xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 379c004d1f26b343f034bba8a350290691d00d38)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains all the routines used when modifying on-disk SPA state.
29  * This includes opening, importing, destroying, exporting a pool, and syncing a
30  * pool.
31  */
32 
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/metaslab.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/sunddi.h>
61 #include <sys/spa_boot.h>
62 
63 #include "zfs_prop.h"
64 #include "zfs_comutil.h"
65 
66 int zio_taskq_threads[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
67 	/*	ISSUE	INTR					*/
68 	{	1,	1	},	/* ZIO_TYPE_NULL	*/
69 	{	1,	8	},	/* ZIO_TYPE_READ	*/
70 	{	8,	1	},	/* ZIO_TYPE_WRITE	*/
71 	{	1,	1	},	/* ZIO_TYPE_FREE	*/
72 	{	1,	1	},	/* ZIO_TYPE_CLAIM	*/
73 	{	1,	1	},	/* ZIO_TYPE_IOCTL	*/
74 };
75 
76 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
77 static boolean_t spa_has_active_shared_spare(spa_t *spa);
78 
79 /*
80  * ==========================================================================
81  * SPA properties routines
82  * ==========================================================================
83  */
84 
85 /*
86  * Add a (source=src, propname=propval) list to an nvlist.
87  */
88 static void
89 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
90     uint64_t intval, zprop_source_t src)
91 {
92 	const char *propname = zpool_prop_to_name(prop);
93 	nvlist_t *propval;
94 
95 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
96 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
97 
98 	if (strval != NULL)
99 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
100 	else
101 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
102 
103 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
104 	nvlist_free(propval);
105 }
106 
107 /*
108  * Get property values from the spa configuration.
109  */
110 static void
111 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
112 {
113 	uint64_t size;
114 	uint64_t used;
115 	uint64_t cap, version;
116 	zprop_source_t src = ZPROP_SRC_NONE;
117 	spa_config_dirent_t *dp;
118 
119 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
120 
121 	if (spa->spa_root_vdev != NULL) {
122 		size = spa_get_space(spa);
123 		used = spa_get_alloc(spa);
124 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
125 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
126 		spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
127 		spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
128 		    size - used, src);
129 
130 		cap = (size == 0) ? 0 : (used * 100 / size);
131 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
132 
133 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
134 		    spa->spa_root_vdev->vdev_state, src);
135 
136 		version = spa_version(spa);
137 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
138 			src = ZPROP_SRC_DEFAULT;
139 		else
140 			src = ZPROP_SRC_LOCAL;
141 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
142 	}
143 
144 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
145 
146 	if (spa->spa_root != NULL)
147 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
148 		    0, ZPROP_SRC_LOCAL);
149 
150 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
151 		if (dp->scd_path == NULL) {
152 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
153 			    "none", 0, ZPROP_SRC_LOCAL);
154 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
155 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
156 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
157 		}
158 	}
159 }
160 
161 /*
162  * Get zpool property values.
163  */
164 int
165 spa_prop_get(spa_t *spa, nvlist_t **nvp)
166 {
167 	zap_cursor_t zc;
168 	zap_attribute_t za;
169 	objset_t *mos = spa->spa_meta_objset;
170 	int err;
171 
172 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
173 
174 	mutex_enter(&spa->spa_props_lock);
175 
176 	/*
177 	 * Get properties from the spa config.
178 	 */
179 	spa_prop_get_config(spa, nvp);
180 
181 	/* If no pool property object, no more prop to get. */
182 	if (spa->spa_pool_props_object == 0) {
183 		mutex_exit(&spa->spa_props_lock);
184 		return (0);
185 	}
186 
187 	/*
188 	 * Get properties from the MOS pool property object.
189 	 */
190 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
191 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
192 	    zap_cursor_advance(&zc)) {
193 		uint64_t intval = 0;
194 		char *strval = NULL;
195 		zprop_source_t src = ZPROP_SRC_DEFAULT;
196 		zpool_prop_t prop;
197 
198 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
199 			continue;
200 
201 		switch (za.za_integer_length) {
202 		case 8:
203 			/* integer property */
204 			if (za.za_first_integer !=
205 			    zpool_prop_default_numeric(prop))
206 				src = ZPROP_SRC_LOCAL;
207 
208 			if (prop == ZPOOL_PROP_BOOTFS) {
209 				dsl_pool_t *dp;
210 				dsl_dataset_t *ds = NULL;
211 
212 				dp = spa_get_dsl(spa);
213 				rw_enter(&dp->dp_config_rwlock, RW_READER);
214 				if (err = dsl_dataset_hold_obj(dp,
215 				    za.za_first_integer, FTAG, &ds)) {
216 					rw_exit(&dp->dp_config_rwlock);
217 					break;
218 				}
219 
220 				strval = kmem_alloc(
221 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
222 				    KM_SLEEP);
223 				dsl_dataset_name(ds, strval);
224 				dsl_dataset_rele(ds, FTAG);
225 				rw_exit(&dp->dp_config_rwlock);
226 			} else {
227 				strval = NULL;
228 				intval = za.za_first_integer;
229 			}
230 
231 			spa_prop_add_list(*nvp, prop, strval, intval, src);
232 
233 			if (strval != NULL)
234 				kmem_free(strval,
235 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
236 
237 			break;
238 
239 		case 1:
240 			/* string property */
241 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
242 			err = zap_lookup(mos, spa->spa_pool_props_object,
243 			    za.za_name, 1, za.za_num_integers, strval);
244 			if (err) {
245 				kmem_free(strval, za.za_num_integers);
246 				break;
247 			}
248 			spa_prop_add_list(*nvp, prop, strval, 0, src);
249 			kmem_free(strval, za.za_num_integers);
250 			break;
251 
252 		default:
253 			break;
254 		}
255 	}
256 	zap_cursor_fini(&zc);
257 	mutex_exit(&spa->spa_props_lock);
258 out:
259 	if (err && err != ENOENT) {
260 		nvlist_free(*nvp);
261 		*nvp = NULL;
262 		return (err);
263 	}
264 
265 	return (0);
266 }
267 
268 /*
269  * Validate the given pool properties nvlist and modify the list
270  * for the property values to be set.
271  */
272 static int
273 spa_prop_validate(spa_t *spa, nvlist_t *props)
274 {
275 	nvpair_t *elem;
276 	int error = 0, reset_bootfs = 0;
277 	uint64_t objnum;
278 
279 	elem = NULL;
280 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
281 		zpool_prop_t prop;
282 		char *propname, *strval;
283 		uint64_t intval;
284 		objset_t *os;
285 		char *slash;
286 
287 		propname = nvpair_name(elem);
288 
289 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
290 			return (EINVAL);
291 
292 		switch (prop) {
293 		case ZPOOL_PROP_VERSION:
294 			error = nvpair_value_uint64(elem, &intval);
295 			if (!error &&
296 			    (intval < spa_version(spa) || intval > SPA_VERSION))
297 				error = EINVAL;
298 			break;
299 
300 		case ZPOOL_PROP_DELEGATION:
301 		case ZPOOL_PROP_AUTOREPLACE:
302 		case ZPOOL_PROP_LISTSNAPS:
303 			error = nvpair_value_uint64(elem, &intval);
304 			if (!error && intval > 1)
305 				error = EINVAL;
306 			break;
307 
308 		case ZPOOL_PROP_BOOTFS:
309 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
310 				error = ENOTSUP;
311 				break;
312 			}
313 
314 			/*
315 			 * Make sure the vdev config is bootable
316 			 */
317 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
318 				error = ENOTSUP;
319 				break;
320 			}
321 
322 			reset_bootfs = 1;
323 
324 			error = nvpair_value_string(elem, &strval);
325 
326 			if (!error) {
327 				uint64_t compress;
328 
329 				if (strval == NULL || strval[0] == '\0') {
330 					objnum = zpool_prop_default_numeric(
331 					    ZPOOL_PROP_BOOTFS);
332 					break;
333 				}
334 
335 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
336 				    DS_MODE_USER | DS_MODE_READONLY, &os))
337 					break;
338 
339 				/* We don't support gzip bootable datasets */
340 				if ((error = dsl_prop_get_integer(strval,
341 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
342 				    &compress, NULL)) == 0 &&
343 				    !BOOTFS_COMPRESS_VALID(compress)) {
344 					error = ENOTSUP;
345 				} else {
346 					objnum = dmu_objset_id(os);
347 				}
348 				dmu_objset_close(os);
349 			}
350 			break;
351 
352 		case ZPOOL_PROP_FAILUREMODE:
353 			error = nvpair_value_uint64(elem, &intval);
354 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
355 			    intval > ZIO_FAILURE_MODE_PANIC))
356 				error = EINVAL;
357 
358 			/*
359 			 * This is a special case which only occurs when
360 			 * the pool has completely failed. This allows
361 			 * the user to change the in-core failmode property
362 			 * without syncing it out to disk (I/Os might
363 			 * currently be blocked). We do this by returning
364 			 * EIO to the caller (spa_prop_set) to trick it
365 			 * into thinking we encountered a property validation
366 			 * error.
367 			 */
368 			if (!error && spa_suspended(spa)) {
369 				spa->spa_failmode = intval;
370 				error = EIO;
371 			}
372 			break;
373 
374 		case ZPOOL_PROP_CACHEFILE:
375 			if ((error = nvpair_value_string(elem, &strval)) != 0)
376 				break;
377 
378 			if (strval[0] == '\0')
379 				break;
380 
381 			if (strcmp(strval, "none") == 0)
382 				break;
383 
384 			if (strval[0] != '/') {
385 				error = EINVAL;
386 				break;
387 			}
388 
389 			slash = strrchr(strval, '/');
390 			ASSERT(slash != NULL);
391 
392 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
393 			    strcmp(slash, "/..") == 0)
394 				error = EINVAL;
395 			break;
396 		}
397 
398 		if (error)
399 			break;
400 	}
401 
402 	if (!error && reset_bootfs) {
403 		error = nvlist_remove(props,
404 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
405 
406 		if (!error) {
407 			error = nvlist_add_uint64(props,
408 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
409 		}
410 	}
411 
412 	return (error);
413 }
414 
415 void
416 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
417 {
418 	char *cachefile;
419 	spa_config_dirent_t *dp;
420 
421 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
422 	    &cachefile) != 0)
423 		return;
424 
425 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
426 	    KM_SLEEP);
427 
428 	if (cachefile[0] == '\0')
429 		dp->scd_path = spa_strdup(spa_config_path);
430 	else if (strcmp(cachefile, "none") == 0)
431 		dp->scd_path = NULL;
432 	else
433 		dp->scd_path = spa_strdup(cachefile);
434 
435 	list_insert_head(&spa->spa_config_list, dp);
436 	if (need_sync)
437 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
438 }
439 
440 int
441 spa_prop_set(spa_t *spa, nvlist_t *nvp)
442 {
443 	int error;
444 	nvpair_t *elem;
445 	boolean_t need_sync = B_FALSE;
446 	zpool_prop_t prop;
447 
448 	if ((error = spa_prop_validate(spa, nvp)) != 0)
449 		return (error);
450 
451 	elem = NULL;
452 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
453 		if ((prop = zpool_name_to_prop(
454 		    nvpair_name(elem))) == ZPROP_INVAL)
455 			return (EINVAL);
456 
457 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
458 			continue;
459 
460 		need_sync = B_TRUE;
461 		break;
462 	}
463 
464 	if (need_sync)
465 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
466 		    spa, nvp, 3));
467 	else
468 		return (0);
469 }
470 
471 /*
472  * If the bootfs property value is dsobj, clear it.
473  */
474 void
475 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
476 {
477 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
478 		VERIFY(zap_remove(spa->spa_meta_objset,
479 		    spa->spa_pool_props_object,
480 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
481 		spa->spa_bootfs = 0;
482 	}
483 }
484 
485 /*
486  * ==========================================================================
487  * SPA state manipulation (open/create/destroy/import/export)
488  * ==========================================================================
489  */
490 
491 static int
492 spa_error_entry_compare(const void *a, const void *b)
493 {
494 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
495 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
496 	int ret;
497 
498 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
499 	    sizeof (zbookmark_t));
500 
501 	if (ret < 0)
502 		return (-1);
503 	else if (ret > 0)
504 		return (1);
505 	else
506 		return (0);
507 }
508 
509 /*
510  * Utility function which retrieves copies of the current logs and
511  * re-initializes them in the process.
512  */
513 void
514 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
515 {
516 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
517 
518 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
519 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
520 
521 	avl_create(&spa->spa_errlist_scrub,
522 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
523 	    offsetof(spa_error_entry_t, se_avl));
524 	avl_create(&spa->spa_errlist_last,
525 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
526 	    offsetof(spa_error_entry_t, se_avl));
527 }
528 
529 /*
530  * Activate an uninitialized pool.
531  */
532 static void
533 spa_activate(spa_t *spa, int mode)
534 {
535 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
536 
537 	spa->spa_state = POOL_STATE_ACTIVE;
538 	spa->spa_mode = mode;
539 
540 	spa->spa_normal_class = metaslab_class_create();
541 	spa->spa_log_class = metaslab_class_create();
542 
543 	for (int t = 0; t < ZIO_TYPES; t++) {
544 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
545 			spa->spa_zio_taskq[t][q] = taskq_create("spa_zio",
546 			    zio_taskq_threads[t][q], maxclsyspri, 50,
547 			    INT_MAX, TASKQ_PREPOPULATE);
548 		}
549 	}
550 
551 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
552 	    offsetof(vdev_t, vdev_config_dirty_node));
553 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
554 	    offsetof(vdev_t, vdev_state_dirty_node));
555 
556 	txg_list_create(&spa->spa_vdev_txg_list,
557 	    offsetof(struct vdev, vdev_txg_node));
558 
559 	avl_create(&spa->spa_errlist_scrub,
560 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
561 	    offsetof(spa_error_entry_t, se_avl));
562 	avl_create(&spa->spa_errlist_last,
563 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
564 	    offsetof(spa_error_entry_t, se_avl));
565 }
566 
567 /*
568  * Opposite of spa_activate().
569  */
570 static void
571 spa_deactivate(spa_t *spa)
572 {
573 	ASSERT(spa->spa_sync_on == B_FALSE);
574 	ASSERT(spa->spa_dsl_pool == NULL);
575 	ASSERT(spa->spa_root_vdev == NULL);
576 
577 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
578 
579 	txg_list_destroy(&spa->spa_vdev_txg_list);
580 
581 	list_destroy(&spa->spa_config_dirty_list);
582 	list_destroy(&spa->spa_state_dirty_list);
583 
584 	for (int t = 0; t < ZIO_TYPES; t++) {
585 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
586 			taskq_destroy(spa->spa_zio_taskq[t][q]);
587 			spa->spa_zio_taskq[t][q] = NULL;
588 		}
589 	}
590 
591 	metaslab_class_destroy(spa->spa_normal_class);
592 	spa->spa_normal_class = NULL;
593 
594 	metaslab_class_destroy(spa->spa_log_class);
595 	spa->spa_log_class = NULL;
596 
597 	/*
598 	 * If this was part of an import or the open otherwise failed, we may
599 	 * still have errors left in the queues.  Empty them just in case.
600 	 */
601 	spa_errlog_drain(spa);
602 
603 	avl_destroy(&spa->spa_errlist_scrub);
604 	avl_destroy(&spa->spa_errlist_last);
605 
606 	spa->spa_state = POOL_STATE_UNINITIALIZED;
607 }
608 
609 /*
610  * Verify a pool configuration, and construct the vdev tree appropriately.  This
611  * will create all the necessary vdevs in the appropriate layout, with each vdev
612  * in the CLOSED state.  This will prep the pool before open/creation/import.
613  * All vdev validation is done by the vdev_alloc() routine.
614  */
615 static int
616 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
617     uint_t id, int atype)
618 {
619 	nvlist_t **child;
620 	uint_t c, children;
621 	int error;
622 
623 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
624 		return (error);
625 
626 	if ((*vdp)->vdev_ops->vdev_op_leaf)
627 		return (0);
628 
629 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
630 	    &child, &children);
631 
632 	if (error == ENOENT)
633 		return (0);
634 
635 	if (error) {
636 		vdev_free(*vdp);
637 		*vdp = NULL;
638 		return (EINVAL);
639 	}
640 
641 	for (c = 0; c < children; c++) {
642 		vdev_t *vd;
643 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
644 		    atype)) != 0) {
645 			vdev_free(*vdp);
646 			*vdp = NULL;
647 			return (error);
648 		}
649 	}
650 
651 	ASSERT(*vdp != NULL);
652 
653 	return (0);
654 }
655 
656 /*
657  * Opposite of spa_load().
658  */
659 static void
660 spa_unload(spa_t *spa)
661 {
662 	int i;
663 
664 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
665 
666 	/*
667 	 * Stop async tasks.
668 	 */
669 	spa_async_suspend(spa);
670 
671 	/*
672 	 * Stop syncing.
673 	 */
674 	if (spa->spa_sync_on) {
675 		txg_sync_stop(spa->spa_dsl_pool);
676 		spa->spa_sync_on = B_FALSE;
677 	}
678 
679 	/*
680 	 * Wait for any outstanding async I/O to complete.
681 	 */
682 	mutex_enter(&spa->spa_async_root_lock);
683 	while (spa->spa_async_root_count != 0)
684 		cv_wait(&spa->spa_async_root_cv, &spa->spa_async_root_lock);
685 	mutex_exit(&spa->spa_async_root_lock);
686 
687 	/*
688 	 * Close the dsl pool.
689 	 */
690 	if (spa->spa_dsl_pool) {
691 		dsl_pool_close(spa->spa_dsl_pool);
692 		spa->spa_dsl_pool = NULL;
693 	}
694 
695 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
696 
697 	/*
698 	 * Drop and purge level 2 cache
699 	 */
700 	spa_l2cache_drop(spa);
701 
702 	/*
703 	 * Close all vdevs.
704 	 */
705 	if (spa->spa_root_vdev)
706 		vdev_free(spa->spa_root_vdev);
707 	ASSERT(spa->spa_root_vdev == NULL);
708 
709 	for (i = 0; i < spa->spa_spares.sav_count; i++)
710 		vdev_free(spa->spa_spares.sav_vdevs[i]);
711 	if (spa->spa_spares.sav_vdevs) {
712 		kmem_free(spa->spa_spares.sav_vdevs,
713 		    spa->spa_spares.sav_count * sizeof (void *));
714 		spa->spa_spares.sav_vdevs = NULL;
715 	}
716 	if (spa->spa_spares.sav_config) {
717 		nvlist_free(spa->spa_spares.sav_config);
718 		spa->spa_spares.sav_config = NULL;
719 	}
720 	spa->spa_spares.sav_count = 0;
721 
722 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
723 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
724 	if (spa->spa_l2cache.sav_vdevs) {
725 		kmem_free(spa->spa_l2cache.sav_vdevs,
726 		    spa->spa_l2cache.sav_count * sizeof (void *));
727 		spa->spa_l2cache.sav_vdevs = NULL;
728 	}
729 	if (spa->spa_l2cache.sav_config) {
730 		nvlist_free(spa->spa_l2cache.sav_config);
731 		spa->spa_l2cache.sav_config = NULL;
732 	}
733 	spa->spa_l2cache.sav_count = 0;
734 
735 	spa->spa_async_suspended = 0;
736 
737 	spa_config_exit(spa, SCL_ALL, FTAG);
738 }
739 
740 /*
741  * Load (or re-load) the current list of vdevs describing the active spares for
742  * this pool.  When this is called, we have some form of basic information in
743  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
744  * then re-generate a more complete list including status information.
745  */
746 static void
747 spa_load_spares(spa_t *spa)
748 {
749 	nvlist_t **spares;
750 	uint_t nspares;
751 	int i;
752 	vdev_t *vd, *tvd;
753 
754 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
755 
756 	/*
757 	 * First, close and free any existing spare vdevs.
758 	 */
759 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
760 		vd = spa->spa_spares.sav_vdevs[i];
761 
762 		/* Undo the call to spa_activate() below */
763 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
764 		    B_FALSE)) != NULL && tvd->vdev_isspare)
765 			spa_spare_remove(tvd);
766 		vdev_close(vd);
767 		vdev_free(vd);
768 	}
769 
770 	if (spa->spa_spares.sav_vdevs)
771 		kmem_free(spa->spa_spares.sav_vdevs,
772 		    spa->spa_spares.sav_count * sizeof (void *));
773 
774 	if (spa->spa_spares.sav_config == NULL)
775 		nspares = 0;
776 	else
777 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
778 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
779 
780 	spa->spa_spares.sav_count = (int)nspares;
781 	spa->spa_spares.sav_vdevs = NULL;
782 
783 	if (nspares == 0)
784 		return;
785 
786 	/*
787 	 * Construct the array of vdevs, opening them to get status in the
788 	 * process.   For each spare, there is potentially two different vdev_t
789 	 * structures associated with it: one in the list of spares (used only
790 	 * for basic validation purposes) and one in the active vdev
791 	 * configuration (if it's spared in).  During this phase we open and
792 	 * validate each vdev on the spare list.  If the vdev also exists in the
793 	 * active configuration, then we also mark this vdev as an active spare.
794 	 */
795 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
796 	    KM_SLEEP);
797 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
798 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
799 		    VDEV_ALLOC_SPARE) == 0);
800 		ASSERT(vd != NULL);
801 
802 		spa->spa_spares.sav_vdevs[i] = vd;
803 
804 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
805 		    B_FALSE)) != NULL) {
806 			if (!tvd->vdev_isspare)
807 				spa_spare_add(tvd);
808 
809 			/*
810 			 * We only mark the spare active if we were successfully
811 			 * able to load the vdev.  Otherwise, importing a pool
812 			 * with a bad active spare would result in strange
813 			 * behavior, because multiple pool would think the spare
814 			 * is actively in use.
815 			 *
816 			 * There is a vulnerability here to an equally bizarre
817 			 * circumstance, where a dead active spare is later
818 			 * brought back to life (onlined or otherwise).  Given
819 			 * the rarity of this scenario, and the extra complexity
820 			 * it adds, we ignore the possibility.
821 			 */
822 			if (!vdev_is_dead(tvd))
823 				spa_spare_activate(tvd);
824 		}
825 
826 		vd->vdev_top = vd;
827 
828 		if (vdev_open(vd) != 0)
829 			continue;
830 
831 		if (vdev_validate_aux(vd) == 0)
832 			spa_spare_add(vd);
833 	}
834 
835 	/*
836 	 * Recompute the stashed list of spares, with status information
837 	 * this time.
838 	 */
839 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
840 	    DATA_TYPE_NVLIST_ARRAY) == 0);
841 
842 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
843 	    KM_SLEEP);
844 	for (i = 0; i < spa->spa_spares.sav_count; i++)
845 		spares[i] = vdev_config_generate(spa,
846 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
847 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
848 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
849 	for (i = 0; i < spa->spa_spares.sav_count; i++)
850 		nvlist_free(spares[i]);
851 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
852 }
853 
854 /*
855  * Load (or re-load) the current list of vdevs describing the active l2cache for
856  * this pool.  When this is called, we have some form of basic information in
857  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
858  * then re-generate a more complete list including status information.
859  * Devices which are already active have their details maintained, and are
860  * not re-opened.
861  */
862 static void
863 spa_load_l2cache(spa_t *spa)
864 {
865 	nvlist_t **l2cache;
866 	uint_t nl2cache;
867 	int i, j, oldnvdevs;
868 	uint64_t guid, size;
869 	vdev_t *vd, **oldvdevs, **newvdevs;
870 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
871 
872 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
873 
874 	if (sav->sav_config != NULL) {
875 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
876 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
877 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
878 	} else {
879 		nl2cache = 0;
880 	}
881 
882 	oldvdevs = sav->sav_vdevs;
883 	oldnvdevs = sav->sav_count;
884 	sav->sav_vdevs = NULL;
885 	sav->sav_count = 0;
886 
887 	/*
888 	 * Process new nvlist of vdevs.
889 	 */
890 	for (i = 0; i < nl2cache; i++) {
891 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
892 		    &guid) == 0);
893 
894 		newvdevs[i] = NULL;
895 		for (j = 0; j < oldnvdevs; j++) {
896 			vd = oldvdevs[j];
897 			if (vd != NULL && guid == vd->vdev_guid) {
898 				/*
899 				 * Retain previous vdev for add/remove ops.
900 				 */
901 				newvdevs[i] = vd;
902 				oldvdevs[j] = NULL;
903 				break;
904 			}
905 		}
906 
907 		if (newvdevs[i] == NULL) {
908 			/*
909 			 * Create new vdev
910 			 */
911 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
912 			    VDEV_ALLOC_L2CACHE) == 0);
913 			ASSERT(vd != NULL);
914 			newvdevs[i] = vd;
915 
916 			/*
917 			 * Commit this vdev as an l2cache device,
918 			 * even if it fails to open.
919 			 */
920 			spa_l2cache_add(vd);
921 
922 			vd->vdev_top = vd;
923 			vd->vdev_aux = sav;
924 
925 			spa_l2cache_activate(vd);
926 
927 			if (vdev_open(vd) != 0)
928 				continue;
929 
930 			(void) vdev_validate_aux(vd);
931 
932 			if (!vdev_is_dead(vd)) {
933 				size = vdev_get_rsize(vd);
934 				l2arc_add_vdev(spa, vd,
935 				    VDEV_LABEL_START_SIZE,
936 				    size - VDEV_LABEL_START_SIZE);
937 			}
938 		}
939 	}
940 
941 	/*
942 	 * Purge vdevs that were dropped
943 	 */
944 	for (i = 0; i < oldnvdevs; i++) {
945 		uint64_t pool;
946 
947 		vd = oldvdevs[i];
948 		if (vd != NULL) {
949 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
950 			    pool != 0ULL && l2arc_vdev_present(vd))
951 				l2arc_remove_vdev(vd);
952 			(void) vdev_close(vd);
953 			spa_l2cache_remove(vd);
954 		}
955 	}
956 
957 	if (oldvdevs)
958 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
959 
960 	if (sav->sav_config == NULL)
961 		goto out;
962 
963 	sav->sav_vdevs = newvdevs;
964 	sav->sav_count = (int)nl2cache;
965 
966 	/*
967 	 * Recompute the stashed list of l2cache devices, with status
968 	 * information this time.
969 	 */
970 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
971 	    DATA_TYPE_NVLIST_ARRAY) == 0);
972 
973 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
974 	for (i = 0; i < sav->sav_count; i++)
975 		l2cache[i] = vdev_config_generate(spa,
976 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
977 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
978 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
979 out:
980 	for (i = 0; i < sav->sav_count; i++)
981 		nvlist_free(l2cache[i]);
982 	if (sav->sav_count)
983 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
984 }
985 
986 static int
987 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
988 {
989 	dmu_buf_t *db;
990 	char *packed = NULL;
991 	size_t nvsize = 0;
992 	int error;
993 	*value = NULL;
994 
995 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
996 	nvsize = *(uint64_t *)db->db_data;
997 	dmu_buf_rele(db, FTAG);
998 
999 	packed = kmem_alloc(nvsize, KM_SLEEP);
1000 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
1001 	if (error == 0)
1002 		error = nvlist_unpack(packed, nvsize, value, 0);
1003 	kmem_free(packed, nvsize);
1004 
1005 	return (error);
1006 }
1007 
1008 /*
1009  * Checks to see if the given vdev could not be opened, in which case we post a
1010  * sysevent to notify the autoreplace code that the device has been removed.
1011  */
1012 static void
1013 spa_check_removed(vdev_t *vd)
1014 {
1015 	int c;
1016 
1017 	for (c = 0; c < vd->vdev_children; c++)
1018 		spa_check_removed(vd->vdev_child[c]);
1019 
1020 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1021 		zfs_post_autoreplace(vd->vdev_spa, vd);
1022 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1023 	}
1024 }
1025 
1026 /*
1027  * Check for missing log devices
1028  */
1029 int
1030 spa_check_logs(spa_t *spa)
1031 {
1032 	switch (spa->spa_log_state) {
1033 	case SPA_LOG_MISSING:
1034 		/* need to recheck in case slog has been restored */
1035 	case SPA_LOG_UNKNOWN:
1036 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1037 		    DS_FIND_CHILDREN)) {
1038 			spa->spa_log_state = SPA_LOG_MISSING;
1039 			return (1);
1040 		}
1041 		break;
1042 
1043 	case SPA_LOG_CLEAR:
1044 		(void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL,
1045 		    DS_FIND_CHILDREN);
1046 		break;
1047 	}
1048 	spa->spa_log_state = SPA_LOG_GOOD;
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Load an existing storage pool, using the pool's builtin spa_config as a
1054  * source of configuration information.
1055  */
1056 static int
1057 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
1058 {
1059 	int error = 0;
1060 	nvlist_t *nvroot = NULL;
1061 	vdev_t *rvd;
1062 	uberblock_t *ub = &spa->spa_uberblock;
1063 	uint64_t config_cache_txg = spa->spa_config_txg;
1064 	uint64_t pool_guid;
1065 	uint64_t version;
1066 	uint64_t autoreplace = 0;
1067 	int orig_mode = spa->spa_mode;
1068 	char *ereport = FM_EREPORT_ZFS_POOL;
1069 
1070 	/*
1071 	 * If this is an untrusted config, access the pool in read-only mode.
1072 	 * This prevents things like resilvering recently removed devices.
1073 	 */
1074 	if (!mosconfig)
1075 		spa->spa_mode = FREAD;
1076 
1077 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1078 
1079 	spa->spa_load_state = state;
1080 
1081 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
1082 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
1083 		error = EINVAL;
1084 		goto out;
1085 	}
1086 
1087 	/*
1088 	 * Versioning wasn't explicitly added to the label until later, so if
1089 	 * it's not present treat it as the initial version.
1090 	 */
1091 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
1092 		version = SPA_VERSION_INITIAL;
1093 
1094 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1095 	    &spa->spa_config_txg);
1096 
1097 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1098 	    spa_guid_exists(pool_guid, 0)) {
1099 		error = EEXIST;
1100 		goto out;
1101 	}
1102 
1103 	spa->spa_load_guid = pool_guid;
1104 
1105 	/*
1106 	 * Parse the configuration into a vdev tree.  We explicitly set the
1107 	 * value that will be returned by spa_version() since parsing the
1108 	 * configuration requires knowing the version number.
1109 	 */
1110 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1111 	spa->spa_ubsync.ub_version = version;
1112 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1113 	spa_config_exit(spa, SCL_ALL, FTAG);
1114 
1115 	if (error != 0)
1116 		goto out;
1117 
1118 	ASSERT(spa->spa_root_vdev == rvd);
1119 	ASSERT(spa_guid(spa) == pool_guid);
1120 
1121 	/*
1122 	 * Try to open all vdevs, loading each label in the process.
1123 	 */
1124 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1125 	error = vdev_open(rvd);
1126 	spa_config_exit(spa, SCL_ALL, FTAG);
1127 	if (error != 0)
1128 		goto out;
1129 
1130 	/*
1131 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1132 	 * lock because all label I/O is done with ZIO_FLAG_CONFIG_WRITER.
1133 	 */
1134 	if (mosconfig) {
1135 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1136 		error = vdev_validate(rvd);
1137 		spa_config_exit(spa, SCL_ALL, FTAG);
1138 		if (error != 0)
1139 			goto out;
1140 	}
1141 
1142 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1143 		error = ENXIO;
1144 		goto out;
1145 	}
1146 
1147 	/*
1148 	 * Find the best uberblock.
1149 	 */
1150 	vdev_uberblock_load(NULL, rvd, ub);
1151 
1152 	/*
1153 	 * If we weren't able to find a single valid uberblock, return failure.
1154 	 */
1155 	if (ub->ub_txg == 0) {
1156 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1157 		    VDEV_AUX_CORRUPT_DATA);
1158 		error = ENXIO;
1159 		goto out;
1160 	}
1161 
1162 	/*
1163 	 * If the pool is newer than the code, we can't open it.
1164 	 */
1165 	if (ub->ub_version > SPA_VERSION) {
1166 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1167 		    VDEV_AUX_VERSION_NEWER);
1168 		error = ENOTSUP;
1169 		goto out;
1170 	}
1171 
1172 	/*
1173 	 * If the vdev guid sum doesn't match the uberblock, we have an
1174 	 * incomplete configuration.
1175 	 */
1176 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1177 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1178 		    VDEV_AUX_BAD_GUID_SUM);
1179 		error = ENXIO;
1180 		goto out;
1181 	}
1182 
1183 	/*
1184 	 * Initialize internal SPA structures.
1185 	 */
1186 	spa->spa_state = POOL_STATE_ACTIVE;
1187 	spa->spa_ubsync = spa->spa_uberblock;
1188 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1189 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1190 	if (error) {
1191 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1192 		    VDEV_AUX_CORRUPT_DATA);
1193 		goto out;
1194 	}
1195 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1196 
1197 	if (zap_lookup(spa->spa_meta_objset,
1198 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1199 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1200 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1201 		    VDEV_AUX_CORRUPT_DATA);
1202 		error = EIO;
1203 		goto out;
1204 	}
1205 
1206 	if (!mosconfig) {
1207 		nvlist_t *newconfig;
1208 		uint64_t hostid;
1209 
1210 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1211 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1212 			    VDEV_AUX_CORRUPT_DATA);
1213 			error = EIO;
1214 			goto out;
1215 		}
1216 
1217 		if (!spa_is_root(spa) && nvlist_lookup_uint64(newconfig,
1218 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1219 			char *hostname;
1220 			unsigned long myhostid = 0;
1221 
1222 			VERIFY(nvlist_lookup_string(newconfig,
1223 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1224 
1225 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1226 			if (hostid != 0 && myhostid != 0 &&
1227 			    (unsigned long)hostid != myhostid) {
1228 				cmn_err(CE_WARN, "pool '%s' could not be "
1229 				    "loaded as it was last accessed by "
1230 				    "another system (host: %s hostid: 0x%lx). "
1231 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1232 				    spa_name(spa), hostname,
1233 				    (unsigned long)hostid);
1234 				error = EBADF;
1235 				goto out;
1236 			}
1237 		}
1238 
1239 		spa_config_set(spa, newconfig);
1240 		spa_unload(spa);
1241 		spa_deactivate(spa);
1242 		spa_activate(spa, orig_mode);
1243 
1244 		return (spa_load(spa, newconfig, state, B_TRUE));
1245 	}
1246 
1247 	if (zap_lookup(spa->spa_meta_objset,
1248 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1249 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1250 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1251 		    VDEV_AUX_CORRUPT_DATA);
1252 		error = EIO;
1253 		goto out;
1254 	}
1255 
1256 	/*
1257 	 * Load the bit that tells us to use the new accounting function
1258 	 * (raid-z deflation).  If we have an older pool, this will not
1259 	 * be present.
1260 	 */
1261 	error = zap_lookup(spa->spa_meta_objset,
1262 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1263 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1264 	if (error != 0 && error != ENOENT) {
1265 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1266 		    VDEV_AUX_CORRUPT_DATA);
1267 		error = EIO;
1268 		goto out;
1269 	}
1270 
1271 	/*
1272 	 * Load the persistent error log.  If we have an older pool, this will
1273 	 * not be present.
1274 	 */
1275 	error = zap_lookup(spa->spa_meta_objset,
1276 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1277 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1278 	if (error != 0 && error != ENOENT) {
1279 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1280 		    VDEV_AUX_CORRUPT_DATA);
1281 		error = EIO;
1282 		goto out;
1283 	}
1284 
1285 	error = zap_lookup(spa->spa_meta_objset,
1286 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1287 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1288 	if (error != 0 && error != ENOENT) {
1289 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1290 		    VDEV_AUX_CORRUPT_DATA);
1291 		error = EIO;
1292 		goto out;
1293 	}
1294 
1295 	/*
1296 	 * Load the history object.  If we have an older pool, this
1297 	 * will not be present.
1298 	 */
1299 	error = zap_lookup(spa->spa_meta_objset,
1300 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1301 	    sizeof (uint64_t), 1, &spa->spa_history);
1302 	if (error != 0 && error != ENOENT) {
1303 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1304 		    VDEV_AUX_CORRUPT_DATA);
1305 		error = EIO;
1306 		goto out;
1307 	}
1308 
1309 	/*
1310 	 * Load any hot spares for this pool.
1311 	 */
1312 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1313 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1314 	if (error != 0 && error != ENOENT) {
1315 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1316 		    VDEV_AUX_CORRUPT_DATA);
1317 		error = EIO;
1318 		goto out;
1319 	}
1320 	if (error == 0) {
1321 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1322 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1323 		    &spa->spa_spares.sav_config) != 0) {
1324 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325 			    VDEV_AUX_CORRUPT_DATA);
1326 			error = EIO;
1327 			goto out;
1328 		}
1329 
1330 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1331 		spa_load_spares(spa);
1332 		spa_config_exit(spa, SCL_ALL, FTAG);
1333 	}
1334 
1335 	/*
1336 	 * Load any level 2 ARC devices for this pool.
1337 	 */
1338 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1339 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1340 	    &spa->spa_l2cache.sav_object);
1341 	if (error != 0 && error != ENOENT) {
1342 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1343 		    VDEV_AUX_CORRUPT_DATA);
1344 		error = EIO;
1345 		goto out;
1346 	}
1347 	if (error == 0) {
1348 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1349 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1350 		    &spa->spa_l2cache.sav_config) != 0) {
1351 			vdev_set_state(rvd, B_TRUE,
1352 			    VDEV_STATE_CANT_OPEN,
1353 			    VDEV_AUX_CORRUPT_DATA);
1354 			error = EIO;
1355 			goto out;
1356 		}
1357 
1358 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1359 		spa_load_l2cache(spa);
1360 		spa_config_exit(spa, SCL_ALL, FTAG);
1361 	}
1362 
1363 	if (spa_check_logs(spa)) {
1364 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1365 		    VDEV_AUX_BAD_LOG);
1366 		error = ENXIO;
1367 		ereport = FM_EREPORT_ZFS_LOG_REPLAY;
1368 		goto out;
1369 	}
1370 
1371 
1372 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1373 
1374 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1375 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1376 
1377 	if (error && error != ENOENT) {
1378 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1379 		    VDEV_AUX_CORRUPT_DATA);
1380 		error = EIO;
1381 		goto out;
1382 	}
1383 
1384 	if (error == 0) {
1385 		(void) zap_lookup(spa->spa_meta_objset,
1386 		    spa->spa_pool_props_object,
1387 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1388 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1389 		(void) zap_lookup(spa->spa_meta_objset,
1390 		    spa->spa_pool_props_object,
1391 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1392 		    sizeof (uint64_t), 1, &autoreplace);
1393 		(void) zap_lookup(spa->spa_meta_objset,
1394 		    spa->spa_pool_props_object,
1395 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1396 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1397 		(void) zap_lookup(spa->spa_meta_objset,
1398 		    spa->spa_pool_props_object,
1399 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1400 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1401 	}
1402 
1403 	/*
1404 	 * If the 'autoreplace' property is set, then post a resource notifying
1405 	 * the ZFS DE that it should not issue any faults for unopenable
1406 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1407 	 * unopenable vdevs so that the normal autoreplace handler can take
1408 	 * over.
1409 	 */
1410 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1411 		spa_check_removed(spa->spa_root_vdev);
1412 
1413 	/*
1414 	 * Load the vdev state for all toplevel vdevs.
1415 	 */
1416 	vdev_load(rvd);
1417 
1418 	/*
1419 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1420 	 */
1421 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1422 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1423 	spa_config_exit(spa, SCL_ALL, FTAG);
1424 
1425 	/*
1426 	 * Check the state of the root vdev.  If it can't be opened, it
1427 	 * indicates one or more toplevel vdevs are faulted.
1428 	 */
1429 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1430 		error = ENXIO;
1431 		goto out;
1432 	}
1433 
1434 	if (spa_writeable(spa)) {
1435 		dmu_tx_t *tx;
1436 		int need_update = B_FALSE;
1437 
1438 		ASSERT(state != SPA_LOAD_TRYIMPORT);
1439 
1440 		/*
1441 		 * Claim log blocks that haven't been committed yet.
1442 		 * This must all happen in a single txg.
1443 		 */
1444 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1445 		    spa_first_txg(spa));
1446 		(void) dmu_objset_find(spa_name(spa),
1447 		    zil_claim, tx, DS_FIND_CHILDREN);
1448 		dmu_tx_commit(tx);
1449 
1450 		spa->spa_sync_on = B_TRUE;
1451 		txg_sync_start(spa->spa_dsl_pool);
1452 
1453 		/*
1454 		 * Wait for all claims to sync.
1455 		 */
1456 		txg_wait_synced(spa->spa_dsl_pool, 0);
1457 
1458 		/*
1459 		 * If the config cache is stale, or we have uninitialized
1460 		 * metaslabs (see spa_vdev_add()), then update the config.
1461 		 */
1462 		if (config_cache_txg != spa->spa_config_txg ||
1463 		    state == SPA_LOAD_IMPORT)
1464 			need_update = B_TRUE;
1465 
1466 		for (int c = 0; c < rvd->vdev_children; c++)
1467 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1468 				need_update = B_TRUE;
1469 
1470 		/*
1471 		 * Update the config cache asychronously in case we're the
1472 		 * root pool, in which case the config cache isn't writable yet.
1473 		 */
1474 		if (need_update)
1475 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1476 
1477 		/*
1478 		 * Check all DTLs to see if anything needs resilvering.
1479 		 */
1480 		if (vdev_resilver_needed(rvd, NULL, NULL))
1481 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1482 	}
1483 
1484 	error = 0;
1485 out:
1486 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1487 	if (error && error != EBADF)
1488 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1489 	spa->spa_load_state = SPA_LOAD_NONE;
1490 	spa->spa_ena = 0;
1491 
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Pool Open/Import
1497  *
1498  * The import case is identical to an open except that the configuration is sent
1499  * down from userland, instead of grabbed from the configuration cache.  For the
1500  * case of an open, the pool configuration will exist in the
1501  * POOL_STATE_UNINITIALIZED state.
1502  *
1503  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1504  * the same time open the pool, without having to keep around the spa_t in some
1505  * ambiguous state.
1506  */
1507 static int
1508 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1509 {
1510 	spa_t *spa;
1511 	int error;
1512 	int locked = B_FALSE;
1513 
1514 	*spapp = NULL;
1515 
1516 	/*
1517 	 * As disgusting as this is, we need to support recursive calls to this
1518 	 * function because dsl_dir_open() is called during spa_load(), and ends
1519 	 * up calling spa_open() again.  The real fix is to figure out how to
1520 	 * avoid dsl_dir_open() calling this in the first place.
1521 	 */
1522 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1523 		mutex_enter(&spa_namespace_lock);
1524 		locked = B_TRUE;
1525 	}
1526 
1527 	if ((spa = spa_lookup(pool)) == NULL) {
1528 		if (locked)
1529 			mutex_exit(&spa_namespace_lock);
1530 		return (ENOENT);
1531 	}
1532 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1533 
1534 		spa_activate(spa, spa_mode_global);
1535 
1536 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1537 
1538 		if (error == EBADF) {
1539 			/*
1540 			 * If vdev_validate() returns failure (indicated by
1541 			 * EBADF), it indicates that one of the vdevs indicates
1542 			 * that the pool has been exported or destroyed.  If
1543 			 * this is the case, the config cache is out of sync and
1544 			 * we should remove the pool from the namespace.
1545 			 */
1546 			spa_unload(spa);
1547 			spa_deactivate(spa);
1548 			spa_config_sync(spa, B_TRUE, B_TRUE);
1549 			spa_remove(spa);
1550 			if (locked)
1551 				mutex_exit(&spa_namespace_lock);
1552 			return (ENOENT);
1553 		}
1554 
1555 		if (error) {
1556 			/*
1557 			 * We can't open the pool, but we still have useful
1558 			 * information: the state of each vdev after the
1559 			 * attempted vdev_open().  Return this to the user.
1560 			 */
1561 			if (config != NULL && spa->spa_root_vdev != NULL)
1562 				*config = spa_config_generate(spa, NULL, -1ULL,
1563 				    B_TRUE);
1564 			spa_unload(spa);
1565 			spa_deactivate(spa);
1566 			spa->spa_last_open_failed = B_TRUE;
1567 			if (locked)
1568 				mutex_exit(&spa_namespace_lock);
1569 			*spapp = NULL;
1570 			return (error);
1571 		} else {
1572 			spa->spa_last_open_failed = B_FALSE;
1573 		}
1574 	}
1575 
1576 	spa_open_ref(spa, tag);
1577 
1578 	if (locked)
1579 		mutex_exit(&spa_namespace_lock);
1580 
1581 	*spapp = spa;
1582 
1583 	if (config != NULL)
1584 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1585 
1586 	return (0);
1587 }
1588 
1589 int
1590 spa_open(const char *name, spa_t **spapp, void *tag)
1591 {
1592 	return (spa_open_common(name, spapp, tag, NULL));
1593 }
1594 
1595 /*
1596  * Lookup the given spa_t, incrementing the inject count in the process,
1597  * preventing it from being exported or destroyed.
1598  */
1599 spa_t *
1600 spa_inject_addref(char *name)
1601 {
1602 	spa_t *spa;
1603 
1604 	mutex_enter(&spa_namespace_lock);
1605 	if ((spa = spa_lookup(name)) == NULL) {
1606 		mutex_exit(&spa_namespace_lock);
1607 		return (NULL);
1608 	}
1609 	spa->spa_inject_ref++;
1610 	mutex_exit(&spa_namespace_lock);
1611 
1612 	return (spa);
1613 }
1614 
1615 void
1616 spa_inject_delref(spa_t *spa)
1617 {
1618 	mutex_enter(&spa_namespace_lock);
1619 	spa->spa_inject_ref--;
1620 	mutex_exit(&spa_namespace_lock);
1621 }
1622 
1623 /*
1624  * Add spares device information to the nvlist.
1625  */
1626 static void
1627 spa_add_spares(spa_t *spa, nvlist_t *config)
1628 {
1629 	nvlist_t **spares;
1630 	uint_t i, nspares;
1631 	nvlist_t *nvroot;
1632 	uint64_t guid;
1633 	vdev_stat_t *vs;
1634 	uint_t vsc;
1635 	uint64_t pool;
1636 
1637 	if (spa->spa_spares.sav_count == 0)
1638 		return;
1639 
1640 	VERIFY(nvlist_lookup_nvlist(config,
1641 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1642 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1643 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1644 	if (nspares != 0) {
1645 		VERIFY(nvlist_add_nvlist_array(nvroot,
1646 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1647 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1648 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1649 
1650 		/*
1651 		 * Go through and find any spares which have since been
1652 		 * repurposed as an active spare.  If this is the case, update
1653 		 * their status appropriately.
1654 		 */
1655 		for (i = 0; i < nspares; i++) {
1656 			VERIFY(nvlist_lookup_uint64(spares[i],
1657 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1658 			if (spa_spare_exists(guid, &pool, NULL) &&
1659 			    pool != 0ULL) {
1660 				VERIFY(nvlist_lookup_uint64_array(
1661 				    spares[i], ZPOOL_CONFIG_STATS,
1662 				    (uint64_t **)&vs, &vsc) == 0);
1663 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1664 				vs->vs_aux = VDEV_AUX_SPARED;
1665 			}
1666 		}
1667 	}
1668 }
1669 
1670 /*
1671  * Add l2cache device information to the nvlist, including vdev stats.
1672  */
1673 static void
1674 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1675 {
1676 	nvlist_t **l2cache;
1677 	uint_t i, j, nl2cache;
1678 	nvlist_t *nvroot;
1679 	uint64_t guid;
1680 	vdev_t *vd;
1681 	vdev_stat_t *vs;
1682 	uint_t vsc;
1683 
1684 	if (spa->spa_l2cache.sav_count == 0)
1685 		return;
1686 
1687 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1688 
1689 	VERIFY(nvlist_lookup_nvlist(config,
1690 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1691 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1692 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1693 	if (nl2cache != 0) {
1694 		VERIFY(nvlist_add_nvlist_array(nvroot,
1695 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1696 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1697 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1698 
1699 		/*
1700 		 * Update level 2 cache device stats.
1701 		 */
1702 
1703 		for (i = 0; i < nl2cache; i++) {
1704 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1705 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1706 
1707 			vd = NULL;
1708 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1709 				if (guid ==
1710 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1711 					vd = spa->spa_l2cache.sav_vdevs[j];
1712 					break;
1713 				}
1714 			}
1715 			ASSERT(vd != NULL);
1716 
1717 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1718 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1719 			vdev_get_stats(vd, vs);
1720 		}
1721 	}
1722 
1723 	spa_config_exit(spa, SCL_CONFIG, FTAG);
1724 }
1725 
1726 int
1727 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1728 {
1729 	int error;
1730 	spa_t *spa;
1731 
1732 	*config = NULL;
1733 	error = spa_open_common(name, &spa, FTAG, config);
1734 
1735 	if (spa && *config != NULL) {
1736 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1737 		    spa_get_errlog_size(spa)) == 0);
1738 
1739 		if (spa_suspended(spa))
1740 			VERIFY(nvlist_add_uint64(*config,
1741 			    ZPOOL_CONFIG_SUSPENDED, spa->spa_failmode) == 0);
1742 
1743 		spa_add_spares(spa, *config);
1744 		spa_add_l2cache(spa, *config);
1745 	}
1746 
1747 	/*
1748 	 * We want to get the alternate root even for faulted pools, so we cheat
1749 	 * and call spa_lookup() directly.
1750 	 */
1751 	if (altroot) {
1752 		if (spa == NULL) {
1753 			mutex_enter(&spa_namespace_lock);
1754 			spa = spa_lookup(name);
1755 			if (spa)
1756 				spa_altroot(spa, altroot, buflen);
1757 			else
1758 				altroot[0] = '\0';
1759 			spa = NULL;
1760 			mutex_exit(&spa_namespace_lock);
1761 		} else {
1762 			spa_altroot(spa, altroot, buflen);
1763 		}
1764 	}
1765 
1766 	if (spa != NULL)
1767 		spa_close(spa, FTAG);
1768 
1769 	return (error);
1770 }
1771 
1772 /*
1773  * Validate that the auxiliary device array is well formed.  We must have an
1774  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1775  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1776  * specified, as long as they are well-formed.
1777  */
1778 static int
1779 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1780     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1781     vdev_labeltype_t label)
1782 {
1783 	nvlist_t **dev;
1784 	uint_t i, ndev;
1785 	vdev_t *vd;
1786 	int error;
1787 
1788 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1789 
1790 	/*
1791 	 * It's acceptable to have no devs specified.
1792 	 */
1793 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1794 		return (0);
1795 
1796 	if (ndev == 0)
1797 		return (EINVAL);
1798 
1799 	/*
1800 	 * Make sure the pool is formatted with a version that supports this
1801 	 * device type.
1802 	 */
1803 	if (spa_version(spa) < version)
1804 		return (ENOTSUP);
1805 
1806 	/*
1807 	 * Set the pending device list so we correctly handle device in-use
1808 	 * checking.
1809 	 */
1810 	sav->sav_pending = dev;
1811 	sav->sav_npending = ndev;
1812 
1813 	for (i = 0; i < ndev; i++) {
1814 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1815 		    mode)) != 0)
1816 			goto out;
1817 
1818 		if (!vd->vdev_ops->vdev_op_leaf) {
1819 			vdev_free(vd);
1820 			error = EINVAL;
1821 			goto out;
1822 		}
1823 
1824 		/*
1825 		 * The L2ARC currently only supports disk devices in
1826 		 * kernel context.  For user-level testing, we allow it.
1827 		 */
1828 #ifdef _KERNEL
1829 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1830 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1831 			error = ENOTBLK;
1832 			goto out;
1833 		}
1834 #endif
1835 		vd->vdev_top = vd;
1836 
1837 		if ((error = vdev_open(vd)) == 0 &&
1838 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1839 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1840 			    vd->vdev_guid) == 0);
1841 		}
1842 
1843 		vdev_free(vd);
1844 
1845 		if (error &&
1846 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1847 			goto out;
1848 		else
1849 			error = 0;
1850 	}
1851 
1852 out:
1853 	sav->sav_pending = NULL;
1854 	sav->sav_npending = 0;
1855 	return (error);
1856 }
1857 
1858 static int
1859 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1860 {
1861 	int error;
1862 
1863 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1864 
1865 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1866 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1867 	    VDEV_LABEL_SPARE)) != 0) {
1868 		return (error);
1869 	}
1870 
1871 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1872 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1873 	    VDEV_LABEL_L2CACHE));
1874 }
1875 
1876 static void
1877 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1878     const char *config)
1879 {
1880 	int i;
1881 
1882 	if (sav->sav_config != NULL) {
1883 		nvlist_t **olddevs;
1884 		uint_t oldndevs;
1885 		nvlist_t **newdevs;
1886 
1887 		/*
1888 		 * Generate new dev list by concatentating with the
1889 		 * current dev list.
1890 		 */
1891 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1892 		    &olddevs, &oldndevs) == 0);
1893 
1894 		newdevs = kmem_alloc(sizeof (void *) *
1895 		    (ndevs + oldndevs), KM_SLEEP);
1896 		for (i = 0; i < oldndevs; i++)
1897 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1898 			    KM_SLEEP) == 0);
1899 		for (i = 0; i < ndevs; i++)
1900 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1901 			    KM_SLEEP) == 0);
1902 
1903 		VERIFY(nvlist_remove(sav->sav_config, config,
1904 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1905 
1906 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1907 		    config, newdevs, ndevs + oldndevs) == 0);
1908 		for (i = 0; i < oldndevs + ndevs; i++)
1909 			nvlist_free(newdevs[i]);
1910 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1911 	} else {
1912 		/*
1913 		 * Generate a new dev list.
1914 		 */
1915 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1916 		    KM_SLEEP) == 0);
1917 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1918 		    devs, ndevs) == 0);
1919 	}
1920 }
1921 
1922 /*
1923  * Stop and drop level 2 ARC devices
1924  */
1925 void
1926 spa_l2cache_drop(spa_t *spa)
1927 {
1928 	vdev_t *vd;
1929 	int i;
1930 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1931 
1932 	for (i = 0; i < sav->sav_count; i++) {
1933 		uint64_t pool;
1934 
1935 		vd = sav->sav_vdevs[i];
1936 		ASSERT(vd != NULL);
1937 
1938 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1939 		    pool != 0ULL && l2arc_vdev_present(vd))
1940 			l2arc_remove_vdev(vd);
1941 		if (vd->vdev_isl2cache)
1942 			spa_l2cache_remove(vd);
1943 		vdev_clear_stats(vd);
1944 		(void) vdev_close(vd);
1945 	}
1946 }
1947 
1948 /*
1949  * Pool Creation
1950  */
1951 int
1952 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1953     const char *history_str, nvlist_t *zplprops)
1954 {
1955 	spa_t *spa;
1956 	char *altroot = NULL;
1957 	vdev_t *rvd;
1958 	dsl_pool_t *dp;
1959 	dmu_tx_t *tx;
1960 	int c, error = 0;
1961 	uint64_t txg = TXG_INITIAL;
1962 	nvlist_t **spares, **l2cache;
1963 	uint_t nspares, nl2cache;
1964 	uint64_t version;
1965 
1966 	/*
1967 	 * If this pool already exists, return failure.
1968 	 */
1969 	mutex_enter(&spa_namespace_lock);
1970 	if (spa_lookup(pool) != NULL) {
1971 		mutex_exit(&spa_namespace_lock);
1972 		return (EEXIST);
1973 	}
1974 
1975 	/*
1976 	 * Allocate a new spa_t structure.
1977 	 */
1978 	(void) nvlist_lookup_string(props,
1979 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1980 	spa = spa_add(pool, altroot);
1981 	spa_activate(spa, spa_mode_global);
1982 
1983 	spa->spa_uberblock.ub_txg = txg - 1;
1984 
1985 	if (props && (error = spa_prop_validate(spa, props))) {
1986 		spa_unload(spa);
1987 		spa_deactivate(spa);
1988 		spa_remove(spa);
1989 		mutex_exit(&spa_namespace_lock);
1990 		return (error);
1991 	}
1992 
1993 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1994 	    &version) != 0)
1995 		version = SPA_VERSION;
1996 	ASSERT(version <= SPA_VERSION);
1997 	spa->spa_uberblock.ub_version = version;
1998 	spa->spa_ubsync = spa->spa_uberblock;
1999 
2000 	/*
2001 	 * Create the root vdev.
2002 	 */
2003 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2004 
2005 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2006 
2007 	ASSERT(error != 0 || rvd != NULL);
2008 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2009 
2010 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2011 		error = EINVAL;
2012 
2013 	if (error == 0 &&
2014 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2015 	    (error = spa_validate_aux(spa, nvroot, txg,
2016 	    VDEV_ALLOC_ADD)) == 0) {
2017 		for (c = 0; c < rvd->vdev_children; c++)
2018 			vdev_init(rvd->vdev_child[c], txg);
2019 		vdev_config_dirty(rvd);
2020 	}
2021 
2022 	spa_config_exit(spa, SCL_ALL, FTAG);
2023 
2024 	if (error != 0) {
2025 		spa_unload(spa);
2026 		spa_deactivate(spa);
2027 		spa_remove(spa);
2028 		mutex_exit(&spa_namespace_lock);
2029 		return (error);
2030 	}
2031 
2032 	/*
2033 	 * Get the list of spares, if specified.
2034 	 */
2035 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2036 	    &spares, &nspares) == 0) {
2037 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2038 		    KM_SLEEP) == 0);
2039 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2040 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2041 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2042 		spa_load_spares(spa);
2043 		spa_config_exit(spa, SCL_ALL, FTAG);
2044 		spa->spa_spares.sav_sync = B_TRUE;
2045 	}
2046 
2047 	/*
2048 	 * Get the list of level 2 cache devices, if specified.
2049 	 */
2050 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2051 	    &l2cache, &nl2cache) == 0) {
2052 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2053 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2054 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2055 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2056 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2057 		spa_load_l2cache(spa);
2058 		spa_config_exit(spa, SCL_ALL, FTAG);
2059 		spa->spa_l2cache.sav_sync = B_TRUE;
2060 	}
2061 
2062 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2063 	spa->spa_meta_objset = dp->dp_meta_objset;
2064 
2065 	tx = dmu_tx_create_assigned(dp, txg);
2066 
2067 	/*
2068 	 * Create the pool config object.
2069 	 */
2070 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2071 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2072 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2073 
2074 	if (zap_add(spa->spa_meta_objset,
2075 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2076 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2077 		cmn_err(CE_PANIC, "failed to add pool config");
2078 	}
2079 
2080 	/* Newly created pools with the right version are always deflated. */
2081 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2082 		spa->spa_deflate = TRUE;
2083 		if (zap_add(spa->spa_meta_objset,
2084 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2085 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2086 			cmn_err(CE_PANIC, "failed to add deflate");
2087 		}
2088 	}
2089 
2090 	/*
2091 	 * Create the deferred-free bplist object.  Turn off compression
2092 	 * because sync-to-convergence takes longer if the blocksize
2093 	 * keeps changing.
2094 	 */
2095 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
2096 	    1 << 14, tx);
2097 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
2098 	    ZIO_COMPRESS_OFF, tx);
2099 
2100 	if (zap_add(spa->spa_meta_objset,
2101 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2102 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
2103 		cmn_err(CE_PANIC, "failed to add bplist");
2104 	}
2105 
2106 	/*
2107 	 * Create the pool's history object.
2108 	 */
2109 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2110 		spa_history_create_obj(spa, tx);
2111 
2112 	/*
2113 	 * Set pool properties.
2114 	 */
2115 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2116 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2117 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2118 	if (props != NULL) {
2119 		spa_configfile_set(spa, props, B_FALSE);
2120 		spa_sync_props(spa, props, CRED(), tx);
2121 	}
2122 
2123 	dmu_tx_commit(tx);
2124 
2125 	spa->spa_sync_on = B_TRUE;
2126 	txg_sync_start(spa->spa_dsl_pool);
2127 
2128 	/*
2129 	 * We explicitly wait for the first transaction to complete so that our
2130 	 * bean counters are appropriately updated.
2131 	 */
2132 	txg_wait_synced(spa->spa_dsl_pool, txg);
2133 
2134 	spa_config_sync(spa, B_FALSE, B_TRUE);
2135 
2136 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2137 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2138 
2139 	mutex_exit(&spa_namespace_lock);
2140 
2141 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2142 
2143 	return (0);
2144 }
2145 
2146 /*
2147  * Import the given pool into the system.  We set up the necessary spa_t and
2148  * then call spa_load() to do the dirty work.
2149  */
2150 static int
2151 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2152     boolean_t isroot, boolean_t allowfaulted)
2153 {
2154 	spa_t *spa;
2155 	char *altroot = NULL;
2156 	int error, loaderr;
2157 	nvlist_t *nvroot;
2158 	nvlist_t **spares, **l2cache;
2159 	uint_t nspares, nl2cache;
2160 
2161 	/*
2162 	 * If a pool with this name exists, return failure.
2163 	 */
2164 	mutex_enter(&spa_namespace_lock);
2165 	if ((spa = spa_lookup(pool)) != NULL) {
2166 		if (isroot) {
2167 			/*
2168 			 * Remove the existing root pool from the
2169 			 * namespace so that we can replace it with
2170 			 * the correct config we just read in.
2171 			 */
2172 			ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
2173 			spa_remove(spa);
2174 		} else {
2175 			mutex_exit(&spa_namespace_lock);
2176 			return (EEXIST);
2177 		}
2178 	}
2179 
2180 	/*
2181 	 * Create and initialize the spa structure.
2182 	 */
2183 	(void) nvlist_lookup_string(props,
2184 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2185 	spa = spa_add(pool, altroot);
2186 	spa_activate(spa, spa_mode_global);
2187 
2188 	if (allowfaulted)
2189 		spa->spa_import_faulted = B_TRUE;
2190 	spa->spa_is_root = isroot;
2191 
2192 	/*
2193 	 * Pass off the heavy lifting to spa_load().
2194 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2195 	 * the user-supplied config is actually the one to trust when
2196 	 * doing an import.
2197 	 */
2198 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2199 
2200 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2201 	/*
2202 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2203 	 * and conflicts with spa_has_spare().
2204 	 */
2205 	if (!isroot && spa->spa_spares.sav_config) {
2206 		nvlist_free(spa->spa_spares.sav_config);
2207 		spa->spa_spares.sav_config = NULL;
2208 		spa_load_spares(spa);
2209 	}
2210 	if (!isroot && spa->spa_l2cache.sav_config) {
2211 		nvlist_free(spa->spa_l2cache.sav_config);
2212 		spa->spa_l2cache.sav_config = NULL;
2213 		spa_load_l2cache(spa);
2214 	}
2215 
2216 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2217 	    &nvroot) == 0);
2218 	if (error == 0)
2219 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2220 	if (error == 0)
2221 		error = spa_validate_aux(spa, nvroot, -1ULL,
2222 		    VDEV_ALLOC_L2CACHE);
2223 	spa_config_exit(spa, SCL_ALL, FTAG);
2224 
2225 	if (props != NULL)
2226 		spa_configfile_set(spa, props, B_FALSE);
2227 
2228 	if (error != 0 || (props && spa_writeable(spa) &&
2229 	    (error = spa_prop_set(spa, props)))) {
2230 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2231 			/*
2232 			 * If we failed to load the pool, but 'allowfaulted' is
2233 			 * set, then manually set the config as if the config
2234 			 * passed in was specified in the cache file.
2235 			 */
2236 			error = 0;
2237 			spa->spa_import_faulted = B_FALSE;
2238 			if (spa->spa_config == NULL)
2239 				spa->spa_config = spa_config_generate(spa,
2240 				    NULL, -1ULL, B_TRUE);
2241 			spa_unload(spa);
2242 			spa_deactivate(spa);
2243 			spa_config_sync(spa, B_FALSE, B_TRUE);
2244 		} else {
2245 			spa_unload(spa);
2246 			spa_deactivate(spa);
2247 			spa_remove(spa);
2248 		}
2249 		mutex_exit(&spa_namespace_lock);
2250 		return (error);
2251 	}
2252 
2253 	/*
2254 	 * Override any spares and level 2 cache devices as specified by
2255 	 * the user, as these may have correct device names/devids, etc.
2256 	 */
2257 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2258 	    &spares, &nspares) == 0) {
2259 		if (spa->spa_spares.sav_config)
2260 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2261 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2262 		else
2263 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2264 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2265 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2266 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2267 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2268 		spa_load_spares(spa);
2269 		spa_config_exit(spa, SCL_ALL, FTAG);
2270 		spa->spa_spares.sav_sync = B_TRUE;
2271 	}
2272 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2273 	    &l2cache, &nl2cache) == 0) {
2274 		if (spa->spa_l2cache.sav_config)
2275 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2276 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2277 		else
2278 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2279 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2280 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2281 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2282 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2283 		spa_load_l2cache(spa);
2284 		spa_config_exit(spa, SCL_ALL, FTAG);
2285 		spa->spa_l2cache.sav_sync = B_TRUE;
2286 	}
2287 
2288 	if (spa_writeable(spa)) {
2289 		/*
2290 		 * Update the config cache to include the newly-imported pool.
2291 		 */
2292 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2293 	}
2294 
2295 	spa->spa_import_faulted = B_FALSE;
2296 	mutex_exit(&spa_namespace_lock);
2297 
2298 	return (0);
2299 }
2300 
2301 #ifdef _KERNEL
2302 /*
2303  * Build a "root" vdev for a top level vdev read in from a rootpool
2304  * device label.
2305  */
2306 static void
2307 spa_build_rootpool_config(nvlist_t *config)
2308 {
2309 	nvlist_t *nvtop, *nvroot;
2310 	uint64_t pgid;
2311 
2312 	/*
2313 	 * Add this top-level vdev to the child array.
2314 	 */
2315 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2316 	    == 0);
2317 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2318 	    == 0);
2319 
2320 	/*
2321 	 * Put this pool's top-level vdevs into a root vdev.
2322 	 */
2323 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2324 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2325 	    == 0);
2326 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2327 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2328 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2329 	    &nvtop, 1) == 0);
2330 
2331 	/*
2332 	 * Replace the existing vdev_tree with the new root vdev in
2333 	 * this pool's configuration (remove the old, add the new).
2334 	 */
2335 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2336 	nvlist_free(nvroot);
2337 }
2338 
2339 /*
2340  * Get the root pool information from the root disk, then import the root pool
2341  * during the system boot up time.
2342  */
2343 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2344 
2345 int
2346 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2347     uint64_t *besttxg)
2348 {
2349 	nvlist_t *config;
2350 	uint64_t txg;
2351 	int error;
2352 
2353 	if (error = vdev_disk_read_rootlabel(devpath, devid, &config))
2354 		return (error);
2355 
2356 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2357 
2358 	if (bestconf != NULL)
2359 		*bestconf = config;
2360 	else
2361 		nvlist_free(config);
2362 	*besttxg = txg;
2363 	return (0);
2364 }
2365 
2366 boolean_t
2367 spa_rootdev_validate(nvlist_t *nv)
2368 {
2369 	uint64_t ival;
2370 
2371 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2372 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2373 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2374 		return (B_FALSE);
2375 
2376 	return (B_TRUE);
2377 }
2378 
2379 
2380 /*
2381  * Given the boot device's physical path or devid, check if the device
2382  * is in a valid state.  If so, return the configuration from the vdev
2383  * label.
2384  */
2385 int
2386 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2387 {
2388 	nvlist_t *conf = NULL;
2389 	uint64_t txg = 0;
2390 	nvlist_t *nvtop, **child;
2391 	char *type;
2392 	char *bootpath = NULL;
2393 	uint_t children, c;
2394 	char *tmp;
2395 	int error;
2396 
2397 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2398 		*tmp = '\0';
2399 	if (error = spa_check_rootconf(devpath, devid, &conf, &txg)) {
2400 		cmn_err(CE_NOTE, "error reading device label");
2401 		return (error);
2402 	}
2403 	if (txg == 0) {
2404 		cmn_err(CE_NOTE, "this device is detached");
2405 		nvlist_free(conf);
2406 		return (EINVAL);
2407 	}
2408 
2409 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2410 	    &nvtop) == 0);
2411 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2412 
2413 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2414 		if (spa_rootdev_validate(nvtop)) {
2415 			goto out;
2416 		} else {
2417 			nvlist_free(conf);
2418 			return (EINVAL);
2419 		}
2420 	}
2421 
2422 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2423 
2424 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2425 	    &child, &children) == 0);
2426 
2427 	/*
2428 	 * Go thru vdevs in the mirror to see if the given device
2429 	 * has the most recent txg. Only the device with the most
2430 	 * recent txg has valid information and should be booted.
2431 	 */
2432 	for (c = 0; c < children; c++) {
2433 		char *cdevid, *cpath;
2434 		uint64_t tmptxg;
2435 
2436 		cpath = NULL;
2437 		cdevid = NULL;
2438 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2439 		    &cpath) != 0 && nvlist_lookup_string(child[c],
2440 		    ZPOOL_CONFIG_DEVID, &cdevid) != 0)
2441 			return (EINVAL);
2442 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2443 		    &tmptxg) == 0) && (tmptxg > txg)) {
2444 			txg = tmptxg;
2445 			VERIFY(nvlist_lookup_string(child[c],
2446 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2447 		}
2448 	}
2449 
2450 	/* Does the best device match the one we've booted from? */
2451 	if (bootpath) {
2452 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2453 		return (EINVAL);
2454 	}
2455 out:
2456 	*bestconf = conf;
2457 	return (0);
2458 }
2459 
2460 /*
2461  * Import a root pool.
2462  *
2463  * For x86. devpath_list will consist of devid and/or physpath name of
2464  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2465  * The GRUB "findroot" command will return the vdev we should boot.
2466  *
2467  * For Sparc, devpath_list consists the physpath name of the booting device
2468  * no matter the rootpool is a single device pool or a mirrored pool.
2469  * e.g.
2470  *	"/pci@1f,0/ide@d/disk@0,0:a"
2471  */
2472 int
2473 spa_import_rootpool(char *devpath, char *devid)
2474 {
2475 	nvlist_t *conf = NULL;
2476 	char *pname;
2477 	int error;
2478 
2479 	/*
2480 	 * Get the vdev pathname and configuation from the most
2481 	 * recently updated vdev (highest txg).
2482 	 */
2483 	if (error = spa_get_rootconf(devpath, devid, &conf))
2484 		goto msg_out;
2485 
2486 	/*
2487 	 * Add type "root" vdev to the config.
2488 	 */
2489 	spa_build_rootpool_config(conf);
2490 
2491 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2492 
2493 	/*
2494 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2495 	 * instead of spa_import().  This prevents us from marking vdevs as
2496 	 * persistently unavailable, and generates FMA ereports as if it were a
2497 	 * pool open, not import.
2498 	 */
2499 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2500 	ASSERT(error != EEXIST);
2501 
2502 	nvlist_free(conf);
2503 	return (error);
2504 
2505 msg_out:
2506 	cmn_err(CE_NOTE, "\n"
2507 	    "  ***************************************************  \n"
2508 	    "  *  This device is not bootable!                   *  \n"
2509 	    "  *  It is either offlined or detached or faulted.  *  \n"
2510 	    "  *  Please try to boot from a different device.    *  \n"
2511 	    "  ***************************************************  ");
2512 
2513 	return (error);
2514 }
2515 #endif
2516 
2517 /*
2518  * Import a non-root pool into the system.
2519  */
2520 int
2521 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2522 {
2523 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2524 }
2525 
2526 int
2527 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2528 {
2529 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2530 }
2531 
2532 
2533 /*
2534  * This (illegal) pool name is used when temporarily importing a spa_t in order
2535  * to get the vdev stats associated with the imported devices.
2536  */
2537 #define	TRYIMPORT_NAME	"$import"
2538 
2539 nvlist_t *
2540 spa_tryimport(nvlist_t *tryconfig)
2541 {
2542 	nvlist_t *config = NULL;
2543 	char *poolname;
2544 	spa_t *spa;
2545 	uint64_t state;
2546 
2547 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2548 		return (NULL);
2549 
2550 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2551 		return (NULL);
2552 
2553 	/*
2554 	 * Create and initialize the spa structure.
2555 	 */
2556 	mutex_enter(&spa_namespace_lock);
2557 	spa = spa_add(TRYIMPORT_NAME, NULL);
2558 	spa_activate(spa, FREAD);
2559 
2560 	/*
2561 	 * Pass off the heavy lifting to spa_load().
2562 	 * Pass TRUE for mosconfig because the user-supplied config
2563 	 * is actually the one to trust when doing an import.
2564 	 */
2565 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2566 
2567 	/*
2568 	 * If 'tryconfig' was at least parsable, return the current config.
2569 	 */
2570 	if (spa->spa_root_vdev != NULL) {
2571 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2572 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2573 		    poolname) == 0);
2574 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2575 		    state) == 0);
2576 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2577 		    spa->spa_uberblock.ub_timestamp) == 0);
2578 
2579 		/*
2580 		 * If the bootfs property exists on this pool then we
2581 		 * copy it out so that external consumers can tell which
2582 		 * pools are bootable.
2583 		 */
2584 		if (spa->spa_bootfs) {
2585 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2586 
2587 			/*
2588 			 * We have to play games with the name since the
2589 			 * pool was opened as TRYIMPORT_NAME.
2590 			 */
2591 			if (dsl_dsobj_to_dsname(spa_name(spa),
2592 			    spa->spa_bootfs, tmpname) == 0) {
2593 				char *cp;
2594 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2595 
2596 				cp = strchr(tmpname, '/');
2597 				if (cp == NULL) {
2598 					(void) strlcpy(dsname, tmpname,
2599 					    MAXPATHLEN);
2600 				} else {
2601 					(void) snprintf(dsname, MAXPATHLEN,
2602 					    "%s/%s", poolname, ++cp);
2603 				}
2604 				VERIFY(nvlist_add_string(config,
2605 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2606 				kmem_free(dsname, MAXPATHLEN);
2607 			}
2608 			kmem_free(tmpname, MAXPATHLEN);
2609 		}
2610 
2611 		/*
2612 		 * Add the list of hot spares and level 2 cache devices.
2613 		 */
2614 		spa_add_spares(spa, config);
2615 		spa_add_l2cache(spa, config);
2616 	}
2617 
2618 	spa_unload(spa);
2619 	spa_deactivate(spa);
2620 	spa_remove(spa);
2621 	mutex_exit(&spa_namespace_lock);
2622 
2623 	return (config);
2624 }
2625 
2626 /*
2627  * Pool export/destroy
2628  *
2629  * The act of destroying or exporting a pool is very simple.  We make sure there
2630  * is no more pending I/O and any references to the pool are gone.  Then, we
2631  * update the pool state and sync all the labels to disk, removing the
2632  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
2633  * we don't sync the labels or remove the configuration cache.
2634  */
2635 static int
2636 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2637     boolean_t force, boolean_t hardforce)
2638 {
2639 	spa_t *spa;
2640 
2641 	if (oldconfig)
2642 		*oldconfig = NULL;
2643 
2644 	if (!(spa_mode_global & FWRITE))
2645 		return (EROFS);
2646 
2647 	mutex_enter(&spa_namespace_lock);
2648 	if ((spa = spa_lookup(pool)) == NULL) {
2649 		mutex_exit(&spa_namespace_lock);
2650 		return (ENOENT);
2651 	}
2652 
2653 	/*
2654 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2655 	 * reacquire the namespace lock, and see if we can export.
2656 	 */
2657 	spa_open_ref(spa, FTAG);
2658 	mutex_exit(&spa_namespace_lock);
2659 	spa_async_suspend(spa);
2660 	mutex_enter(&spa_namespace_lock);
2661 	spa_close(spa, FTAG);
2662 
2663 	/*
2664 	 * The pool will be in core if it's openable,
2665 	 * in which case we can modify its state.
2666 	 */
2667 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2668 		/*
2669 		 * Objsets may be open only because they're dirty, so we
2670 		 * have to force it to sync before checking spa_refcnt.
2671 		 */
2672 		txg_wait_synced(spa->spa_dsl_pool, 0);
2673 
2674 		/*
2675 		 * A pool cannot be exported or destroyed if there are active
2676 		 * references.  If we are resetting a pool, allow references by
2677 		 * fault injection handlers.
2678 		 */
2679 		if (!spa_refcount_zero(spa) ||
2680 		    (spa->spa_inject_ref != 0 &&
2681 		    new_state != POOL_STATE_UNINITIALIZED)) {
2682 			spa_async_resume(spa);
2683 			mutex_exit(&spa_namespace_lock);
2684 			return (EBUSY);
2685 		}
2686 
2687 		/*
2688 		 * A pool cannot be exported if it has an active shared spare.
2689 		 * This is to prevent other pools stealing the active spare
2690 		 * from an exported pool. At user's own will, such pool can
2691 		 * be forcedly exported.
2692 		 */
2693 		if (!force && new_state == POOL_STATE_EXPORTED &&
2694 		    spa_has_active_shared_spare(spa)) {
2695 			spa_async_resume(spa);
2696 			mutex_exit(&spa_namespace_lock);
2697 			return (EXDEV);
2698 		}
2699 
2700 		/*
2701 		 * We want this to be reflected on every label,
2702 		 * so mark them all dirty.  spa_unload() will do the
2703 		 * final sync that pushes these changes out.
2704 		 */
2705 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
2706 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2707 			spa->spa_state = new_state;
2708 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2709 			vdev_config_dirty(spa->spa_root_vdev);
2710 			spa_config_exit(spa, SCL_ALL, FTAG);
2711 		}
2712 	}
2713 
2714 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2715 
2716 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2717 		spa_unload(spa);
2718 		spa_deactivate(spa);
2719 	}
2720 
2721 	if (oldconfig && spa->spa_config)
2722 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2723 
2724 	if (new_state != POOL_STATE_UNINITIALIZED) {
2725 		if (!hardforce)
2726 			spa_config_sync(spa, B_TRUE, B_TRUE);
2727 		spa_remove(spa);
2728 	}
2729 	mutex_exit(&spa_namespace_lock);
2730 
2731 	return (0);
2732 }
2733 
2734 /*
2735  * Destroy a storage pool.
2736  */
2737 int
2738 spa_destroy(char *pool)
2739 {
2740 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
2741 	    B_FALSE, B_FALSE));
2742 }
2743 
2744 /*
2745  * Export a storage pool.
2746  */
2747 int
2748 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
2749     boolean_t hardforce)
2750 {
2751 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
2752 	    force, hardforce));
2753 }
2754 
2755 /*
2756  * Similar to spa_export(), this unloads the spa_t without actually removing it
2757  * from the namespace in any way.
2758  */
2759 int
2760 spa_reset(char *pool)
2761 {
2762 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2763 	    B_FALSE, B_FALSE));
2764 }
2765 
2766 /*
2767  * ==========================================================================
2768  * Device manipulation
2769  * ==========================================================================
2770  */
2771 
2772 /*
2773  * Add a device to a storage pool.
2774  */
2775 int
2776 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2777 {
2778 	uint64_t txg;
2779 	int error;
2780 	vdev_t *rvd = spa->spa_root_vdev;
2781 	vdev_t *vd, *tvd;
2782 	nvlist_t **spares, **l2cache;
2783 	uint_t nspares, nl2cache;
2784 
2785 	txg = spa_vdev_enter(spa);
2786 
2787 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2788 	    VDEV_ALLOC_ADD)) != 0)
2789 		return (spa_vdev_exit(spa, NULL, txg, error));
2790 
2791 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
2792 
2793 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2794 	    &nspares) != 0)
2795 		nspares = 0;
2796 
2797 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2798 	    &nl2cache) != 0)
2799 		nl2cache = 0;
2800 
2801 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
2802 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2803 
2804 	if (vd->vdev_children != 0 &&
2805 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
2806 		return (spa_vdev_exit(spa, vd, txg, error));
2807 
2808 	/*
2809 	 * We must validate the spares and l2cache devices after checking the
2810 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2811 	 */
2812 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
2813 		return (spa_vdev_exit(spa, vd, txg, error));
2814 
2815 	/*
2816 	 * Transfer each new top-level vdev from vd to rvd.
2817 	 */
2818 	for (int c = 0; c < vd->vdev_children; c++) {
2819 		tvd = vd->vdev_child[c];
2820 		vdev_remove_child(vd, tvd);
2821 		tvd->vdev_id = rvd->vdev_children;
2822 		vdev_add_child(rvd, tvd);
2823 		vdev_config_dirty(tvd);
2824 	}
2825 
2826 	if (nspares != 0) {
2827 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2828 		    ZPOOL_CONFIG_SPARES);
2829 		spa_load_spares(spa);
2830 		spa->spa_spares.sav_sync = B_TRUE;
2831 	}
2832 
2833 	if (nl2cache != 0) {
2834 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2835 		    ZPOOL_CONFIG_L2CACHE);
2836 		spa_load_l2cache(spa);
2837 		spa->spa_l2cache.sav_sync = B_TRUE;
2838 	}
2839 
2840 	/*
2841 	 * We have to be careful when adding new vdevs to an existing pool.
2842 	 * If other threads start allocating from these vdevs before we
2843 	 * sync the config cache, and we lose power, then upon reboot we may
2844 	 * fail to open the pool because there are DVAs that the config cache
2845 	 * can't translate.  Therefore, we first add the vdevs without
2846 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2847 	 * and then let spa_config_update() initialize the new metaslabs.
2848 	 *
2849 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2850 	 * if we lose power at any point in this sequence, the remaining
2851 	 * steps will be completed the next time we load the pool.
2852 	 */
2853 	(void) spa_vdev_exit(spa, vd, txg, 0);
2854 
2855 	mutex_enter(&spa_namespace_lock);
2856 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2857 	mutex_exit(&spa_namespace_lock);
2858 
2859 	return (0);
2860 }
2861 
2862 /*
2863  * Attach a device to a mirror.  The arguments are the path to any device
2864  * in the mirror, and the nvroot for the new device.  If the path specifies
2865  * a device that is not mirrored, we automatically insert the mirror vdev.
2866  *
2867  * If 'replacing' is specified, the new device is intended to replace the
2868  * existing device; in this case the two devices are made into their own
2869  * mirror using the 'replacing' vdev, which is functionally identical to
2870  * the mirror vdev (it actually reuses all the same ops) but has a few
2871  * extra rules: you can't attach to it after it's been created, and upon
2872  * completion of resilvering, the first disk (the one being replaced)
2873  * is automatically detached.
2874  */
2875 int
2876 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2877 {
2878 	uint64_t txg, open_txg;
2879 	vdev_t *rvd = spa->spa_root_vdev;
2880 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2881 	vdev_ops_t *pvops;
2882 	dmu_tx_t *tx;
2883 	char *oldvdpath, *newvdpath;
2884 	int newvd_isspare;
2885 	int error;
2886 
2887 	txg = spa_vdev_enter(spa);
2888 
2889 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2890 
2891 	if (oldvd == NULL)
2892 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2893 
2894 	if (!oldvd->vdev_ops->vdev_op_leaf)
2895 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2896 
2897 	pvd = oldvd->vdev_parent;
2898 
2899 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2900 	    VDEV_ALLOC_ADD)) != 0)
2901 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2902 
2903 	if (newrootvd->vdev_children != 1)
2904 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2905 
2906 	newvd = newrootvd->vdev_child[0];
2907 
2908 	if (!newvd->vdev_ops->vdev_op_leaf)
2909 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2910 
2911 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2912 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2913 
2914 	/*
2915 	 * Spares can't replace logs
2916 	 */
2917 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
2918 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2919 
2920 	if (!replacing) {
2921 		/*
2922 		 * For attach, the only allowable parent is a mirror or the root
2923 		 * vdev.
2924 		 */
2925 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2926 		    pvd->vdev_ops != &vdev_root_ops)
2927 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2928 
2929 		pvops = &vdev_mirror_ops;
2930 	} else {
2931 		/*
2932 		 * Active hot spares can only be replaced by inactive hot
2933 		 * spares.
2934 		 */
2935 		if (pvd->vdev_ops == &vdev_spare_ops &&
2936 		    pvd->vdev_child[1] == oldvd &&
2937 		    !spa_has_spare(spa, newvd->vdev_guid))
2938 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2939 
2940 		/*
2941 		 * If the source is a hot spare, and the parent isn't already a
2942 		 * spare, then we want to create a new hot spare.  Otherwise, we
2943 		 * want to create a replacing vdev.  The user is not allowed to
2944 		 * attach to a spared vdev child unless the 'isspare' state is
2945 		 * the same (spare replaces spare, non-spare replaces
2946 		 * non-spare).
2947 		 */
2948 		if (pvd->vdev_ops == &vdev_replacing_ops)
2949 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2950 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2951 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2952 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2953 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2954 		    newvd->vdev_isspare)
2955 			pvops = &vdev_spare_ops;
2956 		else
2957 			pvops = &vdev_replacing_ops;
2958 	}
2959 
2960 	/*
2961 	 * Compare the new device size with the replaceable/attachable
2962 	 * device size.
2963 	 */
2964 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2965 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2966 
2967 	/*
2968 	 * The new device cannot have a higher alignment requirement
2969 	 * than the top-level vdev.
2970 	 */
2971 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2972 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2973 
2974 	/*
2975 	 * If this is an in-place replacement, update oldvd's path and devid
2976 	 * to make it distinguishable from newvd, and unopenable from now on.
2977 	 */
2978 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2979 		spa_strfree(oldvd->vdev_path);
2980 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2981 		    KM_SLEEP);
2982 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2983 		    newvd->vdev_path, "old");
2984 		if (oldvd->vdev_devid != NULL) {
2985 			spa_strfree(oldvd->vdev_devid);
2986 			oldvd->vdev_devid = NULL;
2987 		}
2988 	}
2989 
2990 	/*
2991 	 * If the parent is not a mirror, or if we're replacing, insert the new
2992 	 * mirror/replacing/spare vdev above oldvd.
2993 	 */
2994 	if (pvd->vdev_ops != pvops)
2995 		pvd = vdev_add_parent(oldvd, pvops);
2996 
2997 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2998 	ASSERT(pvd->vdev_ops == pvops);
2999 	ASSERT(oldvd->vdev_parent == pvd);
3000 
3001 	/*
3002 	 * Extract the new device from its root and add it to pvd.
3003 	 */
3004 	vdev_remove_child(newrootvd, newvd);
3005 	newvd->vdev_id = pvd->vdev_children;
3006 	vdev_add_child(pvd, newvd);
3007 
3008 	/*
3009 	 * If newvd is smaller than oldvd, but larger than its rsize,
3010 	 * the addition of newvd may have decreased our parent's asize.
3011 	 */
3012 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
3013 
3014 	tvd = newvd->vdev_top;
3015 	ASSERT(pvd->vdev_top == tvd);
3016 	ASSERT(tvd->vdev_parent == rvd);
3017 
3018 	vdev_config_dirty(tvd);
3019 
3020 	/*
3021 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3022 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3023 	 */
3024 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3025 
3026 	vdev_dtl_dirty(newvd, DTL_MISSING,
3027 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3028 
3029 	if (newvd->vdev_isspare)
3030 		spa_spare_activate(newvd);
3031 	oldvdpath = spa_strdup(oldvd->vdev_path);
3032 	newvdpath = spa_strdup(newvd->vdev_path);
3033 	newvd_isspare = newvd->vdev_isspare;
3034 
3035 	/*
3036 	 * Mark newvd's DTL dirty in this txg.
3037 	 */
3038 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3039 
3040 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3041 
3042 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3043 	if (dmu_tx_assign(tx, TXG_WAIT) == 0) {
3044 		spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, tx,
3045 		    CRED(),  "%s vdev=%s %s vdev=%s",
3046 		    replacing && newvd_isspare ? "spare in" :
3047 		    replacing ? "replace" : "attach", newvdpath,
3048 		    replacing ? "for" : "to", oldvdpath);
3049 		dmu_tx_commit(tx);
3050 	} else {
3051 		dmu_tx_abort(tx);
3052 	}
3053 
3054 	spa_strfree(oldvdpath);
3055 	spa_strfree(newvdpath);
3056 
3057 	/*
3058 	 * Kick off a resilver to update newvd.
3059 	 */
3060 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3061 
3062 	return (0);
3063 }
3064 
3065 /*
3066  * Detach a device from a mirror or replacing vdev.
3067  * If 'replace_done' is specified, only detach if the parent
3068  * is a replacing vdev.
3069  */
3070 int
3071 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3072 {
3073 	uint64_t txg;
3074 	int error;
3075 	vdev_t *rvd = spa->spa_root_vdev;
3076 	vdev_t *vd, *pvd, *cvd, *tvd;
3077 	boolean_t unspare = B_FALSE;
3078 	uint64_t unspare_guid;
3079 	size_t len;
3080 
3081 	txg = spa_vdev_enter(spa);
3082 
3083 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3084 
3085 	if (vd == NULL)
3086 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3087 
3088 	if (!vd->vdev_ops->vdev_op_leaf)
3089 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3090 
3091 	pvd = vd->vdev_parent;
3092 
3093 	/*
3094 	 * If the parent/child relationship is not as expected, don't do it.
3095 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3096 	 * vdev that's replacing B with C.  The user's intent in replacing
3097 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3098 	 * the replace by detaching C, the expected behavior is to end up
3099 	 * M(A,B).  But suppose that right after deciding to detach C,
3100 	 * the replacement of B completes.  We would have M(A,C), and then
3101 	 * ask to detach C, which would leave us with just A -- not what
3102 	 * the user wanted.  To prevent this, we make sure that the
3103 	 * parent/child relationship hasn't changed -- in this example,
3104 	 * that C's parent is still the replacing vdev R.
3105 	 */
3106 	if (pvd->vdev_guid != pguid && pguid != 0)
3107 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3108 
3109 	/*
3110 	 * If replace_done is specified, only remove this device if it's
3111 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3112 	 * disk can be removed.
3113 	 */
3114 	if (replace_done) {
3115 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3116 			if (vd->vdev_id != 0)
3117 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3118 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3119 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3120 		}
3121 	}
3122 
3123 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3124 	    spa_version(spa) >= SPA_VERSION_SPARES);
3125 
3126 	/*
3127 	 * Only mirror, replacing, and spare vdevs support detach.
3128 	 */
3129 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3130 	    pvd->vdev_ops != &vdev_mirror_ops &&
3131 	    pvd->vdev_ops != &vdev_spare_ops)
3132 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3133 
3134 	/*
3135 	 * If this device has the only valid copy of some data,
3136 	 * we cannot safely detach it.
3137 	 */
3138 	if (vdev_dtl_required(vd))
3139 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3140 
3141 	ASSERT(pvd->vdev_children >= 2);
3142 
3143 	/*
3144 	 * If we are detaching the second disk from a replacing vdev, then
3145 	 * check to see if we changed the original vdev's path to have "/old"
3146 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3147 	 */
3148 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3149 	    pvd->vdev_child[0]->vdev_path != NULL &&
3150 	    pvd->vdev_child[1]->vdev_path != NULL) {
3151 		ASSERT(pvd->vdev_child[1] == vd);
3152 		cvd = pvd->vdev_child[0];
3153 		len = strlen(vd->vdev_path);
3154 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3155 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3156 			spa_strfree(cvd->vdev_path);
3157 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3158 		}
3159 	}
3160 
3161 	/*
3162 	 * If we are detaching the original disk from a spare, then it implies
3163 	 * that the spare should become a real disk, and be removed from the
3164 	 * active spare list for the pool.
3165 	 */
3166 	if (pvd->vdev_ops == &vdev_spare_ops &&
3167 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3168 		unspare = B_TRUE;
3169 
3170 	/*
3171 	 * Erase the disk labels so the disk can be used for other things.
3172 	 * This must be done after all other error cases are handled,
3173 	 * but before we disembowel vd (so we can still do I/O to it).
3174 	 * But if we can't do it, don't treat the error as fatal --
3175 	 * it may be that the unwritability of the disk is the reason
3176 	 * it's being detached!
3177 	 */
3178 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3179 
3180 	/*
3181 	 * Remove vd from its parent and compact the parent's children.
3182 	 */
3183 	vdev_remove_child(pvd, vd);
3184 	vdev_compact_children(pvd);
3185 
3186 	/*
3187 	 * Remember one of the remaining children so we can get tvd below.
3188 	 */
3189 	cvd = pvd->vdev_child[0];
3190 
3191 	/*
3192 	 * If we need to remove the remaining child from the list of hot spares,
3193 	 * do it now, marking the vdev as no longer a spare in the process.
3194 	 * We must do this before vdev_remove_parent(), because that can
3195 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3196 	 * reason, we must remove the spare now, in the same txg as the detach;
3197 	 * otherwise someone could attach a new sibling, change the GUID, and
3198 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3199 	 */
3200 	if (unspare) {
3201 		ASSERT(cvd->vdev_isspare);
3202 		spa_spare_remove(cvd);
3203 		unspare_guid = cvd->vdev_guid;
3204 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3205 	}
3206 
3207 	/*
3208 	 * If the parent mirror/replacing vdev only has one child,
3209 	 * the parent is no longer needed.  Remove it from the tree.
3210 	 */
3211 	if (pvd->vdev_children == 1)
3212 		vdev_remove_parent(cvd);
3213 
3214 	/*
3215 	 * We don't set tvd until now because the parent we just removed
3216 	 * may have been the previous top-level vdev.
3217 	 */
3218 	tvd = cvd->vdev_top;
3219 	ASSERT(tvd->vdev_parent == rvd);
3220 
3221 	/*
3222 	 * Reevaluate the parent vdev state.
3223 	 */
3224 	vdev_propagate_state(cvd);
3225 
3226 	/*
3227 	 * If the device we just detached was smaller than the others, it may be
3228 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3229 	 * can't fail because the existing metaslabs are already in core, so
3230 	 * there's nothing to read from disk.
3231 	 */
3232 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3233 
3234 	vdev_config_dirty(tvd);
3235 
3236 	/*
3237 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3238 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3239 	 * But first make sure we're not on any *other* txg's DTL list, to
3240 	 * prevent vd from being accessed after it's freed.
3241 	 */
3242 	for (int t = 0; t < TXG_SIZE; t++)
3243 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3244 	vd->vdev_detached = B_TRUE;
3245 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3246 
3247 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3248 
3249 	error = spa_vdev_exit(spa, vd, txg, 0);
3250 
3251 	/*
3252 	 * If this was the removal of the original device in a hot spare vdev,
3253 	 * then we want to go through and remove the device from the hot spare
3254 	 * list of every other pool.
3255 	 */
3256 	if (unspare) {
3257 		spa_t *myspa = spa;
3258 		spa = NULL;
3259 		mutex_enter(&spa_namespace_lock);
3260 		while ((spa = spa_next(spa)) != NULL) {
3261 			if (spa->spa_state != POOL_STATE_ACTIVE)
3262 				continue;
3263 			if (spa == myspa)
3264 				continue;
3265 			spa_open_ref(spa, FTAG);
3266 			mutex_exit(&spa_namespace_lock);
3267 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3268 			mutex_enter(&spa_namespace_lock);
3269 			spa_close(spa, FTAG);
3270 		}
3271 		mutex_exit(&spa_namespace_lock);
3272 	}
3273 
3274 	return (error);
3275 }
3276 
3277 static nvlist_t *
3278 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
3279 {
3280 	for (int i = 0; i < count; i++) {
3281 		uint64_t guid;
3282 
3283 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
3284 		    &guid) == 0);
3285 
3286 		if (guid == target_guid)
3287 			return (nvpp[i]);
3288 	}
3289 
3290 	return (NULL);
3291 }
3292 
3293 static void
3294 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
3295 	nvlist_t *dev_to_remove)
3296 {
3297 	nvlist_t **newdev = NULL;
3298 
3299 	if (count > 1)
3300 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
3301 
3302 	for (int i = 0, j = 0; i < count; i++) {
3303 		if (dev[i] == dev_to_remove)
3304 			continue;
3305 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
3306 	}
3307 
3308 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
3309 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
3310 
3311 	for (int i = 0; i < count - 1; i++)
3312 		nvlist_free(newdev[i]);
3313 
3314 	if (count > 1)
3315 		kmem_free(newdev, (count - 1) * sizeof (void *));
3316 }
3317 
3318 /*
3319  * Remove a device from the pool.  Currently, this supports removing only hot
3320  * spares and level 2 ARC devices.
3321  */
3322 int
3323 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3324 {
3325 	vdev_t *vd;
3326 	nvlist_t **spares, **l2cache, *nv;
3327 	uint_t nspares, nl2cache;
3328 	uint64_t txg = 0;
3329 	int error = 0;
3330 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
3331 
3332 	if (!locked)
3333 		txg = spa_vdev_enter(spa);
3334 
3335 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3336 
3337 	if (spa->spa_spares.sav_vdevs != NULL &&
3338 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3339 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
3340 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
3341 		/*
3342 		 * Only remove the hot spare if it's not currently in use
3343 		 * in this pool.
3344 		 */
3345 		if (vd == NULL || unspare) {
3346 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
3347 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
3348 			spa_load_spares(spa);
3349 			spa->spa_spares.sav_sync = B_TRUE;
3350 		} else {
3351 			error = EBUSY;
3352 		}
3353 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
3354 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3355 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
3356 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
3357 		/*
3358 		 * Cache devices can always be removed.
3359 		 */
3360 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
3361 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
3362 		spa_load_l2cache(spa);
3363 		spa->spa_l2cache.sav_sync = B_TRUE;
3364 	} else if (vd != NULL) {
3365 		/*
3366 		 * Normal vdevs cannot be removed (yet).
3367 		 */
3368 		error = ENOTSUP;
3369 	} else {
3370 		/*
3371 		 * There is no vdev of any kind with the specified guid.
3372 		 */
3373 		error = ENOENT;
3374 	}
3375 
3376 	if (!locked)
3377 		return (spa_vdev_exit(spa, NULL, txg, error));
3378 
3379 	return (error);
3380 }
3381 
3382 /*
3383  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3384  * current spared, so we can detach it.
3385  */
3386 static vdev_t *
3387 spa_vdev_resilver_done_hunt(vdev_t *vd)
3388 {
3389 	vdev_t *newvd, *oldvd;
3390 	int c;
3391 
3392 	for (c = 0; c < vd->vdev_children; c++) {
3393 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3394 		if (oldvd != NULL)
3395 			return (oldvd);
3396 	}
3397 
3398 	/*
3399 	 * Check for a completed replacement.
3400 	 */
3401 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3402 		oldvd = vd->vdev_child[0];
3403 		newvd = vd->vdev_child[1];
3404 
3405 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
3406 		    !vdev_dtl_required(oldvd))
3407 			return (oldvd);
3408 	}
3409 
3410 	/*
3411 	 * Check for a completed resilver with the 'unspare' flag set.
3412 	 */
3413 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3414 		newvd = vd->vdev_child[0];
3415 		oldvd = vd->vdev_child[1];
3416 
3417 		if (newvd->vdev_unspare &&
3418 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
3419 		    !vdev_dtl_required(oldvd)) {
3420 			newvd->vdev_unspare = 0;
3421 			return (oldvd);
3422 		}
3423 	}
3424 
3425 	return (NULL);
3426 }
3427 
3428 static void
3429 spa_vdev_resilver_done(spa_t *spa)
3430 {
3431 	vdev_t *vd, *pvd, *ppvd;
3432 	uint64_t guid, sguid, pguid, ppguid;
3433 
3434 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3435 
3436 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3437 		pvd = vd->vdev_parent;
3438 		ppvd = pvd->vdev_parent;
3439 		guid = vd->vdev_guid;
3440 		pguid = pvd->vdev_guid;
3441 		ppguid = ppvd->vdev_guid;
3442 		sguid = 0;
3443 		/*
3444 		 * If we have just finished replacing a hot spared device, then
3445 		 * we need to detach the parent's first child (the original hot
3446 		 * spare) as well.
3447 		 */
3448 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
3449 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3450 			ASSERT(ppvd->vdev_children == 2);
3451 			sguid = ppvd->vdev_child[1]->vdev_guid;
3452 		}
3453 		spa_config_exit(spa, SCL_ALL, FTAG);
3454 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
3455 			return;
3456 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
3457 			return;
3458 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3459 	}
3460 
3461 	spa_config_exit(spa, SCL_ALL, FTAG);
3462 }
3463 
3464 /*
3465  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3466  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3467  */
3468 int
3469 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3470 {
3471 	vdev_t *vd;
3472 	uint64_t txg;
3473 
3474 	txg = spa_vdev_enter(spa);
3475 
3476 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3477 		/*
3478 		 * Determine if this is a reference to a hot spare device.  If
3479 		 * it is, update the path manually as there is no associated
3480 		 * vdev_t that can be synced to disk.
3481 		 */
3482 		nvlist_t **spares;
3483 		uint_t i, nspares;
3484 
3485 		if (spa->spa_spares.sav_config != NULL) {
3486 			VERIFY(nvlist_lookup_nvlist_array(
3487 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3488 			    &spares, &nspares) == 0);
3489 			for (i = 0; i < nspares; i++) {
3490 				uint64_t theguid;
3491 				VERIFY(nvlist_lookup_uint64(spares[i],
3492 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3493 				if (theguid == guid) {
3494 					VERIFY(nvlist_add_string(spares[i],
3495 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3496 					spa_load_spares(spa);
3497 					spa->spa_spares.sav_sync = B_TRUE;
3498 					return (spa_vdev_exit(spa, NULL, txg,
3499 					    0));
3500 				}
3501 			}
3502 		}
3503 
3504 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3505 	}
3506 
3507 	if (!vd->vdev_ops->vdev_op_leaf)
3508 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3509 
3510 	spa_strfree(vd->vdev_path);
3511 	vd->vdev_path = spa_strdup(newpath);
3512 
3513 	vdev_config_dirty(vd->vdev_top);
3514 
3515 	return (spa_vdev_exit(spa, NULL, txg, 0));
3516 }
3517 
3518 /*
3519  * ==========================================================================
3520  * SPA Scrubbing
3521  * ==========================================================================
3522  */
3523 
3524 int
3525 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3526 {
3527 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
3528 
3529 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3530 		return (ENOTSUP);
3531 
3532 	/*
3533 	 * If a resilver was requested, but there is no DTL on a
3534 	 * writeable leaf device, we have nothing to do.
3535 	 */
3536 	if (type == POOL_SCRUB_RESILVER &&
3537 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3538 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3539 		return (0);
3540 	}
3541 
3542 	if (type == POOL_SCRUB_EVERYTHING &&
3543 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3544 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3545 		return (EBUSY);
3546 
3547 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3548 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3549 	} else if (type == POOL_SCRUB_NONE) {
3550 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3551 	} else {
3552 		return (EINVAL);
3553 	}
3554 }
3555 
3556 /*
3557  * ==========================================================================
3558  * SPA async task processing
3559  * ==========================================================================
3560  */
3561 
3562 static void
3563 spa_async_remove(spa_t *spa, vdev_t *vd)
3564 {
3565 	if (vd->vdev_remove_wanted) {
3566 		vd->vdev_remove_wanted = 0;
3567 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
3568 		vdev_clear(spa, vd);
3569 		vdev_state_dirty(vd->vdev_top);
3570 	}
3571 
3572 	for (int c = 0; c < vd->vdev_children; c++)
3573 		spa_async_remove(spa, vd->vdev_child[c]);
3574 }
3575 
3576 static void
3577 spa_async_probe(spa_t *spa, vdev_t *vd)
3578 {
3579 	if (vd->vdev_probe_wanted) {
3580 		vd->vdev_probe_wanted = 0;
3581 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
3582 	}
3583 
3584 	for (int c = 0; c < vd->vdev_children; c++)
3585 		spa_async_probe(spa, vd->vdev_child[c]);
3586 }
3587 
3588 static void
3589 spa_async_thread(spa_t *spa)
3590 {
3591 	int tasks;
3592 
3593 	ASSERT(spa->spa_sync_on);
3594 
3595 	mutex_enter(&spa->spa_async_lock);
3596 	tasks = spa->spa_async_tasks;
3597 	spa->spa_async_tasks = 0;
3598 	mutex_exit(&spa->spa_async_lock);
3599 
3600 	/*
3601 	 * See if the config needs to be updated.
3602 	 */
3603 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3604 		mutex_enter(&spa_namespace_lock);
3605 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3606 		mutex_exit(&spa_namespace_lock);
3607 	}
3608 
3609 	/*
3610 	 * See if any devices need to be marked REMOVED.
3611 	 */
3612 	if (tasks & SPA_ASYNC_REMOVE) {
3613 		spa_vdev_state_enter(spa);
3614 		spa_async_remove(spa, spa->spa_root_vdev);
3615 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
3616 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
3617 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
3618 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
3619 		(void) spa_vdev_state_exit(spa, NULL, 0);
3620 	}
3621 
3622 	/*
3623 	 * See if any devices need to be probed.
3624 	 */
3625 	if (tasks & SPA_ASYNC_PROBE) {
3626 		spa_vdev_state_enter(spa);
3627 		spa_async_probe(spa, spa->spa_root_vdev);
3628 		(void) spa_vdev_state_exit(spa, NULL, 0);
3629 	}
3630 
3631 	/*
3632 	 * If any devices are done replacing, detach them.
3633 	 */
3634 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3635 		spa_vdev_resilver_done(spa);
3636 
3637 	/*
3638 	 * Kick off a resilver.
3639 	 */
3640 	if (tasks & SPA_ASYNC_RESILVER)
3641 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3642 
3643 	/*
3644 	 * Let the world know that we're done.
3645 	 */
3646 	mutex_enter(&spa->spa_async_lock);
3647 	spa->spa_async_thread = NULL;
3648 	cv_broadcast(&spa->spa_async_cv);
3649 	mutex_exit(&spa->spa_async_lock);
3650 	thread_exit();
3651 }
3652 
3653 void
3654 spa_async_suspend(spa_t *spa)
3655 {
3656 	mutex_enter(&spa->spa_async_lock);
3657 	spa->spa_async_suspended++;
3658 	while (spa->spa_async_thread != NULL)
3659 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3660 	mutex_exit(&spa->spa_async_lock);
3661 }
3662 
3663 void
3664 spa_async_resume(spa_t *spa)
3665 {
3666 	mutex_enter(&spa->spa_async_lock);
3667 	ASSERT(spa->spa_async_suspended != 0);
3668 	spa->spa_async_suspended--;
3669 	mutex_exit(&spa->spa_async_lock);
3670 }
3671 
3672 static void
3673 spa_async_dispatch(spa_t *spa)
3674 {
3675 	mutex_enter(&spa->spa_async_lock);
3676 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3677 	    spa->spa_async_thread == NULL &&
3678 	    rootdir != NULL && !vn_is_readonly(rootdir))
3679 		spa->spa_async_thread = thread_create(NULL, 0,
3680 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3681 	mutex_exit(&spa->spa_async_lock);
3682 }
3683 
3684 void
3685 spa_async_request(spa_t *spa, int task)
3686 {
3687 	mutex_enter(&spa->spa_async_lock);
3688 	spa->spa_async_tasks |= task;
3689 	mutex_exit(&spa->spa_async_lock);
3690 }
3691 
3692 /*
3693  * ==========================================================================
3694  * SPA syncing routines
3695  * ==========================================================================
3696  */
3697 
3698 static void
3699 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3700 {
3701 	bplist_t *bpl = &spa->spa_sync_bplist;
3702 	dmu_tx_t *tx;
3703 	blkptr_t blk;
3704 	uint64_t itor = 0;
3705 	zio_t *zio;
3706 	int error;
3707 	uint8_t c = 1;
3708 
3709 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
3710 
3711 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
3712 		ASSERT(blk.blk_birth < txg);
3713 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL,
3714 		    ZIO_FLAG_MUSTSUCCEED));
3715 	}
3716 
3717 	error = zio_wait(zio);
3718 	ASSERT3U(error, ==, 0);
3719 
3720 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3721 	bplist_vacate(bpl, tx);
3722 
3723 	/*
3724 	 * Pre-dirty the first block so we sync to convergence faster.
3725 	 * (Usually only the first block is needed.)
3726 	 */
3727 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3728 	dmu_tx_commit(tx);
3729 }
3730 
3731 static void
3732 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3733 {
3734 	char *packed = NULL;
3735 	size_t bufsize;
3736 	size_t nvsize = 0;
3737 	dmu_buf_t *db;
3738 
3739 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3740 
3741 	/*
3742 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
3743 	 * information.  This avoids the dbuf_will_dirty() path and
3744 	 * saves us a pre-read to get data we don't actually care about.
3745 	 */
3746 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
3747 	packed = kmem_alloc(bufsize, KM_SLEEP);
3748 
3749 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3750 	    KM_SLEEP) == 0);
3751 	bzero(packed + nvsize, bufsize - nvsize);
3752 
3753 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
3754 
3755 	kmem_free(packed, bufsize);
3756 
3757 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3758 	dmu_buf_will_dirty(db, tx);
3759 	*(uint64_t *)db->db_data = nvsize;
3760 	dmu_buf_rele(db, FTAG);
3761 }
3762 
3763 static void
3764 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3765     const char *config, const char *entry)
3766 {
3767 	nvlist_t *nvroot;
3768 	nvlist_t **list;
3769 	int i;
3770 
3771 	if (!sav->sav_sync)
3772 		return;
3773 
3774 	/*
3775 	 * Update the MOS nvlist describing the list of available devices.
3776 	 * spa_validate_aux() will have already made sure this nvlist is
3777 	 * valid and the vdevs are labeled appropriately.
3778 	 */
3779 	if (sav->sav_object == 0) {
3780 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3781 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3782 		    sizeof (uint64_t), tx);
3783 		VERIFY(zap_update(spa->spa_meta_objset,
3784 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3785 		    &sav->sav_object, tx) == 0);
3786 	}
3787 
3788 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3789 	if (sav->sav_count == 0) {
3790 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3791 	} else {
3792 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3793 		for (i = 0; i < sav->sav_count; i++)
3794 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3795 			    B_FALSE, B_FALSE, B_TRUE);
3796 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3797 		    sav->sav_count) == 0);
3798 		for (i = 0; i < sav->sav_count; i++)
3799 			nvlist_free(list[i]);
3800 		kmem_free(list, sav->sav_count * sizeof (void *));
3801 	}
3802 
3803 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3804 	nvlist_free(nvroot);
3805 
3806 	sav->sav_sync = B_FALSE;
3807 }
3808 
3809 static void
3810 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3811 {
3812 	nvlist_t *config;
3813 
3814 	if (list_is_empty(&spa->spa_config_dirty_list))
3815 		return;
3816 
3817 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3818 
3819 	config = spa_config_generate(spa, spa->spa_root_vdev,
3820 	    dmu_tx_get_txg(tx), B_FALSE);
3821 
3822 	spa_config_exit(spa, SCL_STATE, FTAG);
3823 
3824 	if (spa->spa_config_syncing)
3825 		nvlist_free(spa->spa_config_syncing);
3826 	spa->spa_config_syncing = config;
3827 
3828 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3829 }
3830 
3831 /*
3832  * Set zpool properties.
3833  */
3834 static void
3835 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3836 {
3837 	spa_t *spa = arg1;
3838 	objset_t *mos = spa->spa_meta_objset;
3839 	nvlist_t *nvp = arg2;
3840 	nvpair_t *elem;
3841 	uint64_t intval;
3842 	char *strval;
3843 	zpool_prop_t prop;
3844 	const char *propname;
3845 	zprop_type_t proptype;
3846 
3847 	mutex_enter(&spa->spa_props_lock);
3848 
3849 	elem = NULL;
3850 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3851 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3852 		case ZPOOL_PROP_VERSION:
3853 			/*
3854 			 * Only set version for non-zpool-creation cases
3855 			 * (set/import). spa_create() needs special care
3856 			 * for version setting.
3857 			 */
3858 			if (tx->tx_txg != TXG_INITIAL) {
3859 				VERIFY(nvpair_value_uint64(elem,
3860 				    &intval) == 0);
3861 				ASSERT(intval <= SPA_VERSION);
3862 				ASSERT(intval >= spa_version(spa));
3863 				spa->spa_uberblock.ub_version = intval;
3864 				vdev_config_dirty(spa->spa_root_vdev);
3865 			}
3866 			break;
3867 
3868 		case ZPOOL_PROP_ALTROOT:
3869 			/*
3870 			 * 'altroot' is a non-persistent property. It should
3871 			 * have been set temporarily at creation or import time.
3872 			 */
3873 			ASSERT(spa->spa_root != NULL);
3874 			break;
3875 
3876 		case ZPOOL_PROP_CACHEFILE:
3877 			/*
3878 			 * 'cachefile' is also a non-persisitent property.
3879 			 */
3880 			break;
3881 		default:
3882 			/*
3883 			 * Set pool property values in the poolprops mos object.
3884 			 */
3885 			if (spa->spa_pool_props_object == 0) {
3886 				objset_t *mos = spa->spa_meta_objset;
3887 
3888 				VERIFY((spa->spa_pool_props_object =
3889 				    zap_create(mos, DMU_OT_POOL_PROPS,
3890 				    DMU_OT_NONE, 0, tx)) > 0);
3891 
3892 				VERIFY(zap_update(mos,
3893 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3894 				    8, 1, &spa->spa_pool_props_object, tx)
3895 				    == 0);
3896 			}
3897 
3898 			/* normalize the property name */
3899 			propname = zpool_prop_to_name(prop);
3900 			proptype = zpool_prop_get_type(prop);
3901 
3902 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3903 				ASSERT(proptype == PROP_TYPE_STRING);
3904 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3905 				VERIFY(zap_update(mos,
3906 				    spa->spa_pool_props_object, propname,
3907 				    1, strlen(strval) + 1, strval, tx) == 0);
3908 
3909 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3910 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3911 
3912 				if (proptype == PROP_TYPE_INDEX) {
3913 					const char *unused;
3914 					VERIFY(zpool_prop_index_to_string(
3915 					    prop, intval, &unused) == 0);
3916 				}
3917 				VERIFY(zap_update(mos,
3918 				    spa->spa_pool_props_object, propname,
3919 				    8, 1, &intval, tx) == 0);
3920 			} else {
3921 				ASSERT(0); /* not allowed */
3922 			}
3923 
3924 			switch (prop) {
3925 			case ZPOOL_PROP_DELEGATION:
3926 				spa->spa_delegation = intval;
3927 				break;
3928 			case ZPOOL_PROP_BOOTFS:
3929 				spa->spa_bootfs = intval;
3930 				break;
3931 			case ZPOOL_PROP_FAILUREMODE:
3932 				spa->spa_failmode = intval;
3933 				break;
3934 			default:
3935 				break;
3936 			}
3937 		}
3938 
3939 		/* log internal history if this is not a zpool create */
3940 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3941 		    tx->tx_txg != TXG_INITIAL) {
3942 			spa_history_internal_log(LOG_POOL_PROPSET,
3943 			    spa, tx, cr, "%s %lld %s",
3944 			    nvpair_name(elem), intval, spa_name(spa));
3945 		}
3946 	}
3947 
3948 	mutex_exit(&spa->spa_props_lock);
3949 }
3950 
3951 /*
3952  * Sync the specified transaction group.  New blocks may be dirtied as
3953  * part of the process, so we iterate until it converges.
3954  */
3955 void
3956 spa_sync(spa_t *spa, uint64_t txg)
3957 {
3958 	dsl_pool_t *dp = spa->spa_dsl_pool;
3959 	objset_t *mos = spa->spa_meta_objset;
3960 	bplist_t *bpl = &spa->spa_sync_bplist;
3961 	vdev_t *rvd = spa->spa_root_vdev;
3962 	vdev_t *vd;
3963 	dmu_tx_t *tx;
3964 	int dirty_vdevs;
3965 	int error;
3966 
3967 	/*
3968 	 * Lock out configuration changes.
3969 	 */
3970 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3971 
3972 	spa->spa_syncing_txg = txg;
3973 	spa->spa_sync_pass = 0;
3974 
3975 	/*
3976 	 * If there are any pending vdev state changes, convert them
3977 	 * into config changes that go out with this transaction group.
3978 	 */
3979 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
3980 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
3981 		/*
3982 		 * We need the write lock here because, for aux vdevs,
3983 		 * calling vdev_config_dirty() modifies sav_config.
3984 		 * This is ugly and will become unnecessary when we
3985 		 * eliminate the aux vdev wart by integrating all vdevs
3986 		 * into the root vdev tree.
3987 		 */
3988 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
3989 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
3990 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
3991 			vdev_state_clean(vd);
3992 			vdev_config_dirty(vd);
3993 		}
3994 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
3995 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
3996 	}
3997 	spa_config_exit(spa, SCL_STATE, FTAG);
3998 
3999 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
4000 
4001 	tx = dmu_tx_create_assigned(dp, txg);
4002 
4003 	/*
4004 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
4005 	 * set spa_deflate if we have no raid-z vdevs.
4006 	 */
4007 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
4008 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
4009 		int i;
4010 
4011 		for (i = 0; i < rvd->vdev_children; i++) {
4012 			vd = rvd->vdev_child[i];
4013 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
4014 				break;
4015 		}
4016 		if (i == rvd->vdev_children) {
4017 			spa->spa_deflate = TRUE;
4018 			VERIFY(0 == zap_add(spa->spa_meta_objset,
4019 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4020 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
4021 		}
4022 	}
4023 
4024 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
4025 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
4026 		dsl_pool_create_origin(dp, tx);
4027 
4028 		/* Keeping the origin open increases spa_minref */
4029 		spa->spa_minref += 3;
4030 	}
4031 
4032 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
4033 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
4034 		dsl_pool_upgrade_clones(dp, tx);
4035 	}
4036 
4037 	/*
4038 	 * If anything has changed in this txg, push the deferred frees
4039 	 * from the previous txg.  If not, leave them alone so that we
4040 	 * don't generate work on an otherwise idle system.
4041 	 */
4042 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
4043 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
4044 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
4045 		spa_sync_deferred_frees(spa, txg);
4046 
4047 	/*
4048 	 * Iterate to convergence.
4049 	 */
4050 	do {
4051 		spa->spa_sync_pass++;
4052 
4053 		spa_sync_config_object(spa, tx);
4054 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
4055 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
4056 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
4057 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
4058 		spa_errlog_sync(spa, txg);
4059 		dsl_pool_sync(dp, txg);
4060 
4061 		dirty_vdevs = 0;
4062 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
4063 			vdev_sync(vd, txg);
4064 			dirty_vdevs++;
4065 		}
4066 
4067 		bplist_sync(bpl, tx);
4068 	} while (dirty_vdevs);
4069 
4070 	bplist_close(bpl);
4071 
4072 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
4073 
4074 	/*
4075 	 * Rewrite the vdev configuration (which includes the uberblock)
4076 	 * to commit the transaction group.
4077 	 *
4078 	 * If there are no dirty vdevs, we sync the uberblock to a few
4079 	 * random top-level vdevs that are known to be visible in the
4080 	 * config cache (see spa_vdev_add() for a complete description).
4081 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
4082 	 */
4083 	for (;;) {
4084 		/*
4085 		 * We hold SCL_STATE to prevent vdev open/close/etc.
4086 		 * while we're attempting to write the vdev labels.
4087 		 */
4088 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
4089 
4090 		if (list_is_empty(&spa->spa_config_dirty_list)) {
4091 			vdev_t *svd[SPA_DVAS_PER_BP];
4092 			int svdcount = 0;
4093 			int children = rvd->vdev_children;
4094 			int c0 = spa_get_random(children);
4095 			int c;
4096 
4097 			for (c = 0; c < children; c++) {
4098 				vd = rvd->vdev_child[(c0 + c) % children];
4099 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
4100 					continue;
4101 				svd[svdcount++] = vd;
4102 				if (svdcount == SPA_DVAS_PER_BP)
4103 					break;
4104 			}
4105 			error = vdev_config_sync(svd, svdcount, txg);
4106 		} else {
4107 			error = vdev_config_sync(rvd->vdev_child,
4108 			    rvd->vdev_children, txg);
4109 		}
4110 
4111 		spa_config_exit(spa, SCL_STATE, FTAG);
4112 
4113 		if (error == 0)
4114 			break;
4115 		zio_suspend(spa, NULL);
4116 		zio_resume_wait(spa);
4117 	}
4118 	dmu_tx_commit(tx);
4119 
4120 	/*
4121 	 * Clear the dirty config list.
4122 	 */
4123 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
4124 		vdev_config_clean(vd);
4125 
4126 	/*
4127 	 * Now that the new config has synced transactionally,
4128 	 * let it become visible to the config cache.
4129 	 */
4130 	if (spa->spa_config_syncing != NULL) {
4131 		spa_config_set(spa, spa->spa_config_syncing);
4132 		spa->spa_config_txg = txg;
4133 		spa->spa_config_syncing = NULL;
4134 	}
4135 
4136 	spa->spa_ubsync = spa->spa_uberblock;
4137 
4138 	/*
4139 	 * Clean up the ZIL records for the synced txg.
4140 	 */
4141 	dsl_pool_zil_clean(dp);
4142 
4143 	/*
4144 	 * Update usable space statistics.
4145 	 */
4146 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4147 		vdev_sync_done(vd, txg);
4148 
4149 	/*
4150 	 * It had better be the case that we didn't dirty anything
4151 	 * since vdev_config_sync().
4152 	 */
4153 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4154 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4155 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4156 	ASSERT(bpl->bpl_queue == NULL);
4157 
4158 	spa_config_exit(spa, SCL_CONFIG, FTAG);
4159 
4160 	/*
4161 	 * If any async tasks have been requested, kick them off.
4162 	 */
4163 	spa_async_dispatch(spa);
4164 }
4165 
4166 /*
4167  * Sync all pools.  We don't want to hold the namespace lock across these
4168  * operations, so we take a reference on the spa_t and drop the lock during the
4169  * sync.
4170  */
4171 void
4172 spa_sync_allpools(void)
4173 {
4174 	spa_t *spa = NULL;
4175 	mutex_enter(&spa_namespace_lock);
4176 	while ((spa = spa_next(spa)) != NULL) {
4177 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
4178 			continue;
4179 		spa_open_ref(spa, FTAG);
4180 		mutex_exit(&spa_namespace_lock);
4181 		txg_wait_synced(spa_get_dsl(spa), 0);
4182 		mutex_enter(&spa_namespace_lock);
4183 		spa_close(spa, FTAG);
4184 	}
4185 	mutex_exit(&spa_namespace_lock);
4186 }
4187 
4188 /*
4189  * ==========================================================================
4190  * Miscellaneous routines
4191  * ==========================================================================
4192  */
4193 
4194 /*
4195  * Remove all pools in the system.
4196  */
4197 void
4198 spa_evict_all(void)
4199 {
4200 	spa_t *spa;
4201 
4202 	/*
4203 	 * Remove all cached state.  All pools should be closed now,
4204 	 * so every spa in the AVL tree should be unreferenced.
4205 	 */
4206 	mutex_enter(&spa_namespace_lock);
4207 	while ((spa = spa_next(NULL)) != NULL) {
4208 		/*
4209 		 * Stop async tasks.  The async thread may need to detach
4210 		 * a device that's been replaced, which requires grabbing
4211 		 * spa_namespace_lock, so we must drop it here.
4212 		 */
4213 		spa_open_ref(spa, FTAG);
4214 		mutex_exit(&spa_namespace_lock);
4215 		spa_async_suspend(spa);
4216 		mutex_enter(&spa_namespace_lock);
4217 		spa_close(spa, FTAG);
4218 
4219 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4220 			spa_unload(spa);
4221 			spa_deactivate(spa);
4222 		}
4223 		spa_remove(spa);
4224 	}
4225 	mutex_exit(&spa_namespace_lock);
4226 }
4227 
4228 vdev_t *
4229 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4230 {
4231 	vdev_t *vd;
4232 	int i;
4233 
4234 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4235 		return (vd);
4236 
4237 	if (l2cache) {
4238 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4239 			vd = spa->spa_l2cache.sav_vdevs[i];
4240 			if (vd->vdev_guid == guid)
4241 				return (vd);
4242 		}
4243 	}
4244 
4245 	return (NULL);
4246 }
4247 
4248 void
4249 spa_upgrade(spa_t *spa, uint64_t version)
4250 {
4251 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4252 
4253 	/*
4254 	 * This should only be called for a non-faulted pool, and since a
4255 	 * future version would result in an unopenable pool, this shouldn't be
4256 	 * possible.
4257 	 */
4258 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4259 	ASSERT(version >= spa->spa_uberblock.ub_version);
4260 
4261 	spa->spa_uberblock.ub_version = version;
4262 	vdev_config_dirty(spa->spa_root_vdev);
4263 
4264 	spa_config_exit(spa, SCL_ALL, FTAG);
4265 
4266 	txg_wait_synced(spa_get_dsl(spa), 0);
4267 }
4268 
4269 boolean_t
4270 spa_has_spare(spa_t *spa, uint64_t guid)
4271 {
4272 	int i;
4273 	uint64_t spareguid;
4274 	spa_aux_vdev_t *sav = &spa->spa_spares;
4275 
4276 	for (i = 0; i < sav->sav_count; i++)
4277 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4278 			return (B_TRUE);
4279 
4280 	for (i = 0; i < sav->sav_npending; i++) {
4281 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4282 		    &spareguid) == 0 && spareguid == guid)
4283 			return (B_TRUE);
4284 	}
4285 
4286 	return (B_FALSE);
4287 }
4288 
4289 /*
4290  * Check if a pool has an active shared spare device.
4291  * Note: reference count of an active spare is 2, as a spare and as a replace
4292  */
4293 static boolean_t
4294 spa_has_active_shared_spare(spa_t *spa)
4295 {
4296 	int i, refcnt;
4297 	uint64_t pool;
4298 	spa_aux_vdev_t *sav = &spa->spa_spares;
4299 
4300 	for (i = 0; i < sav->sav_count; i++) {
4301 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4302 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4303 		    refcnt > 2)
4304 			return (B_TRUE);
4305 	}
4306 
4307 	return (B_FALSE);
4308 }
4309 
4310 /*
4311  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4312  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4313  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4314  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4315  * or zdb as real changes.
4316  */
4317 void
4318 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4319 {
4320 #ifdef _KERNEL
4321 	sysevent_t		*ev;
4322 	sysevent_attr_list_t	*attr = NULL;
4323 	sysevent_value_t	value;
4324 	sysevent_id_t		eid;
4325 
4326 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4327 	    SE_SLEEP);
4328 
4329 	value.value_type = SE_DATA_TYPE_STRING;
4330 	value.value.sv_string = spa_name(spa);
4331 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4332 		goto done;
4333 
4334 	value.value_type = SE_DATA_TYPE_UINT64;
4335 	value.value.sv_uint64 = spa_guid(spa);
4336 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4337 		goto done;
4338 
4339 	if (vd) {
4340 		value.value_type = SE_DATA_TYPE_UINT64;
4341 		value.value.sv_uint64 = vd->vdev_guid;
4342 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4343 		    SE_SLEEP) != 0)
4344 			goto done;
4345 
4346 		if (vd->vdev_path) {
4347 			value.value_type = SE_DATA_TYPE_STRING;
4348 			value.value.sv_string = vd->vdev_path;
4349 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4350 			    &value, SE_SLEEP) != 0)
4351 				goto done;
4352 		}
4353 	}
4354 
4355 	if (sysevent_attach_attributes(ev, attr) != 0)
4356 		goto done;
4357 	attr = NULL;
4358 
4359 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4360 
4361 done:
4362 	if (attr)
4363 		sysevent_free_attr(attr);
4364 	sysevent_free(ev);
4365 #endif
4366 }
4367