	if (spa->spa_vdev_removal != NULL ||
5137 	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5138 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5139 	}
5140 
5141 	if (oldvd == NULL)
5142 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5143 
5144 	if (!oldvd->vdev_ops->vdev_op_leaf)
5145 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5146 
5147 	pvd = oldvd->vdev_parent;
5148 
5149 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5150 	    VDEV_ALLOC_ATTACH)) != 0)
5151 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5152 
5153 	if (newrootvd->vdev_children != 1)
5154 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5155 
5156 	newvd = newrootvd->vdev_child[0];
5157 
5158 	if (!newvd->vdev_ops->vdev_op_leaf)
5159 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5160 
5161 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5162 		return (spa_vdev_exit(spa, newrootvd, txg, error));
5163 
5164 	/*
5165 	 * Spares can't replace logs
5166 	 */
5167 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5168 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5169 
5170 	if (!replacing) {
5171 		/*
5172 		 * For attach, the only allowable parent is a mirror or the root
5173 		 * vdev.
5174 		 */
5175 		if (pvd->vdev_ops != &vdev_mirror_ops &&
5176 		    pvd->vdev_ops != &vdev_root_ops)
5177 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5178 
5179 		pvops = &vdev_mirror_ops;
5180 	} else {
5181 		/*
5182 		 * Active hot spares can only be replaced by inactive hot
5183 		 * spares.
5184 		 */
5185 		if (pvd->vdev_ops == &vdev_spare_ops &&
5186 		    oldvd->vdev_isspare &&
5187 		    !spa_has_spare(spa, newvd->vdev_guid))
5188 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5189 
5190 		/*
5191 		 * If the source is a hot spare, and the parent isn't already a
5192 		 * spare, then we want to create a new hot spare.  Otherwise, we
5193 		 * want to create a replacing vdev.  The user is not allowed to
5194 		 * attach to a spared vdev child unless the 'isspare' state is
5195 		 * the same (spare replaces spare, non-spare replaces
5196 		 * non-spare).
5197 		 */
5198 		if (pvd->vdev_ops == &vdev_replacing_ops &&
5199 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5200 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5201 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
5202 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
5203 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5204 		}
5205 
5206 		if (newvd->vdev_isspare)
5207 			pvops = &vdev_spare_ops;
5208 		else
5209 			pvops = &vdev_replacing_ops;
5210 	}
5211 
5212 	/*
5213 	 * Make sure the new device is big enough.
5214 	 */
5215 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5216 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5217 
5218 	/*
5219 	 * The new device cannot have a higher alignment requirement
5220 	 * than the top-level vdev.
5221 	 */
5222 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5223 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5224 
5225 	/*
5226 	 * If this is an in-place replacement, update oldvd's path and devid
5227 	 * to make it distinguishable from newvd, and unopenable from now on.
5228 	 */
5229 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5230 		spa_strfree(oldvd->vdev_path);
5231 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5232 		    KM_SLEEP);
5233 		(void) sprintf(oldvd->vdev_path, "%s/%s",
5234 		    newvd->vdev_path, "old");
5235 		if (oldvd->vdev_devid != NULL) {
5236 			spa_strfree(oldvd->vdev_devid);
5237 			oldvd->vdev_devid = NULL;
5238 		}
5239 	}
5240 
5241 	/* mark the device being resilvered */
5242 	newvd->vdev_resilver_txg = txg;
5243 
5244 	/*
5245 	 * If the parent is not a mirror, or if we're replacing, insert the new
5246 	 * mirror/replacing/spare vdev above oldvd.
5247 	 */
5248 	if (pvd->vdev_ops != pvops)
5249 		pvd = vdev_add_parent(oldvd, pvops);
5250 
5251 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
5252 	ASSERT(pvd->vdev_ops == pvops);
5253 	ASSERT(oldvd->vdev_parent == pvd);
5254 
5255 	/*
5256 	 * Extract the new device from its root and add it to pvd.
5257 	 */
5258 	vdev_remove_child(newrootvd, newvd);
5259 	newvd->vdev_id = pvd->vdev_children;
5260 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
5261 	vdev_add_child(pvd, newvd);
5262 
5263 	tvd = newvd->vdev_top;
5264 	ASSERT(pvd->vdev_top == tvd);
5265 	ASSERT(tvd->vdev_parent == rvd);
5266 
5267 	vdev_config_dirty(tvd);
5268 
5269 	/*
5270 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5271 	 * for any dmu_sync-ed blocks.  It will propagate upward when
5272 	 * spa_vdev_exit() calls vdev_dtl_reassess().
5273 	 */
5274 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5275 
5276 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5277 	    dtl_max_txg - TXG_INITIAL);
5278 
5279 	if (newvd->vdev_isspare) {
5280 		spa_spare_activate(newvd);
5281 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5282 	}
5283 
5284 	oldvdpath = spa_strdup(oldvd->vdev_path);
5285 	newvdpath = spa_strdup(newvd->vdev_path);
5286 	newvd_isspare = newvd->vdev_isspare;
5287 
5288 	/*
5289 	 * Mark newvd's DTL dirty in this txg.
5290 	 */
5291 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5292 
5293 	/*
5294 	 * Schedule the resilver to restart in the future. We do this to
5295 	 * ensure that dmu_sync-ed blocks have been stitched into the
5296 	 * respective datasets.
5297 	 */
5298 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5299 
5300 	if (spa->spa_bootfs)
5301 		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5302 
5303 	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5304 
5305 	/*
5306 	 * Commit the config
5307 	 */
5308 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5309 
5310 	spa_history_log_internal(spa, "vdev attach", NULL,
5311 	    "%s vdev=%s %s vdev=%s",
5312 	    replacing && newvd_isspare ? "spare in" :
5313 	    replacing ? "replace" : "attach", newvdpath,
5314 	    replacing ? "for" : "to", oldvdpath);
5315 
5316 	spa_strfree(oldvdpath);
5317 	spa_strfree(newvdpath);
5318 
5319 	return (0);
5320 }
5321 
5322 /*
5323  * Detach a device from a mirror or replacing vdev.
5324  *
5325  * If 'replace_done' is specified, only detach if the parent
5326  * is a replacing vdev.
5327  */
5328 int
5329 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5330 {
5331 	uint64_t txg;
5332 	int error;
5333 	vdev_t *rvd = spa->spa_root_vdev;
5334 	vdev_t *vd, *pvd, *cvd, *tvd;
5335 	boolean_t unspare = B_FALSE;
5336 	uint64_t unspare_guid = 0;
5337 	char *vdpath;
5338 
5339 	ASSERT(spa_writeable(spa));
5340 
5341 	txg = spa_vdev_enter(spa);
5342 
5343 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5344 
5345 	if (vd == NULL)
5346 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5347 
5348 	if (!vd->vdev_ops->vdev_op_leaf)
5349 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5350 
5351 	pvd = vd->vdev_parent;
5352 
5353 	/*
5354 	 * If the parent/child relationship is not as expected, don't do it.
5355 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5356 	 * vdev that's replacing B with C.  The user's intent in replacing
5357 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5358 	 * the replace by detaching C, the expected behavior is to end up
5359 	 * M(A,B).  But suppose that right after deciding to detach C,
5360 	 * the replacement of B completes.  We would have M(A,C), and then
5361 	 * ask to detach C, which would leave us with just A -- not what
5362 	 * the user wanted.  To prevent this, we make sure that the
5363 	 * parent/child relationship hasn't changed -- in this example,
5364 	 * that C's parent is still the replacing vdev R.
5365 	 */
5366 	if (pvd->vdev_guid != pguid && pguid != 0)
5367 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5368 
5369 	/*
5370 	 * Only 'replacing' or 'spare' vdevs can be replaced.
5371 	 */
5372 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5373 	    pvd->vdev_ops != &vdev_spare_ops)
5374 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5375 
5376 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5377 	    spa_version(spa) >= SPA_VERSION_SPARES);
5378 
5379 	/*
5380 	 * Only mirror, replacing, and spare vdevs support detach.
5381 	 */
5382 	if (pvd->vdev_ops != &vdev_replacing_ops &&
5383 	    pvd->vdev_ops != &vdev_mirror_ops &&
5384 	    pvd->vdev_ops != &vdev_spare_ops)
5385 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5386 
5387 	/*
5388 	 * If this device has the only valid copy of some data,
5389 	 * we cannot safely detach it.
5390 	 */
5391 	if (vdev_dtl_required(vd))
5392 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5393 
5394 	ASSERT(pvd->vdev_children >= 2);
5395 
5396 	/*
5397 	 * If we are detaching the second disk from a replacing vdev, then
5398 	 * check to see if we changed the original vdev's path to have "/old"
5399 	 * at the end in spa_vdev_attach().  If so, undo that change now.
5400 	 */
5401 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5402 	    vd->vdev_path != NULL) {
5403 		size_t len = strlen(vd->vdev_path);
5404 
5405 		for (int c = 0; c < pvd->vdev_children; c++) {
5406 			cvd = pvd->vdev_child[c];
5407 
5408 			if (cvd == vd || cvd->vdev_path == NULL)
5409 				continue;
5410 
5411 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5412 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5413 				spa_strfree(cvd->vdev_path);
5414 				cvd->vdev_path = spa_strdup(vd->vdev_path);
5415 				break;
5416 			}
5417 		}
5418 	}
5419 
5420 	/*
5421 	 * If we are detaching the original disk from a spare, then it implies
5422 	 * that the spare should become a real disk, and be removed from the
5423 	 * active spare list for the pool.
5424 	 */
5425 	if (pvd->vdev_ops == &vdev_spare_ops &&
5426 	    vd->vdev_id == 0 &&
5427 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5428 		unspare = B_TRUE;
5429 
5430 	/*
5431 	 * Erase the disk labels so the disk can be used for other things.
5432 	 * This must be done after all other error cases are handled,
5433 	 * but before we disembowel vd (so we can still do I/O to it).
5434 	 * But if we can't do it, don't treat the error as fatal --
5435 	 * it may be that the unwritability of the disk is the reason
5436 	 * it's being detached!
5437 	 */
5438 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5439 
5440 	/*
5441 	 * Remove vd from its parent and compact the parent's children.
5442 	 */
5443 	vdev_remove_child(pvd, vd);
5444 	vdev_compact_children(pvd);
5445 
5446 	/*
5447 	 * Remember one of the remaining children so we can get tvd below.
5448 	 */
5449 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5450 
5451 	/*
5452 	 * If we need to remove the remaining child from the list of hot spares,
5453 	 * do it now, marking the vdev as no longer a spare in the process.
5454 	 * We must do this before vdev_remove_parent(), because that can
5455 	 * change the GUID if it creates a new toplevel GUID.  For a similar
5456 	 * reason, we must remove the spare now, in the same txg as the detach;
5457 	 * otherwise someone could attach a new sibling, change the GUID, and
5458 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5459 	 */
5460 	if (unspare) {
5461 		ASSERT(cvd->vdev_isspare);
5462 		spa_spare_remove(cvd);
5463 		unspare_guid = cvd->vdev_guid;
5464 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5465 		cvd->vdev_unspare = B_TRUE;
5466 	}
5467 
5468 	/*
5469 	 * If the parent mirror/replacing vdev only has one child,
5470 	 * the parent is no longer needed.  Remove it from the tree.
5471 	 */
5472 	if (pvd->vdev_children == 1) {
5473 		if (pvd->vdev_ops == &vdev_spare_ops)
5474 			cvd->vdev_unspare = B_FALSE;
5475 		vdev_remove_parent(cvd);
5476 	}
5477 
5478 
5479 	/*
5480 	 * We don't set tvd until now because the parent we just removed
5481 	 * may have been the previous top-level vdev.
5482 	 */
5483 	tvd = cvd->vdev_top;
5484 	ASSERT(tvd->vdev_parent == rvd);
5485 
5486 	/*
5487 	 * Reevaluate the parent vdev state.
5488 	 */
5489 	vdev_propagate_state(cvd);
5490 
5491 	/*
5492 	 * If the 'autoexpand' property is set on the pool then automatically
5493 	 * try to expand the size of the pool. For example if the device we
5494 	 * just detached was smaller than the others, it may be possible to
5495 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5496 	 * first so that we can obtain the updated sizes of the leaf vdevs.
5497 	 */
5498 	if (spa->spa_autoexpand) {
5499 		vdev_reopen(tvd);
5500 		vdev_expand(tvd, txg);
5501 	}
5502 
5503 	vdev_config_dirty(tvd);
5504 
5505 	/*
5506 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5507 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5508 	 * But first make sure we're not on any *other* txg's DTL list, to
5509 	 * prevent vd from being accessed after it's freed.
5510 	 */
5511 	vdpath = spa_strdup(vd->vdev_path);
5512 	for (int t = 0; t < TXG_SIZE; t++)
5513 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5514 	vd->vdev_detached = B_TRUE;
5515 	vdev_dirty(tvd, VDD_DTL, vd, txg);
5516 
5517 	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5518 
5519 	/* hang on to the spa before we release the lock */
5520 	spa_open_ref(spa, FTAG);
5521 
5522 	error = spa_vdev_exit(spa, vd, txg, 0);
5523 
5524 	spa_history_log_internal(spa, "detach", NULL,
5525 	    "vdev=%s", vdpath);
5526 	spa_strfree(vdpath);
5527 
5528 	/*
5529 	 * If this was the removal of the original device in a hot spare vdev,
5530 	 * then we want to go through and remove the device from the hot spare
5531 	 * list of every other pool.
5532 	 */
5533 	if (unspare) {
5534 		spa_t *altspa = NULL;
5535 
5536 		mutex_enter(&spa_namespace_lock);
5537 		while ((altspa = spa_next(altspa)) != NULL) {
5538 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5539 			    altspa == spa)
5540 				continue;
5541 
5542 			spa_open_ref(altspa, FTAG);
5543 			mutex_exit(&spa_namespace_lock);
5544 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5545 			mutex_enter(&spa_namespace_lock);
5546 			spa_close(altspa, FTAG);
5547 		}
5548 		mutex_exit(&spa_namespace_lock);
5549 
5550 		/* search the rest of the vdevs for spares to remove */
5551 		spa_vdev_resilver_done(spa);
5552 	}
5553 
5554 	/* all done with the spa; OK to release */
5555 	mutex_enter(&spa_namespace_lock);
5556 	spa_close(spa, FTAG);
5557 	mutex_exit(&spa_namespace_lock);
5558 
5559 	return (error);
5560 }
5561 
5562 /*
5563  * Split a set of devices from their mirrors, and create a new pool from them.
5564  */
5565 int
5566 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5567     nvlist_t *props, boolean_t exp)
5568 {
5569 	int error = 0;
5570 	uint64_t txg, *glist;
5571 	spa_t *newspa;
5572 	uint_t c, children, lastlog;
5573 	nvlist_t **child, *nvl, *tmp;
5574 	dmu_tx_t *tx;
5575 	char *altroot = NULL;
5576 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5577 	boolean_t activate_slog;
5578 
5579 	ASSERT(spa_writeable(spa));
5580 
5581 	txg = spa_vdev_enter(spa);
5582 
5583 	/* clear the log and flush everything up to now */
5584 	activate_slog = spa_passivate_log(spa);
5585 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5586 	error = spa_reset_logs(spa);
5587 	txg = spa_vdev_config_enter(spa);
5588 
5589 	if (activate_slog)
5590 		spa_activate_log(spa);
5591 
5592 	if (error != 0)
5593 		return (spa_vdev_exit(spa, NULL, txg, error));
5594 
5595 	/* check new spa name before going any further */
5596 	if (spa_lookup(newname) != NULL)
5597 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5598 
5599 	/*
5600 	 * scan through all the children to ensure they're all mirrors
5601 	 */
5602 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5603 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5604 	    &children) != 0)
5605 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5606 
5607 	/* first, check to ensure we've got the right child count */
5608 	rvd = spa->spa_root_vdev;
5609 	lastlog = 0;
5610 	for (c = 0; c < rvd->vdev_children; c++) {
5611 		vdev_t *vd = rvd->vdev_child[c];
5612 
5613 		/* don't count the holes & logs as children */
5614 		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
5615 			if (lastlog == 0)
5616 				lastlog = c;
5617 			continue;
5618 		}
5619 
5620 		lastlog = 0;
5621 	}
5622 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5623 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5624 
5625 	/* next, ensure no spare or cache devices are part of the split */
5626 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5627 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5628 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5629 
5630 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5631 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5632 
5633 	/* then, loop over each vdev and validate it */
5634 	for (c = 0; c < children; c++) {
5635 		uint64_t is_hole = 0;
5636 
5637 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5638 		    &is_hole);
5639 
5640 		if (is_hole != 0) {
5641 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5642 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5643 				continue;
5644 			} else {
5645 				error = SET_ERROR(EINVAL);
5646 				break;
5647 			}
5648 		}
5649 
5650 		/* which disk is going to be split? */
5651 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5652 		    &glist[c]) != 0) {
5653 			error = SET_ERROR(EINVAL);
5654 			break;
5655 		}
5656 
5657 		/* look it up in the spa */
5658 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5659 		if (vml[c] == NULL) {
5660 			error = SET_ERROR(ENODEV);
5661 			break;
5662 		}
5663 
5664 		/* make sure there's nothing stopping the split */
5665 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5666 		    vml[c]->vdev_islog ||
5667 		    !vdev_is_concrete(vml[c]) ||
5668 		    vml[c]->vdev_isspare ||
5669 		    vml[c]->vdev_isl2cache ||
5670 		    !vdev_writeable(vml[c]) ||
5671 		    vml[c]->vdev_children != 0 ||
5672 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5673 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5674 			error = SET_ERROR(EINVAL);
5675 			break;
5676 		}
5677 
5678 		if (vdev_dtl_required(vml[c])) {
5679 			error = SET_ERROR(EBUSY);
5680 			break;
5681 		}
5682 
5683 		/* we need certain info from the top level */
5684 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5685 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5686 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5687 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5688 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5689 		    vml[c]->vdev_top->vdev_asize) == 0);
5690 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5691 		    vml[c]->vdev_top->vdev_ashift) == 0);
5692 
5693 		/* transfer per-vdev ZAPs */
5694 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5695 		VERIFY0(nvlist_add_uint64(child[c],
5696 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5697 
5698 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5699 		VERIFY0(nvlist_add_uint64(child[c],
5700 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5701 		    vml[c]->vdev_parent->vdev_top_zap));
5702 	}
5703 
5704 	if (error != 0) {
5705 		kmem_free(vml, children * sizeof (vdev_t *));
5706 		kmem_free(glist, children * sizeof (uint64_t));
5707 		return (spa_vdev_exit(spa, NULL, txg, error));
5708 	}
5709 
5710 	/* stop writers from using the disks */
5711 	for (c = 0; c < children; c++) {
5712 		if (vml[c] != NULL)
5713 			vml[c]->vdev_offline = B_TRUE;
5714 	}
5715 	vdev_reopen(spa->spa_root_vdev);
5716 
5717 	/*
5718 	 * Temporarily record the splitting vdevs in the spa config.  This
5719 	 * will disappear once the config is regenerated.
5720 	 */
5721 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5722 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5723 	    glist, children) == 0);
5724 	kmem_free(glist, children * sizeof (uint64_t));
5725 
5726 	mutex_enter(&spa->spa_props_lock);
5727 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5728 	    nvl) == 0);
5729 	mutex_exit(&spa->spa_props_lock);
5730 	spa->spa_config_splitting = nvl;
5731 	vdev_config_dirty(spa->spa_root_vdev);
5732 
5733 	/* configure and create the new pool */
5734 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5735 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5736 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5737 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5738 	    spa_version(spa)) == 0);
5739 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5740 	    spa->spa_config_txg) == 0);
5741 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5742 	    spa_generate_guid(NULL)) == 0);
5743 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5744 	(void) nvlist_lookup_string(props,
5745 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5746 
5747 	/* add the new pool to the namespace */
5748 	newspa = spa_add(newname, config, altroot);
5749 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5750 	newspa->spa_config_txg = spa->spa_config_txg;
5751 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5752 
5753 	/* release the spa config lock, retaining the namespace lock */
5754 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5755 
5756 	if (zio_injection_enabled)
5757 		zio_handle_panic_injection(spa, FTAG, 1);
5758 
5759 	spa_activate(newspa, spa_mode_global);
5760 	spa_async_suspend(newspa);
5761 
5762 	/* create the new pool from the disks of the original pool */
5763 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5764 	if (error)
5765 		goto out;
5766 
5767 	/* if that worked, generate a real config for the new pool */
5768 	if (newspa->spa_root_vdev != NULL) {
5769 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5770 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5771 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5772 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5773 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5774 		    B_TRUE));
5775 	}
5776 
5777 	/* set the props */
5778 	if (props != NULL) {
5779 		spa_configfile_set(newspa, props, B_FALSE);
5780 		error = spa_prop_set(newspa, props);
5781 		if (error)
5782 			goto out;
5783 	}
5784 
5785 	/* flush everything */
5786 	txg = spa_vdev_config_enter(newspa);
5787 	vdev_config_dirty(newspa->spa_root_vdev);
5788 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5789 
5790 	if (zio_injection_enabled)
5791 		zio_handle_panic_injection(spa, FTAG, 2);
5792 
5793 	spa_async_resume(newspa);
5794 
5795 	/* finally, update the original pool's config */
5796 	txg = spa_vdev_config_enter(spa);
5797 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5798 	error = dmu_tx_assign(tx, TXG_WAIT);
5799 	if (error != 0)
5800 		dmu_tx_abort(tx);
5801 	for (c = 0; c < children; c++) {
5802 		if (vml[c] != NULL) {
5803 			vdev_split(vml[c]);
5804 			if (error == 0)
5805 				spa_history_log_internal(spa, "detach", tx,
5806 				    "vdev=%s", vml[c]->vdev_path);
5807 
5808 			vdev_free(vml[c]);
5809 		}
5810 	}
5811 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5812 	vdev_config_dirty(spa->spa_root_vdev);
5813 	spa->spa_config_splitting = NULL;
5814 	nvlist_free(nvl);
5815 	if (error == 0)
5816 		dmu_tx_commit(tx);
5817 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5818 
5819 	if (zio_injection_enabled)
5820 		zio_handle_panic_injection(spa, FTAG, 3);
5821 
5822 	/* split is complete; log a history record */
5823 	spa_history_log_internal(newspa, "split", NULL,
5824 	    "from pool %s", spa_name(spa));
5825 
5826 	kmem_free(vml, children * sizeof (vdev_t *));
5827 
5828 	/* if we're not going to mount the filesystems in userland, export */
5829 	if (exp)
5830 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5831 		    B_FALSE, B_FALSE);
5832 
5833 	return (error);
5834 
5835 out:
5836 	spa_unload(newspa);
5837 	spa_deactivate(newspa);
5838 	spa_remove(newspa);
5839 
5840 	txg = spa_vdev_config_enter(spa);
5841 
5842 	/* re-online all offlined disks */
5843 	for (c = 0; c < children; c++) {
5844 		if (vml[c] != NULL)
5845 			vml[c]->vdev_offline = B_FALSE;
5846 	}
5847 	vdev_reopen(spa->spa_root_vdev);
5848 
5849 	nvlist_free(spa->spa_config_splitting);
5850 	spa->spa_config_splitting = NULL;
5851 	(void) spa_vdev_exit(spa, NULL, txg, error);
5852 
5853 	kmem_free(vml, children * sizeof (vdev_t *));
5854 	return (error);
5855 }
5856 
5857 /*
5858  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5859  * currently spared, so we can detach it.
5860  */
5861 static vdev_t *
5862 spa_vdev_resilver_done_hunt(vdev_t *vd)
5863 {
5864 	vdev_t *newvd, *oldvd;
5865 
5866 	for (int c = 0; c < vd->vdev_children; c++) {
5867 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5868 		if (oldvd != NULL)
5869 			return (oldvd);
5870 	}
5871 
5872 	/*
5873 	 * Check for a completed replacement.  We always consider the first
5874 	 * vdev in the list to be the oldest vdev, and the last one to be
5875 	 * the newest (see spa_vdev_attach() for how that works).  In
5876 	 * the case where the newest vdev is faulted, we will not automatically
5877 	 * remove it after a resilver completes.  This is OK as it will require
5878 	 * user intervention to determine which disk the admin wishes to keep.
5879 	 */
5880 	if (vd->vdev_ops == &vdev_replacing_ops) {
5881 		ASSERT(vd->vdev_children > 1);
5882 
5883 		newvd = vd->vdev_child[vd->vdev_children - 1];
5884 		oldvd = vd->vdev_child[0];
5885 
5886 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5887 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5888 		    !vdev_dtl_required(oldvd))
5889 			return (oldvd);
5890 	}
5891 
5892 	/*
5893 	 * Check for a completed resilver with the 'unspare' flag set.
5894 	 */
5895 	if (vd->vdev_ops == &vdev_spare_ops) {
5896 		vdev_t *first = vd->vdev_child[0];
5897 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5898 
5899 		if (last->vdev_unspare) {
5900 			oldvd = first;
5901 			newvd = last;
5902 		} else if (first->vdev_unspare) {
5903 			oldvd = last;
5904 			newvd = first;
5905 		} else {
5906 			oldvd = NULL;
5907 		}
5908 
5909 		if (oldvd != NULL &&
5910 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5911 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5912 		    !vdev_dtl_required(oldvd))
5913 			return (oldvd);
5914 
5915 		/*
5916 		 * If there are more than two spares attached to a disk,
5917 		 * and those spares are not required, then we want to
5918 		 * attempt to free them up now so that they can be used
5919 		 * by other pools.  Once we're back down to a single
5920 		 * disk+spare, we stop removing them.
5921 		 */
5922 		if (vd->vdev_children > 2) {
5923 			newvd = vd->vdev_child[1];
5924 
5925 			if (newvd->vdev_isspare && last->vdev_isspare &&
5926 			    vdev_dtl_empty(last, DTL_MISSING) &&
5927 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5928 			    !vdev_dtl_required(newvd))
5929 				return (newvd);
5930 		}
5931 	}
5932 
5933 	return (NULL);
5934 }
5935 
5936 static void
5937 spa_vdev_resilver_done(spa_t *spa)
5938 {
5939 	vdev_t *vd, *pvd, *ppvd;
5940 	uint64_t guid, sguid, pguid, ppguid;
5941 
5942 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5943 
5944 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5945 		pvd = vd->vdev_parent;
5946 		ppvd = pvd->vdev_parent;
5947 		guid = vd->vdev_guid;
5948 		pguid = pvd->vdev_guid;
5949 		ppguid = ppvd->vdev_guid;
5950 		sguid = 0;
5951 		/*
5952 		 * If we have just finished replacing a hot spared device, then
5953 		 * we need to detach the parent's first child (the original hot
5954 		 * spare) as well.
5955 		 */
5956 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5957 		    ppvd->vdev_children == 2) {
5958 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5959 			sguid = ppvd->vdev_child[1]->vdev_guid;
5960 		}
5961 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5962 
5963 		spa_config_exit(spa, SCL_ALL, FTAG);
5964 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5965 			return;
5966 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5967 			return;
5968 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5969 	}
5970 
5971 	spa_config_exit(spa, SCL_ALL, FTAG);
5972 }
5973 
5974 /*
5975  * Update the stored path or FRU for this vdev.
5976  */
5977 int
5978 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5979     boolean_t ispath)
5980 {
5981 	vdev_t *vd;
5982 	boolean_t sync = B_FALSE;
5983 
5984 	ASSERT(spa_writeable(spa));
5985 
5986 	spa_vdev_state_enter(spa, SCL_ALL);
5987 
5988 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5989 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5990 
5991 	if (!vd->vdev_ops->vdev_op_leaf)
5992 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5993 
5994 	if (ispath) {
5995 		if (strcmp(value, vd->vdev_path) != 0) {
5996 			spa_strfree(vd->vdev_path);
5997 			vd->vdev_path = spa_strdup(value);
5998 			sync = B_TRUE;
5999 		}
6000 	} else {
6001 		if (vd->vdev_fru == NULL) {
6002 			vd->vdev_fru = spa_strdup(value);
6003 			sync = B_TRUE;
6004 		} else if (strcmp(value, vd->vdev_fru) != 0) {
6005 			spa_strfree(vd->vdev_fru);
6006 			vd->vdev_fru = spa_strdup(value);
6007 			sync = B_TRUE;
6008 		}
6009 	}
6010 
6011 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6012 }
6013 
6014 int
6015 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6016 {
6017 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6018 }
6019 
6020 int
6021 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6022 {
6023 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6024 }
6025 
6026 /*
6027  * ==========================================================================
6028  * SPA Scanning
6029  * ==========================================================================
6030  */
6031 int
6032 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6033 {
6034 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6035 
6036 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6037 		return (SET_ERROR(EBUSY));
6038 
6039 	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6040 }
6041 
6042 int
6043 spa_scan_stop(spa_t *spa)
6044 {
6045 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6046 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6047 		return (SET_ERROR(EBUSY));
6048 	return (dsl_scan_cancel(spa->spa_dsl_pool));
6049 }
6050 
6051 int
6052 spa_scan(spa_t *spa, pool_scan_func_t func)
6053 {
6054 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6055 
6056 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6057 		return (SET_ERROR(ENOTSUP));
6058 
6059 	/*
6060 	 * If a resilver was requested, but there is no DTL on a
6061 	 * writeable leaf device, we have nothing to do.
6062 	 */
6063 	if (func == POOL_SCAN_RESILVER &&
6064 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6065 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6066 		return (0);
6067 	}
6068 
6069 	return (dsl_scan(spa->spa_dsl_pool, func));
6070 }
6071 
6072 /*
6073  * ==========================================================================
6074  * SPA async task processing
6075  * ==========================================================================
6076  */
6077 
6078 static void
6079 spa_async_remove(spa_t *spa, vdev_t *vd)
6080 {
6081 	if (vd->vdev_remove_wanted) {
6082 		vd->vdev_remove_wanted = B_FALSE;
6083 		vd->vdev_delayed_close = B_FALSE;
6084 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6085 
6086 		/*
6087 		 * We want to clear the stats, but we don't want to do a full
6088 		 * vdev_clear() as that will cause us to throw away
6089 		 * degraded/faulted state as well as attempt to reopen the
6090 		 * device, all of which is a waste.
6091 		 */
6092 		vd->vdev_stat.vs_read_errors = 0;
6093 		vd->vdev_stat.vs_write_errors = 0;
6094 		vd->vdev_stat.vs_checksum_errors = 0;
6095 
6096 		vdev_state_dirty(vd->vdev_top);
6097 	}
6098 
6099 	for (int c = 0; c < vd->vdev_children; c++)
6100 		spa_async_remove(spa, vd->vdev_child[c]);
6101 }
6102 
6103 static void
6104 spa_async_probe(spa_t *spa, vdev_t *vd)
6105 {
6106 	if (vd->vdev_probe_wanted) {
6107 		vd->vdev_probe_wanted = B_FALSE;
6108 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6109 	}
6110 
6111 	for (int c = 0; c < vd->vdev_children; c++)
6112 		spa_async_probe(spa, vd->vdev_child[c]);
6113 }
6114 
6115 static void
6116 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6117 {
6118 	sysevent_id_t eid;
6119 	nvlist_t *attr;
6120 	char *physpath;
6121 
6122 	if (!spa->spa_autoexpand)
6123 		return;
6124 
6125 	for (int c = 0; c < vd->vdev_children; c++) {
6126 		vdev_t *cvd = vd->vdev_child[c];
6127 		spa_async_autoexpand(spa, cvd);
6128 	}
6129 
6130 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6131 		return;
6132 
6133 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6134 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6135 
6136 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6137 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6138 
6139 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6140 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
6141 
6142 	nvlist_free(attr);
6143 	kmem_free(physpath, MAXPATHLEN);
6144 }
6145 
6146 static void
6147 spa_async_thread(void *arg)
6148 {
6149 	spa_t *spa = (spa_t *)arg;
6150 	int tasks;
6151 
6152 	ASSERT(spa->spa_sync_on);
6153 
6154 	mutex_enter(&spa->spa_async_lock);
6155 	tasks = spa->spa_async_tasks;
6156 	spa->spa_async_tasks = 0;
6157 	mutex_exit(&spa->spa_async_lock);
6158 
6159 	/*
6160 	 * See if the config needs to be updated.
6161 	 */
6162 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6163 		uint64_t old_space, new_space;
6164 
6165 		mutex_enter(&spa_namespace_lock);
6166 		old_space = metaslab_class_get_space(spa_normal_class(spa));
6167 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6168 		new_space = metaslab_class_get_space(spa_normal_class(spa));
6169 		mutex_exit(&spa_namespace_lock);
6170 
6171 		/*
6172 		 * If the pool grew as a result of the config update,
6173 		 * then log an internal history event.
6174 		 */
6175 		if (new_space != old_space) {
6176 			spa_history_log_internal(spa, "vdev online", NULL,
6177 			    "pool '%s' size: %llu(+%llu)",
6178 			    spa_name(spa), new_space, new_space - old_space);
6179 		}
6180 	}
6181 
6182 	/*
6183 	 * See if any devices need to be marked REMOVED.
6184 	 */
6185 	if (tasks & SPA_ASYNC_REMOVE) {
6186 		spa_vdev_state_enter(spa, SCL_NONE);
6187 		spa_async_remove(spa, spa->spa_root_vdev);
6188 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6189 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6190 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6191 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6192 		(void) spa_vdev_state_exit(spa, NULL, 0);
6193 	}
6194 
6195 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6196 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6197 		spa_async_autoexpand(spa, spa->spa_root_vdev);
6198 		spa_config_exit(spa, SCL_CONFIG, FTAG);
6199 	}
6200 
6201 	/*
6202 	 * See if any devices need to be probed.
6203 	 */
6204 	if (tasks & SPA_ASYNC_PROBE) {
6205 		spa_vdev_state_enter(spa, SCL_NONE);
6206 		spa_async_probe(spa, spa->spa_root_vdev);
6207 		(void) spa_vdev_state_exit(spa, NULL, 0);
6208 	}
6209 
6210 	/*
6211 	 * If any devices are done replacing, detach them.
6212 	 */
6213 	if (tasks & SPA_ASYNC_RESILVER_DONE)
6214 		spa_vdev_resilver_done(spa);
6215 
6216 	/*
6217 	 * Kick off a resilver.
6218 	 */
6219 	if (tasks & SPA_ASYNC_RESILVER)
6220 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6221 
6222 	/*
6223 	 * Let the world know that we're done.
6224 	 */
6225 	mutex_enter(&spa->spa_async_lock);
6226 	spa->spa_async_thread = NULL;
6227 	cv_broadcast(&spa->spa_async_cv);
6228 	mutex_exit(&spa->spa_async_lock);
6229 	thread_exit();
6230 }
6231 
6232 void
6233 spa_async_suspend(spa_t *spa)
6234 {
6235 	mutex_enter(&spa->spa_async_lock);
6236 	spa->spa_async_suspended++;
6237 	while (spa->spa_async_thread != NULL ||
6238 	    spa->spa_condense_thread != NULL)
6239 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6240 	mutex_exit(&spa->spa_async_lock);
6241 
6242 	spa_vdev_remove_suspend(spa);
6243 }
6244 
6245 void
6246 spa_async_resume(spa_t *spa)
6247 {
6248 	mutex_enter(&spa->spa_async_lock);
6249 	ASSERT(spa->spa_async_suspended != 0);
6250 	spa->spa_async_suspended--;
6251 	mutex_exit(&spa->spa_async_lock);
6252 	spa_restart_removal(spa);
6253 }
6254 
6255 static boolean_t
6256 spa_async_tasks_pending(spa_t *spa)
6257 {
6258 	uint_t non_config_tasks;
6259 	uint_t config_task;
6260 	boolean_t config_task_suspended;
6261 
6262 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6263 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6264 	if (spa->spa_ccw_fail_time == 0) {
6265 		config_task_suspended = B_FALSE;
6266 	} else {
6267 		config_task_suspended =
6268 		    (gethrtime() - spa->spa_ccw_fail_time) <
6269 		    (zfs_ccw_retry_interval * NANOSEC);
6270 	}
6271 
6272 	return (non_config_tasks || (config_task && !config_task_suspended));
6273 }
6274 
6275 static void
6276 spa_async_dispatch(spa_t *spa)
6277 {
6278 	mutex_enter(&spa->spa_async_lock);
6279 	if (spa_async_tasks_pending(spa) &&
6280 	    !spa->spa_async_suspended &&
6281 	    spa->spa_async_thread == NULL &&
6282 	    rootdir != NULL)
6283 		spa->spa_async_thread = thread_create(NULL, 0,
6284 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6285 	mutex_exit(&spa->spa_async_lock);
6286 }
6287 
6288 void
6289 spa_async_request(spa_t *spa, int task)
6290 {
6291 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6292 	mutex_enter(&spa->spa_async_lock);
6293 	spa->spa_async_tasks |= task;
6294 	mutex_exit(&spa->spa_async_lock);
6295 }
6296 
6297 /*
6298  * ==========================================================================
6299  * SPA syncing routines
6300  * ==========================================================================
6301  */
6302 
6303 static int
6304 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6305 {
6306 	bpobj_t *bpo = arg;
6307 	bpobj_enqueue(bpo, bp, tx);
6308 	return (0);
6309 }
6310 
6311 static int
6312 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6313 {
6314 	zio_t *zio = arg;
6315 
6316 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6317 	    zio->io_flags));
6318 	return (0);
6319 }
6320 
6321 /*
6322  * Note: this simple function is not inlined to make it easier to dtrace the
6323  * amount of time spent syncing frees.
6324  */
6325 static void
6326 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6327 {
6328 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6329 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6330 	VERIFY(zio_wait(zio) == 0);
6331 }
6332 
6333 /*
6334  * Note: this simple function is not inlined to make it easier to dtrace the
6335  * amount of time spent syncing deferred frees.
6336  */
6337 static void
6338 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6339 {
6340 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6341 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6342 	    spa_free_sync_cb, zio, tx), ==, 0);
6343 	VERIFY0(zio_wait(zio));
6344 }
6345 
6346 
6347 static void
6348 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6349 {
6350 	char *packed = NULL;
6351 	size_t bufsize;
6352 	size_t nvsize = 0;
6353 	dmu_buf_t *db;
6354 
6355 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6356 
6357 	/*
6358 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6359 	 * information.  This avoids the dmu_buf_will_dirty() path and
6360 	 * saves us a pre-read to get data we don't actually care about.
6361 	 */
6362 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6363 	packed = kmem_alloc(bufsize, KM_SLEEP);
6364 
6365 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6366 	    KM_SLEEP) == 0);
6367 	bzero(packed + nvsize, bufsize - nvsize);
6368 
6369 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6370 
6371 	kmem_free(packed, bufsize);
6372 
6373 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6374 	dmu_buf_will_dirty(db, tx);
6375 	*(uint64_t *)db->db_data = nvsize;
6376 	dmu_buf_rele(db, FTAG);
6377 }
6378 
6379 static void
6380 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6381     const char *config, const char *entry)
6382 {
6383 	nvlist_t *nvroot;
6384 	nvlist_t **list;
6385 	int i;
6386 
6387 	if (!sav->sav_sync)
6388 		return;
6389 
6390 	/*
6391 	 * Update the MOS nvlist describing the list of available devices.
6392 	 * spa_validate_aux() will have already made sure this nvlist is
6393 	 * valid and the vdevs are labeled appropriately.
6394 	 */
6395 	if (sav->sav_object == 0) {
6396 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6397 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6398 		    sizeof (uint64_t), tx);
6399 		VERIFY(zap_update(spa->spa_meta_objset,
6400 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6401 		    &sav->sav_object, tx) == 0);
6402 	}
6403 
6404 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6405 	if (sav->sav_count == 0) {
6406 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6407 	} else {
6408 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6409 		for (i = 0; i < sav->sav_count; i++)
6410 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6411 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6412 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6413 		    sav->sav_count) == 0);
6414 		for (i = 0; i < sav->sav_count; i++)
6415 			nvlist_free(list[i]);
6416 		kmem_free(list, sav->sav_count * sizeof (void *));
6417 	}
6418 
6419 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6420 	nvlist_free(nvroot);
6421 
6422 	sav->sav_sync = B_FALSE;
6423 }
6424 
6425 /*
6426  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6427  * The all-vdev ZAP must be empty.
6428  */
6429 static void
6430 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6431 {
6432 	spa_t *spa = vd->vdev_spa;
6433 	if (vd->vdev_top_zap != 0) {
6434 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6435 		    vd->vdev_top_zap, tx));
6436 	}
6437 	if (vd->vdev_leaf_zap != 0) {
6438 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6439 		    vd->vdev_leaf_zap, tx));
6440 	}
6441 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6442 		spa_avz_build(vd->vdev_child[i], avz, tx);
6443 	}
6444 }
6445 
6446 static void
6447 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6448 {
6449 	nvlist_t *config;
6450 
6451 	/*
6452 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6453 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6454 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6455 	 * need to rebuild the AVZ although the config may not be dirty.
6456 	 */
6457 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6458 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6459 		return;
6460 
6461 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6462 
6463 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6464 	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6465 	    spa->spa_all_vdev_zaps != 0);
6466 
6467 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6468 		/* Make and build the new AVZ */
6469 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6470 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6471 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6472 
6473 		/* Diff old AVZ with new one */
6474 		zap_cursor_t zc;
6475 		zap_attribute_t za;
6476 
6477 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6478 		    spa->spa_all_vdev_zaps);
6479 		    zap_cursor_retrieve(&zc, &za) == 0;
6480 		    zap_cursor_advance(&zc)) {
6481 			uint64_t vdzap = za.za_first_integer;
6482 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6483 			    vdzap) == ENOENT) {
6484 				/*
6485 				 * ZAP is listed in old AVZ but not in new one;
6486 				 * destroy it
6487 				 */
6488 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6489 				    tx));
6490 			}
6491 		}
6492 
6493 		zap_cursor_fini(&zc);
6494 
6495 		/* Destroy the old AVZ */
6496 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6497 		    spa->spa_all_vdev_zaps, tx));
6498 
6499 		/* Replace the old AVZ in the dir obj with the new one */
6500 		VERIFY0(zap_update(spa->spa_meta_objset,
6501 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6502 		    sizeof (new_avz), 1, &new_avz, tx));
6503 
6504 		spa->spa_all_vdev_zaps = new_avz;
6505 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6506 		zap_cursor_t zc;
6507 		zap_attribute_t za;
6508 
6509 		/* Walk through the AVZ and destroy all listed ZAPs */
6510 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6511 		    spa->spa_all_vdev_zaps);
6512 		    zap_cursor_retrieve(&zc, &za) == 0;
6513 		    zap_cursor_advance(&zc)) {
6514 			uint64_t zap = za.za_first_integer;
6515 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6516 		}
6517 
6518 		zap_cursor_fini(&zc);
6519 
6520 		/* Destroy and unlink the AVZ itself */
6521 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6522 		    spa->spa_all_vdev_zaps, tx));
6523 		VERIFY0(zap_remove(spa->spa_meta_objset,
6524 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6525 		spa->spa_all_vdev_zaps = 0;
6526 	}
6527 
6528 	if (spa->spa_all_vdev_zaps == 0) {
6529 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6530 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6531 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6532 	}
6533 	spa->spa_avz_action = AVZ_ACTION_NONE;
6534 
6535 	/* Create ZAPs for vdevs that don't have them. */
6536 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6537 
6538 	config = spa_config_generate(spa, spa->spa_root_vdev,
6539 	    dmu_tx_get_txg(tx), B_FALSE);
6540 
6541 	/*
6542 	 * If we're upgrading the spa version then make sure that
6543 	 * the config object gets updated with the correct version.
6544 	 */
6545 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6546 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6547 		    spa->spa_uberblock.ub_version);
6548 
6549 	spa_config_exit(spa, SCL_STATE, FTAG);
6550 
6551 	nvlist_free(spa->spa_config_syncing);
6552 	spa->spa_config_syncing = config;
6553 
6554 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6555 }
6556 
6557 static void
6558 spa_sync_version(void *arg, dmu_tx_t *tx)
6559 {
6560 	uint64_t *versionp = arg;
6561 	uint64_t version = *versionp;
6562 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6563 
6564 	/*
6565 	 * Setting the version is special cased when first creating the pool.
6566 	 */
6567 	ASSERT(tx->tx_txg != TXG_INITIAL);
6568 
6569 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6570 	ASSERT(version >= spa_version(spa));
6571 
6572 	spa->spa_uberblock.ub_version = version;
6573 	vdev_config_dirty(spa->spa_root_vdev);
6574 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6575 }
6576 
6577 /*
6578  * Set zpool properties.
6579  */
6580 static void
6581 spa_sync_props(void *arg, dmu_tx_t *tx)
6582 {
6583 	nvlist_t *nvp = arg;
6584 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6585 	objset_t *mos = spa->spa_meta_objset;
6586 	nvpair_t *elem = NULL;
6587 
6588 	mutex_enter(&spa->spa_props_lock);
6589 
6590 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6591 		uint64_t intval;
6592 		char *strval, *fname;
6593 		zpool_prop_t prop;
6594 		const char *propname;
6595 		zprop_type_t proptype;
6596 		spa_feature_t fid;
6597 
6598 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6599 		case ZPOOL_PROP_INVAL:
6600 			/*
6601 			 * We checked this earlier in spa_prop_validate().
6602 			 */
6603 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6604 
6605 			fname = strchr(nvpair_name(elem), '@') + 1;
6606 			VERIFY0(zfeature_lookup_name(fname, &fid));
6607 
6608 			spa_feature_enable(spa, fid, tx);
6609 			spa_history_log_internal(spa, "set", tx,
6610 			    "%s=enabled", nvpair_name(elem));
6611 			break;
6612 
6613 		case ZPOOL_PROP_VERSION:
6614 			intval = fnvpair_value_uint64(elem);
6615 			/*
6616 			 * The version is synced seperatly before other
6617 			 * properties and should be correct by now.
6618 			 */
6619 			ASSERT3U(spa_version(spa), >=, intval);
6620 			break;
6621 
6622 		case ZPOOL_PROP_ALTROOT:
6623 			/*
6624 			 * 'altroot' is a non-persistent property. It should
6625 			 * have been set temporarily at creation or import time.
6626 			 */
6627 			ASSERT(spa->spa_root != NULL);
6628 			break;
6629 
6630 		case ZPOOL_PROP_READONLY:
6631 		case ZPOOL_PROP_CACHEFILE:
6632 			/*
6633 			 * 'readonly' and 'cachefile' are also non-persisitent
6634 			 * properties.
6635 			 */
6636 			break;
6637 		case ZPOOL_PROP_COMMENT:
6638 			strval = fnvpair_value_string(elem);
6639 			if (spa->spa_comment != NULL)
6640 				spa_strfree(spa->spa_comment);
6641 			spa->spa_comment = spa_strdup(strval);
6642 			/*
6643 			 * We need to dirty the configuration on all the vdevs
6644 			 * so that their labels get updated.  It's unnecessary
6645 			 * to do this for pool creation since the vdev's
6646 			 * configuratoin has already been dirtied.
6647 			 */
6648 			if (tx->tx_txg != TXG_INITIAL)
6649 				vdev_config_dirty(spa->spa_root_vdev);
6650 			spa_history_log_internal(spa, "set", tx,
6651 			    "%s=%s", nvpair_name(elem), strval);
6652 			break;
6653 		default:
6654 			/*
6655 			 * Set pool property values in the poolprops mos object.
6656 			 */
6657 			if (spa->spa_pool_props_object == 0) {
6658 				spa->spa_pool_props_object =
6659 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6660 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6661 				    tx);
6662 			}
6663 
6664 			/* normalize the property name */
6665 			propname = zpool_prop_to_name(prop);
6666 			proptype = zpool_prop_get_type(prop);
6667 
6668 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6669 				ASSERT(proptype == PROP_TYPE_STRING);
6670 				strval = fnvpair_value_string(elem);
6671 				VERIFY0(zap_update(mos,
6672 				    spa->spa_pool_props_object, propname,
6673 				    1, strlen(strval) + 1, strval, tx));
6674 				spa_history_log_internal(spa, "set", tx,
6675 				    "%s=%s", nvpair_name(elem), strval);
6676 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6677 				intval = fnvpair_value_uint64(elem);
6678 
6679 				if (proptype == PROP_TYPE_INDEX) {
6680 					const char *unused;
6681 					VERIFY0(zpool_prop_index_to_string(
6682 					    prop, intval, &unused));
6683 				}
6684 				VERIFY0(zap_update(mos,
6685 				    spa->spa_pool_props_object, propname,
6686 				    8, 1, &intval, tx));
6687 				spa_history_log_internal(spa, "set", tx,
6688 				    "%s=%lld", nvpair_name(elem), intval);
6689 			} else {
6690 				ASSERT(0); /* not allowed */
6691 			}
6692 
6693 			switch (prop) {
6694 			case ZPOOL_PROP_DELEGATION:
6695 				spa->spa_delegation = intval;
6696 				break;
6697 			case ZPOOL_PROP_BOOTFS:
6698 				spa->spa_bootfs = intval;
6699 				break;
6700 			case ZPOOL_PROP_FAILUREMODE:
6701 				spa->spa_failmode = intval;
6702 				break;
6703 			case ZPOOL_PROP_AUTOEXPAND:
6704 				spa->spa_autoexpand = intval;
6705 				if (tx->tx_txg != TXG_INITIAL)
6706 					spa_async_request(spa,
6707 					    SPA_ASYNC_AUTOEXPAND);
6708 				break;
6709 			case ZPOOL_PROP_DEDUPDITTO:
6710 				spa->spa_dedup_ditto = intval;
6711 				break;
6712 			default:
6713 				break;
6714 			}
6715 		}
6716 
6717 	}
6718 
6719 	mutex_exit(&spa->spa_props_lock);
6720 }
6721 
6722 /*
6723  * Perform one-time upgrade on-disk changes.  spa_version() does not
6724  * reflect the new version this txg, so there must be no changes this
6725  * txg to anything that the upgrade code depends on after it executes.
6726  * Therefore this must be called after dsl_pool_sync() does the sync
6727  * tasks.
6728  */
6729 static void
6730 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6731 {
6732 	dsl_pool_t *dp = spa->spa_dsl_pool;
6733 
6734 	ASSERT(spa->spa_sync_pass == 1);
6735 
6736 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6737 
6738 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6739 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6740 		dsl_pool_create_origin(dp, tx);
6741 
6742 		/* Keeping the origin open increases spa_minref */
6743 		spa->spa_minref += 3;
6744 	}
6745 
6746 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6747 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6748 		dsl_pool_upgrade_clones(dp, tx);
6749 	}
6750 
6751 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6752 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6753 		dsl_pool_upgrade_dir_clones(dp, tx);
6754 
6755 		/* Keeping the freedir open increases spa_minref */
6756 		spa->spa_minref += 3;
6757 	}
6758 
6759 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6760 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6761 		spa_feature_create_zap_objects(spa, tx);
6762 	}
6763 
6764 	/*
6765 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6766 	 * when possibility to use lz4 compression for metadata was added
6767 	 * Old pools that have this feature enabled must be upgraded to have
6768 	 * this feature active
6769 	 */
6770 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6771 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6772 		    SPA_FEATURE_LZ4_COMPRESS);
6773 		boolean_t lz4_ac = spa_feature_is_active(spa,
6774 		    SPA_FEATURE_LZ4_COMPRESS);
6775 
6776 		if (lz4_en && !lz4_ac)
6777 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6778 	}
6779 
6780 	/*
6781 	 * If we haven't written the salt, do so now.  Note that the
6782 	 * feature may not be activated yet, but that's fine since
6783 	 * the presence of this ZAP entry is backwards compatible.
6784 	 */
6785 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6786 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6787 		VERIFY0(zap_add(spa->spa_meta_objset,
6788 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6789 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6790 		    spa->spa_cksum_salt.zcs_bytes, tx));
6791 	}
6792 
6793 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6794 }
6795 
6796 static void
6797 vdev_indirect_state_sync_verify(vdev_t *vd)
6798 {
6799 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6800 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
6801 
6802 	if (vd->vdev_ops == &vdev_indirect_ops) {
6803 		ASSERT(vim != NULL);
6804 		ASSERT(vib != NULL);
6805 	}
6806 
6807 	if (vdev_obsolete_sm_object(vd) != 0) {
6808 		ASSERT(vd->vdev_obsolete_sm != NULL);
6809 		ASSERT(vd->vdev_removing ||
6810 		    vd->vdev_ops == &vdev_indirect_ops);
6811 		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
6812 		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
6813 
6814 		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
6815 		    space_map_object(vd->vdev_obsolete_sm));
6816 		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
6817 		    space_map_allocated(vd->vdev_obsolete_sm));
6818 	}
6819 	ASSERT(vd->vdev_obsolete_segments != NULL);
6820 
6821 	/*
6822 	 * Since frees / remaps to an indirect vdev can only
6823 	 * happen in syncing context, the obsolete segments
6824 	 * tree must be empty when we start syncing.
6825 	 */
6826 	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
6827 }
6828 
6829 /*
6830  * Sync the specified transaction group.  New blocks may be dirtied as
6831  * part of the process, so we iterate until it converges.
6832  */
6833 void
6834 spa_sync(spa_t *spa, uint64_t txg)
6835 {
6836 	dsl_pool_t *dp = spa->spa_dsl_pool;
6837 	objset_t *mos = spa->spa_meta_objset;
6838 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6839 	vdev_t *rvd = spa->spa_root_vdev;
6840 	vdev_t *vd;
6841 	dmu_tx_t *tx;
6842 	int error;
6843 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6844 	    zfs_vdev_queue_depth_pct / 100;
6845 
6846 	VERIFY(spa_writeable(spa));
6847 
6848 	/*
6849 	 * Wait for i/os issued in open context that need to complete
6850 	 * before this txg syncs.
6851 	 */
6852 	VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
6853 	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
6854 
6855 	/*
6856 	 * Lock out configuration changes.
6857 	 */
6858 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6859 
6860 	spa->spa_syncing_txg = txg;
6861 	spa->spa_sync_pass = 0;
6862 
6863 	mutex_enter(&spa->spa_alloc_lock);
6864 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6865 	mutex_exit(&spa->spa_alloc_lock);
6866 
6867 	/*
6868 	 * If there are any pending vdev state changes, convert them
6869 	 * into config changes that go out with this transaction group.
6870 	 */
6871 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6872 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6873 		/*
6874 		 * We need the write lock here because, for aux vdevs,
6875 		 * calling vdev_config_dirty() modifies sav_config.
6876 		 * This is ugly and will become unnecessary when we
6877 		 * eliminate the aux vdev wart by integrating all vdevs
6878 		 * into the root vdev tree.
6879 		 */
6880 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6881 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6882 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6883 			vdev_state_clean(vd);
6884 			vdev_config_dirty(vd);
6885 		}
6886 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6887 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6888 	}
6889 	spa_config_exit(spa, SCL_STATE, FTAG);
6890 
6891 	tx = dmu_tx_create_assigned(dp, txg);
6892 
6893 	spa->spa_sync_starttime = gethrtime();
6894 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6895 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6896 
6897 	/*
6898 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6899 	 * set spa_deflate if we have no raid-z vdevs.
6900 	 */
6901 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6902 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6903 		int i;
6904 
6905 		for (i = 0; i < rvd->vdev_children; i++) {
6906 			vd = rvd->vdev_child[i];
6907 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6908 				break;
6909 		}
6910 		if (i == rvd->vdev_children) {
6911 			spa->spa_deflate = TRUE;
6912 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6913 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6914 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6915 		}
6916 	}
6917 
6918 	/*
6919 	 * Set the top-level vdev's max queue depth. Evaluate each
6920 	 * top-level's async write queue depth in case it changed.
6921 	 * The max queue depth will not change in the middle of syncing
6922 	 * out this txg.
6923 	 */
6924 	uint64_t queue_depth_total = 0;
6925 	for (int c = 0; c < rvd->vdev_children; c++) {
6926 		vdev_t *tvd = rvd->vdev_child[c];
6927 		metaslab_group_t *mg = tvd->vdev_mg;
6928 
6929 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6930 		    !metaslab_group_initialized(mg))
6931 			continue;
6932 
6933 		/*
6934 		 * It is safe to do a lock-free check here because only async
6935 		 * allocations look at mg_max_alloc_queue_depth, and async
6936 		 * allocations all happen from spa_sync().
6937 		 */
6938 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6939 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6940 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6941 	}
6942 	metaslab_class_t *mc = spa_normal_class(spa);
6943 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6944 	mc->mc_alloc_max_slots = queue_depth_total;
6945 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6946 
6947 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6948 	    max_queue_depth * rvd->vdev_children);
6949 
6950 	for (int c = 0; c < rvd->vdev_children; c++) {
6951 		vdev_t *vd = rvd->vdev_child[c];
6952 		vdev_indirect_state_sync_verify(vd);
6953 
6954 		if (vdev_indirect_should_condense(vd)) {
6955 			spa_condense_indirect_start_sync(vd, tx);
6956 			break;
6957 		}
6958 	}
6959 
6960 	/*
6961 	 * Iterate to convergence.
6962 	 */
6963 	do {
6964 		int pass = ++spa->spa_sync_pass;
6965 
6966 		spa_sync_config_object(spa, tx);
6967 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6968 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6969 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6970 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6971 		spa_errlog_sync(spa, txg);
6972 		dsl_pool_sync(dp, txg);
6973 
6974 		if (pass < zfs_sync_pass_deferred_free) {
6975 			spa_sync_frees(spa, free_bpl, tx);
6976 		} else {
6977 			/*
6978 			 * We can not defer frees in pass 1, because
6979 			 * we sync the deferred frees later in pass 1.
6980 			 */
6981 			ASSERT3U(pass, >, 1);
6982 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6983 			    &spa->spa_deferred_bpobj, tx);
6984 		}
6985 
6986 		ddt_sync(spa, txg);
6987 		dsl_scan_sync(dp, tx);
6988 
6989 		if (spa->spa_vdev_removal != NULL)
6990 			svr_sync(spa, tx);
6991 
6992 		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6993 		    != NULL)
6994 			vdev_sync(vd, txg);
6995 
6996 		if (pass == 1) {
6997 			spa_sync_upgrades(spa, tx);
6998 			ASSERT3U(txg, >=,
6999 			    spa->spa_uberblock.ub_rootbp.blk_birth);
7000 			/*
7001 			 * Note: We need to check if the MOS is dirty
7002 			 * because we could have marked the MOS dirty
7003 			 * without updating the uberblock (e.g. if we
7004 			 * have sync tasks but no dirty user data).  We
7005 			 * need to check the uberblock's rootbp because
7006 			 * it is updated if we have synced out dirty
7007 			 * data (though in this case the MOS will most
7008 			 * likely also be dirty due to second order
7009 			 * effects, we don't want to rely on that here).
7010 			 */
7011 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7012 			    !dmu_objset_is_dirty(mos, txg)) {
7013 				/*
7014 				 * Nothing changed on the first pass,
7015 				 * therefore this TXG is a no-op.  Avoid
7016 				 * syncing deferred frees, so that we
7017 				 * can keep this TXG as a no-op.
7018 				 */
7019 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7020 				    txg));
7021 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7022 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7023 				break;
7024 			}
7025 			spa_sync_deferred_frees(spa, tx);
7026 		}
7027 
7028 	} while (dmu_objset_is_dirty(mos, txg));
7029 
7030 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7031 		/*
7032 		 * Make sure that the number of ZAPs for all the vdevs matches
7033 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7034 		 * called if the config is dirty; otherwise there may be
7035 		 * outstanding AVZ operations that weren't completed in
7036 		 * spa_sync_config_object.
7037 		 */
7038 		uint64_t all_vdev_zap_entry_count;
7039 		ASSERT0(zap_count(spa->spa_meta_objset,
7040 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7041 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7042 		    all_vdev_zap_entry_count);
7043 	}
7044 
7045 	if (spa->spa_vdev_removal != NULL) {
7046 		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7047 	}
7048 
7049 	/*
7050 	 * Rewrite the vdev configuration (which includes the uberblock)
7051 	 * to commit the transaction group.
7052 	 *
7053 	 * If there are no dirty vdevs, we sync the uberblock to a few
7054 	 * random top-level vdevs that are known to be visible in the
7055 	 * config cache (see spa_vdev_add() for a complete description).
7056 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7057 	 */
7058 	for (;;) {
7059 		/*
7060 		 * We hold SCL_STATE to prevent vdev open/close/etc.
7061 		 * while we're attempting to write the vdev labels.
7062 		 */
7063 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7064 
7065 		if (list_is_empty(&spa->spa_config_dirty_list)) {
7066 			vdev_t *svd[SPA_DVAS_PER_BP];
7067 			int svdcount = 0;
7068 			int children = rvd->vdev_children;
7069 			int c0 = spa_get_random(children);
7070 
7071 			for (int c = 0; c < children; c++) {
7072 				vd = rvd->vdev_child[(c0 + c) % children];
7073 				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7074 				    !vdev_is_concrete(vd))
7075 					continue;
7076 				svd[svdcount++] = vd;
7077 				if (svdcount == SPA_DVAS_PER_BP)
7078 					break;
7079 			}
7080 			error = vdev_config_sync(svd, svdcount, txg);
7081 		} else {
7082 			error = vdev_config_sync(rvd->vdev_child,
7083 			    rvd->vdev_children, txg);
7084 		}
7085 
7086 		if (error == 0)
7087 			spa->spa_last_synced_guid = rvd->vdev_guid;
7088 
7089 		spa_config_exit(spa, SCL_STATE, FTAG);
7090 
7091 		if (error == 0)
7092 			break;
7093 		zio_suspend(spa, NULL);
7094 		zio_resume_wait(spa);
7095 	}
7096 	dmu_tx_commit(tx);
7097 
7098 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7099 
7100 	/*
7101 	 * Clear the dirty config list.
7102 	 */
7103 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7104 		vdev_config_clean(vd);
7105 
7106 	/*
7107 	 * Now that the new config has synced transactionally,
7108 	 * let it become visible to the config cache.
7109 	 */
7110 	if (spa->spa_config_syncing != NULL) {
7111 		spa_config_set(spa, spa->spa_config_syncing);
7112 		spa->spa_config_txg = txg;
7113 		spa->spa_config_syncing = NULL;
7114 	}
7115 
7116 	dsl_pool_sync_done(dp, txg);
7117 
7118 	mutex_enter(&spa->spa_alloc_lock);
7119 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7120 	mutex_exit(&spa->spa_alloc_lock);
7121 
7122 	/*
7123 	 * Update usable space statistics.
7124 	 */
7125 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7126 		vdev_sync_done(vd, txg);
7127 
7128 	spa_update_dspace(spa);
7129 
7130 	/*
7131 	 * It had better be the case that we didn't dirty anything
7132 	 * since vdev_config_sync().
7133 	 */
7134 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7135 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7136 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7137 
7138 	spa->spa_sync_pass = 0;
7139 
7140 	/*
7141 	 * Update the last synced uberblock here. We want to do this at
7142 	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7143 	 * will be guaranteed that all the processing associated with
7144 	 * that txg has been completed.
7145 	 */
7146 	spa->spa_ubsync = spa->spa_uberblock;
7147 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7148 
7149 	spa_handle_ignored_writes(spa);
7150 
7151 	/*
7152 	 * If any async tasks have been requested, kick them off.
7153 	 */
7154 	spa_async_dispatch(spa);
7155 }
7156 
7157 /*
7158  * Sync all pools.  We don't want to hold the namespace lock across these
7159  * operations, so we take a reference on the spa_t and drop the lock during the
7160  * sync.
7161  */
7162 void
7163 spa_sync_allpools(void)
7164 {
7165 	spa_t *spa = NULL;
7166 	mutex_enter(&spa_namespace_lock);
7167 	while ((spa = spa_next(spa)) != NULL) {
7168 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7169 		    !spa_writeable(spa) || spa_suspended(spa))
7170 			continue;
7171 		spa_open_ref(spa, FTAG);
7172 		mutex_exit(&spa_namespace_lock);
7173 		txg_wait_synced(spa_get_dsl(spa), 0);
7174 		mutex_enter(&spa_namespace_lock);
7175 		spa_close(spa, FTAG);
7176 	}
7177 	mutex_exit(&spa_namespace_lock);
7178 }
7179 
7180 /*
7181  * ==========================================================================
7182  * Miscellaneous routines
7183  * ==========================================================================
7184  */
7185 
7186 /*
7187  * Remove all pools in the system.
7188  */
7189 void
7190 spa_evict_all(void)
7191 {
7192 	spa_t *spa;
7193 
7194 	/*
7195 	 * Remove all cached state.  All pools should be closed now,
7196 	 * so every spa in the AVL tree should be unreferenced.
7197 	 */
7198 	mutex_enter(&spa_namespace_lock);
7199 	while ((spa = spa_next(NULL)) != NULL) {
7200 		/*
7201 		 * Stop async tasks.  The async thread may need to detach
7202 		 * a device that's been replaced, which requires grabbing
7203 		 * spa_namespace_lock, so we must drop it here.
7204 		 */
7205 		spa_open_ref(spa, FTAG);
7206 		mutex_exit(&spa_namespace_lock);
7207 		spa_async_suspend(spa);
7208 		mutex_enter(&spa_namespace_lock);
7209 		spa_close(spa, FTAG);
7210 
7211 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7212 			spa_unload(spa);
7213 			spa_deactivate(spa);
7214 		}
7215 		spa_remove(spa);
7216 	}
7217 	mutex_exit(&spa_namespace_lock);
7218 }
7219 
7220 vdev_t *
7221 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7222 {
7223 	vdev_t *vd;
7224 	int i;
7225 
7226 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7227 		return (vd);
7228 
7229 	if (aux) {
7230 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7231 			vd = spa->spa_l2cache.sav_vdevs[i];
7232 			if (vd->vdev_guid == guid)
7233 				return (vd);
7234 		}
7235 
7236 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7237 			vd = spa->spa_spares.sav_vdevs[i];
7238 			if (vd->vdev_guid == guid)
7239 				return (vd);
7240 		}
7241 	}
7242 
7243 	return (NULL);
7244 }
7245 
7246 void
7247 spa_upgrade(spa_t *spa, uint64_t version)
7248 {
7249 	ASSERT(spa_writeable(spa));
7250 
7251 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7252 
7253 	/*
7254 	 * This should only be called for a non-faulted pool, and since a
7255 	 * future version would result in an unopenable pool, this shouldn't be
7256 	 * possible.
7257 	 */
7258 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7259 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7260 
7261 	spa->spa_uberblock.ub_version = version;
7262 	vdev_config_dirty(spa->spa_root_vdev);
7263 
7264 	spa_config_exit(spa, SCL_ALL, FTAG);
7265 
7266 	txg_wait_synced(spa_get_dsl(spa), 0);
7267 }
7268 
7269 boolean_t
7270 spa_has_spare(spa_t *spa, uint64_t guid)
7271 {
7272 	int i;
7273 	uint64_t spareguid;
7274 	spa_aux_vdev_t *sav = &spa->spa_spares;
7275 
7276 	for (i = 0; i < sav->sav_count; i++)
7277 		if (sav->sav_vdevs[i]->vdev_guid == guid)
7278 			return (B_TRUE);
7279 
7280 	for (i = 0; i < sav->sav_npending; i++) {
7281 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7282 		    &spareguid) == 0 && spareguid == guid)
7283 			return (B_TRUE);
7284 	}
7285 
7286 	return (B_FALSE);
7287 }
7288 
7289 /*
7290  * Check if a pool has an active shared spare device.
7291  * Note: reference count of an active spare is 2, as a spare and as a replace
7292  */
7293 static boolean_t
7294 spa_has_active_shared_spare(spa_t *spa)
7295 {
7296 	int i, refcnt;
7297 	uint64_t pool;
7298 	spa_aux_vdev_t *sav = &spa->spa_spares;
7299 
7300 	for (i = 0; i < sav->sav_count; i++) {
7301 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7302 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7303 		    refcnt > 2)
7304 			return (B_TRUE);
7305 	}
7306 
7307 	return (B_FALSE);
7308 }
7309 
7310 sysevent_t *
7311 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7312 {
7313 	sysevent_t		*ev = NULL;
7314 #ifdef _KERNEL
7315 	sysevent_attr_list_t	*attr = NULL;
7316 	sysevent_value_t	value;
7317 
7318 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7319 	    SE_SLEEP);
7320 	ASSERT(ev != NULL);
7321 
7322 	value.value_type = SE_DATA_TYPE_STRING;
7323 	value.value.sv_string = spa_name(spa);
7324 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7325 		goto done;
7326 
7327 	value.value_type = SE_DATA_TYPE_UINT64;
7328 	value.value.sv_uint64 = spa_guid(spa);
7329 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7330 		goto done;
7331 
7332 	if (vd) {
7333 		value.value_type = SE_DATA_TYPE_UINT64;
7334 		value.value.sv_uint64 = vd->vdev_guid;
7335 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7336 		    SE_SLEEP) != 0)
7337 			goto done;
7338 
7339 		if (vd->vdev_path) {
7340 			value.value_type = SE_DATA_TYPE_STRING;
7341 			value.value.sv_string = vd->vdev_path;
7342 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7343 			    &value, SE_SLEEP) != 0)
7344 				goto done;
7345 		}
7346 	}
7347 
7348 	if (hist_nvl != NULL) {
7349 		fnvlist_merge((nvlist_t *)attr, hist_nvl);
7350 	}
7351 
7352 	if (sysevent_attach_attributes(ev, attr) != 0)
7353 		goto done;
7354 	attr = NULL;
7355 
7356 done:
7357 	if (attr)
7358 		sysevent_free_attr(attr);
7359 
7360 #endif
7361 	return (ev);
7362 }
7363 
7364 void
7365 spa_event_post(sysevent_t *ev)
7366 {
7367 #ifdef _KERNEL
7368 	sysevent_id_t		eid;
7369 
7370 	(void) log_sysevent(ev, SE_SLEEP, &eid);
7371 	sysevent_free(ev);
7372 #endif
7373 }
7374 
7375 void
7376 spa_event_discard(sysevent_t *ev)
7377 {
7378 #ifdef _KERNEL
7379 	sysevent_free(ev);
7380 #endif
7381 }
7382 
7383 /*
7384  * Post a sysevent corresponding to the given event.  The 'name' must be one of
7385  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7386  * filled in from the spa and (optionally) the vdev and history nvl.  This
7387  * doesn't do anything in the userland libzpool, as we don't want consumers to
7388  * misinterpret ztest or zdb as real changes.
7389  */
7390 void
7391 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7392 {
7393 	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7394 }
7395