xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 11027bc778dc4f44eabf0c8bc54260ea890b0a15)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * This file contains all the routines used when modifying on-disk SPA state.
28  * This includes opening, importing, destroying, exporting a pool, and syncing a
29  * pool.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/ddt.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/metaslab_impl.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/spa_boot.h>
61 #include <sys/zfs_ioctl.h>
62 #include <sys/dsl_scan.h>
63 
64 #ifdef	_KERNEL
65 #include <sys/bootprops.h>
66 #include <sys/callb.h>
67 #include <sys/cpupart.h>
68 #include <sys/pool.h>
69 #include <sys/sysdc.h>
70 #include <sys/zone.h>
71 #endif	/* _KERNEL */
72 
73 #include "zfs_prop.h"
74 #include "zfs_comutil.h"
75 
76 typedef enum zti_modes {
77 	zti_mode_fixed,			/* value is # of threads (min 1) */
78 	zti_mode_online_percent,	/* value is % of online CPUs */
79 	zti_mode_batch,			/* cpu-intensive; value is ignored */
80 	zti_mode_null,			/* don't create a taskq */
81 	zti_nmodes
82 } zti_modes_t;
83 
84 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
85 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
86 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
87 #define	ZTI_NULL	{ zti_mode_null, 0 }
88 
89 #define	ZTI_ONE		ZTI_FIX(1)
90 
91 typedef struct zio_taskq_info {
92 	enum zti_modes zti_mode;
93 	uint_t zti_value;
94 } zio_taskq_info_t;
95 
96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
97 	"issue", "issue_high", "intr", "intr_high"
98 };
99 
100 /*
101  * Define the taskq threads for the following I/O types:
102  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
103  */
104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
105 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
106 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
107 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
108 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
109 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 };
113 
114 static dsl_syncfunc_t spa_sync_props;
115 static boolean_t spa_has_active_shared_spare(spa_t *spa);
116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
117     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
118     char **ereport);
119 
120 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
121 id_t		zio_taskq_psrset_bind = PS_NONE;
122 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
123 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
124 
125 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
126 
127 /*
128  * This (illegal) pool name is used when temporarily importing a spa_t in order
129  * to get the vdev stats associated with the imported devices.
130  */
131 #define	TRYIMPORT_NAME	"$import"
132 
133 /*
134  * ==========================================================================
135  * SPA properties routines
136  * ==========================================================================
137  */
138 
139 /*
140  * Add a (source=src, propname=propval) list to an nvlist.
141  */
142 static void
143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
144     uint64_t intval, zprop_source_t src)
145 {
146 	const char *propname = zpool_prop_to_name(prop);
147 	nvlist_t *propval;
148 
149 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
150 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
151 
152 	if (strval != NULL)
153 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
154 	else
155 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
156 
157 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
158 	nvlist_free(propval);
159 }
160 
161 /*
162  * Get property values from the spa configuration.
163  */
164 static void
165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
166 {
167 	uint64_t size;
168 	uint64_t alloc;
169 	uint64_t cap, version;
170 	zprop_source_t src = ZPROP_SRC_NONE;
171 	spa_config_dirent_t *dp;
172 
173 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
174 
175 	if (spa->spa_root_vdev != NULL) {
176 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
177 		size = metaslab_class_get_space(spa_normal_class(spa));
178 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
180 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
182 		    size - alloc, src);
183 
184 		cap = (size == 0) ? 0 : (alloc * 100 / size);
185 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
186 
187 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
188 		    ddt_get_pool_dedup_ratio(spa), src);
189 
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
191 		    spa->spa_root_vdev->vdev_state, src);
192 
193 		version = spa_version(spa);
194 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
195 			src = ZPROP_SRC_DEFAULT;
196 		else
197 			src = ZPROP_SRC_LOCAL;
198 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
199 	}
200 
201 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
202 
203 	if (spa->spa_root != NULL)
204 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
205 		    0, ZPROP_SRC_LOCAL);
206 
207 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
208 		if (dp->scd_path == NULL) {
209 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
210 			    "none", 0, ZPROP_SRC_LOCAL);
211 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
212 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
213 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
214 		}
215 	}
216 }
217 
218 /*
219  * Get zpool property values.
220  */
221 int
222 spa_prop_get(spa_t *spa, nvlist_t **nvp)
223 {
224 	objset_t *mos = spa->spa_meta_objset;
225 	zap_cursor_t zc;
226 	zap_attribute_t za;
227 	int err;
228 
229 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
230 
231 	mutex_enter(&spa->spa_props_lock);
232 
233 	/*
234 	 * Get properties from the spa config.
235 	 */
236 	spa_prop_get_config(spa, nvp);
237 
238 	/* If no pool property object, no more prop to get. */
239 	if (mos == NULL || spa->spa_pool_props_object == 0) {
240 		mutex_exit(&spa->spa_props_lock);
241 		return (0);
242 	}
243 
244 	/*
245 	 * Get properties from the MOS pool property object.
246 	 */
247 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
248 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
249 	    zap_cursor_advance(&zc)) {
250 		uint64_t intval = 0;
251 		char *strval = NULL;
252 		zprop_source_t src = ZPROP_SRC_DEFAULT;
253 		zpool_prop_t prop;
254 
255 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
256 			continue;
257 
258 		switch (za.za_integer_length) {
259 		case 8:
260 			/* integer property */
261 			if (za.za_first_integer !=
262 			    zpool_prop_default_numeric(prop))
263 				src = ZPROP_SRC_LOCAL;
264 
265 			if (prop == ZPOOL_PROP_BOOTFS) {
266 				dsl_pool_t *dp;
267 				dsl_dataset_t *ds = NULL;
268 
269 				dp = spa_get_dsl(spa);
270 				rw_enter(&dp->dp_config_rwlock, RW_READER);
271 				if (err = dsl_dataset_hold_obj(dp,
272 				    za.za_first_integer, FTAG, &ds)) {
273 					rw_exit(&dp->dp_config_rwlock);
274 					break;
275 				}
276 
277 				strval = kmem_alloc(
278 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
279 				    KM_SLEEP);
280 				dsl_dataset_name(ds, strval);
281 				dsl_dataset_rele(ds, FTAG);
282 				rw_exit(&dp->dp_config_rwlock);
283 			} else {
284 				strval = NULL;
285 				intval = za.za_first_integer;
286 			}
287 
288 			spa_prop_add_list(*nvp, prop, strval, intval, src);
289 
290 			if (strval != NULL)
291 				kmem_free(strval,
292 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
293 
294 			break;
295 
296 		case 1:
297 			/* string property */
298 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
299 			err = zap_lookup(mos, spa->spa_pool_props_object,
300 			    za.za_name, 1, za.za_num_integers, strval);
301 			if (err) {
302 				kmem_free(strval, za.za_num_integers);
303 				break;
304 			}
305 			spa_prop_add_list(*nvp, prop, strval, 0, src);
306 			kmem_free(strval, za.za_num_integers);
307 			break;
308 
309 		default:
310 			break;
311 		}
312 	}
313 	zap_cursor_fini(&zc);
314 	mutex_exit(&spa->spa_props_lock);
315 out:
316 	if (err && err != ENOENT) {
317 		nvlist_free(*nvp);
318 		*nvp = NULL;
319 		return (err);
320 	}
321 
322 	return (0);
323 }
324 
325 /*
326  * Validate the given pool properties nvlist and modify the list
327  * for the property values to be set.
328  */
329 static int
330 spa_prop_validate(spa_t *spa, nvlist_t *props)
331 {
332 	nvpair_t *elem;
333 	int error = 0, reset_bootfs = 0;
334 	uint64_t objnum;
335 
336 	elem = NULL;
337 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
338 		zpool_prop_t prop;
339 		char *propname, *strval;
340 		uint64_t intval;
341 		objset_t *os;
342 		char *slash;
343 
344 		propname = nvpair_name(elem);
345 
346 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
347 			return (EINVAL);
348 
349 		switch (prop) {
350 		case ZPOOL_PROP_VERSION:
351 			error = nvpair_value_uint64(elem, &intval);
352 			if (!error &&
353 			    (intval < spa_version(spa) || intval > SPA_VERSION))
354 				error = EINVAL;
355 			break;
356 
357 		case ZPOOL_PROP_DELEGATION:
358 		case ZPOOL_PROP_AUTOREPLACE:
359 		case ZPOOL_PROP_LISTSNAPS:
360 		case ZPOOL_PROP_AUTOEXPAND:
361 			error = nvpair_value_uint64(elem, &intval);
362 			if (!error && intval > 1)
363 				error = EINVAL;
364 			break;
365 
366 		case ZPOOL_PROP_BOOTFS:
367 			/*
368 			 * If the pool version is less than SPA_VERSION_BOOTFS,
369 			 * or the pool is still being created (version == 0),
370 			 * the bootfs property cannot be set.
371 			 */
372 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
373 				error = ENOTSUP;
374 				break;
375 			}
376 
377 			/*
378 			 * Make sure the vdev config is bootable
379 			 */
380 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
381 				error = ENOTSUP;
382 				break;
383 			}
384 
385 			reset_bootfs = 1;
386 
387 			error = nvpair_value_string(elem, &strval);
388 
389 			if (!error) {
390 				uint64_t compress;
391 
392 				if (strval == NULL || strval[0] == '\0') {
393 					objnum = zpool_prop_default_numeric(
394 					    ZPOOL_PROP_BOOTFS);
395 					break;
396 				}
397 
398 				if (error = dmu_objset_hold(strval, FTAG, &os))
399 					break;
400 
401 				/* Must be ZPL and not gzip compressed. */
402 
403 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
404 					error = ENOTSUP;
405 				} else if ((error = dsl_prop_get_integer(strval,
406 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
407 				    &compress, NULL)) == 0 &&
408 				    !BOOTFS_COMPRESS_VALID(compress)) {
409 					error = ENOTSUP;
410 				} else {
411 					objnum = dmu_objset_id(os);
412 				}
413 				dmu_objset_rele(os, FTAG);
414 			}
415 			break;
416 
417 		case ZPOOL_PROP_FAILUREMODE:
418 			error = nvpair_value_uint64(elem, &intval);
419 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
420 			    intval > ZIO_FAILURE_MODE_PANIC))
421 				error = EINVAL;
422 
423 			/*
424 			 * This is a special case which only occurs when
425 			 * the pool has completely failed. This allows
426 			 * the user to change the in-core failmode property
427 			 * without syncing it out to disk (I/Os might
428 			 * currently be blocked). We do this by returning
429 			 * EIO to the caller (spa_prop_set) to trick it
430 			 * into thinking we encountered a property validation
431 			 * error.
432 			 */
433 			if (!error && spa_suspended(spa)) {
434 				spa->spa_failmode = intval;
435 				error = EIO;
436 			}
437 			break;
438 
439 		case ZPOOL_PROP_CACHEFILE:
440 			if ((error = nvpair_value_string(elem, &strval)) != 0)
441 				break;
442 
443 			if (strval[0] == '\0')
444 				break;
445 
446 			if (strcmp(strval, "none") == 0)
447 				break;
448 
449 			if (strval[0] != '/') {
450 				error = EINVAL;
451 				break;
452 			}
453 
454 			slash = strrchr(strval, '/');
455 			ASSERT(slash != NULL);
456 
457 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
458 			    strcmp(slash, "/..") == 0)
459 				error = EINVAL;
460 			break;
461 
462 		case ZPOOL_PROP_DEDUPDITTO:
463 			if (spa_version(spa) < SPA_VERSION_DEDUP)
464 				error = ENOTSUP;
465 			else
466 				error = nvpair_value_uint64(elem, &intval);
467 			if (error == 0 &&
468 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
469 				error = EINVAL;
470 			break;
471 		}
472 
473 		if (error)
474 			break;
475 	}
476 
477 	if (!error && reset_bootfs) {
478 		error = nvlist_remove(props,
479 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
480 
481 		if (!error) {
482 			error = nvlist_add_uint64(props,
483 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
484 		}
485 	}
486 
487 	return (error);
488 }
489 
490 void
491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
492 {
493 	char *cachefile;
494 	spa_config_dirent_t *dp;
495 
496 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
497 	    &cachefile) != 0)
498 		return;
499 
500 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
501 	    KM_SLEEP);
502 
503 	if (cachefile[0] == '\0')
504 		dp->scd_path = spa_strdup(spa_config_path);
505 	else if (strcmp(cachefile, "none") == 0)
506 		dp->scd_path = NULL;
507 	else
508 		dp->scd_path = spa_strdup(cachefile);
509 
510 	list_insert_head(&spa->spa_config_list, dp);
511 	if (need_sync)
512 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
513 }
514 
515 int
516 spa_prop_set(spa_t *spa, nvlist_t *nvp)
517 {
518 	int error;
519 	nvpair_t *elem;
520 	boolean_t need_sync = B_FALSE;
521 	zpool_prop_t prop;
522 
523 	if ((error = spa_prop_validate(spa, nvp)) != 0)
524 		return (error);
525 
526 	elem = NULL;
527 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
528 		if ((prop = zpool_name_to_prop(
529 		    nvpair_name(elem))) == ZPROP_INVAL)
530 			return (EINVAL);
531 
532 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
533 			continue;
534 
535 		need_sync = B_TRUE;
536 		break;
537 	}
538 
539 	if (need_sync)
540 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
541 		    spa, nvp, 3));
542 	else
543 		return (0);
544 }
545 
546 /*
547  * If the bootfs property value is dsobj, clear it.
548  */
549 void
550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
551 {
552 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
553 		VERIFY(zap_remove(spa->spa_meta_objset,
554 		    spa->spa_pool_props_object,
555 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
556 		spa->spa_bootfs = 0;
557 	}
558 }
559 
560 /*
561  * ==========================================================================
562  * SPA state manipulation (open/create/destroy/import/export)
563  * ==========================================================================
564  */
565 
566 static int
567 spa_error_entry_compare(const void *a, const void *b)
568 {
569 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
570 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
571 	int ret;
572 
573 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
574 	    sizeof (zbookmark_t));
575 
576 	if (ret < 0)
577 		return (-1);
578 	else if (ret > 0)
579 		return (1);
580 	else
581 		return (0);
582 }
583 
584 /*
585  * Utility function which retrieves copies of the current logs and
586  * re-initializes them in the process.
587  */
588 void
589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
590 {
591 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
592 
593 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
594 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
595 
596 	avl_create(&spa->spa_errlist_scrub,
597 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
598 	    offsetof(spa_error_entry_t, se_avl));
599 	avl_create(&spa->spa_errlist_last,
600 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
601 	    offsetof(spa_error_entry_t, se_avl));
602 }
603 
604 static taskq_t *
605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
606     uint_t value)
607 {
608 	uint_t flags = TASKQ_PREPOPULATE;
609 	boolean_t batch = B_FALSE;
610 
611 	switch (mode) {
612 	case zti_mode_null:
613 		return (NULL);		/* no taskq needed */
614 
615 	case zti_mode_fixed:
616 		ASSERT3U(value, >=, 1);
617 		value = MAX(value, 1);
618 		break;
619 
620 	case zti_mode_batch:
621 		batch = B_TRUE;
622 		flags |= TASKQ_THREADS_CPU_PCT;
623 		value = zio_taskq_batch_pct;
624 		break;
625 
626 	case zti_mode_online_percent:
627 		flags |= TASKQ_THREADS_CPU_PCT;
628 		break;
629 
630 	default:
631 		panic("unrecognized mode for %s taskq (%u:%u) in "
632 		    "spa_activate()",
633 		    name, mode, value);
634 		break;
635 	}
636 
637 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
638 		if (batch)
639 			flags |= TASKQ_DC_BATCH;
640 
641 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
642 		    spa->spa_proc, zio_taskq_basedc, flags));
643 	}
644 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
645 	    spa->spa_proc, flags));
646 }
647 
648 static void
649 spa_create_zio_taskqs(spa_t *spa)
650 {
651 	for (int t = 0; t < ZIO_TYPES; t++) {
652 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
653 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
654 			enum zti_modes mode = ztip->zti_mode;
655 			uint_t value = ztip->zti_value;
656 			char name[32];
657 
658 			(void) snprintf(name, sizeof (name),
659 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
660 
661 			spa->spa_zio_taskq[t][q] =
662 			    spa_taskq_create(spa, name, mode, value);
663 		}
664 	}
665 }
666 
667 #ifdef _KERNEL
668 static void
669 spa_thread(void *arg)
670 {
671 	callb_cpr_t cprinfo;
672 
673 	spa_t *spa = arg;
674 	user_t *pu = PTOU(curproc);
675 
676 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
677 	    spa->spa_name);
678 
679 	ASSERT(curproc != &p0);
680 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
681 	    "zpool-%s", spa->spa_name);
682 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
683 
684 	/* bind this thread to the requested psrset */
685 	if (zio_taskq_psrset_bind != PS_NONE) {
686 		pool_lock();
687 		mutex_enter(&cpu_lock);
688 		mutex_enter(&pidlock);
689 		mutex_enter(&curproc->p_lock);
690 
691 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
692 		    0, NULL, NULL) == 0)  {
693 			curthread->t_bind_pset = zio_taskq_psrset_bind;
694 		} else {
695 			cmn_err(CE_WARN,
696 			    "Couldn't bind process for zfs pool \"%s\" to "
697 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
698 		}
699 
700 		mutex_exit(&curproc->p_lock);
701 		mutex_exit(&pidlock);
702 		mutex_exit(&cpu_lock);
703 		pool_unlock();
704 	}
705 
706 	if (zio_taskq_sysdc) {
707 		sysdc_thread_enter(curthread, 100, 0);
708 	}
709 
710 	spa->spa_proc = curproc;
711 	spa->spa_did = curthread->t_did;
712 
713 	spa_create_zio_taskqs(spa);
714 
715 	mutex_enter(&spa->spa_proc_lock);
716 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
717 
718 	spa->spa_proc_state = SPA_PROC_ACTIVE;
719 	cv_broadcast(&spa->spa_proc_cv);
720 
721 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
722 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
723 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
724 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
725 
726 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
727 	spa->spa_proc_state = SPA_PROC_GONE;
728 	spa->spa_proc = &p0;
729 	cv_broadcast(&spa->spa_proc_cv);
730 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
731 
732 	mutex_enter(&curproc->p_lock);
733 	lwp_exit();
734 }
735 #endif
736 
737 /*
738  * Activate an uninitialized pool.
739  */
740 static void
741 spa_activate(spa_t *spa, int mode)
742 {
743 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
744 
745 	spa->spa_state = POOL_STATE_ACTIVE;
746 	spa->spa_mode = mode;
747 
748 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
749 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
750 
751 	/* Try to create a covering process */
752 	mutex_enter(&spa->spa_proc_lock);
753 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
754 	ASSERT(spa->spa_proc == &p0);
755 	spa->spa_did = 0;
756 
757 	/* Only create a process if we're going to be around a while. */
758 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
759 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
760 		    NULL, 0) == 0) {
761 			spa->spa_proc_state = SPA_PROC_CREATED;
762 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
763 				cv_wait(&spa->spa_proc_cv,
764 				    &spa->spa_proc_lock);
765 			}
766 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
767 			ASSERT(spa->spa_proc != &p0);
768 			ASSERT(spa->spa_did != 0);
769 		} else {
770 #ifdef _KERNEL
771 			cmn_err(CE_WARN,
772 			    "Couldn't create process for zfs pool \"%s\"\n",
773 			    spa->spa_name);
774 #endif
775 		}
776 	}
777 	mutex_exit(&spa->spa_proc_lock);
778 
779 	/* If we didn't create a process, we need to create our taskqs. */
780 	if (spa->spa_proc == &p0) {
781 		spa_create_zio_taskqs(spa);
782 	}
783 
784 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
785 	    offsetof(vdev_t, vdev_config_dirty_node));
786 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
787 	    offsetof(vdev_t, vdev_state_dirty_node));
788 
789 	txg_list_create(&spa->spa_vdev_txg_list,
790 	    offsetof(struct vdev, vdev_txg_node));
791 
792 	avl_create(&spa->spa_errlist_scrub,
793 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
794 	    offsetof(spa_error_entry_t, se_avl));
795 	avl_create(&spa->spa_errlist_last,
796 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
797 	    offsetof(spa_error_entry_t, se_avl));
798 }
799 
800 /*
801  * Opposite of spa_activate().
802  */
803 static void
804 spa_deactivate(spa_t *spa)
805 {
806 	ASSERT(spa->spa_sync_on == B_FALSE);
807 	ASSERT(spa->spa_dsl_pool == NULL);
808 	ASSERT(spa->spa_root_vdev == NULL);
809 	ASSERT(spa->spa_async_zio_root == NULL);
810 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
811 
812 	txg_list_destroy(&spa->spa_vdev_txg_list);
813 
814 	list_destroy(&spa->spa_config_dirty_list);
815 	list_destroy(&spa->spa_state_dirty_list);
816 
817 	for (int t = 0; t < ZIO_TYPES; t++) {
818 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
819 			if (spa->spa_zio_taskq[t][q] != NULL)
820 				taskq_destroy(spa->spa_zio_taskq[t][q]);
821 			spa->spa_zio_taskq[t][q] = NULL;
822 		}
823 	}
824 
825 	metaslab_class_destroy(spa->spa_normal_class);
826 	spa->spa_normal_class = NULL;
827 
828 	metaslab_class_destroy(spa->spa_log_class);
829 	spa->spa_log_class = NULL;
830 
831 	/*
832 	 * If this was part of an import or the open otherwise failed, we may
833 	 * still have errors left in the queues.  Empty them just in case.
834 	 */
835 	spa_errlog_drain(spa);
836 
837 	avl_destroy(&spa->spa_errlist_scrub);
838 	avl_destroy(&spa->spa_errlist_last);
839 
840 	spa->spa_state = POOL_STATE_UNINITIALIZED;
841 
842 	mutex_enter(&spa->spa_proc_lock);
843 	if (spa->spa_proc_state != SPA_PROC_NONE) {
844 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
845 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
846 		cv_broadcast(&spa->spa_proc_cv);
847 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
848 			ASSERT(spa->spa_proc != &p0);
849 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
850 		}
851 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
852 		spa->spa_proc_state = SPA_PROC_NONE;
853 	}
854 	ASSERT(spa->spa_proc == &p0);
855 	mutex_exit(&spa->spa_proc_lock);
856 
857 	/*
858 	 * We want to make sure spa_thread() has actually exited the ZFS
859 	 * module, so that the module can't be unloaded out from underneath
860 	 * it.
861 	 */
862 	if (spa->spa_did != 0) {
863 		thread_join(spa->spa_did);
864 		spa->spa_did = 0;
865 	}
866 }
867 
868 /*
869  * Verify a pool configuration, and construct the vdev tree appropriately.  This
870  * will create all the necessary vdevs in the appropriate layout, with each vdev
871  * in the CLOSED state.  This will prep the pool before open/creation/import.
872  * All vdev validation is done by the vdev_alloc() routine.
873  */
874 static int
875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
876     uint_t id, int atype)
877 {
878 	nvlist_t **child;
879 	uint_t children;
880 	int error;
881 
882 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
883 		return (error);
884 
885 	if ((*vdp)->vdev_ops->vdev_op_leaf)
886 		return (0);
887 
888 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
889 	    &child, &children);
890 
891 	if (error == ENOENT)
892 		return (0);
893 
894 	if (error) {
895 		vdev_free(*vdp);
896 		*vdp = NULL;
897 		return (EINVAL);
898 	}
899 
900 	for (int c = 0; c < children; c++) {
901 		vdev_t *vd;
902 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
903 		    atype)) != 0) {
904 			vdev_free(*vdp);
905 			*vdp = NULL;
906 			return (error);
907 		}
908 	}
909 
910 	ASSERT(*vdp != NULL);
911 
912 	return (0);
913 }
914 
915 /*
916  * Opposite of spa_load().
917  */
918 static void
919 spa_unload(spa_t *spa)
920 {
921 	int i;
922 
923 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
924 
925 	/*
926 	 * Stop async tasks.
927 	 */
928 	spa_async_suspend(spa);
929 
930 	/*
931 	 * Stop syncing.
932 	 */
933 	if (spa->spa_sync_on) {
934 		txg_sync_stop(spa->spa_dsl_pool);
935 		spa->spa_sync_on = B_FALSE;
936 	}
937 
938 	/*
939 	 * Wait for any outstanding async I/O to complete.
940 	 */
941 	if (spa->spa_async_zio_root != NULL) {
942 		(void) zio_wait(spa->spa_async_zio_root);
943 		spa->spa_async_zio_root = NULL;
944 	}
945 
946 	bpobj_close(&spa->spa_deferred_bpobj);
947 
948 	/*
949 	 * Close the dsl pool.
950 	 */
951 	if (spa->spa_dsl_pool) {
952 		dsl_pool_close(spa->spa_dsl_pool);
953 		spa->spa_dsl_pool = NULL;
954 		spa->spa_meta_objset = NULL;
955 	}
956 
957 	ddt_unload(spa);
958 
959 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
960 
961 	/*
962 	 * Drop and purge level 2 cache
963 	 */
964 	spa_l2cache_drop(spa);
965 
966 	/*
967 	 * Close all vdevs.
968 	 */
969 	if (spa->spa_root_vdev)
970 		vdev_free(spa->spa_root_vdev);
971 	ASSERT(spa->spa_root_vdev == NULL);
972 
973 	for (i = 0; i < spa->spa_spares.sav_count; i++)
974 		vdev_free(spa->spa_spares.sav_vdevs[i]);
975 	if (spa->spa_spares.sav_vdevs) {
976 		kmem_free(spa->spa_spares.sav_vdevs,
977 		    spa->spa_spares.sav_count * sizeof (void *));
978 		spa->spa_spares.sav_vdevs = NULL;
979 	}
980 	if (spa->spa_spares.sav_config) {
981 		nvlist_free(spa->spa_spares.sav_config);
982 		spa->spa_spares.sav_config = NULL;
983 	}
984 	spa->spa_spares.sav_count = 0;
985 
986 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
987 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
988 	if (spa->spa_l2cache.sav_vdevs) {
989 		kmem_free(spa->spa_l2cache.sav_vdevs,
990 		    spa->spa_l2cache.sav_count * sizeof (void *));
991 		spa->spa_l2cache.sav_vdevs = NULL;
992 	}
993 	if (spa->spa_l2cache.sav_config) {
994 		nvlist_free(spa->spa_l2cache.sav_config);
995 		spa->spa_l2cache.sav_config = NULL;
996 	}
997 	spa->spa_l2cache.sav_count = 0;
998 
999 	spa->spa_async_suspended = 0;
1000 
1001 	spa_config_exit(spa, SCL_ALL, FTAG);
1002 }
1003 
1004 /*
1005  * Load (or re-load) the current list of vdevs describing the active spares for
1006  * this pool.  When this is called, we have some form of basic information in
1007  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1008  * then re-generate a more complete list including status information.
1009  */
1010 static void
1011 spa_load_spares(spa_t *spa)
1012 {
1013 	nvlist_t **spares;
1014 	uint_t nspares;
1015 	int i;
1016 	vdev_t *vd, *tvd;
1017 
1018 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1019 
1020 	/*
1021 	 * First, close and free any existing spare vdevs.
1022 	 */
1023 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1024 		vd = spa->spa_spares.sav_vdevs[i];
1025 
1026 		/* Undo the call to spa_activate() below */
1027 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1028 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1029 			spa_spare_remove(tvd);
1030 		vdev_close(vd);
1031 		vdev_free(vd);
1032 	}
1033 
1034 	if (spa->spa_spares.sav_vdevs)
1035 		kmem_free(spa->spa_spares.sav_vdevs,
1036 		    spa->spa_spares.sav_count * sizeof (void *));
1037 
1038 	if (spa->spa_spares.sav_config == NULL)
1039 		nspares = 0;
1040 	else
1041 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1042 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1043 
1044 	spa->spa_spares.sav_count = (int)nspares;
1045 	spa->spa_spares.sav_vdevs = NULL;
1046 
1047 	if (nspares == 0)
1048 		return;
1049 
1050 	/*
1051 	 * Construct the array of vdevs, opening them to get status in the
1052 	 * process.   For each spare, there is potentially two different vdev_t
1053 	 * structures associated with it: one in the list of spares (used only
1054 	 * for basic validation purposes) and one in the active vdev
1055 	 * configuration (if it's spared in).  During this phase we open and
1056 	 * validate each vdev on the spare list.  If the vdev also exists in the
1057 	 * active configuration, then we also mark this vdev as an active spare.
1058 	 */
1059 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1060 	    KM_SLEEP);
1061 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1062 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1063 		    VDEV_ALLOC_SPARE) == 0);
1064 		ASSERT(vd != NULL);
1065 
1066 		spa->spa_spares.sav_vdevs[i] = vd;
1067 
1068 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1069 		    B_FALSE)) != NULL) {
1070 			if (!tvd->vdev_isspare)
1071 				spa_spare_add(tvd);
1072 
1073 			/*
1074 			 * We only mark the spare active if we were successfully
1075 			 * able to load the vdev.  Otherwise, importing a pool
1076 			 * with a bad active spare would result in strange
1077 			 * behavior, because multiple pool would think the spare
1078 			 * is actively in use.
1079 			 *
1080 			 * There is a vulnerability here to an equally bizarre
1081 			 * circumstance, where a dead active spare is later
1082 			 * brought back to life (onlined or otherwise).  Given
1083 			 * the rarity of this scenario, and the extra complexity
1084 			 * it adds, we ignore the possibility.
1085 			 */
1086 			if (!vdev_is_dead(tvd))
1087 				spa_spare_activate(tvd);
1088 		}
1089 
1090 		vd->vdev_top = vd;
1091 		vd->vdev_aux = &spa->spa_spares;
1092 
1093 		if (vdev_open(vd) != 0)
1094 			continue;
1095 
1096 		if (vdev_validate_aux(vd) == 0)
1097 			spa_spare_add(vd);
1098 	}
1099 
1100 	/*
1101 	 * Recompute the stashed list of spares, with status information
1102 	 * this time.
1103 	 */
1104 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1105 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1106 
1107 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1108 	    KM_SLEEP);
1109 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1110 		spares[i] = vdev_config_generate(spa,
1111 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1112 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1113 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1114 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1115 		nvlist_free(spares[i]);
1116 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1117 }
1118 
1119 /*
1120  * Load (or re-load) the current list of vdevs describing the active l2cache for
1121  * this pool.  When this is called, we have some form of basic information in
1122  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1123  * then re-generate a more complete list including status information.
1124  * Devices which are already active have their details maintained, and are
1125  * not re-opened.
1126  */
1127 static void
1128 spa_load_l2cache(spa_t *spa)
1129 {
1130 	nvlist_t **l2cache;
1131 	uint_t nl2cache;
1132 	int i, j, oldnvdevs;
1133 	uint64_t guid;
1134 	vdev_t *vd, **oldvdevs, **newvdevs;
1135 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1136 
1137 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1138 
1139 	if (sav->sav_config != NULL) {
1140 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1141 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1142 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1143 	} else {
1144 		nl2cache = 0;
1145 	}
1146 
1147 	oldvdevs = sav->sav_vdevs;
1148 	oldnvdevs = sav->sav_count;
1149 	sav->sav_vdevs = NULL;
1150 	sav->sav_count = 0;
1151 
1152 	/*
1153 	 * Process new nvlist of vdevs.
1154 	 */
1155 	for (i = 0; i < nl2cache; i++) {
1156 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1157 		    &guid) == 0);
1158 
1159 		newvdevs[i] = NULL;
1160 		for (j = 0; j < oldnvdevs; j++) {
1161 			vd = oldvdevs[j];
1162 			if (vd != NULL && guid == vd->vdev_guid) {
1163 				/*
1164 				 * Retain previous vdev for add/remove ops.
1165 				 */
1166 				newvdevs[i] = vd;
1167 				oldvdevs[j] = NULL;
1168 				break;
1169 			}
1170 		}
1171 
1172 		if (newvdevs[i] == NULL) {
1173 			/*
1174 			 * Create new vdev
1175 			 */
1176 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1177 			    VDEV_ALLOC_L2CACHE) == 0);
1178 			ASSERT(vd != NULL);
1179 			newvdevs[i] = vd;
1180 
1181 			/*
1182 			 * Commit this vdev as an l2cache device,
1183 			 * even if it fails to open.
1184 			 */
1185 			spa_l2cache_add(vd);
1186 
1187 			vd->vdev_top = vd;
1188 			vd->vdev_aux = sav;
1189 
1190 			spa_l2cache_activate(vd);
1191 
1192 			if (vdev_open(vd) != 0)
1193 				continue;
1194 
1195 			(void) vdev_validate_aux(vd);
1196 
1197 			if (!vdev_is_dead(vd))
1198 				l2arc_add_vdev(spa, vd);
1199 		}
1200 	}
1201 
1202 	/*
1203 	 * Purge vdevs that were dropped
1204 	 */
1205 	for (i = 0; i < oldnvdevs; i++) {
1206 		uint64_t pool;
1207 
1208 		vd = oldvdevs[i];
1209 		if (vd != NULL) {
1210 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1211 			    pool != 0ULL && l2arc_vdev_present(vd))
1212 				l2arc_remove_vdev(vd);
1213 			(void) vdev_close(vd);
1214 			spa_l2cache_remove(vd);
1215 		}
1216 	}
1217 
1218 	if (oldvdevs)
1219 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1220 
1221 	if (sav->sav_config == NULL)
1222 		goto out;
1223 
1224 	sav->sav_vdevs = newvdevs;
1225 	sav->sav_count = (int)nl2cache;
1226 
1227 	/*
1228 	 * Recompute the stashed list of l2cache devices, with status
1229 	 * information this time.
1230 	 */
1231 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1232 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1233 
1234 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1235 	for (i = 0; i < sav->sav_count; i++)
1236 		l2cache[i] = vdev_config_generate(spa,
1237 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1238 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1239 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1240 out:
1241 	for (i = 0; i < sav->sav_count; i++)
1242 		nvlist_free(l2cache[i]);
1243 	if (sav->sav_count)
1244 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1245 }
1246 
1247 static int
1248 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1249 {
1250 	dmu_buf_t *db;
1251 	char *packed = NULL;
1252 	size_t nvsize = 0;
1253 	int error;
1254 	*value = NULL;
1255 
1256 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1257 	nvsize = *(uint64_t *)db->db_data;
1258 	dmu_buf_rele(db, FTAG);
1259 
1260 	packed = kmem_alloc(nvsize, KM_SLEEP);
1261 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1262 	    DMU_READ_PREFETCH);
1263 	if (error == 0)
1264 		error = nvlist_unpack(packed, nvsize, value, 0);
1265 	kmem_free(packed, nvsize);
1266 
1267 	return (error);
1268 }
1269 
1270 /*
1271  * Checks to see if the given vdev could not be opened, in which case we post a
1272  * sysevent to notify the autoreplace code that the device has been removed.
1273  */
1274 static void
1275 spa_check_removed(vdev_t *vd)
1276 {
1277 	for (int c = 0; c < vd->vdev_children; c++)
1278 		spa_check_removed(vd->vdev_child[c]);
1279 
1280 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1281 		zfs_post_autoreplace(vd->vdev_spa, vd);
1282 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1283 	}
1284 }
1285 
1286 /*
1287  * Load the slog device state from the config object since it's possible
1288  * that the label does not contain the most up-to-date information.
1289  */
1290 void
1291 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1292 {
1293 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1294 
1295 	/*
1296 	 * Load the original root vdev tree from the passed config.
1297 	 */
1298 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1299 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1300 
1301 	for (int c = 0; c < rvd->vdev_children; c++) {
1302 		vdev_t *cvd = rvd->vdev_child[c];
1303 		if (cvd->vdev_islog)
1304 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1305 	}
1306 	vdev_free(ovd);
1307 	spa_config_exit(spa, SCL_ALL, FTAG);
1308 }
1309 
1310 /*
1311  * Check for missing log devices
1312  */
1313 int
1314 spa_check_logs(spa_t *spa)
1315 {
1316 	switch (spa->spa_log_state) {
1317 	case SPA_LOG_MISSING:
1318 		/* need to recheck in case slog has been restored */
1319 	case SPA_LOG_UNKNOWN:
1320 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1321 		    DS_FIND_CHILDREN)) {
1322 			spa_set_log_state(spa, SPA_LOG_MISSING);
1323 			return (1);
1324 		}
1325 		break;
1326 	}
1327 	return (0);
1328 }
1329 
1330 static boolean_t
1331 spa_passivate_log(spa_t *spa)
1332 {
1333 	vdev_t *rvd = spa->spa_root_vdev;
1334 	boolean_t slog_found = B_FALSE;
1335 
1336 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1337 
1338 	if (!spa_has_slogs(spa))
1339 		return (B_FALSE);
1340 
1341 	for (int c = 0; c < rvd->vdev_children; c++) {
1342 		vdev_t *tvd = rvd->vdev_child[c];
1343 		metaslab_group_t *mg = tvd->vdev_mg;
1344 
1345 		if (tvd->vdev_islog) {
1346 			metaslab_group_passivate(mg);
1347 			slog_found = B_TRUE;
1348 		}
1349 	}
1350 
1351 	return (slog_found);
1352 }
1353 
1354 static void
1355 spa_activate_log(spa_t *spa)
1356 {
1357 	vdev_t *rvd = spa->spa_root_vdev;
1358 
1359 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1360 
1361 	for (int c = 0; c < rvd->vdev_children; c++) {
1362 		vdev_t *tvd = rvd->vdev_child[c];
1363 		metaslab_group_t *mg = tvd->vdev_mg;
1364 
1365 		if (tvd->vdev_islog)
1366 			metaslab_group_activate(mg);
1367 	}
1368 }
1369 
1370 int
1371 spa_offline_log(spa_t *spa)
1372 {
1373 	int error = 0;
1374 
1375 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1376 	    NULL, DS_FIND_CHILDREN)) == 0) {
1377 
1378 		/*
1379 		 * We successfully offlined the log device, sync out the
1380 		 * current txg so that the "stubby" block can be removed
1381 		 * by zil_sync().
1382 		 */
1383 		txg_wait_synced(spa->spa_dsl_pool, 0);
1384 	}
1385 	return (error);
1386 }
1387 
1388 static void
1389 spa_aux_check_removed(spa_aux_vdev_t *sav)
1390 {
1391 	for (int i = 0; i < sav->sav_count; i++)
1392 		spa_check_removed(sav->sav_vdevs[i]);
1393 }
1394 
1395 void
1396 spa_claim_notify(zio_t *zio)
1397 {
1398 	spa_t *spa = zio->io_spa;
1399 
1400 	if (zio->io_error)
1401 		return;
1402 
1403 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1404 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1405 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1406 	mutex_exit(&spa->spa_props_lock);
1407 }
1408 
1409 typedef struct spa_load_error {
1410 	uint64_t	sle_meta_count;
1411 	uint64_t	sle_data_count;
1412 } spa_load_error_t;
1413 
1414 static void
1415 spa_load_verify_done(zio_t *zio)
1416 {
1417 	blkptr_t *bp = zio->io_bp;
1418 	spa_load_error_t *sle = zio->io_private;
1419 	dmu_object_type_t type = BP_GET_TYPE(bp);
1420 	int error = zio->io_error;
1421 
1422 	if (error) {
1423 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1424 		    type != DMU_OT_INTENT_LOG)
1425 			atomic_add_64(&sle->sle_meta_count, 1);
1426 		else
1427 			atomic_add_64(&sle->sle_data_count, 1);
1428 	}
1429 	zio_data_buf_free(zio->io_data, zio->io_size);
1430 }
1431 
1432 /*ARGSUSED*/
1433 static int
1434 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1435     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1436 {
1437 	if (bp != NULL) {
1438 		zio_t *rio = arg;
1439 		size_t size = BP_GET_PSIZE(bp);
1440 		void *data = zio_data_buf_alloc(size);
1441 
1442 		zio_nowait(zio_read(rio, spa, bp, data, size,
1443 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1444 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1445 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1446 	}
1447 	return (0);
1448 }
1449 
1450 static int
1451 spa_load_verify(spa_t *spa)
1452 {
1453 	zio_t *rio;
1454 	spa_load_error_t sle = { 0 };
1455 	zpool_rewind_policy_t policy;
1456 	boolean_t verify_ok = B_FALSE;
1457 	int error;
1458 
1459 	zpool_get_rewind_policy(spa->spa_config, &policy);
1460 
1461 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1462 		return (0);
1463 
1464 	rio = zio_root(spa, NULL, &sle,
1465 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1466 
1467 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1468 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1469 
1470 	(void) zio_wait(rio);
1471 
1472 	spa->spa_load_meta_errors = sle.sle_meta_count;
1473 	spa->spa_load_data_errors = sle.sle_data_count;
1474 
1475 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1476 	    sle.sle_data_count <= policy.zrp_maxdata) {
1477 		verify_ok = B_TRUE;
1478 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1479 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1480 	} else {
1481 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1482 	}
1483 
1484 	if (error) {
1485 		if (error != ENXIO && error != EIO)
1486 			error = EIO;
1487 		return (error);
1488 	}
1489 
1490 	return (verify_ok ? 0 : EIO);
1491 }
1492 
1493 /*
1494  * Find a value in the pool props object.
1495  */
1496 static void
1497 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1498 {
1499 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1500 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1501 }
1502 
1503 /*
1504  * Find a value in the pool directory object.
1505  */
1506 static int
1507 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1508 {
1509 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1510 	    name, sizeof (uint64_t), 1, val));
1511 }
1512 
1513 static int
1514 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1515 {
1516 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1517 	return (err);
1518 }
1519 
1520 /*
1521  * Fix up config after a partly-completed split.  This is done with the
1522  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1523  * pool have that entry in their config, but only the splitting one contains
1524  * a list of all the guids of the vdevs that are being split off.
1525  *
1526  * This function determines what to do with that list: either rejoin
1527  * all the disks to the pool, or complete the splitting process.  To attempt
1528  * the rejoin, each disk that is offlined is marked online again, and
1529  * we do a reopen() call.  If the vdev label for every disk that was
1530  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1531  * then we call vdev_split() on each disk, and complete the split.
1532  *
1533  * Otherwise we leave the config alone, with all the vdevs in place in
1534  * the original pool.
1535  */
1536 static void
1537 spa_try_repair(spa_t *spa, nvlist_t *config)
1538 {
1539 	uint_t extracted;
1540 	uint64_t *glist;
1541 	uint_t i, gcount;
1542 	nvlist_t *nvl;
1543 	vdev_t **vd;
1544 	boolean_t attempt_reopen;
1545 
1546 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1547 		return;
1548 
1549 	/* check that the config is complete */
1550 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1551 	    &glist, &gcount) != 0)
1552 		return;
1553 
1554 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1555 
1556 	/* attempt to online all the vdevs & validate */
1557 	attempt_reopen = B_TRUE;
1558 	for (i = 0; i < gcount; i++) {
1559 		if (glist[i] == 0)	/* vdev is hole */
1560 			continue;
1561 
1562 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1563 		if (vd[i] == NULL) {
1564 			/*
1565 			 * Don't bother attempting to reopen the disks;
1566 			 * just do the split.
1567 			 */
1568 			attempt_reopen = B_FALSE;
1569 		} else {
1570 			/* attempt to re-online it */
1571 			vd[i]->vdev_offline = B_FALSE;
1572 		}
1573 	}
1574 
1575 	if (attempt_reopen) {
1576 		vdev_reopen(spa->spa_root_vdev);
1577 
1578 		/* check each device to see what state it's in */
1579 		for (extracted = 0, i = 0; i < gcount; i++) {
1580 			if (vd[i] != NULL &&
1581 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1582 				break;
1583 			++extracted;
1584 		}
1585 	}
1586 
1587 	/*
1588 	 * If every disk has been moved to the new pool, or if we never
1589 	 * even attempted to look at them, then we split them off for
1590 	 * good.
1591 	 */
1592 	if (!attempt_reopen || gcount == extracted) {
1593 		for (i = 0; i < gcount; i++)
1594 			if (vd[i] != NULL)
1595 				vdev_split(vd[i]);
1596 		vdev_reopen(spa->spa_root_vdev);
1597 	}
1598 
1599 	kmem_free(vd, gcount * sizeof (vdev_t *));
1600 }
1601 
1602 static int
1603 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1604     boolean_t mosconfig)
1605 {
1606 	nvlist_t *config = spa->spa_config;
1607 	char *ereport = FM_EREPORT_ZFS_POOL;
1608 	int error;
1609 	uint64_t pool_guid;
1610 	nvlist_t *nvl;
1611 
1612 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1613 		return (EINVAL);
1614 
1615 	/*
1616 	 * Versioning wasn't explicitly added to the label until later, so if
1617 	 * it's not present treat it as the initial version.
1618 	 */
1619 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1620 	    &spa->spa_ubsync.ub_version) != 0)
1621 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1622 
1623 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1624 	    &spa->spa_config_txg);
1625 
1626 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1627 	    spa_guid_exists(pool_guid, 0)) {
1628 		error = EEXIST;
1629 	} else {
1630 		spa->spa_load_guid = pool_guid;
1631 
1632 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1633 		    &nvl) == 0) {
1634 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1635 			    KM_SLEEP) == 0);
1636 		}
1637 
1638 		gethrestime(&spa->spa_loaded_ts);
1639 		error = spa_load_impl(spa, pool_guid, config, state, type,
1640 		    mosconfig, &ereport);
1641 	}
1642 
1643 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1644 	if (error) {
1645 		if (error != EEXIST) {
1646 			spa->spa_loaded_ts.tv_sec = 0;
1647 			spa->spa_loaded_ts.tv_nsec = 0;
1648 		}
1649 		if (error != EBADF) {
1650 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1651 		}
1652 	}
1653 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1654 	spa->spa_ena = 0;
1655 
1656 	return (error);
1657 }
1658 
1659 /*
1660  * Load an existing storage pool, using the pool's builtin spa_config as a
1661  * source of configuration information.
1662  */
1663 static int
1664 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1665     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1666     char **ereport)
1667 {
1668 	int error = 0;
1669 	nvlist_t *nvroot = NULL;
1670 	vdev_t *rvd;
1671 	uberblock_t *ub = &spa->spa_uberblock;
1672 	uint64_t config_cache_txg = spa->spa_config_txg;
1673 	int orig_mode = spa->spa_mode;
1674 	int parse;
1675 	uint64_t obj;
1676 
1677 	/*
1678 	 * If this is an untrusted config, access the pool in read-only mode.
1679 	 * This prevents things like resilvering recently removed devices.
1680 	 */
1681 	if (!mosconfig)
1682 		spa->spa_mode = FREAD;
1683 
1684 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1685 
1686 	spa->spa_load_state = state;
1687 
1688 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1689 		return (EINVAL);
1690 
1691 	parse = (type == SPA_IMPORT_EXISTING ?
1692 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1693 
1694 	/*
1695 	 * Create "The Godfather" zio to hold all async IOs
1696 	 */
1697 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1698 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1699 
1700 	/*
1701 	 * Parse the configuration into a vdev tree.  We explicitly set the
1702 	 * value that will be returned by spa_version() since parsing the
1703 	 * configuration requires knowing the version number.
1704 	 */
1705 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1706 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1707 	spa_config_exit(spa, SCL_ALL, FTAG);
1708 
1709 	if (error != 0)
1710 		return (error);
1711 
1712 	ASSERT(spa->spa_root_vdev == rvd);
1713 
1714 	if (type != SPA_IMPORT_ASSEMBLE) {
1715 		ASSERT(spa_guid(spa) == pool_guid);
1716 	}
1717 
1718 	/*
1719 	 * Try to open all vdevs, loading each label in the process.
1720 	 */
1721 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1722 	error = vdev_open(rvd);
1723 	spa_config_exit(spa, SCL_ALL, FTAG);
1724 	if (error != 0)
1725 		return (error);
1726 
1727 	/*
1728 	 * We need to validate the vdev labels against the configuration that
1729 	 * we have in hand, which is dependent on the setting of mosconfig. If
1730 	 * mosconfig is true then we're validating the vdev labels based on
1731 	 * that config.  Otherwise, we're validating against the cached config
1732 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1733 	 * later we will recursively call spa_load() and validate against
1734 	 * the vdev config.
1735 	 *
1736 	 * If we're assembling a new pool that's been split off from an
1737 	 * existing pool, the labels haven't yet been updated so we skip
1738 	 * validation for now.
1739 	 */
1740 	if (type != SPA_IMPORT_ASSEMBLE) {
1741 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1742 		error = vdev_validate(rvd);
1743 		spa_config_exit(spa, SCL_ALL, FTAG);
1744 
1745 		if (error != 0)
1746 			return (error);
1747 
1748 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1749 			return (ENXIO);
1750 	}
1751 
1752 	/*
1753 	 * Find the best uberblock.
1754 	 */
1755 	vdev_uberblock_load(NULL, rvd, ub);
1756 
1757 	/*
1758 	 * If we weren't able to find a single valid uberblock, return failure.
1759 	 */
1760 	if (ub->ub_txg == 0)
1761 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1762 
1763 	/*
1764 	 * If the pool is newer than the code, we can't open it.
1765 	 */
1766 	if (ub->ub_version > SPA_VERSION)
1767 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1768 
1769 	/*
1770 	 * If the vdev guid sum doesn't match the uberblock, we have an
1771 	 * incomplete configuration.
1772 	 */
1773 	if (mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1774 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1775 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1776 
1777 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1778 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1779 		spa_try_repair(spa, config);
1780 		spa_config_exit(spa, SCL_ALL, FTAG);
1781 		nvlist_free(spa->spa_config_splitting);
1782 		spa->spa_config_splitting = NULL;
1783 	}
1784 
1785 	/*
1786 	 * Initialize internal SPA structures.
1787 	 */
1788 	spa->spa_state = POOL_STATE_ACTIVE;
1789 	spa->spa_ubsync = spa->spa_uberblock;
1790 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1791 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1792 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1793 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1794 	spa->spa_claim_max_txg = spa->spa_first_txg;
1795 	spa->spa_prev_software_version = ub->ub_software_version;
1796 
1797 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1798 	if (error)
1799 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1800 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1801 
1802 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1803 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1804 
1805 	if (!mosconfig) {
1806 		uint64_t hostid;
1807 		nvlist_t *policy = NULL, *nvconfig;
1808 
1809 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1810 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1811 
1812 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1813 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1814 			char *hostname;
1815 			unsigned long myhostid = 0;
1816 
1817 			VERIFY(nvlist_lookup_string(nvconfig,
1818 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1819 
1820 #ifdef	_KERNEL
1821 			myhostid = zone_get_hostid(NULL);
1822 #else	/* _KERNEL */
1823 			/*
1824 			 * We're emulating the system's hostid in userland, so
1825 			 * we can't use zone_get_hostid().
1826 			 */
1827 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1828 #endif	/* _KERNEL */
1829 			if (hostid != 0 && myhostid != 0 &&
1830 			    hostid != myhostid) {
1831 				nvlist_free(nvconfig);
1832 				cmn_err(CE_WARN, "pool '%s' could not be "
1833 				    "loaded as it was last accessed by "
1834 				    "another system (host: %s hostid: 0x%lx). "
1835 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1836 				    spa_name(spa), hostname,
1837 				    (unsigned long)hostid);
1838 				return (EBADF);
1839 			}
1840 		}
1841 		if (nvlist_lookup_nvlist(spa->spa_config,
1842 		    ZPOOL_REWIND_POLICY, &policy) == 0)
1843 			VERIFY(nvlist_add_nvlist(nvconfig,
1844 			    ZPOOL_REWIND_POLICY, policy) == 0);
1845 
1846 		spa_config_set(spa, nvconfig);
1847 		spa_unload(spa);
1848 		spa_deactivate(spa);
1849 		spa_activate(spa, orig_mode);
1850 
1851 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1852 	}
1853 
1854 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
1855 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1856 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
1857 	if (error != 0)
1858 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1859 
1860 	/*
1861 	 * Load the bit that tells us to use the new accounting function
1862 	 * (raid-z deflation).  If we have an older pool, this will not
1863 	 * be present.
1864 	 */
1865 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1866 	if (error != 0 && error != ENOENT)
1867 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1868 
1869 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
1870 	    &spa->spa_creation_version);
1871 	if (error != 0 && error != ENOENT)
1872 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1873 
1874 	/*
1875 	 * Load the persistent error log.  If we have an older pool, this will
1876 	 * not be present.
1877 	 */
1878 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1879 	if (error != 0 && error != ENOENT)
1880 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1881 
1882 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
1883 	    &spa->spa_errlog_scrub);
1884 	if (error != 0 && error != ENOENT)
1885 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1886 
1887 	/*
1888 	 * Load the history object.  If we have an older pool, this
1889 	 * will not be present.
1890 	 */
1891 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
1892 	if (error != 0 && error != ENOENT)
1893 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1894 
1895 	/*
1896 	 * If we're assembling the pool from the split-off vdevs of
1897 	 * an existing pool, we don't want to attach the spares & cache
1898 	 * devices.
1899 	 */
1900 
1901 	/*
1902 	 * Load any hot spares for this pool.
1903 	 */
1904 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
1905 	if (error != 0 && error != ENOENT)
1906 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1907 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1908 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1909 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1910 		    &spa->spa_spares.sav_config) != 0)
1911 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1912 
1913 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1914 		spa_load_spares(spa);
1915 		spa_config_exit(spa, SCL_ALL, FTAG);
1916 	} else if (error == 0) {
1917 		spa->spa_spares.sav_sync = B_TRUE;
1918 	}
1919 
1920 	/*
1921 	 * Load any level 2 ARC devices for this pool.
1922 	 */
1923 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
1924 	    &spa->spa_l2cache.sav_object);
1925 	if (error != 0 && error != ENOENT)
1926 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1927 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1928 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1929 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1930 		    &spa->spa_l2cache.sav_config) != 0)
1931 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1932 
1933 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1934 		spa_load_l2cache(spa);
1935 		spa_config_exit(spa, SCL_ALL, FTAG);
1936 	} else if (error == 0) {
1937 		spa->spa_l2cache.sav_sync = B_TRUE;
1938 	}
1939 
1940 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1941 
1942 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
1943 	if (error && error != ENOENT)
1944 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1945 
1946 	if (error == 0) {
1947 		uint64_t autoreplace;
1948 
1949 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
1950 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
1951 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
1952 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
1953 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
1954 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
1955 		    &spa->spa_dedup_ditto);
1956 
1957 		spa->spa_autoreplace = (autoreplace != 0);
1958 	}
1959 
1960 	/*
1961 	 * If the 'autoreplace' property is set, then post a resource notifying
1962 	 * the ZFS DE that it should not issue any faults for unopenable
1963 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1964 	 * unopenable vdevs so that the normal autoreplace handler can take
1965 	 * over.
1966 	 */
1967 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1968 		spa_check_removed(spa->spa_root_vdev);
1969 		/*
1970 		 * For the import case, this is done in spa_import(), because
1971 		 * at this point we're using the spare definitions from
1972 		 * the MOS config, not necessarily from the userland config.
1973 		 */
1974 		if (state != SPA_LOAD_IMPORT) {
1975 			spa_aux_check_removed(&spa->spa_spares);
1976 			spa_aux_check_removed(&spa->spa_l2cache);
1977 		}
1978 	}
1979 
1980 	/*
1981 	 * Load the vdev state for all toplevel vdevs.
1982 	 */
1983 	vdev_load(rvd);
1984 
1985 	/*
1986 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1987 	 */
1988 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1989 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1990 	spa_config_exit(spa, SCL_ALL, FTAG);
1991 
1992 	/*
1993 	 * Check the state of the root vdev.  If it can't be opened, it
1994 	 * indicates one or more toplevel vdevs are faulted.
1995 	 */
1996 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1997 		return (ENXIO);
1998 
1999 	/*
2000 	 * Load the DDTs (dedup tables).
2001 	 */
2002 	error = ddt_load(spa);
2003 	if (error != 0)
2004 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2005 
2006 	spa_update_dspace(spa);
2007 
2008 	if (state != SPA_LOAD_TRYIMPORT) {
2009 		error = spa_load_verify(spa);
2010 		if (error)
2011 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2012 			    error));
2013 	}
2014 
2015 	/*
2016 	 * Load the intent log state and check log integrity.  If we're
2017 	 * assembling a pool from a split, the log is not transferred over.
2018 	 */
2019 	if (type != SPA_IMPORT_ASSEMBLE) {
2020 		nvlist_t *nvconfig;
2021 
2022 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2023 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2024 
2025 		VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
2026 		    &nvroot) == 0);
2027 		spa_load_log_state(spa, nvroot);
2028 		nvlist_free(nvconfig);
2029 
2030 		if (spa_check_logs(spa)) {
2031 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2032 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2033 		}
2034 	}
2035 
2036 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2037 	    spa->spa_load_max_txg == UINT64_MAX)) {
2038 		dmu_tx_t *tx;
2039 		int need_update = B_FALSE;
2040 
2041 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2042 
2043 		/*
2044 		 * Claim log blocks that haven't been committed yet.
2045 		 * This must all happen in a single txg.
2046 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2047 		 * invoked from zil_claim_log_block()'s i/o done callback.
2048 		 * Price of rollback is that we abandon the log.
2049 		 */
2050 		spa->spa_claiming = B_TRUE;
2051 
2052 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2053 		    spa_first_txg(spa));
2054 		(void) dmu_objset_find(spa_name(spa),
2055 		    zil_claim, tx, DS_FIND_CHILDREN);
2056 		dmu_tx_commit(tx);
2057 
2058 		spa->spa_claiming = B_FALSE;
2059 
2060 		spa_set_log_state(spa, SPA_LOG_GOOD);
2061 		spa->spa_sync_on = B_TRUE;
2062 		txg_sync_start(spa->spa_dsl_pool);
2063 
2064 		/*
2065 		 * Wait for all claims to sync.  We sync up to the highest
2066 		 * claimed log block birth time so that claimed log blocks
2067 		 * don't appear to be from the future.  spa_claim_max_txg
2068 		 * will have been set for us by either zil_check_log_chain()
2069 		 * (invoked from spa_check_logs()) or zil_claim() above.
2070 		 */
2071 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2072 
2073 		/*
2074 		 * If the config cache is stale, or we have uninitialized
2075 		 * metaslabs (see spa_vdev_add()), then update the config.
2076 		 *
2077 		 * If spa_load_verbatim is true, trust the current
2078 		 * in-core spa_config and update the disk labels.
2079 		 */
2080 		if (config_cache_txg != spa->spa_config_txg ||
2081 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
2082 		    state == SPA_LOAD_RECOVER)
2083 			need_update = B_TRUE;
2084 
2085 		for (int c = 0; c < rvd->vdev_children; c++)
2086 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2087 				need_update = B_TRUE;
2088 
2089 		/*
2090 		 * Update the config cache asychronously in case we're the
2091 		 * root pool, in which case the config cache isn't writable yet.
2092 		 */
2093 		if (need_update)
2094 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2095 
2096 		/*
2097 		 * Check all DTLs to see if anything needs resilvering.
2098 		 */
2099 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2100 		    vdev_resilver_needed(rvd, NULL, NULL))
2101 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2102 
2103 		/*
2104 		 * Delete any inconsistent datasets.
2105 		 */
2106 		(void) dmu_objset_find(spa_name(spa),
2107 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2108 
2109 		/*
2110 		 * Clean up any stale temporary dataset userrefs.
2111 		 */
2112 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2113 	}
2114 
2115 	return (0);
2116 }
2117 
2118 static int
2119 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2120 {
2121 	spa_unload(spa);
2122 	spa_deactivate(spa);
2123 
2124 	spa->spa_load_max_txg--;
2125 
2126 	spa_activate(spa, spa_mode_global);
2127 	spa_async_suspend(spa);
2128 
2129 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2130 }
2131 
2132 static int
2133 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2134     uint64_t max_request, int rewind_flags)
2135 {
2136 	nvlist_t *config = NULL;
2137 	int load_error, rewind_error;
2138 	uint64_t safe_rewind_txg;
2139 	uint64_t min_txg;
2140 
2141 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2142 		spa->spa_load_max_txg = spa->spa_load_txg;
2143 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2144 	} else {
2145 		spa->spa_load_max_txg = max_request;
2146 	}
2147 
2148 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2149 	    mosconfig);
2150 	if (load_error == 0)
2151 		return (0);
2152 
2153 	if (spa->spa_root_vdev != NULL)
2154 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2155 
2156 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2157 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2158 
2159 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2160 		nvlist_free(config);
2161 		return (load_error);
2162 	}
2163 
2164 	/* Price of rolling back is discarding txgs, including log */
2165 	if (state == SPA_LOAD_RECOVER)
2166 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2167 
2168 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2169 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2170 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2171 	    TXG_INITIAL : safe_rewind_txg;
2172 
2173 	/*
2174 	 * Continue as long as we're finding errors, we're still within
2175 	 * the acceptable rewind range, and we're still finding uberblocks
2176 	 */
2177 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2178 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2179 		if (spa->spa_load_max_txg < safe_rewind_txg)
2180 			spa->spa_extreme_rewind = B_TRUE;
2181 		rewind_error = spa_load_retry(spa, state, mosconfig);
2182 	}
2183 
2184 	if (config)
2185 		spa_rewind_data_to_nvlist(spa, config);
2186 
2187 	spa->spa_extreme_rewind = B_FALSE;
2188 	spa->spa_load_max_txg = UINT64_MAX;
2189 
2190 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2191 		spa_config_set(spa, config);
2192 
2193 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2194 }
2195 
2196 /*
2197  * Pool Open/Import
2198  *
2199  * The import case is identical to an open except that the configuration is sent
2200  * down from userland, instead of grabbed from the configuration cache.  For the
2201  * case of an open, the pool configuration will exist in the
2202  * POOL_STATE_UNINITIALIZED state.
2203  *
2204  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2205  * the same time open the pool, without having to keep around the spa_t in some
2206  * ambiguous state.
2207  */
2208 static int
2209 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2210     nvlist_t **config)
2211 {
2212 	spa_t *spa;
2213 	int error;
2214 	int locked = B_FALSE;
2215 
2216 	*spapp = NULL;
2217 
2218 	/*
2219 	 * As disgusting as this is, we need to support recursive calls to this
2220 	 * function because dsl_dir_open() is called during spa_load(), and ends
2221 	 * up calling spa_open() again.  The real fix is to figure out how to
2222 	 * avoid dsl_dir_open() calling this in the first place.
2223 	 */
2224 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2225 		mutex_enter(&spa_namespace_lock);
2226 		locked = B_TRUE;
2227 	}
2228 
2229 	if ((spa = spa_lookup(pool)) == NULL) {
2230 		if (locked)
2231 			mutex_exit(&spa_namespace_lock);
2232 		return (ENOENT);
2233 	}
2234 
2235 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2236 		spa_load_state_t state = SPA_LOAD_OPEN;
2237 		zpool_rewind_policy_t policy;
2238 
2239 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2240 		    &policy);
2241 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2242 			state = SPA_LOAD_RECOVER;
2243 
2244 		spa_activate(spa, spa_mode_global);
2245 
2246 		if (state != SPA_LOAD_RECOVER)
2247 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2248 
2249 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2250 		    policy.zrp_request);
2251 
2252 		if (error == EBADF) {
2253 			/*
2254 			 * If vdev_validate() returns failure (indicated by
2255 			 * EBADF), it indicates that one of the vdevs indicates
2256 			 * that the pool has been exported or destroyed.  If
2257 			 * this is the case, the config cache is out of sync and
2258 			 * we should remove the pool from the namespace.
2259 			 */
2260 			spa_unload(spa);
2261 			spa_deactivate(spa);
2262 			spa_config_sync(spa, B_TRUE, B_TRUE);
2263 			spa_remove(spa);
2264 			if (locked)
2265 				mutex_exit(&spa_namespace_lock);
2266 			return (ENOENT);
2267 		}
2268 
2269 		if (error) {
2270 			/*
2271 			 * We can't open the pool, but we still have useful
2272 			 * information: the state of each vdev after the
2273 			 * attempted vdev_open().  Return this to the user.
2274 			 */
2275 			if (config != NULL && spa->spa_config)
2276 				VERIFY(nvlist_dup(spa->spa_config, config,
2277 				    KM_SLEEP) == 0);
2278 			spa_unload(spa);
2279 			spa_deactivate(spa);
2280 			spa->spa_last_open_failed = error;
2281 			if (locked)
2282 				mutex_exit(&spa_namespace_lock);
2283 			*spapp = NULL;
2284 			return (error);
2285 		}
2286 
2287 	}
2288 
2289 	spa_open_ref(spa, tag);
2290 
2291 	if (config != NULL)
2292 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2293 
2294 	if (locked) {
2295 		spa->spa_last_open_failed = 0;
2296 		spa->spa_last_ubsync_txg = 0;
2297 		spa->spa_load_txg = 0;
2298 		mutex_exit(&spa_namespace_lock);
2299 	}
2300 
2301 	*spapp = spa;
2302 
2303 	return (0);
2304 }
2305 
2306 int
2307 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2308     nvlist_t **config)
2309 {
2310 	return (spa_open_common(name, spapp, tag, policy, config));
2311 }
2312 
2313 int
2314 spa_open(const char *name, spa_t **spapp, void *tag)
2315 {
2316 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2317 }
2318 
2319 /*
2320  * Lookup the given spa_t, incrementing the inject count in the process,
2321  * preventing it from being exported or destroyed.
2322  */
2323 spa_t *
2324 spa_inject_addref(char *name)
2325 {
2326 	spa_t *spa;
2327 
2328 	mutex_enter(&spa_namespace_lock);
2329 	if ((spa = spa_lookup(name)) == NULL) {
2330 		mutex_exit(&spa_namespace_lock);
2331 		return (NULL);
2332 	}
2333 	spa->spa_inject_ref++;
2334 	mutex_exit(&spa_namespace_lock);
2335 
2336 	return (spa);
2337 }
2338 
2339 void
2340 spa_inject_delref(spa_t *spa)
2341 {
2342 	mutex_enter(&spa_namespace_lock);
2343 	spa->spa_inject_ref--;
2344 	mutex_exit(&spa_namespace_lock);
2345 }
2346 
2347 /*
2348  * Add spares device information to the nvlist.
2349  */
2350 static void
2351 spa_add_spares(spa_t *spa, nvlist_t *config)
2352 {
2353 	nvlist_t **spares;
2354 	uint_t i, nspares;
2355 	nvlist_t *nvroot;
2356 	uint64_t guid;
2357 	vdev_stat_t *vs;
2358 	uint_t vsc;
2359 	uint64_t pool;
2360 
2361 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2362 
2363 	if (spa->spa_spares.sav_count == 0)
2364 		return;
2365 
2366 	VERIFY(nvlist_lookup_nvlist(config,
2367 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2368 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2369 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2370 	if (nspares != 0) {
2371 		VERIFY(nvlist_add_nvlist_array(nvroot,
2372 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2373 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2374 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2375 
2376 		/*
2377 		 * Go through and find any spares which have since been
2378 		 * repurposed as an active spare.  If this is the case, update
2379 		 * their status appropriately.
2380 		 */
2381 		for (i = 0; i < nspares; i++) {
2382 			VERIFY(nvlist_lookup_uint64(spares[i],
2383 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2384 			if (spa_spare_exists(guid, &pool, NULL) &&
2385 			    pool != 0ULL) {
2386 				VERIFY(nvlist_lookup_uint64_array(
2387 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2388 				    (uint64_t **)&vs, &vsc) == 0);
2389 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2390 				vs->vs_aux = VDEV_AUX_SPARED;
2391 			}
2392 		}
2393 	}
2394 }
2395 
2396 /*
2397  * Add l2cache device information to the nvlist, including vdev stats.
2398  */
2399 static void
2400 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2401 {
2402 	nvlist_t **l2cache;
2403 	uint_t i, j, nl2cache;
2404 	nvlist_t *nvroot;
2405 	uint64_t guid;
2406 	vdev_t *vd;
2407 	vdev_stat_t *vs;
2408 	uint_t vsc;
2409 
2410 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2411 
2412 	if (spa->spa_l2cache.sav_count == 0)
2413 		return;
2414 
2415 	VERIFY(nvlist_lookup_nvlist(config,
2416 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2417 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2418 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2419 	if (nl2cache != 0) {
2420 		VERIFY(nvlist_add_nvlist_array(nvroot,
2421 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2422 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2423 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2424 
2425 		/*
2426 		 * Update level 2 cache device stats.
2427 		 */
2428 
2429 		for (i = 0; i < nl2cache; i++) {
2430 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2431 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2432 
2433 			vd = NULL;
2434 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2435 				if (guid ==
2436 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2437 					vd = spa->spa_l2cache.sav_vdevs[j];
2438 					break;
2439 				}
2440 			}
2441 			ASSERT(vd != NULL);
2442 
2443 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2444 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2445 			    == 0);
2446 			vdev_get_stats(vd, vs);
2447 		}
2448 	}
2449 }
2450 
2451 int
2452 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2453 {
2454 	int error;
2455 	spa_t *spa;
2456 
2457 	*config = NULL;
2458 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2459 
2460 	if (spa != NULL) {
2461 		/*
2462 		 * This still leaves a window of inconsistency where the spares
2463 		 * or l2cache devices could change and the config would be
2464 		 * self-inconsistent.
2465 		 */
2466 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2467 
2468 		if (*config != NULL) {
2469 			uint64_t loadtimes[2];
2470 
2471 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
2472 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
2473 			VERIFY(nvlist_add_uint64_array(*config,
2474 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
2475 
2476 			VERIFY(nvlist_add_uint64(*config,
2477 			    ZPOOL_CONFIG_ERRCOUNT,
2478 			    spa_get_errlog_size(spa)) == 0);
2479 
2480 			if (spa_suspended(spa))
2481 				VERIFY(nvlist_add_uint64(*config,
2482 				    ZPOOL_CONFIG_SUSPENDED,
2483 				    spa->spa_failmode) == 0);
2484 
2485 			spa_add_spares(spa, *config);
2486 			spa_add_l2cache(spa, *config);
2487 		}
2488 	}
2489 
2490 	/*
2491 	 * We want to get the alternate root even for faulted pools, so we cheat
2492 	 * and call spa_lookup() directly.
2493 	 */
2494 	if (altroot) {
2495 		if (spa == NULL) {
2496 			mutex_enter(&spa_namespace_lock);
2497 			spa = spa_lookup(name);
2498 			if (spa)
2499 				spa_altroot(spa, altroot, buflen);
2500 			else
2501 				altroot[0] = '\0';
2502 			spa = NULL;
2503 			mutex_exit(&spa_namespace_lock);
2504 		} else {
2505 			spa_altroot(spa, altroot, buflen);
2506 		}
2507 	}
2508 
2509 	if (spa != NULL) {
2510 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2511 		spa_close(spa, FTAG);
2512 	}
2513 
2514 	return (error);
2515 }
2516 
2517 /*
2518  * Validate that the auxiliary device array is well formed.  We must have an
2519  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2520  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2521  * specified, as long as they are well-formed.
2522  */
2523 static int
2524 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2525     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2526     vdev_labeltype_t label)
2527 {
2528 	nvlist_t **dev;
2529 	uint_t i, ndev;
2530 	vdev_t *vd;
2531 	int error;
2532 
2533 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2534 
2535 	/*
2536 	 * It's acceptable to have no devs specified.
2537 	 */
2538 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2539 		return (0);
2540 
2541 	if (ndev == 0)
2542 		return (EINVAL);
2543 
2544 	/*
2545 	 * Make sure the pool is formatted with a version that supports this
2546 	 * device type.
2547 	 */
2548 	if (spa_version(spa) < version)
2549 		return (ENOTSUP);
2550 
2551 	/*
2552 	 * Set the pending device list so we correctly handle device in-use
2553 	 * checking.
2554 	 */
2555 	sav->sav_pending = dev;
2556 	sav->sav_npending = ndev;
2557 
2558 	for (i = 0; i < ndev; i++) {
2559 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2560 		    mode)) != 0)
2561 			goto out;
2562 
2563 		if (!vd->vdev_ops->vdev_op_leaf) {
2564 			vdev_free(vd);
2565 			error = EINVAL;
2566 			goto out;
2567 		}
2568 
2569 		/*
2570 		 * The L2ARC currently only supports disk devices in
2571 		 * kernel context.  For user-level testing, we allow it.
2572 		 */
2573 #ifdef _KERNEL
2574 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2575 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2576 			error = ENOTBLK;
2577 			goto out;
2578 		}
2579 #endif
2580 		vd->vdev_top = vd;
2581 
2582 		if ((error = vdev_open(vd)) == 0 &&
2583 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2584 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2585 			    vd->vdev_guid) == 0);
2586 		}
2587 
2588 		vdev_free(vd);
2589 
2590 		if (error &&
2591 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2592 			goto out;
2593 		else
2594 			error = 0;
2595 	}
2596 
2597 out:
2598 	sav->sav_pending = NULL;
2599 	sav->sav_npending = 0;
2600 	return (error);
2601 }
2602 
2603 static int
2604 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2605 {
2606 	int error;
2607 
2608 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2609 
2610 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2611 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2612 	    VDEV_LABEL_SPARE)) != 0) {
2613 		return (error);
2614 	}
2615 
2616 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2617 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2618 	    VDEV_LABEL_L2CACHE));
2619 }
2620 
2621 static void
2622 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2623     const char *config)
2624 {
2625 	int i;
2626 
2627 	if (sav->sav_config != NULL) {
2628 		nvlist_t **olddevs;
2629 		uint_t oldndevs;
2630 		nvlist_t **newdevs;
2631 
2632 		/*
2633 		 * Generate new dev list by concatentating with the
2634 		 * current dev list.
2635 		 */
2636 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2637 		    &olddevs, &oldndevs) == 0);
2638 
2639 		newdevs = kmem_alloc(sizeof (void *) *
2640 		    (ndevs + oldndevs), KM_SLEEP);
2641 		for (i = 0; i < oldndevs; i++)
2642 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2643 			    KM_SLEEP) == 0);
2644 		for (i = 0; i < ndevs; i++)
2645 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2646 			    KM_SLEEP) == 0);
2647 
2648 		VERIFY(nvlist_remove(sav->sav_config, config,
2649 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2650 
2651 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2652 		    config, newdevs, ndevs + oldndevs) == 0);
2653 		for (i = 0; i < oldndevs + ndevs; i++)
2654 			nvlist_free(newdevs[i]);
2655 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2656 	} else {
2657 		/*
2658 		 * Generate a new dev list.
2659 		 */
2660 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2661 		    KM_SLEEP) == 0);
2662 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2663 		    devs, ndevs) == 0);
2664 	}
2665 }
2666 
2667 /*
2668  * Stop and drop level 2 ARC devices
2669  */
2670 void
2671 spa_l2cache_drop(spa_t *spa)
2672 {
2673 	vdev_t *vd;
2674 	int i;
2675 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2676 
2677 	for (i = 0; i < sav->sav_count; i++) {
2678 		uint64_t pool;
2679 
2680 		vd = sav->sav_vdevs[i];
2681 		ASSERT(vd != NULL);
2682 
2683 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2684 		    pool != 0ULL && l2arc_vdev_present(vd))
2685 			l2arc_remove_vdev(vd);
2686 		if (vd->vdev_isl2cache)
2687 			spa_l2cache_remove(vd);
2688 		vdev_clear_stats(vd);
2689 		(void) vdev_close(vd);
2690 	}
2691 }
2692 
2693 /*
2694  * Pool Creation
2695  */
2696 int
2697 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2698     const char *history_str, nvlist_t *zplprops)
2699 {
2700 	spa_t *spa;
2701 	char *altroot = NULL;
2702 	vdev_t *rvd;
2703 	dsl_pool_t *dp;
2704 	dmu_tx_t *tx;
2705 	int error = 0;
2706 	uint64_t txg = TXG_INITIAL;
2707 	nvlist_t **spares, **l2cache;
2708 	uint_t nspares, nl2cache;
2709 	uint64_t version, obj;
2710 
2711 	/*
2712 	 * If this pool already exists, return failure.
2713 	 */
2714 	mutex_enter(&spa_namespace_lock);
2715 	if (spa_lookup(pool) != NULL) {
2716 		mutex_exit(&spa_namespace_lock);
2717 		return (EEXIST);
2718 	}
2719 
2720 	/*
2721 	 * Allocate a new spa_t structure.
2722 	 */
2723 	(void) nvlist_lookup_string(props,
2724 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2725 	spa = spa_add(pool, NULL, altroot);
2726 	spa_activate(spa, spa_mode_global);
2727 
2728 	if (props && (error = spa_prop_validate(spa, props))) {
2729 		spa_deactivate(spa);
2730 		spa_remove(spa);
2731 		mutex_exit(&spa_namespace_lock);
2732 		return (error);
2733 	}
2734 
2735 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2736 	    &version) != 0)
2737 		version = SPA_VERSION;
2738 	ASSERT(version <= SPA_VERSION);
2739 
2740 	spa->spa_first_txg = txg;
2741 	spa->spa_uberblock.ub_txg = txg - 1;
2742 	spa->spa_uberblock.ub_version = version;
2743 	spa->spa_ubsync = spa->spa_uberblock;
2744 
2745 	/*
2746 	 * Create "The Godfather" zio to hold all async IOs
2747 	 */
2748 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2749 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2750 
2751 	/*
2752 	 * Create the root vdev.
2753 	 */
2754 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2755 
2756 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2757 
2758 	ASSERT(error != 0 || rvd != NULL);
2759 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2760 
2761 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2762 		error = EINVAL;
2763 
2764 	if (error == 0 &&
2765 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2766 	    (error = spa_validate_aux(spa, nvroot, txg,
2767 	    VDEV_ALLOC_ADD)) == 0) {
2768 		for (int c = 0; c < rvd->vdev_children; c++) {
2769 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2770 			vdev_expand(rvd->vdev_child[c], txg);
2771 		}
2772 	}
2773 
2774 	spa_config_exit(spa, SCL_ALL, FTAG);
2775 
2776 	if (error != 0) {
2777 		spa_unload(spa);
2778 		spa_deactivate(spa);
2779 		spa_remove(spa);
2780 		mutex_exit(&spa_namespace_lock);
2781 		return (error);
2782 	}
2783 
2784 	/*
2785 	 * Get the list of spares, if specified.
2786 	 */
2787 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2788 	    &spares, &nspares) == 0) {
2789 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2790 		    KM_SLEEP) == 0);
2791 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2792 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2793 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2794 		spa_load_spares(spa);
2795 		spa_config_exit(spa, SCL_ALL, FTAG);
2796 		spa->spa_spares.sav_sync = B_TRUE;
2797 	}
2798 
2799 	/*
2800 	 * Get the list of level 2 cache devices, if specified.
2801 	 */
2802 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2803 	    &l2cache, &nl2cache) == 0) {
2804 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2805 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2806 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2807 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2808 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2809 		spa_load_l2cache(spa);
2810 		spa_config_exit(spa, SCL_ALL, FTAG);
2811 		spa->spa_l2cache.sav_sync = B_TRUE;
2812 	}
2813 
2814 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2815 	spa->spa_meta_objset = dp->dp_meta_objset;
2816 
2817 	/*
2818 	 * Create DDTs (dedup tables).
2819 	 */
2820 	ddt_create(spa);
2821 
2822 	spa_update_dspace(spa);
2823 
2824 	tx = dmu_tx_create_assigned(dp, txg);
2825 
2826 	/*
2827 	 * Create the pool config object.
2828 	 */
2829 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2830 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2831 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2832 
2833 	if (zap_add(spa->spa_meta_objset,
2834 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2835 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2836 		cmn_err(CE_PANIC, "failed to add pool config");
2837 	}
2838 
2839 	if (zap_add(spa->spa_meta_objset,
2840 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
2841 	    sizeof (uint64_t), 1, &version, tx) != 0) {
2842 		cmn_err(CE_PANIC, "failed to add pool version");
2843 	}
2844 
2845 	/* Newly created pools with the right version are always deflated. */
2846 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2847 		spa->spa_deflate = TRUE;
2848 		if (zap_add(spa->spa_meta_objset,
2849 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2850 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2851 			cmn_err(CE_PANIC, "failed to add deflate");
2852 		}
2853 	}
2854 
2855 	/*
2856 	 * Create the deferred-free bpobj.  Turn off compression
2857 	 * because sync-to-convergence takes longer if the blocksize
2858 	 * keeps changing.
2859 	 */
2860 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
2861 	dmu_object_set_compress(spa->spa_meta_objset, obj,
2862 	    ZIO_COMPRESS_OFF, tx);
2863 	if (zap_add(spa->spa_meta_objset,
2864 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
2865 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
2866 		cmn_err(CE_PANIC, "failed to add bpobj");
2867 	}
2868 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
2869 	    spa->spa_meta_objset, obj));
2870 
2871 	/*
2872 	 * Create the pool's history object.
2873 	 */
2874 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2875 		spa_history_create_obj(spa, tx);
2876 
2877 	/*
2878 	 * Set pool properties.
2879 	 */
2880 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2881 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2882 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2883 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2884 
2885 	if (props != NULL) {
2886 		spa_configfile_set(spa, props, B_FALSE);
2887 		spa_sync_props(spa, props, tx);
2888 	}
2889 
2890 	dmu_tx_commit(tx);
2891 
2892 	spa->spa_sync_on = B_TRUE;
2893 	txg_sync_start(spa->spa_dsl_pool);
2894 
2895 	/*
2896 	 * We explicitly wait for the first transaction to complete so that our
2897 	 * bean counters are appropriately updated.
2898 	 */
2899 	txg_wait_synced(spa->spa_dsl_pool, txg);
2900 
2901 	spa_config_sync(spa, B_FALSE, B_TRUE);
2902 
2903 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2904 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2905 	spa_history_log_version(spa, LOG_POOL_CREATE);
2906 
2907 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2908 
2909 	mutex_exit(&spa_namespace_lock);
2910 
2911 	return (0);
2912 }
2913 
2914 #ifdef _KERNEL
2915 /*
2916  * Get the root pool information from the root disk, then import the root pool
2917  * during the system boot up time.
2918  */
2919 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2920 
2921 static nvlist_t *
2922 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2923 {
2924 	nvlist_t *config;
2925 	nvlist_t *nvtop, *nvroot;
2926 	uint64_t pgid;
2927 
2928 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2929 		return (NULL);
2930 
2931 	/*
2932 	 * Add this top-level vdev to the child array.
2933 	 */
2934 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2935 	    &nvtop) == 0);
2936 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2937 	    &pgid) == 0);
2938 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2939 
2940 	/*
2941 	 * Put this pool's top-level vdevs into a root vdev.
2942 	 */
2943 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2944 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2945 	    VDEV_TYPE_ROOT) == 0);
2946 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2947 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2948 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2949 	    &nvtop, 1) == 0);
2950 
2951 	/*
2952 	 * Replace the existing vdev_tree with the new root vdev in
2953 	 * this pool's configuration (remove the old, add the new).
2954 	 */
2955 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2956 	nvlist_free(nvroot);
2957 	return (config);
2958 }
2959 
2960 /*
2961  * Walk the vdev tree and see if we can find a device with "better"
2962  * configuration. A configuration is "better" if the label on that
2963  * device has a more recent txg.
2964  */
2965 static void
2966 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2967 {
2968 	for (int c = 0; c < vd->vdev_children; c++)
2969 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2970 
2971 	if (vd->vdev_ops->vdev_op_leaf) {
2972 		nvlist_t *label;
2973 		uint64_t label_txg;
2974 
2975 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2976 		    &label) != 0)
2977 			return;
2978 
2979 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2980 		    &label_txg) == 0);
2981 
2982 		/*
2983 		 * Do we have a better boot device?
2984 		 */
2985 		if (label_txg > *txg) {
2986 			*txg = label_txg;
2987 			*avd = vd;
2988 		}
2989 		nvlist_free(label);
2990 	}
2991 }
2992 
2993 /*
2994  * Import a root pool.
2995  *
2996  * For x86. devpath_list will consist of devid and/or physpath name of
2997  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2998  * The GRUB "findroot" command will return the vdev we should boot.
2999  *
3000  * For Sparc, devpath_list consists the physpath name of the booting device
3001  * no matter the rootpool is a single device pool or a mirrored pool.
3002  * e.g.
3003  *	"/pci@1f,0/ide@d/disk@0,0:a"
3004  */
3005 int
3006 spa_import_rootpool(char *devpath, char *devid)
3007 {
3008 	spa_t *spa;
3009 	vdev_t *rvd, *bvd, *avd = NULL;
3010 	nvlist_t *config, *nvtop;
3011 	uint64_t guid, txg;
3012 	char *pname;
3013 	int error;
3014 
3015 	/*
3016 	 * Read the label from the boot device and generate a configuration.
3017 	 */
3018 	config = spa_generate_rootconf(devpath, devid, &guid);
3019 #if defined(_OBP) && defined(_KERNEL)
3020 	if (config == NULL) {
3021 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3022 			/* iscsi boot */
3023 			get_iscsi_bootpath_phy(devpath);
3024 			config = spa_generate_rootconf(devpath, devid, &guid);
3025 		}
3026 	}
3027 #endif
3028 	if (config == NULL) {
3029 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3030 		    devpath);
3031 		return (EIO);
3032 	}
3033 
3034 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3035 	    &pname) == 0);
3036 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3037 
3038 	mutex_enter(&spa_namespace_lock);
3039 	if ((spa = spa_lookup(pname)) != NULL) {
3040 		/*
3041 		 * Remove the existing root pool from the namespace so that we
3042 		 * can replace it with the correct config we just read in.
3043 		 */
3044 		spa_remove(spa);
3045 	}
3046 
3047 	spa = spa_add(pname, config, NULL);
3048 	spa->spa_is_root = B_TRUE;
3049 	spa->spa_load_verbatim = B_TRUE;
3050 
3051 	/*
3052 	 * Build up a vdev tree based on the boot device's label config.
3053 	 */
3054 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3055 	    &nvtop) == 0);
3056 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3057 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3058 	    VDEV_ALLOC_ROOTPOOL);
3059 	spa_config_exit(spa, SCL_ALL, FTAG);
3060 	if (error) {
3061 		mutex_exit(&spa_namespace_lock);
3062 		nvlist_free(config);
3063 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3064 		    pname);
3065 		return (error);
3066 	}
3067 
3068 	/*
3069 	 * Get the boot vdev.
3070 	 */
3071 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3072 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3073 		    (u_longlong_t)guid);
3074 		error = ENOENT;
3075 		goto out;
3076 	}
3077 
3078 	/*
3079 	 * Determine if there is a better boot device.
3080 	 */
3081 	avd = bvd;
3082 	spa_alt_rootvdev(rvd, &avd, &txg);
3083 	if (avd != bvd) {
3084 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3085 		    "try booting from '%s'", avd->vdev_path);
3086 		error = EINVAL;
3087 		goto out;
3088 	}
3089 
3090 	/*
3091 	 * If the boot device is part of a spare vdev then ensure that
3092 	 * we're booting off the active spare.
3093 	 */
3094 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3095 	    !bvd->vdev_isspare) {
3096 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3097 		    "try booting from '%s'",
3098 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
3099 		error = EINVAL;
3100 		goto out;
3101 	}
3102 
3103 	error = 0;
3104 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3105 out:
3106 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3107 	vdev_free(rvd);
3108 	spa_config_exit(spa, SCL_ALL, FTAG);
3109 	mutex_exit(&spa_namespace_lock);
3110 
3111 	nvlist_free(config);
3112 	return (error);
3113 }
3114 
3115 #endif
3116 
3117 /*
3118  * Take a pool and insert it into the namespace as if it had been loaded at
3119  * boot.
3120  */
3121 int
3122 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
3123 {
3124 	spa_t *spa;
3125 	char *altroot = NULL;
3126 
3127 	mutex_enter(&spa_namespace_lock);
3128 	if (spa_lookup(pool) != NULL) {
3129 		mutex_exit(&spa_namespace_lock);
3130 		return (EEXIST);
3131 	}
3132 
3133 	(void) nvlist_lookup_string(props,
3134 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3135 	spa = spa_add(pool, config, altroot);
3136 
3137 	spa->spa_load_verbatim = B_TRUE;
3138 
3139 	if (props != NULL)
3140 		spa_configfile_set(spa, props, B_FALSE);
3141 
3142 	spa_config_sync(spa, B_FALSE, B_TRUE);
3143 
3144 	mutex_exit(&spa_namespace_lock);
3145 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3146 
3147 	return (0);
3148 }
3149 
3150 /*
3151  * Import a non-root pool into the system.
3152  */
3153 int
3154 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
3155 {
3156 	spa_t *spa;
3157 	char *altroot = NULL;
3158 	spa_load_state_t state = SPA_LOAD_IMPORT;
3159 	zpool_rewind_policy_t policy;
3160 	int error;
3161 	nvlist_t *nvroot;
3162 	nvlist_t **spares, **l2cache;
3163 	uint_t nspares, nl2cache;
3164 
3165 	/*
3166 	 * If a pool with this name exists, return failure.
3167 	 */
3168 	mutex_enter(&spa_namespace_lock);
3169 	if (spa_lookup(pool) != NULL) {
3170 		mutex_exit(&spa_namespace_lock);
3171 		return (EEXIST);
3172 	}
3173 
3174 	zpool_get_rewind_policy(config, &policy);
3175 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3176 		state = SPA_LOAD_RECOVER;
3177 
3178 	/*
3179 	 * Create and initialize the spa structure.
3180 	 */
3181 	(void) nvlist_lookup_string(props,
3182 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3183 	spa = spa_add(pool, config, altroot);
3184 	spa_activate(spa, spa_mode_global);
3185 
3186 	/*
3187 	 * Don't start async tasks until we know everything is healthy.
3188 	 */
3189 	spa_async_suspend(spa);
3190 
3191 	/*
3192 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3193 	 * because the user-supplied config is actually the one to trust when
3194 	 * doing an import.
3195 	 */
3196 	if (state != SPA_LOAD_RECOVER)
3197 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3198 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3199 	    policy.zrp_request);
3200 
3201 	/*
3202 	 * Propagate anything learned about failing or best txgs
3203 	 * back to caller
3204 	 */
3205 	spa_rewind_data_to_nvlist(spa, config);
3206 
3207 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3208 	/*
3209 	 * Toss any existing sparelist, as it doesn't have any validity
3210 	 * anymore, and conflicts with spa_has_spare().
3211 	 */
3212 	if (spa->spa_spares.sav_config) {
3213 		nvlist_free(spa->spa_spares.sav_config);
3214 		spa->spa_spares.sav_config = NULL;
3215 		spa_load_spares(spa);
3216 	}
3217 	if (spa->spa_l2cache.sav_config) {
3218 		nvlist_free(spa->spa_l2cache.sav_config);
3219 		spa->spa_l2cache.sav_config = NULL;
3220 		spa_load_l2cache(spa);
3221 	}
3222 
3223 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3224 	    &nvroot) == 0);
3225 	if (error == 0)
3226 		error = spa_validate_aux(spa, nvroot, -1ULL,
3227 		    VDEV_ALLOC_SPARE);
3228 	if (error == 0)
3229 		error = spa_validate_aux(spa, nvroot, -1ULL,
3230 		    VDEV_ALLOC_L2CACHE);
3231 	spa_config_exit(spa, SCL_ALL, FTAG);
3232 
3233 	if (props != NULL)
3234 		spa_configfile_set(spa, props, B_FALSE);
3235 
3236 	if (error != 0 || (props && spa_writeable(spa) &&
3237 	    (error = spa_prop_set(spa, props)))) {
3238 		spa_unload(spa);
3239 		spa_deactivate(spa);
3240 		spa_remove(spa);
3241 		mutex_exit(&spa_namespace_lock);
3242 		return (error);
3243 	}
3244 
3245 	spa_async_resume(spa);
3246 
3247 	/*
3248 	 * Override any spares and level 2 cache devices as specified by
3249 	 * the user, as these may have correct device names/devids, etc.
3250 	 */
3251 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3252 	    &spares, &nspares) == 0) {
3253 		if (spa->spa_spares.sav_config)
3254 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3255 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3256 		else
3257 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3258 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3259 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3260 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3261 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3262 		spa_load_spares(spa);
3263 		spa_config_exit(spa, SCL_ALL, FTAG);
3264 		spa->spa_spares.sav_sync = B_TRUE;
3265 	}
3266 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3267 	    &l2cache, &nl2cache) == 0) {
3268 		if (spa->spa_l2cache.sav_config)
3269 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3270 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3271 		else
3272 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3273 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3274 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3275 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3276 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3277 		spa_load_l2cache(spa);
3278 		spa_config_exit(spa, SCL_ALL, FTAG);
3279 		spa->spa_l2cache.sav_sync = B_TRUE;
3280 	}
3281 
3282 	/*
3283 	 * Check for any removed devices.
3284 	 */
3285 	if (spa->spa_autoreplace) {
3286 		spa_aux_check_removed(&spa->spa_spares);
3287 		spa_aux_check_removed(&spa->spa_l2cache);
3288 	}
3289 
3290 	if (spa_writeable(spa)) {
3291 		/*
3292 		 * Update the config cache to include the newly-imported pool.
3293 		 */
3294 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3295 	}
3296 
3297 	/*
3298 	 * It's possible that the pool was expanded while it was exported.
3299 	 * We kick off an async task to handle this for us.
3300 	 */
3301 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3302 
3303 	mutex_exit(&spa_namespace_lock);
3304 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3305 
3306 	return (0);
3307 }
3308 
3309 nvlist_t *
3310 spa_tryimport(nvlist_t *tryconfig)
3311 {
3312 	nvlist_t *config = NULL;
3313 	char *poolname;
3314 	spa_t *spa;
3315 	uint64_t state;
3316 	int error;
3317 
3318 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3319 		return (NULL);
3320 
3321 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3322 		return (NULL);
3323 
3324 	/*
3325 	 * Create and initialize the spa structure.
3326 	 */
3327 	mutex_enter(&spa_namespace_lock);
3328 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3329 	spa_activate(spa, FREAD);
3330 
3331 	/*
3332 	 * Pass off the heavy lifting to spa_load().
3333 	 * Pass TRUE for mosconfig because the user-supplied config
3334 	 * is actually the one to trust when doing an import.
3335 	 */
3336 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3337 
3338 	/*
3339 	 * If 'tryconfig' was at least parsable, return the current config.
3340 	 */
3341 	if (spa->spa_root_vdev != NULL) {
3342 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3343 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3344 		    poolname) == 0);
3345 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3346 		    state) == 0);
3347 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3348 		    spa->spa_uberblock.ub_timestamp) == 0);
3349 
3350 		/*
3351 		 * If the bootfs property exists on this pool then we
3352 		 * copy it out so that external consumers can tell which
3353 		 * pools are bootable.
3354 		 */
3355 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3356 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3357 
3358 			/*
3359 			 * We have to play games with the name since the
3360 			 * pool was opened as TRYIMPORT_NAME.
3361 			 */
3362 			if (dsl_dsobj_to_dsname(spa_name(spa),
3363 			    spa->spa_bootfs, tmpname) == 0) {
3364 				char *cp;
3365 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3366 
3367 				cp = strchr(tmpname, '/');
3368 				if (cp == NULL) {
3369 					(void) strlcpy(dsname, tmpname,
3370 					    MAXPATHLEN);
3371 				} else {
3372 					(void) snprintf(dsname, MAXPATHLEN,
3373 					    "%s/%s", poolname, ++cp);
3374 				}
3375 				VERIFY(nvlist_add_string(config,
3376 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3377 				kmem_free(dsname, MAXPATHLEN);
3378 			}
3379 			kmem_free(tmpname, MAXPATHLEN);
3380 		}
3381 
3382 		/*
3383 		 * Add the list of hot spares and level 2 cache devices.
3384 		 */
3385 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3386 		spa_add_spares(spa, config);
3387 		spa_add_l2cache(spa, config);
3388 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3389 	}
3390 
3391 	spa_unload(spa);
3392 	spa_deactivate(spa);
3393 	spa_remove(spa);
3394 	mutex_exit(&spa_namespace_lock);
3395 
3396 	return (config);
3397 }
3398 
3399 /*
3400  * Pool export/destroy
3401  *
3402  * The act of destroying or exporting a pool is very simple.  We make sure there
3403  * is no more pending I/O and any references to the pool are gone.  Then, we
3404  * update the pool state and sync all the labels to disk, removing the
3405  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3406  * we don't sync the labels or remove the configuration cache.
3407  */
3408 static int
3409 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3410     boolean_t force, boolean_t hardforce)
3411 {
3412 	spa_t *spa;
3413 
3414 	if (oldconfig)
3415 		*oldconfig = NULL;
3416 
3417 	if (!(spa_mode_global & FWRITE))
3418 		return (EROFS);
3419 
3420 	mutex_enter(&spa_namespace_lock);
3421 	if ((spa = spa_lookup(pool)) == NULL) {
3422 		mutex_exit(&spa_namespace_lock);
3423 		return (ENOENT);
3424 	}
3425 
3426 	/*
3427 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3428 	 * reacquire the namespace lock, and see if we can export.
3429 	 */
3430 	spa_open_ref(spa, FTAG);
3431 	mutex_exit(&spa_namespace_lock);
3432 	spa_async_suspend(spa);
3433 	mutex_enter(&spa_namespace_lock);
3434 	spa_close(spa, FTAG);
3435 
3436 	/*
3437 	 * The pool will be in core if it's openable,
3438 	 * in which case we can modify its state.
3439 	 */
3440 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3441 		/*
3442 		 * Objsets may be open only because they're dirty, so we
3443 		 * have to force it to sync before checking spa_refcnt.
3444 		 */
3445 		txg_wait_synced(spa->spa_dsl_pool, 0);
3446 
3447 		/*
3448 		 * A pool cannot be exported or destroyed if there are active
3449 		 * references.  If we are resetting a pool, allow references by
3450 		 * fault injection handlers.
3451 		 */
3452 		if (!spa_refcount_zero(spa) ||
3453 		    (spa->spa_inject_ref != 0 &&
3454 		    new_state != POOL_STATE_UNINITIALIZED)) {
3455 			spa_async_resume(spa);
3456 			mutex_exit(&spa_namespace_lock);
3457 			return (EBUSY);
3458 		}
3459 
3460 		/*
3461 		 * A pool cannot be exported if it has an active shared spare.
3462 		 * This is to prevent other pools stealing the active spare
3463 		 * from an exported pool. At user's own will, such pool can
3464 		 * be forcedly exported.
3465 		 */
3466 		if (!force && new_state == POOL_STATE_EXPORTED &&
3467 		    spa_has_active_shared_spare(spa)) {
3468 			spa_async_resume(spa);
3469 			mutex_exit(&spa_namespace_lock);
3470 			return (EXDEV);
3471 		}
3472 
3473 		/*
3474 		 * We want this to be reflected on every label,
3475 		 * so mark them all dirty.  spa_unload() will do the
3476 		 * final sync that pushes these changes out.
3477 		 */
3478 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3479 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3480 			spa->spa_state = new_state;
3481 			spa->spa_final_txg = spa_last_synced_txg(spa) +
3482 			    TXG_DEFER_SIZE + 1;
3483 			vdev_config_dirty(spa->spa_root_vdev);
3484 			spa_config_exit(spa, SCL_ALL, FTAG);
3485 		}
3486 	}
3487 
3488 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3489 
3490 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3491 		spa_unload(spa);
3492 		spa_deactivate(spa);
3493 	}
3494 
3495 	if (oldconfig && spa->spa_config)
3496 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3497 
3498 	if (new_state != POOL_STATE_UNINITIALIZED) {
3499 		if (!hardforce)
3500 			spa_config_sync(spa, B_TRUE, B_TRUE);
3501 		spa_remove(spa);
3502 	}
3503 	mutex_exit(&spa_namespace_lock);
3504 
3505 	return (0);
3506 }
3507 
3508 /*
3509  * Destroy a storage pool.
3510  */
3511 int
3512 spa_destroy(char *pool)
3513 {
3514 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3515 	    B_FALSE, B_FALSE));
3516 }
3517 
3518 /*
3519  * Export a storage pool.
3520  */
3521 int
3522 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3523     boolean_t hardforce)
3524 {
3525 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3526 	    force, hardforce));
3527 }
3528 
3529 /*
3530  * Similar to spa_export(), this unloads the spa_t without actually removing it
3531  * from the namespace in any way.
3532  */
3533 int
3534 spa_reset(char *pool)
3535 {
3536 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3537 	    B_FALSE, B_FALSE));
3538 }
3539 
3540 /*
3541  * ==========================================================================
3542  * Device manipulation
3543  * ==========================================================================
3544  */
3545 
3546 /*
3547  * Add a device to a storage pool.
3548  */
3549 int
3550 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3551 {
3552 	uint64_t txg, id;
3553 	int error;
3554 	vdev_t *rvd = spa->spa_root_vdev;
3555 	vdev_t *vd, *tvd;
3556 	nvlist_t **spares, **l2cache;
3557 	uint_t nspares, nl2cache;
3558 
3559 	txg = spa_vdev_enter(spa);
3560 
3561 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3562 	    VDEV_ALLOC_ADD)) != 0)
3563 		return (spa_vdev_exit(spa, NULL, txg, error));
3564 
3565 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3566 
3567 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3568 	    &nspares) != 0)
3569 		nspares = 0;
3570 
3571 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3572 	    &nl2cache) != 0)
3573 		nl2cache = 0;
3574 
3575 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3576 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3577 
3578 	if (vd->vdev_children != 0 &&
3579 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3580 		return (spa_vdev_exit(spa, vd, txg, error));
3581 
3582 	/*
3583 	 * We must validate the spares and l2cache devices after checking the
3584 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3585 	 */
3586 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3587 		return (spa_vdev_exit(spa, vd, txg, error));
3588 
3589 	/*
3590 	 * Transfer each new top-level vdev from vd to rvd.
3591 	 */
3592 	for (int c = 0; c < vd->vdev_children; c++) {
3593 
3594 		/*
3595 		 * Set the vdev id to the first hole, if one exists.
3596 		 */
3597 		for (id = 0; id < rvd->vdev_children; id++) {
3598 			if (rvd->vdev_child[id]->vdev_ishole) {
3599 				vdev_free(rvd->vdev_child[id]);
3600 				break;
3601 			}
3602 		}
3603 		tvd = vd->vdev_child[c];
3604 		vdev_remove_child(vd, tvd);
3605 		tvd->vdev_id = id;
3606 		vdev_add_child(rvd, tvd);
3607 		vdev_config_dirty(tvd);
3608 	}
3609 
3610 	if (nspares != 0) {
3611 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3612 		    ZPOOL_CONFIG_SPARES);
3613 		spa_load_spares(spa);
3614 		spa->spa_spares.sav_sync = B_TRUE;
3615 	}
3616 
3617 	if (nl2cache != 0) {
3618 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3619 		    ZPOOL_CONFIG_L2CACHE);
3620 		spa_load_l2cache(spa);
3621 		spa->spa_l2cache.sav_sync = B_TRUE;
3622 	}
3623 
3624 	/*
3625 	 * We have to be careful when adding new vdevs to an existing pool.
3626 	 * If other threads start allocating from these vdevs before we
3627 	 * sync the config cache, and we lose power, then upon reboot we may
3628 	 * fail to open the pool because there are DVAs that the config cache
3629 	 * can't translate.  Therefore, we first add the vdevs without
3630 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3631 	 * and then let spa_config_update() initialize the new metaslabs.
3632 	 *
3633 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3634 	 * if we lose power at any point in this sequence, the remaining
3635 	 * steps will be completed the next time we load the pool.
3636 	 */
3637 	(void) spa_vdev_exit(spa, vd, txg, 0);
3638 
3639 	mutex_enter(&spa_namespace_lock);
3640 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3641 	mutex_exit(&spa_namespace_lock);
3642 
3643 	return (0);
3644 }
3645 
3646 /*
3647  * Attach a device to a mirror.  The arguments are the path to any device
3648  * in the mirror, and the nvroot for the new device.  If the path specifies
3649  * a device that is not mirrored, we automatically insert the mirror vdev.
3650  *
3651  * If 'replacing' is specified, the new device is intended to replace the
3652  * existing device; in this case the two devices are made into their own
3653  * mirror using the 'replacing' vdev, which is functionally identical to
3654  * the mirror vdev (it actually reuses all the same ops) but has a few
3655  * extra rules: you can't attach to it after it's been created, and upon
3656  * completion of resilvering, the first disk (the one being replaced)
3657  * is automatically detached.
3658  */
3659 int
3660 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3661 {
3662 	uint64_t txg, dtl_max_txg;
3663 	vdev_t *rvd = spa->spa_root_vdev;
3664 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3665 	vdev_ops_t *pvops;
3666 	char *oldvdpath, *newvdpath;
3667 	int newvd_isspare;
3668 	int error;
3669 
3670 	txg = spa_vdev_enter(spa);
3671 
3672 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3673 
3674 	if (oldvd == NULL)
3675 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3676 
3677 	if (!oldvd->vdev_ops->vdev_op_leaf)
3678 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3679 
3680 	pvd = oldvd->vdev_parent;
3681 
3682 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3683 	    VDEV_ALLOC_ADD)) != 0)
3684 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3685 
3686 	if (newrootvd->vdev_children != 1)
3687 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3688 
3689 	newvd = newrootvd->vdev_child[0];
3690 
3691 	if (!newvd->vdev_ops->vdev_op_leaf)
3692 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3693 
3694 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3695 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3696 
3697 	/*
3698 	 * Spares can't replace logs
3699 	 */
3700 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3701 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3702 
3703 	if (!replacing) {
3704 		/*
3705 		 * For attach, the only allowable parent is a mirror or the root
3706 		 * vdev.
3707 		 */
3708 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3709 		    pvd->vdev_ops != &vdev_root_ops)
3710 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3711 
3712 		pvops = &vdev_mirror_ops;
3713 	} else {
3714 		/*
3715 		 * Active hot spares can only be replaced by inactive hot
3716 		 * spares.
3717 		 */
3718 		if (pvd->vdev_ops == &vdev_spare_ops &&
3719 		    pvd->vdev_child[1] == oldvd &&
3720 		    !spa_has_spare(spa, newvd->vdev_guid))
3721 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3722 
3723 		/*
3724 		 * If the source is a hot spare, and the parent isn't already a
3725 		 * spare, then we want to create a new hot spare.  Otherwise, we
3726 		 * want to create a replacing vdev.  The user is not allowed to
3727 		 * attach to a spared vdev child unless the 'isspare' state is
3728 		 * the same (spare replaces spare, non-spare replaces
3729 		 * non-spare).
3730 		 */
3731 		if (pvd->vdev_ops == &vdev_replacing_ops)
3732 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3733 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3734 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3735 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3736 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3737 		    newvd->vdev_isspare)
3738 			pvops = &vdev_spare_ops;
3739 		else
3740 			pvops = &vdev_replacing_ops;
3741 	}
3742 
3743 	/*
3744 	 * Make sure the new device is big enough.
3745 	 */
3746 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3747 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3748 
3749 	/*
3750 	 * The new device cannot have a higher alignment requirement
3751 	 * than the top-level vdev.
3752 	 */
3753 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3754 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3755 
3756 	/*
3757 	 * If this is an in-place replacement, update oldvd's path and devid
3758 	 * to make it distinguishable from newvd, and unopenable from now on.
3759 	 */
3760 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3761 		spa_strfree(oldvd->vdev_path);
3762 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3763 		    KM_SLEEP);
3764 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3765 		    newvd->vdev_path, "old");
3766 		if (oldvd->vdev_devid != NULL) {
3767 			spa_strfree(oldvd->vdev_devid);
3768 			oldvd->vdev_devid = NULL;
3769 		}
3770 	}
3771 
3772 	/*
3773 	 * If the parent is not a mirror, or if we're replacing, insert the new
3774 	 * mirror/replacing/spare vdev above oldvd.
3775 	 */
3776 	if (pvd->vdev_ops != pvops)
3777 		pvd = vdev_add_parent(oldvd, pvops);
3778 
3779 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3780 	ASSERT(pvd->vdev_ops == pvops);
3781 	ASSERT(oldvd->vdev_parent == pvd);
3782 
3783 	/*
3784 	 * Extract the new device from its root and add it to pvd.
3785 	 */
3786 	vdev_remove_child(newrootvd, newvd);
3787 	newvd->vdev_id = pvd->vdev_children;
3788 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3789 	vdev_add_child(pvd, newvd);
3790 
3791 	tvd = newvd->vdev_top;
3792 	ASSERT(pvd->vdev_top == tvd);
3793 	ASSERT(tvd->vdev_parent == rvd);
3794 
3795 	vdev_config_dirty(tvd);
3796 
3797 	/*
3798 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
3799 	 * for any dmu_sync-ed blocks.  It will propagate upward when
3800 	 * spa_vdev_exit() calls vdev_dtl_reassess().
3801 	 */
3802 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
3803 
3804 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
3805 	    dtl_max_txg - TXG_INITIAL);
3806 
3807 	if (newvd->vdev_isspare) {
3808 		spa_spare_activate(newvd);
3809 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3810 	}
3811 
3812 	oldvdpath = spa_strdup(oldvd->vdev_path);
3813 	newvdpath = spa_strdup(newvd->vdev_path);
3814 	newvd_isspare = newvd->vdev_isspare;
3815 
3816 	/*
3817 	 * Mark newvd's DTL dirty in this txg.
3818 	 */
3819 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3820 
3821 	/*
3822 	 * Restart the resilver
3823 	 */
3824 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
3825 
3826 	/*
3827 	 * Commit the config
3828 	 */
3829 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
3830 
3831 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
3832 	    "%s vdev=%s %s vdev=%s",
3833 	    replacing && newvd_isspare ? "spare in" :
3834 	    replacing ? "replace" : "attach", newvdpath,
3835 	    replacing ? "for" : "to", oldvdpath);
3836 
3837 	spa_strfree(oldvdpath);
3838 	spa_strfree(newvdpath);
3839 
3840 	return (0);
3841 }
3842 
3843 /*
3844  * Detach a device from a mirror or replacing vdev.
3845  * If 'replace_done' is specified, only detach if the parent
3846  * is a replacing vdev.
3847  */
3848 int
3849 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3850 {
3851 	uint64_t txg;
3852 	int error;
3853 	vdev_t *rvd = spa->spa_root_vdev;
3854 	vdev_t *vd, *pvd, *cvd, *tvd;
3855 	boolean_t unspare = B_FALSE;
3856 	uint64_t unspare_guid;
3857 	size_t len;
3858 	char *vdpath;
3859 
3860 	txg = spa_vdev_enter(spa);
3861 
3862 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3863 
3864 	if (vd == NULL)
3865 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3866 
3867 	if (!vd->vdev_ops->vdev_op_leaf)
3868 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3869 
3870 	pvd = vd->vdev_parent;
3871 
3872 	/*
3873 	 * If the parent/child relationship is not as expected, don't do it.
3874 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3875 	 * vdev that's replacing B with C.  The user's intent in replacing
3876 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3877 	 * the replace by detaching C, the expected behavior is to end up
3878 	 * M(A,B).  But suppose that right after deciding to detach C,
3879 	 * the replacement of B completes.  We would have M(A,C), and then
3880 	 * ask to detach C, which would leave us with just A -- not what
3881 	 * the user wanted.  To prevent this, we make sure that the
3882 	 * parent/child relationship hasn't changed -- in this example,
3883 	 * that C's parent is still the replacing vdev R.
3884 	 */
3885 	if (pvd->vdev_guid != pguid && pguid != 0)
3886 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3887 
3888 	/*
3889 	 * If replace_done is specified, only remove this device if it's
3890 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3891 	 * disk can be removed.
3892 	 */
3893 	if (replace_done) {
3894 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3895 			if (vd->vdev_id != 0)
3896 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3897 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3898 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3899 		}
3900 	}
3901 
3902 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3903 	    spa_version(spa) >= SPA_VERSION_SPARES);
3904 
3905 	/*
3906 	 * Only mirror, replacing, and spare vdevs support detach.
3907 	 */
3908 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3909 	    pvd->vdev_ops != &vdev_mirror_ops &&
3910 	    pvd->vdev_ops != &vdev_spare_ops)
3911 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3912 
3913 	/*
3914 	 * If this device has the only valid copy of some data,
3915 	 * we cannot safely detach it.
3916 	 */
3917 	if (vdev_dtl_required(vd))
3918 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3919 
3920 	ASSERT(pvd->vdev_children >= 2);
3921 
3922 	/*
3923 	 * If we are detaching the second disk from a replacing vdev, then
3924 	 * check to see if we changed the original vdev's path to have "/old"
3925 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3926 	 */
3927 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3928 	    pvd->vdev_child[0]->vdev_path != NULL &&
3929 	    pvd->vdev_child[1]->vdev_path != NULL) {
3930 		ASSERT(pvd->vdev_child[1] == vd);
3931 		cvd = pvd->vdev_child[0];
3932 		len = strlen(vd->vdev_path);
3933 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3934 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3935 			spa_strfree(cvd->vdev_path);
3936 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3937 		}
3938 	}
3939 
3940 	/*
3941 	 * If we are detaching the original disk from a spare, then it implies
3942 	 * that the spare should become a real disk, and be removed from the
3943 	 * active spare list for the pool.
3944 	 */
3945 	if (pvd->vdev_ops == &vdev_spare_ops &&
3946 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3947 		unspare = B_TRUE;
3948 
3949 	/*
3950 	 * Erase the disk labels so the disk can be used for other things.
3951 	 * This must be done after all other error cases are handled,
3952 	 * but before we disembowel vd (so we can still do I/O to it).
3953 	 * But if we can't do it, don't treat the error as fatal --
3954 	 * it may be that the unwritability of the disk is the reason
3955 	 * it's being detached!
3956 	 */
3957 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3958 
3959 	/*
3960 	 * Remove vd from its parent and compact the parent's children.
3961 	 */
3962 	vdev_remove_child(pvd, vd);
3963 	vdev_compact_children(pvd);
3964 
3965 	/*
3966 	 * Remember one of the remaining children so we can get tvd below.
3967 	 */
3968 	cvd = pvd->vdev_child[0];
3969 
3970 	/*
3971 	 * If we need to remove the remaining child from the list of hot spares,
3972 	 * do it now, marking the vdev as no longer a spare in the process.
3973 	 * We must do this before vdev_remove_parent(), because that can
3974 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3975 	 * reason, we must remove the spare now, in the same txg as the detach;
3976 	 * otherwise someone could attach a new sibling, change the GUID, and
3977 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3978 	 */
3979 	if (unspare) {
3980 		ASSERT(cvd->vdev_isspare);
3981 		spa_spare_remove(cvd);
3982 		unspare_guid = cvd->vdev_guid;
3983 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3984 	}
3985 
3986 	/*
3987 	 * If the parent mirror/replacing vdev only has one child,
3988 	 * the parent is no longer needed.  Remove it from the tree.
3989 	 */
3990 	if (pvd->vdev_children == 1)
3991 		vdev_remove_parent(cvd);
3992 
3993 	/*
3994 	 * We don't set tvd until now because the parent we just removed
3995 	 * may have been the previous top-level vdev.
3996 	 */
3997 	tvd = cvd->vdev_top;
3998 	ASSERT(tvd->vdev_parent == rvd);
3999 
4000 	/*
4001 	 * Reevaluate the parent vdev state.
4002 	 */
4003 	vdev_propagate_state(cvd);
4004 
4005 	/*
4006 	 * If the 'autoexpand' property is set on the pool then automatically
4007 	 * try to expand the size of the pool. For example if the device we
4008 	 * just detached was smaller than the others, it may be possible to
4009 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4010 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4011 	 */
4012 	if (spa->spa_autoexpand) {
4013 		vdev_reopen(tvd);
4014 		vdev_expand(tvd, txg);
4015 	}
4016 
4017 	vdev_config_dirty(tvd);
4018 
4019 	/*
4020 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4021 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4022 	 * But first make sure we're not on any *other* txg's DTL list, to
4023 	 * prevent vd from being accessed after it's freed.
4024 	 */
4025 	vdpath = spa_strdup(vd->vdev_path);
4026 	for (int t = 0; t < TXG_SIZE; t++)
4027 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4028 	vd->vdev_detached = B_TRUE;
4029 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4030 
4031 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4032 
4033 	error = spa_vdev_exit(spa, vd, txg, 0);
4034 
4035 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4036 	    "vdev=%s", vdpath);
4037 	spa_strfree(vdpath);
4038 
4039 	/*
4040 	 * If this was the removal of the original device in a hot spare vdev,
4041 	 * then we want to go through and remove the device from the hot spare
4042 	 * list of every other pool.
4043 	 */
4044 	if (unspare) {
4045 		spa_t *myspa = spa;
4046 		spa = NULL;
4047 		mutex_enter(&spa_namespace_lock);
4048 		while ((spa = spa_next(spa)) != NULL) {
4049 			if (spa->spa_state != POOL_STATE_ACTIVE)
4050 				continue;
4051 			if (spa == myspa)
4052 				continue;
4053 			spa_open_ref(spa, FTAG);
4054 			mutex_exit(&spa_namespace_lock);
4055 			(void) spa_vdev_remove(spa, unspare_guid,
4056 			    B_TRUE);
4057 			mutex_enter(&spa_namespace_lock);
4058 			spa_close(spa, FTAG);
4059 		}
4060 		mutex_exit(&spa_namespace_lock);
4061 	}
4062 
4063 	return (error);
4064 }
4065 
4066 /*
4067  * Split a set of devices from their mirrors, and create a new pool from them.
4068  */
4069 int
4070 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4071     nvlist_t *props, boolean_t exp)
4072 {
4073 	int error = 0;
4074 	uint64_t txg, *glist;
4075 	spa_t *newspa;
4076 	uint_t c, children, lastlog;
4077 	nvlist_t **child, *nvl, *tmp;
4078 	dmu_tx_t *tx;
4079 	char *altroot = NULL;
4080 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4081 	boolean_t activate_slog;
4082 
4083 	if (!spa_writeable(spa))
4084 		return (EROFS);
4085 
4086 	txg = spa_vdev_enter(spa);
4087 
4088 	/* clear the log and flush everything up to now */
4089 	activate_slog = spa_passivate_log(spa);
4090 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4091 	error = spa_offline_log(spa);
4092 	txg = spa_vdev_config_enter(spa);
4093 
4094 	if (activate_slog)
4095 		spa_activate_log(spa);
4096 
4097 	if (error != 0)
4098 		return (spa_vdev_exit(spa, NULL, txg, error));
4099 
4100 	/* check new spa name before going any further */
4101 	if (spa_lookup(newname) != NULL)
4102 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4103 
4104 	/*
4105 	 * scan through all the children to ensure they're all mirrors
4106 	 */
4107 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4108 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4109 	    &children) != 0)
4110 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4111 
4112 	/* first, check to ensure we've got the right child count */
4113 	rvd = spa->spa_root_vdev;
4114 	lastlog = 0;
4115 	for (c = 0; c < rvd->vdev_children; c++) {
4116 		vdev_t *vd = rvd->vdev_child[c];
4117 
4118 		/* don't count the holes & logs as children */
4119 		if (vd->vdev_islog || vd->vdev_ishole) {
4120 			if (lastlog == 0)
4121 				lastlog = c;
4122 			continue;
4123 		}
4124 
4125 		lastlog = 0;
4126 	}
4127 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4128 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4129 
4130 	/* next, ensure no spare or cache devices are part of the split */
4131 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4132 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4133 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4134 
4135 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4136 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4137 
4138 	/* then, loop over each vdev and validate it */
4139 	for (c = 0; c < children; c++) {
4140 		uint64_t is_hole = 0;
4141 
4142 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4143 		    &is_hole);
4144 
4145 		if (is_hole != 0) {
4146 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4147 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4148 				continue;
4149 			} else {
4150 				error = EINVAL;
4151 				break;
4152 			}
4153 		}
4154 
4155 		/* which disk is going to be split? */
4156 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4157 		    &glist[c]) != 0) {
4158 			error = EINVAL;
4159 			break;
4160 		}
4161 
4162 		/* look it up in the spa */
4163 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4164 		if (vml[c] == NULL) {
4165 			error = ENODEV;
4166 			break;
4167 		}
4168 
4169 		/* make sure there's nothing stopping the split */
4170 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4171 		    vml[c]->vdev_islog ||
4172 		    vml[c]->vdev_ishole ||
4173 		    vml[c]->vdev_isspare ||
4174 		    vml[c]->vdev_isl2cache ||
4175 		    !vdev_writeable(vml[c]) ||
4176 		    vml[c]->vdev_children != 0 ||
4177 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4178 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4179 			error = EINVAL;
4180 			break;
4181 		}
4182 
4183 		if (vdev_dtl_required(vml[c])) {
4184 			error = EBUSY;
4185 			break;
4186 		}
4187 
4188 		/* we need certain info from the top level */
4189 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4190 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4191 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4192 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4193 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4194 		    vml[c]->vdev_top->vdev_asize) == 0);
4195 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4196 		    vml[c]->vdev_top->vdev_ashift) == 0);
4197 	}
4198 
4199 	if (error != 0) {
4200 		kmem_free(vml, children * sizeof (vdev_t *));
4201 		kmem_free(glist, children * sizeof (uint64_t));
4202 		return (spa_vdev_exit(spa, NULL, txg, error));
4203 	}
4204 
4205 	/* stop writers from using the disks */
4206 	for (c = 0; c < children; c++) {
4207 		if (vml[c] != NULL)
4208 			vml[c]->vdev_offline = B_TRUE;
4209 	}
4210 	vdev_reopen(spa->spa_root_vdev);
4211 
4212 	/*
4213 	 * Temporarily record the splitting vdevs in the spa config.  This
4214 	 * will disappear once the config is regenerated.
4215 	 */
4216 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4217 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4218 	    glist, children) == 0);
4219 	kmem_free(glist, children * sizeof (uint64_t));
4220 
4221 	mutex_enter(&spa->spa_props_lock);
4222 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4223 	    nvl) == 0);
4224 	mutex_exit(&spa->spa_props_lock);
4225 	spa->spa_config_splitting = nvl;
4226 	vdev_config_dirty(spa->spa_root_vdev);
4227 
4228 	/* configure and create the new pool */
4229 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4230 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4231 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4232 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4233 	    spa_version(spa)) == 0);
4234 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4235 	    spa->spa_config_txg) == 0);
4236 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4237 	    spa_generate_guid(NULL)) == 0);
4238 	(void) nvlist_lookup_string(props,
4239 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4240 
4241 	/* add the new pool to the namespace */
4242 	newspa = spa_add(newname, config, altroot);
4243 	newspa->spa_config_txg = spa->spa_config_txg;
4244 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4245 
4246 	/* release the spa config lock, retaining the namespace lock */
4247 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4248 
4249 	if (zio_injection_enabled)
4250 		zio_handle_panic_injection(spa, FTAG, 1);
4251 
4252 	spa_activate(newspa, spa_mode_global);
4253 	spa_async_suspend(newspa);
4254 
4255 	/* create the new pool from the disks of the original pool */
4256 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4257 	if (error)
4258 		goto out;
4259 
4260 	/* if that worked, generate a real config for the new pool */
4261 	if (newspa->spa_root_vdev != NULL) {
4262 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4263 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4264 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4265 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4266 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4267 		    B_TRUE));
4268 	}
4269 
4270 	/* set the props */
4271 	if (props != NULL) {
4272 		spa_configfile_set(newspa, props, B_FALSE);
4273 		error = spa_prop_set(newspa, props);
4274 		if (error)
4275 			goto out;
4276 	}
4277 
4278 	/* flush everything */
4279 	txg = spa_vdev_config_enter(newspa);
4280 	vdev_config_dirty(newspa->spa_root_vdev);
4281 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4282 
4283 	if (zio_injection_enabled)
4284 		zio_handle_panic_injection(spa, FTAG, 2);
4285 
4286 	spa_async_resume(newspa);
4287 
4288 	/* finally, update the original pool's config */
4289 	txg = spa_vdev_config_enter(spa);
4290 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4291 	error = dmu_tx_assign(tx, TXG_WAIT);
4292 	if (error != 0)
4293 		dmu_tx_abort(tx);
4294 	for (c = 0; c < children; c++) {
4295 		if (vml[c] != NULL) {
4296 			vdev_split(vml[c]);
4297 			if (error == 0)
4298 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4299 				    spa, tx, "vdev=%s",
4300 				    vml[c]->vdev_path);
4301 			vdev_free(vml[c]);
4302 		}
4303 	}
4304 	vdev_config_dirty(spa->spa_root_vdev);
4305 	spa->spa_config_splitting = NULL;
4306 	nvlist_free(nvl);
4307 	if (error == 0)
4308 		dmu_tx_commit(tx);
4309 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4310 
4311 	if (zio_injection_enabled)
4312 		zio_handle_panic_injection(spa, FTAG, 3);
4313 
4314 	/* split is complete; log a history record */
4315 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4316 	    "split new pool %s from pool %s", newname, spa_name(spa));
4317 
4318 	kmem_free(vml, children * sizeof (vdev_t *));
4319 
4320 	/* if we're not going to mount the filesystems in userland, export */
4321 	if (exp)
4322 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4323 		    B_FALSE, B_FALSE);
4324 
4325 	return (error);
4326 
4327 out:
4328 	spa_unload(newspa);
4329 	spa_deactivate(newspa);
4330 	spa_remove(newspa);
4331 
4332 	txg = spa_vdev_config_enter(spa);
4333 
4334 	/* re-online all offlined disks */
4335 	for (c = 0; c < children; c++) {
4336 		if (vml[c] != NULL)
4337 			vml[c]->vdev_offline = B_FALSE;
4338 	}
4339 	vdev_reopen(spa->spa_root_vdev);
4340 
4341 	nvlist_free(spa->spa_config_splitting);
4342 	spa->spa_config_splitting = NULL;
4343 	(void) spa_vdev_exit(spa, NULL, txg, error);
4344 
4345 	kmem_free(vml, children * sizeof (vdev_t *));
4346 	return (error);
4347 }
4348 
4349 static nvlist_t *
4350 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4351 {
4352 	for (int i = 0; i < count; i++) {
4353 		uint64_t guid;
4354 
4355 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4356 		    &guid) == 0);
4357 
4358 		if (guid == target_guid)
4359 			return (nvpp[i]);
4360 	}
4361 
4362 	return (NULL);
4363 }
4364 
4365 static void
4366 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4367 	nvlist_t *dev_to_remove)
4368 {
4369 	nvlist_t **newdev = NULL;
4370 
4371 	if (count > 1)
4372 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4373 
4374 	for (int i = 0, j = 0; i < count; i++) {
4375 		if (dev[i] == dev_to_remove)
4376 			continue;
4377 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4378 	}
4379 
4380 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4381 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4382 
4383 	for (int i = 0; i < count - 1; i++)
4384 		nvlist_free(newdev[i]);
4385 
4386 	if (count > 1)
4387 		kmem_free(newdev, (count - 1) * sizeof (void *));
4388 }
4389 
4390 /*
4391  * Evacuate the device.
4392  */
4393 static int
4394 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4395 {
4396 	uint64_t txg;
4397 	int error = 0;
4398 
4399 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4400 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4401 	ASSERT(vd == vd->vdev_top);
4402 
4403 	/*
4404 	 * Evacuate the device.  We don't hold the config lock as writer
4405 	 * since we need to do I/O but we do keep the
4406 	 * spa_namespace_lock held.  Once this completes the device
4407 	 * should no longer have any blocks allocated on it.
4408 	 */
4409 	if (vd->vdev_islog) {
4410 		if (vd->vdev_stat.vs_alloc != 0)
4411 			error = spa_offline_log(spa);
4412 	} else {
4413 		error = ENOTSUP;
4414 	}
4415 
4416 	if (error)
4417 		return (error);
4418 
4419 	/*
4420 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4421 	 * associated with this vdev, and wait for these changes to sync.
4422 	 */
4423 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4424 	txg = spa_vdev_config_enter(spa);
4425 	vd->vdev_removing = B_TRUE;
4426 	vdev_dirty(vd, 0, NULL, txg);
4427 	vdev_config_dirty(vd);
4428 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4429 
4430 	return (0);
4431 }
4432 
4433 /*
4434  * Complete the removal by cleaning up the namespace.
4435  */
4436 static void
4437 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4438 {
4439 	vdev_t *rvd = spa->spa_root_vdev;
4440 	uint64_t id = vd->vdev_id;
4441 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4442 
4443 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4444 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4445 	ASSERT(vd == vd->vdev_top);
4446 
4447 	/*
4448 	 * Only remove any devices which are empty.
4449 	 */
4450 	if (vd->vdev_stat.vs_alloc != 0)
4451 		return;
4452 
4453 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4454 
4455 	if (list_link_active(&vd->vdev_state_dirty_node))
4456 		vdev_state_clean(vd);
4457 	if (list_link_active(&vd->vdev_config_dirty_node))
4458 		vdev_config_clean(vd);
4459 
4460 	vdev_free(vd);
4461 
4462 	if (last_vdev) {
4463 		vdev_compact_children(rvd);
4464 	} else {
4465 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4466 		vdev_add_child(rvd, vd);
4467 	}
4468 	vdev_config_dirty(rvd);
4469 
4470 	/*
4471 	 * Reassess the health of our root vdev.
4472 	 */
4473 	vdev_reopen(rvd);
4474 }
4475 
4476 /*
4477  * Remove a device from the pool -
4478  *
4479  * Removing a device from the vdev namespace requires several steps
4480  * and can take a significant amount of time.  As a result we use
4481  * the spa_vdev_config_[enter/exit] functions which allow us to
4482  * grab and release the spa_config_lock while still holding the namespace
4483  * lock.  During each step the configuration is synced out.
4484  */
4485 
4486 /*
4487  * Remove a device from the pool.  Currently, this supports removing only hot
4488  * spares, slogs, and level 2 ARC devices.
4489  */
4490 int
4491 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4492 {
4493 	vdev_t *vd;
4494 	metaslab_group_t *mg;
4495 	nvlist_t **spares, **l2cache, *nv;
4496 	uint64_t txg = 0;
4497 	uint_t nspares, nl2cache;
4498 	int error = 0;
4499 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4500 
4501 	if (!locked)
4502 		txg = spa_vdev_enter(spa);
4503 
4504 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4505 
4506 	if (spa->spa_spares.sav_vdevs != NULL &&
4507 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4508 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4509 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4510 		/*
4511 		 * Only remove the hot spare if it's not currently in use
4512 		 * in this pool.
4513 		 */
4514 		if (vd == NULL || unspare) {
4515 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4516 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4517 			spa_load_spares(spa);
4518 			spa->spa_spares.sav_sync = B_TRUE;
4519 		} else {
4520 			error = EBUSY;
4521 		}
4522 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4523 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4524 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4525 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4526 		/*
4527 		 * Cache devices can always be removed.
4528 		 */
4529 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4530 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4531 		spa_load_l2cache(spa);
4532 		spa->spa_l2cache.sav_sync = B_TRUE;
4533 	} else if (vd != NULL && vd->vdev_islog) {
4534 		ASSERT(!locked);
4535 		ASSERT(vd == vd->vdev_top);
4536 
4537 		/*
4538 		 * XXX - Once we have bp-rewrite this should
4539 		 * become the common case.
4540 		 */
4541 
4542 		mg = vd->vdev_mg;
4543 
4544 		/*
4545 		 * Stop allocating from this vdev.
4546 		 */
4547 		metaslab_group_passivate(mg);
4548 
4549 		/*
4550 		 * Wait for the youngest allocations and frees to sync,
4551 		 * and then wait for the deferral of those frees to finish.
4552 		 */
4553 		spa_vdev_config_exit(spa, NULL,
4554 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4555 
4556 		/*
4557 		 * Attempt to evacuate the vdev.
4558 		 */
4559 		error = spa_vdev_remove_evacuate(spa, vd);
4560 
4561 		txg = spa_vdev_config_enter(spa);
4562 
4563 		/*
4564 		 * If we couldn't evacuate the vdev, unwind.
4565 		 */
4566 		if (error) {
4567 			metaslab_group_activate(mg);
4568 			return (spa_vdev_exit(spa, NULL, txg, error));
4569 		}
4570 
4571 		/*
4572 		 * Clean up the vdev namespace.
4573 		 */
4574 		spa_vdev_remove_from_namespace(spa, vd);
4575 
4576 	} else if (vd != NULL) {
4577 		/*
4578 		 * Normal vdevs cannot be removed (yet).
4579 		 */
4580 		error = ENOTSUP;
4581 	} else {
4582 		/*
4583 		 * There is no vdev of any kind with the specified guid.
4584 		 */
4585 		error = ENOENT;
4586 	}
4587 
4588 	if (!locked)
4589 		return (spa_vdev_exit(spa, NULL, txg, error));
4590 
4591 	return (error);
4592 }
4593 
4594 /*
4595  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4596  * current spared, so we can detach it.
4597  */
4598 static vdev_t *
4599 spa_vdev_resilver_done_hunt(vdev_t *vd)
4600 {
4601 	vdev_t *newvd, *oldvd;
4602 
4603 	for (int c = 0; c < vd->vdev_children; c++) {
4604 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4605 		if (oldvd != NULL)
4606 			return (oldvd);
4607 	}
4608 
4609 	/*
4610 	 * Check for a completed replacement.
4611 	 */
4612 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4613 		oldvd = vd->vdev_child[0];
4614 		newvd = vd->vdev_child[1];
4615 
4616 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4617 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4618 		    !vdev_dtl_required(oldvd))
4619 			return (oldvd);
4620 	}
4621 
4622 	/*
4623 	 * Check for a completed resilver with the 'unspare' flag set.
4624 	 */
4625 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4626 		newvd = vd->vdev_child[0];
4627 		oldvd = vd->vdev_child[1];
4628 
4629 		if (newvd->vdev_unspare &&
4630 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4631 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4632 		    !vdev_dtl_required(oldvd)) {
4633 			newvd->vdev_unspare = 0;
4634 			return (oldvd);
4635 		}
4636 	}
4637 
4638 	return (NULL);
4639 }
4640 
4641 static void
4642 spa_vdev_resilver_done(spa_t *spa)
4643 {
4644 	vdev_t *vd, *pvd, *ppvd;
4645 	uint64_t guid, sguid, pguid, ppguid;
4646 
4647 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4648 
4649 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4650 		pvd = vd->vdev_parent;
4651 		ppvd = pvd->vdev_parent;
4652 		guid = vd->vdev_guid;
4653 		pguid = pvd->vdev_guid;
4654 		ppguid = ppvd->vdev_guid;
4655 		sguid = 0;
4656 		/*
4657 		 * If we have just finished replacing a hot spared device, then
4658 		 * we need to detach the parent's first child (the original hot
4659 		 * spare) as well.
4660 		 */
4661 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4662 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4663 			ASSERT(ppvd->vdev_children == 2);
4664 			sguid = ppvd->vdev_child[1]->vdev_guid;
4665 		}
4666 		spa_config_exit(spa, SCL_ALL, FTAG);
4667 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4668 			return;
4669 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4670 			return;
4671 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4672 	}
4673 
4674 	spa_config_exit(spa, SCL_ALL, FTAG);
4675 }
4676 
4677 /*
4678  * Update the stored path or FRU for this vdev.
4679  */
4680 int
4681 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4682     boolean_t ispath)
4683 {
4684 	vdev_t *vd;
4685 	boolean_t sync = B_FALSE;
4686 
4687 	spa_vdev_state_enter(spa, SCL_ALL);
4688 
4689 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4690 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4691 
4692 	if (!vd->vdev_ops->vdev_op_leaf)
4693 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4694 
4695 	if (ispath) {
4696 		if (strcmp(value, vd->vdev_path) != 0) {
4697 			spa_strfree(vd->vdev_path);
4698 			vd->vdev_path = spa_strdup(value);
4699 			sync = B_TRUE;
4700 		}
4701 	} else {
4702 		if (vd->vdev_fru == NULL) {
4703 			vd->vdev_fru = spa_strdup(value);
4704 			sync = B_TRUE;
4705 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4706 			spa_strfree(vd->vdev_fru);
4707 			vd->vdev_fru = spa_strdup(value);
4708 			sync = B_TRUE;
4709 		}
4710 	}
4711 
4712 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4713 }
4714 
4715 int
4716 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4717 {
4718 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4719 }
4720 
4721 int
4722 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4723 {
4724 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4725 }
4726 
4727 /*
4728  * ==========================================================================
4729  * SPA Scanning
4730  * ==========================================================================
4731  */
4732 
4733 int
4734 spa_scan_stop(spa_t *spa)
4735 {
4736 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4737 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
4738 		return (EBUSY);
4739 	return (dsl_scan_cancel(spa->spa_dsl_pool));
4740 }
4741 
4742 int
4743 spa_scan(spa_t *spa, pool_scan_func_t func)
4744 {
4745 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4746 
4747 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
4748 		return (ENOTSUP);
4749 
4750 	/*
4751 	 * If a resilver was requested, but there is no DTL on a
4752 	 * writeable leaf device, we have nothing to do.
4753 	 */
4754 	if (func == POOL_SCAN_RESILVER &&
4755 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4756 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4757 		return (0);
4758 	}
4759 
4760 	return (dsl_scan(spa->spa_dsl_pool, func));
4761 }
4762 
4763 /*
4764  * ==========================================================================
4765  * SPA async task processing
4766  * ==========================================================================
4767  */
4768 
4769 static void
4770 spa_async_remove(spa_t *spa, vdev_t *vd)
4771 {
4772 	if (vd->vdev_remove_wanted) {
4773 		vd->vdev_remove_wanted = B_FALSE;
4774 		vd->vdev_delayed_close = B_FALSE;
4775 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4776 
4777 		/*
4778 		 * We want to clear the stats, but we don't want to do a full
4779 		 * vdev_clear() as that will cause us to throw away
4780 		 * degraded/faulted state as well as attempt to reopen the
4781 		 * device, all of which is a waste.
4782 		 */
4783 		vd->vdev_stat.vs_read_errors = 0;
4784 		vd->vdev_stat.vs_write_errors = 0;
4785 		vd->vdev_stat.vs_checksum_errors = 0;
4786 
4787 		vdev_state_dirty(vd->vdev_top);
4788 	}
4789 
4790 	for (int c = 0; c < vd->vdev_children; c++)
4791 		spa_async_remove(spa, vd->vdev_child[c]);
4792 }
4793 
4794 static void
4795 spa_async_probe(spa_t *spa, vdev_t *vd)
4796 {
4797 	if (vd->vdev_probe_wanted) {
4798 		vd->vdev_probe_wanted = B_FALSE;
4799 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4800 	}
4801 
4802 	for (int c = 0; c < vd->vdev_children; c++)
4803 		spa_async_probe(spa, vd->vdev_child[c]);
4804 }
4805 
4806 static void
4807 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4808 {
4809 	sysevent_id_t eid;
4810 	nvlist_t *attr;
4811 	char *physpath;
4812 
4813 	if (!spa->spa_autoexpand)
4814 		return;
4815 
4816 	for (int c = 0; c < vd->vdev_children; c++) {
4817 		vdev_t *cvd = vd->vdev_child[c];
4818 		spa_async_autoexpand(spa, cvd);
4819 	}
4820 
4821 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4822 		return;
4823 
4824 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4825 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4826 
4827 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4828 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4829 
4830 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4831 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4832 
4833 	nvlist_free(attr);
4834 	kmem_free(physpath, MAXPATHLEN);
4835 }
4836 
4837 static void
4838 spa_async_thread(spa_t *spa)
4839 {
4840 	int tasks;
4841 
4842 	ASSERT(spa->spa_sync_on);
4843 
4844 	mutex_enter(&spa->spa_async_lock);
4845 	tasks = spa->spa_async_tasks;
4846 	spa->spa_async_tasks = 0;
4847 	mutex_exit(&spa->spa_async_lock);
4848 
4849 	/*
4850 	 * See if the config needs to be updated.
4851 	 */
4852 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4853 		uint64_t old_space, new_space;
4854 
4855 		mutex_enter(&spa_namespace_lock);
4856 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4857 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4858 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4859 		mutex_exit(&spa_namespace_lock);
4860 
4861 		/*
4862 		 * If the pool grew as a result of the config update,
4863 		 * then log an internal history event.
4864 		 */
4865 		if (new_space != old_space) {
4866 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
4867 			    spa, NULL,
4868 			    "pool '%s' size: %llu(+%llu)",
4869 			    spa_name(spa), new_space, new_space - old_space);
4870 		}
4871 	}
4872 
4873 	/*
4874 	 * See if any devices need to be marked REMOVED.
4875 	 */
4876 	if (tasks & SPA_ASYNC_REMOVE) {
4877 		spa_vdev_state_enter(spa, SCL_NONE);
4878 		spa_async_remove(spa, spa->spa_root_vdev);
4879 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4880 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4881 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4882 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4883 		(void) spa_vdev_state_exit(spa, NULL, 0);
4884 	}
4885 
4886 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4887 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4888 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4889 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4890 	}
4891 
4892 	/*
4893 	 * See if any devices need to be probed.
4894 	 */
4895 	if (tasks & SPA_ASYNC_PROBE) {
4896 		spa_vdev_state_enter(spa, SCL_NONE);
4897 		spa_async_probe(spa, spa->spa_root_vdev);
4898 		(void) spa_vdev_state_exit(spa, NULL, 0);
4899 	}
4900 
4901 	/*
4902 	 * If any devices are done replacing, detach them.
4903 	 */
4904 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4905 		spa_vdev_resilver_done(spa);
4906 
4907 	/*
4908 	 * Kick off a resilver.
4909 	 */
4910 	if (tasks & SPA_ASYNC_RESILVER)
4911 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
4912 
4913 	/*
4914 	 * Let the world know that we're done.
4915 	 */
4916 	mutex_enter(&spa->spa_async_lock);
4917 	spa->spa_async_thread = NULL;
4918 	cv_broadcast(&spa->spa_async_cv);
4919 	mutex_exit(&spa->spa_async_lock);
4920 	thread_exit();
4921 }
4922 
4923 void
4924 spa_async_suspend(spa_t *spa)
4925 {
4926 	mutex_enter(&spa->spa_async_lock);
4927 	spa->spa_async_suspended++;
4928 	while (spa->spa_async_thread != NULL)
4929 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4930 	mutex_exit(&spa->spa_async_lock);
4931 }
4932 
4933 void
4934 spa_async_resume(spa_t *spa)
4935 {
4936 	mutex_enter(&spa->spa_async_lock);
4937 	ASSERT(spa->spa_async_suspended != 0);
4938 	spa->spa_async_suspended--;
4939 	mutex_exit(&spa->spa_async_lock);
4940 }
4941 
4942 static void
4943 spa_async_dispatch(spa_t *spa)
4944 {
4945 	mutex_enter(&spa->spa_async_lock);
4946 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4947 	    spa->spa_async_thread == NULL &&
4948 	    rootdir != NULL && !vn_is_readonly(rootdir))
4949 		spa->spa_async_thread = thread_create(NULL, 0,
4950 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4951 	mutex_exit(&spa->spa_async_lock);
4952 }
4953 
4954 void
4955 spa_async_request(spa_t *spa, int task)
4956 {
4957 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
4958 	mutex_enter(&spa->spa_async_lock);
4959 	spa->spa_async_tasks |= task;
4960 	mutex_exit(&spa->spa_async_lock);
4961 }
4962 
4963 /*
4964  * ==========================================================================
4965  * SPA syncing routines
4966  * ==========================================================================
4967  */
4968 
4969 static int
4970 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4971 {
4972 	bpobj_t *bpo = arg;
4973 	bpobj_enqueue(bpo, bp, tx);
4974 	return (0);
4975 }
4976 
4977 static int
4978 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4979 {
4980 	zio_t *zio = arg;
4981 
4982 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4983 	    zio->io_flags));
4984 	return (0);
4985 }
4986 
4987 static void
4988 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4989 {
4990 	char *packed = NULL;
4991 	size_t bufsize;
4992 	size_t nvsize = 0;
4993 	dmu_buf_t *db;
4994 
4995 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4996 
4997 	/*
4998 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4999 	 * information.  This avoids the dbuf_will_dirty() path and
5000 	 * saves us a pre-read to get data we don't actually care about.
5001 	 */
5002 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
5003 	packed = kmem_alloc(bufsize, KM_SLEEP);
5004 
5005 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5006 	    KM_SLEEP) == 0);
5007 	bzero(packed + nvsize, bufsize - nvsize);
5008 
5009 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5010 
5011 	kmem_free(packed, bufsize);
5012 
5013 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5014 	dmu_buf_will_dirty(db, tx);
5015 	*(uint64_t *)db->db_data = nvsize;
5016 	dmu_buf_rele(db, FTAG);
5017 }
5018 
5019 static void
5020 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5021     const char *config, const char *entry)
5022 {
5023 	nvlist_t *nvroot;
5024 	nvlist_t **list;
5025 	int i;
5026 
5027 	if (!sav->sav_sync)
5028 		return;
5029 
5030 	/*
5031 	 * Update the MOS nvlist describing the list of available devices.
5032 	 * spa_validate_aux() will have already made sure this nvlist is
5033 	 * valid and the vdevs are labeled appropriately.
5034 	 */
5035 	if (sav->sav_object == 0) {
5036 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5037 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5038 		    sizeof (uint64_t), tx);
5039 		VERIFY(zap_update(spa->spa_meta_objset,
5040 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5041 		    &sav->sav_object, tx) == 0);
5042 	}
5043 
5044 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5045 	if (sav->sav_count == 0) {
5046 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5047 	} else {
5048 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5049 		for (i = 0; i < sav->sav_count; i++)
5050 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5051 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5052 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5053 		    sav->sav_count) == 0);
5054 		for (i = 0; i < sav->sav_count; i++)
5055 			nvlist_free(list[i]);
5056 		kmem_free(list, sav->sav_count * sizeof (void *));
5057 	}
5058 
5059 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5060 	nvlist_free(nvroot);
5061 
5062 	sav->sav_sync = B_FALSE;
5063 }
5064 
5065 static void
5066 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5067 {
5068 	nvlist_t *config;
5069 
5070 	if (list_is_empty(&spa->spa_config_dirty_list))
5071 		return;
5072 
5073 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5074 
5075 	config = spa_config_generate(spa, spa->spa_root_vdev,
5076 	    dmu_tx_get_txg(tx), B_FALSE);
5077 
5078 	spa_config_exit(spa, SCL_STATE, FTAG);
5079 
5080 	if (spa->spa_config_syncing)
5081 		nvlist_free(spa->spa_config_syncing);
5082 	spa->spa_config_syncing = config;
5083 
5084 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5085 }
5086 
5087 /*
5088  * Set zpool properties.
5089  */
5090 static void
5091 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5092 {
5093 	spa_t *spa = arg1;
5094 	objset_t *mos = spa->spa_meta_objset;
5095 	nvlist_t *nvp = arg2;
5096 	nvpair_t *elem;
5097 	uint64_t intval;
5098 	char *strval;
5099 	zpool_prop_t prop;
5100 	const char *propname;
5101 	zprop_type_t proptype;
5102 
5103 	mutex_enter(&spa->spa_props_lock);
5104 
5105 	elem = NULL;
5106 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5107 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5108 		case ZPOOL_PROP_VERSION:
5109 			/*
5110 			 * Only set version for non-zpool-creation cases
5111 			 * (set/import). spa_create() needs special care
5112 			 * for version setting.
5113 			 */
5114 			if (tx->tx_txg != TXG_INITIAL) {
5115 				VERIFY(nvpair_value_uint64(elem,
5116 				    &intval) == 0);
5117 				ASSERT(intval <= SPA_VERSION);
5118 				ASSERT(intval >= spa_version(spa));
5119 				spa->spa_uberblock.ub_version = intval;
5120 				vdev_config_dirty(spa->spa_root_vdev);
5121 			}
5122 			break;
5123 
5124 		case ZPOOL_PROP_ALTROOT:
5125 			/*
5126 			 * 'altroot' is a non-persistent property. It should
5127 			 * have been set temporarily at creation or import time.
5128 			 */
5129 			ASSERT(spa->spa_root != NULL);
5130 			break;
5131 
5132 		case ZPOOL_PROP_CACHEFILE:
5133 			/*
5134 			 * 'cachefile' is also a non-persisitent property.
5135 			 */
5136 			break;
5137 		default:
5138 			/*
5139 			 * Set pool property values in the poolprops mos object.
5140 			 */
5141 			if (spa->spa_pool_props_object == 0) {
5142 				VERIFY((spa->spa_pool_props_object =
5143 				    zap_create(mos, DMU_OT_POOL_PROPS,
5144 				    DMU_OT_NONE, 0, tx)) > 0);
5145 
5146 				VERIFY(zap_update(mos,
5147 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5148 				    8, 1, &spa->spa_pool_props_object, tx)
5149 				    == 0);
5150 			}
5151 
5152 			/* normalize the property name */
5153 			propname = zpool_prop_to_name(prop);
5154 			proptype = zpool_prop_get_type(prop);
5155 
5156 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5157 				ASSERT(proptype == PROP_TYPE_STRING);
5158 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5159 				VERIFY(zap_update(mos,
5160 				    spa->spa_pool_props_object, propname,
5161 				    1, strlen(strval) + 1, strval, tx) == 0);
5162 
5163 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5164 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5165 
5166 				if (proptype == PROP_TYPE_INDEX) {
5167 					const char *unused;
5168 					VERIFY(zpool_prop_index_to_string(
5169 					    prop, intval, &unused) == 0);
5170 				}
5171 				VERIFY(zap_update(mos,
5172 				    spa->spa_pool_props_object, propname,
5173 				    8, 1, &intval, tx) == 0);
5174 			} else {
5175 				ASSERT(0); /* not allowed */
5176 			}
5177 
5178 			switch (prop) {
5179 			case ZPOOL_PROP_DELEGATION:
5180 				spa->spa_delegation = intval;
5181 				break;
5182 			case ZPOOL_PROP_BOOTFS:
5183 				spa->spa_bootfs = intval;
5184 				break;
5185 			case ZPOOL_PROP_FAILUREMODE:
5186 				spa->spa_failmode = intval;
5187 				break;
5188 			case ZPOOL_PROP_AUTOEXPAND:
5189 				spa->spa_autoexpand = intval;
5190 				if (tx->tx_txg != TXG_INITIAL)
5191 					spa_async_request(spa,
5192 					    SPA_ASYNC_AUTOEXPAND);
5193 				break;
5194 			case ZPOOL_PROP_DEDUPDITTO:
5195 				spa->spa_dedup_ditto = intval;
5196 				break;
5197 			default:
5198 				break;
5199 			}
5200 		}
5201 
5202 		/* log internal history if this is not a zpool create */
5203 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5204 		    tx->tx_txg != TXG_INITIAL) {
5205 			spa_history_log_internal(LOG_POOL_PROPSET,
5206 			    spa, tx, "%s %lld %s",
5207 			    nvpair_name(elem), intval, spa_name(spa));
5208 		}
5209 	}
5210 
5211 	mutex_exit(&spa->spa_props_lock);
5212 }
5213 
5214 /*
5215  * Perform one-time upgrade on-disk changes.  spa_version() does not
5216  * reflect the new version this txg, so there must be no changes this
5217  * txg to anything that the upgrade code depends on after it executes.
5218  * Therefore this must be called after dsl_pool_sync() does the sync
5219  * tasks.
5220  */
5221 static void
5222 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5223 {
5224 	dsl_pool_t *dp = spa->spa_dsl_pool;
5225 
5226 	ASSERT(spa->spa_sync_pass == 1);
5227 
5228 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5229 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5230 		dsl_pool_create_origin(dp, tx);
5231 
5232 		/* Keeping the origin open increases spa_minref */
5233 		spa->spa_minref += 3;
5234 	}
5235 
5236 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5237 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5238 		dsl_pool_upgrade_clones(dp, tx);
5239 	}
5240 
5241 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5242 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5243 		dsl_pool_upgrade_dir_clones(dp, tx);
5244 
5245 		/* Keeping the freedir open increases spa_minref */
5246 		spa->spa_minref += 3;
5247 	}
5248 }
5249 
5250 /*
5251  * Sync the specified transaction group.  New blocks may be dirtied as
5252  * part of the process, so we iterate until it converges.
5253  */
5254 void
5255 spa_sync(spa_t *spa, uint64_t txg)
5256 {
5257 	dsl_pool_t *dp = spa->spa_dsl_pool;
5258 	objset_t *mos = spa->spa_meta_objset;
5259 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5260 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5261 	vdev_t *rvd = spa->spa_root_vdev;
5262 	vdev_t *vd;
5263 	dmu_tx_t *tx;
5264 	int error;
5265 
5266 	/*
5267 	 * Lock out configuration changes.
5268 	 */
5269 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5270 
5271 	spa->spa_syncing_txg = txg;
5272 	spa->spa_sync_pass = 0;
5273 
5274 	/*
5275 	 * If there are any pending vdev state changes, convert them
5276 	 * into config changes that go out with this transaction group.
5277 	 */
5278 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5279 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5280 		/*
5281 		 * We need the write lock here because, for aux vdevs,
5282 		 * calling vdev_config_dirty() modifies sav_config.
5283 		 * This is ugly and will become unnecessary when we
5284 		 * eliminate the aux vdev wart by integrating all vdevs
5285 		 * into the root vdev tree.
5286 		 */
5287 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5288 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5289 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5290 			vdev_state_clean(vd);
5291 			vdev_config_dirty(vd);
5292 		}
5293 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5294 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5295 	}
5296 	spa_config_exit(spa, SCL_STATE, FTAG);
5297 
5298 	tx = dmu_tx_create_assigned(dp, txg);
5299 
5300 	/*
5301 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5302 	 * set spa_deflate if we have no raid-z vdevs.
5303 	 */
5304 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5305 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5306 		int i;
5307 
5308 		for (i = 0; i < rvd->vdev_children; i++) {
5309 			vd = rvd->vdev_child[i];
5310 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5311 				break;
5312 		}
5313 		if (i == rvd->vdev_children) {
5314 			spa->spa_deflate = TRUE;
5315 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5316 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5317 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5318 		}
5319 	}
5320 
5321 	/*
5322 	 * If anything has changed in this txg, or if someone is waiting
5323 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5324 	 * deferred frees from the previous txg.  If not, leave them
5325 	 * alone so that we don't generate work on an otherwise idle
5326 	 * system.
5327 	 */
5328 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5329 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5330 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5331 	    ((dsl_scan_active(dp->dp_scan) ||
5332 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5333 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5334 		VERIFY3U(bpobj_iterate(defer_bpo,
5335 		    spa_free_sync_cb, zio, tx), ==, 0);
5336 		VERIFY3U(zio_wait(zio), ==, 0);
5337 	}
5338 
5339 	/*
5340 	 * Iterate to convergence.
5341 	 */
5342 	do {
5343 		int pass = ++spa->spa_sync_pass;
5344 
5345 		spa_sync_config_object(spa, tx);
5346 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5347 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5348 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5349 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5350 		spa_errlog_sync(spa, txg);
5351 		dsl_pool_sync(dp, txg);
5352 
5353 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5354 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5355 			bplist_iterate(free_bpl, spa_free_sync_cb,
5356 			    zio, tx);
5357 			VERIFY(zio_wait(zio) == 0);
5358 		} else {
5359 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5360 			    defer_bpo, tx);
5361 		}
5362 
5363 		ddt_sync(spa, txg);
5364 		dsl_scan_sync(dp, tx);
5365 
5366 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5367 			vdev_sync(vd, txg);
5368 
5369 		if (pass == 1)
5370 			spa_sync_upgrades(spa, tx);
5371 
5372 	} while (dmu_objset_is_dirty(mos, txg));
5373 
5374 	/*
5375 	 * Rewrite the vdev configuration (which includes the uberblock)
5376 	 * to commit the transaction group.
5377 	 *
5378 	 * If there are no dirty vdevs, we sync the uberblock to a few
5379 	 * random top-level vdevs that are known to be visible in the
5380 	 * config cache (see spa_vdev_add() for a complete description).
5381 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5382 	 */
5383 	for (;;) {
5384 		/*
5385 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5386 		 * while we're attempting to write the vdev labels.
5387 		 */
5388 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5389 
5390 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5391 			vdev_t *svd[SPA_DVAS_PER_BP];
5392 			int svdcount = 0;
5393 			int children = rvd->vdev_children;
5394 			int c0 = spa_get_random(children);
5395 
5396 			for (int c = 0; c < children; c++) {
5397 				vd = rvd->vdev_child[(c0 + c) % children];
5398 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5399 					continue;
5400 				svd[svdcount++] = vd;
5401 				if (svdcount == SPA_DVAS_PER_BP)
5402 					break;
5403 			}
5404 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5405 			if (error != 0)
5406 				error = vdev_config_sync(svd, svdcount, txg,
5407 				    B_TRUE);
5408 		} else {
5409 			error = vdev_config_sync(rvd->vdev_child,
5410 			    rvd->vdev_children, txg, B_FALSE);
5411 			if (error != 0)
5412 				error = vdev_config_sync(rvd->vdev_child,
5413 				    rvd->vdev_children, txg, B_TRUE);
5414 		}
5415 
5416 		spa_config_exit(spa, SCL_STATE, FTAG);
5417 
5418 		if (error == 0)
5419 			break;
5420 		zio_suspend(spa, NULL);
5421 		zio_resume_wait(spa);
5422 	}
5423 	dmu_tx_commit(tx);
5424 
5425 	/*
5426 	 * Clear the dirty config list.
5427 	 */
5428 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5429 		vdev_config_clean(vd);
5430 
5431 	/*
5432 	 * Now that the new config has synced transactionally,
5433 	 * let it become visible to the config cache.
5434 	 */
5435 	if (spa->spa_config_syncing != NULL) {
5436 		spa_config_set(spa, spa->spa_config_syncing);
5437 		spa->spa_config_txg = txg;
5438 		spa->spa_config_syncing = NULL;
5439 	}
5440 
5441 	spa->spa_ubsync = spa->spa_uberblock;
5442 
5443 	dsl_pool_sync_done(dp, txg);
5444 
5445 	/*
5446 	 * Update usable space statistics.
5447 	 */
5448 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5449 		vdev_sync_done(vd, txg);
5450 
5451 	spa_update_dspace(spa);
5452 
5453 	/*
5454 	 * It had better be the case that we didn't dirty anything
5455 	 * since vdev_config_sync().
5456 	 */
5457 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5458 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5459 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5460 
5461 	spa->spa_sync_pass = 0;
5462 
5463 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5464 
5465 	spa_handle_ignored_writes(spa);
5466 
5467 	/*
5468 	 * If any async tasks have been requested, kick them off.
5469 	 */
5470 	spa_async_dispatch(spa);
5471 }
5472 
5473 /*
5474  * Sync all pools.  We don't want to hold the namespace lock across these
5475  * operations, so we take a reference on the spa_t and drop the lock during the
5476  * sync.
5477  */
5478 void
5479 spa_sync_allpools(void)
5480 {
5481 	spa_t *spa = NULL;
5482 	mutex_enter(&spa_namespace_lock);
5483 	while ((spa = spa_next(spa)) != NULL) {
5484 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
5485 			continue;
5486 		spa_open_ref(spa, FTAG);
5487 		mutex_exit(&spa_namespace_lock);
5488 		txg_wait_synced(spa_get_dsl(spa), 0);
5489 		mutex_enter(&spa_namespace_lock);
5490 		spa_close(spa, FTAG);
5491 	}
5492 	mutex_exit(&spa_namespace_lock);
5493 }
5494 
5495 /*
5496  * ==========================================================================
5497  * Miscellaneous routines
5498  * ==========================================================================
5499  */
5500 
5501 /*
5502  * Remove all pools in the system.
5503  */
5504 void
5505 spa_evict_all(void)
5506 {
5507 	spa_t *spa;
5508 
5509 	/*
5510 	 * Remove all cached state.  All pools should be closed now,
5511 	 * so every spa in the AVL tree should be unreferenced.
5512 	 */
5513 	mutex_enter(&spa_namespace_lock);
5514 	while ((spa = spa_next(NULL)) != NULL) {
5515 		/*
5516 		 * Stop async tasks.  The async thread may need to detach
5517 		 * a device that's been replaced, which requires grabbing
5518 		 * spa_namespace_lock, so we must drop it here.
5519 		 */
5520 		spa_open_ref(spa, FTAG);
5521 		mutex_exit(&spa_namespace_lock);
5522 		spa_async_suspend(spa);
5523 		mutex_enter(&spa_namespace_lock);
5524 		spa_close(spa, FTAG);
5525 
5526 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5527 			spa_unload(spa);
5528 			spa_deactivate(spa);
5529 		}
5530 		spa_remove(spa);
5531 	}
5532 	mutex_exit(&spa_namespace_lock);
5533 }
5534 
5535 vdev_t *
5536 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5537 {
5538 	vdev_t *vd;
5539 	int i;
5540 
5541 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5542 		return (vd);
5543 
5544 	if (aux) {
5545 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5546 			vd = spa->spa_l2cache.sav_vdevs[i];
5547 			if (vd->vdev_guid == guid)
5548 				return (vd);
5549 		}
5550 
5551 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5552 			vd = spa->spa_spares.sav_vdevs[i];
5553 			if (vd->vdev_guid == guid)
5554 				return (vd);
5555 		}
5556 	}
5557 
5558 	return (NULL);
5559 }
5560 
5561 void
5562 spa_upgrade(spa_t *spa, uint64_t version)
5563 {
5564 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5565 
5566 	/*
5567 	 * This should only be called for a non-faulted pool, and since a
5568 	 * future version would result in an unopenable pool, this shouldn't be
5569 	 * possible.
5570 	 */
5571 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5572 	ASSERT(version >= spa->spa_uberblock.ub_version);
5573 
5574 	spa->spa_uberblock.ub_version = version;
5575 	vdev_config_dirty(spa->spa_root_vdev);
5576 
5577 	spa_config_exit(spa, SCL_ALL, FTAG);
5578 
5579 	txg_wait_synced(spa_get_dsl(spa), 0);
5580 }
5581 
5582 boolean_t
5583 spa_has_spare(spa_t *spa, uint64_t guid)
5584 {
5585 	int i;
5586 	uint64_t spareguid;
5587 	spa_aux_vdev_t *sav = &spa->spa_spares;
5588 
5589 	for (i = 0; i < sav->sav_count; i++)
5590 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5591 			return (B_TRUE);
5592 
5593 	for (i = 0; i < sav->sav_npending; i++) {
5594 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5595 		    &spareguid) == 0 && spareguid == guid)
5596 			return (B_TRUE);
5597 	}
5598 
5599 	return (B_FALSE);
5600 }
5601 
5602 /*
5603  * Check if a pool has an active shared spare device.
5604  * Note: reference count of an active spare is 2, as a spare and as a replace
5605  */
5606 static boolean_t
5607 spa_has_active_shared_spare(spa_t *spa)
5608 {
5609 	int i, refcnt;
5610 	uint64_t pool;
5611 	spa_aux_vdev_t *sav = &spa->spa_spares;
5612 
5613 	for (i = 0; i < sav->sav_count; i++) {
5614 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5615 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5616 		    refcnt > 2)
5617 			return (B_TRUE);
5618 	}
5619 
5620 	return (B_FALSE);
5621 }
5622 
5623 /*
5624  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5625  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5626  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5627  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5628  * or zdb as real changes.
5629  */
5630 void
5631 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5632 {
5633 #ifdef _KERNEL
5634 	sysevent_t		*ev;
5635 	sysevent_attr_list_t	*attr = NULL;
5636 	sysevent_value_t	value;
5637 	sysevent_id_t		eid;
5638 
5639 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5640 	    SE_SLEEP);
5641 
5642 	value.value_type = SE_DATA_TYPE_STRING;
5643 	value.value.sv_string = spa_name(spa);
5644 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5645 		goto done;
5646 
5647 	value.value_type = SE_DATA_TYPE_UINT64;
5648 	value.value.sv_uint64 = spa_guid(spa);
5649 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5650 		goto done;
5651 
5652 	if (vd) {
5653 		value.value_type = SE_DATA_TYPE_UINT64;
5654 		value.value.sv_uint64 = vd->vdev_guid;
5655 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5656 		    SE_SLEEP) != 0)
5657 			goto done;
5658 
5659 		if (vd->vdev_path) {
5660 			value.value_type = SE_DATA_TYPE_STRING;
5661 			value.value.sv_string = vd->vdev_path;
5662 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5663 			    &value, SE_SLEEP) != 0)
5664 				goto done;
5665 		}
5666 	}
5667 
5668 	if (sysevent_attach_attributes(ev, attr) != 0)
5669 		goto done;
5670 	attr = NULL;
5671 
5672 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5673 
5674 done:
5675 	if (attr)
5676 		sysevent_free_attr(attr);
5677 	sysevent_free(ev);
5678 #endif
5679 }
5680