xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 25345e466695fbe736faa53b8f3413d8e8f81981)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 /*
29  * This file contains all the routines used when modifying on-disk SPA state.
30  * This includes opening, importing, destroying, exporting a pool, and syncing a
31  * pool.
32  */
33 
34 #include <sys/zfs_context.h>
35 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/zio.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/ddt.h>
44 #include <sys/vdev_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/spa_boot.h>
63 #include <sys/zfs_ioctl.h>
64 #include <sys/dsl_scan.h>
65 #include <sys/zfeature.h>
66 
67 #ifdef	_KERNEL
68 #include <sys/bootprops.h>
69 #include <sys/callb.h>
70 #include <sys/cpupart.h>
71 #include <sys/pool.h>
72 #include <sys/sysdc.h>
73 #include <sys/zone.h>
74 #endif	/* _KERNEL */
75 
76 #include "zfs_prop.h"
77 #include "zfs_comutil.h"
78 
79 typedef enum zti_modes {
80 	zti_mode_fixed,			/* value is # of threads (min 1) */
81 	zti_mode_online_percent,	/* value is % of online CPUs */
82 	zti_mode_batch,			/* cpu-intensive; value is ignored */
83 	zti_mode_null,			/* don't create a taskq */
84 	zti_nmodes
85 } zti_modes_t;
86 
87 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
88 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
89 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
90 #define	ZTI_NULL	{ zti_mode_null, 0 }
91 
92 #define	ZTI_ONE		ZTI_FIX(1)
93 
94 typedef struct zio_taskq_info {
95 	enum zti_modes zti_mode;
96 	uint_t zti_value;
97 } zio_taskq_info_t;
98 
99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
100 	"issue", "issue_high", "intr", "intr_high"
101 };
102 
103 /*
104  * Define the taskq threads for the following I/O types:
105  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
106  */
107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
108 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
109 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
111 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
112 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
113 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
114 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
115 };
116 
117 static dsl_syncfunc_t spa_sync_version;
118 static dsl_syncfunc_t spa_sync_props;
119 static dsl_checkfunc_t spa_change_guid_check;
120 static dsl_syncfunc_t spa_change_guid_sync;
121 static boolean_t spa_has_active_shared_spare(spa_t *spa);
122 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
123     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
124     char **ereport);
125 static void spa_vdev_resilver_done(spa_t *spa);
126 
127 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
128 id_t		zio_taskq_psrset_bind = PS_NONE;
129 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
130 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
131 
132 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
133 extern int	zfs_sync_pass_deferred_free;
134 
135 /*
136  * This (illegal) pool name is used when temporarily importing a spa_t in order
137  * to get the vdev stats associated with the imported devices.
138  */
139 #define	TRYIMPORT_NAME	"$import"
140 
141 /*
142  * ==========================================================================
143  * SPA properties routines
144  * ==========================================================================
145  */
146 
147 /*
148  * Add a (source=src, propname=propval) list to an nvlist.
149  */
150 static void
151 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
152     uint64_t intval, zprop_source_t src)
153 {
154 	const char *propname = zpool_prop_to_name(prop);
155 	nvlist_t *propval;
156 
157 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
158 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
159 
160 	if (strval != NULL)
161 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
162 	else
163 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
164 
165 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
166 	nvlist_free(propval);
167 }
168 
169 /*
170  * Get property values from the spa configuration.
171  */
172 static void
173 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
174 {
175 	vdev_t *rvd = spa->spa_root_vdev;
176 	dsl_pool_t *pool = spa->spa_dsl_pool;
177 	uint64_t size;
178 	uint64_t alloc;
179 	uint64_t space;
180 	uint64_t cap, version;
181 	zprop_source_t src = ZPROP_SRC_NONE;
182 	spa_config_dirent_t *dp;
183 
184 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
185 
186 	if (rvd != NULL) {
187 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
188 		size = metaslab_class_get_space(spa_normal_class(spa));
189 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
191 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
192 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
193 		    size - alloc, src);
194 
195 		space = 0;
196 		for (int c = 0; c < rvd->vdev_children; c++) {
197 			vdev_t *tvd = rvd->vdev_child[c];
198 			space += tvd->vdev_max_asize - tvd->vdev_asize;
199 		}
200 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
201 		    src);
202 
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
204 		    (spa_mode(spa) == FREAD), src);
205 
206 		cap = (size == 0) ? 0 : (alloc * 100 / size);
207 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
208 
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
210 		    ddt_get_pool_dedup_ratio(spa), src);
211 
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
213 		    rvd->vdev_state, src);
214 
215 		version = spa_version(spa);
216 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
217 			src = ZPROP_SRC_DEFAULT;
218 		else
219 			src = ZPROP_SRC_LOCAL;
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
221 	}
222 
223 	if (pool != NULL) {
224 		dsl_dir_t *freedir = pool->dp_free_dir;
225 
226 		/*
227 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
228 		 * when opening pools before this version freedir will be NULL.
229 		 */
230 		if (freedir != NULL) {
231 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
232 			    freedir->dd_phys->dd_used_bytes, src);
233 		} else {
234 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
235 			    NULL, 0, src);
236 		}
237 	}
238 
239 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
240 
241 	if (spa->spa_comment != NULL) {
242 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
243 		    0, ZPROP_SRC_LOCAL);
244 	}
245 
246 	if (spa->spa_root != NULL)
247 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
248 		    0, ZPROP_SRC_LOCAL);
249 
250 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
251 		if (dp->scd_path == NULL) {
252 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
253 			    "none", 0, ZPROP_SRC_LOCAL);
254 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
256 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
257 		}
258 	}
259 }
260 
261 /*
262  * Get zpool property values.
263  */
264 int
265 spa_prop_get(spa_t *spa, nvlist_t **nvp)
266 {
267 	objset_t *mos = spa->spa_meta_objset;
268 	zap_cursor_t zc;
269 	zap_attribute_t za;
270 	int err;
271 
272 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
273 
274 	mutex_enter(&spa->spa_props_lock);
275 
276 	/*
277 	 * Get properties from the spa config.
278 	 */
279 	spa_prop_get_config(spa, nvp);
280 
281 	/* If no pool property object, no more prop to get. */
282 	if (mos == NULL || spa->spa_pool_props_object == 0) {
283 		mutex_exit(&spa->spa_props_lock);
284 		return (0);
285 	}
286 
287 	/*
288 	 * Get properties from the MOS pool property object.
289 	 */
290 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
291 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
292 	    zap_cursor_advance(&zc)) {
293 		uint64_t intval = 0;
294 		char *strval = NULL;
295 		zprop_source_t src = ZPROP_SRC_DEFAULT;
296 		zpool_prop_t prop;
297 
298 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
299 			continue;
300 
301 		switch (za.za_integer_length) {
302 		case 8:
303 			/* integer property */
304 			if (za.za_first_integer !=
305 			    zpool_prop_default_numeric(prop))
306 				src = ZPROP_SRC_LOCAL;
307 
308 			if (prop == ZPOOL_PROP_BOOTFS) {
309 				dsl_pool_t *dp;
310 				dsl_dataset_t *ds = NULL;
311 
312 				dp = spa_get_dsl(spa);
313 				rw_enter(&dp->dp_config_rwlock, RW_READER);
314 				if (err = dsl_dataset_hold_obj(dp,
315 				    za.za_first_integer, FTAG, &ds)) {
316 					rw_exit(&dp->dp_config_rwlock);
317 					break;
318 				}
319 
320 				strval = kmem_alloc(
321 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
322 				    KM_SLEEP);
323 				dsl_dataset_name(ds, strval);
324 				dsl_dataset_rele(ds, FTAG);
325 				rw_exit(&dp->dp_config_rwlock);
326 			} else {
327 				strval = NULL;
328 				intval = za.za_first_integer;
329 			}
330 
331 			spa_prop_add_list(*nvp, prop, strval, intval, src);
332 
333 			if (strval != NULL)
334 				kmem_free(strval,
335 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
336 
337 			break;
338 
339 		case 1:
340 			/* string property */
341 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
342 			err = zap_lookup(mos, spa->spa_pool_props_object,
343 			    za.za_name, 1, za.za_num_integers, strval);
344 			if (err) {
345 				kmem_free(strval, za.za_num_integers);
346 				break;
347 			}
348 			spa_prop_add_list(*nvp, prop, strval, 0, src);
349 			kmem_free(strval, za.za_num_integers);
350 			break;
351 
352 		default:
353 			break;
354 		}
355 	}
356 	zap_cursor_fini(&zc);
357 	mutex_exit(&spa->spa_props_lock);
358 out:
359 	if (err && err != ENOENT) {
360 		nvlist_free(*nvp);
361 		*nvp = NULL;
362 		return (err);
363 	}
364 
365 	return (0);
366 }
367 
368 /*
369  * Validate the given pool properties nvlist and modify the list
370  * for the property values to be set.
371  */
372 static int
373 spa_prop_validate(spa_t *spa, nvlist_t *props)
374 {
375 	nvpair_t *elem;
376 	int error = 0, reset_bootfs = 0;
377 	uint64_t objnum;
378 	boolean_t has_feature = B_FALSE;
379 
380 	elem = NULL;
381 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
382 		uint64_t intval;
383 		char *strval, *slash, *check, *fname;
384 		const char *propname = nvpair_name(elem);
385 		zpool_prop_t prop = zpool_name_to_prop(propname);
386 
387 		switch (prop) {
388 		case ZPROP_INVAL:
389 			if (!zpool_prop_feature(propname)) {
390 				error = EINVAL;
391 				break;
392 			}
393 
394 			/*
395 			 * Sanitize the input.
396 			 */
397 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
398 				error = EINVAL;
399 				break;
400 			}
401 
402 			if (nvpair_value_uint64(elem, &intval) != 0) {
403 				error = EINVAL;
404 				break;
405 			}
406 
407 			if (intval != 0) {
408 				error = EINVAL;
409 				break;
410 			}
411 
412 			fname = strchr(propname, '@') + 1;
413 			if (zfeature_lookup_name(fname, NULL) != 0) {
414 				error = EINVAL;
415 				break;
416 			}
417 
418 			has_feature = B_TRUE;
419 			break;
420 
421 		case ZPOOL_PROP_VERSION:
422 			error = nvpair_value_uint64(elem, &intval);
423 			if (!error &&
424 			    (intval < spa_version(spa) ||
425 			    intval > SPA_VERSION_BEFORE_FEATURES ||
426 			    has_feature))
427 				error = EINVAL;
428 			break;
429 
430 		case ZPOOL_PROP_DELEGATION:
431 		case ZPOOL_PROP_AUTOREPLACE:
432 		case ZPOOL_PROP_LISTSNAPS:
433 		case ZPOOL_PROP_AUTOEXPAND:
434 			error = nvpair_value_uint64(elem, &intval);
435 			if (!error && intval > 1)
436 				error = EINVAL;
437 			break;
438 
439 		case ZPOOL_PROP_BOOTFS:
440 			/*
441 			 * If the pool version is less than SPA_VERSION_BOOTFS,
442 			 * or the pool is still being created (version == 0),
443 			 * the bootfs property cannot be set.
444 			 */
445 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
446 				error = ENOTSUP;
447 				break;
448 			}
449 
450 			/*
451 			 * Make sure the vdev config is bootable
452 			 */
453 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
454 				error = ENOTSUP;
455 				break;
456 			}
457 
458 			reset_bootfs = 1;
459 
460 			error = nvpair_value_string(elem, &strval);
461 
462 			if (!error) {
463 				objset_t *os;
464 				uint64_t compress;
465 
466 				if (strval == NULL || strval[0] == '\0') {
467 					objnum = zpool_prop_default_numeric(
468 					    ZPOOL_PROP_BOOTFS);
469 					break;
470 				}
471 
472 				if (error = dmu_objset_hold(strval, FTAG, &os))
473 					break;
474 
475 				/* Must be ZPL and not gzip compressed. */
476 
477 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
478 					error = ENOTSUP;
479 				} else if ((error = dsl_prop_get_integer(strval,
480 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
481 				    &compress, NULL)) == 0 &&
482 				    !BOOTFS_COMPRESS_VALID(compress)) {
483 					error = ENOTSUP;
484 				} else {
485 					objnum = dmu_objset_id(os);
486 				}
487 				dmu_objset_rele(os, FTAG);
488 			}
489 			break;
490 
491 		case ZPOOL_PROP_FAILUREMODE:
492 			error = nvpair_value_uint64(elem, &intval);
493 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
494 			    intval > ZIO_FAILURE_MODE_PANIC))
495 				error = EINVAL;
496 
497 			/*
498 			 * This is a special case which only occurs when
499 			 * the pool has completely failed. This allows
500 			 * the user to change the in-core failmode property
501 			 * without syncing it out to disk (I/Os might
502 			 * currently be blocked). We do this by returning
503 			 * EIO to the caller (spa_prop_set) to trick it
504 			 * into thinking we encountered a property validation
505 			 * error.
506 			 */
507 			if (!error && spa_suspended(spa)) {
508 				spa->spa_failmode = intval;
509 				error = EIO;
510 			}
511 			break;
512 
513 		case ZPOOL_PROP_CACHEFILE:
514 			if ((error = nvpair_value_string(elem, &strval)) != 0)
515 				break;
516 
517 			if (strval[0] == '\0')
518 				break;
519 
520 			if (strcmp(strval, "none") == 0)
521 				break;
522 
523 			if (strval[0] != '/') {
524 				error = EINVAL;
525 				break;
526 			}
527 
528 			slash = strrchr(strval, '/');
529 			ASSERT(slash != NULL);
530 
531 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
532 			    strcmp(slash, "/..") == 0)
533 				error = EINVAL;
534 			break;
535 
536 		case ZPOOL_PROP_COMMENT:
537 			if ((error = nvpair_value_string(elem, &strval)) != 0)
538 				break;
539 			for (check = strval; *check != '\0'; check++) {
540 				/*
541 				 * The kernel doesn't have an easy isprint()
542 				 * check.  For this kernel check, we merely
543 				 * check ASCII apart from DEL.  Fix this if
544 				 * there is an easy-to-use kernel isprint().
545 				 */
546 				if (*check >= 0x7f) {
547 					error = EINVAL;
548 					break;
549 				}
550 				check++;
551 			}
552 			if (strlen(strval) > ZPROP_MAX_COMMENT)
553 				error = E2BIG;
554 			break;
555 
556 		case ZPOOL_PROP_DEDUPDITTO:
557 			if (spa_version(spa) < SPA_VERSION_DEDUP)
558 				error = ENOTSUP;
559 			else
560 				error = nvpair_value_uint64(elem, &intval);
561 			if (error == 0 &&
562 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
563 				error = EINVAL;
564 			break;
565 		}
566 
567 		if (error)
568 			break;
569 	}
570 
571 	if (!error && reset_bootfs) {
572 		error = nvlist_remove(props,
573 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
574 
575 		if (!error) {
576 			error = nvlist_add_uint64(props,
577 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
578 		}
579 	}
580 
581 	return (error);
582 }
583 
584 void
585 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
586 {
587 	char *cachefile;
588 	spa_config_dirent_t *dp;
589 
590 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
591 	    &cachefile) != 0)
592 		return;
593 
594 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
595 	    KM_SLEEP);
596 
597 	if (cachefile[0] == '\0')
598 		dp->scd_path = spa_strdup(spa_config_path);
599 	else if (strcmp(cachefile, "none") == 0)
600 		dp->scd_path = NULL;
601 	else
602 		dp->scd_path = spa_strdup(cachefile);
603 
604 	list_insert_head(&spa->spa_config_list, dp);
605 	if (need_sync)
606 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
607 }
608 
609 int
610 spa_prop_set(spa_t *spa, nvlist_t *nvp)
611 {
612 	int error;
613 	nvpair_t *elem = NULL;
614 	boolean_t need_sync = B_FALSE;
615 
616 	if ((error = spa_prop_validate(spa, nvp)) != 0)
617 		return (error);
618 
619 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
620 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
621 
622 		if (prop == ZPOOL_PROP_CACHEFILE ||
623 		    prop == ZPOOL_PROP_ALTROOT ||
624 		    prop == ZPOOL_PROP_READONLY)
625 			continue;
626 
627 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
628 			uint64_t ver;
629 
630 			if (prop == ZPOOL_PROP_VERSION) {
631 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
632 			} else {
633 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
634 				ver = SPA_VERSION_FEATURES;
635 				need_sync = B_TRUE;
636 			}
637 
638 			/* Save time if the version is already set. */
639 			if (ver == spa_version(spa))
640 				continue;
641 
642 			/*
643 			 * In addition to the pool directory object, we might
644 			 * create the pool properties object, the features for
645 			 * read object, the features for write object, or the
646 			 * feature descriptions object.
647 			 */
648 			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
649 			    spa_sync_version, spa, &ver, 6);
650 			if (error)
651 				return (error);
652 			continue;
653 		}
654 
655 		need_sync = B_TRUE;
656 		break;
657 	}
658 
659 	if (need_sync) {
660 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
661 		    spa, nvp, 6));
662 	}
663 
664 	return (0);
665 }
666 
667 /*
668  * If the bootfs property value is dsobj, clear it.
669  */
670 void
671 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
672 {
673 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
674 		VERIFY(zap_remove(spa->spa_meta_objset,
675 		    spa->spa_pool_props_object,
676 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
677 		spa->spa_bootfs = 0;
678 	}
679 }
680 
681 /*ARGSUSED*/
682 static int
683 spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
684 {
685 	spa_t *spa = arg1;
686 	uint64_t *newguid = arg2;
687 	vdev_t *rvd = spa->spa_root_vdev;
688 	uint64_t vdev_state;
689 
690 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
691 	vdev_state = rvd->vdev_state;
692 	spa_config_exit(spa, SCL_STATE, FTAG);
693 
694 	if (vdev_state != VDEV_STATE_HEALTHY)
695 		return (ENXIO);
696 
697 	ASSERT3U(spa_guid(spa), !=, *newguid);
698 
699 	return (0);
700 }
701 
702 static void
703 spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
704 {
705 	spa_t *spa = arg1;
706 	uint64_t *newguid = arg2;
707 	uint64_t oldguid;
708 	vdev_t *rvd = spa->spa_root_vdev;
709 
710 	oldguid = spa_guid(spa);
711 
712 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
713 	rvd->vdev_guid = *newguid;
714 	rvd->vdev_guid_sum += (*newguid - oldguid);
715 	vdev_config_dirty(rvd);
716 	spa_config_exit(spa, SCL_STATE, FTAG);
717 
718 	spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
719 	    oldguid, *newguid);
720 }
721 
722 /*
723  * Change the GUID for the pool.  This is done so that we can later
724  * re-import a pool built from a clone of our own vdevs.  We will modify
725  * the root vdev's guid, our own pool guid, and then mark all of our
726  * vdevs dirty.  Note that we must make sure that all our vdevs are
727  * online when we do this, or else any vdevs that weren't present
728  * would be orphaned from our pool.  We are also going to issue a
729  * sysevent to update any watchers.
730  */
731 int
732 spa_change_guid(spa_t *spa)
733 {
734 	int error;
735 	uint64_t guid;
736 
737 	mutex_enter(&spa_namespace_lock);
738 	guid = spa_generate_guid(NULL);
739 
740 	error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
741 	    spa_change_guid_sync, spa, &guid, 5);
742 
743 	if (error == 0) {
744 		spa_config_sync(spa, B_FALSE, B_TRUE);
745 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
746 	}
747 
748 	mutex_exit(&spa_namespace_lock);
749 
750 	return (error);
751 }
752 
753 /*
754  * ==========================================================================
755  * SPA state manipulation (open/create/destroy/import/export)
756  * ==========================================================================
757  */
758 
759 static int
760 spa_error_entry_compare(const void *a, const void *b)
761 {
762 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
763 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
764 	int ret;
765 
766 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
767 	    sizeof (zbookmark_t));
768 
769 	if (ret < 0)
770 		return (-1);
771 	else if (ret > 0)
772 		return (1);
773 	else
774 		return (0);
775 }
776 
777 /*
778  * Utility function which retrieves copies of the current logs and
779  * re-initializes them in the process.
780  */
781 void
782 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
783 {
784 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
785 
786 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
787 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
788 
789 	avl_create(&spa->spa_errlist_scrub,
790 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
791 	    offsetof(spa_error_entry_t, se_avl));
792 	avl_create(&spa->spa_errlist_last,
793 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
794 	    offsetof(spa_error_entry_t, se_avl));
795 }
796 
797 static taskq_t *
798 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
799     uint_t value)
800 {
801 	uint_t flags = 0;
802 	boolean_t batch = B_FALSE;
803 
804 	switch (mode) {
805 	case zti_mode_null:
806 		return (NULL);		/* no taskq needed */
807 
808 	case zti_mode_fixed:
809 		ASSERT3U(value, >=, 1);
810 		value = MAX(value, 1);
811 		break;
812 
813 	case zti_mode_batch:
814 		batch = B_TRUE;
815 		flags |= TASKQ_THREADS_CPU_PCT;
816 		value = zio_taskq_batch_pct;
817 		break;
818 
819 	case zti_mode_online_percent:
820 		flags |= TASKQ_THREADS_CPU_PCT;
821 		break;
822 
823 	default:
824 		panic("unrecognized mode for %s taskq (%u:%u) in "
825 		    "spa_activate()",
826 		    name, mode, value);
827 		break;
828 	}
829 
830 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
831 		if (batch)
832 			flags |= TASKQ_DC_BATCH;
833 
834 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
835 		    spa->spa_proc, zio_taskq_basedc, flags));
836 	}
837 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
838 	    spa->spa_proc, flags));
839 }
840 
841 static void
842 spa_create_zio_taskqs(spa_t *spa)
843 {
844 	for (int t = 0; t < ZIO_TYPES; t++) {
845 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
846 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
847 			enum zti_modes mode = ztip->zti_mode;
848 			uint_t value = ztip->zti_value;
849 			char name[32];
850 
851 			(void) snprintf(name, sizeof (name),
852 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
853 
854 			spa->spa_zio_taskq[t][q] =
855 			    spa_taskq_create(spa, name, mode, value);
856 		}
857 	}
858 }
859 
860 #ifdef _KERNEL
861 static void
862 spa_thread(void *arg)
863 {
864 	callb_cpr_t cprinfo;
865 
866 	spa_t *spa = arg;
867 	user_t *pu = PTOU(curproc);
868 
869 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
870 	    spa->spa_name);
871 
872 	ASSERT(curproc != &p0);
873 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
874 	    "zpool-%s", spa->spa_name);
875 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
876 
877 	/* bind this thread to the requested psrset */
878 	if (zio_taskq_psrset_bind != PS_NONE) {
879 		pool_lock();
880 		mutex_enter(&cpu_lock);
881 		mutex_enter(&pidlock);
882 		mutex_enter(&curproc->p_lock);
883 
884 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
885 		    0, NULL, NULL) == 0)  {
886 			curthread->t_bind_pset = zio_taskq_psrset_bind;
887 		} else {
888 			cmn_err(CE_WARN,
889 			    "Couldn't bind process for zfs pool \"%s\" to "
890 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
891 		}
892 
893 		mutex_exit(&curproc->p_lock);
894 		mutex_exit(&pidlock);
895 		mutex_exit(&cpu_lock);
896 		pool_unlock();
897 	}
898 
899 	if (zio_taskq_sysdc) {
900 		sysdc_thread_enter(curthread, 100, 0);
901 	}
902 
903 	spa->spa_proc = curproc;
904 	spa->spa_did = curthread->t_did;
905 
906 	spa_create_zio_taskqs(spa);
907 
908 	mutex_enter(&spa->spa_proc_lock);
909 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
910 
911 	spa->spa_proc_state = SPA_PROC_ACTIVE;
912 	cv_broadcast(&spa->spa_proc_cv);
913 
914 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
915 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
916 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
917 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
918 
919 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
920 	spa->spa_proc_state = SPA_PROC_GONE;
921 	spa->spa_proc = &p0;
922 	cv_broadcast(&spa->spa_proc_cv);
923 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
924 
925 	mutex_enter(&curproc->p_lock);
926 	lwp_exit();
927 }
928 #endif
929 
930 /*
931  * Activate an uninitialized pool.
932  */
933 static void
934 spa_activate(spa_t *spa, int mode)
935 {
936 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
937 
938 	spa->spa_state = POOL_STATE_ACTIVE;
939 	spa->spa_mode = mode;
940 
941 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
942 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
943 
944 	/* Try to create a covering process */
945 	mutex_enter(&spa->spa_proc_lock);
946 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
947 	ASSERT(spa->spa_proc == &p0);
948 	spa->spa_did = 0;
949 
950 	/* Only create a process if we're going to be around a while. */
951 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
952 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
953 		    NULL, 0) == 0) {
954 			spa->spa_proc_state = SPA_PROC_CREATED;
955 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
956 				cv_wait(&spa->spa_proc_cv,
957 				    &spa->spa_proc_lock);
958 			}
959 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
960 			ASSERT(spa->spa_proc != &p0);
961 			ASSERT(spa->spa_did != 0);
962 		} else {
963 #ifdef _KERNEL
964 			cmn_err(CE_WARN,
965 			    "Couldn't create process for zfs pool \"%s\"\n",
966 			    spa->spa_name);
967 #endif
968 		}
969 	}
970 	mutex_exit(&spa->spa_proc_lock);
971 
972 	/* If we didn't create a process, we need to create our taskqs. */
973 	if (spa->spa_proc == &p0) {
974 		spa_create_zio_taskqs(spa);
975 	}
976 
977 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
978 	    offsetof(vdev_t, vdev_config_dirty_node));
979 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
980 	    offsetof(vdev_t, vdev_state_dirty_node));
981 
982 	txg_list_create(&spa->spa_vdev_txg_list,
983 	    offsetof(struct vdev, vdev_txg_node));
984 
985 	avl_create(&spa->spa_errlist_scrub,
986 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
987 	    offsetof(spa_error_entry_t, se_avl));
988 	avl_create(&spa->spa_errlist_last,
989 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
990 	    offsetof(spa_error_entry_t, se_avl));
991 }
992 
993 /*
994  * Opposite of spa_activate().
995  */
996 static void
997 spa_deactivate(spa_t *spa)
998 {
999 	ASSERT(spa->spa_sync_on == B_FALSE);
1000 	ASSERT(spa->spa_dsl_pool == NULL);
1001 	ASSERT(spa->spa_root_vdev == NULL);
1002 	ASSERT(spa->spa_async_zio_root == NULL);
1003 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1004 
1005 	txg_list_destroy(&spa->spa_vdev_txg_list);
1006 
1007 	list_destroy(&spa->spa_config_dirty_list);
1008 	list_destroy(&spa->spa_state_dirty_list);
1009 
1010 	for (int t = 0; t < ZIO_TYPES; t++) {
1011 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1012 			if (spa->spa_zio_taskq[t][q] != NULL)
1013 				taskq_destroy(spa->spa_zio_taskq[t][q]);
1014 			spa->spa_zio_taskq[t][q] = NULL;
1015 		}
1016 	}
1017 
1018 	metaslab_class_destroy(spa->spa_normal_class);
1019 	spa->spa_normal_class = NULL;
1020 
1021 	metaslab_class_destroy(spa->spa_log_class);
1022 	spa->spa_log_class = NULL;
1023 
1024 	/*
1025 	 * If this was part of an import or the open otherwise failed, we may
1026 	 * still have errors left in the queues.  Empty them just in case.
1027 	 */
1028 	spa_errlog_drain(spa);
1029 
1030 	avl_destroy(&spa->spa_errlist_scrub);
1031 	avl_destroy(&spa->spa_errlist_last);
1032 
1033 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1034 
1035 	mutex_enter(&spa->spa_proc_lock);
1036 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1037 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1038 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1039 		cv_broadcast(&spa->spa_proc_cv);
1040 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1041 			ASSERT(spa->spa_proc != &p0);
1042 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1043 		}
1044 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1045 		spa->spa_proc_state = SPA_PROC_NONE;
1046 	}
1047 	ASSERT(spa->spa_proc == &p0);
1048 	mutex_exit(&spa->spa_proc_lock);
1049 
1050 	/*
1051 	 * We want to make sure spa_thread() has actually exited the ZFS
1052 	 * module, so that the module can't be unloaded out from underneath
1053 	 * it.
1054 	 */
1055 	if (spa->spa_did != 0) {
1056 		thread_join(spa->spa_did);
1057 		spa->spa_did = 0;
1058 	}
1059 }
1060 
1061 /*
1062  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1063  * will create all the necessary vdevs in the appropriate layout, with each vdev
1064  * in the CLOSED state.  This will prep the pool before open/creation/import.
1065  * All vdev validation is done by the vdev_alloc() routine.
1066  */
1067 static int
1068 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1069     uint_t id, int atype)
1070 {
1071 	nvlist_t **child;
1072 	uint_t children;
1073 	int error;
1074 
1075 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1076 		return (error);
1077 
1078 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1079 		return (0);
1080 
1081 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1082 	    &child, &children);
1083 
1084 	if (error == ENOENT)
1085 		return (0);
1086 
1087 	if (error) {
1088 		vdev_free(*vdp);
1089 		*vdp = NULL;
1090 		return (EINVAL);
1091 	}
1092 
1093 	for (int c = 0; c < children; c++) {
1094 		vdev_t *vd;
1095 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1096 		    atype)) != 0) {
1097 			vdev_free(*vdp);
1098 			*vdp = NULL;
1099 			return (error);
1100 		}
1101 	}
1102 
1103 	ASSERT(*vdp != NULL);
1104 
1105 	return (0);
1106 }
1107 
1108 /*
1109  * Opposite of spa_load().
1110  */
1111 static void
1112 spa_unload(spa_t *spa)
1113 {
1114 	int i;
1115 
1116 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1117 
1118 	/*
1119 	 * Stop async tasks.
1120 	 */
1121 	spa_async_suspend(spa);
1122 
1123 	/*
1124 	 * Stop syncing.
1125 	 */
1126 	if (spa->spa_sync_on) {
1127 		txg_sync_stop(spa->spa_dsl_pool);
1128 		spa->spa_sync_on = B_FALSE;
1129 	}
1130 
1131 	/*
1132 	 * Wait for any outstanding async I/O to complete.
1133 	 */
1134 	if (spa->spa_async_zio_root != NULL) {
1135 		(void) zio_wait(spa->spa_async_zio_root);
1136 		spa->spa_async_zio_root = NULL;
1137 	}
1138 
1139 	bpobj_close(&spa->spa_deferred_bpobj);
1140 
1141 	/*
1142 	 * Close the dsl pool.
1143 	 */
1144 	if (spa->spa_dsl_pool) {
1145 		dsl_pool_close(spa->spa_dsl_pool);
1146 		spa->spa_dsl_pool = NULL;
1147 		spa->spa_meta_objset = NULL;
1148 	}
1149 
1150 	ddt_unload(spa);
1151 
1152 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1153 
1154 	/*
1155 	 * Drop and purge level 2 cache
1156 	 */
1157 	spa_l2cache_drop(spa);
1158 
1159 	/*
1160 	 * Close all vdevs.
1161 	 */
1162 	if (spa->spa_root_vdev)
1163 		vdev_free(spa->spa_root_vdev);
1164 	ASSERT(spa->spa_root_vdev == NULL);
1165 
1166 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1167 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1168 	if (spa->spa_spares.sav_vdevs) {
1169 		kmem_free(spa->spa_spares.sav_vdevs,
1170 		    spa->spa_spares.sav_count * sizeof (void *));
1171 		spa->spa_spares.sav_vdevs = NULL;
1172 	}
1173 	if (spa->spa_spares.sav_config) {
1174 		nvlist_free(spa->spa_spares.sav_config);
1175 		spa->spa_spares.sav_config = NULL;
1176 	}
1177 	spa->spa_spares.sav_count = 0;
1178 
1179 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1180 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1181 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1182 	}
1183 	if (spa->spa_l2cache.sav_vdevs) {
1184 		kmem_free(spa->spa_l2cache.sav_vdevs,
1185 		    spa->spa_l2cache.sav_count * sizeof (void *));
1186 		spa->spa_l2cache.sav_vdevs = NULL;
1187 	}
1188 	if (spa->spa_l2cache.sav_config) {
1189 		nvlist_free(spa->spa_l2cache.sav_config);
1190 		spa->spa_l2cache.sav_config = NULL;
1191 	}
1192 	spa->spa_l2cache.sav_count = 0;
1193 
1194 	spa->spa_async_suspended = 0;
1195 
1196 	if (spa->spa_comment != NULL) {
1197 		spa_strfree(spa->spa_comment);
1198 		spa->spa_comment = NULL;
1199 	}
1200 
1201 	spa_config_exit(spa, SCL_ALL, FTAG);
1202 }
1203 
1204 /*
1205  * Load (or re-load) the current list of vdevs describing the active spares for
1206  * this pool.  When this is called, we have some form of basic information in
1207  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1208  * then re-generate a more complete list including status information.
1209  */
1210 static void
1211 spa_load_spares(spa_t *spa)
1212 {
1213 	nvlist_t **spares;
1214 	uint_t nspares;
1215 	int i;
1216 	vdev_t *vd, *tvd;
1217 
1218 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1219 
1220 	/*
1221 	 * First, close and free any existing spare vdevs.
1222 	 */
1223 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1224 		vd = spa->spa_spares.sav_vdevs[i];
1225 
1226 		/* Undo the call to spa_activate() below */
1227 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1228 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1229 			spa_spare_remove(tvd);
1230 		vdev_close(vd);
1231 		vdev_free(vd);
1232 	}
1233 
1234 	if (spa->spa_spares.sav_vdevs)
1235 		kmem_free(spa->spa_spares.sav_vdevs,
1236 		    spa->spa_spares.sav_count * sizeof (void *));
1237 
1238 	if (spa->spa_spares.sav_config == NULL)
1239 		nspares = 0;
1240 	else
1241 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1242 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1243 
1244 	spa->spa_spares.sav_count = (int)nspares;
1245 	spa->spa_spares.sav_vdevs = NULL;
1246 
1247 	if (nspares == 0)
1248 		return;
1249 
1250 	/*
1251 	 * Construct the array of vdevs, opening them to get status in the
1252 	 * process.   For each spare, there is potentially two different vdev_t
1253 	 * structures associated with it: one in the list of spares (used only
1254 	 * for basic validation purposes) and one in the active vdev
1255 	 * configuration (if it's spared in).  During this phase we open and
1256 	 * validate each vdev on the spare list.  If the vdev also exists in the
1257 	 * active configuration, then we also mark this vdev as an active spare.
1258 	 */
1259 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1260 	    KM_SLEEP);
1261 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1262 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1263 		    VDEV_ALLOC_SPARE) == 0);
1264 		ASSERT(vd != NULL);
1265 
1266 		spa->spa_spares.sav_vdevs[i] = vd;
1267 
1268 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1269 		    B_FALSE)) != NULL) {
1270 			if (!tvd->vdev_isspare)
1271 				spa_spare_add(tvd);
1272 
1273 			/*
1274 			 * We only mark the spare active if we were successfully
1275 			 * able to load the vdev.  Otherwise, importing a pool
1276 			 * with a bad active spare would result in strange
1277 			 * behavior, because multiple pool would think the spare
1278 			 * is actively in use.
1279 			 *
1280 			 * There is a vulnerability here to an equally bizarre
1281 			 * circumstance, where a dead active spare is later
1282 			 * brought back to life (onlined or otherwise).  Given
1283 			 * the rarity of this scenario, and the extra complexity
1284 			 * it adds, we ignore the possibility.
1285 			 */
1286 			if (!vdev_is_dead(tvd))
1287 				spa_spare_activate(tvd);
1288 		}
1289 
1290 		vd->vdev_top = vd;
1291 		vd->vdev_aux = &spa->spa_spares;
1292 
1293 		if (vdev_open(vd) != 0)
1294 			continue;
1295 
1296 		if (vdev_validate_aux(vd) == 0)
1297 			spa_spare_add(vd);
1298 	}
1299 
1300 	/*
1301 	 * Recompute the stashed list of spares, with status information
1302 	 * this time.
1303 	 */
1304 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1305 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1306 
1307 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1308 	    KM_SLEEP);
1309 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1310 		spares[i] = vdev_config_generate(spa,
1311 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1312 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1313 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1314 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1315 		nvlist_free(spares[i]);
1316 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1317 }
1318 
1319 /*
1320  * Load (or re-load) the current list of vdevs describing the active l2cache for
1321  * this pool.  When this is called, we have some form of basic information in
1322  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1323  * then re-generate a more complete list including status information.
1324  * Devices which are already active have their details maintained, and are
1325  * not re-opened.
1326  */
1327 static void
1328 spa_load_l2cache(spa_t *spa)
1329 {
1330 	nvlist_t **l2cache;
1331 	uint_t nl2cache;
1332 	int i, j, oldnvdevs;
1333 	uint64_t guid;
1334 	vdev_t *vd, **oldvdevs, **newvdevs;
1335 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1336 
1337 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1338 
1339 	if (sav->sav_config != NULL) {
1340 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1341 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1342 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1343 	} else {
1344 		nl2cache = 0;
1345 	}
1346 
1347 	oldvdevs = sav->sav_vdevs;
1348 	oldnvdevs = sav->sav_count;
1349 	sav->sav_vdevs = NULL;
1350 	sav->sav_count = 0;
1351 
1352 	/*
1353 	 * Process new nvlist of vdevs.
1354 	 */
1355 	for (i = 0; i < nl2cache; i++) {
1356 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1357 		    &guid) == 0);
1358 
1359 		newvdevs[i] = NULL;
1360 		for (j = 0; j < oldnvdevs; j++) {
1361 			vd = oldvdevs[j];
1362 			if (vd != NULL && guid == vd->vdev_guid) {
1363 				/*
1364 				 * Retain previous vdev for add/remove ops.
1365 				 */
1366 				newvdevs[i] = vd;
1367 				oldvdevs[j] = NULL;
1368 				break;
1369 			}
1370 		}
1371 
1372 		if (newvdevs[i] == NULL) {
1373 			/*
1374 			 * Create new vdev
1375 			 */
1376 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1377 			    VDEV_ALLOC_L2CACHE) == 0);
1378 			ASSERT(vd != NULL);
1379 			newvdevs[i] = vd;
1380 
1381 			/*
1382 			 * Commit this vdev as an l2cache device,
1383 			 * even if it fails to open.
1384 			 */
1385 			spa_l2cache_add(vd);
1386 
1387 			vd->vdev_top = vd;
1388 			vd->vdev_aux = sav;
1389 
1390 			spa_l2cache_activate(vd);
1391 
1392 			if (vdev_open(vd) != 0)
1393 				continue;
1394 
1395 			(void) vdev_validate_aux(vd);
1396 
1397 			if (!vdev_is_dead(vd))
1398 				l2arc_add_vdev(spa, vd);
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * Purge vdevs that were dropped
1404 	 */
1405 	for (i = 0; i < oldnvdevs; i++) {
1406 		uint64_t pool;
1407 
1408 		vd = oldvdevs[i];
1409 		if (vd != NULL) {
1410 			ASSERT(vd->vdev_isl2cache);
1411 
1412 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1413 			    pool != 0ULL && l2arc_vdev_present(vd))
1414 				l2arc_remove_vdev(vd);
1415 			vdev_clear_stats(vd);
1416 			vdev_free(vd);
1417 		}
1418 	}
1419 
1420 	if (oldvdevs)
1421 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1422 
1423 	if (sav->sav_config == NULL)
1424 		goto out;
1425 
1426 	sav->sav_vdevs = newvdevs;
1427 	sav->sav_count = (int)nl2cache;
1428 
1429 	/*
1430 	 * Recompute the stashed list of l2cache devices, with status
1431 	 * information this time.
1432 	 */
1433 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1434 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1435 
1436 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1437 	for (i = 0; i < sav->sav_count; i++)
1438 		l2cache[i] = vdev_config_generate(spa,
1439 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1440 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1441 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1442 out:
1443 	for (i = 0; i < sav->sav_count; i++)
1444 		nvlist_free(l2cache[i]);
1445 	if (sav->sav_count)
1446 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1447 }
1448 
1449 static int
1450 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1451 {
1452 	dmu_buf_t *db;
1453 	char *packed = NULL;
1454 	size_t nvsize = 0;
1455 	int error;
1456 	*value = NULL;
1457 
1458 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1459 	nvsize = *(uint64_t *)db->db_data;
1460 	dmu_buf_rele(db, FTAG);
1461 
1462 	packed = kmem_alloc(nvsize, KM_SLEEP);
1463 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1464 	    DMU_READ_PREFETCH);
1465 	if (error == 0)
1466 		error = nvlist_unpack(packed, nvsize, value, 0);
1467 	kmem_free(packed, nvsize);
1468 
1469 	return (error);
1470 }
1471 
1472 /*
1473  * Checks to see if the given vdev could not be opened, in which case we post a
1474  * sysevent to notify the autoreplace code that the device has been removed.
1475  */
1476 static void
1477 spa_check_removed(vdev_t *vd)
1478 {
1479 	for (int c = 0; c < vd->vdev_children; c++)
1480 		spa_check_removed(vd->vdev_child[c]);
1481 
1482 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1483 		zfs_post_autoreplace(vd->vdev_spa, vd);
1484 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1485 	}
1486 }
1487 
1488 /*
1489  * Validate the current config against the MOS config
1490  */
1491 static boolean_t
1492 spa_config_valid(spa_t *spa, nvlist_t *config)
1493 {
1494 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1495 	nvlist_t *nv;
1496 
1497 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1498 
1499 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1500 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1501 
1502 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1503 
1504 	/*
1505 	 * If we're doing a normal import, then build up any additional
1506 	 * diagnostic information about missing devices in this config.
1507 	 * We'll pass this up to the user for further processing.
1508 	 */
1509 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1510 		nvlist_t **child, *nv;
1511 		uint64_t idx = 0;
1512 
1513 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1514 		    KM_SLEEP);
1515 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1516 
1517 		for (int c = 0; c < rvd->vdev_children; c++) {
1518 			vdev_t *tvd = rvd->vdev_child[c];
1519 			vdev_t *mtvd  = mrvd->vdev_child[c];
1520 
1521 			if (tvd->vdev_ops == &vdev_missing_ops &&
1522 			    mtvd->vdev_ops != &vdev_missing_ops &&
1523 			    mtvd->vdev_islog)
1524 				child[idx++] = vdev_config_generate(spa, mtvd,
1525 				    B_FALSE, 0);
1526 		}
1527 
1528 		if (idx) {
1529 			VERIFY(nvlist_add_nvlist_array(nv,
1530 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1531 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1532 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1533 
1534 			for (int i = 0; i < idx; i++)
1535 				nvlist_free(child[i]);
1536 		}
1537 		nvlist_free(nv);
1538 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1539 	}
1540 
1541 	/*
1542 	 * Compare the root vdev tree with the information we have
1543 	 * from the MOS config (mrvd). Check each top-level vdev
1544 	 * with the corresponding MOS config top-level (mtvd).
1545 	 */
1546 	for (int c = 0; c < rvd->vdev_children; c++) {
1547 		vdev_t *tvd = rvd->vdev_child[c];
1548 		vdev_t *mtvd  = mrvd->vdev_child[c];
1549 
1550 		/*
1551 		 * Resolve any "missing" vdevs in the current configuration.
1552 		 * If we find that the MOS config has more accurate information
1553 		 * about the top-level vdev then use that vdev instead.
1554 		 */
1555 		if (tvd->vdev_ops == &vdev_missing_ops &&
1556 		    mtvd->vdev_ops != &vdev_missing_ops) {
1557 
1558 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1559 				continue;
1560 
1561 			/*
1562 			 * Device specific actions.
1563 			 */
1564 			if (mtvd->vdev_islog) {
1565 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1566 			} else {
1567 				/*
1568 				 * XXX - once we have 'readonly' pool
1569 				 * support we should be able to handle
1570 				 * missing data devices by transitioning
1571 				 * the pool to readonly.
1572 				 */
1573 				continue;
1574 			}
1575 
1576 			/*
1577 			 * Swap the missing vdev with the data we were
1578 			 * able to obtain from the MOS config.
1579 			 */
1580 			vdev_remove_child(rvd, tvd);
1581 			vdev_remove_child(mrvd, mtvd);
1582 
1583 			vdev_add_child(rvd, mtvd);
1584 			vdev_add_child(mrvd, tvd);
1585 
1586 			spa_config_exit(spa, SCL_ALL, FTAG);
1587 			vdev_load(mtvd);
1588 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1589 
1590 			vdev_reopen(rvd);
1591 		} else if (mtvd->vdev_islog) {
1592 			/*
1593 			 * Load the slog device's state from the MOS config
1594 			 * since it's possible that the label does not
1595 			 * contain the most up-to-date information.
1596 			 */
1597 			vdev_load_log_state(tvd, mtvd);
1598 			vdev_reopen(tvd);
1599 		}
1600 	}
1601 	vdev_free(mrvd);
1602 	spa_config_exit(spa, SCL_ALL, FTAG);
1603 
1604 	/*
1605 	 * Ensure we were able to validate the config.
1606 	 */
1607 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1608 }
1609 
1610 /*
1611  * Check for missing log devices
1612  */
1613 static int
1614 spa_check_logs(spa_t *spa)
1615 {
1616 	switch (spa->spa_log_state) {
1617 	case SPA_LOG_MISSING:
1618 		/* need to recheck in case slog has been restored */
1619 	case SPA_LOG_UNKNOWN:
1620 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1621 		    DS_FIND_CHILDREN)) {
1622 			spa_set_log_state(spa, SPA_LOG_MISSING);
1623 			return (1);
1624 		}
1625 		break;
1626 	}
1627 	return (0);
1628 }
1629 
1630 static boolean_t
1631 spa_passivate_log(spa_t *spa)
1632 {
1633 	vdev_t *rvd = spa->spa_root_vdev;
1634 	boolean_t slog_found = B_FALSE;
1635 
1636 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1637 
1638 	if (!spa_has_slogs(spa))
1639 		return (B_FALSE);
1640 
1641 	for (int c = 0; c < rvd->vdev_children; c++) {
1642 		vdev_t *tvd = rvd->vdev_child[c];
1643 		metaslab_group_t *mg = tvd->vdev_mg;
1644 
1645 		if (tvd->vdev_islog) {
1646 			metaslab_group_passivate(mg);
1647 			slog_found = B_TRUE;
1648 		}
1649 	}
1650 
1651 	return (slog_found);
1652 }
1653 
1654 static void
1655 spa_activate_log(spa_t *spa)
1656 {
1657 	vdev_t *rvd = spa->spa_root_vdev;
1658 
1659 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1660 
1661 	for (int c = 0; c < rvd->vdev_children; c++) {
1662 		vdev_t *tvd = rvd->vdev_child[c];
1663 		metaslab_group_t *mg = tvd->vdev_mg;
1664 
1665 		if (tvd->vdev_islog)
1666 			metaslab_group_activate(mg);
1667 	}
1668 }
1669 
1670 int
1671 spa_offline_log(spa_t *spa)
1672 {
1673 	int error = 0;
1674 
1675 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1676 	    NULL, DS_FIND_CHILDREN)) == 0) {
1677 
1678 		/*
1679 		 * We successfully offlined the log device, sync out the
1680 		 * current txg so that the "stubby" block can be removed
1681 		 * by zil_sync().
1682 		 */
1683 		txg_wait_synced(spa->spa_dsl_pool, 0);
1684 	}
1685 	return (error);
1686 }
1687 
1688 static void
1689 spa_aux_check_removed(spa_aux_vdev_t *sav)
1690 {
1691 	for (int i = 0; i < sav->sav_count; i++)
1692 		spa_check_removed(sav->sav_vdevs[i]);
1693 }
1694 
1695 void
1696 spa_claim_notify(zio_t *zio)
1697 {
1698 	spa_t *spa = zio->io_spa;
1699 
1700 	if (zio->io_error)
1701 		return;
1702 
1703 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1704 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1705 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1706 	mutex_exit(&spa->spa_props_lock);
1707 }
1708 
1709 typedef struct spa_load_error {
1710 	uint64_t	sle_meta_count;
1711 	uint64_t	sle_data_count;
1712 } spa_load_error_t;
1713 
1714 static void
1715 spa_load_verify_done(zio_t *zio)
1716 {
1717 	blkptr_t *bp = zio->io_bp;
1718 	spa_load_error_t *sle = zio->io_private;
1719 	dmu_object_type_t type = BP_GET_TYPE(bp);
1720 	int error = zio->io_error;
1721 
1722 	if (error) {
1723 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1724 		    type != DMU_OT_INTENT_LOG)
1725 			atomic_add_64(&sle->sle_meta_count, 1);
1726 		else
1727 			atomic_add_64(&sle->sle_data_count, 1);
1728 	}
1729 	zio_data_buf_free(zio->io_data, zio->io_size);
1730 }
1731 
1732 /*ARGSUSED*/
1733 static int
1734 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1735     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1736 {
1737 	if (bp != NULL) {
1738 		zio_t *rio = arg;
1739 		size_t size = BP_GET_PSIZE(bp);
1740 		void *data = zio_data_buf_alloc(size);
1741 
1742 		zio_nowait(zio_read(rio, spa, bp, data, size,
1743 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1744 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1745 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1746 	}
1747 	return (0);
1748 }
1749 
1750 static int
1751 spa_load_verify(spa_t *spa)
1752 {
1753 	zio_t *rio;
1754 	spa_load_error_t sle = { 0 };
1755 	zpool_rewind_policy_t policy;
1756 	boolean_t verify_ok = B_FALSE;
1757 	int error;
1758 
1759 	zpool_get_rewind_policy(spa->spa_config, &policy);
1760 
1761 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1762 		return (0);
1763 
1764 	rio = zio_root(spa, NULL, &sle,
1765 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1766 
1767 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1768 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1769 
1770 	(void) zio_wait(rio);
1771 
1772 	spa->spa_load_meta_errors = sle.sle_meta_count;
1773 	spa->spa_load_data_errors = sle.sle_data_count;
1774 
1775 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1776 	    sle.sle_data_count <= policy.zrp_maxdata) {
1777 		int64_t loss = 0;
1778 
1779 		verify_ok = B_TRUE;
1780 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1781 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1782 
1783 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1784 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1785 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1786 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1787 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1788 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1789 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1790 	} else {
1791 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1792 	}
1793 
1794 	if (error) {
1795 		if (error != ENXIO && error != EIO)
1796 			error = EIO;
1797 		return (error);
1798 	}
1799 
1800 	return (verify_ok ? 0 : EIO);
1801 }
1802 
1803 /*
1804  * Find a value in the pool props object.
1805  */
1806 static void
1807 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1808 {
1809 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1810 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1811 }
1812 
1813 /*
1814  * Find a value in the pool directory object.
1815  */
1816 static int
1817 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1818 {
1819 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1820 	    name, sizeof (uint64_t), 1, val));
1821 }
1822 
1823 static int
1824 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1825 {
1826 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1827 	return (err);
1828 }
1829 
1830 /*
1831  * Fix up config after a partly-completed split.  This is done with the
1832  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1833  * pool have that entry in their config, but only the splitting one contains
1834  * a list of all the guids of the vdevs that are being split off.
1835  *
1836  * This function determines what to do with that list: either rejoin
1837  * all the disks to the pool, or complete the splitting process.  To attempt
1838  * the rejoin, each disk that is offlined is marked online again, and
1839  * we do a reopen() call.  If the vdev label for every disk that was
1840  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1841  * then we call vdev_split() on each disk, and complete the split.
1842  *
1843  * Otherwise we leave the config alone, with all the vdevs in place in
1844  * the original pool.
1845  */
1846 static void
1847 spa_try_repair(spa_t *spa, nvlist_t *config)
1848 {
1849 	uint_t extracted;
1850 	uint64_t *glist;
1851 	uint_t i, gcount;
1852 	nvlist_t *nvl;
1853 	vdev_t **vd;
1854 	boolean_t attempt_reopen;
1855 
1856 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1857 		return;
1858 
1859 	/* check that the config is complete */
1860 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1861 	    &glist, &gcount) != 0)
1862 		return;
1863 
1864 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1865 
1866 	/* attempt to online all the vdevs & validate */
1867 	attempt_reopen = B_TRUE;
1868 	for (i = 0; i < gcount; i++) {
1869 		if (glist[i] == 0)	/* vdev is hole */
1870 			continue;
1871 
1872 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1873 		if (vd[i] == NULL) {
1874 			/*
1875 			 * Don't bother attempting to reopen the disks;
1876 			 * just do the split.
1877 			 */
1878 			attempt_reopen = B_FALSE;
1879 		} else {
1880 			/* attempt to re-online it */
1881 			vd[i]->vdev_offline = B_FALSE;
1882 		}
1883 	}
1884 
1885 	if (attempt_reopen) {
1886 		vdev_reopen(spa->spa_root_vdev);
1887 
1888 		/* check each device to see what state it's in */
1889 		for (extracted = 0, i = 0; i < gcount; i++) {
1890 			if (vd[i] != NULL &&
1891 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1892 				break;
1893 			++extracted;
1894 		}
1895 	}
1896 
1897 	/*
1898 	 * If every disk has been moved to the new pool, or if we never
1899 	 * even attempted to look at them, then we split them off for
1900 	 * good.
1901 	 */
1902 	if (!attempt_reopen || gcount == extracted) {
1903 		for (i = 0; i < gcount; i++)
1904 			if (vd[i] != NULL)
1905 				vdev_split(vd[i]);
1906 		vdev_reopen(spa->spa_root_vdev);
1907 	}
1908 
1909 	kmem_free(vd, gcount * sizeof (vdev_t *));
1910 }
1911 
1912 static int
1913 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1914     boolean_t mosconfig)
1915 {
1916 	nvlist_t *config = spa->spa_config;
1917 	char *ereport = FM_EREPORT_ZFS_POOL;
1918 	char *comment;
1919 	int error;
1920 	uint64_t pool_guid;
1921 	nvlist_t *nvl;
1922 
1923 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1924 		return (EINVAL);
1925 
1926 	ASSERT(spa->spa_comment == NULL);
1927 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1928 		spa->spa_comment = spa_strdup(comment);
1929 
1930 	/*
1931 	 * Versioning wasn't explicitly added to the label until later, so if
1932 	 * it's not present treat it as the initial version.
1933 	 */
1934 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1935 	    &spa->spa_ubsync.ub_version) != 0)
1936 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1937 
1938 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1939 	    &spa->spa_config_txg);
1940 
1941 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1942 	    spa_guid_exists(pool_guid, 0)) {
1943 		error = EEXIST;
1944 	} else {
1945 		spa->spa_config_guid = pool_guid;
1946 
1947 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1948 		    &nvl) == 0) {
1949 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1950 			    KM_SLEEP) == 0);
1951 		}
1952 
1953 		nvlist_free(spa->spa_load_info);
1954 		spa->spa_load_info = fnvlist_alloc();
1955 
1956 		gethrestime(&spa->spa_loaded_ts);
1957 		error = spa_load_impl(spa, pool_guid, config, state, type,
1958 		    mosconfig, &ereport);
1959 	}
1960 
1961 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1962 	if (error) {
1963 		if (error != EEXIST) {
1964 			spa->spa_loaded_ts.tv_sec = 0;
1965 			spa->spa_loaded_ts.tv_nsec = 0;
1966 		}
1967 		if (error != EBADF) {
1968 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1969 		}
1970 	}
1971 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1972 	spa->spa_ena = 0;
1973 
1974 	return (error);
1975 }
1976 
1977 /*
1978  * Load an existing storage pool, using the pool's builtin spa_config as a
1979  * source of configuration information.
1980  */
1981 static int
1982 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1983     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1984     char **ereport)
1985 {
1986 	int error = 0;
1987 	nvlist_t *nvroot = NULL;
1988 	nvlist_t *label;
1989 	vdev_t *rvd;
1990 	uberblock_t *ub = &spa->spa_uberblock;
1991 	uint64_t children, config_cache_txg = spa->spa_config_txg;
1992 	int orig_mode = spa->spa_mode;
1993 	int parse;
1994 	uint64_t obj;
1995 	boolean_t missing_feat_write = B_FALSE;
1996 
1997 	/*
1998 	 * If this is an untrusted config, access the pool in read-only mode.
1999 	 * This prevents things like resilvering recently removed devices.
2000 	 */
2001 	if (!mosconfig)
2002 		spa->spa_mode = FREAD;
2003 
2004 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2005 
2006 	spa->spa_load_state = state;
2007 
2008 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2009 		return (EINVAL);
2010 
2011 	parse = (type == SPA_IMPORT_EXISTING ?
2012 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2013 
2014 	/*
2015 	 * Create "The Godfather" zio to hold all async IOs
2016 	 */
2017 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2018 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2019 
2020 	/*
2021 	 * Parse the configuration into a vdev tree.  We explicitly set the
2022 	 * value that will be returned by spa_version() since parsing the
2023 	 * configuration requires knowing the version number.
2024 	 */
2025 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2026 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2027 	spa_config_exit(spa, SCL_ALL, FTAG);
2028 
2029 	if (error != 0)
2030 		return (error);
2031 
2032 	ASSERT(spa->spa_root_vdev == rvd);
2033 
2034 	if (type != SPA_IMPORT_ASSEMBLE) {
2035 		ASSERT(spa_guid(spa) == pool_guid);
2036 	}
2037 
2038 	/*
2039 	 * Try to open all vdevs, loading each label in the process.
2040 	 */
2041 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2042 	error = vdev_open(rvd);
2043 	spa_config_exit(spa, SCL_ALL, FTAG);
2044 	if (error != 0)
2045 		return (error);
2046 
2047 	/*
2048 	 * We need to validate the vdev labels against the configuration that
2049 	 * we have in hand, which is dependent on the setting of mosconfig. If
2050 	 * mosconfig is true then we're validating the vdev labels based on
2051 	 * that config.  Otherwise, we're validating against the cached config
2052 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2053 	 * later we will recursively call spa_load() and validate against
2054 	 * the vdev config.
2055 	 *
2056 	 * If we're assembling a new pool that's been split off from an
2057 	 * existing pool, the labels haven't yet been updated so we skip
2058 	 * validation for now.
2059 	 */
2060 	if (type != SPA_IMPORT_ASSEMBLE) {
2061 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2062 		error = vdev_validate(rvd, mosconfig);
2063 		spa_config_exit(spa, SCL_ALL, FTAG);
2064 
2065 		if (error != 0)
2066 			return (error);
2067 
2068 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2069 			return (ENXIO);
2070 	}
2071 
2072 	/*
2073 	 * Find the best uberblock.
2074 	 */
2075 	vdev_uberblock_load(rvd, ub, &label);
2076 
2077 	/*
2078 	 * If we weren't able to find a single valid uberblock, return failure.
2079 	 */
2080 	if (ub->ub_txg == 0) {
2081 		nvlist_free(label);
2082 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2083 	}
2084 
2085 	/*
2086 	 * If the pool has an unsupported version we can't open it.
2087 	 */
2088 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2089 		nvlist_free(label);
2090 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2091 	}
2092 
2093 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2094 		nvlist_t *features;
2095 
2096 		/*
2097 		 * If we weren't able to find what's necessary for reading the
2098 		 * MOS in the label, return failure.
2099 		 */
2100 		if (label == NULL || nvlist_lookup_nvlist(label,
2101 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2102 			nvlist_free(label);
2103 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2104 			    ENXIO));
2105 		}
2106 
2107 		/*
2108 		 * Update our in-core representation with the definitive values
2109 		 * from the label.
2110 		 */
2111 		nvlist_free(spa->spa_label_features);
2112 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2113 	}
2114 
2115 	nvlist_free(label);
2116 
2117 	/*
2118 	 * Look through entries in the label nvlist's features_for_read. If
2119 	 * there is a feature listed there which we don't understand then we
2120 	 * cannot open a pool.
2121 	 */
2122 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2123 		nvlist_t *unsup_feat;
2124 
2125 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2126 		    0);
2127 
2128 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2129 		    NULL); nvp != NULL;
2130 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2131 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2132 				VERIFY(nvlist_add_string(unsup_feat,
2133 				    nvpair_name(nvp), "") == 0);
2134 			}
2135 		}
2136 
2137 		if (!nvlist_empty(unsup_feat)) {
2138 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2139 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2140 			nvlist_free(unsup_feat);
2141 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2142 			    ENOTSUP));
2143 		}
2144 
2145 		nvlist_free(unsup_feat);
2146 	}
2147 
2148 	/*
2149 	 * If the vdev guid sum doesn't match the uberblock, we have an
2150 	 * incomplete configuration.  We first check to see if the pool
2151 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2152 	 * If it is, defer the vdev_guid_sum check till later so we
2153 	 * can handle missing vdevs.
2154 	 */
2155 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2156 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2157 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2158 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2159 
2160 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2161 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2162 		spa_try_repair(spa, config);
2163 		spa_config_exit(spa, SCL_ALL, FTAG);
2164 		nvlist_free(spa->spa_config_splitting);
2165 		spa->spa_config_splitting = NULL;
2166 	}
2167 
2168 	/*
2169 	 * Initialize internal SPA structures.
2170 	 */
2171 	spa->spa_state = POOL_STATE_ACTIVE;
2172 	spa->spa_ubsync = spa->spa_uberblock;
2173 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2174 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2175 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2176 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2177 	spa->spa_claim_max_txg = spa->spa_first_txg;
2178 	spa->spa_prev_software_version = ub->ub_software_version;
2179 
2180 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2181 	if (error)
2182 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2183 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2184 
2185 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2186 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2187 
2188 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2189 		boolean_t missing_feat_read = B_FALSE;
2190 		nvlist_t *unsup_feat, *enabled_feat;
2191 
2192 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2193 		    &spa->spa_feat_for_read_obj) != 0) {
2194 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2195 		}
2196 
2197 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2198 		    &spa->spa_feat_for_write_obj) != 0) {
2199 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2200 		}
2201 
2202 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2203 		    &spa->spa_feat_desc_obj) != 0) {
2204 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2205 		}
2206 
2207 		enabled_feat = fnvlist_alloc();
2208 		unsup_feat = fnvlist_alloc();
2209 
2210 		if (!feature_is_supported(spa->spa_meta_objset,
2211 		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2212 		    unsup_feat, enabled_feat))
2213 			missing_feat_read = B_TRUE;
2214 
2215 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2216 			if (!feature_is_supported(spa->spa_meta_objset,
2217 			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2218 			    unsup_feat, enabled_feat)) {
2219 				missing_feat_write = B_TRUE;
2220 			}
2221 		}
2222 
2223 		fnvlist_add_nvlist(spa->spa_load_info,
2224 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2225 
2226 		if (!nvlist_empty(unsup_feat)) {
2227 			fnvlist_add_nvlist(spa->spa_load_info,
2228 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2229 		}
2230 
2231 		fnvlist_free(enabled_feat);
2232 		fnvlist_free(unsup_feat);
2233 
2234 		if (!missing_feat_read) {
2235 			fnvlist_add_boolean(spa->spa_load_info,
2236 			    ZPOOL_CONFIG_CAN_RDONLY);
2237 		}
2238 
2239 		/*
2240 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2241 		 * twofold: to determine whether the pool is available for
2242 		 * import in read-write mode and (if it is not) whether the
2243 		 * pool is available for import in read-only mode. If the pool
2244 		 * is available for import in read-write mode, it is displayed
2245 		 * as available in userland; if it is not available for import
2246 		 * in read-only mode, it is displayed as unavailable in
2247 		 * userland. If the pool is available for import in read-only
2248 		 * mode but not read-write mode, it is displayed as unavailable
2249 		 * in userland with a special note that the pool is actually
2250 		 * available for open in read-only mode.
2251 		 *
2252 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2253 		 * missing a feature for write, we must first determine whether
2254 		 * the pool can be opened read-only before returning to
2255 		 * userland in order to know whether to display the
2256 		 * abovementioned note.
2257 		 */
2258 		if (missing_feat_read || (missing_feat_write &&
2259 		    spa_writeable(spa))) {
2260 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2261 			    ENOTSUP));
2262 		}
2263 	}
2264 
2265 	spa->spa_is_initializing = B_TRUE;
2266 	error = dsl_pool_open(spa->spa_dsl_pool);
2267 	spa->spa_is_initializing = B_FALSE;
2268 	if (error != 0)
2269 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2270 
2271 	if (!mosconfig) {
2272 		uint64_t hostid;
2273 		nvlist_t *policy = NULL, *nvconfig;
2274 
2275 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2276 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2277 
2278 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2279 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2280 			char *hostname;
2281 			unsigned long myhostid = 0;
2282 
2283 			VERIFY(nvlist_lookup_string(nvconfig,
2284 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2285 
2286 #ifdef	_KERNEL
2287 			myhostid = zone_get_hostid(NULL);
2288 #else	/* _KERNEL */
2289 			/*
2290 			 * We're emulating the system's hostid in userland, so
2291 			 * we can't use zone_get_hostid().
2292 			 */
2293 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2294 #endif	/* _KERNEL */
2295 			if (hostid != 0 && myhostid != 0 &&
2296 			    hostid != myhostid) {
2297 				nvlist_free(nvconfig);
2298 				cmn_err(CE_WARN, "pool '%s' could not be "
2299 				    "loaded as it was last accessed by "
2300 				    "another system (host: %s hostid: 0x%lx). "
2301 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2302 				    spa_name(spa), hostname,
2303 				    (unsigned long)hostid);
2304 				return (EBADF);
2305 			}
2306 		}
2307 		if (nvlist_lookup_nvlist(spa->spa_config,
2308 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2309 			VERIFY(nvlist_add_nvlist(nvconfig,
2310 			    ZPOOL_REWIND_POLICY, policy) == 0);
2311 
2312 		spa_config_set(spa, nvconfig);
2313 		spa_unload(spa);
2314 		spa_deactivate(spa);
2315 		spa_activate(spa, orig_mode);
2316 
2317 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2318 	}
2319 
2320 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2321 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2322 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2323 	if (error != 0)
2324 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2325 
2326 	/*
2327 	 * Load the bit that tells us to use the new accounting function
2328 	 * (raid-z deflation).  If we have an older pool, this will not
2329 	 * be present.
2330 	 */
2331 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2332 	if (error != 0 && error != ENOENT)
2333 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2334 
2335 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2336 	    &spa->spa_creation_version);
2337 	if (error != 0 && error != ENOENT)
2338 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2339 
2340 	/*
2341 	 * Load the persistent error log.  If we have an older pool, this will
2342 	 * not be present.
2343 	 */
2344 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2345 	if (error != 0 && error != ENOENT)
2346 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2347 
2348 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2349 	    &spa->spa_errlog_scrub);
2350 	if (error != 0 && error != ENOENT)
2351 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2352 
2353 	/*
2354 	 * Load the history object.  If we have an older pool, this
2355 	 * will not be present.
2356 	 */
2357 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2358 	if (error != 0 && error != ENOENT)
2359 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2360 
2361 	/*
2362 	 * If we're assembling the pool from the split-off vdevs of
2363 	 * an existing pool, we don't want to attach the spares & cache
2364 	 * devices.
2365 	 */
2366 
2367 	/*
2368 	 * Load any hot spares for this pool.
2369 	 */
2370 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2371 	if (error != 0 && error != ENOENT)
2372 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2373 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2374 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2375 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2376 		    &spa->spa_spares.sav_config) != 0)
2377 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2378 
2379 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2380 		spa_load_spares(spa);
2381 		spa_config_exit(spa, SCL_ALL, FTAG);
2382 	} else if (error == 0) {
2383 		spa->spa_spares.sav_sync = B_TRUE;
2384 	}
2385 
2386 	/*
2387 	 * Load any level 2 ARC devices for this pool.
2388 	 */
2389 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2390 	    &spa->spa_l2cache.sav_object);
2391 	if (error != 0 && error != ENOENT)
2392 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2393 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2394 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2395 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2396 		    &spa->spa_l2cache.sav_config) != 0)
2397 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2398 
2399 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2400 		spa_load_l2cache(spa);
2401 		spa_config_exit(spa, SCL_ALL, FTAG);
2402 	} else if (error == 0) {
2403 		spa->spa_l2cache.sav_sync = B_TRUE;
2404 	}
2405 
2406 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2407 
2408 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2409 	if (error && error != ENOENT)
2410 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2411 
2412 	if (error == 0) {
2413 		uint64_t autoreplace;
2414 
2415 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2416 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2417 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2418 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2419 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2420 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2421 		    &spa->spa_dedup_ditto);
2422 
2423 		spa->spa_autoreplace = (autoreplace != 0);
2424 	}
2425 
2426 	/*
2427 	 * If the 'autoreplace' property is set, then post a resource notifying
2428 	 * the ZFS DE that it should not issue any faults for unopenable
2429 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2430 	 * unopenable vdevs so that the normal autoreplace handler can take
2431 	 * over.
2432 	 */
2433 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2434 		spa_check_removed(spa->spa_root_vdev);
2435 		/*
2436 		 * For the import case, this is done in spa_import(), because
2437 		 * at this point we're using the spare definitions from
2438 		 * the MOS config, not necessarily from the userland config.
2439 		 */
2440 		if (state != SPA_LOAD_IMPORT) {
2441 			spa_aux_check_removed(&spa->spa_spares);
2442 			spa_aux_check_removed(&spa->spa_l2cache);
2443 		}
2444 	}
2445 
2446 	/*
2447 	 * Load the vdev state for all toplevel vdevs.
2448 	 */
2449 	vdev_load(rvd);
2450 
2451 	/*
2452 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2453 	 */
2454 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2455 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2456 	spa_config_exit(spa, SCL_ALL, FTAG);
2457 
2458 	/*
2459 	 * Load the DDTs (dedup tables).
2460 	 */
2461 	error = ddt_load(spa);
2462 	if (error != 0)
2463 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2464 
2465 	spa_update_dspace(spa);
2466 
2467 	/*
2468 	 * Validate the config, using the MOS config to fill in any
2469 	 * information which might be missing.  If we fail to validate
2470 	 * the config then declare the pool unfit for use. If we're
2471 	 * assembling a pool from a split, the log is not transferred
2472 	 * over.
2473 	 */
2474 	if (type != SPA_IMPORT_ASSEMBLE) {
2475 		nvlist_t *nvconfig;
2476 
2477 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2478 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2479 
2480 		if (!spa_config_valid(spa, nvconfig)) {
2481 			nvlist_free(nvconfig);
2482 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2483 			    ENXIO));
2484 		}
2485 		nvlist_free(nvconfig);
2486 
2487 		/*
2488 		 * Now that we've validated the config, check the state of the
2489 		 * root vdev.  If it can't be opened, it indicates one or
2490 		 * more toplevel vdevs are faulted.
2491 		 */
2492 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2493 			return (ENXIO);
2494 
2495 		if (spa_check_logs(spa)) {
2496 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2497 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2498 		}
2499 	}
2500 
2501 	if (missing_feat_write) {
2502 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2503 
2504 		/*
2505 		 * At this point, we know that we can open the pool in
2506 		 * read-only mode but not read-write mode. We now have enough
2507 		 * information and can return to userland.
2508 		 */
2509 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2510 	}
2511 
2512 	/*
2513 	 * We've successfully opened the pool, verify that we're ready
2514 	 * to start pushing transactions.
2515 	 */
2516 	if (state != SPA_LOAD_TRYIMPORT) {
2517 		if (error = spa_load_verify(spa))
2518 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2519 			    error));
2520 	}
2521 
2522 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2523 	    spa->spa_load_max_txg == UINT64_MAX)) {
2524 		dmu_tx_t *tx;
2525 		int need_update = B_FALSE;
2526 
2527 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2528 
2529 		/*
2530 		 * Claim log blocks that haven't been committed yet.
2531 		 * This must all happen in a single txg.
2532 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2533 		 * invoked from zil_claim_log_block()'s i/o done callback.
2534 		 * Price of rollback is that we abandon the log.
2535 		 */
2536 		spa->spa_claiming = B_TRUE;
2537 
2538 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2539 		    spa_first_txg(spa));
2540 		(void) dmu_objset_find(spa_name(spa),
2541 		    zil_claim, tx, DS_FIND_CHILDREN);
2542 		dmu_tx_commit(tx);
2543 
2544 		spa->spa_claiming = B_FALSE;
2545 
2546 		spa_set_log_state(spa, SPA_LOG_GOOD);
2547 		spa->spa_sync_on = B_TRUE;
2548 		txg_sync_start(spa->spa_dsl_pool);
2549 
2550 		/*
2551 		 * Wait for all claims to sync.  We sync up to the highest
2552 		 * claimed log block birth time so that claimed log blocks
2553 		 * don't appear to be from the future.  spa_claim_max_txg
2554 		 * will have been set for us by either zil_check_log_chain()
2555 		 * (invoked from spa_check_logs()) or zil_claim() above.
2556 		 */
2557 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2558 
2559 		/*
2560 		 * If the config cache is stale, or we have uninitialized
2561 		 * metaslabs (see spa_vdev_add()), then update the config.
2562 		 *
2563 		 * If this is a verbatim import, trust the current
2564 		 * in-core spa_config and update the disk labels.
2565 		 */
2566 		if (config_cache_txg != spa->spa_config_txg ||
2567 		    state == SPA_LOAD_IMPORT ||
2568 		    state == SPA_LOAD_RECOVER ||
2569 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2570 			need_update = B_TRUE;
2571 
2572 		for (int c = 0; c < rvd->vdev_children; c++)
2573 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2574 				need_update = B_TRUE;
2575 
2576 		/*
2577 		 * Update the config cache asychronously in case we're the
2578 		 * root pool, in which case the config cache isn't writable yet.
2579 		 */
2580 		if (need_update)
2581 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2582 
2583 		/*
2584 		 * Check all DTLs to see if anything needs resilvering.
2585 		 */
2586 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2587 		    vdev_resilver_needed(rvd, NULL, NULL))
2588 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2589 
2590 		/*
2591 		 * Log the fact that we booted up (so that we can detect if
2592 		 * we rebooted in the middle of an operation).
2593 		 */
2594 		spa_history_log_version(spa, "open");
2595 
2596 		/*
2597 		 * Delete any inconsistent datasets.
2598 		 */
2599 		(void) dmu_objset_find(spa_name(spa),
2600 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2601 
2602 		/*
2603 		 * Clean up any stale temporary dataset userrefs.
2604 		 */
2605 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2606 	}
2607 
2608 	return (0);
2609 }
2610 
2611 static int
2612 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2613 {
2614 	int mode = spa->spa_mode;
2615 
2616 	spa_unload(spa);
2617 	spa_deactivate(spa);
2618 
2619 	spa->spa_load_max_txg--;
2620 
2621 	spa_activate(spa, mode);
2622 	spa_async_suspend(spa);
2623 
2624 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2625 }
2626 
2627 /*
2628  * If spa_load() fails this function will try loading prior txg's. If
2629  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2630  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2631  * function will not rewind the pool and will return the same error as
2632  * spa_load().
2633  */
2634 static int
2635 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2636     uint64_t max_request, int rewind_flags)
2637 {
2638 	nvlist_t *loadinfo = NULL;
2639 	nvlist_t *config = NULL;
2640 	int load_error, rewind_error;
2641 	uint64_t safe_rewind_txg;
2642 	uint64_t min_txg;
2643 
2644 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2645 		spa->spa_load_max_txg = spa->spa_load_txg;
2646 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2647 	} else {
2648 		spa->spa_load_max_txg = max_request;
2649 	}
2650 
2651 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2652 	    mosconfig);
2653 	if (load_error == 0)
2654 		return (0);
2655 
2656 	if (spa->spa_root_vdev != NULL)
2657 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2658 
2659 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2660 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2661 
2662 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2663 		nvlist_free(config);
2664 		return (load_error);
2665 	}
2666 
2667 	if (state == SPA_LOAD_RECOVER) {
2668 		/* Price of rolling back is discarding txgs, including log */
2669 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2670 	} else {
2671 		/*
2672 		 * If we aren't rolling back save the load info from our first
2673 		 * import attempt so that we can restore it after attempting
2674 		 * to rewind.
2675 		 */
2676 		loadinfo = spa->spa_load_info;
2677 		spa->spa_load_info = fnvlist_alloc();
2678 	}
2679 
2680 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2681 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2682 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2683 	    TXG_INITIAL : safe_rewind_txg;
2684 
2685 	/*
2686 	 * Continue as long as we're finding errors, we're still within
2687 	 * the acceptable rewind range, and we're still finding uberblocks
2688 	 */
2689 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2690 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2691 		if (spa->spa_load_max_txg < safe_rewind_txg)
2692 			spa->spa_extreme_rewind = B_TRUE;
2693 		rewind_error = spa_load_retry(spa, state, mosconfig);
2694 	}
2695 
2696 	spa->spa_extreme_rewind = B_FALSE;
2697 	spa->spa_load_max_txg = UINT64_MAX;
2698 
2699 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2700 		spa_config_set(spa, config);
2701 
2702 	if (state == SPA_LOAD_RECOVER) {
2703 		ASSERT3P(loadinfo, ==, NULL);
2704 		return (rewind_error);
2705 	} else {
2706 		/* Store the rewind info as part of the initial load info */
2707 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2708 		    spa->spa_load_info);
2709 
2710 		/* Restore the initial load info */
2711 		fnvlist_free(spa->spa_load_info);
2712 		spa->spa_load_info = loadinfo;
2713 
2714 		return (load_error);
2715 	}
2716 }
2717 
2718 /*
2719  * Pool Open/Import
2720  *
2721  * The import case is identical to an open except that the configuration is sent
2722  * down from userland, instead of grabbed from the configuration cache.  For the
2723  * case of an open, the pool configuration will exist in the
2724  * POOL_STATE_UNINITIALIZED state.
2725  *
2726  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2727  * the same time open the pool, without having to keep around the spa_t in some
2728  * ambiguous state.
2729  */
2730 static int
2731 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2732     nvlist_t **config)
2733 {
2734 	spa_t *spa;
2735 	spa_load_state_t state = SPA_LOAD_OPEN;
2736 	int error;
2737 	int locked = B_FALSE;
2738 
2739 	*spapp = NULL;
2740 
2741 	/*
2742 	 * As disgusting as this is, we need to support recursive calls to this
2743 	 * function because dsl_dir_open() is called during spa_load(), and ends
2744 	 * up calling spa_open() again.  The real fix is to figure out how to
2745 	 * avoid dsl_dir_open() calling this in the first place.
2746 	 */
2747 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2748 		mutex_enter(&spa_namespace_lock);
2749 		locked = B_TRUE;
2750 	}
2751 
2752 	if ((spa = spa_lookup(pool)) == NULL) {
2753 		if (locked)
2754 			mutex_exit(&spa_namespace_lock);
2755 		return (ENOENT);
2756 	}
2757 
2758 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2759 		zpool_rewind_policy_t policy;
2760 
2761 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2762 		    &policy);
2763 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2764 			state = SPA_LOAD_RECOVER;
2765 
2766 		spa_activate(spa, spa_mode_global);
2767 
2768 		if (state != SPA_LOAD_RECOVER)
2769 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2770 
2771 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2772 		    policy.zrp_request);
2773 
2774 		if (error == EBADF) {
2775 			/*
2776 			 * If vdev_validate() returns failure (indicated by
2777 			 * EBADF), it indicates that one of the vdevs indicates
2778 			 * that the pool has been exported or destroyed.  If
2779 			 * this is the case, the config cache is out of sync and
2780 			 * we should remove the pool from the namespace.
2781 			 */
2782 			spa_unload(spa);
2783 			spa_deactivate(spa);
2784 			spa_config_sync(spa, B_TRUE, B_TRUE);
2785 			spa_remove(spa);
2786 			if (locked)
2787 				mutex_exit(&spa_namespace_lock);
2788 			return (ENOENT);
2789 		}
2790 
2791 		if (error) {
2792 			/*
2793 			 * We can't open the pool, but we still have useful
2794 			 * information: the state of each vdev after the
2795 			 * attempted vdev_open().  Return this to the user.
2796 			 */
2797 			if (config != NULL && spa->spa_config) {
2798 				VERIFY(nvlist_dup(spa->spa_config, config,
2799 				    KM_SLEEP) == 0);
2800 				VERIFY(nvlist_add_nvlist(*config,
2801 				    ZPOOL_CONFIG_LOAD_INFO,
2802 				    spa->spa_load_info) == 0);
2803 			}
2804 			spa_unload(spa);
2805 			spa_deactivate(spa);
2806 			spa->spa_last_open_failed = error;
2807 			if (locked)
2808 				mutex_exit(&spa_namespace_lock);
2809 			*spapp = NULL;
2810 			return (error);
2811 		}
2812 	}
2813 
2814 	spa_open_ref(spa, tag);
2815 
2816 	if (config != NULL)
2817 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2818 
2819 	/*
2820 	 * If we've recovered the pool, pass back any information we
2821 	 * gathered while doing the load.
2822 	 */
2823 	if (state == SPA_LOAD_RECOVER) {
2824 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2825 		    spa->spa_load_info) == 0);
2826 	}
2827 
2828 	if (locked) {
2829 		spa->spa_last_open_failed = 0;
2830 		spa->spa_last_ubsync_txg = 0;
2831 		spa->spa_load_txg = 0;
2832 		mutex_exit(&spa_namespace_lock);
2833 	}
2834 
2835 	*spapp = spa;
2836 
2837 	return (0);
2838 }
2839 
2840 int
2841 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2842     nvlist_t **config)
2843 {
2844 	return (spa_open_common(name, spapp, tag, policy, config));
2845 }
2846 
2847 int
2848 spa_open(const char *name, spa_t **spapp, void *tag)
2849 {
2850 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2851 }
2852 
2853 /*
2854  * Lookup the given spa_t, incrementing the inject count in the process,
2855  * preventing it from being exported or destroyed.
2856  */
2857 spa_t *
2858 spa_inject_addref(char *name)
2859 {
2860 	spa_t *spa;
2861 
2862 	mutex_enter(&spa_namespace_lock);
2863 	if ((spa = spa_lookup(name)) == NULL) {
2864 		mutex_exit(&spa_namespace_lock);
2865 		return (NULL);
2866 	}
2867 	spa->spa_inject_ref++;
2868 	mutex_exit(&spa_namespace_lock);
2869 
2870 	return (spa);
2871 }
2872 
2873 void
2874 spa_inject_delref(spa_t *spa)
2875 {
2876 	mutex_enter(&spa_namespace_lock);
2877 	spa->spa_inject_ref--;
2878 	mutex_exit(&spa_namespace_lock);
2879 }
2880 
2881 /*
2882  * Add spares device information to the nvlist.
2883  */
2884 static void
2885 spa_add_spares(spa_t *spa, nvlist_t *config)
2886 {
2887 	nvlist_t **spares;
2888 	uint_t i, nspares;
2889 	nvlist_t *nvroot;
2890 	uint64_t guid;
2891 	vdev_stat_t *vs;
2892 	uint_t vsc;
2893 	uint64_t pool;
2894 
2895 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2896 
2897 	if (spa->spa_spares.sav_count == 0)
2898 		return;
2899 
2900 	VERIFY(nvlist_lookup_nvlist(config,
2901 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2902 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2903 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2904 	if (nspares != 0) {
2905 		VERIFY(nvlist_add_nvlist_array(nvroot,
2906 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2907 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2908 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2909 
2910 		/*
2911 		 * Go through and find any spares which have since been
2912 		 * repurposed as an active spare.  If this is the case, update
2913 		 * their status appropriately.
2914 		 */
2915 		for (i = 0; i < nspares; i++) {
2916 			VERIFY(nvlist_lookup_uint64(spares[i],
2917 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2918 			if (spa_spare_exists(guid, &pool, NULL) &&
2919 			    pool != 0ULL) {
2920 				VERIFY(nvlist_lookup_uint64_array(
2921 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2922 				    (uint64_t **)&vs, &vsc) == 0);
2923 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2924 				vs->vs_aux = VDEV_AUX_SPARED;
2925 			}
2926 		}
2927 	}
2928 }
2929 
2930 /*
2931  * Add l2cache device information to the nvlist, including vdev stats.
2932  */
2933 static void
2934 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2935 {
2936 	nvlist_t **l2cache;
2937 	uint_t i, j, nl2cache;
2938 	nvlist_t *nvroot;
2939 	uint64_t guid;
2940 	vdev_t *vd;
2941 	vdev_stat_t *vs;
2942 	uint_t vsc;
2943 
2944 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2945 
2946 	if (spa->spa_l2cache.sav_count == 0)
2947 		return;
2948 
2949 	VERIFY(nvlist_lookup_nvlist(config,
2950 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2951 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2952 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2953 	if (nl2cache != 0) {
2954 		VERIFY(nvlist_add_nvlist_array(nvroot,
2955 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2956 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2957 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2958 
2959 		/*
2960 		 * Update level 2 cache device stats.
2961 		 */
2962 
2963 		for (i = 0; i < nl2cache; i++) {
2964 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2965 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2966 
2967 			vd = NULL;
2968 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2969 				if (guid ==
2970 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2971 					vd = spa->spa_l2cache.sav_vdevs[j];
2972 					break;
2973 				}
2974 			}
2975 			ASSERT(vd != NULL);
2976 
2977 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2978 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2979 			    == 0);
2980 			vdev_get_stats(vd, vs);
2981 		}
2982 	}
2983 }
2984 
2985 static void
2986 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
2987 {
2988 	nvlist_t *features;
2989 	zap_cursor_t zc;
2990 	zap_attribute_t za;
2991 
2992 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2993 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2994 
2995 	if (spa->spa_feat_for_read_obj != 0) {
2996 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
2997 		    spa->spa_feat_for_read_obj);
2998 		    zap_cursor_retrieve(&zc, &za) == 0;
2999 		    zap_cursor_advance(&zc)) {
3000 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3001 			    za.za_num_integers == 1);
3002 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3003 			    za.za_first_integer));
3004 		}
3005 		zap_cursor_fini(&zc);
3006 	}
3007 
3008 	if (spa->spa_feat_for_write_obj != 0) {
3009 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3010 		    spa->spa_feat_for_write_obj);
3011 		    zap_cursor_retrieve(&zc, &za) == 0;
3012 		    zap_cursor_advance(&zc)) {
3013 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3014 			    za.za_num_integers == 1);
3015 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3016 			    za.za_first_integer));
3017 		}
3018 		zap_cursor_fini(&zc);
3019 	}
3020 
3021 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3022 	    features) == 0);
3023 	nvlist_free(features);
3024 }
3025 
3026 int
3027 spa_get_stats(const char *name, nvlist_t **config,
3028     char *altroot, size_t buflen)
3029 {
3030 	int error;
3031 	spa_t *spa;
3032 
3033 	*config = NULL;
3034 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3035 
3036 	if (spa != NULL) {
3037 		/*
3038 		 * This still leaves a window of inconsistency where the spares
3039 		 * or l2cache devices could change and the config would be
3040 		 * self-inconsistent.
3041 		 */
3042 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3043 
3044 		if (*config != NULL) {
3045 			uint64_t loadtimes[2];
3046 
3047 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3048 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3049 			VERIFY(nvlist_add_uint64_array(*config,
3050 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3051 
3052 			VERIFY(nvlist_add_uint64(*config,
3053 			    ZPOOL_CONFIG_ERRCOUNT,
3054 			    spa_get_errlog_size(spa)) == 0);
3055 
3056 			if (spa_suspended(spa))
3057 				VERIFY(nvlist_add_uint64(*config,
3058 				    ZPOOL_CONFIG_SUSPENDED,
3059 				    spa->spa_failmode) == 0);
3060 
3061 			spa_add_spares(spa, *config);
3062 			spa_add_l2cache(spa, *config);
3063 			spa_add_feature_stats(spa, *config);
3064 		}
3065 	}
3066 
3067 	/*
3068 	 * We want to get the alternate root even for faulted pools, so we cheat
3069 	 * and call spa_lookup() directly.
3070 	 */
3071 	if (altroot) {
3072 		if (spa == NULL) {
3073 			mutex_enter(&spa_namespace_lock);
3074 			spa = spa_lookup(name);
3075 			if (spa)
3076 				spa_altroot(spa, altroot, buflen);
3077 			else
3078 				altroot[0] = '\0';
3079 			spa = NULL;
3080 			mutex_exit(&spa_namespace_lock);
3081 		} else {
3082 			spa_altroot(spa, altroot, buflen);
3083 		}
3084 	}
3085 
3086 	if (spa != NULL) {
3087 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3088 		spa_close(spa, FTAG);
3089 	}
3090 
3091 	return (error);
3092 }
3093 
3094 /*
3095  * Validate that the auxiliary device array is well formed.  We must have an
3096  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3097  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3098  * specified, as long as they are well-formed.
3099  */
3100 static int
3101 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3102     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3103     vdev_labeltype_t label)
3104 {
3105 	nvlist_t **dev;
3106 	uint_t i, ndev;
3107 	vdev_t *vd;
3108 	int error;
3109 
3110 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3111 
3112 	/*
3113 	 * It's acceptable to have no devs specified.
3114 	 */
3115 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3116 		return (0);
3117 
3118 	if (ndev == 0)
3119 		return (EINVAL);
3120 
3121 	/*
3122 	 * Make sure the pool is formatted with a version that supports this
3123 	 * device type.
3124 	 */
3125 	if (spa_version(spa) < version)
3126 		return (ENOTSUP);
3127 
3128 	/*
3129 	 * Set the pending device list so we correctly handle device in-use
3130 	 * checking.
3131 	 */
3132 	sav->sav_pending = dev;
3133 	sav->sav_npending = ndev;
3134 
3135 	for (i = 0; i < ndev; i++) {
3136 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3137 		    mode)) != 0)
3138 			goto out;
3139 
3140 		if (!vd->vdev_ops->vdev_op_leaf) {
3141 			vdev_free(vd);
3142 			error = EINVAL;
3143 			goto out;
3144 		}
3145 
3146 		/*
3147 		 * The L2ARC currently only supports disk devices in
3148 		 * kernel context.  For user-level testing, we allow it.
3149 		 */
3150 #ifdef _KERNEL
3151 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3152 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3153 			error = ENOTBLK;
3154 			vdev_free(vd);
3155 			goto out;
3156 		}
3157 #endif
3158 		vd->vdev_top = vd;
3159 
3160 		if ((error = vdev_open(vd)) == 0 &&
3161 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3162 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3163 			    vd->vdev_guid) == 0);
3164 		}
3165 
3166 		vdev_free(vd);
3167 
3168 		if (error &&
3169 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3170 			goto out;
3171 		else
3172 			error = 0;
3173 	}
3174 
3175 out:
3176 	sav->sav_pending = NULL;
3177 	sav->sav_npending = 0;
3178 	return (error);
3179 }
3180 
3181 static int
3182 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3183 {
3184 	int error;
3185 
3186 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3187 
3188 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3189 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3190 	    VDEV_LABEL_SPARE)) != 0) {
3191 		return (error);
3192 	}
3193 
3194 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3195 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3196 	    VDEV_LABEL_L2CACHE));
3197 }
3198 
3199 static void
3200 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3201     const char *config)
3202 {
3203 	int i;
3204 
3205 	if (sav->sav_config != NULL) {
3206 		nvlist_t **olddevs;
3207 		uint_t oldndevs;
3208 		nvlist_t **newdevs;
3209 
3210 		/*
3211 		 * Generate new dev list by concatentating with the
3212 		 * current dev list.
3213 		 */
3214 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3215 		    &olddevs, &oldndevs) == 0);
3216 
3217 		newdevs = kmem_alloc(sizeof (void *) *
3218 		    (ndevs + oldndevs), KM_SLEEP);
3219 		for (i = 0; i < oldndevs; i++)
3220 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3221 			    KM_SLEEP) == 0);
3222 		for (i = 0; i < ndevs; i++)
3223 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3224 			    KM_SLEEP) == 0);
3225 
3226 		VERIFY(nvlist_remove(sav->sav_config, config,
3227 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3228 
3229 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3230 		    config, newdevs, ndevs + oldndevs) == 0);
3231 		for (i = 0; i < oldndevs + ndevs; i++)
3232 			nvlist_free(newdevs[i]);
3233 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3234 	} else {
3235 		/*
3236 		 * Generate a new dev list.
3237 		 */
3238 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3239 		    KM_SLEEP) == 0);
3240 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3241 		    devs, ndevs) == 0);
3242 	}
3243 }
3244 
3245 /*
3246  * Stop and drop level 2 ARC devices
3247  */
3248 void
3249 spa_l2cache_drop(spa_t *spa)
3250 {
3251 	vdev_t *vd;
3252 	int i;
3253 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3254 
3255 	for (i = 0; i < sav->sav_count; i++) {
3256 		uint64_t pool;
3257 
3258 		vd = sav->sav_vdevs[i];
3259 		ASSERT(vd != NULL);
3260 
3261 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3262 		    pool != 0ULL && l2arc_vdev_present(vd))
3263 			l2arc_remove_vdev(vd);
3264 	}
3265 }
3266 
3267 /*
3268  * Pool Creation
3269  */
3270 int
3271 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3272     nvlist_t *zplprops)
3273 {
3274 	spa_t *spa;
3275 	char *altroot = NULL;
3276 	vdev_t *rvd;
3277 	dsl_pool_t *dp;
3278 	dmu_tx_t *tx;
3279 	int error = 0;
3280 	uint64_t txg = TXG_INITIAL;
3281 	nvlist_t **spares, **l2cache;
3282 	uint_t nspares, nl2cache;
3283 	uint64_t version, obj;
3284 	boolean_t has_features;
3285 
3286 	/*
3287 	 * If this pool already exists, return failure.
3288 	 */
3289 	mutex_enter(&spa_namespace_lock);
3290 	if (spa_lookup(pool) != NULL) {
3291 		mutex_exit(&spa_namespace_lock);
3292 		return (EEXIST);
3293 	}
3294 
3295 	/*
3296 	 * Allocate a new spa_t structure.
3297 	 */
3298 	(void) nvlist_lookup_string(props,
3299 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3300 	spa = spa_add(pool, NULL, altroot);
3301 	spa_activate(spa, spa_mode_global);
3302 
3303 	if (props && (error = spa_prop_validate(spa, props))) {
3304 		spa_deactivate(spa);
3305 		spa_remove(spa);
3306 		mutex_exit(&spa_namespace_lock);
3307 		return (error);
3308 	}
3309 
3310 	has_features = B_FALSE;
3311 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3312 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3313 		if (zpool_prop_feature(nvpair_name(elem)))
3314 			has_features = B_TRUE;
3315 	}
3316 
3317 	if (has_features || nvlist_lookup_uint64(props,
3318 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3319 		version = SPA_VERSION;
3320 	}
3321 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3322 
3323 	spa->spa_first_txg = txg;
3324 	spa->spa_uberblock.ub_txg = txg - 1;
3325 	spa->spa_uberblock.ub_version = version;
3326 	spa->spa_ubsync = spa->spa_uberblock;
3327 
3328 	/*
3329 	 * Create "The Godfather" zio to hold all async IOs
3330 	 */
3331 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3332 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3333 
3334 	/*
3335 	 * Create the root vdev.
3336 	 */
3337 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3338 
3339 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3340 
3341 	ASSERT(error != 0 || rvd != NULL);
3342 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3343 
3344 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3345 		error = EINVAL;
3346 
3347 	if (error == 0 &&
3348 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3349 	    (error = spa_validate_aux(spa, nvroot, txg,
3350 	    VDEV_ALLOC_ADD)) == 0) {
3351 		for (int c = 0; c < rvd->vdev_children; c++) {
3352 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3353 			vdev_expand(rvd->vdev_child[c], txg);
3354 		}
3355 	}
3356 
3357 	spa_config_exit(spa, SCL_ALL, FTAG);
3358 
3359 	if (error != 0) {
3360 		spa_unload(spa);
3361 		spa_deactivate(spa);
3362 		spa_remove(spa);
3363 		mutex_exit(&spa_namespace_lock);
3364 		return (error);
3365 	}
3366 
3367 	/*
3368 	 * Get the list of spares, if specified.
3369 	 */
3370 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3371 	    &spares, &nspares) == 0) {
3372 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3373 		    KM_SLEEP) == 0);
3374 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3375 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3376 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3377 		spa_load_spares(spa);
3378 		spa_config_exit(spa, SCL_ALL, FTAG);
3379 		spa->spa_spares.sav_sync = B_TRUE;
3380 	}
3381 
3382 	/*
3383 	 * Get the list of level 2 cache devices, if specified.
3384 	 */
3385 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3386 	    &l2cache, &nl2cache) == 0) {
3387 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3388 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3389 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3390 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3391 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3392 		spa_load_l2cache(spa);
3393 		spa_config_exit(spa, SCL_ALL, FTAG);
3394 		spa->spa_l2cache.sav_sync = B_TRUE;
3395 	}
3396 
3397 	spa->spa_is_initializing = B_TRUE;
3398 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3399 	spa->spa_meta_objset = dp->dp_meta_objset;
3400 	spa->spa_is_initializing = B_FALSE;
3401 
3402 	/*
3403 	 * Create DDTs (dedup tables).
3404 	 */
3405 	ddt_create(spa);
3406 
3407 	spa_update_dspace(spa);
3408 
3409 	tx = dmu_tx_create_assigned(dp, txg);
3410 
3411 	/*
3412 	 * Create the pool config object.
3413 	 */
3414 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3415 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3416 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3417 
3418 	if (zap_add(spa->spa_meta_objset,
3419 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3420 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3421 		cmn_err(CE_PANIC, "failed to add pool config");
3422 	}
3423 
3424 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3425 		spa_feature_create_zap_objects(spa, tx);
3426 
3427 	if (zap_add(spa->spa_meta_objset,
3428 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3429 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3430 		cmn_err(CE_PANIC, "failed to add pool version");
3431 	}
3432 
3433 	/* Newly created pools with the right version are always deflated. */
3434 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3435 		spa->spa_deflate = TRUE;
3436 		if (zap_add(spa->spa_meta_objset,
3437 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3438 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3439 			cmn_err(CE_PANIC, "failed to add deflate");
3440 		}
3441 	}
3442 
3443 	/*
3444 	 * Create the deferred-free bpobj.  Turn off compression
3445 	 * because sync-to-convergence takes longer if the blocksize
3446 	 * keeps changing.
3447 	 */
3448 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3449 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3450 	    ZIO_COMPRESS_OFF, tx);
3451 	if (zap_add(spa->spa_meta_objset,
3452 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3453 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3454 		cmn_err(CE_PANIC, "failed to add bpobj");
3455 	}
3456 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3457 	    spa->spa_meta_objset, obj));
3458 
3459 	/*
3460 	 * Create the pool's history object.
3461 	 */
3462 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3463 		spa_history_create_obj(spa, tx);
3464 
3465 	/*
3466 	 * Set pool properties.
3467 	 */
3468 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3469 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3470 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3471 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3472 
3473 	if (props != NULL) {
3474 		spa_configfile_set(spa, props, B_FALSE);
3475 		spa_sync_props(spa, props, tx);
3476 	}
3477 
3478 	dmu_tx_commit(tx);
3479 
3480 	spa->spa_sync_on = B_TRUE;
3481 	txg_sync_start(spa->spa_dsl_pool);
3482 
3483 	/*
3484 	 * We explicitly wait for the first transaction to complete so that our
3485 	 * bean counters are appropriately updated.
3486 	 */
3487 	txg_wait_synced(spa->spa_dsl_pool, txg);
3488 
3489 	spa_config_sync(spa, B_FALSE, B_TRUE);
3490 
3491 	spa_history_log_version(spa, "create");
3492 
3493 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3494 
3495 	mutex_exit(&spa_namespace_lock);
3496 
3497 	return (0);
3498 }
3499 
3500 #ifdef _KERNEL
3501 /*
3502  * Get the root pool information from the root disk, then import the root pool
3503  * during the system boot up time.
3504  */
3505 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3506 
3507 static nvlist_t *
3508 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3509 {
3510 	nvlist_t *config;
3511 	nvlist_t *nvtop, *nvroot;
3512 	uint64_t pgid;
3513 
3514 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3515 		return (NULL);
3516 
3517 	/*
3518 	 * Add this top-level vdev to the child array.
3519 	 */
3520 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3521 	    &nvtop) == 0);
3522 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3523 	    &pgid) == 0);
3524 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3525 
3526 	/*
3527 	 * Put this pool's top-level vdevs into a root vdev.
3528 	 */
3529 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3530 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3531 	    VDEV_TYPE_ROOT) == 0);
3532 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3533 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3534 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3535 	    &nvtop, 1) == 0);
3536 
3537 	/*
3538 	 * Replace the existing vdev_tree with the new root vdev in
3539 	 * this pool's configuration (remove the old, add the new).
3540 	 */
3541 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3542 	nvlist_free(nvroot);
3543 	return (config);
3544 }
3545 
3546 /*
3547  * Walk the vdev tree and see if we can find a device with "better"
3548  * configuration. A configuration is "better" if the label on that
3549  * device has a more recent txg.
3550  */
3551 static void
3552 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3553 {
3554 	for (int c = 0; c < vd->vdev_children; c++)
3555 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3556 
3557 	if (vd->vdev_ops->vdev_op_leaf) {
3558 		nvlist_t *label;
3559 		uint64_t label_txg;
3560 
3561 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3562 		    &label) != 0)
3563 			return;
3564 
3565 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3566 		    &label_txg) == 0);
3567 
3568 		/*
3569 		 * Do we have a better boot device?
3570 		 */
3571 		if (label_txg > *txg) {
3572 			*txg = label_txg;
3573 			*avd = vd;
3574 		}
3575 		nvlist_free(label);
3576 	}
3577 }
3578 
3579 /*
3580  * Import a root pool.
3581  *
3582  * For x86. devpath_list will consist of devid and/or physpath name of
3583  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3584  * The GRUB "findroot" command will return the vdev we should boot.
3585  *
3586  * For Sparc, devpath_list consists the physpath name of the booting device
3587  * no matter the rootpool is a single device pool or a mirrored pool.
3588  * e.g.
3589  *	"/pci@1f,0/ide@d/disk@0,0:a"
3590  */
3591 int
3592 spa_import_rootpool(char *devpath, char *devid)
3593 {
3594 	spa_t *spa;
3595 	vdev_t *rvd, *bvd, *avd = NULL;
3596 	nvlist_t *config, *nvtop;
3597 	uint64_t guid, txg;
3598 	char *pname;
3599 	int error;
3600 
3601 	/*
3602 	 * Read the label from the boot device and generate a configuration.
3603 	 */
3604 	config = spa_generate_rootconf(devpath, devid, &guid);
3605 #if defined(_OBP) && defined(_KERNEL)
3606 	if (config == NULL) {
3607 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3608 			/* iscsi boot */
3609 			get_iscsi_bootpath_phy(devpath);
3610 			config = spa_generate_rootconf(devpath, devid, &guid);
3611 		}
3612 	}
3613 #endif
3614 	if (config == NULL) {
3615 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3616 		    devpath);
3617 		return (EIO);
3618 	}
3619 
3620 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3621 	    &pname) == 0);
3622 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3623 
3624 	mutex_enter(&spa_namespace_lock);
3625 	if ((spa = spa_lookup(pname)) != NULL) {
3626 		/*
3627 		 * Remove the existing root pool from the namespace so that we
3628 		 * can replace it with the correct config we just read in.
3629 		 */
3630 		spa_remove(spa);
3631 	}
3632 
3633 	spa = spa_add(pname, config, NULL);
3634 	spa->spa_is_root = B_TRUE;
3635 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3636 
3637 	/*
3638 	 * Build up a vdev tree based on the boot device's label config.
3639 	 */
3640 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3641 	    &nvtop) == 0);
3642 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3643 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3644 	    VDEV_ALLOC_ROOTPOOL);
3645 	spa_config_exit(spa, SCL_ALL, FTAG);
3646 	if (error) {
3647 		mutex_exit(&spa_namespace_lock);
3648 		nvlist_free(config);
3649 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3650 		    pname);
3651 		return (error);
3652 	}
3653 
3654 	/*
3655 	 * Get the boot vdev.
3656 	 */
3657 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3658 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3659 		    (u_longlong_t)guid);
3660 		error = ENOENT;
3661 		goto out;
3662 	}
3663 
3664 	/*
3665 	 * Determine if there is a better boot device.
3666 	 */
3667 	avd = bvd;
3668 	spa_alt_rootvdev(rvd, &avd, &txg);
3669 	if (avd != bvd) {
3670 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3671 		    "try booting from '%s'", avd->vdev_path);
3672 		error = EINVAL;
3673 		goto out;
3674 	}
3675 
3676 	/*
3677 	 * If the boot device is part of a spare vdev then ensure that
3678 	 * we're booting off the active spare.
3679 	 */
3680 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3681 	    !bvd->vdev_isspare) {
3682 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3683 		    "try booting from '%s'",
3684 		    bvd->vdev_parent->
3685 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3686 		error = EINVAL;
3687 		goto out;
3688 	}
3689 
3690 	error = 0;
3691 out:
3692 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3693 	vdev_free(rvd);
3694 	spa_config_exit(spa, SCL_ALL, FTAG);
3695 	mutex_exit(&spa_namespace_lock);
3696 
3697 	nvlist_free(config);
3698 	return (error);
3699 }
3700 
3701 #endif
3702 
3703 /*
3704  * Import a non-root pool into the system.
3705  */
3706 int
3707 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3708 {
3709 	spa_t *spa;
3710 	char *altroot = NULL;
3711 	spa_load_state_t state = SPA_LOAD_IMPORT;
3712 	zpool_rewind_policy_t policy;
3713 	uint64_t mode = spa_mode_global;
3714 	uint64_t readonly = B_FALSE;
3715 	int error;
3716 	nvlist_t *nvroot;
3717 	nvlist_t **spares, **l2cache;
3718 	uint_t nspares, nl2cache;
3719 
3720 	/*
3721 	 * If a pool with this name exists, return failure.
3722 	 */
3723 	mutex_enter(&spa_namespace_lock);
3724 	if (spa_lookup(pool) != NULL) {
3725 		mutex_exit(&spa_namespace_lock);
3726 		return (EEXIST);
3727 	}
3728 
3729 	/*
3730 	 * Create and initialize the spa structure.
3731 	 */
3732 	(void) nvlist_lookup_string(props,
3733 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3734 	(void) nvlist_lookup_uint64(props,
3735 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3736 	if (readonly)
3737 		mode = FREAD;
3738 	spa = spa_add(pool, config, altroot);
3739 	spa->spa_import_flags = flags;
3740 
3741 	/*
3742 	 * Verbatim import - Take a pool and insert it into the namespace
3743 	 * as if it had been loaded at boot.
3744 	 */
3745 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3746 		if (props != NULL)
3747 			spa_configfile_set(spa, props, B_FALSE);
3748 
3749 		spa_config_sync(spa, B_FALSE, B_TRUE);
3750 
3751 		mutex_exit(&spa_namespace_lock);
3752 		spa_history_log_version(spa, "import");
3753 
3754 		return (0);
3755 	}
3756 
3757 	spa_activate(spa, mode);
3758 
3759 	/*
3760 	 * Don't start async tasks until we know everything is healthy.
3761 	 */
3762 	spa_async_suspend(spa);
3763 
3764 	zpool_get_rewind_policy(config, &policy);
3765 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3766 		state = SPA_LOAD_RECOVER;
3767 
3768 	/*
3769 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3770 	 * because the user-supplied config is actually the one to trust when
3771 	 * doing an import.
3772 	 */
3773 	if (state != SPA_LOAD_RECOVER)
3774 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3775 
3776 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3777 	    policy.zrp_request);
3778 
3779 	/*
3780 	 * Propagate anything learned while loading the pool and pass it
3781 	 * back to caller (i.e. rewind info, missing devices, etc).
3782 	 */
3783 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3784 	    spa->spa_load_info) == 0);
3785 
3786 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3787 	/*
3788 	 * Toss any existing sparelist, as it doesn't have any validity
3789 	 * anymore, and conflicts with spa_has_spare().
3790 	 */
3791 	if (spa->spa_spares.sav_config) {
3792 		nvlist_free(spa->spa_spares.sav_config);
3793 		spa->spa_spares.sav_config = NULL;
3794 		spa_load_spares(spa);
3795 	}
3796 	if (spa->spa_l2cache.sav_config) {
3797 		nvlist_free(spa->spa_l2cache.sav_config);
3798 		spa->spa_l2cache.sav_config = NULL;
3799 		spa_load_l2cache(spa);
3800 	}
3801 
3802 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3803 	    &nvroot) == 0);
3804 	if (error == 0)
3805 		error = spa_validate_aux(spa, nvroot, -1ULL,
3806 		    VDEV_ALLOC_SPARE);
3807 	if (error == 0)
3808 		error = spa_validate_aux(spa, nvroot, -1ULL,
3809 		    VDEV_ALLOC_L2CACHE);
3810 	spa_config_exit(spa, SCL_ALL, FTAG);
3811 
3812 	if (props != NULL)
3813 		spa_configfile_set(spa, props, B_FALSE);
3814 
3815 	if (error != 0 || (props && spa_writeable(spa) &&
3816 	    (error = spa_prop_set(spa, props)))) {
3817 		spa_unload(spa);
3818 		spa_deactivate(spa);
3819 		spa_remove(spa);
3820 		mutex_exit(&spa_namespace_lock);
3821 		return (error);
3822 	}
3823 
3824 	spa_async_resume(spa);
3825 
3826 	/*
3827 	 * Override any spares and level 2 cache devices as specified by
3828 	 * the user, as these may have correct device names/devids, etc.
3829 	 */
3830 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3831 	    &spares, &nspares) == 0) {
3832 		if (spa->spa_spares.sav_config)
3833 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3834 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3835 		else
3836 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3837 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3838 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3839 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3840 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3841 		spa_load_spares(spa);
3842 		spa_config_exit(spa, SCL_ALL, FTAG);
3843 		spa->spa_spares.sav_sync = B_TRUE;
3844 	}
3845 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3846 	    &l2cache, &nl2cache) == 0) {
3847 		if (spa->spa_l2cache.sav_config)
3848 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3849 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3850 		else
3851 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3852 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3853 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3854 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3855 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3856 		spa_load_l2cache(spa);
3857 		spa_config_exit(spa, SCL_ALL, FTAG);
3858 		spa->spa_l2cache.sav_sync = B_TRUE;
3859 	}
3860 
3861 	/*
3862 	 * Check for any removed devices.
3863 	 */
3864 	if (spa->spa_autoreplace) {
3865 		spa_aux_check_removed(&spa->spa_spares);
3866 		spa_aux_check_removed(&spa->spa_l2cache);
3867 	}
3868 
3869 	if (spa_writeable(spa)) {
3870 		/*
3871 		 * Update the config cache to include the newly-imported pool.
3872 		 */
3873 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3874 	}
3875 
3876 	/*
3877 	 * It's possible that the pool was expanded while it was exported.
3878 	 * We kick off an async task to handle this for us.
3879 	 */
3880 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3881 
3882 	mutex_exit(&spa_namespace_lock);
3883 	spa_history_log_version(spa, "import");
3884 
3885 	return (0);
3886 }
3887 
3888 nvlist_t *
3889 spa_tryimport(nvlist_t *tryconfig)
3890 {
3891 	nvlist_t *config = NULL;
3892 	char *poolname;
3893 	spa_t *spa;
3894 	uint64_t state;
3895 	int error;
3896 
3897 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3898 		return (NULL);
3899 
3900 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3901 		return (NULL);
3902 
3903 	/*
3904 	 * Create and initialize the spa structure.
3905 	 */
3906 	mutex_enter(&spa_namespace_lock);
3907 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3908 	spa_activate(spa, FREAD);
3909 
3910 	/*
3911 	 * Pass off the heavy lifting to spa_load().
3912 	 * Pass TRUE for mosconfig because the user-supplied config
3913 	 * is actually the one to trust when doing an import.
3914 	 */
3915 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3916 
3917 	/*
3918 	 * If 'tryconfig' was at least parsable, return the current config.
3919 	 */
3920 	if (spa->spa_root_vdev != NULL) {
3921 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3922 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3923 		    poolname) == 0);
3924 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3925 		    state) == 0);
3926 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3927 		    spa->spa_uberblock.ub_timestamp) == 0);
3928 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3929 		    spa->spa_load_info) == 0);
3930 
3931 		/*
3932 		 * If the bootfs property exists on this pool then we
3933 		 * copy it out so that external consumers can tell which
3934 		 * pools are bootable.
3935 		 */
3936 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3937 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3938 
3939 			/*
3940 			 * We have to play games with the name since the
3941 			 * pool was opened as TRYIMPORT_NAME.
3942 			 */
3943 			if (dsl_dsobj_to_dsname(spa_name(spa),
3944 			    spa->spa_bootfs, tmpname) == 0) {
3945 				char *cp;
3946 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3947 
3948 				cp = strchr(tmpname, '/');
3949 				if (cp == NULL) {
3950 					(void) strlcpy(dsname, tmpname,
3951 					    MAXPATHLEN);
3952 				} else {
3953 					(void) snprintf(dsname, MAXPATHLEN,
3954 					    "%s/%s", poolname, ++cp);
3955 				}
3956 				VERIFY(nvlist_add_string(config,
3957 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3958 				kmem_free(dsname, MAXPATHLEN);
3959 			}
3960 			kmem_free(tmpname, MAXPATHLEN);
3961 		}
3962 
3963 		/*
3964 		 * Add the list of hot spares and level 2 cache devices.
3965 		 */
3966 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3967 		spa_add_spares(spa, config);
3968 		spa_add_l2cache(spa, config);
3969 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3970 	}
3971 
3972 	spa_unload(spa);
3973 	spa_deactivate(spa);
3974 	spa_remove(spa);
3975 	mutex_exit(&spa_namespace_lock);
3976 
3977 	return (config);
3978 }
3979 
3980 /*
3981  * Pool export/destroy
3982  *
3983  * The act of destroying or exporting a pool is very simple.  We make sure there
3984  * is no more pending I/O and any references to the pool are gone.  Then, we
3985  * update the pool state and sync all the labels to disk, removing the
3986  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3987  * we don't sync the labels or remove the configuration cache.
3988  */
3989 static int
3990 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3991     boolean_t force, boolean_t hardforce)
3992 {
3993 	spa_t *spa;
3994 
3995 	if (oldconfig)
3996 		*oldconfig = NULL;
3997 
3998 	if (!(spa_mode_global & FWRITE))
3999 		return (EROFS);
4000 
4001 	mutex_enter(&spa_namespace_lock);
4002 	if ((spa = spa_lookup(pool)) == NULL) {
4003 		mutex_exit(&spa_namespace_lock);
4004 		return (ENOENT);
4005 	}
4006 
4007 	/*
4008 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4009 	 * reacquire the namespace lock, and see if we can export.
4010 	 */
4011 	spa_open_ref(spa, FTAG);
4012 	mutex_exit(&spa_namespace_lock);
4013 	spa_async_suspend(spa);
4014 	mutex_enter(&spa_namespace_lock);
4015 	spa_close(spa, FTAG);
4016 
4017 	/*
4018 	 * The pool will be in core if it's openable,
4019 	 * in which case we can modify its state.
4020 	 */
4021 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4022 		/*
4023 		 * Objsets may be open only because they're dirty, so we
4024 		 * have to force it to sync before checking spa_refcnt.
4025 		 */
4026 		txg_wait_synced(spa->spa_dsl_pool, 0);
4027 
4028 		/*
4029 		 * A pool cannot be exported or destroyed if there are active
4030 		 * references.  If we are resetting a pool, allow references by
4031 		 * fault injection handlers.
4032 		 */
4033 		if (!spa_refcount_zero(spa) ||
4034 		    (spa->spa_inject_ref != 0 &&
4035 		    new_state != POOL_STATE_UNINITIALIZED)) {
4036 			spa_async_resume(spa);
4037 			mutex_exit(&spa_namespace_lock);
4038 			return (EBUSY);
4039 		}
4040 
4041 		/*
4042 		 * A pool cannot be exported if it has an active shared spare.
4043 		 * This is to prevent other pools stealing the active spare
4044 		 * from an exported pool. At user's own will, such pool can
4045 		 * be forcedly exported.
4046 		 */
4047 		if (!force && new_state == POOL_STATE_EXPORTED &&
4048 		    spa_has_active_shared_spare(spa)) {
4049 			spa_async_resume(spa);
4050 			mutex_exit(&spa_namespace_lock);
4051 			return (EXDEV);
4052 		}
4053 
4054 		/*
4055 		 * We want this to be reflected on every label,
4056 		 * so mark them all dirty.  spa_unload() will do the
4057 		 * final sync that pushes these changes out.
4058 		 */
4059 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4060 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061 			spa->spa_state = new_state;
4062 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4063 			    TXG_DEFER_SIZE + 1;
4064 			vdev_config_dirty(spa->spa_root_vdev);
4065 			spa_config_exit(spa, SCL_ALL, FTAG);
4066 		}
4067 	}
4068 
4069 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4070 
4071 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4072 		spa_unload(spa);
4073 		spa_deactivate(spa);
4074 	}
4075 
4076 	if (oldconfig && spa->spa_config)
4077 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4078 
4079 	if (new_state != POOL_STATE_UNINITIALIZED) {
4080 		if (!hardforce)
4081 			spa_config_sync(spa, B_TRUE, B_TRUE);
4082 		spa_remove(spa);
4083 	}
4084 	mutex_exit(&spa_namespace_lock);
4085 
4086 	return (0);
4087 }
4088 
4089 /*
4090  * Destroy a storage pool.
4091  */
4092 int
4093 spa_destroy(char *pool)
4094 {
4095 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4096 	    B_FALSE, B_FALSE));
4097 }
4098 
4099 /*
4100  * Export a storage pool.
4101  */
4102 int
4103 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4104     boolean_t hardforce)
4105 {
4106 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4107 	    force, hardforce));
4108 }
4109 
4110 /*
4111  * Similar to spa_export(), this unloads the spa_t without actually removing it
4112  * from the namespace in any way.
4113  */
4114 int
4115 spa_reset(char *pool)
4116 {
4117 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4118 	    B_FALSE, B_FALSE));
4119 }
4120 
4121 /*
4122  * ==========================================================================
4123  * Device manipulation
4124  * ==========================================================================
4125  */
4126 
4127 /*
4128  * Add a device to a storage pool.
4129  */
4130 int
4131 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4132 {
4133 	uint64_t txg, id;
4134 	int error;
4135 	vdev_t *rvd = spa->spa_root_vdev;
4136 	vdev_t *vd, *tvd;
4137 	nvlist_t **spares, **l2cache;
4138 	uint_t nspares, nl2cache;
4139 
4140 	ASSERT(spa_writeable(spa));
4141 
4142 	txg = spa_vdev_enter(spa);
4143 
4144 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4145 	    VDEV_ALLOC_ADD)) != 0)
4146 		return (spa_vdev_exit(spa, NULL, txg, error));
4147 
4148 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4149 
4150 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4151 	    &nspares) != 0)
4152 		nspares = 0;
4153 
4154 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4155 	    &nl2cache) != 0)
4156 		nl2cache = 0;
4157 
4158 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4159 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4160 
4161 	if (vd->vdev_children != 0 &&
4162 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4163 		return (spa_vdev_exit(spa, vd, txg, error));
4164 
4165 	/*
4166 	 * We must validate the spares and l2cache devices after checking the
4167 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4168 	 */
4169 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4170 		return (spa_vdev_exit(spa, vd, txg, error));
4171 
4172 	/*
4173 	 * Transfer each new top-level vdev from vd to rvd.
4174 	 */
4175 	for (int c = 0; c < vd->vdev_children; c++) {
4176 
4177 		/*
4178 		 * Set the vdev id to the first hole, if one exists.
4179 		 */
4180 		for (id = 0; id < rvd->vdev_children; id++) {
4181 			if (rvd->vdev_child[id]->vdev_ishole) {
4182 				vdev_free(rvd->vdev_child[id]);
4183 				break;
4184 			}
4185 		}
4186 		tvd = vd->vdev_child[c];
4187 		vdev_remove_child(vd, tvd);
4188 		tvd->vdev_id = id;
4189 		vdev_add_child(rvd, tvd);
4190 		vdev_config_dirty(tvd);
4191 	}
4192 
4193 	if (nspares != 0) {
4194 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4195 		    ZPOOL_CONFIG_SPARES);
4196 		spa_load_spares(spa);
4197 		spa->spa_spares.sav_sync = B_TRUE;
4198 	}
4199 
4200 	if (nl2cache != 0) {
4201 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4202 		    ZPOOL_CONFIG_L2CACHE);
4203 		spa_load_l2cache(spa);
4204 		spa->spa_l2cache.sav_sync = B_TRUE;
4205 	}
4206 
4207 	/*
4208 	 * We have to be careful when adding new vdevs to an existing pool.
4209 	 * If other threads start allocating from these vdevs before we
4210 	 * sync the config cache, and we lose power, then upon reboot we may
4211 	 * fail to open the pool because there are DVAs that the config cache
4212 	 * can't translate.  Therefore, we first add the vdevs without
4213 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4214 	 * and then let spa_config_update() initialize the new metaslabs.
4215 	 *
4216 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4217 	 * if we lose power at any point in this sequence, the remaining
4218 	 * steps will be completed the next time we load the pool.
4219 	 */
4220 	(void) spa_vdev_exit(spa, vd, txg, 0);
4221 
4222 	mutex_enter(&spa_namespace_lock);
4223 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4224 	mutex_exit(&spa_namespace_lock);
4225 
4226 	return (0);
4227 }
4228 
4229 /*
4230  * Attach a device to a mirror.  The arguments are the path to any device
4231  * in the mirror, and the nvroot for the new device.  If the path specifies
4232  * a device that is not mirrored, we automatically insert the mirror vdev.
4233  *
4234  * If 'replacing' is specified, the new device is intended to replace the
4235  * existing device; in this case the two devices are made into their own
4236  * mirror using the 'replacing' vdev, which is functionally identical to
4237  * the mirror vdev (it actually reuses all the same ops) but has a few
4238  * extra rules: you can't attach to it after it's been created, and upon
4239  * completion of resilvering, the first disk (the one being replaced)
4240  * is automatically detached.
4241  */
4242 int
4243 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4244 {
4245 	uint64_t txg, dtl_max_txg;
4246 	vdev_t *rvd = spa->spa_root_vdev;
4247 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4248 	vdev_ops_t *pvops;
4249 	char *oldvdpath, *newvdpath;
4250 	int newvd_isspare;
4251 	int error;
4252 
4253 	ASSERT(spa_writeable(spa));
4254 
4255 	txg = spa_vdev_enter(spa);
4256 
4257 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4258 
4259 	if (oldvd == NULL)
4260 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4261 
4262 	if (!oldvd->vdev_ops->vdev_op_leaf)
4263 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4264 
4265 	pvd = oldvd->vdev_parent;
4266 
4267 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4268 	    VDEV_ALLOC_ATTACH)) != 0)
4269 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4270 
4271 	if (newrootvd->vdev_children != 1)
4272 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4273 
4274 	newvd = newrootvd->vdev_child[0];
4275 
4276 	if (!newvd->vdev_ops->vdev_op_leaf)
4277 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4278 
4279 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4280 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4281 
4282 	/*
4283 	 * Spares can't replace logs
4284 	 */
4285 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4286 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4287 
4288 	if (!replacing) {
4289 		/*
4290 		 * For attach, the only allowable parent is a mirror or the root
4291 		 * vdev.
4292 		 */
4293 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4294 		    pvd->vdev_ops != &vdev_root_ops)
4295 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4296 
4297 		pvops = &vdev_mirror_ops;
4298 	} else {
4299 		/*
4300 		 * Active hot spares can only be replaced by inactive hot
4301 		 * spares.
4302 		 */
4303 		if (pvd->vdev_ops == &vdev_spare_ops &&
4304 		    oldvd->vdev_isspare &&
4305 		    !spa_has_spare(spa, newvd->vdev_guid))
4306 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4307 
4308 		/*
4309 		 * If the source is a hot spare, and the parent isn't already a
4310 		 * spare, then we want to create a new hot spare.  Otherwise, we
4311 		 * want to create a replacing vdev.  The user is not allowed to
4312 		 * attach to a spared vdev child unless the 'isspare' state is
4313 		 * the same (spare replaces spare, non-spare replaces
4314 		 * non-spare).
4315 		 */
4316 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4317 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4318 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4319 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4320 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4321 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4322 		}
4323 
4324 		if (newvd->vdev_isspare)
4325 			pvops = &vdev_spare_ops;
4326 		else
4327 			pvops = &vdev_replacing_ops;
4328 	}
4329 
4330 	/*
4331 	 * Make sure the new device is big enough.
4332 	 */
4333 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4334 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4335 
4336 	/*
4337 	 * The new device cannot have a higher alignment requirement
4338 	 * than the top-level vdev.
4339 	 */
4340 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4341 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4342 
4343 	/*
4344 	 * If this is an in-place replacement, update oldvd's path and devid
4345 	 * to make it distinguishable from newvd, and unopenable from now on.
4346 	 */
4347 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4348 		spa_strfree(oldvd->vdev_path);
4349 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4350 		    KM_SLEEP);
4351 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4352 		    newvd->vdev_path, "old");
4353 		if (oldvd->vdev_devid != NULL) {
4354 			spa_strfree(oldvd->vdev_devid);
4355 			oldvd->vdev_devid = NULL;
4356 		}
4357 	}
4358 
4359 	/* mark the device being resilvered */
4360 	newvd->vdev_resilvering = B_TRUE;
4361 
4362 	/*
4363 	 * If the parent is not a mirror, or if we're replacing, insert the new
4364 	 * mirror/replacing/spare vdev above oldvd.
4365 	 */
4366 	if (pvd->vdev_ops != pvops)
4367 		pvd = vdev_add_parent(oldvd, pvops);
4368 
4369 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4370 	ASSERT(pvd->vdev_ops == pvops);
4371 	ASSERT(oldvd->vdev_parent == pvd);
4372 
4373 	/*
4374 	 * Extract the new device from its root and add it to pvd.
4375 	 */
4376 	vdev_remove_child(newrootvd, newvd);
4377 	newvd->vdev_id = pvd->vdev_children;
4378 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4379 	vdev_add_child(pvd, newvd);
4380 
4381 	tvd = newvd->vdev_top;
4382 	ASSERT(pvd->vdev_top == tvd);
4383 	ASSERT(tvd->vdev_parent == rvd);
4384 
4385 	vdev_config_dirty(tvd);
4386 
4387 	/*
4388 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4389 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4390 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4391 	 */
4392 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4393 
4394 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4395 	    dtl_max_txg - TXG_INITIAL);
4396 
4397 	if (newvd->vdev_isspare) {
4398 		spa_spare_activate(newvd);
4399 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4400 	}
4401 
4402 	oldvdpath = spa_strdup(oldvd->vdev_path);
4403 	newvdpath = spa_strdup(newvd->vdev_path);
4404 	newvd_isspare = newvd->vdev_isspare;
4405 
4406 	/*
4407 	 * Mark newvd's DTL dirty in this txg.
4408 	 */
4409 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4410 
4411 	/*
4412 	 * Restart the resilver
4413 	 */
4414 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4415 
4416 	/*
4417 	 * Commit the config
4418 	 */
4419 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4420 
4421 	spa_history_log_internal(spa, "vdev attach", NULL,
4422 	    "%s vdev=%s %s vdev=%s",
4423 	    replacing && newvd_isspare ? "spare in" :
4424 	    replacing ? "replace" : "attach", newvdpath,
4425 	    replacing ? "for" : "to", oldvdpath);
4426 
4427 	spa_strfree(oldvdpath);
4428 	spa_strfree(newvdpath);
4429 
4430 	if (spa->spa_bootfs)
4431 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4432 
4433 	return (0);
4434 }
4435 
4436 /*
4437  * Detach a device from a mirror or replacing vdev.
4438  * If 'replace_done' is specified, only detach if the parent
4439  * is a replacing vdev.
4440  */
4441 int
4442 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4443 {
4444 	uint64_t txg;
4445 	int error;
4446 	vdev_t *rvd = spa->spa_root_vdev;
4447 	vdev_t *vd, *pvd, *cvd, *tvd;
4448 	boolean_t unspare = B_FALSE;
4449 	uint64_t unspare_guid;
4450 	char *vdpath;
4451 
4452 	ASSERT(spa_writeable(spa));
4453 
4454 	txg = spa_vdev_enter(spa);
4455 
4456 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4457 
4458 	if (vd == NULL)
4459 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4460 
4461 	if (!vd->vdev_ops->vdev_op_leaf)
4462 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4463 
4464 	pvd = vd->vdev_parent;
4465 
4466 	/*
4467 	 * If the parent/child relationship is not as expected, don't do it.
4468 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4469 	 * vdev that's replacing B with C.  The user's intent in replacing
4470 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4471 	 * the replace by detaching C, the expected behavior is to end up
4472 	 * M(A,B).  But suppose that right after deciding to detach C,
4473 	 * the replacement of B completes.  We would have M(A,C), and then
4474 	 * ask to detach C, which would leave us with just A -- not what
4475 	 * the user wanted.  To prevent this, we make sure that the
4476 	 * parent/child relationship hasn't changed -- in this example,
4477 	 * that C's parent is still the replacing vdev R.
4478 	 */
4479 	if (pvd->vdev_guid != pguid && pguid != 0)
4480 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4481 
4482 	/*
4483 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4484 	 */
4485 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4486 	    pvd->vdev_ops != &vdev_spare_ops)
4487 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4488 
4489 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4490 	    spa_version(spa) >= SPA_VERSION_SPARES);
4491 
4492 	/*
4493 	 * Only mirror, replacing, and spare vdevs support detach.
4494 	 */
4495 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4496 	    pvd->vdev_ops != &vdev_mirror_ops &&
4497 	    pvd->vdev_ops != &vdev_spare_ops)
4498 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4499 
4500 	/*
4501 	 * If this device has the only valid copy of some data,
4502 	 * we cannot safely detach it.
4503 	 */
4504 	if (vdev_dtl_required(vd))
4505 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4506 
4507 	ASSERT(pvd->vdev_children >= 2);
4508 
4509 	/*
4510 	 * If we are detaching the second disk from a replacing vdev, then
4511 	 * check to see if we changed the original vdev's path to have "/old"
4512 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4513 	 */
4514 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4515 	    vd->vdev_path != NULL) {
4516 		size_t len = strlen(vd->vdev_path);
4517 
4518 		for (int c = 0; c < pvd->vdev_children; c++) {
4519 			cvd = pvd->vdev_child[c];
4520 
4521 			if (cvd == vd || cvd->vdev_path == NULL)
4522 				continue;
4523 
4524 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4525 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4526 				spa_strfree(cvd->vdev_path);
4527 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4528 				break;
4529 			}
4530 		}
4531 	}
4532 
4533 	/*
4534 	 * If we are detaching the original disk from a spare, then it implies
4535 	 * that the spare should become a real disk, and be removed from the
4536 	 * active spare list for the pool.
4537 	 */
4538 	if (pvd->vdev_ops == &vdev_spare_ops &&
4539 	    vd->vdev_id == 0 &&
4540 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4541 		unspare = B_TRUE;
4542 
4543 	/*
4544 	 * Erase the disk labels so the disk can be used for other things.
4545 	 * This must be done after all other error cases are handled,
4546 	 * but before we disembowel vd (so we can still do I/O to it).
4547 	 * But if we can't do it, don't treat the error as fatal --
4548 	 * it may be that the unwritability of the disk is the reason
4549 	 * it's being detached!
4550 	 */
4551 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4552 
4553 	/*
4554 	 * Remove vd from its parent and compact the parent's children.
4555 	 */
4556 	vdev_remove_child(pvd, vd);
4557 	vdev_compact_children(pvd);
4558 
4559 	/*
4560 	 * Remember one of the remaining children so we can get tvd below.
4561 	 */
4562 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4563 
4564 	/*
4565 	 * If we need to remove the remaining child from the list of hot spares,
4566 	 * do it now, marking the vdev as no longer a spare in the process.
4567 	 * We must do this before vdev_remove_parent(), because that can
4568 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4569 	 * reason, we must remove the spare now, in the same txg as the detach;
4570 	 * otherwise someone could attach a new sibling, change the GUID, and
4571 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4572 	 */
4573 	if (unspare) {
4574 		ASSERT(cvd->vdev_isspare);
4575 		spa_spare_remove(cvd);
4576 		unspare_guid = cvd->vdev_guid;
4577 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4578 		cvd->vdev_unspare = B_TRUE;
4579 	}
4580 
4581 	/*
4582 	 * If the parent mirror/replacing vdev only has one child,
4583 	 * the parent is no longer needed.  Remove it from the tree.
4584 	 */
4585 	if (pvd->vdev_children == 1) {
4586 		if (pvd->vdev_ops == &vdev_spare_ops)
4587 			cvd->vdev_unspare = B_FALSE;
4588 		vdev_remove_parent(cvd);
4589 		cvd->vdev_resilvering = B_FALSE;
4590 	}
4591 
4592 
4593 	/*
4594 	 * We don't set tvd until now because the parent we just removed
4595 	 * may have been the previous top-level vdev.
4596 	 */
4597 	tvd = cvd->vdev_top;
4598 	ASSERT(tvd->vdev_parent == rvd);
4599 
4600 	/*
4601 	 * Reevaluate the parent vdev state.
4602 	 */
4603 	vdev_propagate_state(cvd);
4604 
4605 	/*
4606 	 * If the 'autoexpand' property is set on the pool then automatically
4607 	 * try to expand the size of the pool. For example if the device we
4608 	 * just detached was smaller than the others, it may be possible to
4609 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4610 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4611 	 */
4612 	if (spa->spa_autoexpand) {
4613 		vdev_reopen(tvd);
4614 		vdev_expand(tvd, txg);
4615 	}
4616 
4617 	vdev_config_dirty(tvd);
4618 
4619 	/*
4620 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4621 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4622 	 * But first make sure we're not on any *other* txg's DTL list, to
4623 	 * prevent vd from being accessed after it's freed.
4624 	 */
4625 	vdpath = spa_strdup(vd->vdev_path);
4626 	for (int t = 0; t < TXG_SIZE; t++)
4627 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4628 	vd->vdev_detached = B_TRUE;
4629 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4630 
4631 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4632 
4633 	/* hang on to the spa before we release the lock */
4634 	spa_open_ref(spa, FTAG);
4635 
4636 	error = spa_vdev_exit(spa, vd, txg, 0);
4637 
4638 	spa_history_log_internal(spa, "detach", NULL,
4639 	    "vdev=%s", vdpath);
4640 	spa_strfree(vdpath);
4641 
4642 	/*
4643 	 * If this was the removal of the original device in a hot spare vdev,
4644 	 * then we want to go through and remove the device from the hot spare
4645 	 * list of every other pool.
4646 	 */
4647 	if (unspare) {
4648 		spa_t *altspa = NULL;
4649 
4650 		mutex_enter(&spa_namespace_lock);
4651 		while ((altspa = spa_next(altspa)) != NULL) {
4652 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4653 			    altspa == spa)
4654 				continue;
4655 
4656 			spa_open_ref(altspa, FTAG);
4657 			mutex_exit(&spa_namespace_lock);
4658 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4659 			mutex_enter(&spa_namespace_lock);
4660 			spa_close(altspa, FTAG);
4661 		}
4662 		mutex_exit(&spa_namespace_lock);
4663 
4664 		/* search the rest of the vdevs for spares to remove */
4665 		spa_vdev_resilver_done(spa);
4666 	}
4667 
4668 	/* all done with the spa; OK to release */
4669 	mutex_enter(&spa_namespace_lock);
4670 	spa_close(spa, FTAG);
4671 	mutex_exit(&spa_namespace_lock);
4672 
4673 	return (error);
4674 }
4675 
4676 /*
4677  * Split a set of devices from their mirrors, and create a new pool from them.
4678  */
4679 int
4680 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4681     nvlist_t *props, boolean_t exp)
4682 {
4683 	int error = 0;
4684 	uint64_t txg, *glist;
4685 	spa_t *newspa;
4686 	uint_t c, children, lastlog;
4687 	nvlist_t **child, *nvl, *tmp;
4688 	dmu_tx_t *tx;
4689 	char *altroot = NULL;
4690 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4691 	boolean_t activate_slog;
4692 
4693 	ASSERT(spa_writeable(spa));
4694 
4695 	txg = spa_vdev_enter(spa);
4696 
4697 	/* clear the log and flush everything up to now */
4698 	activate_slog = spa_passivate_log(spa);
4699 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4700 	error = spa_offline_log(spa);
4701 	txg = spa_vdev_config_enter(spa);
4702 
4703 	if (activate_slog)
4704 		spa_activate_log(spa);
4705 
4706 	if (error != 0)
4707 		return (spa_vdev_exit(spa, NULL, txg, error));
4708 
4709 	/* check new spa name before going any further */
4710 	if (spa_lookup(newname) != NULL)
4711 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4712 
4713 	/*
4714 	 * scan through all the children to ensure they're all mirrors
4715 	 */
4716 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4717 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4718 	    &children) != 0)
4719 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4720 
4721 	/* first, check to ensure we've got the right child count */
4722 	rvd = spa->spa_root_vdev;
4723 	lastlog = 0;
4724 	for (c = 0; c < rvd->vdev_children; c++) {
4725 		vdev_t *vd = rvd->vdev_child[c];
4726 
4727 		/* don't count the holes & logs as children */
4728 		if (vd->vdev_islog || vd->vdev_ishole) {
4729 			if (lastlog == 0)
4730 				lastlog = c;
4731 			continue;
4732 		}
4733 
4734 		lastlog = 0;
4735 	}
4736 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4737 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4738 
4739 	/* next, ensure no spare or cache devices are part of the split */
4740 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4741 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4742 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4743 
4744 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4745 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4746 
4747 	/* then, loop over each vdev and validate it */
4748 	for (c = 0; c < children; c++) {
4749 		uint64_t is_hole = 0;
4750 
4751 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4752 		    &is_hole);
4753 
4754 		if (is_hole != 0) {
4755 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4756 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4757 				continue;
4758 			} else {
4759 				error = EINVAL;
4760 				break;
4761 			}
4762 		}
4763 
4764 		/* which disk is going to be split? */
4765 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4766 		    &glist[c]) != 0) {
4767 			error = EINVAL;
4768 			break;
4769 		}
4770 
4771 		/* look it up in the spa */
4772 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4773 		if (vml[c] == NULL) {
4774 			error = ENODEV;
4775 			break;
4776 		}
4777 
4778 		/* make sure there's nothing stopping the split */
4779 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4780 		    vml[c]->vdev_islog ||
4781 		    vml[c]->vdev_ishole ||
4782 		    vml[c]->vdev_isspare ||
4783 		    vml[c]->vdev_isl2cache ||
4784 		    !vdev_writeable(vml[c]) ||
4785 		    vml[c]->vdev_children != 0 ||
4786 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4787 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4788 			error = EINVAL;
4789 			break;
4790 		}
4791 
4792 		if (vdev_dtl_required(vml[c])) {
4793 			error = EBUSY;
4794 			break;
4795 		}
4796 
4797 		/* we need certain info from the top level */
4798 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4799 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4800 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4801 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4802 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4803 		    vml[c]->vdev_top->vdev_asize) == 0);
4804 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4805 		    vml[c]->vdev_top->vdev_ashift) == 0);
4806 	}
4807 
4808 	if (error != 0) {
4809 		kmem_free(vml, children * sizeof (vdev_t *));
4810 		kmem_free(glist, children * sizeof (uint64_t));
4811 		return (spa_vdev_exit(spa, NULL, txg, error));
4812 	}
4813 
4814 	/* stop writers from using the disks */
4815 	for (c = 0; c < children; c++) {
4816 		if (vml[c] != NULL)
4817 			vml[c]->vdev_offline = B_TRUE;
4818 	}
4819 	vdev_reopen(spa->spa_root_vdev);
4820 
4821 	/*
4822 	 * Temporarily record the splitting vdevs in the spa config.  This
4823 	 * will disappear once the config is regenerated.
4824 	 */
4825 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4826 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4827 	    glist, children) == 0);
4828 	kmem_free(glist, children * sizeof (uint64_t));
4829 
4830 	mutex_enter(&spa->spa_props_lock);
4831 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4832 	    nvl) == 0);
4833 	mutex_exit(&spa->spa_props_lock);
4834 	spa->spa_config_splitting = nvl;
4835 	vdev_config_dirty(spa->spa_root_vdev);
4836 
4837 	/* configure and create the new pool */
4838 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4839 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4840 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4841 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4842 	    spa_version(spa)) == 0);
4843 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4844 	    spa->spa_config_txg) == 0);
4845 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4846 	    spa_generate_guid(NULL)) == 0);
4847 	(void) nvlist_lookup_string(props,
4848 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4849 
4850 	/* add the new pool to the namespace */
4851 	newspa = spa_add(newname, config, altroot);
4852 	newspa->spa_config_txg = spa->spa_config_txg;
4853 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4854 
4855 	/* release the spa config lock, retaining the namespace lock */
4856 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4857 
4858 	if (zio_injection_enabled)
4859 		zio_handle_panic_injection(spa, FTAG, 1);
4860 
4861 	spa_activate(newspa, spa_mode_global);
4862 	spa_async_suspend(newspa);
4863 
4864 	/* create the new pool from the disks of the original pool */
4865 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4866 	if (error)
4867 		goto out;
4868 
4869 	/* if that worked, generate a real config for the new pool */
4870 	if (newspa->spa_root_vdev != NULL) {
4871 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4872 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4873 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4874 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4875 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4876 		    B_TRUE));
4877 	}
4878 
4879 	/* set the props */
4880 	if (props != NULL) {
4881 		spa_configfile_set(newspa, props, B_FALSE);
4882 		error = spa_prop_set(newspa, props);
4883 		if (error)
4884 			goto out;
4885 	}
4886 
4887 	/* flush everything */
4888 	txg = spa_vdev_config_enter(newspa);
4889 	vdev_config_dirty(newspa->spa_root_vdev);
4890 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4891 
4892 	if (zio_injection_enabled)
4893 		zio_handle_panic_injection(spa, FTAG, 2);
4894 
4895 	spa_async_resume(newspa);
4896 
4897 	/* finally, update the original pool's config */
4898 	txg = spa_vdev_config_enter(spa);
4899 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4900 	error = dmu_tx_assign(tx, TXG_WAIT);
4901 	if (error != 0)
4902 		dmu_tx_abort(tx);
4903 	for (c = 0; c < children; c++) {
4904 		if (vml[c] != NULL) {
4905 			vdev_split(vml[c]);
4906 			if (error == 0)
4907 				spa_history_log_internal(spa, "detach", tx,
4908 				    "vdev=%s", vml[c]->vdev_path);
4909 			vdev_free(vml[c]);
4910 		}
4911 	}
4912 	vdev_config_dirty(spa->spa_root_vdev);
4913 	spa->spa_config_splitting = NULL;
4914 	nvlist_free(nvl);
4915 	if (error == 0)
4916 		dmu_tx_commit(tx);
4917 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4918 
4919 	if (zio_injection_enabled)
4920 		zio_handle_panic_injection(spa, FTAG, 3);
4921 
4922 	/* split is complete; log a history record */
4923 	spa_history_log_internal(newspa, "split", NULL,
4924 	    "from pool %s", spa_name(spa));
4925 
4926 	kmem_free(vml, children * sizeof (vdev_t *));
4927 
4928 	/* if we're not going to mount the filesystems in userland, export */
4929 	if (exp)
4930 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4931 		    B_FALSE, B_FALSE);
4932 
4933 	return (error);
4934 
4935 out:
4936 	spa_unload(newspa);
4937 	spa_deactivate(newspa);
4938 	spa_remove(newspa);
4939 
4940 	txg = spa_vdev_config_enter(spa);
4941 
4942 	/* re-online all offlined disks */
4943 	for (c = 0; c < children; c++) {
4944 		if (vml[c] != NULL)
4945 			vml[c]->vdev_offline = B_FALSE;
4946 	}
4947 	vdev_reopen(spa->spa_root_vdev);
4948 
4949 	nvlist_free(spa->spa_config_splitting);
4950 	spa->spa_config_splitting = NULL;
4951 	(void) spa_vdev_exit(spa, NULL, txg, error);
4952 
4953 	kmem_free(vml, children * sizeof (vdev_t *));
4954 	return (error);
4955 }
4956 
4957 static nvlist_t *
4958 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4959 {
4960 	for (int i = 0; i < count; i++) {
4961 		uint64_t guid;
4962 
4963 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4964 		    &guid) == 0);
4965 
4966 		if (guid == target_guid)
4967 			return (nvpp[i]);
4968 	}
4969 
4970 	return (NULL);
4971 }
4972 
4973 static void
4974 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4975 	nvlist_t *dev_to_remove)
4976 {
4977 	nvlist_t **newdev = NULL;
4978 
4979 	if (count > 1)
4980 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4981 
4982 	for (int i = 0, j = 0; i < count; i++) {
4983 		if (dev[i] == dev_to_remove)
4984 			continue;
4985 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4986 	}
4987 
4988 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4989 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4990 
4991 	for (int i = 0; i < count - 1; i++)
4992 		nvlist_free(newdev[i]);
4993 
4994 	if (count > 1)
4995 		kmem_free(newdev, (count - 1) * sizeof (void *));
4996 }
4997 
4998 /*
4999  * Evacuate the device.
5000  */
5001 static int
5002 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5003 {
5004 	uint64_t txg;
5005 	int error = 0;
5006 
5007 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5008 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5009 	ASSERT(vd == vd->vdev_top);
5010 
5011 	/*
5012 	 * Evacuate the device.  We don't hold the config lock as writer
5013 	 * since we need to do I/O but we do keep the
5014 	 * spa_namespace_lock held.  Once this completes the device
5015 	 * should no longer have any blocks allocated on it.
5016 	 */
5017 	if (vd->vdev_islog) {
5018 		if (vd->vdev_stat.vs_alloc != 0)
5019 			error = spa_offline_log(spa);
5020 	} else {
5021 		error = ENOTSUP;
5022 	}
5023 
5024 	if (error)
5025 		return (error);
5026 
5027 	/*
5028 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5029 	 * associated with this vdev, and wait for these changes to sync.
5030 	 */
5031 	ASSERT0(vd->vdev_stat.vs_alloc);
5032 	txg = spa_vdev_config_enter(spa);
5033 	vd->vdev_removing = B_TRUE;
5034 	vdev_dirty(vd, 0, NULL, txg);
5035 	vdev_config_dirty(vd);
5036 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5037 
5038 	return (0);
5039 }
5040 
5041 /*
5042  * Complete the removal by cleaning up the namespace.
5043  */
5044 static void
5045 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5046 {
5047 	vdev_t *rvd = spa->spa_root_vdev;
5048 	uint64_t id = vd->vdev_id;
5049 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5050 
5051 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5052 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5053 	ASSERT(vd == vd->vdev_top);
5054 
5055 	/*
5056 	 * Only remove any devices which are empty.
5057 	 */
5058 	if (vd->vdev_stat.vs_alloc != 0)
5059 		return;
5060 
5061 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5062 
5063 	if (list_link_active(&vd->vdev_state_dirty_node))
5064 		vdev_state_clean(vd);
5065 	if (list_link_active(&vd->vdev_config_dirty_node))
5066 		vdev_config_clean(vd);
5067 
5068 	vdev_free(vd);
5069 
5070 	if (last_vdev) {
5071 		vdev_compact_children(rvd);
5072 	} else {
5073 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5074 		vdev_add_child(rvd, vd);
5075 	}
5076 	vdev_config_dirty(rvd);
5077 
5078 	/*
5079 	 * Reassess the health of our root vdev.
5080 	 */
5081 	vdev_reopen(rvd);
5082 }
5083 
5084 /*
5085  * Remove a device from the pool -
5086  *
5087  * Removing a device from the vdev namespace requires several steps
5088  * and can take a significant amount of time.  As a result we use
5089  * the spa_vdev_config_[enter/exit] functions which allow us to
5090  * grab and release the spa_config_lock while still holding the namespace
5091  * lock.  During each step the configuration is synced out.
5092  */
5093 
5094 /*
5095  * Remove a device from the pool.  Currently, this supports removing only hot
5096  * spares, slogs, and level 2 ARC devices.
5097  */
5098 int
5099 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5100 {
5101 	vdev_t *vd;
5102 	metaslab_group_t *mg;
5103 	nvlist_t **spares, **l2cache, *nv;
5104 	uint64_t txg = 0;
5105 	uint_t nspares, nl2cache;
5106 	int error = 0;
5107 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5108 
5109 	ASSERT(spa_writeable(spa));
5110 
5111 	if (!locked)
5112 		txg = spa_vdev_enter(spa);
5113 
5114 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5115 
5116 	if (spa->spa_spares.sav_vdevs != NULL &&
5117 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5118 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5119 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5120 		/*
5121 		 * Only remove the hot spare if it's not currently in use
5122 		 * in this pool.
5123 		 */
5124 		if (vd == NULL || unspare) {
5125 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5126 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5127 			spa_load_spares(spa);
5128 			spa->spa_spares.sav_sync = B_TRUE;
5129 		} else {
5130 			error = EBUSY;
5131 		}
5132 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5133 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5134 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5135 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5136 		/*
5137 		 * Cache devices can always be removed.
5138 		 */
5139 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5140 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5141 		spa_load_l2cache(spa);
5142 		spa->spa_l2cache.sav_sync = B_TRUE;
5143 	} else if (vd != NULL && vd->vdev_islog) {
5144 		ASSERT(!locked);
5145 		ASSERT(vd == vd->vdev_top);
5146 
5147 		/*
5148 		 * XXX - Once we have bp-rewrite this should
5149 		 * become the common case.
5150 		 */
5151 
5152 		mg = vd->vdev_mg;
5153 
5154 		/*
5155 		 * Stop allocating from this vdev.
5156 		 */
5157 		metaslab_group_passivate(mg);
5158 
5159 		/*
5160 		 * Wait for the youngest allocations and frees to sync,
5161 		 * and then wait for the deferral of those frees to finish.
5162 		 */
5163 		spa_vdev_config_exit(spa, NULL,
5164 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5165 
5166 		/*
5167 		 * Attempt to evacuate the vdev.
5168 		 */
5169 		error = spa_vdev_remove_evacuate(spa, vd);
5170 
5171 		txg = spa_vdev_config_enter(spa);
5172 
5173 		/*
5174 		 * If we couldn't evacuate the vdev, unwind.
5175 		 */
5176 		if (error) {
5177 			metaslab_group_activate(mg);
5178 			return (spa_vdev_exit(spa, NULL, txg, error));
5179 		}
5180 
5181 		/*
5182 		 * Clean up the vdev namespace.
5183 		 */
5184 		spa_vdev_remove_from_namespace(spa, vd);
5185 
5186 	} else if (vd != NULL) {
5187 		/*
5188 		 * Normal vdevs cannot be removed (yet).
5189 		 */
5190 		error = ENOTSUP;
5191 	} else {
5192 		/*
5193 		 * There is no vdev of any kind with the specified guid.
5194 		 */
5195 		error = ENOENT;
5196 	}
5197 
5198 	if (!locked)
5199 		return (spa_vdev_exit(spa, NULL, txg, error));
5200 
5201 	return (error);
5202 }
5203 
5204 /*
5205  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5206  * current spared, so we can detach it.
5207  */
5208 static vdev_t *
5209 spa_vdev_resilver_done_hunt(vdev_t *vd)
5210 {
5211 	vdev_t *newvd, *oldvd;
5212 
5213 	for (int c = 0; c < vd->vdev_children; c++) {
5214 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5215 		if (oldvd != NULL)
5216 			return (oldvd);
5217 	}
5218 
5219 	/*
5220 	 * Check for a completed replacement.  We always consider the first
5221 	 * vdev in the list to be the oldest vdev, and the last one to be
5222 	 * the newest (see spa_vdev_attach() for how that works).  In
5223 	 * the case where the newest vdev is faulted, we will not automatically
5224 	 * remove it after a resilver completes.  This is OK as it will require
5225 	 * user intervention to determine which disk the admin wishes to keep.
5226 	 */
5227 	if (vd->vdev_ops == &vdev_replacing_ops) {
5228 		ASSERT(vd->vdev_children > 1);
5229 
5230 		newvd = vd->vdev_child[vd->vdev_children - 1];
5231 		oldvd = vd->vdev_child[0];
5232 
5233 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5234 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5235 		    !vdev_dtl_required(oldvd))
5236 			return (oldvd);
5237 	}
5238 
5239 	/*
5240 	 * Check for a completed resilver with the 'unspare' flag set.
5241 	 */
5242 	if (vd->vdev_ops == &vdev_spare_ops) {
5243 		vdev_t *first = vd->vdev_child[0];
5244 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5245 
5246 		if (last->vdev_unspare) {
5247 			oldvd = first;
5248 			newvd = last;
5249 		} else if (first->vdev_unspare) {
5250 			oldvd = last;
5251 			newvd = first;
5252 		} else {
5253 			oldvd = NULL;
5254 		}
5255 
5256 		if (oldvd != NULL &&
5257 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5258 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5259 		    !vdev_dtl_required(oldvd))
5260 			return (oldvd);
5261 
5262 		/*
5263 		 * If there are more than two spares attached to a disk,
5264 		 * and those spares are not required, then we want to
5265 		 * attempt to free them up now so that they can be used
5266 		 * by other pools.  Once we're back down to a single
5267 		 * disk+spare, we stop removing them.
5268 		 */
5269 		if (vd->vdev_children > 2) {
5270 			newvd = vd->vdev_child[1];
5271 
5272 			if (newvd->vdev_isspare && last->vdev_isspare &&
5273 			    vdev_dtl_empty(last, DTL_MISSING) &&
5274 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5275 			    !vdev_dtl_required(newvd))
5276 				return (newvd);
5277 		}
5278 	}
5279 
5280 	return (NULL);
5281 }
5282 
5283 static void
5284 spa_vdev_resilver_done(spa_t *spa)
5285 {
5286 	vdev_t *vd, *pvd, *ppvd;
5287 	uint64_t guid, sguid, pguid, ppguid;
5288 
5289 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5290 
5291 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5292 		pvd = vd->vdev_parent;
5293 		ppvd = pvd->vdev_parent;
5294 		guid = vd->vdev_guid;
5295 		pguid = pvd->vdev_guid;
5296 		ppguid = ppvd->vdev_guid;
5297 		sguid = 0;
5298 		/*
5299 		 * If we have just finished replacing a hot spared device, then
5300 		 * we need to detach the parent's first child (the original hot
5301 		 * spare) as well.
5302 		 */
5303 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5304 		    ppvd->vdev_children == 2) {
5305 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5306 			sguid = ppvd->vdev_child[1]->vdev_guid;
5307 		}
5308 		spa_config_exit(spa, SCL_ALL, FTAG);
5309 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5310 			return;
5311 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5312 			return;
5313 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5314 	}
5315 
5316 	spa_config_exit(spa, SCL_ALL, FTAG);
5317 }
5318 
5319 /*
5320  * Update the stored path or FRU for this vdev.
5321  */
5322 int
5323 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5324     boolean_t ispath)
5325 {
5326 	vdev_t *vd;
5327 	boolean_t sync = B_FALSE;
5328 
5329 	ASSERT(spa_writeable(spa));
5330 
5331 	spa_vdev_state_enter(spa, SCL_ALL);
5332 
5333 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5334 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5335 
5336 	if (!vd->vdev_ops->vdev_op_leaf)
5337 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5338 
5339 	if (ispath) {
5340 		if (strcmp(value, vd->vdev_path) != 0) {
5341 			spa_strfree(vd->vdev_path);
5342 			vd->vdev_path = spa_strdup(value);
5343 			sync = B_TRUE;
5344 		}
5345 	} else {
5346 		if (vd->vdev_fru == NULL) {
5347 			vd->vdev_fru = spa_strdup(value);
5348 			sync = B_TRUE;
5349 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5350 			spa_strfree(vd->vdev_fru);
5351 			vd->vdev_fru = spa_strdup(value);
5352 			sync = B_TRUE;
5353 		}
5354 	}
5355 
5356 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5357 }
5358 
5359 int
5360 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5361 {
5362 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5363 }
5364 
5365 int
5366 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5367 {
5368 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5369 }
5370 
5371 /*
5372  * ==========================================================================
5373  * SPA Scanning
5374  * ==========================================================================
5375  */
5376 
5377 int
5378 spa_scan_stop(spa_t *spa)
5379 {
5380 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5381 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5382 		return (EBUSY);
5383 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5384 }
5385 
5386 int
5387 spa_scan(spa_t *spa, pool_scan_func_t func)
5388 {
5389 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5390 
5391 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5392 		return (ENOTSUP);
5393 
5394 	/*
5395 	 * If a resilver was requested, but there is no DTL on a
5396 	 * writeable leaf device, we have nothing to do.
5397 	 */
5398 	if (func == POOL_SCAN_RESILVER &&
5399 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5400 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5401 		return (0);
5402 	}
5403 
5404 	return (dsl_scan(spa->spa_dsl_pool, func));
5405 }
5406 
5407 /*
5408  * ==========================================================================
5409  * SPA async task processing
5410  * ==========================================================================
5411  */
5412 
5413 static void
5414 spa_async_remove(spa_t *spa, vdev_t *vd)
5415 {
5416 	if (vd->vdev_remove_wanted) {
5417 		vd->vdev_remove_wanted = B_FALSE;
5418 		vd->vdev_delayed_close = B_FALSE;
5419 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5420 
5421 		/*
5422 		 * We want to clear the stats, but we don't want to do a full
5423 		 * vdev_clear() as that will cause us to throw away
5424 		 * degraded/faulted state as well as attempt to reopen the
5425 		 * device, all of which is a waste.
5426 		 */
5427 		vd->vdev_stat.vs_read_errors = 0;
5428 		vd->vdev_stat.vs_write_errors = 0;
5429 		vd->vdev_stat.vs_checksum_errors = 0;
5430 
5431 		vdev_state_dirty(vd->vdev_top);
5432 	}
5433 
5434 	for (int c = 0; c < vd->vdev_children; c++)
5435 		spa_async_remove(spa, vd->vdev_child[c]);
5436 }
5437 
5438 static void
5439 spa_async_probe(spa_t *spa, vdev_t *vd)
5440 {
5441 	if (vd->vdev_probe_wanted) {
5442 		vd->vdev_probe_wanted = B_FALSE;
5443 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5444 	}
5445 
5446 	for (int c = 0; c < vd->vdev_children; c++)
5447 		spa_async_probe(spa, vd->vdev_child[c]);
5448 }
5449 
5450 static void
5451 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5452 {
5453 	sysevent_id_t eid;
5454 	nvlist_t *attr;
5455 	char *physpath;
5456 
5457 	if (!spa->spa_autoexpand)
5458 		return;
5459 
5460 	for (int c = 0; c < vd->vdev_children; c++) {
5461 		vdev_t *cvd = vd->vdev_child[c];
5462 		spa_async_autoexpand(spa, cvd);
5463 	}
5464 
5465 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5466 		return;
5467 
5468 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5469 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5470 
5471 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5472 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5473 
5474 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5475 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5476 
5477 	nvlist_free(attr);
5478 	kmem_free(physpath, MAXPATHLEN);
5479 }
5480 
5481 static void
5482 spa_async_thread(spa_t *spa)
5483 {
5484 	int tasks;
5485 
5486 	ASSERT(spa->spa_sync_on);
5487 
5488 	mutex_enter(&spa->spa_async_lock);
5489 	tasks = spa->spa_async_tasks;
5490 	spa->spa_async_tasks = 0;
5491 	mutex_exit(&spa->spa_async_lock);
5492 
5493 	/*
5494 	 * See if the config needs to be updated.
5495 	 */
5496 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5497 		uint64_t old_space, new_space;
5498 
5499 		mutex_enter(&spa_namespace_lock);
5500 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5501 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5502 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5503 		mutex_exit(&spa_namespace_lock);
5504 
5505 		/*
5506 		 * If the pool grew as a result of the config update,
5507 		 * then log an internal history event.
5508 		 */
5509 		if (new_space != old_space) {
5510 			spa_history_log_internal(spa, "vdev online", NULL,
5511 			    "pool '%s' size: %llu(+%llu)",
5512 			    spa_name(spa), new_space, new_space - old_space);
5513 		}
5514 	}
5515 
5516 	/*
5517 	 * See if any devices need to be marked REMOVED.
5518 	 */
5519 	if (tasks & SPA_ASYNC_REMOVE) {
5520 		spa_vdev_state_enter(spa, SCL_NONE);
5521 		spa_async_remove(spa, spa->spa_root_vdev);
5522 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5523 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5524 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5525 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5526 		(void) spa_vdev_state_exit(spa, NULL, 0);
5527 	}
5528 
5529 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5530 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5531 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5532 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5533 	}
5534 
5535 	/*
5536 	 * See if any devices need to be probed.
5537 	 */
5538 	if (tasks & SPA_ASYNC_PROBE) {
5539 		spa_vdev_state_enter(spa, SCL_NONE);
5540 		spa_async_probe(spa, spa->spa_root_vdev);
5541 		(void) spa_vdev_state_exit(spa, NULL, 0);
5542 	}
5543 
5544 	/*
5545 	 * If any devices are done replacing, detach them.
5546 	 */
5547 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5548 		spa_vdev_resilver_done(spa);
5549 
5550 	/*
5551 	 * Kick off a resilver.
5552 	 */
5553 	if (tasks & SPA_ASYNC_RESILVER)
5554 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5555 
5556 	/*
5557 	 * Let the world know that we're done.
5558 	 */
5559 	mutex_enter(&spa->spa_async_lock);
5560 	spa->spa_async_thread = NULL;
5561 	cv_broadcast(&spa->spa_async_cv);
5562 	mutex_exit(&spa->spa_async_lock);
5563 	thread_exit();
5564 }
5565 
5566 void
5567 spa_async_suspend(spa_t *spa)
5568 {
5569 	mutex_enter(&spa->spa_async_lock);
5570 	spa->spa_async_suspended++;
5571 	while (spa->spa_async_thread != NULL)
5572 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5573 	mutex_exit(&spa->spa_async_lock);
5574 }
5575 
5576 void
5577 spa_async_resume(spa_t *spa)
5578 {
5579 	mutex_enter(&spa->spa_async_lock);
5580 	ASSERT(spa->spa_async_suspended != 0);
5581 	spa->spa_async_suspended--;
5582 	mutex_exit(&spa->spa_async_lock);
5583 }
5584 
5585 static void
5586 spa_async_dispatch(spa_t *spa)
5587 {
5588 	mutex_enter(&spa->spa_async_lock);
5589 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5590 	    spa->spa_async_thread == NULL &&
5591 	    rootdir != NULL && !vn_is_readonly(rootdir))
5592 		spa->spa_async_thread = thread_create(NULL, 0,
5593 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5594 	mutex_exit(&spa->spa_async_lock);
5595 }
5596 
5597 void
5598 spa_async_request(spa_t *spa, int task)
5599 {
5600 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5601 	mutex_enter(&spa->spa_async_lock);
5602 	spa->spa_async_tasks |= task;
5603 	mutex_exit(&spa->spa_async_lock);
5604 }
5605 
5606 /*
5607  * ==========================================================================
5608  * SPA syncing routines
5609  * ==========================================================================
5610  */
5611 
5612 static int
5613 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5614 {
5615 	bpobj_t *bpo = arg;
5616 	bpobj_enqueue(bpo, bp, tx);
5617 	return (0);
5618 }
5619 
5620 static int
5621 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5622 {
5623 	zio_t *zio = arg;
5624 
5625 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5626 	    zio->io_flags));
5627 	return (0);
5628 }
5629 
5630 static void
5631 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5632 {
5633 	char *packed = NULL;
5634 	size_t bufsize;
5635 	size_t nvsize = 0;
5636 	dmu_buf_t *db;
5637 
5638 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5639 
5640 	/*
5641 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5642 	 * information.  This avoids the dbuf_will_dirty() path and
5643 	 * saves us a pre-read to get data we don't actually care about.
5644 	 */
5645 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5646 	packed = kmem_alloc(bufsize, KM_SLEEP);
5647 
5648 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5649 	    KM_SLEEP) == 0);
5650 	bzero(packed + nvsize, bufsize - nvsize);
5651 
5652 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5653 
5654 	kmem_free(packed, bufsize);
5655 
5656 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5657 	dmu_buf_will_dirty(db, tx);
5658 	*(uint64_t *)db->db_data = nvsize;
5659 	dmu_buf_rele(db, FTAG);
5660 }
5661 
5662 static void
5663 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5664     const char *config, const char *entry)
5665 {
5666 	nvlist_t *nvroot;
5667 	nvlist_t **list;
5668 	int i;
5669 
5670 	if (!sav->sav_sync)
5671 		return;
5672 
5673 	/*
5674 	 * Update the MOS nvlist describing the list of available devices.
5675 	 * spa_validate_aux() will have already made sure this nvlist is
5676 	 * valid and the vdevs are labeled appropriately.
5677 	 */
5678 	if (sav->sav_object == 0) {
5679 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5680 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5681 		    sizeof (uint64_t), tx);
5682 		VERIFY(zap_update(spa->spa_meta_objset,
5683 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5684 		    &sav->sav_object, tx) == 0);
5685 	}
5686 
5687 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5688 	if (sav->sav_count == 0) {
5689 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5690 	} else {
5691 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5692 		for (i = 0; i < sav->sav_count; i++)
5693 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5694 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5695 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5696 		    sav->sav_count) == 0);
5697 		for (i = 0; i < sav->sav_count; i++)
5698 			nvlist_free(list[i]);
5699 		kmem_free(list, sav->sav_count * sizeof (void *));
5700 	}
5701 
5702 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5703 	nvlist_free(nvroot);
5704 
5705 	sav->sav_sync = B_FALSE;
5706 }
5707 
5708 static void
5709 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5710 {
5711 	nvlist_t *config;
5712 
5713 	if (list_is_empty(&spa->spa_config_dirty_list))
5714 		return;
5715 
5716 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5717 
5718 	config = spa_config_generate(spa, spa->spa_root_vdev,
5719 	    dmu_tx_get_txg(tx), B_FALSE);
5720 
5721 	/*
5722 	 * If we're upgrading the spa version then make sure that
5723 	 * the config object gets updated with the correct version.
5724 	 */
5725 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5726 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5727 		    spa->spa_uberblock.ub_version);
5728 
5729 	spa_config_exit(spa, SCL_STATE, FTAG);
5730 
5731 	if (spa->spa_config_syncing)
5732 		nvlist_free(spa->spa_config_syncing);
5733 	spa->spa_config_syncing = config;
5734 
5735 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5736 }
5737 
5738 static void
5739 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5740 {
5741 	spa_t *spa = arg1;
5742 	uint64_t version = *(uint64_t *)arg2;
5743 
5744 	/*
5745 	 * Setting the version is special cased when first creating the pool.
5746 	 */
5747 	ASSERT(tx->tx_txg != TXG_INITIAL);
5748 
5749 	ASSERT(version <= SPA_VERSION);
5750 	ASSERT(version >= spa_version(spa));
5751 
5752 	spa->spa_uberblock.ub_version = version;
5753 	vdev_config_dirty(spa->spa_root_vdev);
5754 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5755 }
5756 
5757 /*
5758  * Set zpool properties.
5759  */
5760 static void
5761 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5762 {
5763 	spa_t *spa = arg1;
5764 	objset_t *mos = spa->spa_meta_objset;
5765 	nvlist_t *nvp = arg2;
5766 	nvpair_t *elem = NULL;
5767 
5768 	mutex_enter(&spa->spa_props_lock);
5769 
5770 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5771 		uint64_t intval;
5772 		char *strval, *fname;
5773 		zpool_prop_t prop;
5774 		const char *propname;
5775 		zprop_type_t proptype;
5776 		zfeature_info_t *feature;
5777 
5778 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5779 		case ZPROP_INVAL:
5780 			/*
5781 			 * We checked this earlier in spa_prop_validate().
5782 			 */
5783 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5784 
5785 			fname = strchr(nvpair_name(elem), '@') + 1;
5786 			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5787 
5788 			spa_feature_enable(spa, feature, tx);
5789 			spa_history_log_internal(spa, "set", tx,
5790 			    "%s=enabled", nvpair_name(elem));
5791 			break;
5792 
5793 		case ZPOOL_PROP_VERSION:
5794 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5795 			/*
5796 			 * The version is synced seperatly before other
5797 			 * properties and should be correct by now.
5798 			 */
5799 			ASSERT3U(spa_version(spa), >=, intval);
5800 			break;
5801 
5802 		case ZPOOL_PROP_ALTROOT:
5803 			/*
5804 			 * 'altroot' is a non-persistent property. It should
5805 			 * have been set temporarily at creation or import time.
5806 			 */
5807 			ASSERT(spa->spa_root != NULL);
5808 			break;
5809 
5810 		case ZPOOL_PROP_READONLY:
5811 		case ZPOOL_PROP_CACHEFILE:
5812 			/*
5813 			 * 'readonly' and 'cachefile' are also non-persisitent
5814 			 * properties.
5815 			 */
5816 			break;
5817 		case ZPOOL_PROP_COMMENT:
5818 			VERIFY(nvpair_value_string(elem, &strval) == 0);
5819 			if (spa->spa_comment != NULL)
5820 				spa_strfree(spa->spa_comment);
5821 			spa->spa_comment = spa_strdup(strval);
5822 			/*
5823 			 * We need to dirty the configuration on all the vdevs
5824 			 * so that their labels get updated.  It's unnecessary
5825 			 * to do this for pool creation since the vdev's
5826 			 * configuratoin has already been dirtied.
5827 			 */
5828 			if (tx->tx_txg != TXG_INITIAL)
5829 				vdev_config_dirty(spa->spa_root_vdev);
5830 			spa_history_log_internal(spa, "set", tx,
5831 			    "%s=%s", nvpair_name(elem), strval);
5832 			break;
5833 		default:
5834 			/*
5835 			 * Set pool property values in the poolprops mos object.
5836 			 */
5837 			if (spa->spa_pool_props_object == 0) {
5838 				spa->spa_pool_props_object =
5839 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
5840 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5841 				    tx);
5842 			}
5843 
5844 			/* normalize the property name */
5845 			propname = zpool_prop_to_name(prop);
5846 			proptype = zpool_prop_get_type(prop);
5847 
5848 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5849 				ASSERT(proptype == PROP_TYPE_STRING);
5850 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5851 				VERIFY(zap_update(mos,
5852 				    spa->spa_pool_props_object, propname,
5853 				    1, strlen(strval) + 1, strval, tx) == 0);
5854 				spa_history_log_internal(spa, "set", tx,
5855 				    "%s=%s", nvpair_name(elem), strval);
5856 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5857 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5858 
5859 				if (proptype == PROP_TYPE_INDEX) {
5860 					const char *unused;
5861 					VERIFY(zpool_prop_index_to_string(
5862 					    prop, intval, &unused) == 0);
5863 				}
5864 				VERIFY(zap_update(mos,
5865 				    spa->spa_pool_props_object, propname,
5866 				    8, 1, &intval, tx) == 0);
5867 				spa_history_log_internal(spa, "set", tx,
5868 				    "%s=%lld", nvpair_name(elem), intval);
5869 			} else {
5870 				ASSERT(0); /* not allowed */
5871 			}
5872 
5873 			switch (prop) {
5874 			case ZPOOL_PROP_DELEGATION:
5875 				spa->spa_delegation = intval;
5876 				break;
5877 			case ZPOOL_PROP_BOOTFS:
5878 				spa->spa_bootfs = intval;
5879 				break;
5880 			case ZPOOL_PROP_FAILUREMODE:
5881 				spa->spa_failmode = intval;
5882 				break;
5883 			case ZPOOL_PROP_AUTOEXPAND:
5884 				spa->spa_autoexpand = intval;
5885 				if (tx->tx_txg != TXG_INITIAL)
5886 					spa_async_request(spa,
5887 					    SPA_ASYNC_AUTOEXPAND);
5888 				break;
5889 			case ZPOOL_PROP_DEDUPDITTO:
5890 				spa->spa_dedup_ditto = intval;
5891 				break;
5892 			default:
5893 				break;
5894 			}
5895 		}
5896 
5897 	}
5898 
5899 	mutex_exit(&spa->spa_props_lock);
5900 }
5901 
5902 /*
5903  * Perform one-time upgrade on-disk changes.  spa_version() does not
5904  * reflect the new version this txg, so there must be no changes this
5905  * txg to anything that the upgrade code depends on after it executes.
5906  * Therefore this must be called after dsl_pool_sync() does the sync
5907  * tasks.
5908  */
5909 static void
5910 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5911 {
5912 	dsl_pool_t *dp = spa->spa_dsl_pool;
5913 
5914 	ASSERT(spa->spa_sync_pass == 1);
5915 
5916 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5917 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5918 		dsl_pool_create_origin(dp, tx);
5919 
5920 		/* Keeping the origin open increases spa_minref */
5921 		spa->spa_minref += 3;
5922 	}
5923 
5924 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5925 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5926 		dsl_pool_upgrade_clones(dp, tx);
5927 	}
5928 
5929 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5930 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5931 		dsl_pool_upgrade_dir_clones(dp, tx);
5932 
5933 		/* Keeping the freedir open increases spa_minref */
5934 		spa->spa_minref += 3;
5935 	}
5936 
5937 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
5938 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
5939 		spa_feature_create_zap_objects(spa, tx);
5940 	}
5941 }
5942 
5943 /*
5944  * Sync the specified transaction group.  New blocks may be dirtied as
5945  * part of the process, so we iterate until it converges.
5946  */
5947 void
5948 spa_sync(spa_t *spa, uint64_t txg)
5949 {
5950 	dsl_pool_t *dp = spa->spa_dsl_pool;
5951 	objset_t *mos = spa->spa_meta_objset;
5952 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5953 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5954 	vdev_t *rvd = spa->spa_root_vdev;
5955 	vdev_t *vd;
5956 	dmu_tx_t *tx;
5957 	int error;
5958 
5959 	VERIFY(spa_writeable(spa));
5960 
5961 	/*
5962 	 * Lock out configuration changes.
5963 	 */
5964 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5965 
5966 	spa->spa_syncing_txg = txg;
5967 	spa->spa_sync_pass = 0;
5968 
5969 	/*
5970 	 * If there are any pending vdev state changes, convert them
5971 	 * into config changes that go out with this transaction group.
5972 	 */
5973 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5974 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5975 		/*
5976 		 * We need the write lock here because, for aux vdevs,
5977 		 * calling vdev_config_dirty() modifies sav_config.
5978 		 * This is ugly and will become unnecessary when we
5979 		 * eliminate the aux vdev wart by integrating all vdevs
5980 		 * into the root vdev tree.
5981 		 */
5982 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5983 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5984 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5985 			vdev_state_clean(vd);
5986 			vdev_config_dirty(vd);
5987 		}
5988 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5989 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5990 	}
5991 	spa_config_exit(spa, SCL_STATE, FTAG);
5992 
5993 	tx = dmu_tx_create_assigned(dp, txg);
5994 
5995 	spa->spa_sync_starttime = gethrtime();
5996 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
5997 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
5998 
5999 	/*
6000 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6001 	 * set spa_deflate if we have no raid-z vdevs.
6002 	 */
6003 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6004 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6005 		int i;
6006 
6007 		for (i = 0; i < rvd->vdev_children; i++) {
6008 			vd = rvd->vdev_child[i];
6009 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6010 				break;
6011 		}
6012 		if (i == rvd->vdev_children) {
6013 			spa->spa_deflate = TRUE;
6014 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6015 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6016 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6017 		}
6018 	}
6019 
6020 	/*
6021 	 * If anything has changed in this txg, or if someone is waiting
6022 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6023 	 * deferred frees from the previous txg.  If not, leave them
6024 	 * alone so that we don't generate work on an otherwise idle
6025 	 * system.
6026 	 */
6027 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6028 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6029 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6030 	    ((dsl_scan_active(dp->dp_scan) ||
6031 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6032 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6033 		VERIFY3U(bpobj_iterate(defer_bpo,
6034 		    spa_free_sync_cb, zio, tx), ==, 0);
6035 		VERIFY0(zio_wait(zio));
6036 	}
6037 
6038 	/*
6039 	 * Iterate to convergence.
6040 	 */
6041 	do {
6042 		int pass = ++spa->spa_sync_pass;
6043 
6044 		spa_sync_config_object(spa, tx);
6045 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6046 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6047 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6048 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6049 		spa_errlog_sync(spa, txg);
6050 		dsl_pool_sync(dp, txg);
6051 
6052 		if (pass < zfs_sync_pass_deferred_free) {
6053 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6054 			bplist_iterate(free_bpl, spa_free_sync_cb,
6055 			    zio, tx);
6056 			VERIFY(zio_wait(zio) == 0);
6057 		} else {
6058 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6059 			    defer_bpo, tx);
6060 		}
6061 
6062 		ddt_sync(spa, txg);
6063 		dsl_scan_sync(dp, tx);
6064 
6065 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6066 			vdev_sync(vd, txg);
6067 
6068 		if (pass == 1)
6069 			spa_sync_upgrades(spa, tx);
6070 
6071 	} while (dmu_objset_is_dirty(mos, txg));
6072 
6073 	/*
6074 	 * Rewrite the vdev configuration (which includes the uberblock)
6075 	 * to commit the transaction group.
6076 	 *
6077 	 * If there are no dirty vdevs, we sync the uberblock to a few
6078 	 * random top-level vdevs that are known to be visible in the
6079 	 * config cache (see spa_vdev_add() for a complete description).
6080 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6081 	 */
6082 	for (;;) {
6083 		/*
6084 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6085 		 * while we're attempting to write the vdev labels.
6086 		 */
6087 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6088 
6089 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6090 			vdev_t *svd[SPA_DVAS_PER_BP];
6091 			int svdcount = 0;
6092 			int children = rvd->vdev_children;
6093 			int c0 = spa_get_random(children);
6094 
6095 			for (int c = 0; c < children; c++) {
6096 				vd = rvd->vdev_child[(c0 + c) % children];
6097 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6098 					continue;
6099 				svd[svdcount++] = vd;
6100 				if (svdcount == SPA_DVAS_PER_BP)
6101 					break;
6102 			}
6103 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6104 			if (error != 0)
6105 				error = vdev_config_sync(svd, svdcount, txg,
6106 				    B_TRUE);
6107 		} else {
6108 			error = vdev_config_sync(rvd->vdev_child,
6109 			    rvd->vdev_children, txg, B_FALSE);
6110 			if (error != 0)
6111 				error = vdev_config_sync(rvd->vdev_child,
6112 				    rvd->vdev_children, txg, B_TRUE);
6113 		}
6114 
6115 		if (error == 0)
6116 			spa->spa_last_synced_guid = rvd->vdev_guid;
6117 
6118 		spa_config_exit(spa, SCL_STATE, FTAG);
6119 
6120 		if (error == 0)
6121 			break;
6122 		zio_suspend(spa, NULL);
6123 		zio_resume_wait(spa);
6124 	}
6125 	dmu_tx_commit(tx);
6126 
6127 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6128 
6129 	/*
6130 	 * Clear the dirty config list.
6131 	 */
6132 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6133 		vdev_config_clean(vd);
6134 
6135 	/*
6136 	 * Now that the new config has synced transactionally,
6137 	 * let it become visible to the config cache.
6138 	 */
6139 	if (spa->spa_config_syncing != NULL) {
6140 		spa_config_set(spa, spa->spa_config_syncing);
6141 		spa->spa_config_txg = txg;
6142 		spa->spa_config_syncing = NULL;
6143 	}
6144 
6145 	spa->spa_ubsync = spa->spa_uberblock;
6146 
6147 	dsl_pool_sync_done(dp, txg);
6148 
6149 	/*
6150 	 * Update usable space statistics.
6151 	 */
6152 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6153 		vdev_sync_done(vd, txg);
6154 
6155 	spa_update_dspace(spa);
6156 
6157 	/*
6158 	 * It had better be the case that we didn't dirty anything
6159 	 * since vdev_config_sync().
6160 	 */
6161 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6162 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6163 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6164 
6165 	spa->spa_sync_pass = 0;
6166 
6167 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6168 
6169 	spa_handle_ignored_writes(spa);
6170 
6171 	/*
6172 	 * If any async tasks have been requested, kick them off.
6173 	 */
6174 	spa_async_dispatch(spa);
6175 }
6176 
6177 /*
6178  * Sync all pools.  We don't want to hold the namespace lock across these
6179  * operations, so we take a reference on the spa_t and drop the lock during the
6180  * sync.
6181  */
6182 void
6183 spa_sync_allpools(void)
6184 {
6185 	spa_t *spa = NULL;
6186 	mutex_enter(&spa_namespace_lock);
6187 	while ((spa = spa_next(spa)) != NULL) {
6188 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6189 		    !spa_writeable(spa) || spa_suspended(spa))
6190 			continue;
6191 		spa_open_ref(spa, FTAG);
6192 		mutex_exit(&spa_namespace_lock);
6193 		txg_wait_synced(spa_get_dsl(spa), 0);
6194 		mutex_enter(&spa_namespace_lock);
6195 		spa_close(spa, FTAG);
6196 	}
6197 	mutex_exit(&spa_namespace_lock);
6198 }
6199 
6200 /*
6201  * ==========================================================================
6202  * Miscellaneous routines
6203  * ==========================================================================
6204  */
6205 
6206 /*
6207  * Remove all pools in the system.
6208  */
6209 void
6210 spa_evict_all(void)
6211 {
6212 	spa_t *spa;
6213 
6214 	/*
6215 	 * Remove all cached state.  All pools should be closed now,
6216 	 * so every spa in the AVL tree should be unreferenced.
6217 	 */
6218 	mutex_enter(&spa_namespace_lock);
6219 	while ((spa = spa_next(NULL)) != NULL) {
6220 		/*
6221 		 * Stop async tasks.  The async thread may need to detach
6222 		 * a device that's been replaced, which requires grabbing
6223 		 * spa_namespace_lock, so we must drop it here.
6224 		 */
6225 		spa_open_ref(spa, FTAG);
6226 		mutex_exit(&spa_namespace_lock);
6227 		spa_async_suspend(spa);
6228 		mutex_enter(&spa_namespace_lock);
6229 		spa_close(spa, FTAG);
6230 
6231 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6232 			spa_unload(spa);
6233 			spa_deactivate(spa);
6234 		}
6235 		spa_remove(spa);
6236 	}
6237 	mutex_exit(&spa_namespace_lock);
6238 }
6239 
6240 vdev_t *
6241 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6242 {
6243 	vdev_t *vd;
6244 	int i;
6245 
6246 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6247 		return (vd);
6248 
6249 	if (aux) {
6250 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6251 			vd = spa->spa_l2cache.sav_vdevs[i];
6252 			if (vd->vdev_guid == guid)
6253 				return (vd);
6254 		}
6255 
6256 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6257 			vd = spa->spa_spares.sav_vdevs[i];
6258 			if (vd->vdev_guid == guid)
6259 				return (vd);
6260 		}
6261 	}
6262 
6263 	return (NULL);
6264 }
6265 
6266 void
6267 spa_upgrade(spa_t *spa, uint64_t version)
6268 {
6269 	ASSERT(spa_writeable(spa));
6270 
6271 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6272 
6273 	/*
6274 	 * This should only be called for a non-faulted pool, and since a
6275 	 * future version would result in an unopenable pool, this shouldn't be
6276 	 * possible.
6277 	 */
6278 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6279 	ASSERT(version >= spa->spa_uberblock.ub_version);
6280 
6281 	spa->spa_uberblock.ub_version = version;
6282 	vdev_config_dirty(spa->spa_root_vdev);
6283 
6284 	spa_config_exit(spa, SCL_ALL, FTAG);
6285 
6286 	txg_wait_synced(spa_get_dsl(spa), 0);
6287 }
6288 
6289 boolean_t
6290 spa_has_spare(spa_t *spa, uint64_t guid)
6291 {
6292 	int i;
6293 	uint64_t spareguid;
6294 	spa_aux_vdev_t *sav = &spa->spa_spares;
6295 
6296 	for (i = 0; i < sav->sav_count; i++)
6297 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6298 			return (B_TRUE);
6299 
6300 	for (i = 0; i < sav->sav_npending; i++) {
6301 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6302 		    &spareguid) == 0 && spareguid == guid)
6303 			return (B_TRUE);
6304 	}
6305 
6306 	return (B_FALSE);
6307 }
6308 
6309 /*
6310  * Check if a pool has an active shared spare device.
6311  * Note: reference count of an active spare is 2, as a spare and as a replace
6312  */
6313 static boolean_t
6314 spa_has_active_shared_spare(spa_t *spa)
6315 {
6316 	int i, refcnt;
6317 	uint64_t pool;
6318 	spa_aux_vdev_t *sav = &spa->spa_spares;
6319 
6320 	for (i = 0; i < sav->sav_count; i++) {
6321 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6322 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6323 		    refcnt > 2)
6324 			return (B_TRUE);
6325 	}
6326 
6327 	return (B_FALSE);
6328 }
6329 
6330 /*
6331  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6332  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6333  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6334  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6335  * or zdb as real changes.
6336  */
6337 void
6338 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6339 {
6340 #ifdef _KERNEL
6341 	sysevent_t		*ev;
6342 	sysevent_attr_list_t	*attr = NULL;
6343 	sysevent_value_t	value;
6344 	sysevent_id_t		eid;
6345 
6346 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6347 	    SE_SLEEP);
6348 
6349 	value.value_type = SE_DATA_TYPE_STRING;
6350 	value.value.sv_string = spa_name(spa);
6351 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6352 		goto done;
6353 
6354 	value.value_type = SE_DATA_TYPE_UINT64;
6355 	value.value.sv_uint64 = spa_guid(spa);
6356 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6357 		goto done;
6358 
6359 	if (vd) {
6360 		value.value_type = SE_DATA_TYPE_UINT64;
6361 		value.value.sv_uint64 = vd->vdev_guid;
6362 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6363 		    SE_SLEEP) != 0)
6364 			goto done;
6365 
6366 		if (vd->vdev_path) {
6367 			value.value_type = SE_DATA_TYPE_STRING;
6368 			value.value.sv_string = vd->vdev_path;
6369 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6370 			    &value, SE_SLEEP) != 0)
6371 				goto done;
6372 		}
6373 	}
6374 
6375 	if (sysevent_attach_attributes(ev, attr) != 0)
6376 		goto done;
6377 	attr = NULL;
6378 
6379 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6380 
6381 done:
6382 	if (attr)
6383 		sysevent_free_attr(attr);
6384 	sysevent_free(ev);
6385 #endif
6386 }
6387