xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 2bd7a8d078223b122d65fea49bb8641f858b1409)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  */
29 
30 /*
31  * SPA: Storage Pool Allocator
32  *
33  * This file contains all the routines used when modifying on-disk SPA state.
34  * This includes opening, importing, destroying, exporting a pool, and syncing a
35  * pool.
36  */
37 
38 #include <sys/zfs_context.h>
39 #include <sys/fm/fs/zfs.h>
40 #include <sys/spa_impl.h>
41 #include <sys/zio.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu.h>
44 #include <sys/dmu_tx.h>
45 #include <sys/zap.h>
46 #include <sys/zil.h>
47 #include <sys/ddt.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/metaslab.h>
50 #include <sys/metaslab_impl.h>
51 #include <sys/uberblock_impl.h>
52 #include <sys/txg.h>
53 #include <sys/avl.h>
54 #include <sys/dmu_traverse.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/unique.h>
57 #include <sys/dsl_pool.h>
58 #include <sys/dsl_dataset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/dsl_prop.h>
61 #include <sys/dsl_synctask.h>
62 #include <sys/fs/zfs.h>
63 #include <sys/arc.h>
64 #include <sys/callb.h>
65 #include <sys/systeminfo.h>
66 #include <sys/spa_boot.h>
67 #include <sys/zfs_ioctl.h>
68 #include <sys/dsl_scan.h>
69 #include <sys/zfeature.h>
70 #include <sys/dsl_destroy.h>
71 
72 #ifdef	_KERNEL
73 #include <sys/bootprops.h>
74 #include <sys/callb.h>
75 #include <sys/cpupart.h>
76 #include <sys/pool.h>
77 #include <sys/sysdc.h>
78 #include <sys/zone.h>
79 #endif	/* _KERNEL */
80 
81 #include "zfs_prop.h"
82 #include "zfs_comutil.h"
83 
84 /*
85  * The interval, in seconds, at which failed configuration cache file writes
86  * should be retried.
87  */
88 static int zfs_ccw_retry_interval = 300;
89 
90 typedef enum zti_modes {
91 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
92 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
93 	ZTI_MODE_NULL,			/* don't create a taskq */
94 	ZTI_NMODES
95 } zti_modes_t;
96 
97 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
98 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
99 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
100 
101 #define	ZTI_N(n)	ZTI_P(n, 1)
102 #define	ZTI_ONE		ZTI_N(1)
103 
104 typedef struct zio_taskq_info {
105 	zti_modes_t zti_mode;
106 	uint_t zti_value;
107 	uint_t zti_count;
108 } zio_taskq_info_t;
109 
110 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
111 	"issue", "issue_high", "intr", "intr_high"
112 };
113 
114 /*
115  * This table defines the taskq settings for each ZFS I/O type. When
116  * initializing a pool, we use this table to create an appropriately sized
117  * taskq. Some operations are low volume and therefore have a small, static
118  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
119  * macros. Other operations process a large amount of data; the ZTI_BATCH
120  * macro causes us to create a taskq oriented for throughput. Some operations
121  * are so high frequency and short-lived that the taskq itself can become a a
122  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
123  * additional degree of parallelism specified by the number of threads per-
124  * taskq and the number of taskqs; when dispatching an event in this case, the
125  * particular taskq is chosen at random.
126  *
127  * The different taskq priorities are to handle the different contexts (issue
128  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
129  * need to be handled with minimum delay.
130  */
131 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
132 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
133 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
134 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
135 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
136 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
137 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
138 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
139 };
140 
141 static void spa_sync_version(void *arg, dmu_tx_t *tx);
142 static void spa_sync_props(void *arg, dmu_tx_t *tx);
143 static boolean_t spa_has_active_shared_spare(spa_t *spa);
144 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
145     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
146     char **ereport);
147 static void spa_vdev_resilver_done(spa_t *spa);
148 
149 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
150 id_t		zio_taskq_psrset_bind = PS_NONE;
151 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
152 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
153 
154 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
155 extern int	zfs_sync_pass_deferred_free;
156 
157 /*
158  * This (illegal) pool name is used when temporarily importing a spa_t in order
159  * to get the vdev stats associated with the imported devices.
160  */
161 #define	TRYIMPORT_NAME	"$import"
162 
163 /*
164  * ==========================================================================
165  * SPA properties routines
166  * ==========================================================================
167  */
168 
169 /*
170  * Add a (source=src, propname=propval) list to an nvlist.
171  */
172 static void
173 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
174     uint64_t intval, zprop_source_t src)
175 {
176 	const char *propname = zpool_prop_to_name(prop);
177 	nvlist_t *propval;
178 
179 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
180 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
181 
182 	if (strval != NULL)
183 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
184 	else
185 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
186 
187 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
188 	nvlist_free(propval);
189 }
190 
191 /*
192  * Get property values from the spa configuration.
193  */
194 static void
195 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
196 {
197 	vdev_t *rvd = spa->spa_root_vdev;
198 	dsl_pool_t *pool = spa->spa_dsl_pool;
199 	uint64_t size, alloc, cap, version;
200 	zprop_source_t src = ZPROP_SRC_NONE;
201 	spa_config_dirent_t *dp;
202 	metaslab_class_t *mc = spa_normal_class(spa);
203 
204 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 
206 	if (rvd != NULL) {
207 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 		size = metaslab_class_get_space(spa_normal_class(spa));
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 		    size - alloc, src);
214 
215 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
216 		    metaslab_class_fragmentation(mc), src);
217 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
218 		    metaslab_class_expandable_space(mc), src);
219 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
220 		    (spa_mode(spa) == FREAD), src);
221 
222 		cap = (size == 0) ? 0 : (alloc * 100 / size);
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
224 
225 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
226 		    ddt_get_pool_dedup_ratio(spa), src);
227 
228 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
229 		    rvd->vdev_state, src);
230 
231 		version = spa_version(spa);
232 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
233 			src = ZPROP_SRC_DEFAULT;
234 		else
235 			src = ZPROP_SRC_LOCAL;
236 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
237 	}
238 
239 	if (pool != NULL) {
240 		/*
241 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
242 		 * when opening pools before this version freedir will be NULL.
243 		 */
244 		if (pool->dp_free_dir != NULL) {
245 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
246 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
247 			    src);
248 		} else {
249 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
250 			    NULL, 0, src);
251 		}
252 
253 		if (pool->dp_leak_dir != NULL) {
254 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
255 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
256 			    src);
257 		} else {
258 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
259 			    NULL, 0, src);
260 		}
261 	}
262 
263 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
264 
265 	if (spa->spa_comment != NULL) {
266 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
267 		    0, ZPROP_SRC_LOCAL);
268 	}
269 
270 	if (spa->spa_root != NULL)
271 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
272 		    0, ZPROP_SRC_LOCAL);
273 
274 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
275 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
276 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
277 	} else {
278 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
279 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
280 	}
281 
282 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
283 		if (dp->scd_path == NULL) {
284 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
285 			    "none", 0, ZPROP_SRC_LOCAL);
286 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
287 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
288 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
289 		}
290 	}
291 }
292 
293 /*
294  * Get zpool property values.
295  */
296 int
297 spa_prop_get(spa_t *spa, nvlist_t **nvp)
298 {
299 	objset_t *mos = spa->spa_meta_objset;
300 	zap_cursor_t zc;
301 	zap_attribute_t za;
302 	int err;
303 
304 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
305 
306 	mutex_enter(&spa->spa_props_lock);
307 
308 	/*
309 	 * Get properties from the spa config.
310 	 */
311 	spa_prop_get_config(spa, nvp);
312 
313 	/* If no pool property object, no more prop to get. */
314 	if (mos == NULL || spa->spa_pool_props_object == 0) {
315 		mutex_exit(&spa->spa_props_lock);
316 		return (0);
317 	}
318 
319 	/*
320 	 * Get properties from the MOS pool property object.
321 	 */
322 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
323 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
324 	    zap_cursor_advance(&zc)) {
325 		uint64_t intval = 0;
326 		char *strval = NULL;
327 		zprop_source_t src = ZPROP_SRC_DEFAULT;
328 		zpool_prop_t prop;
329 
330 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
331 			continue;
332 
333 		switch (za.za_integer_length) {
334 		case 8:
335 			/* integer property */
336 			if (za.za_first_integer !=
337 			    zpool_prop_default_numeric(prop))
338 				src = ZPROP_SRC_LOCAL;
339 
340 			if (prop == ZPOOL_PROP_BOOTFS) {
341 				dsl_pool_t *dp;
342 				dsl_dataset_t *ds = NULL;
343 
344 				dp = spa_get_dsl(spa);
345 				dsl_pool_config_enter(dp, FTAG);
346 				if (err = dsl_dataset_hold_obj(dp,
347 				    za.za_first_integer, FTAG, &ds)) {
348 					dsl_pool_config_exit(dp, FTAG);
349 					break;
350 				}
351 
352 				strval = kmem_alloc(
353 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
354 				    KM_SLEEP);
355 				dsl_dataset_name(ds, strval);
356 				dsl_dataset_rele(ds, FTAG);
357 				dsl_pool_config_exit(dp, FTAG);
358 			} else {
359 				strval = NULL;
360 				intval = za.za_first_integer;
361 			}
362 
363 			spa_prop_add_list(*nvp, prop, strval, intval, src);
364 
365 			if (strval != NULL)
366 				kmem_free(strval,
367 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
368 
369 			break;
370 
371 		case 1:
372 			/* string property */
373 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
374 			err = zap_lookup(mos, spa->spa_pool_props_object,
375 			    za.za_name, 1, za.za_num_integers, strval);
376 			if (err) {
377 				kmem_free(strval, za.za_num_integers);
378 				break;
379 			}
380 			spa_prop_add_list(*nvp, prop, strval, 0, src);
381 			kmem_free(strval, za.za_num_integers);
382 			break;
383 
384 		default:
385 			break;
386 		}
387 	}
388 	zap_cursor_fini(&zc);
389 	mutex_exit(&spa->spa_props_lock);
390 out:
391 	if (err && err != ENOENT) {
392 		nvlist_free(*nvp);
393 		*nvp = NULL;
394 		return (err);
395 	}
396 
397 	return (0);
398 }
399 
400 /*
401  * Validate the given pool properties nvlist and modify the list
402  * for the property values to be set.
403  */
404 static int
405 spa_prop_validate(spa_t *spa, nvlist_t *props)
406 {
407 	nvpair_t *elem;
408 	int error = 0, reset_bootfs = 0;
409 	uint64_t objnum = 0;
410 	boolean_t has_feature = B_FALSE;
411 
412 	elem = NULL;
413 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
414 		uint64_t intval;
415 		char *strval, *slash, *check, *fname;
416 		const char *propname = nvpair_name(elem);
417 		zpool_prop_t prop = zpool_name_to_prop(propname);
418 
419 		switch (prop) {
420 		case ZPROP_INVAL:
421 			if (!zpool_prop_feature(propname)) {
422 				error = SET_ERROR(EINVAL);
423 				break;
424 			}
425 
426 			/*
427 			 * Sanitize the input.
428 			 */
429 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
430 				error = SET_ERROR(EINVAL);
431 				break;
432 			}
433 
434 			if (nvpair_value_uint64(elem, &intval) != 0) {
435 				error = SET_ERROR(EINVAL);
436 				break;
437 			}
438 
439 			if (intval != 0) {
440 				error = SET_ERROR(EINVAL);
441 				break;
442 			}
443 
444 			fname = strchr(propname, '@') + 1;
445 			if (zfeature_lookup_name(fname, NULL) != 0) {
446 				error = SET_ERROR(EINVAL);
447 				break;
448 			}
449 
450 			has_feature = B_TRUE;
451 			break;
452 
453 		case ZPOOL_PROP_VERSION:
454 			error = nvpair_value_uint64(elem, &intval);
455 			if (!error &&
456 			    (intval < spa_version(spa) ||
457 			    intval > SPA_VERSION_BEFORE_FEATURES ||
458 			    has_feature))
459 				error = SET_ERROR(EINVAL);
460 			break;
461 
462 		case ZPOOL_PROP_DELEGATION:
463 		case ZPOOL_PROP_AUTOREPLACE:
464 		case ZPOOL_PROP_LISTSNAPS:
465 		case ZPOOL_PROP_AUTOEXPAND:
466 			error = nvpair_value_uint64(elem, &intval);
467 			if (!error && intval > 1)
468 				error = SET_ERROR(EINVAL);
469 			break;
470 
471 		case ZPOOL_PROP_BOOTFS:
472 			/*
473 			 * If the pool version is less than SPA_VERSION_BOOTFS,
474 			 * or the pool is still being created (version == 0),
475 			 * the bootfs property cannot be set.
476 			 */
477 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
478 				error = SET_ERROR(ENOTSUP);
479 				break;
480 			}
481 
482 			/*
483 			 * Make sure the vdev config is bootable
484 			 */
485 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
486 				error = SET_ERROR(ENOTSUP);
487 				break;
488 			}
489 
490 			reset_bootfs = 1;
491 
492 			error = nvpair_value_string(elem, &strval);
493 
494 			if (!error) {
495 				objset_t *os;
496 				uint64_t propval;
497 
498 				if (strval == NULL || strval[0] == '\0') {
499 					objnum = zpool_prop_default_numeric(
500 					    ZPOOL_PROP_BOOTFS);
501 					break;
502 				}
503 
504 				if (error = dmu_objset_hold(strval, FTAG, &os))
505 					break;
506 
507 				/*
508 				 * Must be ZPL, and its property settings
509 				 * must be supported by GRUB (compression
510 				 * is not gzip, and large blocks are not used).
511 				 */
512 
513 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
514 					error = SET_ERROR(ENOTSUP);
515 				} else if ((error =
516 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
517 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
518 				    &propval)) == 0 &&
519 				    !BOOTFS_COMPRESS_VALID(propval)) {
520 					error = SET_ERROR(ENOTSUP);
521 				} else if ((error =
522 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
523 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
524 				    &propval)) == 0 &&
525 				    propval > SPA_OLD_MAXBLOCKSIZE) {
526 					error = SET_ERROR(ENOTSUP);
527 				} else {
528 					objnum = dmu_objset_id(os);
529 				}
530 				dmu_objset_rele(os, FTAG);
531 			}
532 			break;
533 
534 		case ZPOOL_PROP_FAILUREMODE:
535 			error = nvpair_value_uint64(elem, &intval);
536 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
537 			    intval > ZIO_FAILURE_MODE_PANIC))
538 				error = SET_ERROR(EINVAL);
539 
540 			/*
541 			 * This is a special case which only occurs when
542 			 * the pool has completely failed. This allows
543 			 * the user to change the in-core failmode property
544 			 * without syncing it out to disk (I/Os might
545 			 * currently be blocked). We do this by returning
546 			 * EIO to the caller (spa_prop_set) to trick it
547 			 * into thinking we encountered a property validation
548 			 * error.
549 			 */
550 			if (!error && spa_suspended(spa)) {
551 				spa->spa_failmode = intval;
552 				error = SET_ERROR(EIO);
553 			}
554 			break;
555 
556 		case ZPOOL_PROP_CACHEFILE:
557 			if ((error = nvpair_value_string(elem, &strval)) != 0)
558 				break;
559 
560 			if (strval[0] == '\0')
561 				break;
562 
563 			if (strcmp(strval, "none") == 0)
564 				break;
565 
566 			if (strval[0] != '/') {
567 				error = SET_ERROR(EINVAL);
568 				break;
569 			}
570 
571 			slash = strrchr(strval, '/');
572 			ASSERT(slash != NULL);
573 
574 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
575 			    strcmp(slash, "/..") == 0)
576 				error = SET_ERROR(EINVAL);
577 			break;
578 
579 		case ZPOOL_PROP_COMMENT:
580 			if ((error = nvpair_value_string(elem, &strval)) != 0)
581 				break;
582 			for (check = strval; *check != '\0'; check++) {
583 				/*
584 				 * The kernel doesn't have an easy isprint()
585 				 * check.  For this kernel check, we merely
586 				 * check ASCII apart from DEL.  Fix this if
587 				 * there is an easy-to-use kernel isprint().
588 				 */
589 				if (*check >= 0x7f) {
590 					error = SET_ERROR(EINVAL);
591 					break;
592 				}
593 			}
594 			if (strlen(strval) > ZPROP_MAX_COMMENT)
595 				error = E2BIG;
596 			break;
597 
598 		case ZPOOL_PROP_DEDUPDITTO:
599 			if (spa_version(spa) < SPA_VERSION_DEDUP)
600 				error = SET_ERROR(ENOTSUP);
601 			else
602 				error = nvpair_value_uint64(elem, &intval);
603 			if (error == 0 &&
604 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
605 				error = SET_ERROR(EINVAL);
606 			break;
607 		}
608 
609 		if (error)
610 			break;
611 	}
612 
613 	if (!error && reset_bootfs) {
614 		error = nvlist_remove(props,
615 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
616 
617 		if (!error) {
618 			error = nvlist_add_uint64(props,
619 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
620 		}
621 	}
622 
623 	return (error);
624 }
625 
626 void
627 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
628 {
629 	char *cachefile;
630 	spa_config_dirent_t *dp;
631 
632 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
633 	    &cachefile) != 0)
634 		return;
635 
636 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
637 	    KM_SLEEP);
638 
639 	if (cachefile[0] == '\0')
640 		dp->scd_path = spa_strdup(spa_config_path);
641 	else if (strcmp(cachefile, "none") == 0)
642 		dp->scd_path = NULL;
643 	else
644 		dp->scd_path = spa_strdup(cachefile);
645 
646 	list_insert_head(&spa->spa_config_list, dp);
647 	if (need_sync)
648 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
649 }
650 
651 int
652 spa_prop_set(spa_t *spa, nvlist_t *nvp)
653 {
654 	int error;
655 	nvpair_t *elem = NULL;
656 	boolean_t need_sync = B_FALSE;
657 
658 	if ((error = spa_prop_validate(spa, nvp)) != 0)
659 		return (error);
660 
661 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
662 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
663 
664 		if (prop == ZPOOL_PROP_CACHEFILE ||
665 		    prop == ZPOOL_PROP_ALTROOT ||
666 		    prop == ZPOOL_PROP_READONLY)
667 			continue;
668 
669 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
670 			uint64_t ver;
671 
672 			if (prop == ZPOOL_PROP_VERSION) {
673 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
674 			} else {
675 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
676 				ver = SPA_VERSION_FEATURES;
677 				need_sync = B_TRUE;
678 			}
679 
680 			/* Save time if the version is already set. */
681 			if (ver == spa_version(spa))
682 				continue;
683 
684 			/*
685 			 * In addition to the pool directory object, we might
686 			 * create the pool properties object, the features for
687 			 * read object, the features for write object, or the
688 			 * feature descriptions object.
689 			 */
690 			error = dsl_sync_task(spa->spa_name, NULL,
691 			    spa_sync_version, &ver,
692 			    6, ZFS_SPACE_CHECK_RESERVED);
693 			if (error)
694 				return (error);
695 			continue;
696 		}
697 
698 		need_sync = B_TRUE;
699 		break;
700 	}
701 
702 	if (need_sync) {
703 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
704 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
705 	}
706 
707 	return (0);
708 }
709 
710 /*
711  * If the bootfs property value is dsobj, clear it.
712  */
713 void
714 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
715 {
716 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
717 		VERIFY(zap_remove(spa->spa_meta_objset,
718 		    spa->spa_pool_props_object,
719 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
720 		spa->spa_bootfs = 0;
721 	}
722 }
723 
724 /*ARGSUSED*/
725 static int
726 spa_change_guid_check(void *arg, dmu_tx_t *tx)
727 {
728 	uint64_t *newguid = arg;
729 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
730 	vdev_t *rvd = spa->spa_root_vdev;
731 	uint64_t vdev_state;
732 
733 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 	vdev_state = rvd->vdev_state;
735 	spa_config_exit(spa, SCL_STATE, FTAG);
736 
737 	if (vdev_state != VDEV_STATE_HEALTHY)
738 		return (SET_ERROR(ENXIO));
739 
740 	ASSERT3U(spa_guid(spa), !=, *newguid);
741 
742 	return (0);
743 }
744 
745 static void
746 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
747 {
748 	uint64_t *newguid = arg;
749 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750 	uint64_t oldguid;
751 	vdev_t *rvd = spa->spa_root_vdev;
752 
753 	oldguid = spa_guid(spa);
754 
755 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
756 	rvd->vdev_guid = *newguid;
757 	rvd->vdev_guid_sum += (*newguid - oldguid);
758 	vdev_config_dirty(rvd);
759 	spa_config_exit(spa, SCL_STATE, FTAG);
760 
761 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
762 	    oldguid, *newguid);
763 }
764 
765 /*
766  * Change the GUID for the pool.  This is done so that we can later
767  * re-import a pool built from a clone of our own vdevs.  We will modify
768  * the root vdev's guid, our own pool guid, and then mark all of our
769  * vdevs dirty.  Note that we must make sure that all our vdevs are
770  * online when we do this, or else any vdevs that weren't present
771  * would be orphaned from our pool.  We are also going to issue a
772  * sysevent to update any watchers.
773  */
774 int
775 spa_change_guid(spa_t *spa)
776 {
777 	int error;
778 	uint64_t guid;
779 
780 	mutex_enter(&spa->spa_vdev_top_lock);
781 	mutex_enter(&spa_namespace_lock);
782 	guid = spa_generate_guid(NULL);
783 
784 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
785 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
786 
787 	if (error == 0) {
788 		spa_config_sync(spa, B_FALSE, B_TRUE);
789 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
790 	}
791 
792 	mutex_exit(&spa_namespace_lock);
793 	mutex_exit(&spa->spa_vdev_top_lock);
794 
795 	return (error);
796 }
797 
798 /*
799  * ==========================================================================
800  * SPA state manipulation (open/create/destroy/import/export)
801  * ==========================================================================
802  */
803 
804 static int
805 spa_error_entry_compare(const void *a, const void *b)
806 {
807 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
808 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
809 	int ret;
810 
811 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
812 	    sizeof (zbookmark_phys_t));
813 
814 	if (ret < 0)
815 		return (-1);
816 	else if (ret > 0)
817 		return (1);
818 	else
819 		return (0);
820 }
821 
822 /*
823  * Utility function which retrieves copies of the current logs and
824  * re-initializes them in the process.
825  */
826 void
827 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
828 {
829 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
830 
831 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
832 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
833 
834 	avl_create(&spa->spa_errlist_scrub,
835 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
836 	    offsetof(spa_error_entry_t, se_avl));
837 	avl_create(&spa->spa_errlist_last,
838 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
839 	    offsetof(spa_error_entry_t, se_avl));
840 }
841 
842 static void
843 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
844 {
845 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
846 	enum zti_modes mode = ztip->zti_mode;
847 	uint_t value = ztip->zti_value;
848 	uint_t count = ztip->zti_count;
849 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
850 	char name[32];
851 	uint_t flags = 0;
852 	boolean_t batch = B_FALSE;
853 
854 	if (mode == ZTI_MODE_NULL) {
855 		tqs->stqs_count = 0;
856 		tqs->stqs_taskq = NULL;
857 		return;
858 	}
859 
860 	ASSERT3U(count, >, 0);
861 
862 	tqs->stqs_count = count;
863 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
864 
865 	switch (mode) {
866 	case ZTI_MODE_FIXED:
867 		ASSERT3U(value, >=, 1);
868 		value = MAX(value, 1);
869 		break;
870 
871 	case ZTI_MODE_BATCH:
872 		batch = B_TRUE;
873 		flags |= TASKQ_THREADS_CPU_PCT;
874 		value = zio_taskq_batch_pct;
875 		break;
876 
877 	default:
878 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
879 		    "spa_activate()",
880 		    zio_type_name[t], zio_taskq_types[q], mode, value);
881 		break;
882 	}
883 
884 	for (uint_t i = 0; i < count; i++) {
885 		taskq_t *tq;
886 
887 		if (count > 1) {
888 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
889 			    zio_type_name[t], zio_taskq_types[q], i);
890 		} else {
891 			(void) snprintf(name, sizeof (name), "%s_%s",
892 			    zio_type_name[t], zio_taskq_types[q]);
893 		}
894 
895 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
896 			if (batch)
897 				flags |= TASKQ_DC_BATCH;
898 
899 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
900 			    spa->spa_proc, zio_taskq_basedc, flags);
901 		} else {
902 			pri_t pri = maxclsyspri;
903 			/*
904 			 * The write issue taskq can be extremely CPU
905 			 * intensive.  Run it at slightly lower priority
906 			 * than the other taskqs.
907 			 */
908 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
909 				pri--;
910 
911 			tq = taskq_create_proc(name, value, pri, 50,
912 			    INT_MAX, spa->spa_proc, flags);
913 		}
914 
915 		tqs->stqs_taskq[i] = tq;
916 	}
917 }
918 
919 static void
920 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
921 {
922 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
923 
924 	if (tqs->stqs_taskq == NULL) {
925 		ASSERT0(tqs->stqs_count);
926 		return;
927 	}
928 
929 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
930 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
931 		taskq_destroy(tqs->stqs_taskq[i]);
932 	}
933 
934 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
935 	tqs->stqs_taskq = NULL;
936 }
937 
938 /*
939  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
940  * Note that a type may have multiple discrete taskqs to avoid lock contention
941  * on the taskq itself. In that case we choose which taskq at random by using
942  * the low bits of gethrtime().
943  */
944 void
945 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
946     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
947 {
948 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
949 	taskq_t *tq;
950 
951 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
952 	ASSERT3U(tqs->stqs_count, !=, 0);
953 
954 	if (tqs->stqs_count == 1) {
955 		tq = tqs->stqs_taskq[0];
956 	} else {
957 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
958 	}
959 
960 	taskq_dispatch_ent(tq, func, arg, flags, ent);
961 }
962 
963 static void
964 spa_create_zio_taskqs(spa_t *spa)
965 {
966 	for (int t = 0; t < ZIO_TYPES; t++) {
967 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
968 			spa_taskqs_init(spa, t, q);
969 		}
970 	}
971 }
972 
973 #ifdef _KERNEL
974 static void
975 spa_thread(void *arg)
976 {
977 	callb_cpr_t cprinfo;
978 
979 	spa_t *spa = arg;
980 	user_t *pu = PTOU(curproc);
981 
982 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983 	    spa->spa_name);
984 
985 	ASSERT(curproc != &p0);
986 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987 	    "zpool-%s", spa->spa_name);
988 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989 
990 	/* bind this thread to the requested psrset */
991 	if (zio_taskq_psrset_bind != PS_NONE) {
992 		pool_lock();
993 		mutex_enter(&cpu_lock);
994 		mutex_enter(&pidlock);
995 		mutex_enter(&curproc->p_lock);
996 
997 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
998 		    0, NULL, NULL) == 0)  {
999 			curthread->t_bind_pset = zio_taskq_psrset_bind;
1000 		} else {
1001 			cmn_err(CE_WARN,
1002 			    "Couldn't bind process for zfs pool \"%s\" to "
1003 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1004 		}
1005 
1006 		mutex_exit(&curproc->p_lock);
1007 		mutex_exit(&pidlock);
1008 		mutex_exit(&cpu_lock);
1009 		pool_unlock();
1010 	}
1011 
1012 	if (zio_taskq_sysdc) {
1013 		sysdc_thread_enter(curthread, 100, 0);
1014 	}
1015 
1016 	spa->spa_proc = curproc;
1017 	spa->spa_did = curthread->t_did;
1018 
1019 	spa_create_zio_taskqs(spa);
1020 
1021 	mutex_enter(&spa->spa_proc_lock);
1022 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1023 
1024 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1025 	cv_broadcast(&spa->spa_proc_cv);
1026 
1027 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1028 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1029 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1030 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1031 
1032 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1033 	spa->spa_proc_state = SPA_PROC_GONE;
1034 	spa->spa_proc = &p0;
1035 	cv_broadcast(&spa->spa_proc_cv);
1036 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1037 
1038 	mutex_enter(&curproc->p_lock);
1039 	lwp_exit();
1040 }
1041 #endif
1042 
1043 /*
1044  * Activate an uninitialized pool.
1045  */
1046 static void
1047 spa_activate(spa_t *spa, int mode)
1048 {
1049 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1050 
1051 	spa->spa_state = POOL_STATE_ACTIVE;
1052 	spa->spa_mode = mode;
1053 
1054 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1056 
1057 	/* Try to create a covering process */
1058 	mutex_enter(&spa->spa_proc_lock);
1059 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1060 	ASSERT(spa->spa_proc == &p0);
1061 	spa->spa_did = 0;
1062 
1063 	/* Only create a process if we're going to be around a while. */
1064 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1065 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1066 		    NULL, 0) == 0) {
1067 			spa->spa_proc_state = SPA_PROC_CREATED;
1068 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1069 				cv_wait(&spa->spa_proc_cv,
1070 				    &spa->spa_proc_lock);
1071 			}
1072 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1073 			ASSERT(spa->spa_proc != &p0);
1074 			ASSERT(spa->spa_did != 0);
1075 		} else {
1076 #ifdef _KERNEL
1077 			cmn_err(CE_WARN,
1078 			    "Couldn't create process for zfs pool \"%s\"\n",
1079 			    spa->spa_name);
1080 #endif
1081 		}
1082 	}
1083 	mutex_exit(&spa->spa_proc_lock);
1084 
1085 	/* If we didn't create a process, we need to create our taskqs. */
1086 	if (spa->spa_proc == &p0) {
1087 		spa_create_zio_taskqs(spa);
1088 	}
1089 
1090 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1091 	    offsetof(vdev_t, vdev_config_dirty_node));
1092 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1093 	    offsetof(objset_t, os_evicting_node));
1094 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1095 	    offsetof(vdev_t, vdev_state_dirty_node));
1096 
1097 	txg_list_create(&spa->spa_vdev_txg_list,
1098 	    offsetof(struct vdev, vdev_txg_node));
1099 
1100 	avl_create(&spa->spa_errlist_scrub,
1101 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1102 	    offsetof(spa_error_entry_t, se_avl));
1103 	avl_create(&spa->spa_errlist_last,
1104 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1105 	    offsetof(spa_error_entry_t, se_avl));
1106 }
1107 
1108 /*
1109  * Opposite of spa_activate().
1110  */
1111 static void
1112 spa_deactivate(spa_t *spa)
1113 {
1114 	ASSERT(spa->spa_sync_on == B_FALSE);
1115 	ASSERT(spa->spa_dsl_pool == NULL);
1116 	ASSERT(spa->spa_root_vdev == NULL);
1117 	ASSERT(spa->spa_async_zio_root == NULL);
1118 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1119 
1120 	spa_evicting_os_wait(spa);
1121 
1122 	txg_list_destroy(&spa->spa_vdev_txg_list);
1123 
1124 	list_destroy(&spa->spa_config_dirty_list);
1125 	list_destroy(&spa->spa_evicting_os_list);
1126 	list_destroy(&spa->spa_state_dirty_list);
1127 
1128 	for (int t = 0; t < ZIO_TYPES; t++) {
1129 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1130 			spa_taskqs_fini(spa, t, q);
1131 		}
1132 	}
1133 
1134 	metaslab_class_destroy(spa->spa_normal_class);
1135 	spa->spa_normal_class = NULL;
1136 
1137 	metaslab_class_destroy(spa->spa_log_class);
1138 	spa->spa_log_class = NULL;
1139 
1140 	/*
1141 	 * If this was part of an import or the open otherwise failed, we may
1142 	 * still have errors left in the queues.  Empty them just in case.
1143 	 */
1144 	spa_errlog_drain(spa);
1145 
1146 	avl_destroy(&spa->spa_errlist_scrub);
1147 	avl_destroy(&spa->spa_errlist_last);
1148 
1149 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1150 
1151 	mutex_enter(&spa->spa_proc_lock);
1152 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1153 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1154 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1155 		cv_broadcast(&spa->spa_proc_cv);
1156 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1157 			ASSERT(spa->spa_proc != &p0);
1158 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159 		}
1160 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1161 		spa->spa_proc_state = SPA_PROC_NONE;
1162 	}
1163 	ASSERT(spa->spa_proc == &p0);
1164 	mutex_exit(&spa->spa_proc_lock);
1165 
1166 	/*
1167 	 * We want to make sure spa_thread() has actually exited the ZFS
1168 	 * module, so that the module can't be unloaded out from underneath
1169 	 * it.
1170 	 */
1171 	if (spa->spa_did != 0) {
1172 		thread_join(spa->spa_did);
1173 		spa->spa_did = 0;
1174 	}
1175 }
1176 
1177 /*
1178  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1179  * will create all the necessary vdevs in the appropriate layout, with each vdev
1180  * in the CLOSED state.  This will prep the pool before open/creation/import.
1181  * All vdev validation is done by the vdev_alloc() routine.
1182  */
1183 static int
1184 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1185     uint_t id, int atype)
1186 {
1187 	nvlist_t **child;
1188 	uint_t children;
1189 	int error;
1190 
1191 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1192 		return (error);
1193 
1194 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1195 		return (0);
1196 
1197 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1198 	    &child, &children);
1199 
1200 	if (error == ENOENT)
1201 		return (0);
1202 
1203 	if (error) {
1204 		vdev_free(*vdp);
1205 		*vdp = NULL;
1206 		return (SET_ERROR(EINVAL));
1207 	}
1208 
1209 	for (int c = 0; c < children; c++) {
1210 		vdev_t *vd;
1211 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1212 		    atype)) != 0) {
1213 			vdev_free(*vdp);
1214 			*vdp = NULL;
1215 			return (error);
1216 		}
1217 	}
1218 
1219 	ASSERT(*vdp != NULL);
1220 
1221 	return (0);
1222 }
1223 
1224 /*
1225  * Opposite of spa_load().
1226  */
1227 static void
1228 spa_unload(spa_t *spa)
1229 {
1230 	int i;
1231 
1232 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1233 
1234 	/*
1235 	 * Stop async tasks.
1236 	 */
1237 	spa_async_suspend(spa);
1238 
1239 	/*
1240 	 * Stop syncing.
1241 	 */
1242 	if (spa->spa_sync_on) {
1243 		txg_sync_stop(spa->spa_dsl_pool);
1244 		spa->spa_sync_on = B_FALSE;
1245 	}
1246 
1247 	/*
1248 	 * Wait for any outstanding async I/O to complete.
1249 	 */
1250 	if (spa->spa_async_zio_root != NULL) {
1251 		for (int i = 0; i < max_ncpus; i++)
1252 			(void) zio_wait(spa->spa_async_zio_root[i]);
1253 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1254 		spa->spa_async_zio_root = NULL;
1255 	}
1256 
1257 	bpobj_close(&spa->spa_deferred_bpobj);
1258 
1259 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1260 
1261 	/*
1262 	 * Close all vdevs.
1263 	 */
1264 	if (spa->spa_root_vdev)
1265 		vdev_free(spa->spa_root_vdev);
1266 	ASSERT(spa->spa_root_vdev == NULL);
1267 
1268 	/*
1269 	 * Close the dsl pool.
1270 	 */
1271 	if (spa->spa_dsl_pool) {
1272 		dsl_pool_close(spa->spa_dsl_pool);
1273 		spa->spa_dsl_pool = NULL;
1274 		spa->spa_meta_objset = NULL;
1275 	}
1276 
1277 	ddt_unload(spa);
1278 
1279 
1280 	/*
1281 	 * Drop and purge level 2 cache
1282 	 */
1283 	spa_l2cache_drop(spa);
1284 
1285 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1286 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1287 	if (spa->spa_spares.sav_vdevs) {
1288 		kmem_free(spa->spa_spares.sav_vdevs,
1289 		    spa->spa_spares.sav_count * sizeof (void *));
1290 		spa->spa_spares.sav_vdevs = NULL;
1291 	}
1292 	if (spa->spa_spares.sav_config) {
1293 		nvlist_free(spa->spa_spares.sav_config);
1294 		spa->spa_spares.sav_config = NULL;
1295 	}
1296 	spa->spa_spares.sav_count = 0;
1297 
1298 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1299 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1300 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1301 	}
1302 	if (spa->spa_l2cache.sav_vdevs) {
1303 		kmem_free(spa->spa_l2cache.sav_vdevs,
1304 		    spa->spa_l2cache.sav_count * sizeof (void *));
1305 		spa->spa_l2cache.sav_vdevs = NULL;
1306 	}
1307 	if (spa->spa_l2cache.sav_config) {
1308 		nvlist_free(spa->spa_l2cache.sav_config);
1309 		spa->spa_l2cache.sav_config = NULL;
1310 	}
1311 	spa->spa_l2cache.sav_count = 0;
1312 
1313 	spa->spa_async_suspended = 0;
1314 
1315 	if (spa->spa_comment != NULL) {
1316 		spa_strfree(spa->spa_comment);
1317 		spa->spa_comment = NULL;
1318 	}
1319 
1320 	spa_config_exit(spa, SCL_ALL, FTAG);
1321 }
1322 
1323 /*
1324  * Load (or re-load) the current list of vdevs describing the active spares for
1325  * this pool.  When this is called, we have some form of basic information in
1326  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1327  * then re-generate a more complete list including status information.
1328  */
1329 static void
1330 spa_load_spares(spa_t *spa)
1331 {
1332 	nvlist_t **spares;
1333 	uint_t nspares;
1334 	int i;
1335 	vdev_t *vd, *tvd;
1336 
1337 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 
1339 	/*
1340 	 * First, close and free any existing spare vdevs.
1341 	 */
1342 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1343 		vd = spa->spa_spares.sav_vdevs[i];
1344 
1345 		/* Undo the call to spa_activate() below */
1346 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1347 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1348 			spa_spare_remove(tvd);
1349 		vdev_close(vd);
1350 		vdev_free(vd);
1351 	}
1352 
1353 	if (spa->spa_spares.sav_vdevs)
1354 		kmem_free(spa->spa_spares.sav_vdevs,
1355 		    spa->spa_spares.sav_count * sizeof (void *));
1356 
1357 	if (spa->spa_spares.sav_config == NULL)
1358 		nspares = 0;
1359 	else
1360 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1361 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362 
1363 	spa->spa_spares.sav_count = (int)nspares;
1364 	spa->spa_spares.sav_vdevs = NULL;
1365 
1366 	if (nspares == 0)
1367 		return;
1368 
1369 	/*
1370 	 * Construct the array of vdevs, opening them to get status in the
1371 	 * process.   For each spare, there is potentially two different vdev_t
1372 	 * structures associated with it: one in the list of spares (used only
1373 	 * for basic validation purposes) and one in the active vdev
1374 	 * configuration (if it's spared in).  During this phase we open and
1375 	 * validate each vdev on the spare list.  If the vdev also exists in the
1376 	 * active configuration, then we also mark this vdev as an active spare.
1377 	 */
1378 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1379 	    KM_SLEEP);
1380 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1381 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1382 		    VDEV_ALLOC_SPARE) == 0);
1383 		ASSERT(vd != NULL);
1384 
1385 		spa->spa_spares.sav_vdevs[i] = vd;
1386 
1387 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1388 		    B_FALSE)) != NULL) {
1389 			if (!tvd->vdev_isspare)
1390 				spa_spare_add(tvd);
1391 
1392 			/*
1393 			 * We only mark the spare active if we were successfully
1394 			 * able to load the vdev.  Otherwise, importing a pool
1395 			 * with a bad active spare would result in strange
1396 			 * behavior, because multiple pool would think the spare
1397 			 * is actively in use.
1398 			 *
1399 			 * There is a vulnerability here to an equally bizarre
1400 			 * circumstance, where a dead active spare is later
1401 			 * brought back to life (onlined or otherwise).  Given
1402 			 * the rarity of this scenario, and the extra complexity
1403 			 * it adds, we ignore the possibility.
1404 			 */
1405 			if (!vdev_is_dead(tvd))
1406 				spa_spare_activate(tvd);
1407 		}
1408 
1409 		vd->vdev_top = vd;
1410 		vd->vdev_aux = &spa->spa_spares;
1411 
1412 		if (vdev_open(vd) != 0)
1413 			continue;
1414 
1415 		if (vdev_validate_aux(vd) == 0)
1416 			spa_spare_add(vd);
1417 	}
1418 
1419 	/*
1420 	 * Recompute the stashed list of spares, with status information
1421 	 * this time.
1422 	 */
1423 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1424 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1425 
1426 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1427 	    KM_SLEEP);
1428 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1429 		spares[i] = vdev_config_generate(spa,
1430 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1431 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1432 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1433 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1434 		nvlist_free(spares[i]);
1435 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1436 }
1437 
1438 /*
1439  * Load (or re-load) the current list of vdevs describing the active l2cache for
1440  * this pool.  When this is called, we have some form of basic information in
1441  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1442  * then re-generate a more complete list including status information.
1443  * Devices which are already active have their details maintained, and are
1444  * not re-opened.
1445  */
1446 static void
1447 spa_load_l2cache(spa_t *spa)
1448 {
1449 	nvlist_t **l2cache;
1450 	uint_t nl2cache;
1451 	int i, j, oldnvdevs;
1452 	uint64_t guid;
1453 	vdev_t *vd, **oldvdevs, **newvdevs;
1454 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1455 
1456 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1457 
1458 	if (sav->sav_config != NULL) {
1459 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1460 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1461 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1462 	} else {
1463 		nl2cache = 0;
1464 		newvdevs = NULL;
1465 	}
1466 
1467 	oldvdevs = sav->sav_vdevs;
1468 	oldnvdevs = sav->sav_count;
1469 	sav->sav_vdevs = NULL;
1470 	sav->sav_count = 0;
1471 
1472 	/*
1473 	 * Process new nvlist of vdevs.
1474 	 */
1475 	for (i = 0; i < nl2cache; i++) {
1476 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1477 		    &guid) == 0);
1478 
1479 		newvdevs[i] = NULL;
1480 		for (j = 0; j < oldnvdevs; j++) {
1481 			vd = oldvdevs[j];
1482 			if (vd != NULL && guid == vd->vdev_guid) {
1483 				/*
1484 				 * Retain previous vdev for add/remove ops.
1485 				 */
1486 				newvdevs[i] = vd;
1487 				oldvdevs[j] = NULL;
1488 				break;
1489 			}
1490 		}
1491 
1492 		if (newvdevs[i] == NULL) {
1493 			/*
1494 			 * Create new vdev
1495 			 */
1496 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1497 			    VDEV_ALLOC_L2CACHE) == 0);
1498 			ASSERT(vd != NULL);
1499 			newvdevs[i] = vd;
1500 
1501 			/*
1502 			 * Commit this vdev as an l2cache device,
1503 			 * even if it fails to open.
1504 			 */
1505 			spa_l2cache_add(vd);
1506 
1507 			vd->vdev_top = vd;
1508 			vd->vdev_aux = sav;
1509 
1510 			spa_l2cache_activate(vd);
1511 
1512 			if (vdev_open(vd) != 0)
1513 				continue;
1514 
1515 			(void) vdev_validate_aux(vd);
1516 
1517 			if (!vdev_is_dead(vd))
1518 				l2arc_add_vdev(spa, vd);
1519 		}
1520 	}
1521 
1522 	/*
1523 	 * Purge vdevs that were dropped
1524 	 */
1525 	for (i = 0; i < oldnvdevs; i++) {
1526 		uint64_t pool;
1527 
1528 		vd = oldvdevs[i];
1529 		if (vd != NULL) {
1530 			ASSERT(vd->vdev_isl2cache);
1531 
1532 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1533 			    pool != 0ULL && l2arc_vdev_present(vd))
1534 				l2arc_remove_vdev(vd);
1535 			vdev_clear_stats(vd);
1536 			vdev_free(vd);
1537 		}
1538 	}
1539 
1540 	if (oldvdevs)
1541 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1542 
1543 	if (sav->sav_config == NULL)
1544 		goto out;
1545 
1546 	sav->sav_vdevs = newvdevs;
1547 	sav->sav_count = (int)nl2cache;
1548 
1549 	/*
1550 	 * Recompute the stashed list of l2cache devices, with status
1551 	 * information this time.
1552 	 */
1553 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1554 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1555 
1556 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1557 	for (i = 0; i < sav->sav_count; i++)
1558 		l2cache[i] = vdev_config_generate(spa,
1559 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1560 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1561 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1562 out:
1563 	for (i = 0; i < sav->sav_count; i++)
1564 		nvlist_free(l2cache[i]);
1565 	if (sav->sav_count)
1566 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1567 }
1568 
1569 static int
1570 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1571 {
1572 	dmu_buf_t *db;
1573 	char *packed = NULL;
1574 	size_t nvsize = 0;
1575 	int error;
1576 	*value = NULL;
1577 
1578 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1579 	if (error != 0)
1580 		return (error);
1581 
1582 	nvsize = *(uint64_t *)db->db_data;
1583 	dmu_buf_rele(db, FTAG);
1584 
1585 	packed = kmem_alloc(nvsize, KM_SLEEP);
1586 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1587 	    DMU_READ_PREFETCH);
1588 	if (error == 0)
1589 		error = nvlist_unpack(packed, nvsize, value, 0);
1590 	kmem_free(packed, nvsize);
1591 
1592 	return (error);
1593 }
1594 
1595 /*
1596  * Checks to see if the given vdev could not be opened, in which case we post a
1597  * sysevent to notify the autoreplace code that the device has been removed.
1598  */
1599 static void
1600 spa_check_removed(vdev_t *vd)
1601 {
1602 	for (int c = 0; c < vd->vdev_children; c++)
1603 		spa_check_removed(vd->vdev_child[c]);
1604 
1605 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1606 	    !vd->vdev_ishole) {
1607 		zfs_post_autoreplace(vd->vdev_spa, vd);
1608 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1609 	}
1610 }
1611 
1612 /*
1613  * Validate the current config against the MOS config
1614  */
1615 static boolean_t
1616 spa_config_valid(spa_t *spa, nvlist_t *config)
1617 {
1618 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1619 	nvlist_t *nv;
1620 
1621 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1622 
1623 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1624 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1625 
1626 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1627 
1628 	/*
1629 	 * If we're doing a normal import, then build up any additional
1630 	 * diagnostic information about missing devices in this config.
1631 	 * We'll pass this up to the user for further processing.
1632 	 */
1633 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1634 		nvlist_t **child, *nv;
1635 		uint64_t idx = 0;
1636 
1637 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1638 		    KM_SLEEP);
1639 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1640 
1641 		for (int c = 0; c < rvd->vdev_children; c++) {
1642 			vdev_t *tvd = rvd->vdev_child[c];
1643 			vdev_t *mtvd  = mrvd->vdev_child[c];
1644 
1645 			if (tvd->vdev_ops == &vdev_missing_ops &&
1646 			    mtvd->vdev_ops != &vdev_missing_ops &&
1647 			    mtvd->vdev_islog)
1648 				child[idx++] = vdev_config_generate(spa, mtvd,
1649 				    B_FALSE, 0);
1650 		}
1651 
1652 		if (idx) {
1653 			VERIFY(nvlist_add_nvlist_array(nv,
1654 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1655 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1656 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1657 
1658 			for (int i = 0; i < idx; i++)
1659 				nvlist_free(child[i]);
1660 		}
1661 		nvlist_free(nv);
1662 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1663 	}
1664 
1665 	/*
1666 	 * Compare the root vdev tree with the information we have
1667 	 * from the MOS config (mrvd). Check each top-level vdev
1668 	 * with the corresponding MOS config top-level (mtvd).
1669 	 */
1670 	for (int c = 0; c < rvd->vdev_children; c++) {
1671 		vdev_t *tvd = rvd->vdev_child[c];
1672 		vdev_t *mtvd  = mrvd->vdev_child[c];
1673 
1674 		/*
1675 		 * Resolve any "missing" vdevs in the current configuration.
1676 		 * If we find that the MOS config has more accurate information
1677 		 * about the top-level vdev then use that vdev instead.
1678 		 */
1679 		if (tvd->vdev_ops == &vdev_missing_ops &&
1680 		    mtvd->vdev_ops != &vdev_missing_ops) {
1681 
1682 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1683 				continue;
1684 
1685 			/*
1686 			 * Device specific actions.
1687 			 */
1688 			if (mtvd->vdev_islog) {
1689 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1690 			} else {
1691 				/*
1692 				 * XXX - once we have 'readonly' pool
1693 				 * support we should be able to handle
1694 				 * missing data devices by transitioning
1695 				 * the pool to readonly.
1696 				 */
1697 				continue;
1698 			}
1699 
1700 			/*
1701 			 * Swap the missing vdev with the data we were
1702 			 * able to obtain from the MOS config.
1703 			 */
1704 			vdev_remove_child(rvd, tvd);
1705 			vdev_remove_child(mrvd, mtvd);
1706 
1707 			vdev_add_child(rvd, mtvd);
1708 			vdev_add_child(mrvd, tvd);
1709 
1710 			spa_config_exit(spa, SCL_ALL, FTAG);
1711 			vdev_load(mtvd);
1712 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1713 
1714 			vdev_reopen(rvd);
1715 		} else if (mtvd->vdev_islog) {
1716 			/*
1717 			 * Load the slog device's state from the MOS config
1718 			 * since it's possible that the label does not
1719 			 * contain the most up-to-date information.
1720 			 */
1721 			vdev_load_log_state(tvd, mtvd);
1722 			vdev_reopen(tvd);
1723 		}
1724 	}
1725 	vdev_free(mrvd);
1726 	spa_config_exit(spa, SCL_ALL, FTAG);
1727 
1728 	/*
1729 	 * Ensure we were able to validate the config.
1730 	 */
1731 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1732 }
1733 
1734 /*
1735  * Check for missing log devices
1736  */
1737 static boolean_t
1738 spa_check_logs(spa_t *spa)
1739 {
1740 	boolean_t rv = B_FALSE;
1741 	dsl_pool_t *dp = spa_get_dsl(spa);
1742 
1743 	switch (spa->spa_log_state) {
1744 	case SPA_LOG_MISSING:
1745 		/* need to recheck in case slog has been restored */
1746 	case SPA_LOG_UNKNOWN:
1747 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1748 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1749 		if (rv)
1750 			spa_set_log_state(spa, SPA_LOG_MISSING);
1751 		break;
1752 	}
1753 	return (rv);
1754 }
1755 
1756 static boolean_t
1757 spa_passivate_log(spa_t *spa)
1758 {
1759 	vdev_t *rvd = spa->spa_root_vdev;
1760 	boolean_t slog_found = B_FALSE;
1761 
1762 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1763 
1764 	if (!spa_has_slogs(spa))
1765 		return (B_FALSE);
1766 
1767 	for (int c = 0; c < rvd->vdev_children; c++) {
1768 		vdev_t *tvd = rvd->vdev_child[c];
1769 		metaslab_group_t *mg = tvd->vdev_mg;
1770 
1771 		if (tvd->vdev_islog) {
1772 			metaslab_group_passivate(mg);
1773 			slog_found = B_TRUE;
1774 		}
1775 	}
1776 
1777 	return (slog_found);
1778 }
1779 
1780 static void
1781 spa_activate_log(spa_t *spa)
1782 {
1783 	vdev_t *rvd = spa->spa_root_vdev;
1784 
1785 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1786 
1787 	for (int c = 0; c < rvd->vdev_children; c++) {
1788 		vdev_t *tvd = rvd->vdev_child[c];
1789 		metaslab_group_t *mg = tvd->vdev_mg;
1790 
1791 		if (tvd->vdev_islog)
1792 			metaslab_group_activate(mg);
1793 	}
1794 }
1795 
1796 int
1797 spa_offline_log(spa_t *spa)
1798 {
1799 	int error;
1800 
1801 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1802 	    NULL, DS_FIND_CHILDREN);
1803 	if (error == 0) {
1804 		/*
1805 		 * We successfully offlined the log device, sync out the
1806 		 * current txg so that the "stubby" block can be removed
1807 		 * by zil_sync().
1808 		 */
1809 		txg_wait_synced(spa->spa_dsl_pool, 0);
1810 	}
1811 	return (error);
1812 }
1813 
1814 static void
1815 spa_aux_check_removed(spa_aux_vdev_t *sav)
1816 {
1817 	for (int i = 0; i < sav->sav_count; i++)
1818 		spa_check_removed(sav->sav_vdevs[i]);
1819 }
1820 
1821 void
1822 spa_claim_notify(zio_t *zio)
1823 {
1824 	spa_t *spa = zio->io_spa;
1825 
1826 	if (zio->io_error)
1827 		return;
1828 
1829 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1830 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1831 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1832 	mutex_exit(&spa->spa_props_lock);
1833 }
1834 
1835 typedef struct spa_load_error {
1836 	uint64_t	sle_meta_count;
1837 	uint64_t	sle_data_count;
1838 } spa_load_error_t;
1839 
1840 static void
1841 spa_load_verify_done(zio_t *zio)
1842 {
1843 	blkptr_t *bp = zio->io_bp;
1844 	spa_load_error_t *sle = zio->io_private;
1845 	dmu_object_type_t type = BP_GET_TYPE(bp);
1846 	int error = zio->io_error;
1847 	spa_t *spa = zio->io_spa;
1848 
1849 	if (error) {
1850 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1851 		    type != DMU_OT_INTENT_LOG)
1852 			atomic_inc_64(&sle->sle_meta_count);
1853 		else
1854 			atomic_inc_64(&sle->sle_data_count);
1855 	}
1856 	zio_data_buf_free(zio->io_data, zio->io_size);
1857 
1858 	mutex_enter(&spa->spa_scrub_lock);
1859 	spa->spa_scrub_inflight--;
1860 	cv_broadcast(&spa->spa_scrub_io_cv);
1861 	mutex_exit(&spa->spa_scrub_lock);
1862 }
1863 
1864 /*
1865  * Maximum number of concurrent scrub i/os to create while verifying
1866  * a pool while importing it.
1867  */
1868 int spa_load_verify_maxinflight = 10000;
1869 boolean_t spa_load_verify_metadata = B_TRUE;
1870 boolean_t spa_load_verify_data = B_TRUE;
1871 
1872 /*ARGSUSED*/
1873 static int
1874 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1875     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1876 {
1877 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1878 		return (0);
1879 	/*
1880 	 * Note: normally this routine will not be called if
1881 	 * spa_load_verify_metadata is not set.  However, it may be useful
1882 	 * to manually set the flag after the traversal has begun.
1883 	 */
1884 	if (!spa_load_verify_metadata)
1885 		return (0);
1886 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1887 		return (0);
1888 
1889 	zio_t *rio = arg;
1890 	size_t size = BP_GET_PSIZE(bp);
1891 	void *data = zio_data_buf_alloc(size);
1892 
1893 	mutex_enter(&spa->spa_scrub_lock);
1894 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1895 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1896 	spa->spa_scrub_inflight++;
1897 	mutex_exit(&spa->spa_scrub_lock);
1898 
1899 	zio_nowait(zio_read(rio, spa, bp, data, size,
1900 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1901 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1902 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1903 	return (0);
1904 }
1905 
1906 static int
1907 spa_load_verify(spa_t *spa)
1908 {
1909 	zio_t *rio;
1910 	spa_load_error_t sle = { 0 };
1911 	zpool_rewind_policy_t policy;
1912 	boolean_t verify_ok = B_FALSE;
1913 	int error = 0;
1914 
1915 	zpool_get_rewind_policy(spa->spa_config, &policy);
1916 
1917 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1918 		return (0);
1919 
1920 	rio = zio_root(spa, NULL, &sle,
1921 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1922 
1923 	if (spa_load_verify_metadata) {
1924 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1925 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1926 		    spa_load_verify_cb, rio);
1927 	}
1928 
1929 	(void) zio_wait(rio);
1930 
1931 	spa->spa_load_meta_errors = sle.sle_meta_count;
1932 	spa->spa_load_data_errors = sle.sle_data_count;
1933 
1934 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1935 	    sle.sle_data_count <= policy.zrp_maxdata) {
1936 		int64_t loss = 0;
1937 
1938 		verify_ok = B_TRUE;
1939 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1940 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1941 
1942 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1943 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1944 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1945 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1946 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1947 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1948 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1949 	} else {
1950 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1951 	}
1952 
1953 	if (error) {
1954 		if (error != ENXIO && error != EIO)
1955 			error = SET_ERROR(EIO);
1956 		return (error);
1957 	}
1958 
1959 	return (verify_ok ? 0 : EIO);
1960 }
1961 
1962 /*
1963  * Find a value in the pool props object.
1964  */
1965 static void
1966 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1967 {
1968 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1969 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1970 }
1971 
1972 /*
1973  * Find a value in the pool directory object.
1974  */
1975 static int
1976 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1977 {
1978 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1979 	    name, sizeof (uint64_t), 1, val));
1980 }
1981 
1982 static int
1983 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1984 {
1985 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1986 	return (err);
1987 }
1988 
1989 /*
1990  * Fix up config after a partly-completed split.  This is done with the
1991  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1992  * pool have that entry in their config, but only the splitting one contains
1993  * a list of all the guids of the vdevs that are being split off.
1994  *
1995  * This function determines what to do with that list: either rejoin
1996  * all the disks to the pool, or complete the splitting process.  To attempt
1997  * the rejoin, each disk that is offlined is marked online again, and
1998  * we do a reopen() call.  If the vdev label for every disk that was
1999  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2000  * then we call vdev_split() on each disk, and complete the split.
2001  *
2002  * Otherwise we leave the config alone, with all the vdevs in place in
2003  * the original pool.
2004  */
2005 static void
2006 spa_try_repair(spa_t *spa, nvlist_t *config)
2007 {
2008 	uint_t extracted;
2009 	uint64_t *glist;
2010 	uint_t i, gcount;
2011 	nvlist_t *nvl;
2012 	vdev_t **vd;
2013 	boolean_t attempt_reopen;
2014 
2015 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2016 		return;
2017 
2018 	/* check that the config is complete */
2019 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2020 	    &glist, &gcount) != 0)
2021 		return;
2022 
2023 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2024 
2025 	/* attempt to online all the vdevs & validate */
2026 	attempt_reopen = B_TRUE;
2027 	for (i = 0; i < gcount; i++) {
2028 		if (glist[i] == 0)	/* vdev is hole */
2029 			continue;
2030 
2031 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2032 		if (vd[i] == NULL) {
2033 			/*
2034 			 * Don't bother attempting to reopen the disks;
2035 			 * just do the split.
2036 			 */
2037 			attempt_reopen = B_FALSE;
2038 		} else {
2039 			/* attempt to re-online it */
2040 			vd[i]->vdev_offline = B_FALSE;
2041 		}
2042 	}
2043 
2044 	if (attempt_reopen) {
2045 		vdev_reopen(spa->spa_root_vdev);
2046 
2047 		/* check each device to see what state it's in */
2048 		for (extracted = 0, i = 0; i < gcount; i++) {
2049 			if (vd[i] != NULL &&
2050 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2051 				break;
2052 			++extracted;
2053 		}
2054 	}
2055 
2056 	/*
2057 	 * If every disk has been moved to the new pool, or if we never
2058 	 * even attempted to look at them, then we split them off for
2059 	 * good.
2060 	 */
2061 	if (!attempt_reopen || gcount == extracted) {
2062 		for (i = 0; i < gcount; i++)
2063 			if (vd[i] != NULL)
2064 				vdev_split(vd[i]);
2065 		vdev_reopen(spa->spa_root_vdev);
2066 	}
2067 
2068 	kmem_free(vd, gcount * sizeof (vdev_t *));
2069 }
2070 
2071 static int
2072 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2073     boolean_t mosconfig)
2074 {
2075 	nvlist_t *config = spa->spa_config;
2076 	char *ereport = FM_EREPORT_ZFS_POOL;
2077 	char *comment;
2078 	int error;
2079 	uint64_t pool_guid;
2080 	nvlist_t *nvl;
2081 
2082 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2083 		return (SET_ERROR(EINVAL));
2084 
2085 	ASSERT(spa->spa_comment == NULL);
2086 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2087 		spa->spa_comment = spa_strdup(comment);
2088 
2089 	/*
2090 	 * Versioning wasn't explicitly added to the label until later, so if
2091 	 * it's not present treat it as the initial version.
2092 	 */
2093 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2094 	    &spa->spa_ubsync.ub_version) != 0)
2095 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2096 
2097 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2098 	    &spa->spa_config_txg);
2099 
2100 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2101 	    spa_guid_exists(pool_guid, 0)) {
2102 		error = SET_ERROR(EEXIST);
2103 	} else {
2104 		spa->spa_config_guid = pool_guid;
2105 
2106 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2107 		    &nvl) == 0) {
2108 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2109 			    KM_SLEEP) == 0);
2110 		}
2111 
2112 		nvlist_free(spa->spa_load_info);
2113 		spa->spa_load_info = fnvlist_alloc();
2114 
2115 		gethrestime(&spa->spa_loaded_ts);
2116 		error = spa_load_impl(spa, pool_guid, config, state, type,
2117 		    mosconfig, &ereport);
2118 	}
2119 
2120 	/*
2121 	 * Don't count references from objsets that are already closed
2122 	 * and are making their way through the eviction process.
2123 	 */
2124 	spa_evicting_os_wait(spa);
2125 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2126 	if (error) {
2127 		if (error != EEXIST) {
2128 			spa->spa_loaded_ts.tv_sec = 0;
2129 			spa->spa_loaded_ts.tv_nsec = 0;
2130 		}
2131 		if (error != EBADF) {
2132 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2133 		}
2134 	}
2135 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2136 	spa->spa_ena = 0;
2137 
2138 	return (error);
2139 }
2140 
2141 /*
2142  * Load an existing storage pool, using the pool's builtin spa_config as a
2143  * source of configuration information.
2144  */
2145 static int
2146 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2147     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2148     char **ereport)
2149 {
2150 	int error = 0;
2151 	nvlist_t *nvroot = NULL;
2152 	nvlist_t *label;
2153 	vdev_t *rvd;
2154 	uberblock_t *ub = &spa->spa_uberblock;
2155 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2156 	int orig_mode = spa->spa_mode;
2157 	int parse;
2158 	uint64_t obj;
2159 	boolean_t missing_feat_write = B_FALSE;
2160 
2161 	/*
2162 	 * If this is an untrusted config, access the pool in read-only mode.
2163 	 * This prevents things like resilvering recently removed devices.
2164 	 */
2165 	if (!mosconfig)
2166 		spa->spa_mode = FREAD;
2167 
2168 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2169 
2170 	spa->spa_load_state = state;
2171 
2172 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2173 		return (SET_ERROR(EINVAL));
2174 
2175 	parse = (type == SPA_IMPORT_EXISTING ?
2176 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2177 
2178 	/*
2179 	 * Create "The Godfather" zio to hold all async IOs
2180 	 */
2181 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2182 	    KM_SLEEP);
2183 	for (int i = 0; i < max_ncpus; i++) {
2184 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2185 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2186 		    ZIO_FLAG_GODFATHER);
2187 	}
2188 
2189 	/*
2190 	 * Parse the configuration into a vdev tree.  We explicitly set the
2191 	 * value that will be returned by spa_version() since parsing the
2192 	 * configuration requires knowing the version number.
2193 	 */
2194 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2195 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2196 	spa_config_exit(spa, SCL_ALL, FTAG);
2197 
2198 	if (error != 0)
2199 		return (error);
2200 
2201 	ASSERT(spa->spa_root_vdev == rvd);
2202 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2203 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2204 
2205 	if (type != SPA_IMPORT_ASSEMBLE) {
2206 		ASSERT(spa_guid(spa) == pool_guid);
2207 	}
2208 
2209 	/*
2210 	 * Try to open all vdevs, loading each label in the process.
2211 	 */
2212 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2213 	error = vdev_open(rvd);
2214 	spa_config_exit(spa, SCL_ALL, FTAG);
2215 	if (error != 0)
2216 		return (error);
2217 
2218 	/*
2219 	 * We need to validate the vdev labels against the configuration that
2220 	 * we have in hand, which is dependent on the setting of mosconfig. If
2221 	 * mosconfig is true then we're validating the vdev labels based on
2222 	 * that config.  Otherwise, we're validating against the cached config
2223 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2224 	 * later we will recursively call spa_load() and validate against
2225 	 * the vdev config.
2226 	 *
2227 	 * If we're assembling a new pool that's been split off from an
2228 	 * existing pool, the labels haven't yet been updated so we skip
2229 	 * validation for now.
2230 	 */
2231 	if (type != SPA_IMPORT_ASSEMBLE) {
2232 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2233 		error = vdev_validate(rvd, mosconfig);
2234 		spa_config_exit(spa, SCL_ALL, FTAG);
2235 
2236 		if (error != 0)
2237 			return (error);
2238 
2239 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2240 			return (SET_ERROR(ENXIO));
2241 	}
2242 
2243 	/*
2244 	 * Find the best uberblock.
2245 	 */
2246 	vdev_uberblock_load(rvd, ub, &label);
2247 
2248 	/*
2249 	 * If we weren't able to find a single valid uberblock, return failure.
2250 	 */
2251 	if (ub->ub_txg == 0) {
2252 		nvlist_free(label);
2253 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2254 	}
2255 
2256 	/*
2257 	 * If the pool has an unsupported version we can't open it.
2258 	 */
2259 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2260 		nvlist_free(label);
2261 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2262 	}
2263 
2264 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2265 		nvlist_t *features;
2266 
2267 		/*
2268 		 * If we weren't able to find what's necessary for reading the
2269 		 * MOS in the label, return failure.
2270 		 */
2271 		if (label == NULL || nvlist_lookup_nvlist(label,
2272 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2273 			nvlist_free(label);
2274 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2275 			    ENXIO));
2276 		}
2277 
2278 		/*
2279 		 * Update our in-core representation with the definitive values
2280 		 * from the label.
2281 		 */
2282 		nvlist_free(spa->spa_label_features);
2283 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2284 	}
2285 
2286 	nvlist_free(label);
2287 
2288 	/*
2289 	 * Look through entries in the label nvlist's features_for_read. If
2290 	 * there is a feature listed there which we don't understand then we
2291 	 * cannot open a pool.
2292 	 */
2293 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2294 		nvlist_t *unsup_feat;
2295 
2296 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2297 		    0);
2298 
2299 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2300 		    NULL); nvp != NULL;
2301 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2302 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2303 				VERIFY(nvlist_add_string(unsup_feat,
2304 				    nvpair_name(nvp), "") == 0);
2305 			}
2306 		}
2307 
2308 		if (!nvlist_empty(unsup_feat)) {
2309 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2310 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2311 			nvlist_free(unsup_feat);
2312 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2313 			    ENOTSUP));
2314 		}
2315 
2316 		nvlist_free(unsup_feat);
2317 	}
2318 
2319 	/*
2320 	 * If the vdev guid sum doesn't match the uberblock, we have an
2321 	 * incomplete configuration.  We first check to see if the pool
2322 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2323 	 * If it is, defer the vdev_guid_sum check till later so we
2324 	 * can handle missing vdevs.
2325 	 */
2326 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2327 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2328 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2329 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2330 
2331 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2332 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2333 		spa_try_repair(spa, config);
2334 		spa_config_exit(spa, SCL_ALL, FTAG);
2335 		nvlist_free(spa->spa_config_splitting);
2336 		spa->spa_config_splitting = NULL;
2337 	}
2338 
2339 	/*
2340 	 * Initialize internal SPA structures.
2341 	 */
2342 	spa->spa_state = POOL_STATE_ACTIVE;
2343 	spa->spa_ubsync = spa->spa_uberblock;
2344 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2345 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2346 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2347 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2348 	spa->spa_claim_max_txg = spa->spa_first_txg;
2349 	spa->spa_prev_software_version = ub->ub_software_version;
2350 
2351 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2352 	if (error)
2353 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2354 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2355 
2356 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2357 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2358 
2359 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2360 		boolean_t missing_feat_read = B_FALSE;
2361 		nvlist_t *unsup_feat, *enabled_feat;
2362 
2363 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2364 		    &spa->spa_feat_for_read_obj) != 0) {
2365 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2366 		}
2367 
2368 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2369 		    &spa->spa_feat_for_write_obj) != 0) {
2370 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2371 		}
2372 
2373 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2374 		    &spa->spa_feat_desc_obj) != 0) {
2375 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2376 		}
2377 
2378 		enabled_feat = fnvlist_alloc();
2379 		unsup_feat = fnvlist_alloc();
2380 
2381 		if (!spa_features_check(spa, B_FALSE,
2382 		    unsup_feat, enabled_feat))
2383 			missing_feat_read = B_TRUE;
2384 
2385 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2386 			if (!spa_features_check(spa, B_TRUE,
2387 			    unsup_feat, enabled_feat)) {
2388 				missing_feat_write = B_TRUE;
2389 			}
2390 		}
2391 
2392 		fnvlist_add_nvlist(spa->spa_load_info,
2393 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2394 
2395 		if (!nvlist_empty(unsup_feat)) {
2396 			fnvlist_add_nvlist(spa->spa_load_info,
2397 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2398 		}
2399 
2400 		fnvlist_free(enabled_feat);
2401 		fnvlist_free(unsup_feat);
2402 
2403 		if (!missing_feat_read) {
2404 			fnvlist_add_boolean(spa->spa_load_info,
2405 			    ZPOOL_CONFIG_CAN_RDONLY);
2406 		}
2407 
2408 		/*
2409 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2410 		 * twofold: to determine whether the pool is available for
2411 		 * import in read-write mode and (if it is not) whether the
2412 		 * pool is available for import in read-only mode. If the pool
2413 		 * is available for import in read-write mode, it is displayed
2414 		 * as available in userland; if it is not available for import
2415 		 * in read-only mode, it is displayed as unavailable in
2416 		 * userland. If the pool is available for import in read-only
2417 		 * mode but not read-write mode, it is displayed as unavailable
2418 		 * in userland with a special note that the pool is actually
2419 		 * available for open in read-only mode.
2420 		 *
2421 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2422 		 * missing a feature for write, we must first determine whether
2423 		 * the pool can be opened read-only before returning to
2424 		 * userland in order to know whether to display the
2425 		 * abovementioned note.
2426 		 */
2427 		if (missing_feat_read || (missing_feat_write &&
2428 		    spa_writeable(spa))) {
2429 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2430 			    ENOTSUP));
2431 		}
2432 
2433 		/*
2434 		 * Load refcounts for ZFS features from disk into an in-memory
2435 		 * cache during SPA initialization.
2436 		 */
2437 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2438 			uint64_t refcount;
2439 
2440 			error = feature_get_refcount_from_disk(spa,
2441 			    &spa_feature_table[i], &refcount);
2442 			if (error == 0) {
2443 				spa->spa_feat_refcount_cache[i] = refcount;
2444 			} else if (error == ENOTSUP) {
2445 				spa->spa_feat_refcount_cache[i] =
2446 				    SPA_FEATURE_DISABLED;
2447 			} else {
2448 				return (spa_vdev_err(rvd,
2449 				    VDEV_AUX_CORRUPT_DATA, EIO));
2450 			}
2451 		}
2452 	}
2453 
2454 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2455 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2456 		    &spa->spa_feat_enabled_txg_obj) != 0)
2457 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2458 	}
2459 
2460 	spa->spa_is_initializing = B_TRUE;
2461 	error = dsl_pool_open(spa->spa_dsl_pool);
2462 	spa->spa_is_initializing = B_FALSE;
2463 	if (error != 0)
2464 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 
2466 	if (!mosconfig) {
2467 		uint64_t hostid;
2468 		nvlist_t *policy = NULL, *nvconfig;
2469 
2470 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2471 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2472 
2473 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2474 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2475 			char *hostname;
2476 			unsigned long myhostid = 0;
2477 
2478 			VERIFY(nvlist_lookup_string(nvconfig,
2479 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2480 
2481 #ifdef	_KERNEL
2482 			myhostid = zone_get_hostid(NULL);
2483 #else	/* _KERNEL */
2484 			/*
2485 			 * We're emulating the system's hostid in userland, so
2486 			 * we can't use zone_get_hostid().
2487 			 */
2488 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2489 #endif	/* _KERNEL */
2490 			if (hostid != 0 && myhostid != 0 &&
2491 			    hostid != myhostid) {
2492 				nvlist_free(nvconfig);
2493 				cmn_err(CE_WARN, "pool '%s' could not be "
2494 				    "loaded as it was last accessed by "
2495 				    "another system (host: %s hostid: 0x%lx). "
2496 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2497 				    spa_name(spa), hostname,
2498 				    (unsigned long)hostid);
2499 				return (SET_ERROR(EBADF));
2500 			}
2501 		}
2502 		if (nvlist_lookup_nvlist(spa->spa_config,
2503 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2504 			VERIFY(nvlist_add_nvlist(nvconfig,
2505 			    ZPOOL_REWIND_POLICY, policy) == 0);
2506 
2507 		spa_config_set(spa, nvconfig);
2508 		spa_unload(spa);
2509 		spa_deactivate(spa);
2510 		spa_activate(spa, orig_mode);
2511 
2512 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2513 	}
2514 
2515 	/* Grab the secret checksum salt from the MOS. */
2516 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2517 	    DMU_POOL_CHECKSUM_SALT, 1,
2518 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2519 	    spa->spa_cksum_salt.zcs_bytes);
2520 	if (error == ENOENT) {
2521 		/* Generate a new salt for subsequent use */
2522 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2523 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2524 	} else if (error != 0) {
2525 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2526 	}
2527 
2528 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2529 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2531 	if (error != 0)
2532 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2533 
2534 	/*
2535 	 * Load the bit that tells us to use the new accounting function
2536 	 * (raid-z deflation).  If we have an older pool, this will not
2537 	 * be present.
2538 	 */
2539 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2540 	if (error != 0 && error != ENOENT)
2541 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2542 
2543 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2544 	    &spa->spa_creation_version);
2545 	if (error != 0 && error != ENOENT)
2546 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2547 
2548 	/*
2549 	 * Load the persistent error log.  If we have an older pool, this will
2550 	 * not be present.
2551 	 */
2552 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2553 	if (error != 0 && error != ENOENT)
2554 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2555 
2556 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2557 	    &spa->spa_errlog_scrub);
2558 	if (error != 0 && error != ENOENT)
2559 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2560 
2561 	/*
2562 	 * Load the history object.  If we have an older pool, this
2563 	 * will not be present.
2564 	 */
2565 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2566 	if (error != 0 && error != ENOENT)
2567 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2568 
2569 	/*
2570 	 * If we're assembling the pool from the split-off vdevs of
2571 	 * an existing pool, we don't want to attach the spares & cache
2572 	 * devices.
2573 	 */
2574 
2575 	/*
2576 	 * Load any hot spares for this pool.
2577 	 */
2578 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2579 	if (error != 0 && error != ENOENT)
2580 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2581 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2582 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2583 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2584 		    &spa->spa_spares.sav_config) != 0)
2585 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586 
2587 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2588 		spa_load_spares(spa);
2589 		spa_config_exit(spa, SCL_ALL, FTAG);
2590 	} else if (error == 0) {
2591 		spa->spa_spares.sav_sync = B_TRUE;
2592 	}
2593 
2594 	/*
2595 	 * Load any level 2 ARC devices for this pool.
2596 	 */
2597 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2598 	    &spa->spa_l2cache.sav_object);
2599 	if (error != 0 && error != ENOENT)
2600 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2602 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2603 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2604 		    &spa->spa_l2cache.sav_config) != 0)
2605 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2606 
2607 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2608 		spa_load_l2cache(spa);
2609 		spa_config_exit(spa, SCL_ALL, FTAG);
2610 	} else if (error == 0) {
2611 		spa->spa_l2cache.sav_sync = B_TRUE;
2612 	}
2613 
2614 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2615 
2616 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2617 	if (error && error != ENOENT)
2618 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2619 
2620 	if (error == 0) {
2621 		uint64_t autoreplace;
2622 
2623 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2624 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2625 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2626 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2627 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2628 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2629 		    &spa->spa_dedup_ditto);
2630 
2631 		spa->spa_autoreplace = (autoreplace != 0);
2632 	}
2633 
2634 	/*
2635 	 * If the 'autoreplace' property is set, then post a resource notifying
2636 	 * the ZFS DE that it should not issue any faults for unopenable
2637 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2638 	 * unopenable vdevs so that the normal autoreplace handler can take
2639 	 * over.
2640 	 */
2641 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2642 		spa_check_removed(spa->spa_root_vdev);
2643 		/*
2644 		 * For the import case, this is done in spa_import(), because
2645 		 * at this point we're using the spare definitions from
2646 		 * the MOS config, not necessarily from the userland config.
2647 		 */
2648 		if (state != SPA_LOAD_IMPORT) {
2649 			spa_aux_check_removed(&spa->spa_spares);
2650 			spa_aux_check_removed(&spa->spa_l2cache);
2651 		}
2652 	}
2653 
2654 	/*
2655 	 * Load the vdev state for all toplevel vdevs.
2656 	 */
2657 	vdev_load(rvd);
2658 
2659 	/*
2660 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2661 	 */
2662 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2663 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2664 	spa_config_exit(spa, SCL_ALL, FTAG);
2665 
2666 	/*
2667 	 * Load the DDTs (dedup tables).
2668 	 */
2669 	error = ddt_load(spa);
2670 	if (error != 0)
2671 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672 
2673 	spa_update_dspace(spa);
2674 
2675 	/*
2676 	 * Validate the config, using the MOS config to fill in any
2677 	 * information which might be missing.  If we fail to validate
2678 	 * the config then declare the pool unfit for use. If we're
2679 	 * assembling a pool from a split, the log is not transferred
2680 	 * over.
2681 	 */
2682 	if (type != SPA_IMPORT_ASSEMBLE) {
2683 		nvlist_t *nvconfig;
2684 
2685 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2686 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2687 
2688 		if (!spa_config_valid(spa, nvconfig)) {
2689 			nvlist_free(nvconfig);
2690 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2691 			    ENXIO));
2692 		}
2693 		nvlist_free(nvconfig);
2694 
2695 		/*
2696 		 * Now that we've validated the config, check the state of the
2697 		 * root vdev.  If it can't be opened, it indicates one or
2698 		 * more toplevel vdevs are faulted.
2699 		 */
2700 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2701 			return (SET_ERROR(ENXIO));
2702 
2703 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2704 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2705 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2706 		}
2707 	}
2708 
2709 	if (missing_feat_write) {
2710 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2711 
2712 		/*
2713 		 * At this point, we know that we can open the pool in
2714 		 * read-only mode but not read-write mode. We now have enough
2715 		 * information and can return to userland.
2716 		 */
2717 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2718 	}
2719 
2720 	/*
2721 	 * We've successfully opened the pool, verify that we're ready
2722 	 * to start pushing transactions.
2723 	 */
2724 	if (state != SPA_LOAD_TRYIMPORT) {
2725 		if (error = spa_load_verify(spa))
2726 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2727 			    error));
2728 	}
2729 
2730 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2731 	    spa->spa_load_max_txg == UINT64_MAX)) {
2732 		dmu_tx_t *tx;
2733 		int need_update = B_FALSE;
2734 		dsl_pool_t *dp = spa_get_dsl(spa);
2735 
2736 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2737 
2738 		/*
2739 		 * Claim log blocks that haven't been committed yet.
2740 		 * This must all happen in a single txg.
2741 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2742 		 * invoked from zil_claim_log_block()'s i/o done callback.
2743 		 * Price of rollback is that we abandon the log.
2744 		 */
2745 		spa->spa_claiming = B_TRUE;
2746 
2747 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2748 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2749 		    zil_claim, tx, DS_FIND_CHILDREN);
2750 		dmu_tx_commit(tx);
2751 
2752 		spa->spa_claiming = B_FALSE;
2753 
2754 		spa_set_log_state(spa, SPA_LOG_GOOD);
2755 		spa->spa_sync_on = B_TRUE;
2756 		txg_sync_start(spa->spa_dsl_pool);
2757 
2758 		/*
2759 		 * Wait for all claims to sync.  We sync up to the highest
2760 		 * claimed log block birth time so that claimed log blocks
2761 		 * don't appear to be from the future.  spa_claim_max_txg
2762 		 * will have been set for us by either zil_check_log_chain()
2763 		 * (invoked from spa_check_logs()) or zil_claim() above.
2764 		 */
2765 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2766 
2767 		/*
2768 		 * If the config cache is stale, or we have uninitialized
2769 		 * metaslabs (see spa_vdev_add()), then update the config.
2770 		 *
2771 		 * If this is a verbatim import, trust the current
2772 		 * in-core spa_config and update the disk labels.
2773 		 */
2774 		if (config_cache_txg != spa->spa_config_txg ||
2775 		    state == SPA_LOAD_IMPORT ||
2776 		    state == SPA_LOAD_RECOVER ||
2777 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2778 			need_update = B_TRUE;
2779 
2780 		for (int c = 0; c < rvd->vdev_children; c++)
2781 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2782 				need_update = B_TRUE;
2783 
2784 		/*
2785 		 * Update the config cache asychronously in case we're the
2786 		 * root pool, in which case the config cache isn't writable yet.
2787 		 */
2788 		if (need_update)
2789 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2790 
2791 		/*
2792 		 * Check all DTLs to see if anything needs resilvering.
2793 		 */
2794 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2795 		    vdev_resilver_needed(rvd, NULL, NULL))
2796 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2797 
2798 		/*
2799 		 * Log the fact that we booted up (so that we can detect if
2800 		 * we rebooted in the middle of an operation).
2801 		 */
2802 		spa_history_log_version(spa, "open");
2803 
2804 		/*
2805 		 * Delete any inconsistent datasets.
2806 		 */
2807 		(void) dmu_objset_find(spa_name(spa),
2808 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2809 
2810 		/*
2811 		 * Clean up any stale temporary dataset userrefs.
2812 		 */
2813 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2814 	}
2815 
2816 	return (0);
2817 }
2818 
2819 static int
2820 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2821 {
2822 	int mode = spa->spa_mode;
2823 
2824 	spa_unload(spa);
2825 	spa_deactivate(spa);
2826 
2827 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2828 
2829 	spa_activate(spa, mode);
2830 	spa_async_suspend(spa);
2831 
2832 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2833 }
2834 
2835 /*
2836  * If spa_load() fails this function will try loading prior txg's. If
2837  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2838  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2839  * function will not rewind the pool and will return the same error as
2840  * spa_load().
2841  */
2842 static int
2843 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2844     uint64_t max_request, int rewind_flags)
2845 {
2846 	nvlist_t *loadinfo = NULL;
2847 	nvlist_t *config = NULL;
2848 	int load_error, rewind_error;
2849 	uint64_t safe_rewind_txg;
2850 	uint64_t min_txg;
2851 
2852 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2853 		spa->spa_load_max_txg = spa->spa_load_txg;
2854 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2855 	} else {
2856 		spa->spa_load_max_txg = max_request;
2857 		if (max_request != UINT64_MAX)
2858 			spa->spa_extreme_rewind = B_TRUE;
2859 	}
2860 
2861 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2862 	    mosconfig);
2863 	if (load_error == 0)
2864 		return (0);
2865 
2866 	if (spa->spa_root_vdev != NULL)
2867 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2868 
2869 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2870 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2871 
2872 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2873 		nvlist_free(config);
2874 		return (load_error);
2875 	}
2876 
2877 	if (state == SPA_LOAD_RECOVER) {
2878 		/* Price of rolling back is discarding txgs, including log */
2879 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2880 	} else {
2881 		/*
2882 		 * If we aren't rolling back save the load info from our first
2883 		 * import attempt so that we can restore it after attempting
2884 		 * to rewind.
2885 		 */
2886 		loadinfo = spa->spa_load_info;
2887 		spa->spa_load_info = fnvlist_alloc();
2888 	}
2889 
2890 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2891 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2892 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2893 	    TXG_INITIAL : safe_rewind_txg;
2894 
2895 	/*
2896 	 * Continue as long as we're finding errors, we're still within
2897 	 * the acceptable rewind range, and we're still finding uberblocks
2898 	 */
2899 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2900 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2901 		if (spa->spa_load_max_txg < safe_rewind_txg)
2902 			spa->spa_extreme_rewind = B_TRUE;
2903 		rewind_error = spa_load_retry(spa, state, mosconfig);
2904 	}
2905 
2906 	spa->spa_extreme_rewind = B_FALSE;
2907 	spa->spa_load_max_txg = UINT64_MAX;
2908 
2909 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2910 		spa_config_set(spa, config);
2911 
2912 	if (state == SPA_LOAD_RECOVER) {
2913 		ASSERT3P(loadinfo, ==, NULL);
2914 		return (rewind_error);
2915 	} else {
2916 		/* Store the rewind info as part of the initial load info */
2917 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2918 		    spa->spa_load_info);
2919 
2920 		/* Restore the initial load info */
2921 		fnvlist_free(spa->spa_load_info);
2922 		spa->spa_load_info = loadinfo;
2923 
2924 		return (load_error);
2925 	}
2926 }
2927 
2928 /*
2929  * Pool Open/Import
2930  *
2931  * The import case is identical to an open except that the configuration is sent
2932  * down from userland, instead of grabbed from the configuration cache.  For the
2933  * case of an open, the pool configuration will exist in the
2934  * POOL_STATE_UNINITIALIZED state.
2935  *
2936  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2937  * the same time open the pool, without having to keep around the spa_t in some
2938  * ambiguous state.
2939  */
2940 static int
2941 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2942     nvlist_t **config)
2943 {
2944 	spa_t *spa;
2945 	spa_load_state_t state = SPA_LOAD_OPEN;
2946 	int error;
2947 	int locked = B_FALSE;
2948 
2949 	*spapp = NULL;
2950 
2951 	/*
2952 	 * As disgusting as this is, we need to support recursive calls to this
2953 	 * function because dsl_dir_open() is called during spa_load(), and ends
2954 	 * up calling spa_open() again.  The real fix is to figure out how to
2955 	 * avoid dsl_dir_open() calling this in the first place.
2956 	 */
2957 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2958 		mutex_enter(&spa_namespace_lock);
2959 		locked = B_TRUE;
2960 	}
2961 
2962 	if ((spa = spa_lookup(pool)) == NULL) {
2963 		if (locked)
2964 			mutex_exit(&spa_namespace_lock);
2965 		return (SET_ERROR(ENOENT));
2966 	}
2967 
2968 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2969 		zpool_rewind_policy_t policy;
2970 
2971 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2972 		    &policy);
2973 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2974 			state = SPA_LOAD_RECOVER;
2975 
2976 		spa_activate(spa, spa_mode_global);
2977 
2978 		if (state != SPA_LOAD_RECOVER)
2979 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2980 
2981 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2982 		    policy.zrp_request);
2983 
2984 		if (error == EBADF) {
2985 			/*
2986 			 * If vdev_validate() returns failure (indicated by
2987 			 * EBADF), it indicates that one of the vdevs indicates
2988 			 * that the pool has been exported or destroyed.  If
2989 			 * this is the case, the config cache is out of sync and
2990 			 * we should remove the pool from the namespace.
2991 			 */
2992 			spa_unload(spa);
2993 			spa_deactivate(spa);
2994 			spa_config_sync(spa, B_TRUE, B_TRUE);
2995 			spa_remove(spa);
2996 			if (locked)
2997 				mutex_exit(&spa_namespace_lock);
2998 			return (SET_ERROR(ENOENT));
2999 		}
3000 
3001 		if (error) {
3002 			/*
3003 			 * We can't open the pool, but we still have useful
3004 			 * information: the state of each vdev after the
3005 			 * attempted vdev_open().  Return this to the user.
3006 			 */
3007 			if (config != NULL && spa->spa_config) {
3008 				VERIFY(nvlist_dup(spa->spa_config, config,
3009 				    KM_SLEEP) == 0);
3010 				VERIFY(nvlist_add_nvlist(*config,
3011 				    ZPOOL_CONFIG_LOAD_INFO,
3012 				    spa->spa_load_info) == 0);
3013 			}
3014 			spa_unload(spa);
3015 			spa_deactivate(spa);
3016 			spa->spa_last_open_failed = error;
3017 			if (locked)
3018 				mutex_exit(&spa_namespace_lock);
3019 			*spapp = NULL;
3020 			return (error);
3021 		}
3022 	}
3023 
3024 	spa_open_ref(spa, tag);
3025 
3026 	if (config != NULL)
3027 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3028 
3029 	/*
3030 	 * If we've recovered the pool, pass back any information we
3031 	 * gathered while doing the load.
3032 	 */
3033 	if (state == SPA_LOAD_RECOVER) {
3034 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3035 		    spa->spa_load_info) == 0);
3036 	}
3037 
3038 	if (locked) {
3039 		spa->spa_last_open_failed = 0;
3040 		spa->spa_last_ubsync_txg = 0;
3041 		spa->spa_load_txg = 0;
3042 		mutex_exit(&spa_namespace_lock);
3043 	}
3044 
3045 	*spapp = spa;
3046 
3047 	return (0);
3048 }
3049 
3050 int
3051 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3052     nvlist_t **config)
3053 {
3054 	return (spa_open_common(name, spapp, tag, policy, config));
3055 }
3056 
3057 int
3058 spa_open(const char *name, spa_t **spapp, void *tag)
3059 {
3060 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3061 }
3062 
3063 /*
3064  * Lookup the given spa_t, incrementing the inject count in the process,
3065  * preventing it from being exported or destroyed.
3066  */
3067 spa_t *
3068 spa_inject_addref(char *name)
3069 {
3070 	spa_t *spa;
3071 
3072 	mutex_enter(&spa_namespace_lock);
3073 	if ((spa = spa_lookup(name)) == NULL) {
3074 		mutex_exit(&spa_namespace_lock);
3075 		return (NULL);
3076 	}
3077 	spa->spa_inject_ref++;
3078 	mutex_exit(&spa_namespace_lock);
3079 
3080 	return (spa);
3081 }
3082 
3083 void
3084 spa_inject_delref(spa_t *spa)
3085 {
3086 	mutex_enter(&spa_namespace_lock);
3087 	spa->spa_inject_ref--;
3088 	mutex_exit(&spa_namespace_lock);
3089 }
3090 
3091 /*
3092  * Add spares device information to the nvlist.
3093  */
3094 static void
3095 spa_add_spares(spa_t *spa, nvlist_t *config)
3096 {
3097 	nvlist_t **spares;
3098 	uint_t i, nspares;
3099 	nvlist_t *nvroot;
3100 	uint64_t guid;
3101 	vdev_stat_t *vs;
3102 	uint_t vsc;
3103 	uint64_t pool;
3104 
3105 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3106 
3107 	if (spa->spa_spares.sav_count == 0)
3108 		return;
3109 
3110 	VERIFY(nvlist_lookup_nvlist(config,
3111 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3112 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3113 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3114 	if (nspares != 0) {
3115 		VERIFY(nvlist_add_nvlist_array(nvroot,
3116 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3117 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3118 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3119 
3120 		/*
3121 		 * Go through and find any spares which have since been
3122 		 * repurposed as an active spare.  If this is the case, update
3123 		 * their status appropriately.
3124 		 */
3125 		for (i = 0; i < nspares; i++) {
3126 			VERIFY(nvlist_lookup_uint64(spares[i],
3127 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3128 			if (spa_spare_exists(guid, &pool, NULL) &&
3129 			    pool != 0ULL) {
3130 				VERIFY(nvlist_lookup_uint64_array(
3131 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3132 				    (uint64_t **)&vs, &vsc) == 0);
3133 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3134 				vs->vs_aux = VDEV_AUX_SPARED;
3135 			}
3136 		}
3137 	}
3138 }
3139 
3140 /*
3141  * Add l2cache device information to the nvlist, including vdev stats.
3142  */
3143 static void
3144 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3145 {
3146 	nvlist_t **l2cache;
3147 	uint_t i, j, nl2cache;
3148 	nvlist_t *nvroot;
3149 	uint64_t guid;
3150 	vdev_t *vd;
3151 	vdev_stat_t *vs;
3152 	uint_t vsc;
3153 
3154 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3155 
3156 	if (spa->spa_l2cache.sav_count == 0)
3157 		return;
3158 
3159 	VERIFY(nvlist_lookup_nvlist(config,
3160 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3161 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3162 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3163 	if (nl2cache != 0) {
3164 		VERIFY(nvlist_add_nvlist_array(nvroot,
3165 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3166 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3167 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3168 
3169 		/*
3170 		 * Update level 2 cache device stats.
3171 		 */
3172 
3173 		for (i = 0; i < nl2cache; i++) {
3174 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3175 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3176 
3177 			vd = NULL;
3178 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3179 				if (guid ==
3180 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3181 					vd = spa->spa_l2cache.sav_vdevs[j];
3182 					break;
3183 				}
3184 			}
3185 			ASSERT(vd != NULL);
3186 
3187 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3188 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3189 			    == 0);
3190 			vdev_get_stats(vd, vs);
3191 		}
3192 	}
3193 }
3194 
3195 static void
3196 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3197 {
3198 	nvlist_t *features;
3199 	zap_cursor_t zc;
3200 	zap_attribute_t za;
3201 
3202 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3203 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3204 
3205 	if (spa->spa_feat_for_read_obj != 0) {
3206 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3207 		    spa->spa_feat_for_read_obj);
3208 		    zap_cursor_retrieve(&zc, &za) == 0;
3209 		    zap_cursor_advance(&zc)) {
3210 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3211 			    za.za_num_integers == 1);
3212 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3213 			    za.za_first_integer));
3214 		}
3215 		zap_cursor_fini(&zc);
3216 	}
3217 
3218 	if (spa->spa_feat_for_write_obj != 0) {
3219 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3220 		    spa->spa_feat_for_write_obj);
3221 		    zap_cursor_retrieve(&zc, &za) == 0;
3222 		    zap_cursor_advance(&zc)) {
3223 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3224 			    za.za_num_integers == 1);
3225 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3226 			    za.za_first_integer));
3227 		}
3228 		zap_cursor_fini(&zc);
3229 	}
3230 
3231 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3232 	    features) == 0);
3233 	nvlist_free(features);
3234 }
3235 
3236 int
3237 spa_get_stats(const char *name, nvlist_t **config,
3238     char *altroot, size_t buflen)
3239 {
3240 	int error;
3241 	spa_t *spa;
3242 
3243 	*config = NULL;
3244 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3245 
3246 	if (spa != NULL) {
3247 		/*
3248 		 * This still leaves a window of inconsistency where the spares
3249 		 * or l2cache devices could change and the config would be
3250 		 * self-inconsistent.
3251 		 */
3252 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3253 
3254 		if (*config != NULL) {
3255 			uint64_t loadtimes[2];
3256 
3257 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3258 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3259 			VERIFY(nvlist_add_uint64_array(*config,
3260 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3261 
3262 			VERIFY(nvlist_add_uint64(*config,
3263 			    ZPOOL_CONFIG_ERRCOUNT,
3264 			    spa_get_errlog_size(spa)) == 0);
3265 
3266 			if (spa_suspended(spa))
3267 				VERIFY(nvlist_add_uint64(*config,
3268 				    ZPOOL_CONFIG_SUSPENDED,
3269 				    spa->spa_failmode) == 0);
3270 
3271 			spa_add_spares(spa, *config);
3272 			spa_add_l2cache(spa, *config);
3273 			spa_add_feature_stats(spa, *config);
3274 		}
3275 	}
3276 
3277 	/*
3278 	 * We want to get the alternate root even for faulted pools, so we cheat
3279 	 * and call spa_lookup() directly.
3280 	 */
3281 	if (altroot) {
3282 		if (spa == NULL) {
3283 			mutex_enter(&spa_namespace_lock);
3284 			spa = spa_lookup(name);
3285 			if (spa)
3286 				spa_altroot(spa, altroot, buflen);
3287 			else
3288 				altroot[0] = '\0';
3289 			spa = NULL;
3290 			mutex_exit(&spa_namespace_lock);
3291 		} else {
3292 			spa_altroot(spa, altroot, buflen);
3293 		}
3294 	}
3295 
3296 	if (spa != NULL) {
3297 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3298 		spa_close(spa, FTAG);
3299 	}
3300 
3301 	return (error);
3302 }
3303 
3304 /*
3305  * Validate that the auxiliary device array is well formed.  We must have an
3306  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3307  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3308  * specified, as long as they are well-formed.
3309  */
3310 static int
3311 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3312     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3313     vdev_labeltype_t label)
3314 {
3315 	nvlist_t **dev;
3316 	uint_t i, ndev;
3317 	vdev_t *vd;
3318 	int error;
3319 
3320 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3321 
3322 	/*
3323 	 * It's acceptable to have no devs specified.
3324 	 */
3325 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3326 		return (0);
3327 
3328 	if (ndev == 0)
3329 		return (SET_ERROR(EINVAL));
3330 
3331 	/*
3332 	 * Make sure the pool is formatted with a version that supports this
3333 	 * device type.
3334 	 */
3335 	if (spa_version(spa) < version)
3336 		return (SET_ERROR(ENOTSUP));
3337 
3338 	/*
3339 	 * Set the pending device list so we correctly handle device in-use
3340 	 * checking.
3341 	 */
3342 	sav->sav_pending = dev;
3343 	sav->sav_npending = ndev;
3344 
3345 	for (i = 0; i < ndev; i++) {
3346 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3347 		    mode)) != 0)
3348 			goto out;
3349 
3350 		if (!vd->vdev_ops->vdev_op_leaf) {
3351 			vdev_free(vd);
3352 			error = SET_ERROR(EINVAL);
3353 			goto out;
3354 		}
3355 
3356 		/*
3357 		 * The L2ARC currently only supports disk devices in
3358 		 * kernel context.  For user-level testing, we allow it.
3359 		 */
3360 #ifdef _KERNEL
3361 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3362 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3363 			error = SET_ERROR(ENOTBLK);
3364 			vdev_free(vd);
3365 			goto out;
3366 		}
3367 #endif
3368 		vd->vdev_top = vd;
3369 
3370 		if ((error = vdev_open(vd)) == 0 &&
3371 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3372 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3373 			    vd->vdev_guid) == 0);
3374 		}
3375 
3376 		vdev_free(vd);
3377 
3378 		if (error &&
3379 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3380 			goto out;
3381 		else
3382 			error = 0;
3383 	}
3384 
3385 out:
3386 	sav->sav_pending = NULL;
3387 	sav->sav_npending = 0;
3388 	return (error);
3389 }
3390 
3391 static int
3392 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3393 {
3394 	int error;
3395 
3396 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3397 
3398 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3399 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3400 	    VDEV_LABEL_SPARE)) != 0) {
3401 		return (error);
3402 	}
3403 
3404 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3405 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3406 	    VDEV_LABEL_L2CACHE));
3407 }
3408 
3409 static void
3410 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3411     const char *config)
3412 {
3413 	int i;
3414 
3415 	if (sav->sav_config != NULL) {
3416 		nvlist_t **olddevs;
3417 		uint_t oldndevs;
3418 		nvlist_t **newdevs;
3419 
3420 		/*
3421 		 * Generate new dev list by concatentating with the
3422 		 * current dev list.
3423 		 */
3424 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3425 		    &olddevs, &oldndevs) == 0);
3426 
3427 		newdevs = kmem_alloc(sizeof (void *) *
3428 		    (ndevs + oldndevs), KM_SLEEP);
3429 		for (i = 0; i < oldndevs; i++)
3430 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3431 			    KM_SLEEP) == 0);
3432 		for (i = 0; i < ndevs; i++)
3433 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3434 			    KM_SLEEP) == 0);
3435 
3436 		VERIFY(nvlist_remove(sav->sav_config, config,
3437 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3438 
3439 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3440 		    config, newdevs, ndevs + oldndevs) == 0);
3441 		for (i = 0; i < oldndevs + ndevs; i++)
3442 			nvlist_free(newdevs[i]);
3443 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3444 	} else {
3445 		/*
3446 		 * Generate a new dev list.
3447 		 */
3448 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3449 		    KM_SLEEP) == 0);
3450 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3451 		    devs, ndevs) == 0);
3452 	}
3453 }
3454 
3455 /*
3456  * Stop and drop level 2 ARC devices
3457  */
3458 void
3459 spa_l2cache_drop(spa_t *spa)
3460 {
3461 	vdev_t *vd;
3462 	int i;
3463 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3464 
3465 	for (i = 0; i < sav->sav_count; i++) {
3466 		uint64_t pool;
3467 
3468 		vd = sav->sav_vdevs[i];
3469 		ASSERT(vd != NULL);
3470 
3471 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3472 		    pool != 0ULL && l2arc_vdev_present(vd))
3473 			l2arc_remove_vdev(vd);
3474 	}
3475 }
3476 
3477 /*
3478  * Pool Creation
3479  */
3480 int
3481 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3482     nvlist_t *zplprops)
3483 {
3484 	spa_t *spa;
3485 	char *altroot = NULL;
3486 	vdev_t *rvd;
3487 	dsl_pool_t *dp;
3488 	dmu_tx_t *tx;
3489 	int error = 0;
3490 	uint64_t txg = TXG_INITIAL;
3491 	nvlist_t **spares, **l2cache;
3492 	uint_t nspares, nl2cache;
3493 	uint64_t version, obj;
3494 	boolean_t has_features;
3495 
3496 	/*
3497 	 * If this pool already exists, return failure.
3498 	 */
3499 	mutex_enter(&spa_namespace_lock);
3500 	if (spa_lookup(pool) != NULL) {
3501 		mutex_exit(&spa_namespace_lock);
3502 		return (SET_ERROR(EEXIST));
3503 	}
3504 
3505 	/*
3506 	 * Allocate a new spa_t structure.
3507 	 */
3508 	(void) nvlist_lookup_string(props,
3509 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3510 	spa = spa_add(pool, NULL, altroot);
3511 	spa_activate(spa, spa_mode_global);
3512 
3513 	if (props && (error = spa_prop_validate(spa, props))) {
3514 		spa_deactivate(spa);
3515 		spa_remove(spa);
3516 		mutex_exit(&spa_namespace_lock);
3517 		return (error);
3518 	}
3519 
3520 	has_features = B_FALSE;
3521 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3522 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3523 		if (zpool_prop_feature(nvpair_name(elem)))
3524 			has_features = B_TRUE;
3525 	}
3526 
3527 	if (has_features || nvlist_lookup_uint64(props,
3528 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3529 		version = SPA_VERSION;
3530 	}
3531 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3532 
3533 	spa->spa_first_txg = txg;
3534 	spa->spa_uberblock.ub_txg = txg - 1;
3535 	spa->spa_uberblock.ub_version = version;
3536 	spa->spa_ubsync = spa->spa_uberblock;
3537 
3538 	/*
3539 	 * Create "The Godfather" zio to hold all async IOs
3540 	 */
3541 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3542 	    KM_SLEEP);
3543 	for (int i = 0; i < max_ncpus; i++) {
3544 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3545 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3546 		    ZIO_FLAG_GODFATHER);
3547 	}
3548 
3549 	/*
3550 	 * Create the root vdev.
3551 	 */
3552 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3553 
3554 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3555 
3556 	ASSERT(error != 0 || rvd != NULL);
3557 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3558 
3559 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3560 		error = SET_ERROR(EINVAL);
3561 
3562 	if (error == 0 &&
3563 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3564 	    (error = spa_validate_aux(spa, nvroot, txg,
3565 	    VDEV_ALLOC_ADD)) == 0) {
3566 		for (int c = 0; c < rvd->vdev_children; c++) {
3567 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3568 			vdev_expand(rvd->vdev_child[c], txg);
3569 		}
3570 	}
3571 
3572 	spa_config_exit(spa, SCL_ALL, FTAG);
3573 
3574 	if (error != 0) {
3575 		spa_unload(spa);
3576 		spa_deactivate(spa);
3577 		spa_remove(spa);
3578 		mutex_exit(&spa_namespace_lock);
3579 		return (error);
3580 	}
3581 
3582 	/*
3583 	 * Get the list of spares, if specified.
3584 	 */
3585 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3586 	    &spares, &nspares) == 0) {
3587 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3588 		    KM_SLEEP) == 0);
3589 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3590 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3591 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3592 		spa_load_spares(spa);
3593 		spa_config_exit(spa, SCL_ALL, FTAG);
3594 		spa->spa_spares.sav_sync = B_TRUE;
3595 	}
3596 
3597 	/*
3598 	 * Get the list of level 2 cache devices, if specified.
3599 	 */
3600 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3601 	    &l2cache, &nl2cache) == 0) {
3602 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3603 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3604 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3605 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3606 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3607 		spa_load_l2cache(spa);
3608 		spa_config_exit(spa, SCL_ALL, FTAG);
3609 		spa->spa_l2cache.sav_sync = B_TRUE;
3610 	}
3611 
3612 	spa->spa_is_initializing = B_TRUE;
3613 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3614 	spa->spa_meta_objset = dp->dp_meta_objset;
3615 	spa->spa_is_initializing = B_FALSE;
3616 
3617 	/*
3618 	 * Create DDTs (dedup tables).
3619 	 */
3620 	ddt_create(spa);
3621 
3622 	spa_update_dspace(spa);
3623 
3624 	tx = dmu_tx_create_assigned(dp, txg);
3625 
3626 	/*
3627 	 * Create the pool config object.
3628 	 */
3629 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3630 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3631 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3632 
3633 	if (zap_add(spa->spa_meta_objset,
3634 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3635 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3636 		cmn_err(CE_PANIC, "failed to add pool config");
3637 	}
3638 
3639 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3640 		spa_feature_create_zap_objects(spa, tx);
3641 
3642 	if (zap_add(spa->spa_meta_objset,
3643 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3644 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3645 		cmn_err(CE_PANIC, "failed to add pool version");
3646 	}
3647 
3648 	/* Newly created pools with the right version are always deflated. */
3649 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3650 		spa->spa_deflate = TRUE;
3651 		if (zap_add(spa->spa_meta_objset,
3652 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3653 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3654 			cmn_err(CE_PANIC, "failed to add deflate");
3655 		}
3656 	}
3657 
3658 	/*
3659 	 * Create the deferred-free bpobj.  Turn off compression
3660 	 * because sync-to-convergence takes longer if the blocksize
3661 	 * keeps changing.
3662 	 */
3663 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3664 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3665 	    ZIO_COMPRESS_OFF, tx);
3666 	if (zap_add(spa->spa_meta_objset,
3667 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3668 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3669 		cmn_err(CE_PANIC, "failed to add bpobj");
3670 	}
3671 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3672 	    spa->spa_meta_objset, obj));
3673 
3674 	/*
3675 	 * Create the pool's history object.
3676 	 */
3677 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3678 		spa_history_create_obj(spa, tx);
3679 
3680 	/*
3681 	 * Generate some random noise for salted checksums to operate on.
3682 	 */
3683 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3684 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3685 
3686 	/*
3687 	 * Set pool properties.
3688 	 */
3689 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3690 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3691 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3692 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3693 
3694 	if (props != NULL) {
3695 		spa_configfile_set(spa, props, B_FALSE);
3696 		spa_sync_props(props, tx);
3697 	}
3698 
3699 	dmu_tx_commit(tx);
3700 
3701 	spa->spa_sync_on = B_TRUE;
3702 	txg_sync_start(spa->spa_dsl_pool);
3703 
3704 	/*
3705 	 * We explicitly wait for the first transaction to complete so that our
3706 	 * bean counters are appropriately updated.
3707 	 */
3708 	txg_wait_synced(spa->spa_dsl_pool, txg);
3709 
3710 	spa_config_sync(spa, B_FALSE, B_TRUE);
3711 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3712 
3713 	spa_history_log_version(spa, "create");
3714 
3715 	/*
3716 	 * Don't count references from objsets that are already closed
3717 	 * and are making their way through the eviction process.
3718 	 */
3719 	spa_evicting_os_wait(spa);
3720 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3721 
3722 	mutex_exit(&spa_namespace_lock);
3723 
3724 	return (0);
3725 }
3726 
3727 #ifdef _KERNEL
3728 /*
3729  * Get the root pool information from the root disk, then import the root pool
3730  * during the system boot up time.
3731  */
3732 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3733 
3734 static nvlist_t *
3735 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3736 {
3737 	nvlist_t *config;
3738 	nvlist_t *nvtop, *nvroot;
3739 	uint64_t pgid;
3740 
3741 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3742 		return (NULL);
3743 
3744 	/*
3745 	 * Add this top-level vdev to the child array.
3746 	 */
3747 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3748 	    &nvtop) == 0);
3749 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3750 	    &pgid) == 0);
3751 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3752 
3753 	/*
3754 	 * Put this pool's top-level vdevs into a root vdev.
3755 	 */
3756 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3757 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3758 	    VDEV_TYPE_ROOT) == 0);
3759 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3760 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3761 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3762 	    &nvtop, 1) == 0);
3763 
3764 	/*
3765 	 * Replace the existing vdev_tree with the new root vdev in
3766 	 * this pool's configuration (remove the old, add the new).
3767 	 */
3768 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3769 	nvlist_free(nvroot);
3770 	return (config);
3771 }
3772 
3773 /*
3774  * Walk the vdev tree and see if we can find a device with "better"
3775  * configuration. A configuration is "better" if the label on that
3776  * device has a more recent txg.
3777  */
3778 static void
3779 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3780 {
3781 	for (int c = 0; c < vd->vdev_children; c++)
3782 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3783 
3784 	if (vd->vdev_ops->vdev_op_leaf) {
3785 		nvlist_t *label;
3786 		uint64_t label_txg;
3787 
3788 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3789 		    &label) != 0)
3790 			return;
3791 
3792 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3793 		    &label_txg) == 0);
3794 
3795 		/*
3796 		 * Do we have a better boot device?
3797 		 */
3798 		if (label_txg > *txg) {
3799 			*txg = label_txg;
3800 			*avd = vd;
3801 		}
3802 		nvlist_free(label);
3803 	}
3804 }
3805 
3806 /*
3807  * Import a root pool.
3808  *
3809  * For x86. devpath_list will consist of devid and/or physpath name of
3810  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3811  * The GRUB "findroot" command will return the vdev we should boot.
3812  *
3813  * For Sparc, devpath_list consists the physpath name of the booting device
3814  * no matter the rootpool is a single device pool or a mirrored pool.
3815  * e.g.
3816  *	"/pci@1f,0/ide@d/disk@0,0:a"
3817  */
3818 int
3819 spa_import_rootpool(char *devpath, char *devid)
3820 {
3821 	spa_t *spa;
3822 	vdev_t *rvd, *bvd, *avd = NULL;
3823 	nvlist_t *config, *nvtop;
3824 	uint64_t guid, txg;
3825 	char *pname;
3826 	int error;
3827 
3828 	/*
3829 	 * Read the label from the boot device and generate a configuration.
3830 	 */
3831 	config = spa_generate_rootconf(devpath, devid, &guid);
3832 #if defined(_OBP) && defined(_KERNEL)
3833 	if (config == NULL) {
3834 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3835 			/* iscsi boot */
3836 			get_iscsi_bootpath_phy(devpath);
3837 			config = spa_generate_rootconf(devpath, devid, &guid);
3838 		}
3839 	}
3840 #endif
3841 	if (config == NULL) {
3842 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3843 		    devpath);
3844 		return (SET_ERROR(EIO));
3845 	}
3846 
3847 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3848 	    &pname) == 0);
3849 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3850 
3851 	mutex_enter(&spa_namespace_lock);
3852 	if ((spa = spa_lookup(pname)) != NULL) {
3853 		/*
3854 		 * Remove the existing root pool from the namespace so that we
3855 		 * can replace it with the correct config we just read in.
3856 		 */
3857 		spa_remove(spa);
3858 	}
3859 
3860 	spa = spa_add(pname, config, NULL);
3861 	spa->spa_is_root = B_TRUE;
3862 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3863 
3864 	/*
3865 	 * Build up a vdev tree based on the boot device's label config.
3866 	 */
3867 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3868 	    &nvtop) == 0);
3869 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3870 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3871 	    VDEV_ALLOC_ROOTPOOL);
3872 	spa_config_exit(spa, SCL_ALL, FTAG);
3873 	if (error) {
3874 		mutex_exit(&spa_namespace_lock);
3875 		nvlist_free(config);
3876 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3877 		    pname);
3878 		return (error);
3879 	}
3880 
3881 	/*
3882 	 * Get the boot vdev.
3883 	 */
3884 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3885 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3886 		    (u_longlong_t)guid);
3887 		error = SET_ERROR(ENOENT);
3888 		goto out;
3889 	}
3890 
3891 	/*
3892 	 * Determine if there is a better boot device.
3893 	 */
3894 	avd = bvd;
3895 	spa_alt_rootvdev(rvd, &avd, &txg);
3896 	if (avd != bvd) {
3897 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3898 		    "try booting from '%s'", avd->vdev_path);
3899 		error = SET_ERROR(EINVAL);
3900 		goto out;
3901 	}
3902 
3903 	/*
3904 	 * If the boot device is part of a spare vdev then ensure that
3905 	 * we're booting off the active spare.
3906 	 */
3907 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3908 	    !bvd->vdev_isspare) {
3909 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3910 		    "try booting from '%s'",
3911 		    bvd->vdev_parent->
3912 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3913 		error = SET_ERROR(EINVAL);
3914 		goto out;
3915 	}
3916 
3917 	error = 0;
3918 out:
3919 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3920 	vdev_free(rvd);
3921 	spa_config_exit(spa, SCL_ALL, FTAG);
3922 	mutex_exit(&spa_namespace_lock);
3923 
3924 	nvlist_free(config);
3925 	return (error);
3926 }
3927 
3928 #endif
3929 
3930 /*
3931  * Import a non-root pool into the system.
3932  */
3933 int
3934 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3935 {
3936 	spa_t *spa;
3937 	char *altroot = NULL;
3938 	spa_load_state_t state = SPA_LOAD_IMPORT;
3939 	zpool_rewind_policy_t policy;
3940 	uint64_t mode = spa_mode_global;
3941 	uint64_t readonly = B_FALSE;
3942 	int error;
3943 	nvlist_t *nvroot;
3944 	nvlist_t **spares, **l2cache;
3945 	uint_t nspares, nl2cache;
3946 
3947 	/*
3948 	 * If a pool with this name exists, return failure.
3949 	 */
3950 	mutex_enter(&spa_namespace_lock);
3951 	if (spa_lookup(pool) != NULL) {
3952 		mutex_exit(&spa_namespace_lock);
3953 		return (SET_ERROR(EEXIST));
3954 	}
3955 
3956 	/*
3957 	 * Create and initialize the spa structure.
3958 	 */
3959 	(void) nvlist_lookup_string(props,
3960 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3961 	(void) nvlist_lookup_uint64(props,
3962 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3963 	if (readonly)
3964 		mode = FREAD;
3965 	spa = spa_add(pool, config, altroot);
3966 	spa->spa_import_flags = flags;
3967 
3968 	/*
3969 	 * Verbatim import - Take a pool and insert it into the namespace
3970 	 * as if it had been loaded at boot.
3971 	 */
3972 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3973 		if (props != NULL)
3974 			spa_configfile_set(spa, props, B_FALSE);
3975 
3976 		spa_config_sync(spa, B_FALSE, B_TRUE);
3977 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
3978 
3979 		mutex_exit(&spa_namespace_lock);
3980 		return (0);
3981 	}
3982 
3983 	spa_activate(spa, mode);
3984 
3985 	/*
3986 	 * Don't start async tasks until we know everything is healthy.
3987 	 */
3988 	spa_async_suspend(spa);
3989 
3990 	zpool_get_rewind_policy(config, &policy);
3991 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3992 		state = SPA_LOAD_RECOVER;
3993 
3994 	/*
3995 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3996 	 * because the user-supplied config is actually the one to trust when
3997 	 * doing an import.
3998 	 */
3999 	if (state != SPA_LOAD_RECOVER)
4000 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4001 
4002 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4003 	    policy.zrp_request);
4004 
4005 	/*
4006 	 * Propagate anything learned while loading the pool and pass it
4007 	 * back to caller (i.e. rewind info, missing devices, etc).
4008 	 */
4009 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4010 	    spa->spa_load_info) == 0);
4011 
4012 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4013 	/*
4014 	 * Toss any existing sparelist, as it doesn't have any validity
4015 	 * anymore, and conflicts with spa_has_spare().
4016 	 */
4017 	if (spa->spa_spares.sav_config) {
4018 		nvlist_free(spa->spa_spares.sav_config);
4019 		spa->spa_spares.sav_config = NULL;
4020 		spa_load_spares(spa);
4021 	}
4022 	if (spa->spa_l2cache.sav_config) {
4023 		nvlist_free(spa->spa_l2cache.sav_config);
4024 		spa->spa_l2cache.sav_config = NULL;
4025 		spa_load_l2cache(spa);
4026 	}
4027 
4028 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4029 	    &nvroot) == 0);
4030 	if (error == 0)
4031 		error = spa_validate_aux(spa, nvroot, -1ULL,
4032 		    VDEV_ALLOC_SPARE);
4033 	if (error == 0)
4034 		error = spa_validate_aux(spa, nvroot, -1ULL,
4035 		    VDEV_ALLOC_L2CACHE);
4036 	spa_config_exit(spa, SCL_ALL, FTAG);
4037 
4038 	if (props != NULL)
4039 		spa_configfile_set(spa, props, B_FALSE);
4040 
4041 	if (error != 0 || (props && spa_writeable(spa) &&
4042 	    (error = spa_prop_set(spa, props)))) {
4043 		spa_unload(spa);
4044 		spa_deactivate(spa);
4045 		spa_remove(spa);
4046 		mutex_exit(&spa_namespace_lock);
4047 		return (error);
4048 	}
4049 
4050 	spa_async_resume(spa);
4051 
4052 	/*
4053 	 * Override any spares and level 2 cache devices as specified by
4054 	 * the user, as these may have correct device names/devids, etc.
4055 	 */
4056 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4057 	    &spares, &nspares) == 0) {
4058 		if (spa->spa_spares.sav_config)
4059 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4060 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4061 		else
4062 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4063 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4064 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4065 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4066 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4067 		spa_load_spares(spa);
4068 		spa_config_exit(spa, SCL_ALL, FTAG);
4069 		spa->spa_spares.sav_sync = B_TRUE;
4070 	}
4071 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4072 	    &l2cache, &nl2cache) == 0) {
4073 		if (spa->spa_l2cache.sav_config)
4074 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4075 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4076 		else
4077 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4078 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4079 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4080 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4081 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4082 		spa_load_l2cache(spa);
4083 		spa_config_exit(spa, SCL_ALL, FTAG);
4084 		spa->spa_l2cache.sav_sync = B_TRUE;
4085 	}
4086 
4087 	/*
4088 	 * Check for any removed devices.
4089 	 */
4090 	if (spa->spa_autoreplace) {
4091 		spa_aux_check_removed(&spa->spa_spares);
4092 		spa_aux_check_removed(&spa->spa_l2cache);
4093 	}
4094 
4095 	if (spa_writeable(spa)) {
4096 		/*
4097 		 * Update the config cache to include the newly-imported pool.
4098 		 */
4099 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4100 	}
4101 
4102 	/*
4103 	 * It's possible that the pool was expanded while it was exported.
4104 	 * We kick off an async task to handle this for us.
4105 	 */
4106 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4107 
4108 	spa_history_log_version(spa, "import");
4109 
4110 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4111 
4112 	mutex_exit(&spa_namespace_lock);
4113 
4114 	return (0);
4115 }
4116 
4117 nvlist_t *
4118 spa_tryimport(nvlist_t *tryconfig)
4119 {
4120 	nvlist_t *config = NULL;
4121 	char *poolname;
4122 	spa_t *spa;
4123 	uint64_t state;
4124 	int error;
4125 
4126 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4127 		return (NULL);
4128 
4129 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4130 		return (NULL);
4131 
4132 	/*
4133 	 * Create and initialize the spa structure.
4134 	 */
4135 	mutex_enter(&spa_namespace_lock);
4136 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4137 	spa_activate(spa, FREAD);
4138 
4139 	/*
4140 	 * Pass off the heavy lifting to spa_load().
4141 	 * Pass TRUE for mosconfig because the user-supplied config
4142 	 * is actually the one to trust when doing an import.
4143 	 */
4144 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4145 
4146 	/*
4147 	 * If 'tryconfig' was at least parsable, return the current config.
4148 	 */
4149 	if (spa->spa_root_vdev != NULL) {
4150 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4151 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4152 		    poolname) == 0);
4153 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4154 		    state) == 0);
4155 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4156 		    spa->spa_uberblock.ub_timestamp) == 0);
4157 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4158 		    spa->spa_load_info) == 0);
4159 
4160 		/*
4161 		 * If the bootfs property exists on this pool then we
4162 		 * copy it out so that external consumers can tell which
4163 		 * pools are bootable.
4164 		 */
4165 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4166 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4167 
4168 			/*
4169 			 * We have to play games with the name since the
4170 			 * pool was opened as TRYIMPORT_NAME.
4171 			 */
4172 			if (dsl_dsobj_to_dsname(spa_name(spa),
4173 			    spa->spa_bootfs, tmpname) == 0) {
4174 				char *cp;
4175 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4176 
4177 				cp = strchr(tmpname, '/');
4178 				if (cp == NULL) {
4179 					(void) strlcpy(dsname, tmpname,
4180 					    MAXPATHLEN);
4181 				} else {
4182 					(void) snprintf(dsname, MAXPATHLEN,
4183 					    "%s/%s", poolname, ++cp);
4184 				}
4185 				VERIFY(nvlist_add_string(config,
4186 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4187 				kmem_free(dsname, MAXPATHLEN);
4188 			}
4189 			kmem_free(tmpname, MAXPATHLEN);
4190 		}
4191 
4192 		/*
4193 		 * Add the list of hot spares and level 2 cache devices.
4194 		 */
4195 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4196 		spa_add_spares(spa, config);
4197 		spa_add_l2cache(spa, config);
4198 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4199 	}
4200 
4201 	spa_unload(spa);
4202 	spa_deactivate(spa);
4203 	spa_remove(spa);
4204 	mutex_exit(&spa_namespace_lock);
4205 
4206 	return (config);
4207 }
4208 
4209 /*
4210  * Pool export/destroy
4211  *
4212  * The act of destroying or exporting a pool is very simple.  We make sure there
4213  * is no more pending I/O and any references to the pool are gone.  Then, we
4214  * update the pool state and sync all the labels to disk, removing the
4215  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4216  * we don't sync the labels or remove the configuration cache.
4217  */
4218 static int
4219 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4220     boolean_t force, boolean_t hardforce)
4221 {
4222 	spa_t *spa;
4223 
4224 	if (oldconfig)
4225 		*oldconfig = NULL;
4226 
4227 	if (!(spa_mode_global & FWRITE))
4228 		return (SET_ERROR(EROFS));
4229 
4230 	mutex_enter(&spa_namespace_lock);
4231 	if ((spa = spa_lookup(pool)) == NULL) {
4232 		mutex_exit(&spa_namespace_lock);
4233 		return (SET_ERROR(ENOENT));
4234 	}
4235 
4236 	/*
4237 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4238 	 * reacquire the namespace lock, and see if we can export.
4239 	 */
4240 	spa_open_ref(spa, FTAG);
4241 	mutex_exit(&spa_namespace_lock);
4242 	spa_async_suspend(spa);
4243 	mutex_enter(&spa_namespace_lock);
4244 	spa_close(spa, FTAG);
4245 
4246 	/*
4247 	 * The pool will be in core if it's openable,
4248 	 * in which case we can modify its state.
4249 	 */
4250 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4251 		/*
4252 		 * Objsets may be open only because they're dirty, so we
4253 		 * have to force it to sync before checking spa_refcnt.
4254 		 */
4255 		txg_wait_synced(spa->spa_dsl_pool, 0);
4256 		spa_evicting_os_wait(spa);
4257 
4258 		/*
4259 		 * A pool cannot be exported or destroyed if there are active
4260 		 * references.  If we are resetting a pool, allow references by
4261 		 * fault injection handlers.
4262 		 */
4263 		if (!spa_refcount_zero(spa) ||
4264 		    (spa->spa_inject_ref != 0 &&
4265 		    new_state != POOL_STATE_UNINITIALIZED)) {
4266 			spa_async_resume(spa);
4267 			mutex_exit(&spa_namespace_lock);
4268 			return (SET_ERROR(EBUSY));
4269 		}
4270 
4271 		/*
4272 		 * A pool cannot be exported if it has an active shared spare.
4273 		 * This is to prevent other pools stealing the active spare
4274 		 * from an exported pool. At user's own will, such pool can
4275 		 * be forcedly exported.
4276 		 */
4277 		if (!force && new_state == POOL_STATE_EXPORTED &&
4278 		    spa_has_active_shared_spare(spa)) {
4279 			spa_async_resume(spa);
4280 			mutex_exit(&spa_namespace_lock);
4281 			return (SET_ERROR(EXDEV));
4282 		}
4283 
4284 		/*
4285 		 * We want this to be reflected on every label,
4286 		 * so mark them all dirty.  spa_unload() will do the
4287 		 * final sync that pushes these changes out.
4288 		 */
4289 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4290 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4291 			spa->spa_state = new_state;
4292 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4293 			    TXG_DEFER_SIZE + 1;
4294 			vdev_config_dirty(spa->spa_root_vdev);
4295 			spa_config_exit(spa, SCL_ALL, FTAG);
4296 		}
4297 	}
4298 
4299 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4300 
4301 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4302 		spa_unload(spa);
4303 		spa_deactivate(spa);
4304 	}
4305 
4306 	if (oldconfig && spa->spa_config)
4307 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4308 
4309 	if (new_state != POOL_STATE_UNINITIALIZED) {
4310 		if (!hardforce)
4311 			spa_config_sync(spa, B_TRUE, B_TRUE);
4312 		spa_remove(spa);
4313 	}
4314 	mutex_exit(&spa_namespace_lock);
4315 
4316 	return (0);
4317 }
4318 
4319 /*
4320  * Destroy a storage pool.
4321  */
4322 int
4323 spa_destroy(char *pool)
4324 {
4325 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4326 	    B_FALSE, B_FALSE));
4327 }
4328 
4329 /*
4330  * Export a storage pool.
4331  */
4332 int
4333 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4334     boolean_t hardforce)
4335 {
4336 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4337 	    force, hardforce));
4338 }
4339 
4340 /*
4341  * Similar to spa_export(), this unloads the spa_t without actually removing it
4342  * from the namespace in any way.
4343  */
4344 int
4345 spa_reset(char *pool)
4346 {
4347 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4348 	    B_FALSE, B_FALSE));
4349 }
4350 
4351 /*
4352  * ==========================================================================
4353  * Device manipulation
4354  * ==========================================================================
4355  */
4356 
4357 /*
4358  * Add a device to a storage pool.
4359  */
4360 int
4361 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4362 {
4363 	uint64_t txg, id;
4364 	int error;
4365 	vdev_t *rvd = spa->spa_root_vdev;
4366 	vdev_t *vd, *tvd;
4367 	nvlist_t **spares, **l2cache;
4368 	uint_t nspares, nl2cache;
4369 
4370 	ASSERT(spa_writeable(spa));
4371 
4372 	txg = spa_vdev_enter(spa);
4373 
4374 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4375 	    VDEV_ALLOC_ADD)) != 0)
4376 		return (spa_vdev_exit(spa, NULL, txg, error));
4377 
4378 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4379 
4380 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4381 	    &nspares) != 0)
4382 		nspares = 0;
4383 
4384 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4385 	    &nl2cache) != 0)
4386 		nl2cache = 0;
4387 
4388 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4389 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4390 
4391 	if (vd->vdev_children != 0 &&
4392 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4393 		return (spa_vdev_exit(spa, vd, txg, error));
4394 
4395 	/*
4396 	 * We must validate the spares and l2cache devices after checking the
4397 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4398 	 */
4399 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4400 		return (spa_vdev_exit(spa, vd, txg, error));
4401 
4402 	/*
4403 	 * Transfer each new top-level vdev from vd to rvd.
4404 	 */
4405 	for (int c = 0; c < vd->vdev_children; c++) {
4406 
4407 		/*
4408 		 * Set the vdev id to the first hole, if one exists.
4409 		 */
4410 		for (id = 0; id < rvd->vdev_children; id++) {
4411 			if (rvd->vdev_child[id]->vdev_ishole) {
4412 				vdev_free(rvd->vdev_child[id]);
4413 				break;
4414 			}
4415 		}
4416 		tvd = vd->vdev_child[c];
4417 		vdev_remove_child(vd, tvd);
4418 		tvd->vdev_id = id;
4419 		vdev_add_child(rvd, tvd);
4420 		vdev_config_dirty(tvd);
4421 	}
4422 
4423 	if (nspares != 0) {
4424 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4425 		    ZPOOL_CONFIG_SPARES);
4426 		spa_load_spares(spa);
4427 		spa->spa_spares.sav_sync = B_TRUE;
4428 	}
4429 
4430 	if (nl2cache != 0) {
4431 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4432 		    ZPOOL_CONFIG_L2CACHE);
4433 		spa_load_l2cache(spa);
4434 		spa->spa_l2cache.sav_sync = B_TRUE;
4435 	}
4436 
4437 	/*
4438 	 * We have to be careful when adding new vdevs to an existing pool.
4439 	 * If other threads start allocating from these vdevs before we
4440 	 * sync the config cache, and we lose power, then upon reboot we may
4441 	 * fail to open the pool because there are DVAs that the config cache
4442 	 * can't translate.  Therefore, we first add the vdevs without
4443 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4444 	 * and then let spa_config_update() initialize the new metaslabs.
4445 	 *
4446 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4447 	 * if we lose power at any point in this sequence, the remaining
4448 	 * steps will be completed the next time we load the pool.
4449 	 */
4450 	(void) spa_vdev_exit(spa, vd, txg, 0);
4451 
4452 	mutex_enter(&spa_namespace_lock);
4453 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4454 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4455 	mutex_exit(&spa_namespace_lock);
4456 
4457 	return (0);
4458 }
4459 
4460 /*
4461  * Attach a device to a mirror.  The arguments are the path to any device
4462  * in the mirror, and the nvroot for the new device.  If the path specifies
4463  * a device that is not mirrored, we automatically insert the mirror vdev.
4464  *
4465  * If 'replacing' is specified, the new device is intended to replace the
4466  * existing device; in this case the two devices are made into their own
4467  * mirror using the 'replacing' vdev, which is functionally identical to
4468  * the mirror vdev (it actually reuses all the same ops) but has a few
4469  * extra rules: you can't attach to it after it's been created, and upon
4470  * completion of resilvering, the first disk (the one being replaced)
4471  * is automatically detached.
4472  */
4473 int
4474 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4475 {
4476 	uint64_t txg, dtl_max_txg;
4477 	vdev_t *rvd = spa->spa_root_vdev;
4478 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4479 	vdev_ops_t *pvops;
4480 	char *oldvdpath, *newvdpath;
4481 	int newvd_isspare;
4482 	int error;
4483 
4484 	ASSERT(spa_writeable(spa));
4485 
4486 	txg = spa_vdev_enter(spa);
4487 
4488 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4489 
4490 	if (oldvd == NULL)
4491 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4492 
4493 	if (!oldvd->vdev_ops->vdev_op_leaf)
4494 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4495 
4496 	pvd = oldvd->vdev_parent;
4497 
4498 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4499 	    VDEV_ALLOC_ATTACH)) != 0)
4500 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4501 
4502 	if (newrootvd->vdev_children != 1)
4503 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4504 
4505 	newvd = newrootvd->vdev_child[0];
4506 
4507 	if (!newvd->vdev_ops->vdev_op_leaf)
4508 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4509 
4510 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4511 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4512 
4513 	/*
4514 	 * Spares can't replace logs
4515 	 */
4516 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4517 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4518 
4519 	if (!replacing) {
4520 		/*
4521 		 * For attach, the only allowable parent is a mirror or the root
4522 		 * vdev.
4523 		 */
4524 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4525 		    pvd->vdev_ops != &vdev_root_ops)
4526 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4527 
4528 		pvops = &vdev_mirror_ops;
4529 	} else {
4530 		/*
4531 		 * Active hot spares can only be replaced by inactive hot
4532 		 * spares.
4533 		 */
4534 		if (pvd->vdev_ops == &vdev_spare_ops &&
4535 		    oldvd->vdev_isspare &&
4536 		    !spa_has_spare(spa, newvd->vdev_guid))
4537 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4538 
4539 		/*
4540 		 * If the source is a hot spare, and the parent isn't already a
4541 		 * spare, then we want to create a new hot spare.  Otherwise, we
4542 		 * want to create a replacing vdev.  The user is not allowed to
4543 		 * attach to a spared vdev child unless the 'isspare' state is
4544 		 * the same (spare replaces spare, non-spare replaces
4545 		 * non-spare).
4546 		 */
4547 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4548 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4549 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4550 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4551 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4552 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4553 		}
4554 
4555 		if (newvd->vdev_isspare)
4556 			pvops = &vdev_spare_ops;
4557 		else
4558 			pvops = &vdev_replacing_ops;
4559 	}
4560 
4561 	/*
4562 	 * Make sure the new device is big enough.
4563 	 */
4564 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4565 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4566 
4567 	/*
4568 	 * The new device cannot have a higher alignment requirement
4569 	 * than the top-level vdev.
4570 	 */
4571 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4572 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4573 
4574 	/*
4575 	 * If this is an in-place replacement, update oldvd's path and devid
4576 	 * to make it distinguishable from newvd, and unopenable from now on.
4577 	 */
4578 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4579 		spa_strfree(oldvd->vdev_path);
4580 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4581 		    KM_SLEEP);
4582 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4583 		    newvd->vdev_path, "old");
4584 		if (oldvd->vdev_devid != NULL) {
4585 			spa_strfree(oldvd->vdev_devid);
4586 			oldvd->vdev_devid = NULL;
4587 		}
4588 	}
4589 
4590 	/* mark the device being resilvered */
4591 	newvd->vdev_resilver_txg = txg;
4592 
4593 	/*
4594 	 * If the parent is not a mirror, or if we're replacing, insert the new
4595 	 * mirror/replacing/spare vdev above oldvd.
4596 	 */
4597 	if (pvd->vdev_ops != pvops)
4598 		pvd = vdev_add_parent(oldvd, pvops);
4599 
4600 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4601 	ASSERT(pvd->vdev_ops == pvops);
4602 	ASSERT(oldvd->vdev_parent == pvd);
4603 
4604 	/*
4605 	 * Extract the new device from its root and add it to pvd.
4606 	 */
4607 	vdev_remove_child(newrootvd, newvd);
4608 	newvd->vdev_id = pvd->vdev_children;
4609 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4610 	vdev_add_child(pvd, newvd);
4611 
4612 	tvd = newvd->vdev_top;
4613 	ASSERT(pvd->vdev_top == tvd);
4614 	ASSERT(tvd->vdev_parent == rvd);
4615 
4616 	vdev_config_dirty(tvd);
4617 
4618 	/*
4619 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4620 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4621 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4622 	 */
4623 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4624 
4625 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4626 	    dtl_max_txg - TXG_INITIAL);
4627 
4628 	if (newvd->vdev_isspare) {
4629 		spa_spare_activate(newvd);
4630 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4631 	}
4632 
4633 	oldvdpath = spa_strdup(oldvd->vdev_path);
4634 	newvdpath = spa_strdup(newvd->vdev_path);
4635 	newvd_isspare = newvd->vdev_isspare;
4636 
4637 	/*
4638 	 * Mark newvd's DTL dirty in this txg.
4639 	 */
4640 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4641 
4642 	/*
4643 	 * Schedule the resilver to restart in the future. We do this to
4644 	 * ensure that dmu_sync-ed blocks have been stitched into the
4645 	 * respective datasets.
4646 	 */
4647 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4648 
4649 	if (spa->spa_bootfs)
4650 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4651 
4652 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4653 
4654 	/*
4655 	 * Commit the config
4656 	 */
4657 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4658 
4659 	spa_history_log_internal(spa, "vdev attach", NULL,
4660 	    "%s vdev=%s %s vdev=%s",
4661 	    replacing && newvd_isspare ? "spare in" :
4662 	    replacing ? "replace" : "attach", newvdpath,
4663 	    replacing ? "for" : "to", oldvdpath);
4664 
4665 	spa_strfree(oldvdpath);
4666 	spa_strfree(newvdpath);
4667 
4668 	return (0);
4669 }
4670 
4671 /*
4672  * Detach a device from a mirror or replacing vdev.
4673  *
4674  * If 'replace_done' is specified, only detach if the parent
4675  * is a replacing vdev.
4676  */
4677 int
4678 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4679 {
4680 	uint64_t txg;
4681 	int error;
4682 	vdev_t *rvd = spa->spa_root_vdev;
4683 	vdev_t *vd, *pvd, *cvd, *tvd;
4684 	boolean_t unspare = B_FALSE;
4685 	uint64_t unspare_guid = 0;
4686 	char *vdpath;
4687 
4688 	ASSERT(spa_writeable(spa));
4689 
4690 	txg = spa_vdev_enter(spa);
4691 
4692 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4693 
4694 	if (vd == NULL)
4695 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4696 
4697 	if (!vd->vdev_ops->vdev_op_leaf)
4698 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4699 
4700 	pvd = vd->vdev_parent;
4701 
4702 	/*
4703 	 * If the parent/child relationship is not as expected, don't do it.
4704 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4705 	 * vdev that's replacing B with C.  The user's intent in replacing
4706 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4707 	 * the replace by detaching C, the expected behavior is to end up
4708 	 * M(A,B).  But suppose that right after deciding to detach C,
4709 	 * the replacement of B completes.  We would have M(A,C), and then
4710 	 * ask to detach C, which would leave us with just A -- not what
4711 	 * the user wanted.  To prevent this, we make sure that the
4712 	 * parent/child relationship hasn't changed -- in this example,
4713 	 * that C's parent is still the replacing vdev R.
4714 	 */
4715 	if (pvd->vdev_guid != pguid && pguid != 0)
4716 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4717 
4718 	/*
4719 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4720 	 */
4721 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4722 	    pvd->vdev_ops != &vdev_spare_ops)
4723 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4724 
4725 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4726 	    spa_version(spa) >= SPA_VERSION_SPARES);
4727 
4728 	/*
4729 	 * Only mirror, replacing, and spare vdevs support detach.
4730 	 */
4731 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4732 	    pvd->vdev_ops != &vdev_mirror_ops &&
4733 	    pvd->vdev_ops != &vdev_spare_ops)
4734 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4735 
4736 	/*
4737 	 * If this device has the only valid copy of some data,
4738 	 * we cannot safely detach it.
4739 	 */
4740 	if (vdev_dtl_required(vd))
4741 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4742 
4743 	ASSERT(pvd->vdev_children >= 2);
4744 
4745 	/*
4746 	 * If we are detaching the second disk from a replacing vdev, then
4747 	 * check to see if we changed the original vdev's path to have "/old"
4748 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4749 	 */
4750 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4751 	    vd->vdev_path != NULL) {
4752 		size_t len = strlen(vd->vdev_path);
4753 
4754 		for (int c = 0; c < pvd->vdev_children; c++) {
4755 			cvd = pvd->vdev_child[c];
4756 
4757 			if (cvd == vd || cvd->vdev_path == NULL)
4758 				continue;
4759 
4760 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4761 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4762 				spa_strfree(cvd->vdev_path);
4763 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4764 				break;
4765 			}
4766 		}
4767 	}
4768 
4769 	/*
4770 	 * If we are detaching the original disk from a spare, then it implies
4771 	 * that the spare should become a real disk, and be removed from the
4772 	 * active spare list for the pool.
4773 	 */
4774 	if (pvd->vdev_ops == &vdev_spare_ops &&
4775 	    vd->vdev_id == 0 &&
4776 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4777 		unspare = B_TRUE;
4778 
4779 	/*
4780 	 * Erase the disk labels so the disk can be used for other things.
4781 	 * This must be done after all other error cases are handled,
4782 	 * but before we disembowel vd (so we can still do I/O to it).
4783 	 * But if we can't do it, don't treat the error as fatal --
4784 	 * it may be that the unwritability of the disk is the reason
4785 	 * it's being detached!
4786 	 */
4787 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4788 
4789 	/*
4790 	 * Remove vd from its parent and compact the parent's children.
4791 	 */
4792 	vdev_remove_child(pvd, vd);
4793 	vdev_compact_children(pvd);
4794 
4795 	/*
4796 	 * Remember one of the remaining children so we can get tvd below.
4797 	 */
4798 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4799 
4800 	/*
4801 	 * If we need to remove the remaining child from the list of hot spares,
4802 	 * do it now, marking the vdev as no longer a spare in the process.
4803 	 * We must do this before vdev_remove_parent(), because that can
4804 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4805 	 * reason, we must remove the spare now, in the same txg as the detach;
4806 	 * otherwise someone could attach a new sibling, change the GUID, and
4807 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4808 	 */
4809 	if (unspare) {
4810 		ASSERT(cvd->vdev_isspare);
4811 		spa_spare_remove(cvd);
4812 		unspare_guid = cvd->vdev_guid;
4813 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4814 		cvd->vdev_unspare = B_TRUE;
4815 	}
4816 
4817 	/*
4818 	 * If the parent mirror/replacing vdev only has one child,
4819 	 * the parent is no longer needed.  Remove it from the tree.
4820 	 */
4821 	if (pvd->vdev_children == 1) {
4822 		if (pvd->vdev_ops == &vdev_spare_ops)
4823 			cvd->vdev_unspare = B_FALSE;
4824 		vdev_remove_parent(cvd);
4825 	}
4826 
4827 
4828 	/*
4829 	 * We don't set tvd until now because the parent we just removed
4830 	 * may have been the previous top-level vdev.
4831 	 */
4832 	tvd = cvd->vdev_top;
4833 	ASSERT(tvd->vdev_parent == rvd);
4834 
4835 	/*
4836 	 * Reevaluate the parent vdev state.
4837 	 */
4838 	vdev_propagate_state(cvd);
4839 
4840 	/*
4841 	 * If the 'autoexpand' property is set on the pool then automatically
4842 	 * try to expand the size of the pool. For example if the device we
4843 	 * just detached was smaller than the others, it may be possible to
4844 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4845 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4846 	 */
4847 	if (spa->spa_autoexpand) {
4848 		vdev_reopen(tvd);
4849 		vdev_expand(tvd, txg);
4850 	}
4851 
4852 	vdev_config_dirty(tvd);
4853 
4854 	/*
4855 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4856 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4857 	 * But first make sure we're not on any *other* txg's DTL list, to
4858 	 * prevent vd from being accessed after it's freed.
4859 	 */
4860 	vdpath = spa_strdup(vd->vdev_path);
4861 	for (int t = 0; t < TXG_SIZE; t++)
4862 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4863 	vd->vdev_detached = B_TRUE;
4864 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4865 
4866 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4867 
4868 	/* hang on to the spa before we release the lock */
4869 	spa_open_ref(spa, FTAG);
4870 
4871 	error = spa_vdev_exit(spa, vd, txg, 0);
4872 
4873 	spa_history_log_internal(spa, "detach", NULL,
4874 	    "vdev=%s", vdpath);
4875 	spa_strfree(vdpath);
4876 
4877 	/*
4878 	 * If this was the removal of the original device in a hot spare vdev,
4879 	 * then we want to go through and remove the device from the hot spare
4880 	 * list of every other pool.
4881 	 */
4882 	if (unspare) {
4883 		spa_t *altspa = NULL;
4884 
4885 		mutex_enter(&spa_namespace_lock);
4886 		while ((altspa = spa_next(altspa)) != NULL) {
4887 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4888 			    altspa == spa)
4889 				continue;
4890 
4891 			spa_open_ref(altspa, FTAG);
4892 			mutex_exit(&spa_namespace_lock);
4893 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4894 			mutex_enter(&spa_namespace_lock);
4895 			spa_close(altspa, FTAG);
4896 		}
4897 		mutex_exit(&spa_namespace_lock);
4898 
4899 		/* search the rest of the vdevs for spares to remove */
4900 		spa_vdev_resilver_done(spa);
4901 	}
4902 
4903 	/* all done with the spa; OK to release */
4904 	mutex_enter(&spa_namespace_lock);
4905 	spa_close(spa, FTAG);
4906 	mutex_exit(&spa_namespace_lock);
4907 
4908 	return (error);
4909 }
4910 
4911 /*
4912  * Split a set of devices from their mirrors, and create a new pool from them.
4913  */
4914 int
4915 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4916     nvlist_t *props, boolean_t exp)
4917 {
4918 	int error = 0;
4919 	uint64_t txg, *glist;
4920 	spa_t *newspa;
4921 	uint_t c, children, lastlog;
4922 	nvlist_t **child, *nvl, *tmp;
4923 	dmu_tx_t *tx;
4924 	char *altroot = NULL;
4925 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4926 	boolean_t activate_slog;
4927 
4928 	ASSERT(spa_writeable(spa));
4929 
4930 	txg = spa_vdev_enter(spa);
4931 
4932 	/* clear the log and flush everything up to now */
4933 	activate_slog = spa_passivate_log(spa);
4934 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4935 	error = spa_offline_log(spa);
4936 	txg = spa_vdev_config_enter(spa);
4937 
4938 	if (activate_slog)
4939 		spa_activate_log(spa);
4940 
4941 	if (error != 0)
4942 		return (spa_vdev_exit(spa, NULL, txg, error));
4943 
4944 	/* check new spa name before going any further */
4945 	if (spa_lookup(newname) != NULL)
4946 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4947 
4948 	/*
4949 	 * scan through all the children to ensure they're all mirrors
4950 	 */
4951 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4952 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4953 	    &children) != 0)
4954 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4955 
4956 	/* first, check to ensure we've got the right child count */
4957 	rvd = spa->spa_root_vdev;
4958 	lastlog = 0;
4959 	for (c = 0; c < rvd->vdev_children; c++) {
4960 		vdev_t *vd = rvd->vdev_child[c];
4961 
4962 		/* don't count the holes & logs as children */
4963 		if (vd->vdev_islog || vd->vdev_ishole) {
4964 			if (lastlog == 0)
4965 				lastlog = c;
4966 			continue;
4967 		}
4968 
4969 		lastlog = 0;
4970 	}
4971 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4972 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4973 
4974 	/* next, ensure no spare or cache devices are part of the split */
4975 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4976 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4977 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4978 
4979 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4980 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4981 
4982 	/* then, loop over each vdev and validate it */
4983 	for (c = 0; c < children; c++) {
4984 		uint64_t is_hole = 0;
4985 
4986 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4987 		    &is_hole);
4988 
4989 		if (is_hole != 0) {
4990 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4991 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4992 				continue;
4993 			} else {
4994 				error = SET_ERROR(EINVAL);
4995 				break;
4996 			}
4997 		}
4998 
4999 		/* which disk is going to be split? */
5000 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5001 		    &glist[c]) != 0) {
5002 			error = SET_ERROR(EINVAL);
5003 			break;
5004 		}
5005 
5006 		/* look it up in the spa */
5007 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5008 		if (vml[c] == NULL) {
5009 			error = SET_ERROR(ENODEV);
5010 			break;
5011 		}
5012 
5013 		/* make sure there's nothing stopping the split */
5014 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5015 		    vml[c]->vdev_islog ||
5016 		    vml[c]->vdev_ishole ||
5017 		    vml[c]->vdev_isspare ||
5018 		    vml[c]->vdev_isl2cache ||
5019 		    !vdev_writeable(vml[c]) ||
5020 		    vml[c]->vdev_children != 0 ||
5021 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5022 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5023 			error = SET_ERROR(EINVAL);
5024 			break;
5025 		}
5026 
5027 		if (vdev_dtl_required(vml[c])) {
5028 			error = SET_ERROR(EBUSY);
5029 			break;
5030 		}
5031 
5032 		/* we need certain info from the top level */
5033 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5034 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5035 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5036 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5037 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5038 		    vml[c]->vdev_top->vdev_asize) == 0);
5039 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5040 		    vml[c]->vdev_top->vdev_ashift) == 0);
5041 	}
5042 
5043 	if (error != 0) {
5044 		kmem_free(vml, children * sizeof (vdev_t *));
5045 		kmem_free(glist, children * sizeof (uint64_t));
5046 		return (spa_vdev_exit(spa, NULL, txg, error));
5047 	}
5048 
5049 	/* stop writers from using the disks */
5050 	for (c = 0; c < children; c++) {
5051 		if (vml[c] != NULL)
5052 			vml[c]->vdev_offline = B_TRUE;
5053 	}
5054 	vdev_reopen(spa->spa_root_vdev);
5055 
5056 	/*
5057 	 * Temporarily record the splitting vdevs in the spa config.  This
5058 	 * will disappear once the config is regenerated.
5059 	 */
5060 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5061 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5062 	    glist, children) == 0);
5063 	kmem_free(glist, children * sizeof (uint64_t));
5064 
5065 	mutex_enter(&spa->spa_props_lock);
5066 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5067 	    nvl) == 0);
5068 	mutex_exit(&spa->spa_props_lock);
5069 	spa->spa_config_splitting = nvl;
5070 	vdev_config_dirty(spa->spa_root_vdev);
5071 
5072 	/* configure and create the new pool */
5073 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5074 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5075 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5076 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5077 	    spa_version(spa)) == 0);
5078 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5079 	    spa->spa_config_txg) == 0);
5080 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5081 	    spa_generate_guid(NULL)) == 0);
5082 	(void) nvlist_lookup_string(props,
5083 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5084 
5085 	/* add the new pool to the namespace */
5086 	newspa = spa_add(newname, config, altroot);
5087 	newspa->spa_config_txg = spa->spa_config_txg;
5088 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5089 
5090 	/* release the spa config lock, retaining the namespace lock */
5091 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5092 
5093 	if (zio_injection_enabled)
5094 		zio_handle_panic_injection(spa, FTAG, 1);
5095 
5096 	spa_activate(newspa, spa_mode_global);
5097 	spa_async_suspend(newspa);
5098 
5099 	/* create the new pool from the disks of the original pool */
5100 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5101 	if (error)
5102 		goto out;
5103 
5104 	/* if that worked, generate a real config for the new pool */
5105 	if (newspa->spa_root_vdev != NULL) {
5106 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5107 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5108 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5109 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5110 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5111 		    B_TRUE));
5112 	}
5113 
5114 	/* set the props */
5115 	if (props != NULL) {
5116 		spa_configfile_set(newspa, props, B_FALSE);
5117 		error = spa_prop_set(newspa, props);
5118 		if (error)
5119 			goto out;
5120 	}
5121 
5122 	/* flush everything */
5123 	txg = spa_vdev_config_enter(newspa);
5124 	vdev_config_dirty(newspa->spa_root_vdev);
5125 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5126 
5127 	if (zio_injection_enabled)
5128 		zio_handle_panic_injection(spa, FTAG, 2);
5129 
5130 	spa_async_resume(newspa);
5131 
5132 	/* finally, update the original pool's config */
5133 	txg = spa_vdev_config_enter(spa);
5134 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5135 	error = dmu_tx_assign(tx, TXG_WAIT);
5136 	if (error != 0)
5137 		dmu_tx_abort(tx);
5138 	for (c = 0; c < children; c++) {
5139 		if (vml[c] != NULL) {
5140 			vdev_split(vml[c]);
5141 			if (error == 0)
5142 				spa_history_log_internal(spa, "detach", tx,
5143 				    "vdev=%s", vml[c]->vdev_path);
5144 			vdev_free(vml[c]);
5145 		}
5146 	}
5147 	vdev_config_dirty(spa->spa_root_vdev);
5148 	spa->spa_config_splitting = NULL;
5149 	nvlist_free(nvl);
5150 	if (error == 0)
5151 		dmu_tx_commit(tx);
5152 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5153 
5154 	if (zio_injection_enabled)
5155 		zio_handle_panic_injection(spa, FTAG, 3);
5156 
5157 	/* split is complete; log a history record */
5158 	spa_history_log_internal(newspa, "split", NULL,
5159 	    "from pool %s", spa_name(spa));
5160 
5161 	kmem_free(vml, children * sizeof (vdev_t *));
5162 
5163 	/* if we're not going to mount the filesystems in userland, export */
5164 	if (exp)
5165 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5166 		    B_FALSE, B_FALSE);
5167 
5168 	return (error);
5169 
5170 out:
5171 	spa_unload(newspa);
5172 	spa_deactivate(newspa);
5173 	spa_remove(newspa);
5174 
5175 	txg = spa_vdev_config_enter(spa);
5176 
5177 	/* re-online all offlined disks */
5178 	for (c = 0; c < children; c++) {
5179 		if (vml[c] != NULL)
5180 			vml[c]->vdev_offline = B_FALSE;
5181 	}
5182 	vdev_reopen(spa->spa_root_vdev);
5183 
5184 	nvlist_free(spa->spa_config_splitting);
5185 	spa->spa_config_splitting = NULL;
5186 	(void) spa_vdev_exit(spa, NULL, txg, error);
5187 
5188 	kmem_free(vml, children * sizeof (vdev_t *));
5189 	return (error);
5190 }
5191 
5192 static nvlist_t *
5193 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5194 {
5195 	for (int i = 0; i < count; i++) {
5196 		uint64_t guid;
5197 
5198 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5199 		    &guid) == 0);
5200 
5201 		if (guid == target_guid)
5202 			return (nvpp[i]);
5203 	}
5204 
5205 	return (NULL);
5206 }
5207 
5208 static void
5209 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5210 	nvlist_t *dev_to_remove)
5211 {
5212 	nvlist_t **newdev = NULL;
5213 
5214 	if (count > 1)
5215 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5216 
5217 	for (int i = 0, j = 0; i < count; i++) {
5218 		if (dev[i] == dev_to_remove)
5219 			continue;
5220 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5221 	}
5222 
5223 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5224 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5225 
5226 	for (int i = 0; i < count - 1; i++)
5227 		nvlist_free(newdev[i]);
5228 
5229 	if (count > 1)
5230 		kmem_free(newdev, (count - 1) * sizeof (void *));
5231 }
5232 
5233 /*
5234  * Evacuate the device.
5235  */
5236 static int
5237 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5238 {
5239 	uint64_t txg;
5240 	int error = 0;
5241 
5242 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5243 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5244 	ASSERT(vd == vd->vdev_top);
5245 
5246 	/*
5247 	 * Evacuate the device.  We don't hold the config lock as writer
5248 	 * since we need to do I/O but we do keep the
5249 	 * spa_namespace_lock held.  Once this completes the device
5250 	 * should no longer have any blocks allocated on it.
5251 	 */
5252 	if (vd->vdev_islog) {
5253 		if (vd->vdev_stat.vs_alloc != 0)
5254 			error = spa_offline_log(spa);
5255 	} else {
5256 		error = SET_ERROR(ENOTSUP);
5257 	}
5258 
5259 	if (error)
5260 		return (error);
5261 
5262 	/*
5263 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5264 	 * associated with this vdev, and wait for these changes to sync.
5265 	 */
5266 	ASSERT0(vd->vdev_stat.vs_alloc);
5267 	txg = spa_vdev_config_enter(spa);
5268 	vd->vdev_removing = B_TRUE;
5269 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5270 	vdev_config_dirty(vd);
5271 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5272 
5273 	return (0);
5274 }
5275 
5276 /*
5277  * Complete the removal by cleaning up the namespace.
5278  */
5279 static void
5280 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5281 {
5282 	vdev_t *rvd = spa->spa_root_vdev;
5283 	uint64_t id = vd->vdev_id;
5284 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5285 
5286 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5287 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5288 	ASSERT(vd == vd->vdev_top);
5289 
5290 	/*
5291 	 * Only remove any devices which are empty.
5292 	 */
5293 	if (vd->vdev_stat.vs_alloc != 0)
5294 		return;
5295 
5296 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5297 
5298 	if (list_link_active(&vd->vdev_state_dirty_node))
5299 		vdev_state_clean(vd);
5300 	if (list_link_active(&vd->vdev_config_dirty_node))
5301 		vdev_config_clean(vd);
5302 
5303 	vdev_free(vd);
5304 
5305 	if (last_vdev) {
5306 		vdev_compact_children(rvd);
5307 	} else {
5308 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5309 		vdev_add_child(rvd, vd);
5310 	}
5311 	vdev_config_dirty(rvd);
5312 
5313 	/*
5314 	 * Reassess the health of our root vdev.
5315 	 */
5316 	vdev_reopen(rvd);
5317 }
5318 
5319 /*
5320  * Remove a device from the pool -
5321  *
5322  * Removing a device from the vdev namespace requires several steps
5323  * and can take a significant amount of time.  As a result we use
5324  * the spa_vdev_config_[enter/exit] functions which allow us to
5325  * grab and release the spa_config_lock while still holding the namespace
5326  * lock.  During each step the configuration is synced out.
5327  *
5328  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5329  * devices.
5330  */
5331 int
5332 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5333 {
5334 	vdev_t *vd;
5335 	metaslab_group_t *mg;
5336 	nvlist_t **spares, **l2cache, *nv;
5337 	uint64_t txg = 0;
5338 	uint_t nspares, nl2cache;
5339 	int error = 0;
5340 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5341 
5342 	ASSERT(spa_writeable(spa));
5343 
5344 	if (!locked)
5345 		txg = spa_vdev_enter(spa);
5346 
5347 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5348 
5349 	if (spa->spa_spares.sav_vdevs != NULL &&
5350 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5351 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5352 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5353 		/*
5354 		 * Only remove the hot spare if it's not currently in use
5355 		 * in this pool.
5356 		 */
5357 		if (vd == NULL || unspare) {
5358 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5359 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5360 			spa_load_spares(spa);
5361 			spa->spa_spares.sav_sync = B_TRUE;
5362 		} else {
5363 			error = SET_ERROR(EBUSY);
5364 		}
5365 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5366 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5367 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5368 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5369 		/*
5370 		 * Cache devices can always be removed.
5371 		 */
5372 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5373 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5374 		spa_load_l2cache(spa);
5375 		spa->spa_l2cache.sav_sync = B_TRUE;
5376 	} else if (vd != NULL && vd->vdev_islog) {
5377 		ASSERT(!locked);
5378 		ASSERT(vd == vd->vdev_top);
5379 
5380 		mg = vd->vdev_mg;
5381 
5382 		/*
5383 		 * Stop allocating from this vdev.
5384 		 */
5385 		metaslab_group_passivate(mg);
5386 
5387 		/*
5388 		 * Wait for the youngest allocations and frees to sync,
5389 		 * and then wait for the deferral of those frees to finish.
5390 		 */
5391 		spa_vdev_config_exit(spa, NULL,
5392 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5393 
5394 		/*
5395 		 * Attempt to evacuate the vdev.
5396 		 */
5397 		error = spa_vdev_remove_evacuate(spa, vd);
5398 
5399 		txg = spa_vdev_config_enter(spa);
5400 
5401 		/*
5402 		 * If we couldn't evacuate the vdev, unwind.
5403 		 */
5404 		if (error) {
5405 			metaslab_group_activate(mg);
5406 			return (spa_vdev_exit(spa, NULL, txg, error));
5407 		}
5408 
5409 		/*
5410 		 * Clean up the vdev namespace.
5411 		 */
5412 		spa_vdev_remove_from_namespace(spa, vd);
5413 
5414 	} else if (vd != NULL) {
5415 		/*
5416 		 * Normal vdevs cannot be removed (yet).
5417 		 */
5418 		error = SET_ERROR(ENOTSUP);
5419 	} else {
5420 		/*
5421 		 * There is no vdev of any kind with the specified guid.
5422 		 */
5423 		error = SET_ERROR(ENOENT);
5424 	}
5425 
5426 	if (!locked)
5427 		return (spa_vdev_exit(spa, NULL, txg, error));
5428 
5429 	return (error);
5430 }
5431 
5432 /*
5433  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5434  * currently spared, so we can detach it.
5435  */
5436 static vdev_t *
5437 spa_vdev_resilver_done_hunt(vdev_t *vd)
5438 {
5439 	vdev_t *newvd, *oldvd;
5440 
5441 	for (int c = 0; c < vd->vdev_children; c++) {
5442 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5443 		if (oldvd != NULL)
5444 			return (oldvd);
5445 	}
5446 
5447 	/*
5448 	 * Check for a completed replacement.  We always consider the first
5449 	 * vdev in the list to be the oldest vdev, and the last one to be
5450 	 * the newest (see spa_vdev_attach() for how that works).  In
5451 	 * the case where the newest vdev is faulted, we will not automatically
5452 	 * remove it after a resilver completes.  This is OK as it will require
5453 	 * user intervention to determine which disk the admin wishes to keep.
5454 	 */
5455 	if (vd->vdev_ops == &vdev_replacing_ops) {
5456 		ASSERT(vd->vdev_children > 1);
5457 
5458 		newvd = vd->vdev_child[vd->vdev_children - 1];
5459 		oldvd = vd->vdev_child[0];
5460 
5461 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5462 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5463 		    !vdev_dtl_required(oldvd))
5464 			return (oldvd);
5465 	}
5466 
5467 	/*
5468 	 * Check for a completed resilver with the 'unspare' flag set.
5469 	 */
5470 	if (vd->vdev_ops == &vdev_spare_ops) {
5471 		vdev_t *first = vd->vdev_child[0];
5472 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5473 
5474 		if (last->vdev_unspare) {
5475 			oldvd = first;
5476 			newvd = last;
5477 		} else if (first->vdev_unspare) {
5478 			oldvd = last;
5479 			newvd = first;
5480 		} else {
5481 			oldvd = NULL;
5482 		}
5483 
5484 		if (oldvd != NULL &&
5485 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5486 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5487 		    !vdev_dtl_required(oldvd))
5488 			return (oldvd);
5489 
5490 		/*
5491 		 * If there are more than two spares attached to a disk,
5492 		 * and those spares are not required, then we want to
5493 		 * attempt to free them up now so that they can be used
5494 		 * by other pools.  Once we're back down to a single
5495 		 * disk+spare, we stop removing them.
5496 		 */
5497 		if (vd->vdev_children > 2) {
5498 			newvd = vd->vdev_child[1];
5499 
5500 			if (newvd->vdev_isspare && last->vdev_isspare &&
5501 			    vdev_dtl_empty(last, DTL_MISSING) &&
5502 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5503 			    !vdev_dtl_required(newvd))
5504 				return (newvd);
5505 		}
5506 	}
5507 
5508 	return (NULL);
5509 }
5510 
5511 static void
5512 spa_vdev_resilver_done(spa_t *spa)
5513 {
5514 	vdev_t *vd, *pvd, *ppvd;
5515 	uint64_t guid, sguid, pguid, ppguid;
5516 
5517 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5518 
5519 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5520 		pvd = vd->vdev_parent;
5521 		ppvd = pvd->vdev_parent;
5522 		guid = vd->vdev_guid;
5523 		pguid = pvd->vdev_guid;
5524 		ppguid = ppvd->vdev_guid;
5525 		sguid = 0;
5526 		/*
5527 		 * If we have just finished replacing a hot spared device, then
5528 		 * we need to detach the parent's first child (the original hot
5529 		 * spare) as well.
5530 		 */
5531 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5532 		    ppvd->vdev_children == 2) {
5533 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5534 			sguid = ppvd->vdev_child[1]->vdev_guid;
5535 		}
5536 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5537 
5538 		spa_config_exit(spa, SCL_ALL, FTAG);
5539 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5540 			return;
5541 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5542 			return;
5543 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5544 	}
5545 
5546 	spa_config_exit(spa, SCL_ALL, FTAG);
5547 }
5548 
5549 /*
5550  * Update the stored path or FRU for this vdev.
5551  */
5552 int
5553 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5554     boolean_t ispath)
5555 {
5556 	vdev_t *vd;
5557 	boolean_t sync = B_FALSE;
5558 
5559 	ASSERT(spa_writeable(spa));
5560 
5561 	spa_vdev_state_enter(spa, SCL_ALL);
5562 
5563 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5564 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5565 
5566 	if (!vd->vdev_ops->vdev_op_leaf)
5567 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5568 
5569 	if (ispath) {
5570 		if (strcmp(value, vd->vdev_path) != 0) {
5571 			spa_strfree(vd->vdev_path);
5572 			vd->vdev_path = spa_strdup(value);
5573 			sync = B_TRUE;
5574 		}
5575 	} else {
5576 		if (vd->vdev_fru == NULL) {
5577 			vd->vdev_fru = spa_strdup(value);
5578 			sync = B_TRUE;
5579 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5580 			spa_strfree(vd->vdev_fru);
5581 			vd->vdev_fru = spa_strdup(value);
5582 			sync = B_TRUE;
5583 		}
5584 	}
5585 
5586 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5587 }
5588 
5589 int
5590 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5591 {
5592 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5593 }
5594 
5595 int
5596 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5597 {
5598 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5599 }
5600 
5601 /*
5602  * ==========================================================================
5603  * SPA Scanning
5604  * ==========================================================================
5605  */
5606 
5607 int
5608 spa_scan_stop(spa_t *spa)
5609 {
5610 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5611 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5612 		return (SET_ERROR(EBUSY));
5613 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5614 }
5615 
5616 int
5617 spa_scan(spa_t *spa, pool_scan_func_t func)
5618 {
5619 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5620 
5621 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5622 		return (SET_ERROR(ENOTSUP));
5623 
5624 	/*
5625 	 * If a resilver was requested, but there is no DTL on a
5626 	 * writeable leaf device, we have nothing to do.
5627 	 */
5628 	if (func == POOL_SCAN_RESILVER &&
5629 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5630 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5631 		return (0);
5632 	}
5633 
5634 	return (dsl_scan(spa->spa_dsl_pool, func));
5635 }
5636 
5637 /*
5638  * ==========================================================================
5639  * SPA async task processing
5640  * ==========================================================================
5641  */
5642 
5643 static void
5644 spa_async_remove(spa_t *spa, vdev_t *vd)
5645 {
5646 	if (vd->vdev_remove_wanted) {
5647 		vd->vdev_remove_wanted = B_FALSE;
5648 		vd->vdev_delayed_close = B_FALSE;
5649 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5650 
5651 		/*
5652 		 * We want to clear the stats, but we don't want to do a full
5653 		 * vdev_clear() as that will cause us to throw away
5654 		 * degraded/faulted state as well as attempt to reopen the
5655 		 * device, all of which is a waste.
5656 		 */
5657 		vd->vdev_stat.vs_read_errors = 0;
5658 		vd->vdev_stat.vs_write_errors = 0;
5659 		vd->vdev_stat.vs_checksum_errors = 0;
5660 
5661 		vdev_state_dirty(vd->vdev_top);
5662 	}
5663 
5664 	for (int c = 0; c < vd->vdev_children; c++)
5665 		spa_async_remove(spa, vd->vdev_child[c]);
5666 }
5667 
5668 static void
5669 spa_async_probe(spa_t *spa, vdev_t *vd)
5670 {
5671 	if (vd->vdev_probe_wanted) {
5672 		vd->vdev_probe_wanted = B_FALSE;
5673 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5674 	}
5675 
5676 	for (int c = 0; c < vd->vdev_children; c++)
5677 		spa_async_probe(spa, vd->vdev_child[c]);
5678 }
5679 
5680 static void
5681 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5682 {
5683 	sysevent_id_t eid;
5684 	nvlist_t *attr;
5685 	char *physpath;
5686 
5687 	if (!spa->spa_autoexpand)
5688 		return;
5689 
5690 	for (int c = 0; c < vd->vdev_children; c++) {
5691 		vdev_t *cvd = vd->vdev_child[c];
5692 		spa_async_autoexpand(spa, cvd);
5693 	}
5694 
5695 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5696 		return;
5697 
5698 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5699 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5700 
5701 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5702 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5703 
5704 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5705 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5706 
5707 	nvlist_free(attr);
5708 	kmem_free(physpath, MAXPATHLEN);
5709 }
5710 
5711 static void
5712 spa_async_thread(spa_t *spa)
5713 {
5714 	int tasks;
5715 
5716 	ASSERT(spa->spa_sync_on);
5717 
5718 	mutex_enter(&spa->spa_async_lock);
5719 	tasks = spa->spa_async_tasks;
5720 	spa->spa_async_tasks = 0;
5721 	mutex_exit(&spa->spa_async_lock);
5722 
5723 	/*
5724 	 * See if the config needs to be updated.
5725 	 */
5726 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5727 		uint64_t old_space, new_space;
5728 
5729 		mutex_enter(&spa_namespace_lock);
5730 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5731 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5732 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5733 		mutex_exit(&spa_namespace_lock);
5734 
5735 		/*
5736 		 * If the pool grew as a result of the config update,
5737 		 * then log an internal history event.
5738 		 */
5739 		if (new_space != old_space) {
5740 			spa_history_log_internal(spa, "vdev online", NULL,
5741 			    "pool '%s' size: %llu(+%llu)",
5742 			    spa_name(spa), new_space, new_space - old_space);
5743 		}
5744 	}
5745 
5746 	/*
5747 	 * See if any devices need to be marked REMOVED.
5748 	 */
5749 	if (tasks & SPA_ASYNC_REMOVE) {
5750 		spa_vdev_state_enter(spa, SCL_NONE);
5751 		spa_async_remove(spa, spa->spa_root_vdev);
5752 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5753 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5754 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5755 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5756 		(void) spa_vdev_state_exit(spa, NULL, 0);
5757 	}
5758 
5759 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5760 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5761 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5762 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5763 	}
5764 
5765 	/*
5766 	 * See if any devices need to be probed.
5767 	 */
5768 	if (tasks & SPA_ASYNC_PROBE) {
5769 		spa_vdev_state_enter(spa, SCL_NONE);
5770 		spa_async_probe(spa, spa->spa_root_vdev);
5771 		(void) spa_vdev_state_exit(spa, NULL, 0);
5772 	}
5773 
5774 	/*
5775 	 * If any devices are done replacing, detach them.
5776 	 */
5777 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5778 		spa_vdev_resilver_done(spa);
5779 
5780 	/*
5781 	 * Kick off a resilver.
5782 	 */
5783 	if (tasks & SPA_ASYNC_RESILVER)
5784 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5785 
5786 	/*
5787 	 * Let the world know that we're done.
5788 	 */
5789 	mutex_enter(&spa->spa_async_lock);
5790 	spa->spa_async_thread = NULL;
5791 	cv_broadcast(&spa->spa_async_cv);
5792 	mutex_exit(&spa->spa_async_lock);
5793 	thread_exit();
5794 }
5795 
5796 void
5797 spa_async_suspend(spa_t *spa)
5798 {
5799 	mutex_enter(&spa->spa_async_lock);
5800 	spa->spa_async_suspended++;
5801 	while (spa->spa_async_thread != NULL)
5802 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5803 	mutex_exit(&spa->spa_async_lock);
5804 }
5805 
5806 void
5807 spa_async_resume(spa_t *spa)
5808 {
5809 	mutex_enter(&spa->spa_async_lock);
5810 	ASSERT(spa->spa_async_suspended != 0);
5811 	spa->spa_async_suspended--;
5812 	mutex_exit(&spa->spa_async_lock);
5813 }
5814 
5815 static boolean_t
5816 spa_async_tasks_pending(spa_t *spa)
5817 {
5818 	uint_t non_config_tasks;
5819 	uint_t config_task;
5820 	boolean_t config_task_suspended;
5821 
5822 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5823 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5824 	if (spa->spa_ccw_fail_time == 0) {
5825 		config_task_suspended = B_FALSE;
5826 	} else {
5827 		config_task_suspended =
5828 		    (gethrtime() - spa->spa_ccw_fail_time) <
5829 		    (zfs_ccw_retry_interval * NANOSEC);
5830 	}
5831 
5832 	return (non_config_tasks || (config_task && !config_task_suspended));
5833 }
5834 
5835 static void
5836 spa_async_dispatch(spa_t *spa)
5837 {
5838 	mutex_enter(&spa->spa_async_lock);
5839 	if (spa_async_tasks_pending(spa) &&
5840 	    !spa->spa_async_suspended &&
5841 	    spa->spa_async_thread == NULL &&
5842 	    rootdir != NULL)
5843 		spa->spa_async_thread = thread_create(NULL, 0,
5844 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5845 	mutex_exit(&spa->spa_async_lock);
5846 }
5847 
5848 void
5849 spa_async_request(spa_t *spa, int task)
5850 {
5851 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5852 	mutex_enter(&spa->spa_async_lock);
5853 	spa->spa_async_tasks |= task;
5854 	mutex_exit(&spa->spa_async_lock);
5855 }
5856 
5857 /*
5858  * ==========================================================================
5859  * SPA syncing routines
5860  * ==========================================================================
5861  */
5862 
5863 static int
5864 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5865 {
5866 	bpobj_t *bpo = arg;
5867 	bpobj_enqueue(bpo, bp, tx);
5868 	return (0);
5869 }
5870 
5871 static int
5872 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5873 {
5874 	zio_t *zio = arg;
5875 
5876 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5877 	    zio->io_flags));
5878 	return (0);
5879 }
5880 
5881 /*
5882  * Note: this simple function is not inlined to make it easier to dtrace the
5883  * amount of time spent syncing frees.
5884  */
5885 static void
5886 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5887 {
5888 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5889 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5890 	VERIFY(zio_wait(zio) == 0);
5891 }
5892 
5893 /*
5894  * Note: this simple function is not inlined to make it easier to dtrace the
5895  * amount of time spent syncing deferred frees.
5896  */
5897 static void
5898 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5899 {
5900 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5901 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5902 	    spa_free_sync_cb, zio, tx), ==, 0);
5903 	VERIFY0(zio_wait(zio));
5904 }
5905 
5906 
5907 static void
5908 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5909 {
5910 	char *packed = NULL;
5911 	size_t bufsize;
5912 	size_t nvsize = 0;
5913 	dmu_buf_t *db;
5914 
5915 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5916 
5917 	/*
5918 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5919 	 * information.  This avoids the dmu_buf_will_dirty() path and
5920 	 * saves us a pre-read to get data we don't actually care about.
5921 	 */
5922 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5923 	packed = kmem_alloc(bufsize, KM_SLEEP);
5924 
5925 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5926 	    KM_SLEEP) == 0);
5927 	bzero(packed + nvsize, bufsize - nvsize);
5928 
5929 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5930 
5931 	kmem_free(packed, bufsize);
5932 
5933 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5934 	dmu_buf_will_dirty(db, tx);
5935 	*(uint64_t *)db->db_data = nvsize;
5936 	dmu_buf_rele(db, FTAG);
5937 }
5938 
5939 static void
5940 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5941     const char *config, const char *entry)
5942 {
5943 	nvlist_t *nvroot;
5944 	nvlist_t **list;
5945 	int i;
5946 
5947 	if (!sav->sav_sync)
5948 		return;
5949 
5950 	/*
5951 	 * Update the MOS nvlist describing the list of available devices.
5952 	 * spa_validate_aux() will have already made sure this nvlist is
5953 	 * valid and the vdevs are labeled appropriately.
5954 	 */
5955 	if (sav->sav_object == 0) {
5956 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5957 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5958 		    sizeof (uint64_t), tx);
5959 		VERIFY(zap_update(spa->spa_meta_objset,
5960 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5961 		    &sav->sav_object, tx) == 0);
5962 	}
5963 
5964 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5965 	if (sav->sav_count == 0) {
5966 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5967 	} else {
5968 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5969 		for (i = 0; i < sav->sav_count; i++)
5970 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5971 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5972 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5973 		    sav->sav_count) == 0);
5974 		for (i = 0; i < sav->sav_count; i++)
5975 			nvlist_free(list[i]);
5976 		kmem_free(list, sav->sav_count * sizeof (void *));
5977 	}
5978 
5979 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5980 	nvlist_free(nvroot);
5981 
5982 	sav->sav_sync = B_FALSE;
5983 }
5984 
5985 static void
5986 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5987 {
5988 	nvlist_t *config;
5989 
5990 	if (list_is_empty(&spa->spa_config_dirty_list))
5991 		return;
5992 
5993 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5994 
5995 	config = spa_config_generate(spa, spa->spa_root_vdev,
5996 	    dmu_tx_get_txg(tx), B_FALSE);
5997 
5998 	/*
5999 	 * If we're upgrading the spa version then make sure that
6000 	 * the config object gets updated with the correct version.
6001 	 */
6002 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6003 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6004 		    spa->spa_uberblock.ub_version);
6005 
6006 	spa_config_exit(spa, SCL_STATE, FTAG);
6007 
6008 	if (spa->spa_config_syncing)
6009 		nvlist_free(spa->spa_config_syncing);
6010 	spa->spa_config_syncing = config;
6011 
6012 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6013 }
6014 
6015 static void
6016 spa_sync_version(void *arg, dmu_tx_t *tx)
6017 {
6018 	uint64_t *versionp = arg;
6019 	uint64_t version = *versionp;
6020 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6021 
6022 	/*
6023 	 * Setting the version is special cased when first creating the pool.
6024 	 */
6025 	ASSERT(tx->tx_txg != TXG_INITIAL);
6026 
6027 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6028 	ASSERT(version >= spa_version(spa));
6029 
6030 	spa->spa_uberblock.ub_version = version;
6031 	vdev_config_dirty(spa->spa_root_vdev);
6032 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6033 }
6034 
6035 /*
6036  * Set zpool properties.
6037  */
6038 static void
6039 spa_sync_props(void *arg, dmu_tx_t *tx)
6040 {
6041 	nvlist_t *nvp = arg;
6042 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6043 	objset_t *mos = spa->spa_meta_objset;
6044 	nvpair_t *elem = NULL;
6045 
6046 	mutex_enter(&spa->spa_props_lock);
6047 
6048 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6049 		uint64_t intval;
6050 		char *strval, *fname;
6051 		zpool_prop_t prop;
6052 		const char *propname;
6053 		zprop_type_t proptype;
6054 		spa_feature_t fid;
6055 
6056 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6057 		case ZPROP_INVAL:
6058 			/*
6059 			 * We checked this earlier in spa_prop_validate().
6060 			 */
6061 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6062 
6063 			fname = strchr(nvpair_name(elem), '@') + 1;
6064 			VERIFY0(zfeature_lookup_name(fname, &fid));
6065 
6066 			spa_feature_enable(spa, fid, tx);
6067 			spa_history_log_internal(spa, "set", tx,
6068 			    "%s=enabled", nvpair_name(elem));
6069 			break;
6070 
6071 		case ZPOOL_PROP_VERSION:
6072 			intval = fnvpair_value_uint64(elem);
6073 			/*
6074 			 * The version is synced seperatly before other
6075 			 * properties and should be correct by now.
6076 			 */
6077 			ASSERT3U(spa_version(spa), >=, intval);
6078 			break;
6079 
6080 		case ZPOOL_PROP_ALTROOT:
6081 			/*
6082 			 * 'altroot' is a non-persistent property. It should
6083 			 * have been set temporarily at creation or import time.
6084 			 */
6085 			ASSERT(spa->spa_root != NULL);
6086 			break;
6087 
6088 		case ZPOOL_PROP_READONLY:
6089 		case ZPOOL_PROP_CACHEFILE:
6090 			/*
6091 			 * 'readonly' and 'cachefile' are also non-persisitent
6092 			 * properties.
6093 			 */
6094 			break;
6095 		case ZPOOL_PROP_COMMENT:
6096 			strval = fnvpair_value_string(elem);
6097 			if (spa->spa_comment != NULL)
6098 				spa_strfree(spa->spa_comment);
6099 			spa->spa_comment = spa_strdup(strval);
6100 			/*
6101 			 * We need to dirty the configuration on all the vdevs
6102 			 * so that their labels get updated.  It's unnecessary
6103 			 * to do this for pool creation since the vdev's
6104 			 * configuratoin has already been dirtied.
6105 			 */
6106 			if (tx->tx_txg != TXG_INITIAL)
6107 				vdev_config_dirty(spa->spa_root_vdev);
6108 			spa_history_log_internal(spa, "set", tx,
6109 			    "%s=%s", nvpair_name(elem), strval);
6110 			break;
6111 		default:
6112 			/*
6113 			 * Set pool property values in the poolprops mos object.
6114 			 */
6115 			if (spa->spa_pool_props_object == 0) {
6116 				spa->spa_pool_props_object =
6117 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6118 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6119 				    tx);
6120 			}
6121 
6122 			/* normalize the property name */
6123 			propname = zpool_prop_to_name(prop);
6124 			proptype = zpool_prop_get_type(prop);
6125 
6126 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6127 				ASSERT(proptype == PROP_TYPE_STRING);
6128 				strval = fnvpair_value_string(elem);
6129 				VERIFY0(zap_update(mos,
6130 				    spa->spa_pool_props_object, propname,
6131 				    1, strlen(strval) + 1, strval, tx));
6132 				spa_history_log_internal(spa, "set", tx,
6133 				    "%s=%s", nvpair_name(elem), strval);
6134 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6135 				intval = fnvpair_value_uint64(elem);
6136 
6137 				if (proptype == PROP_TYPE_INDEX) {
6138 					const char *unused;
6139 					VERIFY0(zpool_prop_index_to_string(
6140 					    prop, intval, &unused));
6141 				}
6142 				VERIFY0(zap_update(mos,
6143 				    spa->spa_pool_props_object, propname,
6144 				    8, 1, &intval, tx));
6145 				spa_history_log_internal(spa, "set", tx,
6146 				    "%s=%lld", nvpair_name(elem), intval);
6147 			} else {
6148 				ASSERT(0); /* not allowed */
6149 			}
6150 
6151 			switch (prop) {
6152 			case ZPOOL_PROP_DELEGATION:
6153 				spa->spa_delegation = intval;
6154 				break;
6155 			case ZPOOL_PROP_BOOTFS:
6156 				spa->spa_bootfs = intval;
6157 				break;
6158 			case ZPOOL_PROP_FAILUREMODE:
6159 				spa->spa_failmode = intval;
6160 				break;
6161 			case ZPOOL_PROP_AUTOEXPAND:
6162 				spa->spa_autoexpand = intval;
6163 				if (tx->tx_txg != TXG_INITIAL)
6164 					spa_async_request(spa,
6165 					    SPA_ASYNC_AUTOEXPAND);
6166 				break;
6167 			case ZPOOL_PROP_DEDUPDITTO:
6168 				spa->spa_dedup_ditto = intval;
6169 				break;
6170 			default:
6171 				break;
6172 			}
6173 		}
6174 
6175 	}
6176 
6177 	mutex_exit(&spa->spa_props_lock);
6178 }
6179 
6180 /*
6181  * Perform one-time upgrade on-disk changes.  spa_version() does not
6182  * reflect the new version this txg, so there must be no changes this
6183  * txg to anything that the upgrade code depends on after it executes.
6184  * Therefore this must be called after dsl_pool_sync() does the sync
6185  * tasks.
6186  */
6187 static void
6188 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6189 {
6190 	dsl_pool_t *dp = spa->spa_dsl_pool;
6191 
6192 	ASSERT(spa->spa_sync_pass == 1);
6193 
6194 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6195 
6196 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6197 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6198 		dsl_pool_create_origin(dp, tx);
6199 
6200 		/* Keeping the origin open increases spa_minref */
6201 		spa->spa_minref += 3;
6202 	}
6203 
6204 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6205 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6206 		dsl_pool_upgrade_clones(dp, tx);
6207 	}
6208 
6209 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6210 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6211 		dsl_pool_upgrade_dir_clones(dp, tx);
6212 
6213 		/* Keeping the freedir open increases spa_minref */
6214 		spa->spa_minref += 3;
6215 	}
6216 
6217 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6218 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6219 		spa_feature_create_zap_objects(spa, tx);
6220 	}
6221 
6222 	/*
6223 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6224 	 * when possibility to use lz4 compression for metadata was added
6225 	 * Old pools that have this feature enabled must be upgraded to have
6226 	 * this feature active
6227 	 */
6228 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6229 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6230 		    SPA_FEATURE_LZ4_COMPRESS);
6231 		boolean_t lz4_ac = spa_feature_is_active(spa,
6232 		    SPA_FEATURE_LZ4_COMPRESS);
6233 
6234 		if (lz4_en && !lz4_ac)
6235 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6236 	}
6237 
6238 	/*
6239 	 * If we haven't written the salt, do so now.  Note that the
6240 	 * feature may not be activated yet, but that's fine since
6241 	 * the presence of this ZAP entry is backwards compatible.
6242 	 */
6243 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6244 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6245 		VERIFY0(zap_add(spa->spa_meta_objset,
6246 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6247 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6248 		    spa->spa_cksum_salt.zcs_bytes, tx));
6249 	}
6250 
6251 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6252 }
6253 
6254 /*
6255  * Sync the specified transaction group.  New blocks may be dirtied as
6256  * part of the process, so we iterate until it converges.
6257  */
6258 void
6259 spa_sync(spa_t *spa, uint64_t txg)
6260 {
6261 	dsl_pool_t *dp = spa->spa_dsl_pool;
6262 	objset_t *mos = spa->spa_meta_objset;
6263 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6264 	vdev_t *rvd = spa->spa_root_vdev;
6265 	vdev_t *vd;
6266 	dmu_tx_t *tx;
6267 	int error;
6268 
6269 	VERIFY(spa_writeable(spa));
6270 
6271 	/*
6272 	 * Lock out configuration changes.
6273 	 */
6274 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6275 
6276 	spa->spa_syncing_txg = txg;
6277 	spa->spa_sync_pass = 0;
6278 
6279 	/*
6280 	 * If there are any pending vdev state changes, convert them
6281 	 * into config changes that go out with this transaction group.
6282 	 */
6283 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6284 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6285 		/*
6286 		 * We need the write lock here because, for aux vdevs,
6287 		 * calling vdev_config_dirty() modifies sav_config.
6288 		 * This is ugly and will become unnecessary when we
6289 		 * eliminate the aux vdev wart by integrating all vdevs
6290 		 * into the root vdev tree.
6291 		 */
6292 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6293 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6294 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6295 			vdev_state_clean(vd);
6296 			vdev_config_dirty(vd);
6297 		}
6298 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6299 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6300 	}
6301 	spa_config_exit(spa, SCL_STATE, FTAG);
6302 
6303 	tx = dmu_tx_create_assigned(dp, txg);
6304 
6305 	spa->spa_sync_starttime = gethrtime();
6306 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6307 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6308 
6309 	/*
6310 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6311 	 * set spa_deflate if we have no raid-z vdevs.
6312 	 */
6313 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6314 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6315 		int i;
6316 
6317 		for (i = 0; i < rvd->vdev_children; i++) {
6318 			vd = rvd->vdev_child[i];
6319 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6320 				break;
6321 		}
6322 		if (i == rvd->vdev_children) {
6323 			spa->spa_deflate = TRUE;
6324 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6325 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6326 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6327 		}
6328 	}
6329 
6330 	/*
6331 	 * Iterate to convergence.
6332 	 */
6333 	do {
6334 		int pass = ++spa->spa_sync_pass;
6335 
6336 		spa_sync_config_object(spa, tx);
6337 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6338 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6339 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6340 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6341 		spa_errlog_sync(spa, txg);
6342 		dsl_pool_sync(dp, txg);
6343 
6344 		if (pass < zfs_sync_pass_deferred_free) {
6345 			spa_sync_frees(spa, free_bpl, tx);
6346 		} else {
6347 			/*
6348 			 * We can not defer frees in pass 1, because
6349 			 * we sync the deferred frees later in pass 1.
6350 			 */
6351 			ASSERT3U(pass, >, 1);
6352 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6353 			    &spa->spa_deferred_bpobj, tx);
6354 		}
6355 
6356 		ddt_sync(spa, txg);
6357 		dsl_scan_sync(dp, tx);
6358 
6359 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6360 			vdev_sync(vd, txg);
6361 
6362 		if (pass == 1) {
6363 			spa_sync_upgrades(spa, tx);
6364 			ASSERT3U(txg, >=,
6365 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6366 			/*
6367 			 * Note: We need to check if the MOS is dirty
6368 			 * because we could have marked the MOS dirty
6369 			 * without updating the uberblock (e.g. if we
6370 			 * have sync tasks but no dirty user data).  We
6371 			 * need to check the uberblock's rootbp because
6372 			 * it is updated if we have synced out dirty
6373 			 * data (though in this case the MOS will most
6374 			 * likely also be dirty due to second order
6375 			 * effects, we don't want to rely on that here).
6376 			 */
6377 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6378 			    !dmu_objset_is_dirty(mos, txg)) {
6379 				/*
6380 				 * Nothing changed on the first pass,
6381 				 * therefore this TXG is a no-op.  Avoid
6382 				 * syncing deferred frees, so that we
6383 				 * can keep this TXG as a no-op.
6384 				 */
6385 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6386 				    txg));
6387 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6388 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6389 				break;
6390 			}
6391 			spa_sync_deferred_frees(spa, tx);
6392 		}
6393 
6394 	} while (dmu_objset_is_dirty(mos, txg));
6395 
6396 	/*
6397 	 * Rewrite the vdev configuration (which includes the uberblock)
6398 	 * to commit the transaction group.
6399 	 *
6400 	 * If there are no dirty vdevs, we sync the uberblock to a few
6401 	 * random top-level vdevs that are known to be visible in the
6402 	 * config cache (see spa_vdev_add() for a complete description).
6403 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6404 	 */
6405 	for (;;) {
6406 		/*
6407 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6408 		 * while we're attempting to write the vdev labels.
6409 		 */
6410 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6411 
6412 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6413 			vdev_t *svd[SPA_DVAS_PER_BP];
6414 			int svdcount = 0;
6415 			int children = rvd->vdev_children;
6416 			int c0 = spa_get_random(children);
6417 
6418 			for (int c = 0; c < children; c++) {
6419 				vd = rvd->vdev_child[(c0 + c) % children];
6420 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6421 					continue;
6422 				svd[svdcount++] = vd;
6423 				if (svdcount == SPA_DVAS_PER_BP)
6424 					break;
6425 			}
6426 			error = vdev_config_sync(svd, svdcount, txg);
6427 		} else {
6428 			error = vdev_config_sync(rvd->vdev_child,
6429 			    rvd->vdev_children, txg);
6430 		}
6431 
6432 		if (error == 0)
6433 			spa->spa_last_synced_guid = rvd->vdev_guid;
6434 
6435 		spa_config_exit(spa, SCL_STATE, FTAG);
6436 
6437 		if (error == 0)
6438 			break;
6439 		zio_suspend(spa, NULL);
6440 		zio_resume_wait(spa);
6441 	}
6442 	dmu_tx_commit(tx);
6443 
6444 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6445 
6446 	/*
6447 	 * Clear the dirty config list.
6448 	 */
6449 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6450 		vdev_config_clean(vd);
6451 
6452 	/*
6453 	 * Now that the new config has synced transactionally,
6454 	 * let it become visible to the config cache.
6455 	 */
6456 	if (spa->spa_config_syncing != NULL) {
6457 		spa_config_set(spa, spa->spa_config_syncing);
6458 		spa->spa_config_txg = txg;
6459 		spa->spa_config_syncing = NULL;
6460 	}
6461 
6462 	spa->spa_ubsync = spa->spa_uberblock;
6463 
6464 	dsl_pool_sync_done(dp, txg);
6465 
6466 	/*
6467 	 * Update usable space statistics.
6468 	 */
6469 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6470 		vdev_sync_done(vd, txg);
6471 
6472 	spa_update_dspace(spa);
6473 
6474 	/*
6475 	 * It had better be the case that we didn't dirty anything
6476 	 * since vdev_config_sync().
6477 	 */
6478 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6479 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6480 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6481 
6482 	spa->spa_sync_pass = 0;
6483 
6484 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6485 
6486 	spa_handle_ignored_writes(spa);
6487 
6488 	/*
6489 	 * If any async tasks have been requested, kick them off.
6490 	 */
6491 	spa_async_dispatch(spa);
6492 }
6493 
6494 /*
6495  * Sync all pools.  We don't want to hold the namespace lock across these
6496  * operations, so we take a reference on the spa_t and drop the lock during the
6497  * sync.
6498  */
6499 void
6500 spa_sync_allpools(void)
6501 {
6502 	spa_t *spa = NULL;
6503 	mutex_enter(&spa_namespace_lock);
6504 	while ((spa = spa_next(spa)) != NULL) {
6505 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6506 		    !spa_writeable(spa) || spa_suspended(spa))
6507 			continue;
6508 		spa_open_ref(spa, FTAG);
6509 		mutex_exit(&spa_namespace_lock);
6510 		txg_wait_synced(spa_get_dsl(spa), 0);
6511 		mutex_enter(&spa_namespace_lock);
6512 		spa_close(spa, FTAG);
6513 	}
6514 	mutex_exit(&spa_namespace_lock);
6515 }
6516 
6517 /*
6518  * ==========================================================================
6519  * Miscellaneous routines
6520  * ==========================================================================
6521  */
6522 
6523 /*
6524  * Remove all pools in the system.
6525  */
6526 void
6527 spa_evict_all(void)
6528 {
6529 	spa_t *spa;
6530 
6531 	/*
6532 	 * Remove all cached state.  All pools should be closed now,
6533 	 * so every spa in the AVL tree should be unreferenced.
6534 	 */
6535 	mutex_enter(&spa_namespace_lock);
6536 	while ((spa = spa_next(NULL)) != NULL) {
6537 		/*
6538 		 * Stop async tasks.  The async thread may need to detach
6539 		 * a device that's been replaced, which requires grabbing
6540 		 * spa_namespace_lock, so we must drop it here.
6541 		 */
6542 		spa_open_ref(spa, FTAG);
6543 		mutex_exit(&spa_namespace_lock);
6544 		spa_async_suspend(spa);
6545 		mutex_enter(&spa_namespace_lock);
6546 		spa_close(spa, FTAG);
6547 
6548 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6549 			spa_unload(spa);
6550 			spa_deactivate(spa);
6551 		}
6552 		spa_remove(spa);
6553 	}
6554 	mutex_exit(&spa_namespace_lock);
6555 }
6556 
6557 vdev_t *
6558 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6559 {
6560 	vdev_t *vd;
6561 	int i;
6562 
6563 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6564 		return (vd);
6565 
6566 	if (aux) {
6567 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6568 			vd = spa->spa_l2cache.sav_vdevs[i];
6569 			if (vd->vdev_guid == guid)
6570 				return (vd);
6571 		}
6572 
6573 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6574 			vd = spa->spa_spares.sav_vdevs[i];
6575 			if (vd->vdev_guid == guid)
6576 				return (vd);
6577 		}
6578 	}
6579 
6580 	return (NULL);
6581 }
6582 
6583 void
6584 spa_upgrade(spa_t *spa, uint64_t version)
6585 {
6586 	ASSERT(spa_writeable(spa));
6587 
6588 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6589 
6590 	/*
6591 	 * This should only be called for a non-faulted pool, and since a
6592 	 * future version would result in an unopenable pool, this shouldn't be
6593 	 * possible.
6594 	 */
6595 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6596 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6597 
6598 	spa->spa_uberblock.ub_version = version;
6599 	vdev_config_dirty(spa->spa_root_vdev);
6600 
6601 	spa_config_exit(spa, SCL_ALL, FTAG);
6602 
6603 	txg_wait_synced(spa_get_dsl(spa), 0);
6604 }
6605 
6606 boolean_t
6607 spa_has_spare(spa_t *spa, uint64_t guid)
6608 {
6609 	int i;
6610 	uint64_t spareguid;
6611 	spa_aux_vdev_t *sav = &spa->spa_spares;
6612 
6613 	for (i = 0; i < sav->sav_count; i++)
6614 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6615 			return (B_TRUE);
6616 
6617 	for (i = 0; i < sav->sav_npending; i++) {
6618 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6619 		    &spareguid) == 0 && spareguid == guid)
6620 			return (B_TRUE);
6621 	}
6622 
6623 	return (B_FALSE);
6624 }
6625 
6626 /*
6627  * Check if a pool has an active shared spare device.
6628  * Note: reference count of an active spare is 2, as a spare and as a replace
6629  */
6630 static boolean_t
6631 spa_has_active_shared_spare(spa_t *spa)
6632 {
6633 	int i, refcnt;
6634 	uint64_t pool;
6635 	spa_aux_vdev_t *sav = &spa->spa_spares;
6636 
6637 	for (i = 0; i < sav->sav_count; i++) {
6638 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6639 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6640 		    refcnt > 2)
6641 			return (B_TRUE);
6642 	}
6643 
6644 	return (B_FALSE);
6645 }
6646 
6647 /*
6648  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6649  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6650  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6651  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6652  * or zdb as real changes.
6653  */
6654 void
6655 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6656 {
6657 #ifdef _KERNEL
6658 	sysevent_t		*ev;
6659 	sysevent_attr_list_t	*attr = NULL;
6660 	sysevent_value_t	value;
6661 	sysevent_id_t		eid;
6662 
6663 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6664 	    SE_SLEEP);
6665 
6666 	value.value_type = SE_DATA_TYPE_STRING;
6667 	value.value.sv_string = spa_name(spa);
6668 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6669 		goto done;
6670 
6671 	value.value_type = SE_DATA_TYPE_UINT64;
6672 	value.value.sv_uint64 = spa_guid(spa);
6673 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6674 		goto done;
6675 
6676 	if (vd) {
6677 		value.value_type = SE_DATA_TYPE_UINT64;
6678 		value.value.sv_uint64 = vd->vdev_guid;
6679 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6680 		    SE_SLEEP) != 0)
6681 			goto done;
6682 
6683 		if (vd->vdev_path) {
6684 			value.value_type = SE_DATA_TYPE_STRING;
6685 			value.value.sv_string = vd->vdev_path;
6686 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6687 			    &value, SE_SLEEP) != 0)
6688 				goto done;
6689 		}
6690 	}
6691 
6692 	if (sysevent_attach_attributes(ev, attr) != 0)
6693 		goto done;
6694 	attr = NULL;
6695 
6696 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6697 
6698 done:
6699 	if (attr)
6700 		sysevent_free_attr(attr);
6701 	sysevent_free(ev);
6702 #endif
6703 }
6704