xref: /illumos-gate/usr/src/uts/common/fs/zfs/spa.c (revision 0f7643c7376dd69a08acbfc9d1d7d548b10c846a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  * Copyright 2013 Saso Kiselkov. All rights reserved.
28  * Copyright (c) 2014 Integros [integros.com]
29  */
30 
31 /*
32  * SPA: Storage Pool Allocator
33  *
34  * This file contains all the routines used when modifying on-disk SPA state.
35  * This includes opening, importing, destroying, exporting a pool, and syncing a
36  * pool.
37  */
38 
39 #include <sys/zfs_context.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/spa_impl.h>
42 #include <sys/zio.h>
43 #include <sys/zio_checksum.h>
44 #include <sys/dmu.h>
45 #include <sys/dmu_tx.h>
46 #include <sys/zap.h>
47 #include <sys/zil.h>
48 #include <sys/ddt.h>
49 #include <sys/vdev_impl.h>
50 #include <sys/metaslab.h>
51 #include <sys/metaslab_impl.h>
52 #include <sys/uberblock_impl.h>
53 #include <sys/txg.h>
54 #include <sys/avl.h>
55 #include <sys/dmu_traverse.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/unique.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_dataset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_prop.h>
62 #include <sys/dsl_synctask.h>
63 #include <sys/fs/zfs.h>
64 #include <sys/arc.h>
65 #include <sys/callb.h>
66 #include <sys/systeminfo.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/dsl_scan.h>
70 #include <sys/zfeature.h>
71 #include <sys/dsl_destroy.h>
72 
73 #ifdef	_KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif	/* _KERNEL */
81 
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84 
85 /*
86  * The interval, in seconds, at which failed configuration cache file writes
87  * should be retried.
88  */
89 static int zfs_ccw_retry_interval = 300;
90 
91 typedef enum zti_modes {
92 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
93 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
94 	ZTI_MODE_NULL,			/* don't create a taskq */
95 	ZTI_NMODES
96 } zti_modes_t;
97 
98 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
99 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
100 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
101 
102 #define	ZTI_N(n)	ZTI_P(n, 1)
103 #define	ZTI_ONE		ZTI_N(1)
104 
105 typedef struct zio_taskq_info {
106 	zti_modes_t zti_mode;
107 	uint_t zti_value;
108 	uint_t zti_count;
109 } zio_taskq_info_t;
110 
111 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
112 	"issue", "issue_high", "intr", "intr_high"
113 };
114 
115 /*
116  * This table defines the taskq settings for each ZFS I/O type. When
117  * initializing a pool, we use this table to create an appropriately sized
118  * taskq. Some operations are low volume and therefore have a small, static
119  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
120  * macros. Other operations process a large amount of data; the ZTI_BATCH
121  * macro causes us to create a taskq oriented for throughput. Some operations
122  * are so high frequency and short-lived that the taskq itself can become a a
123  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
124  * additional degree of parallelism specified by the number of threads per-
125  * taskq and the number of taskqs; when dispatching an event in this case, the
126  * particular taskq is chosen at random.
127  *
128  * The different taskq priorities are to handle the different contexts (issue
129  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
130  * need to be handled with minimum delay.
131  */
132 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
133 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
134 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
135 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
136 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
137 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
138 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
139 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
140 };
141 
142 static void spa_sync_version(void *arg, dmu_tx_t *tx);
143 static void spa_sync_props(void *arg, dmu_tx_t *tx);
144 static boolean_t spa_has_active_shared_spare(spa_t *spa);
145 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
146     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
147     char **ereport);
148 static void spa_vdev_resilver_done(spa_t *spa);
149 
150 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
151 id_t		zio_taskq_psrset_bind = PS_NONE;
152 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
153 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
154 
155 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
156 extern int	zfs_sync_pass_deferred_free;
157 
158 /*
159  * This (illegal) pool name is used when temporarily importing a spa_t in order
160  * to get the vdev stats associated with the imported devices.
161  */
162 #define	TRYIMPORT_NAME	"$import"
163 
164 /*
165  * ==========================================================================
166  * SPA properties routines
167  * ==========================================================================
168  */
169 
170 /*
171  * Add a (source=src, propname=propval) list to an nvlist.
172  */
173 static void
174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
175     uint64_t intval, zprop_source_t src)
176 {
177 	const char *propname = zpool_prop_to_name(prop);
178 	nvlist_t *propval;
179 
180 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
181 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
182 
183 	if (strval != NULL)
184 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
185 	else
186 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
187 
188 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
189 	nvlist_free(propval);
190 }
191 
192 /*
193  * Get property values from the spa configuration.
194  */
195 static void
196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
197 {
198 	vdev_t *rvd = spa->spa_root_vdev;
199 	dsl_pool_t *pool = spa->spa_dsl_pool;
200 	uint64_t size, alloc, cap, version;
201 	zprop_source_t src = ZPROP_SRC_NONE;
202 	spa_config_dirent_t *dp;
203 	metaslab_class_t *mc = spa_normal_class(spa);
204 
205 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
206 
207 	if (rvd != NULL) {
208 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
209 		size = metaslab_class_get_space(spa_normal_class(spa));
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
211 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
212 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
214 		    size - alloc, src);
215 
216 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
217 		    metaslab_class_fragmentation(mc), src);
218 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
219 		    metaslab_class_expandable_space(mc), src);
220 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 		    (spa_mode(spa) == FREAD), src);
222 
223 		cap = (size == 0) ? 0 : (alloc * 100 / size);
224 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 		    ddt_get_pool_dedup_ratio(spa), src);
228 
229 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 		    rvd->vdev_state, src);
231 
232 		version = spa_version(spa);
233 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 			src = ZPROP_SRC_DEFAULT;
235 		else
236 			src = ZPROP_SRC_LOCAL;
237 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 	}
239 
240 	if (pool != NULL) {
241 		/*
242 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
243 		 * when opening pools before this version freedir will be NULL.
244 		 */
245 		if (pool->dp_free_dir != NULL) {
246 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
247 			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
248 			    src);
249 		} else {
250 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 			    NULL, 0, src);
252 		}
253 
254 		if (pool->dp_leak_dir != NULL) {
255 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
256 			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
257 			    src);
258 		} else {
259 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
260 			    NULL, 0, src);
261 		}
262 	}
263 
264 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
265 
266 	if (spa->spa_comment != NULL) {
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
268 		    0, ZPROP_SRC_LOCAL);
269 	}
270 
271 	if (spa->spa_root != NULL)
272 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
273 		    0, ZPROP_SRC_LOCAL);
274 
275 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
276 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
278 	} else {
279 		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 	}
282 
283 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
284 		if (dp->scd_path == NULL) {
285 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 			    "none", 0, ZPROP_SRC_LOCAL);
287 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
288 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
290 		}
291 	}
292 }
293 
294 /*
295  * Get zpool property values.
296  */
297 int
298 spa_prop_get(spa_t *spa, nvlist_t **nvp)
299 {
300 	objset_t *mos = spa->spa_meta_objset;
301 	zap_cursor_t zc;
302 	zap_attribute_t za;
303 	int err;
304 
305 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
306 
307 	mutex_enter(&spa->spa_props_lock);
308 
309 	/*
310 	 * Get properties from the spa config.
311 	 */
312 	spa_prop_get_config(spa, nvp);
313 
314 	/* If no pool property object, no more prop to get. */
315 	if (mos == NULL || spa->spa_pool_props_object == 0) {
316 		mutex_exit(&spa->spa_props_lock);
317 		return (0);
318 	}
319 
320 	/*
321 	 * Get properties from the MOS pool property object.
322 	 */
323 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
324 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
325 	    zap_cursor_advance(&zc)) {
326 		uint64_t intval = 0;
327 		char *strval = NULL;
328 		zprop_source_t src = ZPROP_SRC_DEFAULT;
329 		zpool_prop_t prop;
330 
331 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
332 			continue;
333 
334 		switch (za.za_integer_length) {
335 		case 8:
336 			/* integer property */
337 			if (za.za_first_integer !=
338 			    zpool_prop_default_numeric(prop))
339 				src = ZPROP_SRC_LOCAL;
340 
341 			if (prop == ZPOOL_PROP_BOOTFS) {
342 				dsl_pool_t *dp;
343 				dsl_dataset_t *ds = NULL;
344 
345 				dp = spa_get_dsl(spa);
346 				dsl_pool_config_enter(dp, FTAG);
347 				if (err = dsl_dataset_hold_obj(dp,
348 				    za.za_first_integer, FTAG, &ds)) {
349 					dsl_pool_config_exit(dp, FTAG);
350 					break;
351 				}
352 
353 				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
354 				    KM_SLEEP);
355 				dsl_dataset_name(ds, strval);
356 				dsl_dataset_rele(ds, FTAG);
357 				dsl_pool_config_exit(dp, FTAG);
358 			} else {
359 				strval = NULL;
360 				intval = za.za_first_integer;
361 			}
362 
363 			spa_prop_add_list(*nvp, prop, strval, intval, src);
364 
365 			if (strval != NULL)
366 				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
367 
368 			break;
369 
370 		case 1:
371 			/* string property */
372 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
373 			err = zap_lookup(mos, spa->spa_pool_props_object,
374 			    za.za_name, 1, za.za_num_integers, strval);
375 			if (err) {
376 				kmem_free(strval, za.za_num_integers);
377 				break;
378 			}
379 			spa_prop_add_list(*nvp, prop, strval, 0, src);
380 			kmem_free(strval, za.za_num_integers);
381 			break;
382 
383 		default:
384 			break;
385 		}
386 	}
387 	zap_cursor_fini(&zc);
388 	mutex_exit(&spa->spa_props_lock);
389 out:
390 	if (err && err != ENOENT) {
391 		nvlist_free(*nvp);
392 		*nvp = NULL;
393 		return (err);
394 	}
395 
396 	return (0);
397 }
398 
399 /*
400  * Validate the given pool properties nvlist and modify the list
401  * for the property values to be set.
402  */
403 static int
404 spa_prop_validate(spa_t *spa, nvlist_t *props)
405 {
406 	nvpair_t *elem;
407 	int error = 0, reset_bootfs = 0;
408 	uint64_t objnum = 0;
409 	boolean_t has_feature = B_FALSE;
410 
411 	elem = NULL;
412 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
413 		uint64_t intval;
414 		char *strval, *slash, *check, *fname;
415 		const char *propname = nvpair_name(elem);
416 		zpool_prop_t prop = zpool_name_to_prop(propname);
417 
418 		switch (prop) {
419 		case ZPROP_INVAL:
420 			if (!zpool_prop_feature(propname)) {
421 				error = SET_ERROR(EINVAL);
422 				break;
423 			}
424 
425 			/*
426 			 * Sanitize the input.
427 			 */
428 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
429 				error = SET_ERROR(EINVAL);
430 				break;
431 			}
432 
433 			if (nvpair_value_uint64(elem, &intval) != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			if (intval != 0) {
439 				error = SET_ERROR(EINVAL);
440 				break;
441 			}
442 
443 			fname = strchr(propname, '@') + 1;
444 			if (zfeature_lookup_name(fname, NULL) != 0) {
445 				error = SET_ERROR(EINVAL);
446 				break;
447 			}
448 
449 			has_feature = B_TRUE;
450 			break;
451 
452 		case ZPOOL_PROP_VERSION:
453 			error = nvpair_value_uint64(elem, &intval);
454 			if (!error &&
455 			    (intval < spa_version(spa) ||
456 			    intval > SPA_VERSION_BEFORE_FEATURES ||
457 			    has_feature))
458 				error = SET_ERROR(EINVAL);
459 			break;
460 
461 		case ZPOOL_PROP_DELEGATION:
462 		case ZPOOL_PROP_AUTOREPLACE:
463 		case ZPOOL_PROP_LISTSNAPS:
464 		case ZPOOL_PROP_AUTOEXPAND:
465 			error = nvpair_value_uint64(elem, &intval);
466 			if (!error && intval > 1)
467 				error = SET_ERROR(EINVAL);
468 			break;
469 
470 		case ZPOOL_PROP_BOOTFS:
471 			/*
472 			 * If the pool version is less than SPA_VERSION_BOOTFS,
473 			 * or the pool is still being created (version == 0),
474 			 * the bootfs property cannot be set.
475 			 */
476 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
477 				error = SET_ERROR(ENOTSUP);
478 				break;
479 			}
480 
481 			/*
482 			 * Make sure the vdev config is bootable
483 			 */
484 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
485 				error = SET_ERROR(ENOTSUP);
486 				break;
487 			}
488 
489 			reset_bootfs = 1;
490 
491 			error = nvpair_value_string(elem, &strval);
492 
493 			if (!error) {
494 				objset_t *os;
495 				uint64_t propval;
496 
497 				if (strval == NULL || strval[0] == '\0') {
498 					objnum = zpool_prop_default_numeric(
499 					    ZPOOL_PROP_BOOTFS);
500 					break;
501 				}
502 
503 				if (error = dmu_objset_hold(strval, FTAG, &os))
504 					break;
505 
506 				/*
507 				 * Must be ZPL, and its property settings
508 				 * must be supported by GRUB (compression
509 				 * is not gzip, and large blocks are not used).
510 				 */
511 
512 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
513 					error = SET_ERROR(ENOTSUP);
514 				} else if ((error =
515 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
516 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
517 				    &propval)) == 0 &&
518 				    !BOOTFS_COMPRESS_VALID(propval)) {
519 					error = SET_ERROR(ENOTSUP);
520 				} else if ((error =
521 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
522 				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
523 				    &propval)) == 0 &&
524 				    propval > SPA_OLD_MAXBLOCKSIZE) {
525 					error = SET_ERROR(ENOTSUP);
526 				} else {
527 					objnum = dmu_objset_id(os);
528 				}
529 				dmu_objset_rele(os, FTAG);
530 			}
531 			break;
532 
533 		case ZPOOL_PROP_FAILUREMODE:
534 			error = nvpair_value_uint64(elem, &intval);
535 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
536 			    intval > ZIO_FAILURE_MODE_PANIC))
537 				error = SET_ERROR(EINVAL);
538 
539 			/*
540 			 * This is a special case which only occurs when
541 			 * the pool has completely failed. This allows
542 			 * the user to change the in-core failmode property
543 			 * without syncing it out to disk (I/Os might
544 			 * currently be blocked). We do this by returning
545 			 * EIO to the caller (spa_prop_set) to trick it
546 			 * into thinking we encountered a property validation
547 			 * error.
548 			 */
549 			if (!error && spa_suspended(spa)) {
550 				spa->spa_failmode = intval;
551 				error = SET_ERROR(EIO);
552 			}
553 			break;
554 
555 		case ZPOOL_PROP_CACHEFILE:
556 			if ((error = nvpair_value_string(elem, &strval)) != 0)
557 				break;
558 
559 			if (strval[0] == '\0')
560 				break;
561 
562 			if (strcmp(strval, "none") == 0)
563 				break;
564 
565 			if (strval[0] != '/') {
566 				error = SET_ERROR(EINVAL);
567 				break;
568 			}
569 
570 			slash = strrchr(strval, '/');
571 			ASSERT(slash != NULL);
572 
573 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
574 			    strcmp(slash, "/..") == 0)
575 				error = SET_ERROR(EINVAL);
576 			break;
577 
578 		case ZPOOL_PROP_COMMENT:
579 			if ((error = nvpair_value_string(elem, &strval)) != 0)
580 				break;
581 			for (check = strval; *check != '\0'; check++) {
582 				/*
583 				 * The kernel doesn't have an easy isprint()
584 				 * check.  For this kernel check, we merely
585 				 * check ASCII apart from DEL.  Fix this if
586 				 * there is an easy-to-use kernel isprint().
587 				 */
588 				if (*check >= 0x7f) {
589 					error = SET_ERROR(EINVAL);
590 					break;
591 				}
592 			}
593 			if (strlen(strval) > ZPROP_MAX_COMMENT)
594 				error = E2BIG;
595 			break;
596 
597 		case ZPOOL_PROP_DEDUPDITTO:
598 			if (spa_version(spa) < SPA_VERSION_DEDUP)
599 				error = SET_ERROR(ENOTSUP);
600 			else
601 				error = nvpair_value_uint64(elem, &intval);
602 			if (error == 0 &&
603 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
604 				error = SET_ERROR(EINVAL);
605 			break;
606 		}
607 
608 		if (error)
609 			break;
610 	}
611 
612 	if (!error && reset_bootfs) {
613 		error = nvlist_remove(props,
614 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
615 
616 		if (!error) {
617 			error = nvlist_add_uint64(props,
618 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
619 		}
620 	}
621 
622 	return (error);
623 }
624 
625 void
626 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
627 {
628 	char *cachefile;
629 	spa_config_dirent_t *dp;
630 
631 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
632 	    &cachefile) != 0)
633 		return;
634 
635 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
636 	    KM_SLEEP);
637 
638 	if (cachefile[0] == '\0')
639 		dp->scd_path = spa_strdup(spa_config_path);
640 	else if (strcmp(cachefile, "none") == 0)
641 		dp->scd_path = NULL;
642 	else
643 		dp->scd_path = spa_strdup(cachefile);
644 
645 	list_insert_head(&spa->spa_config_list, dp);
646 	if (need_sync)
647 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
648 }
649 
650 int
651 spa_prop_set(spa_t *spa, nvlist_t *nvp)
652 {
653 	int error;
654 	nvpair_t *elem = NULL;
655 	boolean_t need_sync = B_FALSE;
656 
657 	if ((error = spa_prop_validate(spa, nvp)) != 0)
658 		return (error);
659 
660 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
661 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
662 
663 		if (prop == ZPOOL_PROP_CACHEFILE ||
664 		    prop == ZPOOL_PROP_ALTROOT ||
665 		    prop == ZPOOL_PROP_READONLY)
666 			continue;
667 
668 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
669 			uint64_t ver;
670 
671 			if (prop == ZPOOL_PROP_VERSION) {
672 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
673 			} else {
674 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
675 				ver = SPA_VERSION_FEATURES;
676 				need_sync = B_TRUE;
677 			}
678 
679 			/* Save time if the version is already set. */
680 			if (ver == spa_version(spa))
681 				continue;
682 
683 			/*
684 			 * In addition to the pool directory object, we might
685 			 * create the pool properties object, the features for
686 			 * read object, the features for write object, or the
687 			 * feature descriptions object.
688 			 */
689 			error = dsl_sync_task(spa->spa_name, NULL,
690 			    spa_sync_version, &ver,
691 			    6, ZFS_SPACE_CHECK_RESERVED);
692 			if (error)
693 				return (error);
694 			continue;
695 		}
696 
697 		need_sync = B_TRUE;
698 		break;
699 	}
700 
701 	if (need_sync) {
702 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
703 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
704 	}
705 
706 	return (0);
707 }
708 
709 /*
710  * If the bootfs property value is dsobj, clear it.
711  */
712 void
713 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
714 {
715 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
716 		VERIFY(zap_remove(spa->spa_meta_objset,
717 		    spa->spa_pool_props_object,
718 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
719 		spa->spa_bootfs = 0;
720 	}
721 }
722 
723 /*ARGSUSED*/
724 static int
725 spa_change_guid_check(void *arg, dmu_tx_t *tx)
726 {
727 	uint64_t *newguid = arg;
728 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 	vdev_t *rvd = spa->spa_root_vdev;
730 	uint64_t vdev_state;
731 
732 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
733 	vdev_state = rvd->vdev_state;
734 	spa_config_exit(spa, SCL_STATE, FTAG);
735 
736 	if (vdev_state != VDEV_STATE_HEALTHY)
737 		return (SET_ERROR(ENXIO));
738 
739 	ASSERT3U(spa_guid(spa), !=, *newguid);
740 
741 	return (0);
742 }
743 
744 static void
745 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
746 {
747 	uint64_t *newguid = arg;
748 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
749 	uint64_t oldguid;
750 	vdev_t *rvd = spa->spa_root_vdev;
751 
752 	oldguid = spa_guid(spa);
753 
754 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755 	rvd->vdev_guid = *newguid;
756 	rvd->vdev_guid_sum += (*newguid - oldguid);
757 	vdev_config_dirty(rvd);
758 	spa_config_exit(spa, SCL_STATE, FTAG);
759 
760 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
761 	    oldguid, *newguid);
762 }
763 
764 /*
765  * Change the GUID for the pool.  This is done so that we can later
766  * re-import a pool built from a clone of our own vdevs.  We will modify
767  * the root vdev's guid, our own pool guid, and then mark all of our
768  * vdevs dirty.  Note that we must make sure that all our vdevs are
769  * online when we do this, or else any vdevs that weren't present
770  * would be orphaned from our pool.  We are also going to issue a
771  * sysevent to update any watchers.
772  */
773 int
774 spa_change_guid(spa_t *spa)
775 {
776 	int error;
777 	uint64_t guid;
778 
779 	mutex_enter(&spa->spa_vdev_top_lock);
780 	mutex_enter(&spa_namespace_lock);
781 	guid = spa_generate_guid(NULL);
782 
783 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
784 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
785 
786 	if (error == 0) {
787 		spa_config_sync(spa, B_FALSE, B_TRUE);
788 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
789 	}
790 
791 	mutex_exit(&spa_namespace_lock);
792 	mutex_exit(&spa->spa_vdev_top_lock);
793 
794 	return (error);
795 }
796 
797 /*
798  * ==========================================================================
799  * SPA state manipulation (open/create/destroy/import/export)
800  * ==========================================================================
801  */
802 
803 static int
804 spa_error_entry_compare(const void *a, const void *b)
805 {
806 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
807 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
808 	int ret;
809 
810 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
811 	    sizeof (zbookmark_phys_t));
812 
813 	if (ret < 0)
814 		return (-1);
815 	else if (ret > 0)
816 		return (1);
817 	else
818 		return (0);
819 }
820 
821 /*
822  * Utility function which retrieves copies of the current logs and
823  * re-initializes them in the process.
824  */
825 void
826 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
827 {
828 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
829 
830 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
831 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
832 
833 	avl_create(&spa->spa_errlist_scrub,
834 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
835 	    offsetof(spa_error_entry_t, se_avl));
836 	avl_create(&spa->spa_errlist_last,
837 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
838 	    offsetof(spa_error_entry_t, se_avl));
839 }
840 
841 static void
842 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
843 {
844 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
845 	enum zti_modes mode = ztip->zti_mode;
846 	uint_t value = ztip->zti_value;
847 	uint_t count = ztip->zti_count;
848 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
849 	char name[32];
850 	uint_t flags = 0;
851 	boolean_t batch = B_FALSE;
852 
853 	if (mode == ZTI_MODE_NULL) {
854 		tqs->stqs_count = 0;
855 		tqs->stqs_taskq = NULL;
856 		return;
857 	}
858 
859 	ASSERT3U(count, >, 0);
860 
861 	tqs->stqs_count = count;
862 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
863 
864 	switch (mode) {
865 	case ZTI_MODE_FIXED:
866 		ASSERT3U(value, >=, 1);
867 		value = MAX(value, 1);
868 		break;
869 
870 	case ZTI_MODE_BATCH:
871 		batch = B_TRUE;
872 		flags |= TASKQ_THREADS_CPU_PCT;
873 		value = zio_taskq_batch_pct;
874 		break;
875 
876 	default:
877 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
878 		    "spa_activate()",
879 		    zio_type_name[t], zio_taskq_types[q], mode, value);
880 		break;
881 	}
882 
883 	for (uint_t i = 0; i < count; i++) {
884 		taskq_t *tq;
885 
886 		if (count > 1) {
887 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
888 			    zio_type_name[t], zio_taskq_types[q], i);
889 		} else {
890 			(void) snprintf(name, sizeof (name), "%s_%s",
891 			    zio_type_name[t], zio_taskq_types[q]);
892 		}
893 
894 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
895 			if (batch)
896 				flags |= TASKQ_DC_BATCH;
897 
898 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
899 			    spa->spa_proc, zio_taskq_basedc, flags);
900 		} else {
901 			pri_t pri = maxclsyspri;
902 			/*
903 			 * The write issue taskq can be extremely CPU
904 			 * intensive.  Run it at slightly lower priority
905 			 * than the other taskqs.
906 			 */
907 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
908 				pri--;
909 
910 			tq = taskq_create_proc(name, value, pri, 50,
911 			    INT_MAX, spa->spa_proc, flags);
912 		}
913 
914 		tqs->stqs_taskq[i] = tq;
915 	}
916 }
917 
918 static void
919 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920 {
921 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922 
923 	if (tqs->stqs_taskq == NULL) {
924 		ASSERT0(tqs->stqs_count);
925 		return;
926 	}
927 
928 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930 		taskq_destroy(tqs->stqs_taskq[i]);
931 	}
932 
933 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934 	tqs->stqs_taskq = NULL;
935 }
936 
937 /*
938  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939  * Note that a type may have multiple discrete taskqs to avoid lock contention
940  * on the taskq itself. In that case we choose which taskq at random by using
941  * the low bits of gethrtime().
942  */
943 void
944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946 {
947 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948 	taskq_t *tq;
949 
950 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951 	ASSERT3U(tqs->stqs_count, !=, 0);
952 
953 	if (tqs->stqs_count == 1) {
954 		tq = tqs->stqs_taskq[0];
955 	} else {
956 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957 	}
958 
959 	taskq_dispatch_ent(tq, func, arg, flags, ent);
960 }
961 
962 static void
963 spa_create_zio_taskqs(spa_t *spa)
964 {
965 	for (int t = 0; t < ZIO_TYPES; t++) {
966 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967 			spa_taskqs_init(spa, t, q);
968 		}
969 	}
970 }
971 
972 #ifdef _KERNEL
973 static void
974 spa_thread(void *arg)
975 {
976 	callb_cpr_t cprinfo;
977 
978 	spa_t *spa = arg;
979 	user_t *pu = PTOU(curproc);
980 
981 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
982 	    spa->spa_name);
983 
984 	ASSERT(curproc != &p0);
985 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
986 	    "zpool-%s", spa->spa_name);
987 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
988 
989 	/* bind this thread to the requested psrset */
990 	if (zio_taskq_psrset_bind != PS_NONE) {
991 		pool_lock();
992 		mutex_enter(&cpu_lock);
993 		mutex_enter(&pidlock);
994 		mutex_enter(&curproc->p_lock);
995 
996 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
997 		    0, NULL, NULL) == 0)  {
998 			curthread->t_bind_pset = zio_taskq_psrset_bind;
999 		} else {
1000 			cmn_err(CE_WARN,
1001 			    "Couldn't bind process for zfs pool \"%s\" to "
1002 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1003 		}
1004 
1005 		mutex_exit(&curproc->p_lock);
1006 		mutex_exit(&pidlock);
1007 		mutex_exit(&cpu_lock);
1008 		pool_unlock();
1009 	}
1010 
1011 	if (zio_taskq_sysdc) {
1012 		sysdc_thread_enter(curthread, 100, 0);
1013 	}
1014 
1015 	spa->spa_proc = curproc;
1016 	spa->spa_did = curthread->t_did;
1017 
1018 	spa_create_zio_taskqs(spa);
1019 
1020 	mutex_enter(&spa->spa_proc_lock);
1021 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1022 
1023 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1024 	cv_broadcast(&spa->spa_proc_cv);
1025 
1026 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1027 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1028 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1029 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1030 
1031 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1032 	spa->spa_proc_state = SPA_PROC_GONE;
1033 	spa->spa_proc = &p0;
1034 	cv_broadcast(&spa->spa_proc_cv);
1035 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1036 
1037 	mutex_enter(&curproc->p_lock);
1038 	lwp_exit();
1039 }
1040 #endif
1041 
1042 /*
1043  * Activate an uninitialized pool.
1044  */
1045 static void
1046 spa_activate(spa_t *spa, int mode)
1047 {
1048 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1049 
1050 	spa->spa_state = POOL_STATE_ACTIVE;
1051 	spa->spa_mode = mode;
1052 
1053 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1054 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1055 
1056 	/* Try to create a covering process */
1057 	mutex_enter(&spa->spa_proc_lock);
1058 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1059 	ASSERT(spa->spa_proc == &p0);
1060 	spa->spa_did = 0;
1061 
1062 	/* Only create a process if we're going to be around a while. */
1063 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1064 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1065 		    NULL, 0) == 0) {
1066 			spa->spa_proc_state = SPA_PROC_CREATED;
1067 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1068 				cv_wait(&spa->spa_proc_cv,
1069 				    &spa->spa_proc_lock);
1070 			}
1071 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1072 			ASSERT(spa->spa_proc != &p0);
1073 			ASSERT(spa->spa_did != 0);
1074 		} else {
1075 #ifdef _KERNEL
1076 			cmn_err(CE_WARN,
1077 			    "Couldn't create process for zfs pool \"%s\"\n",
1078 			    spa->spa_name);
1079 #endif
1080 		}
1081 	}
1082 	mutex_exit(&spa->spa_proc_lock);
1083 
1084 	/* If we didn't create a process, we need to create our taskqs. */
1085 	if (spa->spa_proc == &p0) {
1086 		spa_create_zio_taskqs(spa);
1087 	}
1088 
1089 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1090 	    offsetof(vdev_t, vdev_config_dirty_node));
1091 	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1092 	    offsetof(objset_t, os_evicting_node));
1093 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1094 	    offsetof(vdev_t, vdev_state_dirty_node));
1095 
1096 	txg_list_create(&spa->spa_vdev_txg_list,
1097 	    offsetof(struct vdev, vdev_txg_node));
1098 
1099 	avl_create(&spa->spa_errlist_scrub,
1100 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1101 	    offsetof(spa_error_entry_t, se_avl));
1102 	avl_create(&spa->spa_errlist_last,
1103 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1104 	    offsetof(spa_error_entry_t, se_avl));
1105 }
1106 
1107 /*
1108  * Opposite of spa_activate().
1109  */
1110 static void
1111 spa_deactivate(spa_t *spa)
1112 {
1113 	ASSERT(spa->spa_sync_on == B_FALSE);
1114 	ASSERT(spa->spa_dsl_pool == NULL);
1115 	ASSERT(spa->spa_root_vdev == NULL);
1116 	ASSERT(spa->spa_async_zio_root == NULL);
1117 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1118 
1119 	spa_evicting_os_wait(spa);
1120 
1121 	txg_list_destroy(&spa->spa_vdev_txg_list);
1122 
1123 	list_destroy(&spa->spa_config_dirty_list);
1124 	list_destroy(&spa->spa_evicting_os_list);
1125 	list_destroy(&spa->spa_state_dirty_list);
1126 
1127 	for (int t = 0; t < ZIO_TYPES; t++) {
1128 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1129 			spa_taskqs_fini(spa, t, q);
1130 		}
1131 	}
1132 
1133 	metaslab_class_destroy(spa->spa_normal_class);
1134 	spa->spa_normal_class = NULL;
1135 
1136 	metaslab_class_destroy(spa->spa_log_class);
1137 	spa->spa_log_class = NULL;
1138 
1139 	/*
1140 	 * If this was part of an import or the open otherwise failed, we may
1141 	 * still have errors left in the queues.  Empty them just in case.
1142 	 */
1143 	spa_errlog_drain(spa);
1144 
1145 	avl_destroy(&spa->spa_errlist_scrub);
1146 	avl_destroy(&spa->spa_errlist_last);
1147 
1148 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1149 
1150 	mutex_enter(&spa->spa_proc_lock);
1151 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1152 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1153 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1154 		cv_broadcast(&spa->spa_proc_cv);
1155 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1156 			ASSERT(spa->spa_proc != &p0);
1157 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1158 		}
1159 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1160 		spa->spa_proc_state = SPA_PROC_NONE;
1161 	}
1162 	ASSERT(spa->spa_proc == &p0);
1163 	mutex_exit(&spa->spa_proc_lock);
1164 
1165 	/*
1166 	 * We want to make sure spa_thread() has actually exited the ZFS
1167 	 * module, so that the module can't be unloaded out from underneath
1168 	 * it.
1169 	 */
1170 	if (spa->spa_did != 0) {
1171 		thread_join(spa->spa_did);
1172 		spa->spa_did = 0;
1173 	}
1174 }
1175 
1176 /*
1177  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1178  * will create all the necessary vdevs in the appropriate layout, with each vdev
1179  * in the CLOSED state.  This will prep the pool before open/creation/import.
1180  * All vdev validation is done by the vdev_alloc() routine.
1181  */
1182 static int
1183 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1184     uint_t id, int atype)
1185 {
1186 	nvlist_t **child;
1187 	uint_t children;
1188 	int error;
1189 
1190 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1191 		return (error);
1192 
1193 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1194 		return (0);
1195 
1196 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1197 	    &child, &children);
1198 
1199 	if (error == ENOENT)
1200 		return (0);
1201 
1202 	if (error) {
1203 		vdev_free(*vdp);
1204 		*vdp = NULL;
1205 		return (SET_ERROR(EINVAL));
1206 	}
1207 
1208 	for (int c = 0; c < children; c++) {
1209 		vdev_t *vd;
1210 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1211 		    atype)) != 0) {
1212 			vdev_free(*vdp);
1213 			*vdp = NULL;
1214 			return (error);
1215 		}
1216 	}
1217 
1218 	ASSERT(*vdp != NULL);
1219 
1220 	return (0);
1221 }
1222 
1223 /*
1224  * Opposite of spa_load().
1225  */
1226 static void
1227 spa_unload(spa_t *spa)
1228 {
1229 	int i;
1230 
1231 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1232 
1233 	/*
1234 	 * Stop async tasks.
1235 	 */
1236 	spa_async_suspend(spa);
1237 
1238 	/*
1239 	 * Stop syncing.
1240 	 */
1241 	if (spa->spa_sync_on) {
1242 		txg_sync_stop(spa->spa_dsl_pool);
1243 		spa->spa_sync_on = B_FALSE;
1244 	}
1245 
1246 	/*
1247 	 * Wait for any outstanding async I/O to complete.
1248 	 */
1249 	if (spa->spa_async_zio_root != NULL) {
1250 		for (int i = 0; i < max_ncpus; i++)
1251 			(void) zio_wait(spa->spa_async_zio_root[i]);
1252 		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1253 		spa->spa_async_zio_root = NULL;
1254 	}
1255 
1256 	bpobj_close(&spa->spa_deferred_bpobj);
1257 
1258 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1259 
1260 	/*
1261 	 * Close all vdevs.
1262 	 */
1263 	if (spa->spa_root_vdev)
1264 		vdev_free(spa->spa_root_vdev);
1265 	ASSERT(spa->spa_root_vdev == NULL);
1266 
1267 	/*
1268 	 * Close the dsl pool.
1269 	 */
1270 	if (spa->spa_dsl_pool) {
1271 		dsl_pool_close(spa->spa_dsl_pool);
1272 		spa->spa_dsl_pool = NULL;
1273 		spa->spa_meta_objset = NULL;
1274 	}
1275 
1276 	ddt_unload(spa);
1277 
1278 	/*
1279 	 * Drop and purge level 2 cache
1280 	 */
1281 	spa_l2cache_drop(spa);
1282 
1283 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1284 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1285 	if (spa->spa_spares.sav_vdevs) {
1286 		kmem_free(spa->spa_spares.sav_vdevs,
1287 		    spa->spa_spares.sav_count * sizeof (void *));
1288 		spa->spa_spares.sav_vdevs = NULL;
1289 	}
1290 	if (spa->spa_spares.sav_config) {
1291 		nvlist_free(spa->spa_spares.sav_config);
1292 		spa->spa_spares.sav_config = NULL;
1293 	}
1294 	spa->spa_spares.sav_count = 0;
1295 
1296 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1297 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1298 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1299 	}
1300 	if (spa->spa_l2cache.sav_vdevs) {
1301 		kmem_free(spa->spa_l2cache.sav_vdevs,
1302 		    spa->spa_l2cache.sav_count * sizeof (void *));
1303 		spa->spa_l2cache.sav_vdevs = NULL;
1304 	}
1305 	if (spa->spa_l2cache.sav_config) {
1306 		nvlist_free(spa->spa_l2cache.sav_config);
1307 		spa->spa_l2cache.sav_config = NULL;
1308 	}
1309 	spa->spa_l2cache.sav_count = 0;
1310 
1311 	spa->spa_async_suspended = 0;
1312 
1313 	if (spa->spa_comment != NULL) {
1314 		spa_strfree(spa->spa_comment);
1315 		spa->spa_comment = NULL;
1316 	}
1317 
1318 	spa_config_exit(spa, SCL_ALL, FTAG);
1319 }
1320 
1321 /*
1322  * Load (or re-load) the current list of vdevs describing the active spares for
1323  * this pool.  When this is called, we have some form of basic information in
1324  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1325  * then re-generate a more complete list including status information.
1326  */
1327 static void
1328 spa_load_spares(spa_t *spa)
1329 {
1330 	nvlist_t **spares;
1331 	uint_t nspares;
1332 	int i;
1333 	vdev_t *vd, *tvd;
1334 
1335 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1336 
1337 	/*
1338 	 * First, close and free any existing spare vdevs.
1339 	 */
1340 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1341 		vd = spa->spa_spares.sav_vdevs[i];
1342 
1343 		/* Undo the call to spa_activate() below */
1344 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1345 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1346 			spa_spare_remove(tvd);
1347 		vdev_close(vd);
1348 		vdev_free(vd);
1349 	}
1350 
1351 	if (spa->spa_spares.sav_vdevs)
1352 		kmem_free(spa->spa_spares.sav_vdevs,
1353 		    spa->spa_spares.sav_count * sizeof (void *));
1354 
1355 	if (spa->spa_spares.sav_config == NULL)
1356 		nspares = 0;
1357 	else
1358 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1359 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1360 
1361 	spa->spa_spares.sav_count = (int)nspares;
1362 	spa->spa_spares.sav_vdevs = NULL;
1363 
1364 	if (nspares == 0)
1365 		return;
1366 
1367 	/*
1368 	 * Construct the array of vdevs, opening them to get status in the
1369 	 * process.   For each spare, there is potentially two different vdev_t
1370 	 * structures associated with it: one in the list of spares (used only
1371 	 * for basic validation purposes) and one in the active vdev
1372 	 * configuration (if it's spared in).  During this phase we open and
1373 	 * validate each vdev on the spare list.  If the vdev also exists in the
1374 	 * active configuration, then we also mark this vdev as an active spare.
1375 	 */
1376 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1377 	    KM_SLEEP);
1378 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1379 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1380 		    VDEV_ALLOC_SPARE) == 0);
1381 		ASSERT(vd != NULL);
1382 
1383 		spa->spa_spares.sav_vdevs[i] = vd;
1384 
1385 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1386 		    B_FALSE)) != NULL) {
1387 			if (!tvd->vdev_isspare)
1388 				spa_spare_add(tvd);
1389 
1390 			/*
1391 			 * We only mark the spare active if we were successfully
1392 			 * able to load the vdev.  Otherwise, importing a pool
1393 			 * with a bad active spare would result in strange
1394 			 * behavior, because multiple pool would think the spare
1395 			 * is actively in use.
1396 			 *
1397 			 * There is a vulnerability here to an equally bizarre
1398 			 * circumstance, where a dead active spare is later
1399 			 * brought back to life (onlined or otherwise).  Given
1400 			 * the rarity of this scenario, and the extra complexity
1401 			 * it adds, we ignore the possibility.
1402 			 */
1403 			if (!vdev_is_dead(tvd))
1404 				spa_spare_activate(tvd);
1405 		}
1406 
1407 		vd->vdev_top = vd;
1408 		vd->vdev_aux = &spa->spa_spares;
1409 
1410 		if (vdev_open(vd) != 0)
1411 			continue;
1412 
1413 		if (vdev_validate_aux(vd) == 0)
1414 			spa_spare_add(vd);
1415 	}
1416 
1417 	/*
1418 	 * Recompute the stashed list of spares, with status information
1419 	 * this time.
1420 	 */
1421 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1422 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1423 
1424 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1425 	    KM_SLEEP);
1426 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1427 		spares[i] = vdev_config_generate(spa,
1428 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1429 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1430 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1431 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1432 		nvlist_free(spares[i]);
1433 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1434 }
1435 
1436 /*
1437  * Load (or re-load) the current list of vdevs describing the active l2cache for
1438  * this pool.  When this is called, we have some form of basic information in
1439  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1440  * then re-generate a more complete list including status information.
1441  * Devices which are already active have their details maintained, and are
1442  * not re-opened.
1443  */
1444 static void
1445 spa_load_l2cache(spa_t *spa)
1446 {
1447 	nvlist_t **l2cache;
1448 	uint_t nl2cache;
1449 	int i, j, oldnvdevs;
1450 	uint64_t guid;
1451 	vdev_t *vd, **oldvdevs, **newvdevs;
1452 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1453 
1454 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1455 
1456 	if (sav->sav_config != NULL) {
1457 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1458 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1459 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1460 	} else {
1461 		nl2cache = 0;
1462 		newvdevs = NULL;
1463 	}
1464 
1465 	oldvdevs = sav->sav_vdevs;
1466 	oldnvdevs = sav->sav_count;
1467 	sav->sav_vdevs = NULL;
1468 	sav->sav_count = 0;
1469 
1470 	/*
1471 	 * Process new nvlist of vdevs.
1472 	 */
1473 	for (i = 0; i < nl2cache; i++) {
1474 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1475 		    &guid) == 0);
1476 
1477 		newvdevs[i] = NULL;
1478 		for (j = 0; j < oldnvdevs; j++) {
1479 			vd = oldvdevs[j];
1480 			if (vd != NULL && guid == vd->vdev_guid) {
1481 				/*
1482 				 * Retain previous vdev for add/remove ops.
1483 				 */
1484 				newvdevs[i] = vd;
1485 				oldvdevs[j] = NULL;
1486 				break;
1487 			}
1488 		}
1489 
1490 		if (newvdevs[i] == NULL) {
1491 			/*
1492 			 * Create new vdev
1493 			 */
1494 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1495 			    VDEV_ALLOC_L2CACHE) == 0);
1496 			ASSERT(vd != NULL);
1497 			newvdevs[i] = vd;
1498 
1499 			/*
1500 			 * Commit this vdev as an l2cache device,
1501 			 * even if it fails to open.
1502 			 */
1503 			spa_l2cache_add(vd);
1504 
1505 			vd->vdev_top = vd;
1506 			vd->vdev_aux = sav;
1507 
1508 			spa_l2cache_activate(vd);
1509 
1510 			if (vdev_open(vd) != 0)
1511 				continue;
1512 
1513 			(void) vdev_validate_aux(vd);
1514 
1515 			if (!vdev_is_dead(vd))
1516 				l2arc_add_vdev(spa, vd);
1517 		}
1518 	}
1519 
1520 	/*
1521 	 * Purge vdevs that were dropped
1522 	 */
1523 	for (i = 0; i < oldnvdevs; i++) {
1524 		uint64_t pool;
1525 
1526 		vd = oldvdevs[i];
1527 		if (vd != NULL) {
1528 			ASSERT(vd->vdev_isl2cache);
1529 
1530 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1531 			    pool != 0ULL && l2arc_vdev_present(vd))
1532 				l2arc_remove_vdev(vd);
1533 			vdev_clear_stats(vd);
1534 			vdev_free(vd);
1535 		}
1536 	}
1537 
1538 	if (oldvdevs)
1539 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1540 
1541 	if (sav->sav_config == NULL)
1542 		goto out;
1543 
1544 	sav->sav_vdevs = newvdevs;
1545 	sav->sav_count = (int)nl2cache;
1546 
1547 	/*
1548 	 * Recompute the stashed list of l2cache devices, with status
1549 	 * information this time.
1550 	 */
1551 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1552 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1553 
1554 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1555 	for (i = 0; i < sav->sav_count; i++)
1556 		l2cache[i] = vdev_config_generate(spa,
1557 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1558 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1559 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1560 out:
1561 	for (i = 0; i < sav->sav_count; i++)
1562 		nvlist_free(l2cache[i]);
1563 	if (sav->sav_count)
1564 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1565 }
1566 
1567 static int
1568 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1569 {
1570 	dmu_buf_t *db;
1571 	char *packed = NULL;
1572 	size_t nvsize = 0;
1573 	int error;
1574 	*value = NULL;
1575 
1576 	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1577 	if (error != 0)
1578 		return (error);
1579 
1580 	nvsize = *(uint64_t *)db->db_data;
1581 	dmu_buf_rele(db, FTAG);
1582 
1583 	packed = kmem_alloc(nvsize, KM_SLEEP);
1584 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1585 	    DMU_READ_PREFETCH);
1586 	if (error == 0)
1587 		error = nvlist_unpack(packed, nvsize, value, 0);
1588 	kmem_free(packed, nvsize);
1589 
1590 	return (error);
1591 }
1592 
1593 /*
1594  * Checks to see if the given vdev could not be opened, in which case we post a
1595  * sysevent to notify the autoreplace code that the device has been removed.
1596  */
1597 static void
1598 spa_check_removed(vdev_t *vd)
1599 {
1600 	for (int c = 0; c < vd->vdev_children; c++)
1601 		spa_check_removed(vd->vdev_child[c]);
1602 
1603 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1604 	    !vd->vdev_ishole) {
1605 		zfs_post_autoreplace(vd->vdev_spa, vd);
1606 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1607 	}
1608 }
1609 
1610 static void
1611 spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1612 {
1613 	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1614 
1615 	vd->vdev_top_zap = mvd->vdev_top_zap;
1616 	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1617 
1618 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1619 		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1620 	}
1621 }
1622 
1623 /*
1624  * Validate the current config against the MOS config
1625  */
1626 static boolean_t
1627 spa_config_valid(spa_t *spa, nvlist_t *config)
1628 {
1629 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1630 	nvlist_t *nv;
1631 
1632 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1633 
1634 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1635 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1636 
1637 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1638 
1639 	/*
1640 	 * If we're doing a normal import, then build up any additional
1641 	 * diagnostic information about missing devices in this config.
1642 	 * We'll pass this up to the user for further processing.
1643 	 */
1644 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1645 		nvlist_t **child, *nv;
1646 		uint64_t idx = 0;
1647 
1648 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1649 		    KM_SLEEP);
1650 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1651 
1652 		for (int c = 0; c < rvd->vdev_children; c++) {
1653 			vdev_t *tvd = rvd->vdev_child[c];
1654 			vdev_t *mtvd  = mrvd->vdev_child[c];
1655 
1656 			if (tvd->vdev_ops == &vdev_missing_ops &&
1657 			    mtvd->vdev_ops != &vdev_missing_ops &&
1658 			    mtvd->vdev_islog)
1659 				child[idx++] = vdev_config_generate(spa, mtvd,
1660 				    B_FALSE, 0);
1661 		}
1662 
1663 		if (idx) {
1664 			VERIFY(nvlist_add_nvlist_array(nv,
1665 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1666 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1667 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1668 
1669 			for (int i = 0; i < idx; i++)
1670 				nvlist_free(child[i]);
1671 		}
1672 		nvlist_free(nv);
1673 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1674 	}
1675 
1676 	/*
1677 	 * Compare the root vdev tree with the information we have
1678 	 * from the MOS config (mrvd). Check each top-level vdev
1679 	 * with the corresponding MOS config top-level (mtvd).
1680 	 */
1681 	for (int c = 0; c < rvd->vdev_children; c++) {
1682 		vdev_t *tvd = rvd->vdev_child[c];
1683 		vdev_t *mtvd  = mrvd->vdev_child[c];
1684 
1685 		/*
1686 		 * Resolve any "missing" vdevs in the current configuration.
1687 		 * If we find that the MOS config has more accurate information
1688 		 * about the top-level vdev then use that vdev instead.
1689 		 */
1690 		if (tvd->vdev_ops == &vdev_missing_ops &&
1691 		    mtvd->vdev_ops != &vdev_missing_ops) {
1692 
1693 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1694 				continue;
1695 
1696 			/*
1697 			 * Device specific actions.
1698 			 */
1699 			if (mtvd->vdev_islog) {
1700 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1701 			} else {
1702 				/*
1703 				 * XXX - once we have 'readonly' pool
1704 				 * support we should be able to handle
1705 				 * missing data devices by transitioning
1706 				 * the pool to readonly.
1707 				 */
1708 				continue;
1709 			}
1710 
1711 			/*
1712 			 * Swap the missing vdev with the data we were
1713 			 * able to obtain from the MOS config.
1714 			 */
1715 			vdev_remove_child(rvd, tvd);
1716 			vdev_remove_child(mrvd, mtvd);
1717 
1718 			vdev_add_child(rvd, mtvd);
1719 			vdev_add_child(mrvd, tvd);
1720 
1721 			spa_config_exit(spa, SCL_ALL, FTAG);
1722 			vdev_load(mtvd);
1723 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1724 
1725 			vdev_reopen(rvd);
1726 		} else {
1727 			if (mtvd->vdev_islog) {
1728 				/*
1729 				 * Load the slog device's state from the MOS
1730 				 * config since it's possible that the label
1731 				 * does not contain the most up-to-date
1732 				 * information.
1733 				 */
1734 				vdev_load_log_state(tvd, mtvd);
1735 				vdev_reopen(tvd);
1736 			}
1737 
1738 			/*
1739 			 * Per-vdev ZAP info is stored exclusively in the MOS.
1740 			 */
1741 			spa_config_valid_zaps(tvd, mtvd);
1742 		}
1743 	}
1744 
1745 	vdev_free(mrvd);
1746 	spa_config_exit(spa, SCL_ALL, FTAG);
1747 
1748 	/*
1749 	 * Ensure we were able to validate the config.
1750 	 */
1751 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1752 }
1753 
1754 /*
1755  * Check for missing log devices
1756  */
1757 static boolean_t
1758 spa_check_logs(spa_t *spa)
1759 {
1760 	boolean_t rv = B_FALSE;
1761 	dsl_pool_t *dp = spa_get_dsl(spa);
1762 
1763 	switch (spa->spa_log_state) {
1764 	case SPA_LOG_MISSING:
1765 		/* need to recheck in case slog has been restored */
1766 	case SPA_LOG_UNKNOWN:
1767 		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1768 		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1769 		if (rv)
1770 			spa_set_log_state(spa, SPA_LOG_MISSING);
1771 		break;
1772 	}
1773 	return (rv);
1774 }
1775 
1776 static boolean_t
1777 spa_passivate_log(spa_t *spa)
1778 {
1779 	vdev_t *rvd = spa->spa_root_vdev;
1780 	boolean_t slog_found = B_FALSE;
1781 
1782 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1783 
1784 	if (!spa_has_slogs(spa))
1785 		return (B_FALSE);
1786 
1787 	for (int c = 0; c < rvd->vdev_children; c++) {
1788 		vdev_t *tvd = rvd->vdev_child[c];
1789 		metaslab_group_t *mg = tvd->vdev_mg;
1790 
1791 		if (tvd->vdev_islog) {
1792 			metaslab_group_passivate(mg);
1793 			slog_found = B_TRUE;
1794 		}
1795 	}
1796 
1797 	return (slog_found);
1798 }
1799 
1800 static void
1801 spa_activate_log(spa_t *spa)
1802 {
1803 	vdev_t *rvd = spa->spa_root_vdev;
1804 
1805 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1806 
1807 	for (int c = 0; c < rvd->vdev_children; c++) {
1808 		vdev_t *tvd = rvd->vdev_child[c];
1809 		metaslab_group_t *mg = tvd->vdev_mg;
1810 
1811 		if (tvd->vdev_islog)
1812 			metaslab_group_activate(mg);
1813 	}
1814 }
1815 
1816 int
1817 spa_offline_log(spa_t *spa)
1818 {
1819 	int error;
1820 
1821 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1822 	    NULL, DS_FIND_CHILDREN);
1823 	if (error == 0) {
1824 		/*
1825 		 * We successfully offlined the log device, sync out the
1826 		 * current txg so that the "stubby" block can be removed
1827 		 * by zil_sync().
1828 		 */
1829 		txg_wait_synced(spa->spa_dsl_pool, 0);
1830 	}
1831 	return (error);
1832 }
1833 
1834 static void
1835 spa_aux_check_removed(spa_aux_vdev_t *sav)
1836 {
1837 	for (int i = 0; i < sav->sav_count; i++)
1838 		spa_check_removed(sav->sav_vdevs[i]);
1839 }
1840 
1841 void
1842 spa_claim_notify(zio_t *zio)
1843 {
1844 	spa_t *spa = zio->io_spa;
1845 
1846 	if (zio->io_error)
1847 		return;
1848 
1849 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1850 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1851 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1852 	mutex_exit(&spa->spa_props_lock);
1853 }
1854 
1855 typedef struct spa_load_error {
1856 	uint64_t	sle_meta_count;
1857 	uint64_t	sle_data_count;
1858 } spa_load_error_t;
1859 
1860 static void
1861 spa_load_verify_done(zio_t *zio)
1862 {
1863 	blkptr_t *bp = zio->io_bp;
1864 	spa_load_error_t *sle = zio->io_private;
1865 	dmu_object_type_t type = BP_GET_TYPE(bp);
1866 	int error = zio->io_error;
1867 	spa_t *spa = zio->io_spa;
1868 
1869 	if (error) {
1870 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1871 		    type != DMU_OT_INTENT_LOG)
1872 			atomic_inc_64(&sle->sle_meta_count);
1873 		else
1874 			atomic_inc_64(&sle->sle_data_count);
1875 	}
1876 	zio_data_buf_free(zio->io_data, zio->io_size);
1877 
1878 	mutex_enter(&spa->spa_scrub_lock);
1879 	spa->spa_scrub_inflight--;
1880 	cv_broadcast(&spa->spa_scrub_io_cv);
1881 	mutex_exit(&spa->spa_scrub_lock);
1882 }
1883 
1884 /*
1885  * Maximum number of concurrent scrub i/os to create while verifying
1886  * a pool while importing it.
1887  */
1888 int spa_load_verify_maxinflight = 10000;
1889 boolean_t spa_load_verify_metadata = B_TRUE;
1890 boolean_t spa_load_verify_data = B_TRUE;
1891 
1892 /*ARGSUSED*/
1893 static int
1894 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1895     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1896 {
1897 	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1898 		return (0);
1899 	/*
1900 	 * Note: normally this routine will not be called if
1901 	 * spa_load_verify_metadata is not set.  However, it may be useful
1902 	 * to manually set the flag after the traversal has begun.
1903 	 */
1904 	if (!spa_load_verify_metadata)
1905 		return (0);
1906 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1907 		return (0);
1908 
1909 	zio_t *rio = arg;
1910 	size_t size = BP_GET_PSIZE(bp);
1911 	void *data = zio_data_buf_alloc(size);
1912 
1913 	mutex_enter(&spa->spa_scrub_lock);
1914 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1915 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1916 	spa->spa_scrub_inflight++;
1917 	mutex_exit(&spa->spa_scrub_lock);
1918 
1919 	zio_nowait(zio_read(rio, spa, bp, data, size,
1920 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1921 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1922 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1923 	return (0);
1924 }
1925 
1926 /* ARGSUSED */
1927 int
1928 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1929 {
1930 	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
1931 		return (SET_ERROR(ENAMETOOLONG));
1932 
1933 	return (0);
1934 }
1935 
1936 static int
1937 spa_load_verify(spa_t *spa)
1938 {
1939 	zio_t *rio;
1940 	spa_load_error_t sle = { 0 };
1941 	zpool_rewind_policy_t policy;
1942 	boolean_t verify_ok = B_FALSE;
1943 	int error = 0;
1944 
1945 	zpool_get_rewind_policy(spa->spa_config, &policy);
1946 
1947 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1948 		return (0);
1949 
1950 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
1951 	error = dmu_objset_find_dp(spa->spa_dsl_pool,
1952 	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
1953 	    DS_FIND_CHILDREN);
1954 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
1955 	if (error != 0)
1956 		return (error);
1957 
1958 	rio = zio_root(spa, NULL, &sle,
1959 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1960 
1961 	if (spa_load_verify_metadata) {
1962 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1963 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1964 		    spa_load_verify_cb, rio);
1965 	}
1966 
1967 	(void) zio_wait(rio);
1968 
1969 	spa->spa_load_meta_errors = sle.sle_meta_count;
1970 	spa->spa_load_data_errors = sle.sle_data_count;
1971 
1972 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1973 	    sle.sle_data_count <= policy.zrp_maxdata) {
1974 		int64_t loss = 0;
1975 
1976 		verify_ok = B_TRUE;
1977 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1978 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1979 
1980 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1981 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1982 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1983 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1984 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1985 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1986 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1987 	} else {
1988 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1989 	}
1990 
1991 	if (error) {
1992 		if (error != ENXIO && error != EIO)
1993 			error = SET_ERROR(EIO);
1994 		return (error);
1995 	}
1996 
1997 	return (verify_ok ? 0 : EIO);
1998 }
1999 
2000 /*
2001  * Find a value in the pool props object.
2002  */
2003 static void
2004 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2005 {
2006 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2007 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2008 }
2009 
2010 /*
2011  * Find a value in the pool directory object.
2012  */
2013 static int
2014 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2015 {
2016 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2017 	    name, sizeof (uint64_t), 1, val));
2018 }
2019 
2020 static int
2021 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2022 {
2023 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2024 	return (err);
2025 }
2026 
2027 /*
2028  * Fix up config after a partly-completed split.  This is done with the
2029  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2030  * pool have that entry in their config, but only the splitting one contains
2031  * a list of all the guids of the vdevs that are being split off.
2032  *
2033  * This function determines what to do with that list: either rejoin
2034  * all the disks to the pool, or complete the splitting process.  To attempt
2035  * the rejoin, each disk that is offlined is marked online again, and
2036  * we do a reopen() call.  If the vdev label for every disk that was
2037  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2038  * then we call vdev_split() on each disk, and complete the split.
2039  *
2040  * Otherwise we leave the config alone, with all the vdevs in place in
2041  * the original pool.
2042  */
2043 static void
2044 spa_try_repair(spa_t *spa, nvlist_t *config)
2045 {
2046 	uint_t extracted;
2047 	uint64_t *glist;
2048 	uint_t i, gcount;
2049 	nvlist_t *nvl;
2050 	vdev_t **vd;
2051 	boolean_t attempt_reopen;
2052 
2053 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2054 		return;
2055 
2056 	/* check that the config is complete */
2057 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2058 	    &glist, &gcount) != 0)
2059 		return;
2060 
2061 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2062 
2063 	/* attempt to online all the vdevs & validate */
2064 	attempt_reopen = B_TRUE;
2065 	for (i = 0; i < gcount; i++) {
2066 		if (glist[i] == 0)	/* vdev is hole */
2067 			continue;
2068 
2069 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2070 		if (vd[i] == NULL) {
2071 			/*
2072 			 * Don't bother attempting to reopen the disks;
2073 			 * just do the split.
2074 			 */
2075 			attempt_reopen = B_FALSE;
2076 		} else {
2077 			/* attempt to re-online it */
2078 			vd[i]->vdev_offline = B_FALSE;
2079 		}
2080 	}
2081 
2082 	if (attempt_reopen) {
2083 		vdev_reopen(spa->spa_root_vdev);
2084 
2085 		/* check each device to see what state it's in */
2086 		for (extracted = 0, i = 0; i < gcount; i++) {
2087 			if (vd[i] != NULL &&
2088 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2089 				break;
2090 			++extracted;
2091 		}
2092 	}
2093 
2094 	/*
2095 	 * If every disk has been moved to the new pool, or if we never
2096 	 * even attempted to look at them, then we split them off for
2097 	 * good.
2098 	 */
2099 	if (!attempt_reopen || gcount == extracted) {
2100 		for (i = 0; i < gcount; i++)
2101 			if (vd[i] != NULL)
2102 				vdev_split(vd[i]);
2103 		vdev_reopen(spa->spa_root_vdev);
2104 	}
2105 
2106 	kmem_free(vd, gcount * sizeof (vdev_t *));
2107 }
2108 
2109 static int
2110 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2111     boolean_t mosconfig)
2112 {
2113 	nvlist_t *config = spa->spa_config;
2114 	char *ereport = FM_EREPORT_ZFS_POOL;
2115 	char *comment;
2116 	int error;
2117 	uint64_t pool_guid;
2118 	nvlist_t *nvl;
2119 
2120 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2121 		return (SET_ERROR(EINVAL));
2122 
2123 	ASSERT(spa->spa_comment == NULL);
2124 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2125 		spa->spa_comment = spa_strdup(comment);
2126 
2127 	/*
2128 	 * Versioning wasn't explicitly added to the label until later, so if
2129 	 * it's not present treat it as the initial version.
2130 	 */
2131 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2132 	    &spa->spa_ubsync.ub_version) != 0)
2133 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2134 
2135 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2136 	    &spa->spa_config_txg);
2137 
2138 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2139 	    spa_guid_exists(pool_guid, 0)) {
2140 		error = SET_ERROR(EEXIST);
2141 	} else {
2142 		spa->spa_config_guid = pool_guid;
2143 
2144 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2145 		    &nvl) == 0) {
2146 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2147 			    KM_SLEEP) == 0);
2148 		}
2149 
2150 		nvlist_free(spa->spa_load_info);
2151 		spa->spa_load_info = fnvlist_alloc();
2152 
2153 		gethrestime(&spa->spa_loaded_ts);
2154 		error = spa_load_impl(spa, pool_guid, config, state, type,
2155 		    mosconfig, &ereport);
2156 	}
2157 
2158 	/*
2159 	 * Don't count references from objsets that are already closed
2160 	 * and are making their way through the eviction process.
2161 	 */
2162 	spa_evicting_os_wait(spa);
2163 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2164 	if (error) {
2165 		if (error != EEXIST) {
2166 			spa->spa_loaded_ts.tv_sec = 0;
2167 			spa->spa_loaded_ts.tv_nsec = 0;
2168 		}
2169 		if (error != EBADF) {
2170 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2171 		}
2172 	}
2173 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2174 	spa->spa_ena = 0;
2175 
2176 	return (error);
2177 }
2178 
2179 /*
2180  * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2181  * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2182  * spa's per-vdev ZAP list.
2183  */
2184 static uint64_t
2185 vdev_count_verify_zaps(vdev_t *vd)
2186 {
2187 	spa_t *spa = vd->vdev_spa;
2188 	uint64_t total = 0;
2189 	if (vd->vdev_top_zap != 0) {
2190 		total++;
2191 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2192 		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2193 	}
2194 	if (vd->vdev_leaf_zap != 0) {
2195 		total++;
2196 		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2197 		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2198 	}
2199 
2200 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2201 		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2202 	}
2203 
2204 	return (total);
2205 }
2206 
2207 /*
2208  * Load an existing storage pool, using the pool's builtin spa_config as a
2209  * source of configuration information.
2210  */
2211 static int
2212 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2213     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2214     char **ereport)
2215 {
2216 	int error = 0;
2217 	nvlist_t *nvroot = NULL;
2218 	nvlist_t *label;
2219 	vdev_t *rvd;
2220 	uberblock_t *ub = &spa->spa_uberblock;
2221 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2222 	int orig_mode = spa->spa_mode;
2223 	int parse;
2224 	uint64_t obj;
2225 	boolean_t missing_feat_write = B_FALSE;
2226 
2227 	/*
2228 	 * If this is an untrusted config, access the pool in read-only mode.
2229 	 * This prevents things like resilvering recently removed devices.
2230 	 */
2231 	if (!mosconfig)
2232 		spa->spa_mode = FREAD;
2233 
2234 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2235 
2236 	spa->spa_load_state = state;
2237 
2238 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2239 		return (SET_ERROR(EINVAL));
2240 
2241 	parse = (type == SPA_IMPORT_EXISTING ?
2242 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2243 
2244 	/*
2245 	 * Create "The Godfather" zio to hold all async IOs
2246 	 */
2247 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2248 	    KM_SLEEP);
2249 	for (int i = 0; i < max_ncpus; i++) {
2250 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2251 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2252 		    ZIO_FLAG_GODFATHER);
2253 	}
2254 
2255 	/*
2256 	 * Parse the configuration into a vdev tree.  We explicitly set the
2257 	 * value that will be returned by spa_version() since parsing the
2258 	 * configuration requires knowing the version number.
2259 	 */
2260 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2262 	spa_config_exit(spa, SCL_ALL, FTAG);
2263 
2264 	if (error != 0)
2265 		return (error);
2266 
2267 	ASSERT(spa->spa_root_vdev == rvd);
2268 	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2269 	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2270 
2271 	if (type != SPA_IMPORT_ASSEMBLE) {
2272 		ASSERT(spa_guid(spa) == pool_guid);
2273 	}
2274 
2275 	/*
2276 	 * Try to open all vdevs, loading each label in the process.
2277 	 */
2278 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2279 	error = vdev_open(rvd);
2280 	spa_config_exit(spa, SCL_ALL, FTAG);
2281 	if (error != 0)
2282 		return (error);
2283 
2284 	/*
2285 	 * We need to validate the vdev labels against the configuration that
2286 	 * we have in hand, which is dependent on the setting of mosconfig. If
2287 	 * mosconfig is true then we're validating the vdev labels based on
2288 	 * that config.  Otherwise, we're validating against the cached config
2289 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2290 	 * later we will recursively call spa_load() and validate against
2291 	 * the vdev config.
2292 	 *
2293 	 * If we're assembling a new pool that's been split off from an
2294 	 * existing pool, the labels haven't yet been updated so we skip
2295 	 * validation for now.
2296 	 */
2297 	if (type != SPA_IMPORT_ASSEMBLE) {
2298 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2299 		error = vdev_validate(rvd, mosconfig);
2300 		spa_config_exit(spa, SCL_ALL, FTAG);
2301 
2302 		if (error != 0)
2303 			return (error);
2304 
2305 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2306 			return (SET_ERROR(ENXIO));
2307 	}
2308 
2309 	/*
2310 	 * Find the best uberblock.
2311 	 */
2312 	vdev_uberblock_load(rvd, ub, &label);
2313 
2314 	/*
2315 	 * If we weren't able to find a single valid uberblock, return failure.
2316 	 */
2317 	if (ub->ub_txg == 0) {
2318 		nvlist_free(label);
2319 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2320 	}
2321 
2322 	/*
2323 	 * If the pool has an unsupported version we can't open it.
2324 	 */
2325 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2326 		nvlist_free(label);
2327 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2328 	}
2329 
2330 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2331 		nvlist_t *features;
2332 
2333 		/*
2334 		 * If we weren't able to find what's necessary for reading the
2335 		 * MOS in the label, return failure.
2336 		 */
2337 		if (label == NULL || nvlist_lookup_nvlist(label,
2338 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2339 			nvlist_free(label);
2340 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2341 			    ENXIO));
2342 		}
2343 
2344 		/*
2345 		 * Update our in-core representation with the definitive values
2346 		 * from the label.
2347 		 */
2348 		nvlist_free(spa->spa_label_features);
2349 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2350 	}
2351 
2352 	nvlist_free(label);
2353 
2354 	/*
2355 	 * Look through entries in the label nvlist's features_for_read. If
2356 	 * there is a feature listed there which we don't understand then we
2357 	 * cannot open a pool.
2358 	 */
2359 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2360 		nvlist_t *unsup_feat;
2361 
2362 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2363 		    0);
2364 
2365 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2366 		    NULL); nvp != NULL;
2367 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2368 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2369 				VERIFY(nvlist_add_string(unsup_feat,
2370 				    nvpair_name(nvp), "") == 0);
2371 			}
2372 		}
2373 
2374 		if (!nvlist_empty(unsup_feat)) {
2375 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2376 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2377 			nvlist_free(unsup_feat);
2378 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2379 			    ENOTSUP));
2380 		}
2381 
2382 		nvlist_free(unsup_feat);
2383 	}
2384 
2385 	/*
2386 	 * If the vdev guid sum doesn't match the uberblock, we have an
2387 	 * incomplete configuration.  We first check to see if the pool
2388 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2389 	 * If it is, defer the vdev_guid_sum check till later so we
2390 	 * can handle missing vdevs.
2391 	 */
2392 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2393 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2394 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2395 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2396 
2397 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2398 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2399 		spa_try_repair(spa, config);
2400 		spa_config_exit(spa, SCL_ALL, FTAG);
2401 		nvlist_free(spa->spa_config_splitting);
2402 		spa->spa_config_splitting = NULL;
2403 	}
2404 
2405 	/*
2406 	 * Initialize internal SPA structures.
2407 	 */
2408 	spa->spa_state = POOL_STATE_ACTIVE;
2409 	spa->spa_ubsync = spa->spa_uberblock;
2410 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2411 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2412 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2413 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2414 	spa->spa_claim_max_txg = spa->spa_first_txg;
2415 	spa->spa_prev_software_version = ub->ub_software_version;
2416 
2417 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2418 	if (error)
2419 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2420 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2421 
2422 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2423 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2424 
2425 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2426 		boolean_t missing_feat_read = B_FALSE;
2427 		nvlist_t *unsup_feat, *enabled_feat;
2428 
2429 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2430 		    &spa->spa_feat_for_read_obj) != 0) {
2431 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432 		}
2433 
2434 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2435 		    &spa->spa_feat_for_write_obj) != 0) {
2436 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2437 		}
2438 
2439 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2440 		    &spa->spa_feat_desc_obj) != 0) {
2441 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442 		}
2443 
2444 		enabled_feat = fnvlist_alloc();
2445 		unsup_feat = fnvlist_alloc();
2446 
2447 		if (!spa_features_check(spa, B_FALSE,
2448 		    unsup_feat, enabled_feat))
2449 			missing_feat_read = B_TRUE;
2450 
2451 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2452 			if (!spa_features_check(spa, B_TRUE,
2453 			    unsup_feat, enabled_feat)) {
2454 				missing_feat_write = B_TRUE;
2455 			}
2456 		}
2457 
2458 		fnvlist_add_nvlist(spa->spa_load_info,
2459 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2460 
2461 		if (!nvlist_empty(unsup_feat)) {
2462 			fnvlist_add_nvlist(spa->spa_load_info,
2463 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2464 		}
2465 
2466 		fnvlist_free(enabled_feat);
2467 		fnvlist_free(unsup_feat);
2468 
2469 		if (!missing_feat_read) {
2470 			fnvlist_add_boolean(spa->spa_load_info,
2471 			    ZPOOL_CONFIG_CAN_RDONLY);
2472 		}
2473 
2474 		/*
2475 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2476 		 * twofold: to determine whether the pool is available for
2477 		 * import in read-write mode and (if it is not) whether the
2478 		 * pool is available for import in read-only mode. If the pool
2479 		 * is available for import in read-write mode, it is displayed
2480 		 * as available in userland; if it is not available for import
2481 		 * in read-only mode, it is displayed as unavailable in
2482 		 * userland. If the pool is available for import in read-only
2483 		 * mode but not read-write mode, it is displayed as unavailable
2484 		 * in userland with a special note that the pool is actually
2485 		 * available for open in read-only mode.
2486 		 *
2487 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2488 		 * missing a feature for write, we must first determine whether
2489 		 * the pool can be opened read-only before returning to
2490 		 * userland in order to know whether to display the
2491 		 * abovementioned note.
2492 		 */
2493 		if (missing_feat_read || (missing_feat_write &&
2494 		    spa_writeable(spa))) {
2495 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2496 			    ENOTSUP));
2497 		}
2498 
2499 		/*
2500 		 * Load refcounts for ZFS features from disk into an in-memory
2501 		 * cache during SPA initialization.
2502 		 */
2503 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2504 			uint64_t refcount;
2505 
2506 			error = feature_get_refcount_from_disk(spa,
2507 			    &spa_feature_table[i], &refcount);
2508 			if (error == 0) {
2509 				spa->spa_feat_refcount_cache[i] = refcount;
2510 			} else if (error == ENOTSUP) {
2511 				spa->spa_feat_refcount_cache[i] =
2512 				    SPA_FEATURE_DISABLED;
2513 			} else {
2514 				return (spa_vdev_err(rvd,
2515 				    VDEV_AUX_CORRUPT_DATA, EIO));
2516 			}
2517 		}
2518 	}
2519 
2520 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2521 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2522 		    &spa->spa_feat_enabled_txg_obj) != 0)
2523 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524 	}
2525 
2526 	spa->spa_is_initializing = B_TRUE;
2527 	error = dsl_pool_open(spa->spa_dsl_pool);
2528 	spa->spa_is_initializing = B_FALSE;
2529 	if (error != 0)
2530 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2531 
2532 	if (!mosconfig) {
2533 		uint64_t hostid;
2534 		nvlist_t *policy = NULL, *nvconfig;
2535 
2536 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2537 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2538 
2539 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2540 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2541 			char *hostname;
2542 			unsigned long myhostid = 0;
2543 
2544 			VERIFY(nvlist_lookup_string(nvconfig,
2545 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2546 
2547 #ifdef	_KERNEL
2548 			myhostid = zone_get_hostid(NULL);
2549 #else	/* _KERNEL */
2550 			/*
2551 			 * We're emulating the system's hostid in userland, so
2552 			 * we can't use zone_get_hostid().
2553 			 */
2554 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2555 #endif	/* _KERNEL */
2556 			if (hostid != 0 && myhostid != 0 &&
2557 			    hostid != myhostid) {
2558 				nvlist_free(nvconfig);
2559 				cmn_err(CE_WARN, "pool '%s' could not be "
2560 				    "loaded as it was last accessed by "
2561 				    "another system (host: %s hostid: 0x%lx). "
2562 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2563 				    spa_name(spa), hostname,
2564 				    (unsigned long)hostid);
2565 				return (SET_ERROR(EBADF));
2566 			}
2567 		}
2568 		if (nvlist_lookup_nvlist(spa->spa_config,
2569 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2570 			VERIFY(nvlist_add_nvlist(nvconfig,
2571 			    ZPOOL_REWIND_POLICY, policy) == 0);
2572 
2573 		spa_config_set(spa, nvconfig);
2574 		spa_unload(spa);
2575 		spa_deactivate(spa);
2576 		spa_activate(spa, orig_mode);
2577 
2578 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2579 	}
2580 
2581 	/* Grab the secret checksum salt from the MOS. */
2582 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2583 	    DMU_POOL_CHECKSUM_SALT, 1,
2584 	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2585 	    spa->spa_cksum_salt.zcs_bytes);
2586 	if (error == ENOENT) {
2587 		/* Generate a new salt for subsequent use */
2588 		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2589 		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2590 	} else if (error != 0) {
2591 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2592 	}
2593 
2594 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2595 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2597 	if (error != 0)
2598 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2599 
2600 	/*
2601 	 * Load the bit that tells us to use the new accounting function
2602 	 * (raid-z deflation).  If we have an older pool, this will not
2603 	 * be present.
2604 	 */
2605 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2606 	if (error != 0 && error != ENOENT)
2607 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2608 
2609 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2610 	    &spa->spa_creation_version);
2611 	if (error != 0 && error != ENOENT)
2612 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2613 
2614 	/*
2615 	 * Load the persistent error log.  If we have an older pool, this will
2616 	 * not be present.
2617 	 */
2618 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2619 	if (error != 0 && error != ENOENT)
2620 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2621 
2622 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2623 	    &spa->spa_errlog_scrub);
2624 	if (error != 0 && error != ENOENT)
2625 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2626 
2627 	/*
2628 	 * Load the history object.  If we have an older pool, this
2629 	 * will not be present.
2630 	 */
2631 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2632 	if (error != 0 && error != ENOENT)
2633 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2634 
2635 	/*
2636 	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2637 	 * be present; in this case, defer its creation to a later time to
2638 	 * avoid dirtying the MOS this early / out of sync context. See
2639 	 * spa_sync_config_object.
2640 	 */
2641 
2642 	/* The sentinel is only available in the MOS config. */
2643 	nvlist_t *mos_config;
2644 	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2645 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2646 
2647 	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2648 	    &spa->spa_all_vdev_zaps);
2649 
2650 	if (error != ENOENT && error != 0) {
2651 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2652 	} else if (error == 0 && !nvlist_exists(mos_config,
2653 	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2654 		/*
2655 		 * An older version of ZFS overwrote the sentinel value, so
2656 		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2657 		 * destruction to later; see spa_sync_config_object.
2658 		 */
2659 		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2660 		/*
2661 		 * We're assuming that no vdevs have had their ZAPs created
2662 		 * before this. Better be sure of it.
2663 		 */
2664 		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2665 	}
2666 	nvlist_free(mos_config);
2667 
2668 	/*
2669 	 * If we're assembling the pool from the split-off vdevs of
2670 	 * an existing pool, we don't want to attach the spares & cache
2671 	 * devices.
2672 	 */
2673 
2674 	/*
2675 	 * Load any hot spares for this pool.
2676 	 */
2677 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2678 	if (error != 0 && error != ENOENT)
2679 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2680 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2681 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2682 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2683 		    &spa->spa_spares.sav_config) != 0)
2684 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2685 
2686 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2687 		spa_load_spares(spa);
2688 		spa_config_exit(spa, SCL_ALL, FTAG);
2689 	} else if (error == 0) {
2690 		spa->spa_spares.sav_sync = B_TRUE;
2691 	}
2692 
2693 	/*
2694 	 * Load any level 2 ARC devices for this pool.
2695 	 */
2696 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2697 	    &spa->spa_l2cache.sav_object);
2698 	if (error != 0 && error != ENOENT)
2699 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2700 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2701 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2702 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2703 		    &spa->spa_l2cache.sav_config) != 0)
2704 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2705 
2706 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2707 		spa_load_l2cache(spa);
2708 		spa_config_exit(spa, SCL_ALL, FTAG);
2709 	} else if (error == 0) {
2710 		spa->spa_l2cache.sav_sync = B_TRUE;
2711 	}
2712 
2713 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2714 
2715 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2716 	if (error && error != ENOENT)
2717 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2718 
2719 	if (error == 0) {
2720 		uint64_t autoreplace;
2721 
2722 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2723 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2724 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2725 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2726 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2727 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2728 		    &spa->spa_dedup_ditto);
2729 
2730 		spa->spa_autoreplace = (autoreplace != 0);
2731 	}
2732 
2733 	/*
2734 	 * If the 'autoreplace' property is set, then post a resource notifying
2735 	 * the ZFS DE that it should not issue any faults for unopenable
2736 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2737 	 * unopenable vdevs so that the normal autoreplace handler can take
2738 	 * over.
2739 	 */
2740 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2741 		spa_check_removed(spa->spa_root_vdev);
2742 		/*
2743 		 * For the import case, this is done in spa_import(), because
2744 		 * at this point we're using the spare definitions from
2745 		 * the MOS config, not necessarily from the userland config.
2746 		 */
2747 		if (state != SPA_LOAD_IMPORT) {
2748 			spa_aux_check_removed(&spa->spa_spares);
2749 			spa_aux_check_removed(&spa->spa_l2cache);
2750 		}
2751 	}
2752 
2753 	/*
2754 	 * Load the vdev state for all toplevel vdevs.
2755 	 */
2756 	vdev_load(rvd);
2757 
2758 	/*
2759 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2760 	 */
2761 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2762 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2763 	spa_config_exit(spa, SCL_ALL, FTAG);
2764 
2765 	/*
2766 	 * Load the DDTs (dedup tables).
2767 	 */
2768 	error = ddt_load(spa);
2769 	if (error != 0)
2770 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2771 
2772 	spa_update_dspace(spa);
2773 
2774 	/*
2775 	 * Validate the config, using the MOS config to fill in any
2776 	 * information which might be missing.  If we fail to validate
2777 	 * the config then declare the pool unfit for use. If we're
2778 	 * assembling a pool from a split, the log is not transferred
2779 	 * over.
2780 	 */
2781 	if (type != SPA_IMPORT_ASSEMBLE) {
2782 		nvlist_t *nvconfig;
2783 
2784 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2785 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2786 
2787 		if (!spa_config_valid(spa, nvconfig)) {
2788 			nvlist_free(nvconfig);
2789 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2790 			    ENXIO));
2791 		}
2792 		nvlist_free(nvconfig);
2793 
2794 		/*
2795 		 * Now that we've validated the config, check the state of the
2796 		 * root vdev.  If it can't be opened, it indicates one or
2797 		 * more toplevel vdevs are faulted.
2798 		 */
2799 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2800 			return (SET_ERROR(ENXIO));
2801 
2802 		if (spa_writeable(spa) && spa_check_logs(spa)) {
2803 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2804 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2805 		}
2806 	}
2807 
2808 	if (missing_feat_write) {
2809 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2810 
2811 		/*
2812 		 * At this point, we know that we can open the pool in
2813 		 * read-only mode but not read-write mode. We now have enough
2814 		 * information and can return to userland.
2815 		 */
2816 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2817 	}
2818 
2819 	/*
2820 	 * We've successfully opened the pool, verify that we're ready
2821 	 * to start pushing transactions.
2822 	 */
2823 	if (state != SPA_LOAD_TRYIMPORT) {
2824 		if (error = spa_load_verify(spa))
2825 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2826 			    error));
2827 	}
2828 
2829 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2830 	    spa->spa_load_max_txg == UINT64_MAX)) {
2831 		dmu_tx_t *tx;
2832 		int need_update = B_FALSE;
2833 		dsl_pool_t *dp = spa_get_dsl(spa);
2834 
2835 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2836 
2837 		/*
2838 		 * Claim log blocks that haven't been committed yet.
2839 		 * This must all happen in a single txg.
2840 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2841 		 * invoked from zil_claim_log_block()'s i/o done callback.
2842 		 * Price of rollback is that we abandon the log.
2843 		 */
2844 		spa->spa_claiming = B_TRUE;
2845 
2846 		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2847 		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2848 		    zil_claim, tx, DS_FIND_CHILDREN);
2849 		dmu_tx_commit(tx);
2850 
2851 		spa->spa_claiming = B_FALSE;
2852 
2853 		spa_set_log_state(spa, SPA_LOG_GOOD);
2854 		spa->spa_sync_on = B_TRUE;
2855 		txg_sync_start(spa->spa_dsl_pool);
2856 
2857 		/*
2858 		 * Wait for all claims to sync.  We sync up to the highest
2859 		 * claimed log block birth time so that claimed log blocks
2860 		 * don't appear to be from the future.  spa_claim_max_txg
2861 		 * will have been set for us by either zil_check_log_chain()
2862 		 * (invoked from spa_check_logs()) or zil_claim() above.
2863 		 */
2864 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2865 
2866 		/*
2867 		 * If the config cache is stale, or we have uninitialized
2868 		 * metaslabs (see spa_vdev_add()), then update the config.
2869 		 *
2870 		 * If this is a verbatim import, trust the current
2871 		 * in-core spa_config and update the disk labels.
2872 		 */
2873 		if (config_cache_txg != spa->spa_config_txg ||
2874 		    state == SPA_LOAD_IMPORT ||
2875 		    state == SPA_LOAD_RECOVER ||
2876 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2877 			need_update = B_TRUE;
2878 
2879 		for (int c = 0; c < rvd->vdev_children; c++)
2880 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2881 				need_update = B_TRUE;
2882 
2883 		/*
2884 		 * Update the config cache asychronously in case we're the
2885 		 * root pool, in which case the config cache isn't writable yet.
2886 		 */
2887 		if (need_update)
2888 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2889 
2890 		/*
2891 		 * Check all DTLs to see if anything needs resilvering.
2892 		 */
2893 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2894 		    vdev_resilver_needed(rvd, NULL, NULL))
2895 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2896 
2897 		/*
2898 		 * Log the fact that we booted up (so that we can detect if
2899 		 * we rebooted in the middle of an operation).
2900 		 */
2901 		spa_history_log_version(spa, "open");
2902 
2903 		/*
2904 		 * Delete any inconsistent datasets.
2905 		 */
2906 		(void) dmu_objset_find(spa_name(spa),
2907 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2908 
2909 		/*
2910 		 * Clean up any stale temporary dataset userrefs.
2911 		 */
2912 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2913 	}
2914 
2915 	return (0);
2916 }
2917 
2918 static int
2919 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2920 {
2921 	int mode = spa->spa_mode;
2922 
2923 	spa_unload(spa);
2924 	spa_deactivate(spa);
2925 
2926 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2927 
2928 	spa_activate(spa, mode);
2929 	spa_async_suspend(spa);
2930 
2931 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2932 }
2933 
2934 /*
2935  * If spa_load() fails this function will try loading prior txg's. If
2936  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2937  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2938  * function will not rewind the pool and will return the same error as
2939  * spa_load().
2940  */
2941 static int
2942 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2943     uint64_t max_request, int rewind_flags)
2944 {
2945 	nvlist_t *loadinfo = NULL;
2946 	nvlist_t *config = NULL;
2947 	int load_error, rewind_error;
2948 	uint64_t safe_rewind_txg;
2949 	uint64_t min_txg;
2950 
2951 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2952 		spa->spa_load_max_txg = spa->spa_load_txg;
2953 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2954 	} else {
2955 		spa->spa_load_max_txg = max_request;
2956 		if (max_request != UINT64_MAX)
2957 			spa->spa_extreme_rewind = B_TRUE;
2958 	}
2959 
2960 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2961 	    mosconfig);
2962 	if (load_error == 0)
2963 		return (0);
2964 
2965 	if (spa->spa_root_vdev != NULL)
2966 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2967 
2968 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2969 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2970 
2971 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2972 		nvlist_free(config);
2973 		return (load_error);
2974 	}
2975 
2976 	if (state == SPA_LOAD_RECOVER) {
2977 		/* Price of rolling back is discarding txgs, including log */
2978 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2979 	} else {
2980 		/*
2981 		 * If we aren't rolling back save the load info from our first
2982 		 * import attempt so that we can restore it after attempting
2983 		 * to rewind.
2984 		 */
2985 		loadinfo = spa->spa_load_info;
2986 		spa->spa_load_info = fnvlist_alloc();
2987 	}
2988 
2989 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2990 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2991 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2992 	    TXG_INITIAL : safe_rewind_txg;
2993 
2994 	/*
2995 	 * Continue as long as we're finding errors, we're still within
2996 	 * the acceptable rewind range, and we're still finding uberblocks
2997 	 */
2998 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2999 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3000 		if (spa->spa_load_max_txg < safe_rewind_txg)
3001 			spa->spa_extreme_rewind = B_TRUE;
3002 		rewind_error = spa_load_retry(spa, state, mosconfig);
3003 	}
3004 
3005 	spa->spa_extreme_rewind = B_FALSE;
3006 	spa->spa_load_max_txg = UINT64_MAX;
3007 
3008 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3009 		spa_config_set(spa, config);
3010 
3011 	if (state == SPA_LOAD_RECOVER) {
3012 		ASSERT3P(loadinfo, ==, NULL);
3013 		return (rewind_error);
3014 	} else {
3015 		/* Store the rewind info as part of the initial load info */
3016 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3017 		    spa->spa_load_info);
3018 
3019 		/* Restore the initial load info */
3020 		fnvlist_free(spa->spa_load_info);
3021 		spa->spa_load_info = loadinfo;
3022 
3023 		return (load_error);
3024 	}
3025 }
3026 
3027 /*
3028  * Pool Open/Import
3029  *
3030  * The import case is identical to an open except that the configuration is sent
3031  * down from userland, instead of grabbed from the configuration cache.  For the
3032  * case of an open, the pool configuration will exist in the
3033  * POOL_STATE_UNINITIALIZED state.
3034  *
3035  * The stats information (gen/count/ustats) is used to gather vdev statistics at
3036  * the same time open the pool, without having to keep around the spa_t in some
3037  * ambiguous state.
3038  */
3039 static int
3040 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3041     nvlist_t **config)
3042 {
3043 	spa_t *spa;
3044 	spa_load_state_t state = SPA_LOAD_OPEN;
3045 	int error;
3046 	int locked = B_FALSE;
3047 
3048 	*spapp = NULL;
3049 
3050 	/*
3051 	 * As disgusting as this is, we need to support recursive calls to this
3052 	 * function because dsl_dir_open() is called during spa_load(), and ends
3053 	 * up calling spa_open() again.  The real fix is to figure out how to
3054 	 * avoid dsl_dir_open() calling this in the first place.
3055 	 */
3056 	if (mutex_owner(&spa_namespace_lock) != curthread) {
3057 		mutex_enter(&spa_namespace_lock);
3058 		locked = B_TRUE;
3059 	}
3060 
3061 	if ((spa = spa_lookup(pool)) == NULL) {
3062 		if (locked)
3063 			mutex_exit(&spa_namespace_lock);
3064 		return (SET_ERROR(ENOENT));
3065 	}
3066 
3067 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3068 		zpool_rewind_policy_t policy;
3069 
3070 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3071 		    &policy);
3072 		if (policy.zrp_request & ZPOOL_DO_REWIND)
3073 			state = SPA_LOAD_RECOVER;
3074 
3075 		spa_activate(spa, spa_mode_global);
3076 
3077 		if (state != SPA_LOAD_RECOVER)
3078 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3079 
3080 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3081 		    policy.zrp_request);
3082 
3083 		if (error == EBADF) {
3084 			/*
3085 			 * If vdev_validate() returns failure (indicated by
3086 			 * EBADF), it indicates that one of the vdevs indicates
3087 			 * that the pool has been exported or destroyed.  If
3088 			 * this is the case, the config cache is out of sync and
3089 			 * we should remove the pool from the namespace.
3090 			 */
3091 			spa_unload(spa);
3092 			spa_deactivate(spa);
3093 			spa_config_sync(spa, B_TRUE, B_TRUE);
3094 			spa_remove(spa);
3095 			if (locked)
3096 				mutex_exit(&spa_namespace_lock);
3097 			return (SET_ERROR(ENOENT));
3098 		}
3099 
3100 		if (error) {
3101 			/*
3102 			 * We can't open the pool, but we still have useful
3103 			 * information: the state of each vdev after the
3104 			 * attempted vdev_open().  Return this to the user.
3105 			 */
3106 			if (config != NULL && spa->spa_config) {
3107 				VERIFY(nvlist_dup(spa->spa_config, config,
3108 				    KM_SLEEP) == 0);
3109 				VERIFY(nvlist_add_nvlist(*config,
3110 				    ZPOOL_CONFIG_LOAD_INFO,
3111 				    spa->spa_load_info) == 0);
3112 			}
3113 			spa_unload(spa);
3114 			spa_deactivate(spa);
3115 			spa->spa_last_open_failed = error;
3116 			if (locked)
3117 				mutex_exit(&spa_namespace_lock);
3118 			*spapp = NULL;
3119 			return (error);
3120 		}
3121 	}
3122 
3123 	spa_open_ref(spa, tag);
3124 
3125 	if (config != NULL)
3126 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3127 
3128 	/*
3129 	 * If we've recovered the pool, pass back any information we
3130 	 * gathered while doing the load.
3131 	 */
3132 	if (state == SPA_LOAD_RECOVER) {
3133 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3134 		    spa->spa_load_info) == 0);
3135 	}
3136 
3137 	if (locked) {
3138 		spa->spa_last_open_failed = 0;
3139 		spa->spa_last_ubsync_txg = 0;
3140 		spa->spa_load_txg = 0;
3141 		mutex_exit(&spa_namespace_lock);
3142 	}
3143 
3144 	*spapp = spa;
3145 
3146 	return (0);
3147 }
3148 
3149 int
3150 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3151     nvlist_t **config)
3152 {
3153 	return (spa_open_common(name, spapp, tag, policy, config));
3154 }
3155 
3156 int
3157 spa_open(const char *name, spa_t **spapp, void *tag)
3158 {
3159 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3160 }
3161 
3162 /*
3163  * Lookup the given spa_t, incrementing the inject count in the process,
3164  * preventing it from being exported or destroyed.
3165  */
3166 spa_t *
3167 spa_inject_addref(char *name)
3168 {
3169 	spa_t *spa;
3170 
3171 	mutex_enter(&spa_namespace_lock);
3172 	if ((spa = spa_lookup(name)) == NULL) {
3173 		mutex_exit(&spa_namespace_lock);
3174 		return (NULL);
3175 	}
3176 	spa->spa_inject_ref++;
3177 	mutex_exit(&spa_namespace_lock);
3178 
3179 	return (spa);
3180 }
3181 
3182 void
3183 spa_inject_delref(spa_t *spa)
3184 {
3185 	mutex_enter(&spa_namespace_lock);
3186 	spa->spa_inject_ref--;
3187 	mutex_exit(&spa_namespace_lock);
3188 }
3189 
3190 /*
3191  * Add spares device information to the nvlist.
3192  */
3193 static void
3194 spa_add_spares(spa_t *spa, nvlist_t *config)
3195 {
3196 	nvlist_t **spares;
3197 	uint_t i, nspares;
3198 	nvlist_t *nvroot;
3199 	uint64_t guid;
3200 	vdev_stat_t *vs;
3201 	uint_t vsc;
3202 	uint64_t pool;
3203 
3204 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3205 
3206 	if (spa->spa_spares.sav_count == 0)
3207 		return;
3208 
3209 	VERIFY(nvlist_lookup_nvlist(config,
3210 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3211 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3212 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3213 	if (nspares != 0) {
3214 		VERIFY(nvlist_add_nvlist_array(nvroot,
3215 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3216 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3217 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3218 
3219 		/*
3220 		 * Go through and find any spares which have since been
3221 		 * repurposed as an active spare.  If this is the case, update
3222 		 * their status appropriately.
3223 		 */
3224 		for (i = 0; i < nspares; i++) {
3225 			VERIFY(nvlist_lookup_uint64(spares[i],
3226 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3227 			if (spa_spare_exists(guid, &pool, NULL) &&
3228 			    pool != 0ULL) {
3229 				VERIFY(nvlist_lookup_uint64_array(
3230 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3231 				    (uint64_t **)&vs, &vsc) == 0);
3232 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3233 				vs->vs_aux = VDEV_AUX_SPARED;
3234 			}
3235 		}
3236 	}
3237 }
3238 
3239 /*
3240  * Add l2cache device information to the nvlist, including vdev stats.
3241  */
3242 static void
3243 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3244 {
3245 	nvlist_t **l2cache;
3246 	uint_t i, j, nl2cache;
3247 	nvlist_t *nvroot;
3248 	uint64_t guid;
3249 	vdev_t *vd;
3250 	vdev_stat_t *vs;
3251 	uint_t vsc;
3252 
3253 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3254 
3255 	if (spa->spa_l2cache.sav_count == 0)
3256 		return;
3257 
3258 	VERIFY(nvlist_lookup_nvlist(config,
3259 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3260 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3261 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3262 	if (nl2cache != 0) {
3263 		VERIFY(nvlist_add_nvlist_array(nvroot,
3264 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3265 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3266 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3267 
3268 		/*
3269 		 * Update level 2 cache device stats.
3270 		 */
3271 
3272 		for (i = 0; i < nl2cache; i++) {
3273 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3274 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3275 
3276 			vd = NULL;
3277 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3278 				if (guid ==
3279 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3280 					vd = spa->spa_l2cache.sav_vdevs[j];
3281 					break;
3282 				}
3283 			}
3284 			ASSERT(vd != NULL);
3285 
3286 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3287 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3288 			    == 0);
3289 			vdev_get_stats(vd, vs);
3290 		}
3291 	}
3292 }
3293 
3294 static void
3295 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3296 {
3297 	nvlist_t *features;
3298 	zap_cursor_t zc;
3299 	zap_attribute_t za;
3300 
3301 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3302 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3303 
3304 	if (spa->spa_feat_for_read_obj != 0) {
3305 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3306 		    spa->spa_feat_for_read_obj);
3307 		    zap_cursor_retrieve(&zc, &za) == 0;
3308 		    zap_cursor_advance(&zc)) {
3309 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3310 			    za.za_num_integers == 1);
3311 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3312 			    za.za_first_integer));
3313 		}
3314 		zap_cursor_fini(&zc);
3315 	}
3316 
3317 	if (spa->spa_feat_for_write_obj != 0) {
3318 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3319 		    spa->spa_feat_for_write_obj);
3320 		    zap_cursor_retrieve(&zc, &za) == 0;
3321 		    zap_cursor_advance(&zc)) {
3322 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3323 			    za.za_num_integers == 1);
3324 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3325 			    za.za_first_integer));
3326 		}
3327 		zap_cursor_fini(&zc);
3328 	}
3329 
3330 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3331 	    features) == 0);
3332 	nvlist_free(features);
3333 }
3334 
3335 int
3336 spa_get_stats(const char *name, nvlist_t **config,
3337     char *altroot, size_t buflen)
3338 {
3339 	int error;
3340 	spa_t *spa;
3341 
3342 	*config = NULL;
3343 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3344 
3345 	if (spa != NULL) {
3346 		/*
3347 		 * This still leaves a window of inconsistency where the spares
3348 		 * or l2cache devices could change and the config would be
3349 		 * self-inconsistent.
3350 		 */
3351 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3352 
3353 		if (*config != NULL) {
3354 			uint64_t loadtimes[2];
3355 
3356 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3357 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3358 			VERIFY(nvlist_add_uint64_array(*config,
3359 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3360 
3361 			VERIFY(nvlist_add_uint64(*config,
3362 			    ZPOOL_CONFIG_ERRCOUNT,
3363 			    spa_get_errlog_size(spa)) == 0);
3364 
3365 			if (spa_suspended(spa))
3366 				VERIFY(nvlist_add_uint64(*config,
3367 				    ZPOOL_CONFIG_SUSPENDED,
3368 				    spa->spa_failmode) == 0);
3369 
3370 			spa_add_spares(spa, *config);
3371 			spa_add_l2cache(spa, *config);
3372 			spa_add_feature_stats(spa, *config);
3373 		}
3374 	}
3375 
3376 	/*
3377 	 * We want to get the alternate root even for faulted pools, so we cheat
3378 	 * and call spa_lookup() directly.
3379 	 */
3380 	if (altroot) {
3381 		if (spa == NULL) {
3382 			mutex_enter(&spa_namespace_lock);
3383 			spa = spa_lookup(name);
3384 			if (spa)
3385 				spa_altroot(spa, altroot, buflen);
3386 			else
3387 				altroot[0] = '\0';
3388 			spa = NULL;
3389 			mutex_exit(&spa_namespace_lock);
3390 		} else {
3391 			spa_altroot(spa, altroot, buflen);
3392 		}
3393 	}
3394 
3395 	if (spa != NULL) {
3396 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3397 		spa_close(spa, FTAG);
3398 	}
3399 
3400 	return (error);
3401 }
3402 
3403 /*
3404  * Validate that the auxiliary device array is well formed.  We must have an
3405  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3406  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3407  * specified, as long as they are well-formed.
3408  */
3409 static int
3410 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3411     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3412     vdev_labeltype_t label)
3413 {
3414 	nvlist_t **dev;
3415 	uint_t i, ndev;
3416 	vdev_t *vd;
3417 	int error;
3418 
3419 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3420 
3421 	/*
3422 	 * It's acceptable to have no devs specified.
3423 	 */
3424 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3425 		return (0);
3426 
3427 	if (ndev == 0)
3428 		return (SET_ERROR(EINVAL));
3429 
3430 	/*
3431 	 * Make sure the pool is formatted with a version that supports this
3432 	 * device type.
3433 	 */
3434 	if (spa_version(spa) < version)
3435 		return (SET_ERROR(ENOTSUP));
3436 
3437 	/*
3438 	 * Set the pending device list so we correctly handle device in-use
3439 	 * checking.
3440 	 */
3441 	sav->sav_pending = dev;
3442 	sav->sav_npending = ndev;
3443 
3444 	for (i = 0; i < ndev; i++) {
3445 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3446 		    mode)) != 0)
3447 			goto out;
3448 
3449 		if (!vd->vdev_ops->vdev_op_leaf) {
3450 			vdev_free(vd);
3451 			error = SET_ERROR(EINVAL);
3452 			goto out;
3453 		}
3454 
3455 		/*
3456 		 * The L2ARC currently only supports disk devices in
3457 		 * kernel context.  For user-level testing, we allow it.
3458 		 */
3459 #ifdef _KERNEL
3460 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3461 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3462 			error = SET_ERROR(ENOTBLK);
3463 			vdev_free(vd);
3464 			goto out;
3465 		}
3466 #endif
3467 		vd->vdev_top = vd;
3468 
3469 		if ((error = vdev_open(vd)) == 0 &&
3470 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3471 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3472 			    vd->vdev_guid) == 0);
3473 		}
3474 
3475 		vdev_free(vd);
3476 
3477 		if (error &&
3478 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3479 			goto out;
3480 		else
3481 			error = 0;
3482 	}
3483 
3484 out:
3485 	sav->sav_pending = NULL;
3486 	sav->sav_npending = 0;
3487 	return (error);
3488 }
3489 
3490 static int
3491 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3492 {
3493 	int error;
3494 
3495 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3496 
3497 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3498 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3499 	    VDEV_LABEL_SPARE)) != 0) {
3500 		return (error);
3501 	}
3502 
3503 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3504 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3505 	    VDEV_LABEL_L2CACHE));
3506 }
3507 
3508 static void
3509 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3510     const char *config)
3511 {
3512 	int i;
3513 
3514 	if (sav->sav_config != NULL) {
3515 		nvlist_t **olddevs;
3516 		uint_t oldndevs;
3517 		nvlist_t **newdevs;
3518 
3519 		/*
3520 		 * Generate new dev list by concatentating with the
3521 		 * current dev list.
3522 		 */
3523 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3524 		    &olddevs, &oldndevs) == 0);
3525 
3526 		newdevs = kmem_alloc(sizeof (void *) *
3527 		    (ndevs + oldndevs), KM_SLEEP);
3528 		for (i = 0; i < oldndevs; i++)
3529 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3530 			    KM_SLEEP) == 0);
3531 		for (i = 0; i < ndevs; i++)
3532 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3533 			    KM_SLEEP) == 0);
3534 
3535 		VERIFY(nvlist_remove(sav->sav_config, config,
3536 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3537 
3538 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3539 		    config, newdevs, ndevs + oldndevs) == 0);
3540 		for (i = 0; i < oldndevs + ndevs; i++)
3541 			nvlist_free(newdevs[i]);
3542 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3543 	} else {
3544 		/*
3545 		 * Generate a new dev list.
3546 		 */
3547 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3548 		    KM_SLEEP) == 0);
3549 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3550 		    devs, ndevs) == 0);
3551 	}
3552 }
3553 
3554 /*
3555  * Stop and drop level 2 ARC devices
3556  */
3557 void
3558 spa_l2cache_drop(spa_t *spa)
3559 {
3560 	vdev_t *vd;
3561 	int i;
3562 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3563 
3564 	for (i = 0; i < sav->sav_count; i++) {
3565 		uint64_t pool;
3566 
3567 		vd = sav->sav_vdevs[i];
3568 		ASSERT(vd != NULL);
3569 
3570 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3571 		    pool != 0ULL && l2arc_vdev_present(vd))
3572 			l2arc_remove_vdev(vd);
3573 	}
3574 }
3575 
3576 /*
3577  * Pool Creation
3578  */
3579 int
3580 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3581     nvlist_t *zplprops)
3582 {
3583 	spa_t *spa;
3584 	char *altroot = NULL;
3585 	vdev_t *rvd;
3586 	dsl_pool_t *dp;
3587 	dmu_tx_t *tx;
3588 	int error = 0;
3589 	uint64_t txg = TXG_INITIAL;
3590 	nvlist_t **spares, **l2cache;
3591 	uint_t nspares, nl2cache;
3592 	uint64_t version, obj;
3593 	boolean_t has_features;
3594 
3595 	/*
3596 	 * If this pool already exists, return failure.
3597 	 */
3598 	mutex_enter(&spa_namespace_lock);
3599 	if (spa_lookup(pool) != NULL) {
3600 		mutex_exit(&spa_namespace_lock);
3601 		return (SET_ERROR(EEXIST));
3602 	}
3603 
3604 	/*
3605 	 * Allocate a new spa_t structure.
3606 	 */
3607 	(void) nvlist_lookup_string(props,
3608 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3609 	spa = spa_add(pool, NULL, altroot);
3610 	spa_activate(spa, spa_mode_global);
3611 
3612 	if (props && (error = spa_prop_validate(spa, props))) {
3613 		spa_deactivate(spa);
3614 		spa_remove(spa);
3615 		mutex_exit(&spa_namespace_lock);
3616 		return (error);
3617 	}
3618 
3619 	has_features = B_FALSE;
3620 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3621 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3622 		if (zpool_prop_feature(nvpair_name(elem)))
3623 			has_features = B_TRUE;
3624 	}
3625 
3626 	if (has_features || nvlist_lookup_uint64(props,
3627 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3628 		version = SPA_VERSION;
3629 	}
3630 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3631 
3632 	spa->spa_first_txg = txg;
3633 	spa->spa_uberblock.ub_txg = txg - 1;
3634 	spa->spa_uberblock.ub_version = version;
3635 	spa->spa_ubsync = spa->spa_uberblock;
3636 	spa->spa_load_state = SPA_LOAD_CREATE;
3637 
3638 	/*
3639 	 * Create "The Godfather" zio to hold all async IOs
3640 	 */
3641 	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3642 	    KM_SLEEP);
3643 	for (int i = 0; i < max_ncpus; i++) {
3644 		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3645 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3646 		    ZIO_FLAG_GODFATHER);
3647 	}
3648 
3649 	/*
3650 	 * Create the root vdev.
3651 	 */
3652 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3653 
3654 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3655 
3656 	ASSERT(error != 0 || rvd != NULL);
3657 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3658 
3659 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3660 		error = SET_ERROR(EINVAL);
3661 
3662 	if (error == 0 &&
3663 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3664 	    (error = spa_validate_aux(spa, nvroot, txg,
3665 	    VDEV_ALLOC_ADD)) == 0) {
3666 		for (int c = 0; c < rvd->vdev_children; c++) {
3667 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3668 			vdev_expand(rvd->vdev_child[c], txg);
3669 		}
3670 	}
3671 
3672 	spa_config_exit(spa, SCL_ALL, FTAG);
3673 
3674 	if (error != 0) {
3675 		spa_unload(spa);
3676 		spa_deactivate(spa);
3677 		spa_remove(spa);
3678 		mutex_exit(&spa_namespace_lock);
3679 		return (error);
3680 	}
3681 
3682 	/*
3683 	 * Get the list of spares, if specified.
3684 	 */
3685 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3686 	    &spares, &nspares) == 0) {
3687 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3688 		    KM_SLEEP) == 0);
3689 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3690 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3691 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3692 		spa_load_spares(spa);
3693 		spa_config_exit(spa, SCL_ALL, FTAG);
3694 		spa->spa_spares.sav_sync = B_TRUE;
3695 	}
3696 
3697 	/*
3698 	 * Get the list of level 2 cache devices, if specified.
3699 	 */
3700 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3701 	    &l2cache, &nl2cache) == 0) {
3702 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3703 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3704 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3705 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3706 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3707 		spa_load_l2cache(spa);
3708 		spa_config_exit(spa, SCL_ALL, FTAG);
3709 		spa->spa_l2cache.sav_sync = B_TRUE;
3710 	}
3711 
3712 	spa->spa_is_initializing = B_TRUE;
3713 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3714 	spa->spa_meta_objset = dp->dp_meta_objset;
3715 	spa->spa_is_initializing = B_FALSE;
3716 
3717 	/*
3718 	 * Create DDTs (dedup tables).
3719 	 */
3720 	ddt_create(spa);
3721 
3722 	spa_update_dspace(spa);
3723 
3724 	tx = dmu_tx_create_assigned(dp, txg);
3725 
3726 	/*
3727 	 * Create the pool config object.
3728 	 */
3729 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3730 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3731 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3732 
3733 	if (zap_add(spa->spa_meta_objset,
3734 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3735 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3736 		cmn_err(CE_PANIC, "failed to add pool config");
3737 	}
3738 
3739 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3740 		spa_feature_create_zap_objects(spa, tx);
3741 
3742 	if (zap_add(spa->spa_meta_objset,
3743 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3744 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3745 		cmn_err(CE_PANIC, "failed to add pool version");
3746 	}
3747 
3748 	/* Newly created pools with the right version are always deflated. */
3749 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3750 		spa->spa_deflate = TRUE;
3751 		if (zap_add(spa->spa_meta_objset,
3752 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3753 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3754 			cmn_err(CE_PANIC, "failed to add deflate");
3755 		}
3756 	}
3757 
3758 	/*
3759 	 * Create the deferred-free bpobj.  Turn off compression
3760 	 * because sync-to-convergence takes longer if the blocksize
3761 	 * keeps changing.
3762 	 */
3763 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3764 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3765 	    ZIO_COMPRESS_OFF, tx);
3766 	if (zap_add(spa->spa_meta_objset,
3767 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3768 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3769 		cmn_err(CE_PANIC, "failed to add bpobj");
3770 	}
3771 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3772 	    spa->spa_meta_objset, obj));
3773 
3774 	/*
3775 	 * Create the pool's history object.
3776 	 */
3777 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3778 		spa_history_create_obj(spa, tx);
3779 
3780 	/*
3781 	 * Generate some random noise for salted checksums to operate on.
3782 	 */
3783 	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3784 	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3785 
3786 	/*
3787 	 * Set pool properties.
3788 	 */
3789 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3790 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3791 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3792 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3793 
3794 	if (props != NULL) {
3795 		spa_configfile_set(spa, props, B_FALSE);
3796 		spa_sync_props(props, tx);
3797 	}
3798 
3799 	dmu_tx_commit(tx);
3800 
3801 	spa->spa_sync_on = B_TRUE;
3802 	txg_sync_start(spa->spa_dsl_pool);
3803 
3804 	/*
3805 	 * We explicitly wait for the first transaction to complete so that our
3806 	 * bean counters are appropriately updated.
3807 	 */
3808 	txg_wait_synced(spa->spa_dsl_pool, txg);
3809 
3810 	spa_config_sync(spa, B_FALSE, B_TRUE);
3811 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3812 
3813 	spa_history_log_version(spa, "create");
3814 
3815 	/*
3816 	 * Don't count references from objsets that are already closed
3817 	 * and are making their way through the eviction process.
3818 	 */
3819 	spa_evicting_os_wait(spa);
3820 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3821 	spa->spa_load_state = SPA_LOAD_NONE;
3822 
3823 	mutex_exit(&spa_namespace_lock);
3824 
3825 	return (0);
3826 }
3827 
3828 #ifdef _KERNEL
3829 /*
3830  * Get the root pool information from the root disk, then import the root pool
3831  * during the system boot up time.
3832  */
3833 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3834 
3835 static nvlist_t *
3836 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3837 {
3838 	nvlist_t *config;
3839 	nvlist_t *nvtop, *nvroot;
3840 	uint64_t pgid;
3841 
3842 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3843 		return (NULL);
3844 
3845 	/*
3846 	 * Add this top-level vdev to the child array.
3847 	 */
3848 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3849 	    &nvtop) == 0);
3850 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3851 	    &pgid) == 0);
3852 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3853 
3854 	/*
3855 	 * Put this pool's top-level vdevs into a root vdev.
3856 	 */
3857 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3858 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3859 	    VDEV_TYPE_ROOT) == 0);
3860 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3861 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3862 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3863 	    &nvtop, 1) == 0);
3864 
3865 	/*
3866 	 * Replace the existing vdev_tree with the new root vdev in
3867 	 * this pool's configuration (remove the old, add the new).
3868 	 */
3869 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3870 	nvlist_free(nvroot);
3871 	return (config);
3872 }
3873 
3874 /*
3875  * Walk the vdev tree and see if we can find a device with "better"
3876  * configuration. A configuration is "better" if the label on that
3877  * device has a more recent txg.
3878  */
3879 static void
3880 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3881 {
3882 	for (int c = 0; c < vd->vdev_children; c++)
3883 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3884 
3885 	if (vd->vdev_ops->vdev_op_leaf) {
3886 		nvlist_t *label;
3887 		uint64_t label_txg;
3888 
3889 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3890 		    &label) != 0)
3891 			return;
3892 
3893 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3894 		    &label_txg) == 0);
3895 
3896 		/*
3897 		 * Do we have a better boot device?
3898 		 */
3899 		if (label_txg > *txg) {
3900 			*txg = label_txg;
3901 			*avd = vd;
3902 		}
3903 		nvlist_free(label);
3904 	}
3905 }
3906 
3907 /*
3908  * Import a root pool.
3909  *
3910  * For x86. devpath_list will consist of devid and/or physpath name of
3911  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3912  * The GRUB "findroot" command will return the vdev we should boot.
3913  *
3914  * For Sparc, devpath_list consists the physpath name of the booting device
3915  * no matter the rootpool is a single device pool or a mirrored pool.
3916  * e.g.
3917  *	"/pci@1f,0/ide@d/disk@0,0:a"
3918  */
3919 int
3920 spa_import_rootpool(char *devpath, char *devid)
3921 {
3922 	spa_t *spa;
3923 	vdev_t *rvd, *bvd, *avd = NULL;
3924 	nvlist_t *config, *nvtop;
3925 	uint64_t guid, txg;
3926 	char *pname;
3927 	int error;
3928 
3929 	/*
3930 	 * Read the label from the boot device and generate a configuration.
3931 	 */
3932 	config = spa_generate_rootconf(devpath, devid, &guid);
3933 #if defined(_OBP) && defined(_KERNEL)
3934 	if (config == NULL) {
3935 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3936 			/* iscsi boot */
3937 			get_iscsi_bootpath_phy(devpath);
3938 			config = spa_generate_rootconf(devpath, devid, &guid);
3939 		}
3940 	}
3941 #endif
3942 	if (config == NULL) {
3943 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3944 		    devpath);
3945 		return (SET_ERROR(EIO));
3946 	}
3947 
3948 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3949 	    &pname) == 0);
3950 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3951 
3952 	mutex_enter(&spa_namespace_lock);
3953 	if ((spa = spa_lookup(pname)) != NULL) {
3954 		/*
3955 		 * Remove the existing root pool from the namespace so that we
3956 		 * can replace it with the correct config we just read in.
3957 		 */
3958 		spa_remove(spa);
3959 	}
3960 
3961 	spa = spa_add(pname, config, NULL);
3962 	spa->spa_is_root = B_TRUE;
3963 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3964 
3965 	/*
3966 	 * Build up a vdev tree based on the boot device's label config.
3967 	 */
3968 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3969 	    &nvtop) == 0);
3970 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3971 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3972 	    VDEV_ALLOC_ROOTPOOL);
3973 	spa_config_exit(spa, SCL_ALL, FTAG);
3974 	if (error) {
3975 		mutex_exit(&spa_namespace_lock);
3976 		nvlist_free(config);
3977 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3978 		    pname);
3979 		return (error);
3980 	}
3981 
3982 	/*
3983 	 * Get the boot vdev.
3984 	 */
3985 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3986 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3987 		    (u_longlong_t)guid);
3988 		error = SET_ERROR(ENOENT);
3989 		goto out;
3990 	}
3991 
3992 	/*
3993 	 * Determine if there is a better boot device.
3994 	 */
3995 	avd = bvd;
3996 	spa_alt_rootvdev(rvd, &avd, &txg);
3997 	if (avd != bvd) {
3998 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3999 		    "try booting from '%s'", avd->vdev_path);
4000 		error = SET_ERROR(EINVAL);
4001 		goto out;
4002 	}
4003 
4004 	/*
4005 	 * If the boot device is part of a spare vdev then ensure that
4006 	 * we're booting off the active spare.
4007 	 */
4008 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4009 	    !bvd->vdev_isspare) {
4010 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4011 		    "try booting from '%s'",
4012 		    bvd->vdev_parent->
4013 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4014 		error = SET_ERROR(EINVAL);
4015 		goto out;
4016 	}
4017 
4018 	error = 0;
4019 out:
4020 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4021 	vdev_free(rvd);
4022 	spa_config_exit(spa, SCL_ALL, FTAG);
4023 	mutex_exit(&spa_namespace_lock);
4024 
4025 	nvlist_free(config);
4026 	return (error);
4027 }
4028 
4029 #endif
4030 
4031 /*
4032  * Import a non-root pool into the system.
4033  */
4034 int
4035 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4036 {
4037 	spa_t *spa;
4038 	char *altroot = NULL;
4039 	spa_load_state_t state = SPA_LOAD_IMPORT;
4040 	zpool_rewind_policy_t policy;
4041 	uint64_t mode = spa_mode_global;
4042 	uint64_t readonly = B_FALSE;
4043 	int error;
4044 	nvlist_t *nvroot;
4045 	nvlist_t **spares, **l2cache;
4046 	uint_t nspares, nl2cache;
4047 
4048 	/*
4049 	 * If a pool with this name exists, return failure.
4050 	 */
4051 	mutex_enter(&spa_namespace_lock);
4052 	if (spa_lookup(pool) != NULL) {
4053 		mutex_exit(&spa_namespace_lock);
4054 		return (SET_ERROR(EEXIST));
4055 	}
4056 
4057 	/*
4058 	 * Create and initialize the spa structure.
4059 	 */
4060 	(void) nvlist_lookup_string(props,
4061 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4062 	(void) nvlist_lookup_uint64(props,
4063 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4064 	if (readonly)
4065 		mode = FREAD;
4066 	spa = spa_add(pool, config, altroot);
4067 	spa->spa_import_flags = flags;
4068 
4069 	/*
4070 	 * Verbatim import - Take a pool and insert it into the namespace
4071 	 * as if it had been loaded at boot.
4072 	 */
4073 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4074 		if (props != NULL)
4075 			spa_configfile_set(spa, props, B_FALSE);
4076 
4077 		spa_config_sync(spa, B_FALSE, B_TRUE);
4078 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4079 
4080 		mutex_exit(&spa_namespace_lock);
4081 		return (0);
4082 	}
4083 
4084 	spa_activate(spa, mode);
4085 
4086 	/*
4087 	 * Don't start async tasks until we know everything is healthy.
4088 	 */
4089 	spa_async_suspend(spa);
4090 
4091 	zpool_get_rewind_policy(config, &policy);
4092 	if (policy.zrp_request & ZPOOL_DO_REWIND)
4093 		state = SPA_LOAD_RECOVER;
4094 
4095 	/*
4096 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4097 	 * because the user-supplied config is actually the one to trust when
4098 	 * doing an import.
4099 	 */
4100 	if (state != SPA_LOAD_RECOVER)
4101 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4102 
4103 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4104 	    policy.zrp_request);
4105 
4106 	/*
4107 	 * Propagate anything learned while loading the pool and pass it
4108 	 * back to caller (i.e. rewind info, missing devices, etc).
4109 	 */
4110 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4111 	    spa->spa_load_info) == 0);
4112 
4113 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4114 	/*
4115 	 * Toss any existing sparelist, as it doesn't have any validity
4116 	 * anymore, and conflicts with spa_has_spare().
4117 	 */
4118 	if (spa->spa_spares.sav_config) {
4119 		nvlist_free(spa->spa_spares.sav_config);
4120 		spa->spa_spares.sav_config = NULL;
4121 		spa_load_spares(spa);
4122 	}
4123 	if (spa->spa_l2cache.sav_config) {
4124 		nvlist_free(spa->spa_l2cache.sav_config);
4125 		spa->spa_l2cache.sav_config = NULL;
4126 		spa_load_l2cache(spa);
4127 	}
4128 
4129 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4130 	    &nvroot) == 0);
4131 	if (error == 0)
4132 		error = spa_validate_aux(spa, nvroot, -1ULL,
4133 		    VDEV_ALLOC_SPARE);
4134 	if (error == 0)
4135 		error = spa_validate_aux(spa, nvroot, -1ULL,
4136 		    VDEV_ALLOC_L2CACHE);
4137 	spa_config_exit(spa, SCL_ALL, FTAG);
4138 
4139 	if (props != NULL)
4140 		spa_configfile_set(spa, props, B_FALSE);
4141 
4142 	if (error != 0 || (props && spa_writeable(spa) &&
4143 	    (error = spa_prop_set(spa, props)))) {
4144 		spa_unload(spa);
4145 		spa_deactivate(spa);
4146 		spa_remove(spa);
4147 		mutex_exit(&spa_namespace_lock);
4148 		return (error);
4149 	}
4150 
4151 	spa_async_resume(spa);
4152 
4153 	/*
4154 	 * Override any spares and level 2 cache devices as specified by
4155 	 * the user, as these may have correct device names/devids, etc.
4156 	 */
4157 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4158 	    &spares, &nspares) == 0) {
4159 		if (spa->spa_spares.sav_config)
4160 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4161 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4162 		else
4163 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4164 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4165 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4166 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4167 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4168 		spa_load_spares(spa);
4169 		spa_config_exit(spa, SCL_ALL, FTAG);
4170 		spa->spa_spares.sav_sync = B_TRUE;
4171 	}
4172 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4173 	    &l2cache, &nl2cache) == 0) {
4174 		if (spa->spa_l2cache.sav_config)
4175 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4176 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4177 		else
4178 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4179 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4180 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4181 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4182 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4183 		spa_load_l2cache(spa);
4184 		spa_config_exit(spa, SCL_ALL, FTAG);
4185 		spa->spa_l2cache.sav_sync = B_TRUE;
4186 	}
4187 
4188 	/*
4189 	 * Check for any removed devices.
4190 	 */
4191 	if (spa->spa_autoreplace) {
4192 		spa_aux_check_removed(&spa->spa_spares);
4193 		spa_aux_check_removed(&spa->spa_l2cache);
4194 	}
4195 
4196 	if (spa_writeable(spa)) {
4197 		/*
4198 		 * Update the config cache to include the newly-imported pool.
4199 		 */
4200 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4201 	}
4202 
4203 	/*
4204 	 * It's possible that the pool was expanded while it was exported.
4205 	 * We kick off an async task to handle this for us.
4206 	 */
4207 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4208 
4209 	spa_history_log_version(spa, "import");
4210 
4211 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4212 
4213 	mutex_exit(&spa_namespace_lock);
4214 
4215 	return (0);
4216 }
4217 
4218 nvlist_t *
4219 spa_tryimport(nvlist_t *tryconfig)
4220 {
4221 	nvlist_t *config = NULL;
4222 	char *poolname;
4223 	spa_t *spa;
4224 	uint64_t state;
4225 	int error;
4226 
4227 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4228 		return (NULL);
4229 
4230 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4231 		return (NULL);
4232 
4233 	/*
4234 	 * Create and initialize the spa structure.
4235 	 */
4236 	mutex_enter(&spa_namespace_lock);
4237 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4238 	spa_activate(spa, FREAD);
4239 
4240 	/*
4241 	 * Pass off the heavy lifting to spa_load().
4242 	 * Pass TRUE for mosconfig because the user-supplied config
4243 	 * is actually the one to trust when doing an import.
4244 	 */
4245 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4246 
4247 	/*
4248 	 * If 'tryconfig' was at least parsable, return the current config.
4249 	 */
4250 	if (spa->spa_root_vdev != NULL) {
4251 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4252 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4253 		    poolname) == 0);
4254 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4255 		    state) == 0);
4256 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4257 		    spa->spa_uberblock.ub_timestamp) == 0);
4258 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4259 		    spa->spa_load_info) == 0);
4260 
4261 		/*
4262 		 * If the bootfs property exists on this pool then we
4263 		 * copy it out so that external consumers can tell which
4264 		 * pools are bootable.
4265 		 */
4266 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4267 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4268 
4269 			/*
4270 			 * We have to play games with the name since the
4271 			 * pool was opened as TRYIMPORT_NAME.
4272 			 */
4273 			if (dsl_dsobj_to_dsname(spa_name(spa),
4274 			    spa->spa_bootfs, tmpname) == 0) {
4275 				char *cp;
4276 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4277 
4278 				cp = strchr(tmpname, '/');
4279 				if (cp == NULL) {
4280 					(void) strlcpy(dsname, tmpname,
4281 					    MAXPATHLEN);
4282 				} else {
4283 					(void) snprintf(dsname, MAXPATHLEN,
4284 					    "%s/%s", poolname, ++cp);
4285 				}
4286 				VERIFY(nvlist_add_string(config,
4287 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4288 				kmem_free(dsname, MAXPATHLEN);
4289 			}
4290 			kmem_free(tmpname, MAXPATHLEN);
4291 		}
4292 
4293 		/*
4294 		 * Add the list of hot spares and level 2 cache devices.
4295 		 */
4296 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4297 		spa_add_spares(spa, config);
4298 		spa_add_l2cache(spa, config);
4299 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4300 	}
4301 
4302 	spa_unload(spa);
4303 	spa_deactivate(spa);
4304 	spa_remove(spa);
4305 	mutex_exit(&spa_namespace_lock);
4306 
4307 	return (config);
4308 }
4309 
4310 /*
4311  * Pool export/destroy
4312  *
4313  * The act of destroying or exporting a pool is very simple.  We make sure there
4314  * is no more pending I/O and any references to the pool are gone.  Then, we
4315  * update the pool state and sync all the labels to disk, removing the
4316  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4317  * we don't sync the labels or remove the configuration cache.
4318  */
4319 static int
4320 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4321     boolean_t force, boolean_t hardforce)
4322 {
4323 	spa_t *spa;
4324 
4325 	if (oldconfig)
4326 		*oldconfig = NULL;
4327 
4328 	if (!(spa_mode_global & FWRITE))
4329 		return (SET_ERROR(EROFS));
4330 
4331 	mutex_enter(&spa_namespace_lock);
4332 	if ((spa = spa_lookup(pool)) == NULL) {
4333 		mutex_exit(&spa_namespace_lock);
4334 		return (SET_ERROR(ENOENT));
4335 	}
4336 
4337 	/*
4338 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4339 	 * reacquire the namespace lock, and see if we can export.
4340 	 */
4341 	spa_open_ref(spa, FTAG);
4342 	mutex_exit(&spa_namespace_lock);
4343 	spa_async_suspend(spa);
4344 	mutex_enter(&spa_namespace_lock);
4345 	spa_close(spa, FTAG);
4346 
4347 	/*
4348 	 * The pool will be in core if it's openable,
4349 	 * in which case we can modify its state.
4350 	 */
4351 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4352 		/*
4353 		 * Objsets may be open only because they're dirty, so we
4354 		 * have to force it to sync before checking spa_refcnt.
4355 		 */
4356 		txg_wait_synced(spa->spa_dsl_pool, 0);
4357 		spa_evicting_os_wait(spa);
4358 
4359 		/*
4360 		 * A pool cannot be exported or destroyed if there are active
4361 		 * references.  If we are resetting a pool, allow references by
4362 		 * fault injection handlers.
4363 		 */
4364 		if (!spa_refcount_zero(spa) ||
4365 		    (spa->spa_inject_ref != 0 &&
4366 		    new_state != POOL_STATE_UNINITIALIZED)) {
4367 			spa_async_resume(spa);
4368 			mutex_exit(&spa_namespace_lock);
4369 			return (SET_ERROR(EBUSY));
4370 		}
4371 
4372 		/*
4373 		 * A pool cannot be exported if it has an active shared spare.
4374 		 * This is to prevent other pools stealing the active spare
4375 		 * from an exported pool. At user's own will, such pool can
4376 		 * be forcedly exported.
4377 		 */
4378 		if (!force && new_state == POOL_STATE_EXPORTED &&
4379 		    spa_has_active_shared_spare(spa)) {
4380 			spa_async_resume(spa);
4381 			mutex_exit(&spa_namespace_lock);
4382 			return (SET_ERROR(EXDEV));
4383 		}
4384 
4385 		/*
4386 		 * We want this to be reflected on every label,
4387 		 * so mark them all dirty.  spa_unload() will do the
4388 		 * final sync that pushes these changes out.
4389 		 */
4390 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4391 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4392 			spa->spa_state = new_state;
4393 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4394 			    TXG_DEFER_SIZE + 1;
4395 			vdev_config_dirty(spa->spa_root_vdev);
4396 			spa_config_exit(spa, SCL_ALL, FTAG);
4397 		}
4398 	}
4399 
4400 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4401 
4402 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4403 		spa_unload(spa);
4404 		spa_deactivate(spa);
4405 	}
4406 
4407 	if (oldconfig && spa->spa_config)
4408 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4409 
4410 	if (new_state != POOL_STATE_UNINITIALIZED) {
4411 		if (!hardforce)
4412 			spa_config_sync(spa, B_TRUE, B_TRUE);
4413 		spa_remove(spa);
4414 	}
4415 	mutex_exit(&spa_namespace_lock);
4416 
4417 	return (0);
4418 }
4419 
4420 /*
4421  * Destroy a storage pool.
4422  */
4423 int
4424 spa_destroy(char *pool)
4425 {
4426 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4427 	    B_FALSE, B_FALSE));
4428 }
4429 
4430 /*
4431  * Export a storage pool.
4432  */
4433 int
4434 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4435     boolean_t hardforce)
4436 {
4437 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4438 	    force, hardforce));
4439 }
4440 
4441 /*
4442  * Similar to spa_export(), this unloads the spa_t without actually removing it
4443  * from the namespace in any way.
4444  */
4445 int
4446 spa_reset(char *pool)
4447 {
4448 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4449 	    B_FALSE, B_FALSE));
4450 }
4451 
4452 /*
4453  * ==========================================================================
4454  * Device manipulation
4455  * ==========================================================================
4456  */
4457 
4458 /*
4459  * Add a device to a storage pool.
4460  */
4461 int
4462 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4463 {
4464 	uint64_t txg, id;
4465 	int error;
4466 	vdev_t *rvd = spa->spa_root_vdev;
4467 	vdev_t *vd, *tvd;
4468 	nvlist_t **spares, **l2cache;
4469 	uint_t nspares, nl2cache;
4470 
4471 	ASSERT(spa_writeable(spa));
4472 
4473 	txg = spa_vdev_enter(spa);
4474 
4475 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4476 	    VDEV_ALLOC_ADD)) != 0)
4477 		return (spa_vdev_exit(spa, NULL, txg, error));
4478 
4479 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4480 
4481 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4482 	    &nspares) != 0)
4483 		nspares = 0;
4484 
4485 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4486 	    &nl2cache) != 0)
4487 		nl2cache = 0;
4488 
4489 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4490 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4491 
4492 	if (vd->vdev_children != 0 &&
4493 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4494 		return (spa_vdev_exit(spa, vd, txg, error));
4495 
4496 	/*
4497 	 * We must validate the spares and l2cache devices after checking the
4498 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4499 	 */
4500 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4501 		return (spa_vdev_exit(spa, vd, txg, error));
4502 
4503 	/*
4504 	 * Transfer each new top-level vdev from vd to rvd.
4505 	 */
4506 	for (int c = 0; c < vd->vdev_children; c++) {
4507 
4508 		/*
4509 		 * Set the vdev id to the first hole, if one exists.
4510 		 */
4511 		for (id = 0; id < rvd->vdev_children; id++) {
4512 			if (rvd->vdev_child[id]->vdev_ishole) {
4513 				vdev_free(rvd->vdev_child[id]);
4514 				break;
4515 			}
4516 		}
4517 		tvd = vd->vdev_child[c];
4518 		vdev_remove_child(vd, tvd);
4519 		tvd->vdev_id = id;
4520 		vdev_add_child(rvd, tvd);
4521 		vdev_config_dirty(tvd);
4522 	}
4523 
4524 	if (nspares != 0) {
4525 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4526 		    ZPOOL_CONFIG_SPARES);
4527 		spa_load_spares(spa);
4528 		spa->spa_spares.sav_sync = B_TRUE;
4529 	}
4530 
4531 	if (nl2cache != 0) {
4532 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4533 		    ZPOOL_CONFIG_L2CACHE);
4534 		spa_load_l2cache(spa);
4535 		spa->spa_l2cache.sav_sync = B_TRUE;
4536 	}
4537 
4538 	/*
4539 	 * We have to be careful when adding new vdevs to an existing pool.
4540 	 * If other threads start allocating from these vdevs before we
4541 	 * sync the config cache, and we lose power, then upon reboot we may
4542 	 * fail to open the pool because there are DVAs that the config cache
4543 	 * can't translate.  Therefore, we first add the vdevs without
4544 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4545 	 * and then let spa_config_update() initialize the new metaslabs.
4546 	 *
4547 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4548 	 * if we lose power at any point in this sequence, the remaining
4549 	 * steps will be completed the next time we load the pool.
4550 	 */
4551 	(void) spa_vdev_exit(spa, vd, txg, 0);
4552 
4553 	mutex_enter(&spa_namespace_lock);
4554 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4555 	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4556 	mutex_exit(&spa_namespace_lock);
4557 
4558 	return (0);
4559 }
4560 
4561 /*
4562  * Attach a device to a mirror.  The arguments are the path to any device
4563  * in the mirror, and the nvroot for the new device.  If the path specifies
4564  * a device that is not mirrored, we automatically insert the mirror vdev.
4565  *
4566  * If 'replacing' is specified, the new device is intended to replace the
4567  * existing device; in this case the two devices are made into their own
4568  * mirror using the 'replacing' vdev, which is functionally identical to
4569  * the mirror vdev (it actually reuses all the same ops) but has a few
4570  * extra rules: you can't attach to it after it's been created, and upon
4571  * completion of resilvering, the first disk (the one being replaced)
4572  * is automatically detached.
4573  */
4574 int
4575 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4576 {
4577 	uint64_t txg, dtl_max_txg;
4578 	vdev_t *rvd = spa->spa_root_vdev;
4579 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4580 	vdev_ops_t *pvops;
4581 	char *oldvdpath, *newvdpath;
4582 	int newvd_isspare;
4583 	int error;
4584 
4585 	ASSERT(spa_writeable(spa));
4586 
4587 	txg = spa_vdev_enter(spa);
4588 
4589 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4590 
4591 	if (oldvd == NULL)
4592 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4593 
4594 	if (!oldvd->vdev_ops->vdev_op_leaf)
4595 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4596 
4597 	pvd = oldvd->vdev_parent;
4598 
4599 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4600 	    VDEV_ALLOC_ATTACH)) != 0)
4601 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4602 
4603 	if (newrootvd->vdev_children != 1)
4604 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4605 
4606 	newvd = newrootvd->vdev_child[0];
4607 
4608 	if (!newvd->vdev_ops->vdev_op_leaf)
4609 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4610 
4611 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4612 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4613 
4614 	/*
4615 	 * Spares can't replace logs
4616 	 */
4617 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4618 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4619 
4620 	if (!replacing) {
4621 		/*
4622 		 * For attach, the only allowable parent is a mirror or the root
4623 		 * vdev.
4624 		 */
4625 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4626 		    pvd->vdev_ops != &vdev_root_ops)
4627 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4628 
4629 		pvops = &vdev_mirror_ops;
4630 	} else {
4631 		/*
4632 		 * Active hot spares can only be replaced by inactive hot
4633 		 * spares.
4634 		 */
4635 		if (pvd->vdev_ops == &vdev_spare_ops &&
4636 		    oldvd->vdev_isspare &&
4637 		    !spa_has_spare(spa, newvd->vdev_guid))
4638 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4639 
4640 		/*
4641 		 * If the source is a hot spare, and the parent isn't already a
4642 		 * spare, then we want to create a new hot spare.  Otherwise, we
4643 		 * want to create a replacing vdev.  The user is not allowed to
4644 		 * attach to a spared vdev child unless the 'isspare' state is
4645 		 * the same (spare replaces spare, non-spare replaces
4646 		 * non-spare).
4647 		 */
4648 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4649 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4650 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4651 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4652 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4653 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4654 		}
4655 
4656 		if (newvd->vdev_isspare)
4657 			pvops = &vdev_spare_ops;
4658 		else
4659 			pvops = &vdev_replacing_ops;
4660 	}
4661 
4662 	/*
4663 	 * Make sure the new device is big enough.
4664 	 */
4665 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4666 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4667 
4668 	/*
4669 	 * The new device cannot have a higher alignment requirement
4670 	 * than the top-level vdev.
4671 	 */
4672 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4673 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4674 
4675 	/*
4676 	 * If this is an in-place replacement, update oldvd's path and devid
4677 	 * to make it distinguishable from newvd, and unopenable from now on.
4678 	 */
4679 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4680 		spa_strfree(oldvd->vdev_path);
4681 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4682 		    KM_SLEEP);
4683 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4684 		    newvd->vdev_path, "old");
4685 		if (oldvd->vdev_devid != NULL) {
4686 			spa_strfree(oldvd->vdev_devid);
4687 			oldvd->vdev_devid = NULL;
4688 		}
4689 	}
4690 
4691 	/* mark the device being resilvered */
4692 	newvd->vdev_resilver_txg = txg;
4693 
4694 	/*
4695 	 * If the parent is not a mirror, or if we're replacing, insert the new
4696 	 * mirror/replacing/spare vdev above oldvd.
4697 	 */
4698 	if (pvd->vdev_ops != pvops)
4699 		pvd = vdev_add_parent(oldvd, pvops);
4700 
4701 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4702 	ASSERT(pvd->vdev_ops == pvops);
4703 	ASSERT(oldvd->vdev_parent == pvd);
4704 
4705 	/*
4706 	 * Extract the new device from its root and add it to pvd.
4707 	 */
4708 	vdev_remove_child(newrootvd, newvd);
4709 	newvd->vdev_id = pvd->vdev_children;
4710 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4711 	vdev_add_child(pvd, newvd);
4712 
4713 	tvd = newvd->vdev_top;
4714 	ASSERT(pvd->vdev_top == tvd);
4715 	ASSERT(tvd->vdev_parent == rvd);
4716 
4717 	vdev_config_dirty(tvd);
4718 
4719 	/*
4720 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4721 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4722 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4723 	 */
4724 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4725 
4726 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4727 	    dtl_max_txg - TXG_INITIAL);
4728 
4729 	if (newvd->vdev_isspare) {
4730 		spa_spare_activate(newvd);
4731 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4732 	}
4733 
4734 	oldvdpath = spa_strdup(oldvd->vdev_path);
4735 	newvdpath = spa_strdup(newvd->vdev_path);
4736 	newvd_isspare = newvd->vdev_isspare;
4737 
4738 	/*
4739 	 * Mark newvd's DTL dirty in this txg.
4740 	 */
4741 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4742 
4743 	/*
4744 	 * Schedule the resilver to restart in the future. We do this to
4745 	 * ensure that dmu_sync-ed blocks have been stitched into the
4746 	 * respective datasets.
4747 	 */
4748 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4749 
4750 	if (spa->spa_bootfs)
4751 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4752 
4753 	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4754 
4755 	/*
4756 	 * Commit the config
4757 	 */
4758 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4759 
4760 	spa_history_log_internal(spa, "vdev attach", NULL,
4761 	    "%s vdev=%s %s vdev=%s",
4762 	    replacing && newvd_isspare ? "spare in" :
4763 	    replacing ? "replace" : "attach", newvdpath,
4764 	    replacing ? "for" : "to", oldvdpath);
4765 
4766 	spa_strfree(oldvdpath);
4767 	spa_strfree(newvdpath);
4768 
4769 	return (0);
4770 }
4771 
4772 /*
4773  * Detach a device from a mirror or replacing vdev.
4774  *
4775  * If 'replace_done' is specified, only detach if the parent
4776  * is a replacing vdev.
4777  */
4778 int
4779 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4780 {
4781 	uint64_t txg;
4782 	int error;
4783 	vdev_t *rvd = spa->spa_root_vdev;
4784 	vdev_t *vd, *pvd, *cvd, *tvd;
4785 	boolean_t unspare = B_FALSE;
4786 	uint64_t unspare_guid = 0;
4787 	char *vdpath;
4788 
4789 	ASSERT(spa_writeable(spa));
4790 
4791 	txg = spa_vdev_enter(spa);
4792 
4793 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4794 
4795 	if (vd == NULL)
4796 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4797 
4798 	if (!vd->vdev_ops->vdev_op_leaf)
4799 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4800 
4801 	pvd = vd->vdev_parent;
4802 
4803 	/*
4804 	 * If the parent/child relationship is not as expected, don't do it.
4805 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4806 	 * vdev that's replacing B with C.  The user's intent in replacing
4807 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4808 	 * the replace by detaching C, the expected behavior is to end up
4809 	 * M(A,B).  But suppose that right after deciding to detach C,
4810 	 * the replacement of B completes.  We would have M(A,C), and then
4811 	 * ask to detach C, which would leave us with just A -- not what
4812 	 * the user wanted.  To prevent this, we make sure that the
4813 	 * parent/child relationship hasn't changed -- in this example,
4814 	 * that C's parent is still the replacing vdev R.
4815 	 */
4816 	if (pvd->vdev_guid != pguid && pguid != 0)
4817 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4818 
4819 	/*
4820 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4821 	 */
4822 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4823 	    pvd->vdev_ops != &vdev_spare_ops)
4824 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4825 
4826 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4827 	    spa_version(spa) >= SPA_VERSION_SPARES);
4828 
4829 	/*
4830 	 * Only mirror, replacing, and spare vdevs support detach.
4831 	 */
4832 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4833 	    pvd->vdev_ops != &vdev_mirror_ops &&
4834 	    pvd->vdev_ops != &vdev_spare_ops)
4835 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4836 
4837 	/*
4838 	 * If this device has the only valid copy of some data,
4839 	 * we cannot safely detach it.
4840 	 */
4841 	if (vdev_dtl_required(vd))
4842 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4843 
4844 	ASSERT(pvd->vdev_children >= 2);
4845 
4846 	/*
4847 	 * If we are detaching the second disk from a replacing vdev, then
4848 	 * check to see if we changed the original vdev's path to have "/old"
4849 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4850 	 */
4851 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4852 	    vd->vdev_path != NULL) {
4853 		size_t len = strlen(vd->vdev_path);
4854 
4855 		for (int c = 0; c < pvd->vdev_children; c++) {
4856 			cvd = pvd->vdev_child[c];
4857 
4858 			if (cvd == vd || cvd->vdev_path == NULL)
4859 				continue;
4860 
4861 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4862 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4863 				spa_strfree(cvd->vdev_path);
4864 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4865 				break;
4866 			}
4867 		}
4868 	}
4869 
4870 	/*
4871 	 * If we are detaching the original disk from a spare, then it implies
4872 	 * that the spare should become a real disk, and be removed from the
4873 	 * active spare list for the pool.
4874 	 */
4875 	if (pvd->vdev_ops == &vdev_spare_ops &&
4876 	    vd->vdev_id == 0 &&
4877 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4878 		unspare = B_TRUE;
4879 
4880 	/*
4881 	 * Erase the disk labels so the disk can be used for other things.
4882 	 * This must be done after all other error cases are handled,
4883 	 * but before we disembowel vd (so we can still do I/O to it).
4884 	 * But if we can't do it, don't treat the error as fatal --
4885 	 * it may be that the unwritability of the disk is the reason
4886 	 * it's being detached!
4887 	 */
4888 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4889 
4890 	/*
4891 	 * Remove vd from its parent and compact the parent's children.
4892 	 */
4893 	vdev_remove_child(pvd, vd);
4894 	vdev_compact_children(pvd);
4895 
4896 	/*
4897 	 * Remember one of the remaining children so we can get tvd below.
4898 	 */
4899 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4900 
4901 	/*
4902 	 * If we need to remove the remaining child from the list of hot spares,
4903 	 * do it now, marking the vdev as no longer a spare in the process.
4904 	 * We must do this before vdev_remove_parent(), because that can
4905 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4906 	 * reason, we must remove the spare now, in the same txg as the detach;
4907 	 * otherwise someone could attach a new sibling, change the GUID, and
4908 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4909 	 */
4910 	if (unspare) {
4911 		ASSERT(cvd->vdev_isspare);
4912 		spa_spare_remove(cvd);
4913 		unspare_guid = cvd->vdev_guid;
4914 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4915 		cvd->vdev_unspare = B_TRUE;
4916 	}
4917 
4918 	/*
4919 	 * If the parent mirror/replacing vdev only has one child,
4920 	 * the parent is no longer needed.  Remove it from the tree.
4921 	 */
4922 	if (pvd->vdev_children == 1) {
4923 		if (pvd->vdev_ops == &vdev_spare_ops)
4924 			cvd->vdev_unspare = B_FALSE;
4925 		vdev_remove_parent(cvd);
4926 	}
4927 
4928 
4929 	/*
4930 	 * We don't set tvd until now because the parent we just removed
4931 	 * may have been the previous top-level vdev.
4932 	 */
4933 	tvd = cvd->vdev_top;
4934 	ASSERT(tvd->vdev_parent == rvd);
4935 
4936 	/*
4937 	 * Reevaluate the parent vdev state.
4938 	 */
4939 	vdev_propagate_state(cvd);
4940 
4941 	/*
4942 	 * If the 'autoexpand' property is set on the pool then automatically
4943 	 * try to expand the size of the pool. For example if the device we
4944 	 * just detached was smaller than the others, it may be possible to
4945 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4946 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4947 	 */
4948 	if (spa->spa_autoexpand) {
4949 		vdev_reopen(tvd);
4950 		vdev_expand(tvd, txg);
4951 	}
4952 
4953 	vdev_config_dirty(tvd);
4954 
4955 	/*
4956 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4957 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4958 	 * But first make sure we're not on any *other* txg's DTL list, to
4959 	 * prevent vd from being accessed after it's freed.
4960 	 */
4961 	vdpath = spa_strdup(vd->vdev_path);
4962 	for (int t = 0; t < TXG_SIZE; t++)
4963 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4964 	vd->vdev_detached = B_TRUE;
4965 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4966 
4967 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4968 
4969 	/* hang on to the spa before we release the lock */
4970 	spa_open_ref(spa, FTAG);
4971 
4972 	error = spa_vdev_exit(spa, vd, txg, 0);
4973 
4974 	spa_history_log_internal(spa, "detach", NULL,
4975 	    "vdev=%s", vdpath);
4976 	spa_strfree(vdpath);
4977 
4978 	/*
4979 	 * If this was the removal of the original device in a hot spare vdev,
4980 	 * then we want to go through and remove the device from the hot spare
4981 	 * list of every other pool.
4982 	 */
4983 	if (unspare) {
4984 		spa_t *altspa = NULL;
4985 
4986 		mutex_enter(&spa_namespace_lock);
4987 		while ((altspa = spa_next(altspa)) != NULL) {
4988 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4989 			    altspa == spa)
4990 				continue;
4991 
4992 			spa_open_ref(altspa, FTAG);
4993 			mutex_exit(&spa_namespace_lock);
4994 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4995 			mutex_enter(&spa_namespace_lock);
4996 			spa_close(altspa, FTAG);
4997 		}
4998 		mutex_exit(&spa_namespace_lock);
4999 
5000 		/* search the rest of the vdevs for spares to remove */
5001 		spa_vdev_resilver_done(spa);
5002 	}
5003 
5004 	/* all done with the spa; OK to release */
5005 	mutex_enter(&spa_namespace_lock);
5006 	spa_close(spa, FTAG);
5007 	mutex_exit(&spa_namespace_lock);
5008 
5009 	return (error);
5010 }
5011 
5012 /*
5013  * Split a set of devices from their mirrors, and create a new pool from them.
5014  */
5015 int
5016 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5017     nvlist_t *props, boolean_t exp)
5018 {
5019 	int error = 0;
5020 	uint64_t txg, *glist;
5021 	spa_t *newspa;
5022 	uint_t c, children, lastlog;
5023 	nvlist_t **child, *nvl, *tmp;
5024 	dmu_tx_t *tx;
5025 	char *altroot = NULL;
5026 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5027 	boolean_t activate_slog;
5028 
5029 	ASSERT(spa_writeable(spa));
5030 
5031 	txg = spa_vdev_enter(spa);
5032 
5033 	/* clear the log and flush everything up to now */
5034 	activate_slog = spa_passivate_log(spa);
5035 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5036 	error = spa_offline_log(spa);
5037 	txg = spa_vdev_config_enter(spa);
5038 
5039 	if (activate_slog)
5040 		spa_activate_log(spa);
5041 
5042 	if (error != 0)
5043 		return (spa_vdev_exit(spa, NULL, txg, error));
5044 
5045 	/* check new spa name before going any further */
5046 	if (spa_lookup(newname) != NULL)
5047 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5048 
5049 	/*
5050 	 * scan through all the children to ensure they're all mirrors
5051 	 */
5052 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5053 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5054 	    &children) != 0)
5055 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5056 
5057 	/* first, check to ensure we've got the right child count */
5058 	rvd = spa->spa_root_vdev;
5059 	lastlog = 0;
5060 	for (c = 0; c < rvd->vdev_children; c++) {
5061 		vdev_t *vd = rvd->vdev_child[c];
5062 
5063 		/* don't count the holes & logs as children */
5064 		if (vd->vdev_islog || vd->vdev_ishole) {
5065 			if (lastlog == 0)
5066 				lastlog = c;
5067 			continue;
5068 		}
5069 
5070 		lastlog = 0;
5071 	}
5072 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5073 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5074 
5075 	/* next, ensure no spare or cache devices are part of the split */
5076 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5077 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5078 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5079 
5080 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5081 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5082 
5083 	/* then, loop over each vdev and validate it */
5084 	for (c = 0; c < children; c++) {
5085 		uint64_t is_hole = 0;
5086 
5087 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5088 		    &is_hole);
5089 
5090 		if (is_hole != 0) {
5091 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5092 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5093 				continue;
5094 			} else {
5095 				error = SET_ERROR(EINVAL);
5096 				break;
5097 			}
5098 		}
5099 
5100 		/* which disk is going to be split? */
5101 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5102 		    &glist[c]) != 0) {
5103 			error = SET_ERROR(EINVAL);
5104 			break;
5105 		}
5106 
5107 		/* look it up in the spa */
5108 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5109 		if (vml[c] == NULL) {
5110 			error = SET_ERROR(ENODEV);
5111 			break;
5112 		}
5113 
5114 		/* make sure there's nothing stopping the split */
5115 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5116 		    vml[c]->vdev_islog ||
5117 		    vml[c]->vdev_ishole ||
5118 		    vml[c]->vdev_isspare ||
5119 		    vml[c]->vdev_isl2cache ||
5120 		    !vdev_writeable(vml[c]) ||
5121 		    vml[c]->vdev_children != 0 ||
5122 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5123 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5124 			error = SET_ERROR(EINVAL);
5125 			break;
5126 		}
5127 
5128 		if (vdev_dtl_required(vml[c])) {
5129 			error = SET_ERROR(EBUSY);
5130 			break;
5131 		}
5132 
5133 		/* we need certain info from the top level */
5134 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5135 		    vml[c]->vdev_top->vdev_ms_array) == 0);
5136 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5137 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5138 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5139 		    vml[c]->vdev_top->vdev_asize) == 0);
5140 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5141 		    vml[c]->vdev_top->vdev_ashift) == 0);
5142 
5143 		/* transfer per-vdev ZAPs */
5144 		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5145 		VERIFY0(nvlist_add_uint64(child[c],
5146 		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5147 
5148 		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5149 		VERIFY0(nvlist_add_uint64(child[c],
5150 		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5151 		    vml[c]->vdev_parent->vdev_top_zap));
5152 	}
5153 
5154 	if (error != 0) {
5155 		kmem_free(vml, children * sizeof (vdev_t *));
5156 		kmem_free(glist, children * sizeof (uint64_t));
5157 		return (spa_vdev_exit(spa, NULL, txg, error));
5158 	}
5159 
5160 	/* stop writers from using the disks */
5161 	for (c = 0; c < children; c++) {
5162 		if (vml[c] != NULL)
5163 			vml[c]->vdev_offline = B_TRUE;
5164 	}
5165 	vdev_reopen(spa->spa_root_vdev);
5166 
5167 	/*
5168 	 * Temporarily record the splitting vdevs in the spa config.  This
5169 	 * will disappear once the config is regenerated.
5170 	 */
5171 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5172 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5173 	    glist, children) == 0);
5174 	kmem_free(glist, children * sizeof (uint64_t));
5175 
5176 	mutex_enter(&spa->spa_props_lock);
5177 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5178 	    nvl) == 0);
5179 	mutex_exit(&spa->spa_props_lock);
5180 	spa->spa_config_splitting = nvl;
5181 	vdev_config_dirty(spa->spa_root_vdev);
5182 
5183 	/* configure and create the new pool */
5184 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5185 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5186 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5187 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5188 	    spa_version(spa)) == 0);
5189 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5190 	    spa->spa_config_txg) == 0);
5191 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5192 	    spa_generate_guid(NULL)) == 0);
5193 	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5194 	(void) nvlist_lookup_string(props,
5195 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5196 
5197 	/* add the new pool to the namespace */
5198 	newspa = spa_add(newname, config, altroot);
5199 	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5200 	newspa->spa_config_txg = spa->spa_config_txg;
5201 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5202 
5203 	/* release the spa config lock, retaining the namespace lock */
5204 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5205 
5206 	if (zio_injection_enabled)
5207 		zio_handle_panic_injection(spa, FTAG, 1);
5208 
5209 	spa_activate(newspa, spa_mode_global);
5210 	spa_async_suspend(newspa);
5211 
5212 	/* create the new pool from the disks of the original pool */
5213 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5214 	if (error)
5215 		goto out;
5216 
5217 	/* if that worked, generate a real config for the new pool */
5218 	if (newspa->spa_root_vdev != NULL) {
5219 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5220 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5221 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5222 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5223 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5224 		    B_TRUE));
5225 	}
5226 
5227 	/* set the props */
5228 	if (props != NULL) {
5229 		spa_configfile_set(newspa, props, B_FALSE);
5230 		error = spa_prop_set(newspa, props);
5231 		if (error)
5232 			goto out;
5233 	}
5234 
5235 	/* flush everything */
5236 	txg = spa_vdev_config_enter(newspa);
5237 	vdev_config_dirty(newspa->spa_root_vdev);
5238 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5239 
5240 	if (zio_injection_enabled)
5241 		zio_handle_panic_injection(spa, FTAG, 2);
5242 
5243 	spa_async_resume(newspa);
5244 
5245 	/* finally, update the original pool's config */
5246 	txg = spa_vdev_config_enter(spa);
5247 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5248 	error = dmu_tx_assign(tx, TXG_WAIT);
5249 	if (error != 0)
5250 		dmu_tx_abort(tx);
5251 	for (c = 0; c < children; c++) {
5252 		if (vml[c] != NULL) {
5253 			vdev_split(vml[c]);
5254 			if (error == 0)
5255 				spa_history_log_internal(spa, "detach", tx,
5256 				    "vdev=%s", vml[c]->vdev_path);
5257 
5258 			vdev_free(vml[c]);
5259 		}
5260 	}
5261 	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5262 	vdev_config_dirty(spa->spa_root_vdev);
5263 	spa->spa_config_splitting = NULL;
5264 	nvlist_free(nvl);
5265 	if (error == 0)
5266 		dmu_tx_commit(tx);
5267 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5268 
5269 	if (zio_injection_enabled)
5270 		zio_handle_panic_injection(spa, FTAG, 3);
5271 
5272 	/* split is complete; log a history record */
5273 	spa_history_log_internal(newspa, "split", NULL,
5274 	    "from pool %s", spa_name(spa));
5275 
5276 	kmem_free(vml, children * sizeof (vdev_t *));
5277 
5278 	/* if we're not going to mount the filesystems in userland, export */
5279 	if (exp)
5280 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5281 		    B_FALSE, B_FALSE);
5282 
5283 	return (error);
5284 
5285 out:
5286 	spa_unload(newspa);
5287 	spa_deactivate(newspa);
5288 	spa_remove(newspa);
5289 
5290 	txg = spa_vdev_config_enter(spa);
5291 
5292 	/* re-online all offlined disks */
5293 	for (c = 0; c < children; c++) {
5294 		if (vml[c] != NULL)
5295 			vml[c]->vdev_offline = B_FALSE;
5296 	}
5297 	vdev_reopen(spa->spa_root_vdev);
5298 
5299 	nvlist_free(spa->spa_config_splitting);
5300 	spa->spa_config_splitting = NULL;
5301 	(void) spa_vdev_exit(spa, NULL, txg, error);
5302 
5303 	kmem_free(vml, children * sizeof (vdev_t *));
5304 	return (error);
5305 }
5306 
5307 static nvlist_t *
5308 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5309 {
5310 	for (int i = 0; i < count; i++) {
5311 		uint64_t guid;
5312 
5313 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5314 		    &guid) == 0);
5315 
5316 		if (guid == target_guid)
5317 			return (nvpp[i]);
5318 	}
5319 
5320 	return (NULL);
5321 }
5322 
5323 static void
5324 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5325     nvlist_t *dev_to_remove)
5326 {
5327 	nvlist_t **newdev = NULL;
5328 
5329 	if (count > 1)
5330 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5331 
5332 	for (int i = 0, j = 0; i < count; i++) {
5333 		if (dev[i] == dev_to_remove)
5334 			continue;
5335 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5336 	}
5337 
5338 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5339 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5340 
5341 	for (int i = 0; i < count - 1; i++)
5342 		nvlist_free(newdev[i]);
5343 
5344 	if (count > 1)
5345 		kmem_free(newdev, (count - 1) * sizeof (void *));
5346 }
5347 
5348 /*
5349  * Evacuate the device.
5350  */
5351 static int
5352 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5353 {
5354 	uint64_t txg;
5355 	int error = 0;
5356 
5357 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5358 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5359 	ASSERT(vd == vd->vdev_top);
5360 
5361 	/*
5362 	 * Evacuate the device.  We don't hold the config lock as writer
5363 	 * since we need to do I/O but we do keep the
5364 	 * spa_namespace_lock held.  Once this completes the device
5365 	 * should no longer have any blocks allocated on it.
5366 	 */
5367 	if (vd->vdev_islog) {
5368 		if (vd->vdev_stat.vs_alloc != 0)
5369 			error = spa_offline_log(spa);
5370 	} else {
5371 		error = SET_ERROR(ENOTSUP);
5372 	}
5373 
5374 	if (error)
5375 		return (error);
5376 
5377 	/*
5378 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5379 	 * associated with this vdev, and wait for these changes to sync.
5380 	 */
5381 	ASSERT0(vd->vdev_stat.vs_alloc);
5382 	txg = spa_vdev_config_enter(spa);
5383 	vd->vdev_removing = B_TRUE;
5384 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5385 	vdev_config_dirty(vd);
5386 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5387 
5388 	return (0);
5389 }
5390 
5391 /*
5392  * Complete the removal by cleaning up the namespace.
5393  */
5394 static void
5395 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5396 {
5397 	vdev_t *rvd = spa->spa_root_vdev;
5398 	uint64_t id = vd->vdev_id;
5399 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5400 
5401 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5402 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5403 	ASSERT(vd == vd->vdev_top);
5404 
5405 	/*
5406 	 * Only remove any devices which are empty.
5407 	 */
5408 	if (vd->vdev_stat.vs_alloc != 0)
5409 		return;
5410 
5411 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5412 
5413 	if (list_link_active(&vd->vdev_state_dirty_node))
5414 		vdev_state_clean(vd);
5415 	if (list_link_active(&vd->vdev_config_dirty_node))
5416 		vdev_config_clean(vd);
5417 
5418 	vdev_free(vd);
5419 
5420 	if (last_vdev) {
5421 		vdev_compact_children(rvd);
5422 	} else {
5423 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5424 		vdev_add_child(rvd, vd);
5425 	}
5426 	vdev_config_dirty(rvd);
5427 
5428 	/*
5429 	 * Reassess the health of our root vdev.
5430 	 */
5431 	vdev_reopen(rvd);
5432 }
5433 
5434 /*
5435  * Remove a device from the pool -
5436  *
5437  * Removing a device from the vdev namespace requires several steps
5438  * and can take a significant amount of time.  As a result we use
5439  * the spa_vdev_config_[enter/exit] functions which allow us to
5440  * grab and release the spa_config_lock while still holding the namespace
5441  * lock.  During each step the configuration is synced out.
5442  *
5443  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5444  * devices.
5445  */
5446 int
5447 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5448 {
5449 	vdev_t *vd;
5450 	metaslab_group_t *mg;
5451 	nvlist_t **spares, **l2cache, *nv;
5452 	uint64_t txg = 0;
5453 	uint_t nspares, nl2cache;
5454 	int error = 0;
5455 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5456 
5457 	ASSERT(spa_writeable(spa));
5458 
5459 	if (!locked)
5460 		txg = spa_vdev_enter(spa);
5461 
5462 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5463 
5464 	if (spa->spa_spares.sav_vdevs != NULL &&
5465 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5466 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5467 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5468 		/*
5469 		 * Only remove the hot spare if it's not currently in use
5470 		 * in this pool.
5471 		 */
5472 		if (vd == NULL || unspare) {
5473 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5474 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5475 			spa_load_spares(spa);
5476 			spa->spa_spares.sav_sync = B_TRUE;
5477 		} else {
5478 			error = SET_ERROR(EBUSY);
5479 		}
5480 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5481 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5482 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5483 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5484 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5485 		/*
5486 		 * Cache devices can always be removed.
5487 		 */
5488 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5489 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5490 		spa_load_l2cache(spa);
5491 		spa->spa_l2cache.sav_sync = B_TRUE;
5492 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5493 	} else if (vd != NULL && vd->vdev_islog) {
5494 		ASSERT(!locked);
5495 		ASSERT(vd == vd->vdev_top);
5496 
5497 		mg = vd->vdev_mg;
5498 
5499 		/*
5500 		 * Stop allocating from this vdev.
5501 		 */
5502 		metaslab_group_passivate(mg);
5503 
5504 		/*
5505 		 * Wait for the youngest allocations and frees to sync,
5506 		 * and then wait for the deferral of those frees to finish.
5507 		 */
5508 		spa_vdev_config_exit(spa, NULL,
5509 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5510 
5511 		/*
5512 		 * Attempt to evacuate the vdev.
5513 		 */
5514 		error = spa_vdev_remove_evacuate(spa, vd);
5515 
5516 		txg = spa_vdev_config_enter(spa);
5517 
5518 		/*
5519 		 * If we couldn't evacuate the vdev, unwind.
5520 		 */
5521 		if (error) {
5522 			metaslab_group_activate(mg);
5523 			return (spa_vdev_exit(spa, NULL, txg, error));
5524 		}
5525 
5526 		/*
5527 		 * Clean up the vdev namespace.
5528 		 */
5529 		spa_vdev_remove_from_namespace(spa, vd);
5530 
5531 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5532 	} else if (vd != NULL) {
5533 		/*
5534 		 * Normal vdevs cannot be removed (yet).
5535 		 */
5536 		error = SET_ERROR(ENOTSUP);
5537 	} else {
5538 		/*
5539 		 * There is no vdev of any kind with the specified guid.
5540 		 */
5541 		error = SET_ERROR(ENOENT);
5542 	}
5543 
5544 	if (!locked)
5545 		error = spa_vdev_exit(spa, NULL, txg, error);
5546 
5547 	return (error);
5548 }
5549 
5550 /*
5551  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5552  * currently spared, so we can detach it.
5553  */
5554 static vdev_t *
5555 spa_vdev_resilver_done_hunt(vdev_t *vd)
5556 {
5557 	vdev_t *newvd, *oldvd;
5558 
5559 	for (int c = 0; c < vd->vdev_children; c++) {
5560 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5561 		if (oldvd != NULL)
5562 			return (oldvd);
5563 	}
5564 
5565 	/*
5566 	 * Check for a completed replacement.  We always consider the first
5567 	 * vdev in the list to be the oldest vdev, and the last one to be
5568 	 * the newest (see spa_vdev_attach() for how that works).  In
5569 	 * the case where the newest vdev is faulted, we will not automatically
5570 	 * remove it after a resilver completes.  This is OK as it will require
5571 	 * user intervention to determine which disk the admin wishes to keep.
5572 	 */
5573 	if (vd->vdev_ops == &vdev_replacing_ops) {
5574 		ASSERT(vd->vdev_children > 1);
5575 
5576 		newvd = vd->vdev_child[vd->vdev_children - 1];
5577 		oldvd = vd->vdev_child[0];
5578 
5579 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5580 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5581 		    !vdev_dtl_required(oldvd))
5582 			return (oldvd);
5583 	}
5584 
5585 	/*
5586 	 * Check for a completed resilver with the 'unspare' flag set.
5587 	 */
5588 	if (vd->vdev_ops == &vdev_spare_ops) {
5589 		vdev_t *first = vd->vdev_child[0];
5590 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5591 
5592 		if (last->vdev_unspare) {
5593 			oldvd = first;
5594 			newvd = last;
5595 		} else if (first->vdev_unspare) {
5596 			oldvd = last;
5597 			newvd = first;
5598 		} else {
5599 			oldvd = NULL;
5600 		}
5601 
5602 		if (oldvd != NULL &&
5603 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5604 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5605 		    !vdev_dtl_required(oldvd))
5606 			return (oldvd);
5607 
5608 		/*
5609 		 * If there are more than two spares attached to a disk,
5610 		 * and those spares are not required, then we want to
5611 		 * attempt to free them up now so that they can be used
5612 		 * by other pools.  Once we're back down to a single
5613 		 * disk+spare, we stop removing them.
5614 		 */
5615 		if (vd->vdev_children > 2) {
5616 			newvd = vd->vdev_child[1];
5617 
5618 			if (newvd->vdev_isspare && last->vdev_isspare &&
5619 			    vdev_dtl_empty(last, DTL_MISSING) &&
5620 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5621 			    !vdev_dtl_required(newvd))
5622 				return (newvd);
5623 		}
5624 	}
5625 
5626 	return (NULL);
5627 }
5628 
5629 static void
5630 spa_vdev_resilver_done(spa_t *spa)
5631 {
5632 	vdev_t *vd, *pvd, *ppvd;
5633 	uint64_t guid, sguid, pguid, ppguid;
5634 
5635 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5636 
5637 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5638 		pvd = vd->vdev_parent;
5639 		ppvd = pvd->vdev_parent;
5640 		guid = vd->vdev_guid;
5641 		pguid = pvd->vdev_guid;
5642 		ppguid = ppvd->vdev_guid;
5643 		sguid = 0;
5644 		/*
5645 		 * If we have just finished replacing a hot spared device, then
5646 		 * we need to detach the parent's first child (the original hot
5647 		 * spare) as well.
5648 		 */
5649 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5650 		    ppvd->vdev_children == 2) {
5651 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5652 			sguid = ppvd->vdev_child[1]->vdev_guid;
5653 		}
5654 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5655 
5656 		spa_config_exit(spa, SCL_ALL, FTAG);
5657 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5658 			return;
5659 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5660 			return;
5661 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5662 	}
5663 
5664 	spa_config_exit(spa, SCL_ALL, FTAG);
5665 }
5666 
5667 /*
5668  * Update the stored path or FRU for this vdev.
5669  */
5670 int
5671 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5672     boolean_t ispath)
5673 {
5674 	vdev_t *vd;
5675 	boolean_t sync = B_FALSE;
5676 
5677 	ASSERT(spa_writeable(spa));
5678 
5679 	spa_vdev_state_enter(spa, SCL_ALL);
5680 
5681 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5682 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5683 
5684 	if (!vd->vdev_ops->vdev_op_leaf)
5685 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5686 
5687 	if (ispath) {
5688 		if (strcmp(value, vd->vdev_path) != 0) {
5689 			spa_strfree(vd->vdev_path);
5690 			vd->vdev_path = spa_strdup(value);
5691 			sync = B_TRUE;
5692 		}
5693 	} else {
5694 		if (vd->vdev_fru == NULL) {
5695 			vd->vdev_fru = spa_strdup(value);
5696 			sync = B_TRUE;
5697 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5698 			spa_strfree(vd->vdev_fru);
5699 			vd->vdev_fru = spa_strdup(value);
5700 			sync = B_TRUE;
5701 		}
5702 	}
5703 
5704 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5705 }
5706 
5707 int
5708 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5709 {
5710 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5711 }
5712 
5713 int
5714 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5715 {
5716 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5717 }
5718 
5719 /*
5720  * ==========================================================================
5721  * SPA Scanning
5722  * ==========================================================================
5723  */
5724 
5725 int
5726 spa_scan_stop(spa_t *spa)
5727 {
5728 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5729 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5730 		return (SET_ERROR(EBUSY));
5731 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5732 }
5733 
5734 int
5735 spa_scan(spa_t *spa, pool_scan_func_t func)
5736 {
5737 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5738 
5739 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5740 		return (SET_ERROR(ENOTSUP));
5741 
5742 	/*
5743 	 * If a resilver was requested, but there is no DTL on a
5744 	 * writeable leaf device, we have nothing to do.
5745 	 */
5746 	if (func == POOL_SCAN_RESILVER &&
5747 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5748 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5749 		return (0);
5750 	}
5751 
5752 	return (dsl_scan(spa->spa_dsl_pool, func));
5753 }
5754 
5755 /*
5756  * ==========================================================================
5757  * SPA async task processing
5758  * ==========================================================================
5759  */
5760 
5761 static void
5762 spa_async_remove(spa_t *spa, vdev_t *vd)
5763 {
5764 	if (vd->vdev_remove_wanted) {
5765 		vd->vdev_remove_wanted = B_FALSE;
5766 		vd->vdev_delayed_close = B_FALSE;
5767 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5768 
5769 		/*
5770 		 * We want to clear the stats, but we don't want to do a full
5771 		 * vdev_clear() as that will cause us to throw away
5772 		 * degraded/faulted state as well as attempt to reopen the
5773 		 * device, all of which is a waste.
5774 		 */
5775 		vd->vdev_stat.vs_read_errors = 0;
5776 		vd->vdev_stat.vs_write_errors = 0;
5777 		vd->vdev_stat.vs_checksum_errors = 0;
5778 
5779 		vdev_state_dirty(vd->vdev_top);
5780 	}
5781 
5782 	for (int c = 0; c < vd->vdev_children; c++)
5783 		spa_async_remove(spa, vd->vdev_child[c]);
5784 }
5785 
5786 static void
5787 spa_async_probe(spa_t *spa, vdev_t *vd)
5788 {
5789 	if (vd->vdev_probe_wanted) {
5790 		vd->vdev_probe_wanted = B_FALSE;
5791 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5792 	}
5793 
5794 	for (int c = 0; c < vd->vdev_children; c++)
5795 		spa_async_probe(spa, vd->vdev_child[c]);
5796 }
5797 
5798 static void
5799 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5800 {
5801 	sysevent_id_t eid;
5802 	nvlist_t *attr;
5803 	char *physpath;
5804 
5805 	if (!spa->spa_autoexpand)
5806 		return;
5807 
5808 	for (int c = 0; c < vd->vdev_children; c++) {
5809 		vdev_t *cvd = vd->vdev_child[c];
5810 		spa_async_autoexpand(spa, cvd);
5811 	}
5812 
5813 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5814 		return;
5815 
5816 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5817 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5818 
5819 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5820 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5821 
5822 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5823 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5824 
5825 	nvlist_free(attr);
5826 	kmem_free(physpath, MAXPATHLEN);
5827 }
5828 
5829 static void
5830 spa_async_thread(spa_t *spa)
5831 {
5832 	int tasks;
5833 
5834 	ASSERT(spa->spa_sync_on);
5835 
5836 	mutex_enter(&spa->spa_async_lock);
5837 	tasks = spa->spa_async_tasks;
5838 	spa->spa_async_tasks = 0;
5839 	mutex_exit(&spa->spa_async_lock);
5840 
5841 	/*
5842 	 * See if the config needs to be updated.
5843 	 */
5844 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5845 		uint64_t old_space, new_space;
5846 
5847 		mutex_enter(&spa_namespace_lock);
5848 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5849 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5850 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5851 		mutex_exit(&spa_namespace_lock);
5852 
5853 		/*
5854 		 * If the pool grew as a result of the config update,
5855 		 * then log an internal history event.
5856 		 */
5857 		if (new_space != old_space) {
5858 			spa_history_log_internal(spa, "vdev online", NULL,
5859 			    "pool '%s' size: %llu(+%llu)",
5860 			    spa_name(spa), new_space, new_space - old_space);
5861 		}
5862 	}
5863 
5864 	/*
5865 	 * See if any devices need to be marked REMOVED.
5866 	 */
5867 	if (tasks & SPA_ASYNC_REMOVE) {
5868 		spa_vdev_state_enter(spa, SCL_NONE);
5869 		spa_async_remove(spa, spa->spa_root_vdev);
5870 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5871 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5872 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5873 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5874 		(void) spa_vdev_state_exit(spa, NULL, 0);
5875 	}
5876 
5877 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5878 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5879 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5880 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5881 	}
5882 
5883 	/*
5884 	 * See if any devices need to be probed.
5885 	 */
5886 	if (tasks & SPA_ASYNC_PROBE) {
5887 		spa_vdev_state_enter(spa, SCL_NONE);
5888 		spa_async_probe(spa, spa->spa_root_vdev);
5889 		(void) spa_vdev_state_exit(spa, NULL, 0);
5890 	}
5891 
5892 	/*
5893 	 * If any devices are done replacing, detach them.
5894 	 */
5895 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5896 		spa_vdev_resilver_done(spa);
5897 
5898 	/*
5899 	 * Kick off a resilver.
5900 	 */
5901 	if (tasks & SPA_ASYNC_RESILVER)
5902 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5903 
5904 	/*
5905 	 * Let the world know that we're done.
5906 	 */
5907 	mutex_enter(&spa->spa_async_lock);
5908 	spa->spa_async_thread = NULL;
5909 	cv_broadcast(&spa->spa_async_cv);
5910 	mutex_exit(&spa->spa_async_lock);
5911 	thread_exit();
5912 }
5913 
5914 void
5915 spa_async_suspend(spa_t *spa)
5916 {
5917 	mutex_enter(&spa->spa_async_lock);
5918 	spa->spa_async_suspended++;
5919 	while (spa->spa_async_thread != NULL)
5920 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5921 	mutex_exit(&spa->spa_async_lock);
5922 }
5923 
5924 void
5925 spa_async_resume(spa_t *spa)
5926 {
5927 	mutex_enter(&spa->spa_async_lock);
5928 	ASSERT(spa->spa_async_suspended != 0);
5929 	spa->spa_async_suspended--;
5930 	mutex_exit(&spa->spa_async_lock);
5931 }
5932 
5933 static boolean_t
5934 spa_async_tasks_pending(spa_t *spa)
5935 {
5936 	uint_t non_config_tasks;
5937 	uint_t config_task;
5938 	boolean_t config_task_suspended;
5939 
5940 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5941 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5942 	if (spa->spa_ccw_fail_time == 0) {
5943 		config_task_suspended = B_FALSE;
5944 	} else {
5945 		config_task_suspended =
5946 		    (gethrtime() - spa->spa_ccw_fail_time) <
5947 		    (zfs_ccw_retry_interval * NANOSEC);
5948 	}
5949 
5950 	return (non_config_tasks || (config_task && !config_task_suspended));
5951 }
5952 
5953 static void
5954 spa_async_dispatch(spa_t *spa)
5955 {
5956 	mutex_enter(&spa->spa_async_lock);
5957 	if (spa_async_tasks_pending(spa) &&
5958 	    !spa->spa_async_suspended &&
5959 	    spa->spa_async_thread == NULL &&
5960 	    rootdir != NULL)
5961 		spa->spa_async_thread = thread_create(NULL, 0,
5962 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5963 	mutex_exit(&spa->spa_async_lock);
5964 }
5965 
5966 void
5967 spa_async_request(spa_t *spa, int task)
5968 {
5969 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5970 	mutex_enter(&spa->spa_async_lock);
5971 	spa->spa_async_tasks |= task;
5972 	mutex_exit(&spa->spa_async_lock);
5973 }
5974 
5975 /*
5976  * ==========================================================================
5977  * SPA syncing routines
5978  * ==========================================================================
5979  */
5980 
5981 static int
5982 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5983 {
5984 	bpobj_t *bpo = arg;
5985 	bpobj_enqueue(bpo, bp, tx);
5986 	return (0);
5987 }
5988 
5989 static int
5990 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5991 {
5992 	zio_t *zio = arg;
5993 
5994 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5995 	    zio->io_flags));
5996 	return (0);
5997 }
5998 
5999 /*
6000  * Note: this simple function is not inlined to make it easier to dtrace the
6001  * amount of time spent syncing frees.
6002  */
6003 static void
6004 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6005 {
6006 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6007 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6008 	VERIFY(zio_wait(zio) == 0);
6009 }
6010 
6011 /*
6012  * Note: this simple function is not inlined to make it easier to dtrace the
6013  * amount of time spent syncing deferred frees.
6014  */
6015 static void
6016 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6017 {
6018 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6019 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6020 	    spa_free_sync_cb, zio, tx), ==, 0);
6021 	VERIFY0(zio_wait(zio));
6022 }
6023 
6024 
6025 static void
6026 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6027 {
6028 	char *packed = NULL;
6029 	size_t bufsize;
6030 	size_t nvsize = 0;
6031 	dmu_buf_t *db;
6032 
6033 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6034 
6035 	/*
6036 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6037 	 * information.  This avoids the dmu_buf_will_dirty() path and
6038 	 * saves us a pre-read to get data we don't actually care about.
6039 	 */
6040 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6041 	packed = kmem_alloc(bufsize, KM_SLEEP);
6042 
6043 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6044 	    KM_SLEEP) == 0);
6045 	bzero(packed + nvsize, bufsize - nvsize);
6046 
6047 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6048 
6049 	kmem_free(packed, bufsize);
6050 
6051 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6052 	dmu_buf_will_dirty(db, tx);
6053 	*(uint64_t *)db->db_data = nvsize;
6054 	dmu_buf_rele(db, FTAG);
6055 }
6056 
6057 static void
6058 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6059     const char *config, const char *entry)
6060 {
6061 	nvlist_t *nvroot;
6062 	nvlist_t **list;
6063 	int i;
6064 
6065 	if (!sav->sav_sync)
6066 		return;
6067 
6068 	/*
6069 	 * Update the MOS nvlist describing the list of available devices.
6070 	 * spa_validate_aux() will have already made sure this nvlist is
6071 	 * valid and the vdevs are labeled appropriately.
6072 	 */
6073 	if (sav->sav_object == 0) {
6074 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6075 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6076 		    sizeof (uint64_t), tx);
6077 		VERIFY(zap_update(spa->spa_meta_objset,
6078 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6079 		    &sav->sav_object, tx) == 0);
6080 	}
6081 
6082 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6083 	if (sav->sav_count == 0) {
6084 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6085 	} else {
6086 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6087 		for (i = 0; i < sav->sav_count; i++)
6088 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6089 			    B_FALSE, VDEV_CONFIG_L2CACHE);
6090 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6091 		    sav->sav_count) == 0);
6092 		for (i = 0; i < sav->sav_count; i++)
6093 			nvlist_free(list[i]);
6094 		kmem_free(list, sav->sav_count * sizeof (void *));
6095 	}
6096 
6097 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6098 	nvlist_free(nvroot);
6099 
6100 	sav->sav_sync = B_FALSE;
6101 }
6102 
6103 /*
6104  * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6105  * The all-vdev ZAP must be empty.
6106  */
6107 static void
6108 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6109 {
6110 	spa_t *spa = vd->vdev_spa;
6111 	if (vd->vdev_top_zap != 0) {
6112 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6113 		    vd->vdev_top_zap, tx));
6114 	}
6115 	if (vd->vdev_leaf_zap != 0) {
6116 		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6117 		    vd->vdev_leaf_zap, tx));
6118 	}
6119 	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6120 		spa_avz_build(vd->vdev_child[i], avz, tx);
6121 	}
6122 }
6123 
6124 static void
6125 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6126 {
6127 	nvlist_t *config;
6128 
6129 	/*
6130 	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6131 	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6132 	 * Similarly, if the pool is being assembled (e.g. after a split), we
6133 	 * need to rebuild the AVZ although the config may not be dirty.
6134 	 */
6135 	if (list_is_empty(&spa->spa_config_dirty_list) &&
6136 	    spa->spa_avz_action == AVZ_ACTION_NONE)
6137 		return;
6138 
6139 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6140 
6141 	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6142 	    spa->spa_all_vdev_zaps != 0);
6143 
6144 	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6145 		/* Make and build the new AVZ */
6146 		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6147 		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6148 		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6149 
6150 		/* Diff old AVZ with new one */
6151 		zap_cursor_t zc;
6152 		zap_attribute_t za;
6153 
6154 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6155 		    spa->spa_all_vdev_zaps);
6156 		    zap_cursor_retrieve(&zc, &za) == 0;
6157 		    zap_cursor_advance(&zc)) {
6158 			uint64_t vdzap = za.za_first_integer;
6159 			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6160 			    vdzap) == ENOENT) {
6161 				/*
6162 				 * ZAP is listed in old AVZ but not in new one;
6163 				 * destroy it
6164 				 */
6165 				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6166 				    tx));
6167 			}
6168 		}
6169 
6170 		zap_cursor_fini(&zc);
6171 
6172 		/* Destroy the old AVZ */
6173 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6174 		    spa->spa_all_vdev_zaps, tx));
6175 
6176 		/* Replace the old AVZ in the dir obj with the new one */
6177 		VERIFY0(zap_update(spa->spa_meta_objset,
6178 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6179 		    sizeof (new_avz), 1, &new_avz, tx));
6180 
6181 		spa->spa_all_vdev_zaps = new_avz;
6182 	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6183 		zap_cursor_t zc;
6184 		zap_attribute_t za;
6185 
6186 		/* Walk through the AVZ and destroy all listed ZAPs */
6187 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6188 		    spa->spa_all_vdev_zaps);
6189 		    zap_cursor_retrieve(&zc, &za) == 0;
6190 		    zap_cursor_advance(&zc)) {
6191 			uint64_t zap = za.za_first_integer;
6192 			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6193 		}
6194 
6195 		zap_cursor_fini(&zc);
6196 
6197 		/* Destroy and unlink the AVZ itself */
6198 		VERIFY0(zap_destroy(spa->spa_meta_objset,
6199 		    spa->spa_all_vdev_zaps, tx));
6200 		VERIFY0(zap_remove(spa->spa_meta_objset,
6201 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6202 		spa->spa_all_vdev_zaps = 0;
6203 	}
6204 
6205 	if (spa->spa_all_vdev_zaps == 0) {
6206 		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6207 		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6208 		    DMU_POOL_VDEV_ZAP_MAP, tx);
6209 	}
6210 	spa->spa_avz_action = AVZ_ACTION_NONE;
6211 
6212 	/* Create ZAPs for vdevs that don't have them. */
6213 	vdev_construct_zaps(spa->spa_root_vdev, tx);
6214 
6215 	config = spa_config_generate(spa, spa->spa_root_vdev,
6216 	    dmu_tx_get_txg(tx), B_FALSE);
6217 
6218 	/*
6219 	 * If we're upgrading the spa version then make sure that
6220 	 * the config object gets updated with the correct version.
6221 	 */
6222 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6223 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6224 		    spa->spa_uberblock.ub_version);
6225 
6226 	spa_config_exit(spa, SCL_STATE, FTAG);
6227 
6228 	nvlist_free(spa->spa_config_syncing);
6229 	spa->spa_config_syncing = config;
6230 
6231 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6232 }
6233 
6234 static void
6235 spa_sync_version(void *arg, dmu_tx_t *tx)
6236 {
6237 	uint64_t *versionp = arg;
6238 	uint64_t version = *versionp;
6239 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6240 
6241 	/*
6242 	 * Setting the version is special cased when first creating the pool.
6243 	 */
6244 	ASSERT(tx->tx_txg != TXG_INITIAL);
6245 
6246 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6247 	ASSERT(version >= spa_version(spa));
6248 
6249 	spa->spa_uberblock.ub_version = version;
6250 	vdev_config_dirty(spa->spa_root_vdev);
6251 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6252 }
6253 
6254 /*
6255  * Set zpool properties.
6256  */
6257 static void
6258 spa_sync_props(void *arg, dmu_tx_t *tx)
6259 {
6260 	nvlist_t *nvp = arg;
6261 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6262 	objset_t *mos = spa->spa_meta_objset;
6263 	nvpair_t *elem = NULL;
6264 
6265 	mutex_enter(&spa->spa_props_lock);
6266 
6267 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6268 		uint64_t intval;
6269 		char *strval, *fname;
6270 		zpool_prop_t prop;
6271 		const char *propname;
6272 		zprop_type_t proptype;
6273 		spa_feature_t fid;
6274 
6275 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6276 		case ZPROP_INVAL:
6277 			/*
6278 			 * We checked this earlier in spa_prop_validate().
6279 			 */
6280 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6281 
6282 			fname = strchr(nvpair_name(elem), '@') + 1;
6283 			VERIFY0(zfeature_lookup_name(fname, &fid));
6284 
6285 			spa_feature_enable(spa, fid, tx);
6286 			spa_history_log_internal(spa, "set", tx,
6287 			    "%s=enabled", nvpair_name(elem));
6288 			break;
6289 
6290 		case ZPOOL_PROP_VERSION:
6291 			intval = fnvpair_value_uint64(elem);
6292 			/*
6293 			 * The version is synced seperatly before other
6294 			 * properties and should be correct by now.
6295 			 */
6296 			ASSERT3U(spa_version(spa), >=, intval);
6297 			break;
6298 
6299 		case ZPOOL_PROP_ALTROOT:
6300 			/*
6301 			 * 'altroot' is a non-persistent property. It should
6302 			 * have been set temporarily at creation or import time.
6303 			 */
6304 			ASSERT(spa->spa_root != NULL);
6305 			break;
6306 
6307 		case ZPOOL_PROP_READONLY:
6308 		case ZPOOL_PROP_CACHEFILE:
6309 			/*
6310 			 * 'readonly' and 'cachefile' are also non-persisitent
6311 			 * properties.
6312 			 */
6313 			break;
6314 		case ZPOOL_PROP_COMMENT:
6315 			strval = fnvpair_value_string(elem);
6316 			if (spa->spa_comment != NULL)
6317 				spa_strfree(spa->spa_comment);
6318 			spa->spa_comment = spa_strdup(strval);
6319 			/*
6320 			 * We need to dirty the configuration on all the vdevs
6321 			 * so that their labels get updated.  It's unnecessary
6322 			 * to do this for pool creation since the vdev's
6323 			 * configuratoin has already been dirtied.
6324 			 */
6325 			if (tx->tx_txg != TXG_INITIAL)
6326 				vdev_config_dirty(spa->spa_root_vdev);
6327 			spa_history_log_internal(spa, "set", tx,
6328 			    "%s=%s", nvpair_name(elem), strval);
6329 			break;
6330 		default:
6331 			/*
6332 			 * Set pool property values in the poolprops mos object.
6333 			 */
6334 			if (spa->spa_pool_props_object == 0) {
6335 				spa->spa_pool_props_object =
6336 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6337 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6338 				    tx);
6339 			}
6340 
6341 			/* normalize the property name */
6342 			propname = zpool_prop_to_name(prop);
6343 			proptype = zpool_prop_get_type(prop);
6344 
6345 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6346 				ASSERT(proptype == PROP_TYPE_STRING);
6347 				strval = fnvpair_value_string(elem);
6348 				VERIFY0(zap_update(mos,
6349 				    spa->spa_pool_props_object, propname,
6350 				    1, strlen(strval) + 1, strval, tx));
6351 				spa_history_log_internal(spa, "set", tx,
6352 				    "%s=%s", nvpair_name(elem), strval);
6353 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6354 				intval = fnvpair_value_uint64(elem);
6355 
6356 				if (proptype == PROP_TYPE_INDEX) {
6357 					const char *unused;
6358 					VERIFY0(zpool_prop_index_to_string(
6359 					    prop, intval, &unused));
6360 				}
6361 				VERIFY0(zap_update(mos,
6362 				    spa->spa_pool_props_object, propname,
6363 				    8, 1, &intval, tx));
6364 				spa_history_log_internal(spa, "set", tx,
6365 				    "%s=%lld", nvpair_name(elem), intval);
6366 			} else {
6367 				ASSERT(0); /* not allowed */
6368 			}
6369 
6370 			switch (prop) {
6371 			case ZPOOL_PROP_DELEGATION:
6372 				spa->spa_delegation = intval;
6373 				break;
6374 			case ZPOOL_PROP_BOOTFS:
6375 				spa->spa_bootfs = intval;
6376 				break;
6377 			case ZPOOL_PROP_FAILUREMODE:
6378 				spa->spa_failmode = intval;
6379 				break;
6380 			case ZPOOL_PROP_AUTOEXPAND:
6381 				spa->spa_autoexpand = intval;
6382 				if (tx->tx_txg != TXG_INITIAL)
6383 					spa_async_request(spa,
6384 					    SPA_ASYNC_AUTOEXPAND);
6385 				break;
6386 			case ZPOOL_PROP_DEDUPDITTO:
6387 				spa->spa_dedup_ditto = intval;
6388 				break;
6389 			default:
6390 				break;
6391 			}
6392 		}
6393 
6394 	}
6395 
6396 	mutex_exit(&spa->spa_props_lock);
6397 }
6398 
6399 /*
6400  * Perform one-time upgrade on-disk changes.  spa_version() does not
6401  * reflect the new version this txg, so there must be no changes this
6402  * txg to anything that the upgrade code depends on after it executes.
6403  * Therefore this must be called after dsl_pool_sync() does the sync
6404  * tasks.
6405  */
6406 static void
6407 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6408 {
6409 	dsl_pool_t *dp = spa->spa_dsl_pool;
6410 
6411 	ASSERT(spa->spa_sync_pass == 1);
6412 
6413 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6414 
6415 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6416 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6417 		dsl_pool_create_origin(dp, tx);
6418 
6419 		/* Keeping the origin open increases spa_minref */
6420 		spa->spa_minref += 3;
6421 	}
6422 
6423 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6424 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6425 		dsl_pool_upgrade_clones(dp, tx);
6426 	}
6427 
6428 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6429 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6430 		dsl_pool_upgrade_dir_clones(dp, tx);
6431 
6432 		/* Keeping the freedir open increases spa_minref */
6433 		spa->spa_minref += 3;
6434 	}
6435 
6436 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6437 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6438 		spa_feature_create_zap_objects(spa, tx);
6439 	}
6440 
6441 	/*
6442 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6443 	 * when possibility to use lz4 compression for metadata was added
6444 	 * Old pools that have this feature enabled must be upgraded to have
6445 	 * this feature active
6446 	 */
6447 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6448 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6449 		    SPA_FEATURE_LZ4_COMPRESS);
6450 		boolean_t lz4_ac = spa_feature_is_active(spa,
6451 		    SPA_FEATURE_LZ4_COMPRESS);
6452 
6453 		if (lz4_en && !lz4_ac)
6454 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6455 	}
6456 
6457 	/*
6458 	 * If we haven't written the salt, do so now.  Note that the
6459 	 * feature may not be activated yet, but that's fine since
6460 	 * the presence of this ZAP entry is backwards compatible.
6461 	 */
6462 	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6463 	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6464 		VERIFY0(zap_add(spa->spa_meta_objset,
6465 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6466 		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6467 		    spa->spa_cksum_salt.zcs_bytes, tx));
6468 	}
6469 
6470 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6471 }
6472 
6473 /*
6474  * Sync the specified transaction group.  New blocks may be dirtied as
6475  * part of the process, so we iterate until it converges.
6476  */
6477 void
6478 spa_sync(spa_t *spa, uint64_t txg)
6479 {
6480 	dsl_pool_t *dp = spa->spa_dsl_pool;
6481 	objset_t *mos = spa->spa_meta_objset;
6482 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6483 	vdev_t *rvd = spa->spa_root_vdev;
6484 	vdev_t *vd;
6485 	dmu_tx_t *tx;
6486 	int error;
6487 	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6488 	    zfs_vdev_queue_depth_pct / 100;
6489 
6490 	VERIFY(spa_writeable(spa));
6491 
6492 	/*
6493 	 * Lock out configuration changes.
6494 	 */
6495 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6496 
6497 	spa->spa_syncing_txg = txg;
6498 	spa->spa_sync_pass = 0;
6499 
6500 	mutex_enter(&spa->spa_alloc_lock);
6501 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6502 	mutex_exit(&spa->spa_alloc_lock);
6503 
6504 	/*
6505 	 * If there are any pending vdev state changes, convert them
6506 	 * into config changes that go out with this transaction group.
6507 	 */
6508 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6509 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6510 		/*
6511 		 * We need the write lock here because, for aux vdevs,
6512 		 * calling vdev_config_dirty() modifies sav_config.
6513 		 * This is ugly and will become unnecessary when we
6514 		 * eliminate the aux vdev wart by integrating all vdevs
6515 		 * into the root vdev tree.
6516 		 */
6517 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6518 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6519 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6520 			vdev_state_clean(vd);
6521 			vdev_config_dirty(vd);
6522 		}
6523 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6524 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6525 	}
6526 	spa_config_exit(spa, SCL_STATE, FTAG);
6527 
6528 	tx = dmu_tx_create_assigned(dp, txg);
6529 
6530 	spa->spa_sync_starttime = gethrtime();
6531 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6532 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6533 
6534 	/*
6535 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6536 	 * set spa_deflate if we have no raid-z vdevs.
6537 	 */
6538 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6539 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6540 		int i;
6541 
6542 		for (i = 0; i < rvd->vdev_children; i++) {
6543 			vd = rvd->vdev_child[i];
6544 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6545 				break;
6546 		}
6547 		if (i == rvd->vdev_children) {
6548 			spa->spa_deflate = TRUE;
6549 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6550 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6551 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6552 		}
6553 	}
6554 
6555 	/*
6556 	 * Set the top-level vdev's max queue depth. Evaluate each
6557 	 * top-level's async write queue depth in case it changed.
6558 	 * The max queue depth will not change in the middle of syncing
6559 	 * out this txg.
6560 	 */
6561 	uint64_t queue_depth_total = 0;
6562 	for (int c = 0; c < rvd->vdev_children; c++) {
6563 		vdev_t *tvd = rvd->vdev_child[c];
6564 		metaslab_group_t *mg = tvd->vdev_mg;
6565 
6566 		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6567 		    !metaslab_group_initialized(mg))
6568 			continue;
6569 
6570 		/*
6571 		 * It is safe to do a lock-free check here because only async
6572 		 * allocations look at mg_max_alloc_queue_depth, and async
6573 		 * allocations all happen from spa_sync().
6574 		 */
6575 		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6576 		mg->mg_max_alloc_queue_depth = max_queue_depth;
6577 		queue_depth_total += mg->mg_max_alloc_queue_depth;
6578 	}
6579 	metaslab_class_t *mc = spa_normal_class(spa);
6580 	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6581 	mc->mc_alloc_max_slots = queue_depth_total;
6582 	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6583 
6584 	ASSERT3U(mc->mc_alloc_max_slots, <=,
6585 	    max_queue_depth * rvd->vdev_children);
6586 
6587 	/*
6588 	 * Iterate to convergence.
6589 	 */
6590 	do {
6591 		int pass = ++spa->spa_sync_pass;
6592 
6593 		spa_sync_config_object(spa, tx);
6594 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6595 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6596 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6597 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6598 		spa_errlog_sync(spa, txg);
6599 		dsl_pool_sync(dp, txg);
6600 
6601 		if (pass < zfs_sync_pass_deferred_free) {
6602 			spa_sync_frees(spa, free_bpl, tx);
6603 		} else {
6604 			/*
6605 			 * We can not defer frees in pass 1, because
6606 			 * we sync the deferred frees later in pass 1.
6607 			 */
6608 			ASSERT3U(pass, >, 1);
6609 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6610 			    &spa->spa_deferred_bpobj, tx);
6611 		}
6612 
6613 		ddt_sync(spa, txg);
6614 		dsl_scan_sync(dp, tx);
6615 
6616 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6617 			vdev_sync(vd, txg);
6618 
6619 		if (pass == 1) {
6620 			spa_sync_upgrades(spa, tx);
6621 			ASSERT3U(txg, >=,
6622 			    spa->spa_uberblock.ub_rootbp.blk_birth);
6623 			/*
6624 			 * Note: We need to check if the MOS is dirty
6625 			 * because we could have marked the MOS dirty
6626 			 * without updating the uberblock (e.g. if we
6627 			 * have sync tasks but no dirty user data).  We
6628 			 * need to check the uberblock's rootbp because
6629 			 * it is updated if we have synced out dirty
6630 			 * data (though in this case the MOS will most
6631 			 * likely also be dirty due to second order
6632 			 * effects, we don't want to rely on that here).
6633 			 */
6634 			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6635 			    !dmu_objset_is_dirty(mos, txg)) {
6636 				/*
6637 				 * Nothing changed on the first pass,
6638 				 * therefore this TXG is a no-op.  Avoid
6639 				 * syncing deferred frees, so that we
6640 				 * can keep this TXG as a no-op.
6641 				 */
6642 				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6643 				    txg));
6644 				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6645 				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6646 				break;
6647 			}
6648 			spa_sync_deferred_frees(spa, tx);
6649 		}
6650 
6651 	} while (dmu_objset_is_dirty(mos, txg));
6652 
6653 	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6654 		/*
6655 		 * Make sure that the number of ZAPs for all the vdevs matches
6656 		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6657 		 * called if the config is dirty; otherwise there may be
6658 		 * outstanding AVZ operations that weren't completed in
6659 		 * spa_sync_config_object.
6660 		 */
6661 		uint64_t all_vdev_zap_entry_count;
6662 		ASSERT0(zap_count(spa->spa_meta_objset,
6663 		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6664 		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6665 		    all_vdev_zap_entry_count);
6666 	}
6667 
6668 	/*
6669 	 * Rewrite the vdev configuration (which includes the uberblock)
6670 	 * to commit the transaction group.
6671 	 *
6672 	 * If there are no dirty vdevs, we sync the uberblock to a few
6673 	 * random top-level vdevs that are known to be visible in the
6674 	 * config cache (see spa_vdev_add() for a complete description).
6675 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6676 	 */
6677 	for (;;) {
6678 		/*
6679 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6680 		 * while we're attempting to write the vdev labels.
6681 		 */
6682 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6683 
6684 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6685 			vdev_t *svd[SPA_DVAS_PER_BP];
6686 			int svdcount = 0;
6687 			int children = rvd->vdev_children;
6688 			int c0 = spa_get_random(children);
6689 
6690 			for (int c = 0; c < children; c++) {
6691 				vd = rvd->vdev_child[(c0 + c) % children];
6692 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6693 					continue;
6694 				svd[svdcount++] = vd;
6695 				if (svdcount == SPA_DVAS_PER_BP)
6696 					break;
6697 			}
6698 			error = vdev_config_sync(svd, svdcount, txg);
6699 		} else {
6700 			error = vdev_config_sync(rvd->vdev_child,
6701 			    rvd->vdev_children, txg);
6702 		}
6703 
6704 		if (error == 0)
6705 			spa->spa_last_synced_guid = rvd->vdev_guid;
6706 
6707 		spa_config_exit(spa, SCL_STATE, FTAG);
6708 
6709 		if (error == 0)
6710 			break;
6711 		zio_suspend(spa, NULL);
6712 		zio_resume_wait(spa);
6713 	}
6714 	dmu_tx_commit(tx);
6715 
6716 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6717 
6718 	/*
6719 	 * Clear the dirty config list.
6720 	 */
6721 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6722 		vdev_config_clean(vd);
6723 
6724 	/*
6725 	 * Now that the new config has synced transactionally,
6726 	 * let it become visible to the config cache.
6727 	 */
6728 	if (spa->spa_config_syncing != NULL) {
6729 		spa_config_set(spa, spa->spa_config_syncing);
6730 		spa->spa_config_txg = txg;
6731 		spa->spa_config_syncing = NULL;
6732 	}
6733 
6734 	spa->spa_ubsync = spa->spa_uberblock;
6735 
6736 	dsl_pool_sync_done(dp, txg);
6737 
6738 	mutex_enter(&spa->spa_alloc_lock);
6739 	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6740 	mutex_exit(&spa->spa_alloc_lock);
6741 
6742 	/*
6743 	 * Update usable space statistics.
6744 	 */
6745 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6746 		vdev_sync_done(vd, txg);
6747 
6748 	spa_update_dspace(spa);
6749 
6750 	/*
6751 	 * It had better be the case that we didn't dirty anything
6752 	 * since vdev_config_sync().
6753 	 */
6754 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6755 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6756 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6757 
6758 	spa->spa_sync_pass = 0;
6759 
6760 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6761 
6762 	spa_handle_ignored_writes(spa);
6763 
6764 	/*
6765 	 * If any async tasks have been requested, kick them off.
6766 	 */
6767 	spa_async_dispatch(spa);
6768 }
6769 
6770 /*
6771  * Sync all pools.  We don't want to hold the namespace lock across these
6772  * operations, so we take a reference on the spa_t and drop the lock during the
6773  * sync.
6774  */
6775 void
6776 spa_sync_allpools(void)
6777 {
6778 	spa_t *spa = NULL;
6779 	mutex_enter(&spa_namespace_lock);
6780 	while ((spa = spa_next(spa)) != NULL) {
6781 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6782 		    !spa_writeable(spa) || spa_suspended(spa))
6783 			continue;
6784 		spa_open_ref(spa, FTAG);
6785 		mutex_exit(&spa_namespace_lock);
6786 		txg_wait_synced(spa_get_dsl(spa), 0);
6787 		mutex_enter(&spa_namespace_lock);
6788 		spa_close(spa, FTAG);
6789 	}
6790 	mutex_exit(&spa_namespace_lock);
6791 }
6792 
6793 /*
6794  * ==========================================================================
6795  * Miscellaneous routines
6796  * ==========================================================================
6797  */
6798 
6799 /*
6800  * Remove all pools in the system.
6801  */
6802 void
6803 spa_evict_all(void)
6804 {
6805 	spa_t *spa;
6806 
6807 	/*
6808 	 * Remove all cached state.  All pools should be closed now,
6809 	 * so every spa in the AVL tree should be unreferenced.
6810 	 */
6811 	mutex_enter(&spa_namespace_lock);
6812 	while ((spa = spa_next(NULL)) != NULL) {
6813 		/*
6814 		 * Stop async tasks.  The async thread may need to detach
6815 		 * a device that's been replaced, which requires grabbing
6816 		 * spa_namespace_lock, so we must drop it here.
6817 		 */
6818 		spa_open_ref(spa, FTAG);
6819 		mutex_exit(&spa_namespace_lock);
6820 		spa_async_suspend(spa);
6821 		mutex_enter(&spa_namespace_lock);
6822 		spa_close(spa, FTAG);
6823 
6824 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6825 			spa_unload(spa);
6826 			spa_deactivate(spa);
6827 		}
6828 		spa_remove(spa);
6829 	}
6830 	mutex_exit(&spa_namespace_lock);
6831 }
6832 
6833 vdev_t *
6834 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6835 {
6836 	vdev_t *vd;
6837 	int i;
6838 
6839 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6840 		return (vd);
6841 
6842 	if (aux) {
6843 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6844 			vd = spa->spa_l2cache.sav_vdevs[i];
6845 			if (vd->vdev_guid == guid)
6846 				return (vd);
6847 		}
6848 
6849 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6850 			vd = spa->spa_spares.sav_vdevs[i];
6851 			if (vd->vdev_guid == guid)
6852 				return (vd);
6853 		}
6854 	}
6855 
6856 	return (NULL);
6857 }
6858 
6859 void
6860 spa_upgrade(spa_t *spa, uint64_t version)
6861 {
6862 	ASSERT(spa_writeable(spa));
6863 
6864 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6865 
6866 	/*
6867 	 * This should only be called for a non-faulted pool, and since a
6868 	 * future version would result in an unopenable pool, this shouldn't be
6869 	 * possible.
6870 	 */
6871 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6872 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6873 
6874 	spa->spa_uberblock.ub_version = version;
6875 	vdev_config_dirty(spa->spa_root_vdev);
6876 
6877 	spa_config_exit(spa, SCL_ALL, FTAG);
6878 
6879 	txg_wait_synced(spa_get_dsl(spa), 0);
6880 }
6881 
6882 boolean_t
6883 spa_has_spare(spa_t *spa, uint64_t guid)
6884 {
6885 	int i;
6886 	uint64_t spareguid;
6887 	spa_aux_vdev_t *sav = &spa->spa_spares;
6888 
6889 	for (i = 0; i < sav->sav_count; i++)
6890 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6891 			return (B_TRUE);
6892 
6893 	for (i = 0; i < sav->sav_npending; i++) {
6894 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6895 		    &spareguid) == 0 && spareguid == guid)
6896 			return (B_TRUE);
6897 	}
6898 
6899 	return (B_FALSE);
6900 }
6901 
6902 /*
6903  * Check if a pool has an active shared spare device.
6904  * Note: reference count of an active spare is 2, as a spare and as a replace
6905  */
6906 static boolean_t
6907 spa_has_active_shared_spare(spa_t *spa)
6908 {
6909 	int i, refcnt;
6910 	uint64_t pool;
6911 	spa_aux_vdev_t *sav = &spa->spa_spares;
6912 
6913 	for (i = 0; i < sav->sav_count; i++) {
6914 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6915 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6916 		    refcnt > 2)
6917 			return (B_TRUE);
6918 	}
6919 
6920 	return (B_FALSE);
6921 }
6922 
6923 /*
6924  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6925  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6926  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6927  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6928  * or zdb as real changes.
6929  */
6930 void
6931 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6932 {
6933 #ifdef _KERNEL
6934 	sysevent_t		*ev;
6935 	sysevent_attr_list_t	*attr = NULL;
6936 	sysevent_value_t	value;
6937 	sysevent_id_t		eid;
6938 
6939 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6940 	    SE_SLEEP);
6941 
6942 	value.value_type = SE_DATA_TYPE_STRING;
6943 	value.value.sv_string = spa_name(spa);
6944 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6945 		goto done;
6946 
6947 	value.value_type = SE_DATA_TYPE_UINT64;
6948 	value.value.sv_uint64 = spa_guid(spa);
6949 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6950 		goto done;
6951 
6952 	if (vd) {
6953 		value.value_type = SE_DATA_TYPE_UINT64;
6954 		value.value.sv_uint64 = vd->vdev_guid;
6955 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6956 		    SE_SLEEP) != 0)
6957 			goto done;
6958 
6959 		if (vd->vdev_path) {
6960 			value.value_type = SE_DATA_TYPE_STRING;
6961 			value.value.sv_string = vd->vdev_path;
6962 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6963 			    &value, SE_SLEEP) != 0)
6964 				goto done;
6965 		}
6966 	}
6967 
6968 	if (sysevent_attach_attributes(ev, attr) != 0)
6969 		goto done;
6970 	attr = NULL;
6971 
6972 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6973 
6974 done:
6975 	if (attr)
6976 		sysevent_free_attr(attr);
6977 	sysevent_free(ev);
6978 #endif
6979 }
6980